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Highlight 

Here, we review the techniques applied in leaf imaging to model anatomy and locate metabolites, as 

well as evaluate their power and efficiency in addressing fundamental questions in photosynthetic 

research.  
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Abstract 

Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple 

junctures, from the early understanding of the role of stomata, through elucidating C4 

photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed 

explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, 

the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) 

space, revising our understanding of structure-function relationships between internal leaf anatomy 

and photosynthesis. In particular, advancing new technologies and analyses are providing fresh 

insight into the relationship between leaf cellular components and improving the ability to model 

net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-

breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D 

structure via high-resolution 3D and time-series images, there is a growing need for more in vivo 

imaging as well as metabolite imaging. However, these advances necessitate further improvement in 

microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we 

discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as 

well as innovations to overcome these difficulties.  

Keywords: leaf imaging, three-dimensional imaging, metabolite imaging, photosynthesis, 

microscopy, leaf three-dimensional modeling, leaf anatomy modeling, mesophyll conductance, 

Raman micro-spectroscopy, infrared spectroscopy, hyperspectral imaging 
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Introduction  

Throughout the history of photosynthetic research, from the early understanding of the role 

of stomata in leaf gas exchange (Blackman and Darwin, 1895), through the explorations of CO2 

diffusion pathways within intercellular air spaces and across the wet surface of mesophyll cells 

(Coulter et al., 1910; Turrell, 1936), to elucidating C4 photosynthesis via Kranz anatomy (Hatch and 

Slack, 1966) and light utilization gradients within leaves (Allen et al., 1970; McClendon, 1984), leaf 

form and function research depended on detailed microscopic observations. Some earliest concepts, 

such as the function of the “Orifices” (stomata) on the “skin” (epidermis) to allow leaves to allow the 

air in and out, date to 1682 by Nehemiah Grew(Grew, 1682) where he explained the function of leaf 

structures as: “methods which nature takes to preserve them [leaves] from the injuries both of the 

ground and of the weather”. But despite this early kick-off, it was not until the 20th century that high-

resolution technologies including electron microscopy, laser scanning confocal microscopy, 

hyperspectral imaging, digital cameras, and sophisticated computational and statistical analyses 

allowed leaf imaging to become routine in addressing central questions related to photosynthetic 

form and function.  

Here we review the significance of leaf 3D imaging, the implementation of microscopy 

techniques in photosynthetic research, and their strengths and limitations in keeping up with the 

demand for high-quality and high-throughput phenotyping. Leaf imaging extends beyond 

microscopy; however, here we refer to imaging techniques coupled with microscopy. Sensor-based 

imaging techniques such as hyperspectral remote sensing, thermal infrared, and precision 

agriculture are reviewed by multiple groups and authors (Li et al., 2014; Adão et al., 2017; Mishra et 

al., 2017; Nguyen et al., 2020). Furthermore, we discuss the instances where challenges in 

photosynthesis research would benefit from embracing the current imaging techniques. 
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1- The Leaf: a 3D dynamic complex 

During the evolution of megaphylls in early terrestrial habitats, leaves optimized the 

arrangement of chloroplasts - the site of CO2 fixation by Rubisco - within the mesophyll cells and the 

mesophyll cells within the leaf tissue to maximize photosynthesis (Nicotra et al., 2011; Terashima et 

al., 2011; Xiao et al., 2016). In addition, within each photosynthetic cell, positioning of mitochondria 

and peroxisomes along the chloroplasts facilitated (photo)respiration (Sage and Sage, 2009; Baker et 

al., 2010; Hu et al., 2012; Busch et al., 2013; Hatakeyama and Ueno, 2016), and across a leaf, the 

venation architecture was coordinated with stomatal position and density to regulate water 

movement and evaporation (Sack and Holbrook, 2006). These arrangements (Figure 1) create a 

heterogeneous 3D complex encompassing constant and dynamic paths for light to penetrate to the 

multiple layers of the leaf; for CO2 to diffuse from ambient air to the site of carbon fixation; for 

metabolites to be exported to the other cellular compartments or adjacent tissues such as vascular 

bundles; and for water to maintain the leaf hydrology (Evans, 1999; Tholen et al., 2012; Li et al., 

2017; Earles et al., 2019).  

In a mature leaf, the constant path encompasses gross stomatal morphology and density, 

leaf venation, mesophyll organization, and intercellular airspace (IAS, Figure 1), all of which are 

established during the leaf development, determined by genetic background (Peterson et al., 2010; 

Zwieniecki and Boyce, 2014; Chater et al., 2017; Baillie et al., 2019; Scanlon et al., 2019), and 

influenced by growing conditions such as light level, temperature, available water, and age. For 

instance, growing in shade decreases the leaf thickness (Oguchi et al., 2005), increases IAS (Allard et 

al., 1991; Slaton and Smith, 2002), and alters the rate or dimension of cell division and the ratio of 

the palisade to spongy tissue (Ivanova and Pyankov, 2002; Terashima and Yano, 2004; Kalve et al., 

2014; Wu et al., 2017). Growing in high temperatures induces lower stomatal density (Crawford et 

al., 2012), and growing under and above the optimal temperatures compromises cell division and 

leaf growth (Rymen et al., 2007; Gray and Brady, 2016). During leaf development, local and uneven 
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deposition of the primary cell wall establishes mesophyll shape and geometry necessary for the 3D 

structure of the mesophyll tissue (Panteris and Galatis, 2005; Ambrose et al., 2013; Giannoutsou et 

al., 2013; Sotiriou et al., 2015). Changing the structure and thickness of the cell wall, either during 

stress conditions (Roig-Oliver et al., 2020; Warming, 2020), through mutation of cell wall 

biosynthetic genes (Weraduwage et al., 2016; Ellsworth et al., 2018; Danila et al., 2021), or aging 

(Hanba et al., 2001; Marchi et al., 2008; Tosens et al., 2012a; Clarke et al., 2021) can impact cell size 

and shape, thus impacting 3D leaf architecture, or modify the access of photosynthetic cells to CO2 

due to changes in thickness and chemical composition of the cell wall. 

The dynamic path consists of the stomatal aperture response to light and CO2 (Engineer et 

al., 2016); cell wall dynamic metabolism and antioxidant state (Clemente-Moreno et al., 2019), cell 

membrane, cytosol, and organelles dynamics (Evans et al., 2009; Evans, 2020); and biochemistry 

(Figure 1). This path is also regulated by genetic background and growing conditions. For example, 

the arrangement and ultrastructure of chloroplasts vary between C3 and C4 species and within C4 

species of different biochemical subtypes (Fisher and Ray, 1982; Edwards and Voznesenskaya, 2011; 

Stata et al., 2014), within different cell layers of a C3 leaf (Terashima and Inoue, 1984, 1985), or 

within species grown in different environments (Taylor and Craig, 1971; Jiang et al., 2011). Besides, 

well-established evidence confirms chloroplast photorelocation to prevent photodamage or provide 

access to more light (Kasahara et al., 2002; Suetsugu and Wada, 2005; Wilson and Ruban, 2020); as 

well as the response of mitochondria, the nucleus, and cytoskeleton to the fluctuating 

environmental light (Islam et al., 2009; Higa et al., 2014; Perico and Sparkes, 2018; Fujii et al., 2020).  

These examples represent the immense diversity in leaf structure between species, within 

the species grown in different environments, and within cellular layers of a single leaf. The 

magnitude of this diversity and its effect on photosynthetic capacity have provoked researchers to 

recognize and implement the intricacy and diversity of the leaf 3D structure in dynamic processes 

such as leaf internal CO2 diffusion and mesophyll and stomatal conductance (Turrell, 1936; Nobel, 
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1977; Longstreth et al., 1980; Nobel and Hartsock, 1981; Thain, 1983; Evans et al., 1994; Théroux-

Rancourt et al., 2017; Earles et al., 2018; Lundgren et al., 2019; Xie et al., 2021). International efforts 

for crop improvement call for leaf anatomy modification as a promising approach for improving the 

efficiency of photosynthesis (Niinemets et al., 2009; Covshoff and Hibberd, 2012; Tholen et al., 2012; 

Leegood, 2013; Ren et al., 2019; Lundgren and Fleming, 2020). However, data are not readily 

available for models to incorporate structural dynamics of the crop beyond generally known leaf 

traits, or to include rapid responses of organelles to the environmental conditions and the 

metabolite turnover between leaf sub-compartments.  

Current methods rely on simplifications that disregard the depth of the tissue and the 

dynamics of leaf metabolism over time or dismiss the extent of leaf structural diversity. A 

remarkable example is the Kranz anatomy of C4 species. Since its discovery (Hatch and Slack, 1966), 

plant physiologists -inferring from 2D leaf cross-sections - believed that C4 species have enlarged 

bundle sheath cells relative to their C3 species. However, imaging C4 leaves from a parademal view 

revealed that the modification in the direction of expansion, not the bundle sheath size, creates the 

erroneous perception of larger bundle sheath in C4 species (Danila et al., 2018; Khoshravesh et al., 

2020). Although available microscopy techniques can correct these types of misconceptions, our 

incomplete understanding of the leaf 3D structure is mainly limited by the development and 

accessibility of visualization and imaging tools.  

Plant leaves are heterogeneous organs consisting of many cell layers of variable sizes, with 

differences in cell wall thickness, organelle density, and vacuole size. This assortment plus the 

presence of numerous auto-fluorescing chloroplasts and IAS complicates optical properties in 

cellular and subcellular levels. Spaced by IAS, leaf cells are also very large - up to 1,280 µm3 in rice 

and 12,500 µm3  in wheat mesophylls (Harwood et al., 2020); therefore, the gas and metabolites 

moving inside the leaf cell layers travel through biophysically similar long distances and biophysically 

diverse short distances, passing through approximately 10 nm membranes (Sandelius et al., 1986) or 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erab548/6497708 by Lancaster U

niversity user on 10 February 2022



Acc
ep

ted
 M

an
us

cri
pt

 

7 
 

the ~2 μm width of a mitochondrion (Figure 1); all these paths significantly impact the photosynthetic 

activities (Evans et al., 1994; Evans and Von Caemmerer, 1996; Evans, 2020). The methods capable 

of imaging large areas or volumes lack resolution depths to resolve small objects, while instruments 

efficient in capturing high resolution do not cover a large area or volume. Besides, the rapid 

response of the dynamic path to the fluctuating environment and fast metabolite movement within 

and between cells demands 3D leaf imaging capable of collecting fast and efficient time series. This 

complexity may explain why, despite its significance, there has been approximately twice as much 

3D cell imaging research on comparatively simple-structured root cells relative to leaf cells (Figure 

2). While considerable progress in imaging techniques has improved our overall knowledge of leaf 

3D structure with a rapid rise in recent publications on leaf 3D anatomy (Figure 2), there are many 

gaps to fill and more to anticipate from future innovations, particularly in the field of in vivo and 

metabolite imaging.   

 

2- Green leaves: commonly applied imaging techniques and challenges 

Bright-field light microscopes provided the first insights into leaf anatomy (Grew, 1682; 

Baillon, 1882) and have been instrumental in outlining fundamental concepts (Table 1). The initial 

contrast and resolution restriction of bright-field light microscopes have been enhanced by tissue 

preparation (thin sectioning and staining) and complementary illumination methods (darkfield, 

phase-contrast, and differential interference contrast or DIC, Table 1) up to its inherent diffraction 

limit of visible light (200 nm) known as the Abbe limit (Stelzer, 2002). Conventional light microscopes 

cannot distinguish objects closer than ½ wavelength of visible light (400-700 nm). Thus, for the 

resolutions higher than 200 nm (1/2 of the blue light wavelength), light microscopes were 

traditionally supplemented by transmission electron microscopy (TEM), which can detect subcellular 

details to 0.2 nm resolution. TEM details became accessible via application of chemicals  (Ayache et 

al., 2012), which ultimately can cause size alteration and introduce artifacts (Michen et al., 2015; 
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Zhang et al., 2017). Cryo-EM and liquid-cell TEM mitigate some of these issues (Chen and Wen, 

2012) by retaining cellular structures in a more native state; but, tissue destruction by sectioning the 

tissue is still required for TEM-based leaf imaging (Table 1).  

Fluorescence-based optical microscopy (Table 1) is another solution to enhance contrast and 

resolution, and add depth to imaging. Fluorescence-based microscopy relies on either endogenous 

fluorescence, a fluorescing dye, a fluorophore-conjugated primary or secondary antibody, or 

fluorescent reporters genetically engineered into the living cell; in all scenarios, the localization of 

the fluorescing source is identified by its emission wavelength. The wide variety of fluorescent 

microscopy techniques such as laser scanning confocal, non-linear multiphoton, super-resolution, 

spinning disk, fluorescence lifetime imaging (FLIM), light-sheet fluorescent microscopy (Table 1), or a 

combination of them have added depth, dynamics, and resolution (up to a single molecule) to live-

cell imaging (Renz, 2013; Ovec et al., 2015; Thorn, 2016).  

Green leaves provide opportunities and limitations for fluorescence-based microscopy. The 

autofluorescence from chlorophylls in the red region and phenolic compounds of cuticles and cell 

walls in green regions of the visible spectrum provides an excellent opportunity for dye-free imaging 

(Vogelmann and Evans, 2002; Vermaas et al., 2008; Brodersen and Vogelmann, 2010; Collins et al., 

2012; Slattery et al., 2016; Lichtenberg et al., 2017; Borsuk and Brodersen, 2019). The 

autofluorescence from cuticles and cell walls is generally distinguishable from fluorescent dyes and 

markers in the green region and could be eliminated by laser scanning confocal microscope or by 

image processing. However, the number of fluorescent dyes is limited because chlorophyll 

autofluorescence naturally overlaps with emission wavelength greater than 600 nm, and 

autofluorescence from highly lignified cell walls such as xylem interferes with the green emission 

peaking in 530 nm wavelength. As well, most manufactured dyes are optimized for animal and 

human cells. Therefore, they may not efficiently infiltrate the cells due to the thick cell walls and 

cuticles or they may have a non-specific binding of the markers and generate signals greater than 
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the targets, which challenges automated segmentation and computational analyses. Furthermore, 

leaves are optically dense. When one-photon excitation is performed on the intact leaf, light does 

not penetrate deep into the leaf due to the higher light absorption and scattering by chloroplasts in 

upper illuminated cell layers (Jacques, 2013). This limits the whole in vivo leaf imaging depth up to 

100 μm or shorter (sometimes only to the epidermis). Non-linear (two or multi-photon) excitation 

(Ryu et al., 2014) and light-sheet fluorescent microscopy techniques (Table 1) can improve imaging 

depth and speed with less damage to the tissue in live-cell imaging. But despite their powerin 3D 

and live-imaging of the developing organs such as differentiating flowers, growing roots, and 

juvenile leaves (Capua and Eshed, 2017; Ovečka et al., 2018; Valuchova et al., 2019, 2020; Mizuta, 

2021), light-sheet and multi-photon microscopy have not been widely embraced in mature leaf live 

imaging. This may be explained by the challenges (autofluorescence, optical density, cellular 

heterogeneity) that green leaves pose to 3D imaging which also delayed the use of more advanced 

techniques such as super-resolution microscopy (Ovec et al., 2015; Schubert, 2017).   

3- Leaf 3D visualization 

Internal leaf anatomy models have been primarily developed to estimate the internal leaf CO2 

diffusion path and the light environment.  

CO2 diffusion path: To be fixed in the form of sugars and carbohydrates, CO2 diffuses (purple 

arrows, Figure 1) from the sub-stomatal cavity to the IAS - or gas phase - and through the cell wall 

and membrane, cytosol and chloroplasts - together known as liquid phase (Evans et al., 1994; 

Syevertsen et al., 1995). The size and arrangement of IAS, and the ratio of the total surface of 

mesophyll cells exposed to the IAS (Sm or Asm) to the leaf surface area, as well as mesophyll cell wall 

thickness, chloroplast thickness, and the surface area of chloroplasts exposed to the IAS impact 

mesophyll diffusion conductance to CO2 (gm) (Coulter et al., 1910; Onoda et al., 2017; Evans, 2020). 

Models to predict gm from these quantitative leaf traits using 2D light and electron micrographs of 

mesophyll tissue and cellular ultrastructure have created fundamental insight into the role of gas 
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and liquid phases on the efficiency of CO2 diffusion into chloroplasts (Turrell, 1936; Nobel, 1977; 

Longstreth et al., 1980; Nobel and Hartsock, 1981; Thain, 1983; Evans et al., 1994; Tosens et al., 

2012b; Veromann-Jürgenson et al., 2017; Tosens and Laanisto, 2018). These models predicted gm 

values that deviated from the measured values only by 24 % across a wide variety of species and 

diversity of leaf anatomies (Tosens and Laanisto, 2018).  

Currently, to estimate Sm and IAS volume from leaf anatomy, mathematical modeling and 

simulations are combined with imaging technologies ranging from conventional light microscopy 

(Evans et al., 1994; Slaton and Smith, 2002; Tosens et al., 2012a,b; Tomás et al., 2013) to 

synchrotron radiation X-ray laminography and Micro-Computed Tomography (micro-CT)-based leaf 

3D reconstruction (Ho et al., 2016; Théroux-Rancourt et al., 2017, 2020; Earles et al., 2018; Lundgren 

et al., 2019; Piovesan et al., 2021). While synchrotron radiation-based spectroscopy and micro-CT 

estimate the most accurate Sm based on the real 3D reconstruction of the intact leaves, our 

fundamental knowledge on the contribution of Sm and IAS volume to gm emanate from light 

microscopy images of the cross, paradermal, and oblique sections from resin- or paraffin-embedded 

leaf blocks plus models estimating Sm from 2D images (Turrell, 1936; Thain, 1983; Evans et al., 1994; 

Slaton and Smith, 2002). Comparing four 2D models to estimate Sm, Théroux-Rancourt et al. (2017) 

showed that Turrell’s cross and paradermal section model (Turrell, 1936) produced the most 

accurate Sm values closest to the 3D estimation - within 10% of the 3D median. However, this 

accuracy requires more sections relative to the methods such as curvature correction factor (Thain, 

1983); and eliminating the leaf sections that contain vasculature demands even more sections for 

the species with denser reticulate venation such as sunflower.  

Sample preparation and microtome sectioning to acquire acceptable replicates and slice 

numbers to estimate Sm and IAS volume are labor-intensive and time-consuming. Each resin block 

requires at least 3-5 days of chemical infiltration and resin embedding; a few hours of sectioning, 

staining, and imaging; and few hours of quantification. This restricts the scale of experiments usually 
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to a few species and replicates in each research project. Moreover, leaves shrink during sample 

preparation, resulting in error in Sm and IAS estimation; the error being greater in thick (400 μm) 

relative to thin (100 μm) leaves (Théroux-Rancourt et al., 2017). In contrast, sample preparation is 

minimal for micro-CT imaging and imaging is fast; up to 50 mm2 fresh leaf cuts with a depth of 1 mm 

could be scanned in 30 min to generate thousands of scans (Earles et al., 2019; Lundgren et al., 

2019). However, the analysis of these massive datasets is computationally intensive and usually, the 

segmentation processes reduce the speed, accuracy, and reproducibility of data analysis. Recently, 

the machine-learning-based segmentation and quantification model (Théroux-Rancourt et al., 2020) 

enabled model training with a minimum of six scans in less than 30 min, and analysis of more than 

1500 micro-CT scans in few hours with more than 90 % accuracy. But, not many researchers have 

access to micro-CT technology or are capable of conducting computationally intensive data analyses. 

To fill the gap between the time- and labor-demanding leaf microtome sectioning and the expensive 

and infrequently accessible micro-CT, techniques such as tissue optical clearing (TOC) could 

reconstruct 3D leaves for Sm and IAS quantification (Box 1; Figure 3).  

In estimating Sm and IAS, one significant limitation is the small imaged/scanned area or 

volume  – up to 4 mm2  5 mm2 x leaf thickness with micro-CT, which does not represent the 

structure of the whole leaf. Although, we know which 2D method provides the least error relative to 

the 3D techniques (Théroux-Rancourt et al., 2017), both approaches rely on removing veins and 

focusing on homogenous leaf parts which could introduce the same bias in measurements. We still 

do not know whether analyzing larger area/volume at the expense of lateral and axial resolution 

would add more accuracy in understanding leaf features or will introduce more error, and in either 

case, how much area/volume from how many leaves would represent leaf features accurately. 

Another limitation is that the areas or volumes imaged during IAS and Sm estimation are not efficient 

in identifying the critical details of the liquid phase diffusion paths - mesophyll cell wall thickness, 

chloroplast thickness, and the surface area of chloroplasts exposed to the IAS - on which net 

photosynthesis also depends (Evans et al., 2009; Evans, 2020). In C3 species, the access of each 
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mesophyll chloroplast to CO2 and O2 varies based on its proximity to the cell wall facing intercellular 

airspaces, and cytosol thickness (Evans et al., 1994; Tomás et al., 2013; Veromann-Jürgenson et al., 

2020; Clarke et al., 2021). Net photosynthesis is also influenced by the density and position of 

mitochondria which release photorespiratory CO2 in the leaf (Sage and Sage, 2009; Busch et al., 

2013). Since chloroplasts are the final destination of light and CO2, the optimized arrangement of the 

3D structure of stroma and grana thylakoids, where photosystems (PSI and PSII) and light-harvesting 

systems are located, and stroma, where Rubisco is localized, is necessary to maximize efficient 

delivery of light and CO2 to their final destination (Kirchhoff, 2019). 

 Some of the closest-to-ideal leaf 3D reconstructions that cover a large cube of the leaf (100 

μm x 100 μm x leaf thickness) while maintaining the structural details up to a resolution of 0.75 μm 

have been created by synchrotron X-ray computed micro-laminography (Verboven et al., 2015; Ho et 

al., 2016). However, this resolution is insufficient to model 3D CO2 diffusion and light behavior inside 

the tomato leaf, so Ho et al. (2016) computationally simulated chloroplasts inside mesophyll. To this 

date, and as reviewed by Earles et al. (2019), EM or EM-driven 3D reconstruction methods including 

SBF-SEM (Serial Block-Face Scanning Electron Microscopy), FIB-SEM (Focused Ion Beam Scanning 

Electron Microscopy), and TEM tomography (Table 1) have been the sole solution to depict the 

maximum number of subcellular components in a single frame with the resolution high enough to 

detect ultrastructural details such as plasmodesmata and membranes (Jin et al., 2018; Yamane et al., 

2018), characterize plant cell organelles, and reconstruct chloroplast inner membrane networks 

(Table 1) (Perktold et al., 1998; Austin and Staehelin, 2011; Daum and Kühlbrandt, 2011; Engel et al., 

2015; Kirchhoff, 2019; Wang et al., 2019).   

EM-based 3D reconstruction requires post-processing segmentation which has largely relied 

on manual tracing of the organelles and subcellular boundaries. This could reduce time efficiency, 

constrain automation of image segmentation for data analysis, and introduce human error. Efforts 

for automatic segmentation of the EM-based images have recently resulted in the development of 
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machine learning networks that efficiently segmented membrane-bound organelles, e.g. Golgi, 

lysosome, and mitochondrial, and non-membrane-bound structures, e.g. ribosomes and 

microtubules, as well as 3D-reconstructed multiple human cell types at 4 nm voxel resolution FIB-

SEM volumes (Heinrich et al., 2021). Further application of such networks using plant cells as training 

data would increase the power of EM-based techniques in the subcellular 3D reconstruction of plant 

cells. However, with all the power and resolution,  EM-driven 3D imaging is not accessible for many 

researchers, leaving them with traditional 2D TEM imaging. 

Another leaf 3D modeling approach is simulations using a combination of empirical data 

with the assumption of regular geometric cellular structure – e.g. cylinder-like palisade, sphere-like 

mesophyll cells, and regular distribution of IAS (Govaerts et al., 1996; Jacquemoud and Frangi, 1997; 

Ustin et al., 2001; Aalto and Juurola, 2002; Xiao et al., 2016). In these works, the irregularity of the 

mesophyll surface and the non-homogenous porosity of the leaf have been acknowledged; yet, 

lacking fast and proper tools to capture its details prevented this irregularity to be applied in the 

models. The regular geometric simulations have usually represented a “typical C3 eudicot broadleaf” 

with one layer of palisade mesophyll and few layers of spongy cells (Ustin et al., 2001; Aalto and 

Juurola, 2002; Xiao et al., 2016). These models do not cover many of the diverse features of leaves, 

such as leaves with more than one palisade layer, hypodermis, and multilayered epidermis; 

succulent leaves with 3D leaf venation and water storage cells (Ogburn and Edwards, 2013); floating 

aquatic leaves with no palisade (Kaul, 1976); C3 monocots including diverse groups of grasses, 

orchids, and Bromeliads; the specialized anatomy of CAM plants (Nelson and Sage, 2008); and C2 and 

C4 species with varying proportion of mesophyll and vascular tissue (Sage et al., 2014; Lundgren, 

2020). Within the category of the typical C3 eudicot broadleaf, the experimental data represent 

measurements from very few and sometimes a single species, as in Xiao et al. (2016) when the 

number and size of chloroplasts in mesophyll cells of a C3 species were inferred from tobacco, 

despite the vast diversity of the chloroplast size and number in C3 eudicots (Stata et al., 2014). Using 

limited information only amplifies the already existing bias in the estimation of anatomical features 
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in 2D EM images (Harwood et al., 2020). Developing publicly available data repositories to collect 

numerical leaf anatomy data that are currently scattered over published literature, recording the 

growing condition during the data collection, as well as creating interactive leaf models would be 

extremely helpful to feed the simulated leaf models with more realistic measurements. 

At the cellular level, another factor that alters gm is the presence of the plant cell wall - 

composed of polysaccharides (cellulose, hemicellulose, and pectin), phenolics, ions, and proteins. 

Numerous studies have observed a negative correlation between cell wall thickness (as assessed 

through EM images) and gm in diverse plant species (Tomás et al., 2013; Veromann-Jürgenson et al., 

2017; Ren et al., 2019; Sugiura et al., 2020), and recent work has highlighted how changes to the 

chemical composition or cross-linking of cell wall components could also affect gm (Ellsworth et al., 

2018; Clemente-Moreno et al., 2019; Carriquí et al., 2020; Roig-Oliver et al., 2020). This likely occurs  

due to the complex covalent and non-covalent interactions between cell wall components changing 

cell wall porosity, the capacity for molecular movement through the cell wall, and therefore altering 

the ability of CO2 to diffuse through the cell wall to the chloroplast (Evans et al., 2009; Terashima et 

al., 2011)., The importance of cell wall porosity in determining gm is evident through modeling 

studies, in which gm predicted from leaf anatomical traits only measuring the distance of CO2 

diffusion often differ from the actual measured gm from the gas exchange method (Tosens and 

Laanisto, 2018). As cell wall compositions differ among plant taxa, cell types, and developmental 

stages (Popper et al., 2011; Voiniciuc et al., 2018), an interesting future avenue for research could be 

to analyze how specific chemical and structural changes to cell walls impact 3D leaf architecture and 

gm. EM quantification of cell wall thickness could be coupled to biochemical imaging of cell wall 

composition to get a more complete picture of how cell wall dynamics influence gm (see next section 

for advancement in cell wall biochemical imaging). 
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Leaf internal light environment: The amount of photosynthetically active radiation -PAR, 

400–750 nm - absorbed (McCree, 1971; Zhen and Bugbee, 2020), reflected, scattered, or 

transmitted by leaf depends on leaf architecture and chemical properties. Similar to CO2 diffusion, 

the path that light takes from the epidermis to a chloroplast is influenced by leaf thickness; position 

and abundance of chloroplasts; shape and distribution of IAS; and organization of non-

photosynthetic cells such as epidermis, hypodermis, and bundle sheath extension, that altogether 

contribute to the optical properties of the leaf (Allen et al., 1970; McClendon, 1984; Karabourniotis 

et al., 2000; Earles et al., 2017; Ustin and Jacquemoud, 2020). Individual chloroplasts experience 

different light angles or intensities depending on their position in the cell and the depth of the cells 

in the leaf tissue (Vogelmann and Evans, 2002; Evans and Vogelmann, 2006; Borsuk and Brodersen, 

2019) and in response to the intensity and the angle of light change their position inside the cell 

(Kasahara et al., 2002; Wada et al., 2003; Suetsugu and Wada, 2005; Li et al., 2009; Yamada et al., 

2009; Maai et al., 2011; Casal, 2013; Kirchhoff, 2019). Chloroplast arrangement and pigment content 

also influence the behavior and quality of light penetrating to the deeper layers of photosynthetic 

cells by shading the lower chloroplast or absorbing the red and blue light, leaving the abaxial 

chloroplasts mostly with the green light (Terashima and Inoue, 1984, 1985; Terashima et al., 2009).  

The bulk of our knowledge on the spatial distribution of photosynthetic pigments inside cell 

layers has been derived from chlorophyll fluorescence in leaf cross-sections (Vogelmann and Evans, 

2002; Brodersen and Vogelmann, 2010; Slattery et al., 2016; Borsuk and Brodersen, 2019). Ideally, in 

vivo experiments reflect the dynamics of chloroplast interaction with light and its influence on the 

quality and intensity of light being transferred to the abaxial leaf side. Light-sheet fluorescent 

microscopes are a powerful tool for live imaging (Table 1). But the perpendicular arrangement of 

illumination and detection objectives provides a diagonal plane of focus not fully adaptable to the 

requirements of experiments designed to profile the light penetration gradient from adaxial to 

abaxial leaf face. As well, samples such as broadleaves hardly fit into the small sample chamber. This, 

in addition to tissue preparation requirements (Ovecka et al., 2015), leaves researchers to perform 
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light-sheet microscopy on a cross-section with the leaf illuminated from the adaxial and or adaxial 

side and the fluorescence detected by an object perpendicular to the cross-section (Slattery et al., 

2016; Lichtenberg et al., 2017). Light-sheet derivative innovations such as single-objective methods 

could be considered as a solution (Strack, 2021). 

To detect chloroplast movement in vivo, Ryu et al. (2014) imaged leaves from the C4 species 

maize and sorghum to a depth of 100 μm and confirmed the dynamic movement of mesophyll 

chloroplasts and static behavior of bundle sheath chloroplasts in response to the transition from 

dark to blue light using two-photon microscopy. However, the same approach may pose more 

challenges when a C3 broadleaf such as tobacco or sunflower is examined. C3 leaves are usually 

thicker, contain more mesophyll cells with a higher number of chloroplasts per cell (Edwards and 

Voznesenskaya, 2011; Stata et al., 2014) that could increase the optical density of the leaves greater 

than the leaves of thin C4 grasses such as sorghum. Methods to overcome this challenge are still 

expected to be developed.   

 Non-destructive technologies to measure the chemical composition and concentration of 

cells are required to predict light behavior in green leaves. Formed by leaf age and environmental 

conditions, the leaf chemical composition determines leaf optical properties. The leaf chemical 

composition includes leaf water content, the concentration of secondary metabolites; and the 

deposition of cutin, wax, and secondary cell wall components such as crystalline cellulose, suberin, 

lignin, and other phenolics (Talamond et al., 2015; Donaldson, 2020; Ustin and Jacquemoud, 2020 

and references within). Since extraction of cellular compounds such as cellulose modifies the 3D 

structures of the molecules and removes them from their position, in vivo assessment of molecules 

inside the leaf tissue would provide a direct assessment of the spatial distribution and structure of 

chemicals (Ustin and Jacquemoud, 2020). Such assessments are becoming more possible for non-

fluorescing chemicals by the development of advanced techniques in chemical imaging such as 

vibrational micro-spectroscopy (see the following section).  
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4- Beyond the structure: Where are the molecules located?  

The daily activities of a leaf cell include the fast turnover and movement of metabolites, as 

well as biosynthesis, localization, and degradation of proteins and enzymes. Spatially resolving the 

dynamics of these proteins and metabolites is essential to understanding the efficiency of 

photosynthesis, particularly when plant breeding research targets the enhancement, reduction, or 

re-localization of protein and metabolite synthesis or trafficking in the leaf. Examples include 

introducing carbon concentration mechanisms into C3 crops, introducing photosynthesis to non-

plant organisms, engineering photorespiratory bypass pathways, and optimizing photosynthetic 

responses to environmental conditions (Schuler et al., 2016; Orr et al., 2017; Batista-Silva et al., 

2020). Currently, available methods for spatial assessment of cellular proteins and metabolites 

(addressed in the following section) range from immunohistochemistry and in vivo monitoring of 

fluorescent reporters to chemical characterization of cell components by mass spectrometry imaging 

(MSI), X-ray spectroscopy imaging, and vibrational micro-spectroscopy.  

 

Protein localization 

The development of poly- and monoclonal antibodies and immunohistochemistry have 

enabled spatially tracing proteins and biomolecules in photosynthetic research as a discovery or 

phenotyping tool. Limited examples include localization of photosystems (PSI and PSII) and light-

harvesting complexes and identification of cell and organelle-specific distribution of photosynthetic 

and photorespiratory enzymes (Vallon et al., 1987; Vaughn, 1987; Ueno, 1998; Edwards et al., 2001; 

Khoshravesh et al., 2016, 2020; Kramer et al., 2021). Immunolabeling detects proteins and 

biomolecules with a high resolution; co-labeling of multiple proteins and biomolecules is feasible by 

using multiple-sized gold-conjugated secondary antibodies when immunolabeling is performed on 
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ultrathin sections and observed by TEM (Foissner and Hoeftberger, 2019), or primary or secondary 

antibodies conjugated to fluorophores with non-overlapping emission wavelength; and is compatible 

with TOC for volume visualization (Palmer et al., 2015). Applying the PEA-CLARITY TOC method, 

Danila et al. (2016, 2018) analyzed the plasmodesmata distribution between mesophyll and bundle 

sheath cells in a variety of grass species by immunolabeling of β-1,3-glucan (callose) in a 3D view of 

350 μm2 area X 100 μm leaf thickness, which represents the cellular plasmodesmatal connection 

more accurately than 50-70 nm EM sections. But antibodies poorly diffuse into the whole mount 

tissue potentially due to the cuticle and cell wall acting as a barrier. While enhancing tissue 

permeabilization with partial cell wall digestion may facilitate antibody infiltration into the 

macerated cells or the tissue, immunolabeling still requires a very high concentration of antibodies, 

long incubations, or vacuum infiltration (Chuong et al., 2006; Danila et al., 2016) which could cause 

non-specific binding and make immunolabeling of leaf tissue a difficult daily task. As well, 

immunolabeling works with aldehyde-fixed tissue making in vivo immunolabeling impossible.  

Engineering fluorescent proteins has improved the limitations of poor antibody performance 

and restrictions of immunolabeling in live imaging (Hanson and Kohler, 2001). Fluorescent tagging 

allows visualization of endogenous or engineered proteins inside the whole plant body, estimates 

subcellular target protein localization with over 80% accuracy, and signals the dynamic nature of 

subcellular interactions between multiple protein tags (Ckurshumova et al., 2011; Tanz et al., 2013; 

Delfosse et al., 2016). However, both immunolabeling and fluorescent proteins restrict the 

experiments to a few fluorophores that do not interfere with the red emission of chlorophylls; to the 

proteins and biomolecules that an antibody has been developed for, i.e. has a characterized 

specificity for a given epitope; or few model plants with established transformation protocols, thus 

eliminating non-model organisms that are hard to genetically engineer (Ziemienowicz, 2014; Chen et 

al., 2020).  
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Mass spectrometry imaging (MSI) 

MSI is an emerging technique to spatially detect proteins, lipids, and metabolites (Caldwell 

and Caprioli, 2005; Miura et al., 2012; Bartels and Svatoš, 2015; Boughton et al., 2016). Mass 

spectrometry inherently applies multiple levels of destruction - freezing, grinding, digestion, 

extraction, and metabolite or protein profiling methods such as ionization and UV laser disruption, 

which remove biomolecules from their natural position (Freund and Hegeman, 2017; Alseekh et al., 

2018). MSI overcomes these limits by corresponding the identified molecules to an image pixel by 

pixel. Sample preparation for MSI could be as minimal as embedding the tissue in a media, cross-

sectioning -usually cryo-sectioning- and subjecting the section to the ion source and mass analyzer. 

When the ion source, the mass analyzer, and the detector are placed in a microprobe, the sampling 

probe moves across an XY direction and profiles the mass spectra corresponding to the XY on the 

cross-section (Boughton et al., 2016; Dong et al., 2016). Using serial sections of four germinating 

stages of maize seeds from B73 and Mo17 inbreds and application of MSI, Feenstra et al. (2017) 

classified differences between the abundance and distribution pattern of molecular groups such as 

phospholipids, respiratory metabolites, organic and amino acids in 3D. 3D MSI is also possible by 

adjusting the height of the probe and moving it repeatedly across the surface of thick tissue, 

removing successive layers until the desired depth/volume has been analyzed (Buchberger et al., 

2018). MSI is also label-free as well as compatible with stable isotope labeling that enables in situ 

kinetic analysis (Louie et al., 2013). But, when applying MSI methods, the tissue must be subjected to 

ionization and mass analyzer instruments (Dong et al., 2016); processes that take apart the tissue 

molecule by molecule. Thus, MSI may have already reached its full capability in the detection of 

spatial metabolite dynamics in vivo.  
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Micro-spectroscopy 

Currently, the most successful non-destructive approaches in molecular imaging are based 

on micro-spectroscopy. Spectroscopy is described as the assessment of the intensity and pattern of 

electromagnetic waves absorbed or emitted in interaction with matter. This fundamental molecular 

characteristic has led to the development of multiple spectroscopy techniques with a long history of 

implementation in physics, chemistry, astronomy, and more recently in biology (Ball and Engineers., 

2006). Spectroscopy imaging by microscopes (micro-spectroscopy) collects spectra of an object in 

point, line, or XY dimensions and enables (bio)chemical analysis of the object by spectral 

characterization, localization, and classification without chemical extraction. Ideally, to map cell 

(bio)chemistry in vivo, impose the least interruption to the cell metabolism, and capture the cell 

dynamics over time, a micro-spectroscopy technique should be label-free and use a source of 

relatively low energy radiation that inflicts the least destruction to the cellular metabolism. As well, 

the technique must be capable of 1) imaging molecules in a cellular aqueous environment, 2) 

covering a large sample size with high lateral and depth resolution, 3) identifying structural and 

functional molecules - ideally at the individual molecules sensitivity, and 4) imaging time series at a 

speed competing with the speed of metabolite movement and turnover. Some techniques that meet 

more than one of these criteria and have been implemented in leaf molecular imaging are X-ray 

spectroscopy imaging (Donner et al., 2012; Vijayan et al., 2015; Kopittke et al., 2018) and vibrational 

spectroscopy including Fourier Transform Infrared (FT-IR) and Raman micro-spectroscopy (Salzer and 

Siesler, 2014).   

X-ray spectroscopy imaging 

X-ray spectroscopy (XRS) imaging relies on the X-ray absorption or fluorescence emission of 

the elements (Box 2). X-ray fluorescence microscopy (SR-XFM) was first applied in plant chemical 

analysis during 1990s (Kopittke et al., 2018) to map and quantify the spatial concentration of metals 

for toxicity, hyperaccumulation, and elemental composition analysis (Berglund et al., 1999; 
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Fukumoto et al., 1999; Pickering et al., 2000; Sarret et al., 2003). The advancements in the speed of 

fluorescence detectors, the power of X-ray penetration in the whole tissue, and the capability of 

XFM in detecting a very low concentration of the target element has made SR-XFM a powerful in 

vivo tool in ionomics – mineral nutrient and trace elemental composition of a living organism in 

response to environmental conditions, developmental stage, and genetic background (Salt et al., 

2008; Punshon et al., 2013). As well, XFM plays a substantial phenotyping role in analyzing trace 

metal metabolism and understanding the function of the genes regulating elemental homeostasis by 

in vivo elemental imaging with the resolutions less than one micrometer and time resolution as short 

as milliseconds (Donner et al., 2012; Kopittke et al., 2018). 

Trace elements are indispensable for photosynthesis and respiration, during the catalytic 

cycle, and developmental processes. For example, the whole length of the electron transport chain 

from PSII to cytochrome b, PSI complexes, and ferredoxin depend on different forms of Fe 

complexes; Cu exists in plastocyanin; and  Fe, Mn, Cu, or Zn play a role in water splitting reaction in 

PS II of the oxygen-evolving photosynthetic organisms (Raven et al., 1999 and references within). 

Trace elements such as Mn, Fe, Ca, and Zn are also involved in chloroplast development, chlorophyll 

biosynthesis, cuticular wax deposition, and signaling (Alejandro et al., 2020 and references within;  

Raven et al., 1999 and references within; Tripathy and Pattanayak, 2012). While essential for the 

proper functioning of photosynthesis, non-optimal exposure to trace elements could cause toxicity 

or deficiency (Palit et al., 1994; Kopittke et al., 2014; Andresen et al., 2018; Blamey et al., 2018; 

Paunov et al., 2018). Parallel to the development of modern approaches such as nano-fertilizers or 

crops bred for optimal trace metal metabolism to address global micronutrients (e.g.  Zn) deficiency 

and soil heavy metal contamination, XRS imaging is a promising phenotyping approach to detect 

whether the crop species uptake, relocate, metabolize, and store micronutrients efficiently for 

improved photosynthetic function or human consumption (Donner et al., 2012; Kopittke et al., 2018; 

Raliya et al., 2018). 
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XRS imaging is fast and accurate and is sensitive to the oxidative state of the elements. The 

element-specificity of XRS allows visualizing small quantities of the target elements in a matrix of 

macromolecules such as within a photosynthetic cell. XFM combined with micro-CT also allows 

collecting the distribution of the elements in leaf 3D structure (Donner et al., 2012). However, 

repeated exposure to the high-energy X-ray could increase ionization level and pose damage to the 

metabolism, increase intracellular ROS level, change the elemental oxidation status, and modify 

elemental transport and trafficking and consequently interfere with the in vivo experiments (Dixit 

and Cyr, 2003; Vijayan et al., 2015). XRS imaging also faces limitations in the identification of 

elements with atomic numbers less than 11 -which includes the main building blocks of biological 

material: carbon, nitrogen, and oxygen (Pushie et al., 2014). And finally, XRS is useful for localization 

and quantification of elements within plant cells not for detecting larger macromolecules and 

metabolites which limits its scope in detecting photosynthetic traits in 3D leaf tissues. 

Vibrational micro-spectroscopy 

Vibrational micro-spectroscopy – Infrared (IR) absorption and Raman scattering - are two 

widely implemented non-destructive and label-free chemical analysis techniques that rely on the 

interaction between light and the vibrational energy of molecular bonds (Lasch and Kneipp, 2008). 

Each molecule has a unique atomic composition and the classes of biomolecules (e.g. proteins) 

contain functional groups (e. g. amine and carboxylic groups). Both IR and Raman micro-

spectroscopy detect functional groups and molecular fingerprints unique to the (macro/bio) 

molecule of interest (Gierlinger and Schwanninger, 2007; Türker-Kaya and Huck, 2017; Zhao et al., 

2019). Different in principle (Box 3), IR and Raman micro-spectroscopy allow spatial characterization 

and classification of biomolecules in a targeted and untargeted approach, simultaneously detect a 

wide range of macromolecules in a biochemically complex biological system (Figure 4), and require 

minimal sample preparation (Salzer and Siesler, 2014; Bed et al., 2020).  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erab548/6497708 by Lancaster U

niversity user on 10 February 2022



Acc
ep

ted
 M

an
us

cri
pt

 

23 
 

A great advantage of vibrational spectroscopy is that all biochemical information of the cells 

is collected with one imaging attempt. As a result, each hyperspectral image contains a pool of 

unidentified spectra (Figure 4); when 3D imaging, this pool is amplified by the magnitude of the z-

dimension. Consequently, the identification and classification of biomolecules heavily rely on 1) the 

previously created spectral reference libraries of individual purified molecules, and 2) the 

development of algorithms for classification or isolation of spectra corresponding to a single or a 

group of biomolecules. While the spectral libraries of inorganic chemicals are maturing and 

becoming publicly available in the form of interactive spectra as by Infrared and Raman Using Group 

(http://www.irug.org), the spectral libraries for the single and groups of biomolecules are finding 

their way into publications (Socrates and Socrates, 2000; De Gelder et al., 2007; Zhu et al., 2011; 

Wiercigroch et al., 2017). Concurrently, algorithms for spectral smoothing and background 

correction, as well as statistical models for multivariate analysis of hyperspectral images, such as 

principal component analysis (PCA) and multivariate curve resolution–alternating least squares 

(MCR-ALS, Figure 4), have been adopted to evaluate and interpret complex hyperspectral data 

(Gautam et al., 2015; Felten et al., 2015; Olmos et al., 2017; Smith et al., 2019). However, this 

dependence of data analysis on advanced statistical models and computational power creates a 

demand for better computational skills and greater storage and analysis space. To further advance 

this method of imaging, the development of scripts and quantification pipelines in open-source 

software such as Python and R, as well as user-friendly applications with graphical user interface 

(GUI) will be needed.   

Integration of vibrational micro-spectroscopy into plant cell biology is still in its infancy. 

High-resolution IR spectroscopy - up to 4 cm-1 spectral and 1.56 μm lateral resolution and 1 cm sec-1 

scanning speed- has been applied to classify subcellular components such as starch grains, protein 

bodies, and chloroplasts; to differentiate between α-helix and β-sheet of proteins and between 

structural and non-structural carbohydrates; to determine the biochemical states of macromolecules 

(e.g. methylation levels of pectin); and to identify the secondary structure of proteins, lipids and lipid 
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droplets, and secondary metabolites (e.g. flavonoids, terpenoids, and alkaloids) based on their 

characteristic IR bands (Wetzel et al., 2003; Jamme et al., 2013; Krähmer et al., 2013; Mazurek et al., 

2013; Tanino et al., 2013; Xin et al., 2013; Warren et al., 2015). Raman micro-spectroscopy has been 

used successfully to spatially identify - up to 1 cm-1 spectral, and 0.47 μm lateral resolution, quantify 

plant pigments -e.g. chlorophylls and carotenoids (Collins et al., 2011; Moudříková et al., 2016; 

Meeßen et al., 2017; Koch et al., 2017; Yang et al., 2017; Vítek et al., 2020), and localize and quantify 

subcellular levels of polyphosphates (Moudříková et al., 2017), cyanogenic glycosides (Krafft et al., 

2012; Heraud et al., 2018), and plant secondary metabolites such as alkaloids, cannabinoids, 

terpenes and phenolic compounds (Vaverkova et al., 2014; Belt et al., 2017; Ebersbach et al., 2018; 

Midorikawa et al., 2020). Due to the ability of vibrational micro-spectroscopy to characterize the 

molecular structure of biopolymers in primary and secondary cell walls non-destructively, these 

techniques have revolutionized the study of the chemical composition in the plant cell wall and 

cuticle (Dokken et al., 2005; Gierlinger et al., 2013; Gierlinger, 2018; Zhao et al., 2019). Considering 

the significance of cell wall biochemical composition in mesophyll geometry and CO2 diffusivity (See 

section 3), vibrational spectroscopy and its potentials for discovery could lead the way for another 

revolution in photosynthesis research. The example Raman hyperspectral microscopy in Figure 4 

indicates the presence of lignin-like phenolic polymers in Sphagnum leaf cell walls. Although 

immunohistochemistry (Ligrone et al., 2008), IR spectroscopy (Farmer and Morrison, 1964), acid 

hydrolysis-resistant (Graham et al., 2004) and bioinformatics (Weng and Chapple, 2010) have 

previously provided direct and indirect evidence that lignin-like phenolic compounds exist in 

bryophytes, histological staining such as Phloroglucinol-HCl has shown negative results for lignin 

(Kremer et al., 2004). To understand the composition of the cell wall in Sphagnum, its effect on 

retaining water during the early establishment of the land plants, and its influence on the global 

carbon cycle in moss peatland reservoirs, modern and high-resolution vibrational micro-

spectroscopy methods are promising tools.  
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Compared to the weak and rare Raman effect, IR signals are stronger. When IR is supplied by 

a synchrotron, the brightness of the radiation improves the signal to noise and the resolution 

(Wetzel et al., 1998; Vijayan et al., 2015), and the use of synchrotron-based IR has been proved non-

toxic to the cellular metabolism in Chlamydomonas and human T-cells when time series are obtained 

(Holman et al., 2002; Goff et al., 2009). But Raman micro-spectroscopy is more optimal for imaging a 

cellular aqueous environment, as water appears as a strong absorption band in IR spectra and 

overlaps with some functional groups (Bed et al., 2020). Depth is also less achievable by IR 

spectroscopy. IR absorption spectroscopy requires very thin (<50 μm) and transparent samples and 

utilizing external reflection or attenuated total reflectance mode only helps to penetrate the tissue 

by a few more microns (Bed et al., 2020). Consequently, non-destructive chemical mapping has been 

implemented on the thin sections of plant organs such as wheat or Arabidopsis leaves (Xin et al., 

2013; Warren et al., 2015), single living organisms such as Chlamydomonas reinhardtii (Goff et al., 

2009), or very thin or transmitting organs such as Arabidopsis petals and single epidermis layers of 

Allium (Mazurek et al., 2013; Tanino et al., 2013). On the contrary, Raman micro-spectroscopy could 

be coupled with confocal setups to add depth to the imaging (Gomes da Costa et al., 2019). 

However, the Raman effect is weak and requires longer acquisition times or higher laser intensities. 

Point and line scanning by confocal Raman micro-spectroscopes may take hours to scan the depth of 

tissue and the higher energy lasers (UV and 532 nm) or longer acquisition times could burn the 

tissue due to excessive local temperature rise (Butler et al., 2016). Recently, applying light-sheet 

illumination has increased the speed of imaging 213 times by reducing the time required to collect 4 

million Raman spectra from 51 h (when scanned by confocal Raman microscope) to only 14 minutes. 

This higher speed eliminated the local heating effect of longer excitation periods (Müller et al., 

2016). Another problem with UV and 532 nm lasers is that the Raman signal could be masked by 

fluorescent from the materials (Wei et al., 2015), causing serious problems for imaging fluorescing 

tissues such as leaves. Using near-infrared wavelength lasers (785 and 1064 nm) has improved the 

Raman signal by eliminating fluorescence and reducing the local thermal heating of the tissue thus 
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making Raman more optimized for imaging leaves (Gierlinger and Schwanninger, 2007; Yang et al., 

2013; Heraud et al., 2018). 

In plant cells, large vacuoles restrict most of the cellular metabolism to the very narrow area 

of the cytoplasm sandwiched between the cell membrane and tonoplast, thus a greater spatial 

resolution is required for imaging. Recently, high-resolution (0.5 µm spatial resolution) Raman 

hyperspectral imaging has enabled localization of cyanogenic glucosides in the cytoplasm of 

sorghum coleoptile cells (Heraud et al., 2018). The high resolution and specificity in molecular 

identification, the capacity to identify both structural and functional molecules, the current 

technological advancement in Raman micro-spectroscopy such as the development of near-IR lasers, 

Raman confocal and light-sheet, and the capability of Raman micro-spectroscopy in recognizing 

metabolites with stable isotope labeling (Li et al., 2013), lists Raman spectroscopy as a future 

candidate for the development of methods to reconstruct the leaf 3D structure and simultaneously 

trace metabolic pathways in vivo. Such methods will be directly applicable in research that questions 

metabolite transfer and the speed and dynamics of pathways spatially, for instance, the spatially and 

temporally resolved 13CO2 integration into the C4 photosynthesis metabolism (Arrivault et al., 2017).  

 

Conclusion 

The ability of the photosynthetic organs to capture and convert solar energy to 

carbohydrates while efficiently managing their access to CO2, water, and minerals relies on the 

cellular and subcellular organization of photosynthetic machinery inside the photosynthetic organs -

usually a leaf. The accurate estimation of the leaf structure and function can inform a wide range of 

plant physiology interests from leaf models that promise more efficient photosynthesis (Covshoff 

and Hibberd, 2012; Tholen et al., 2012; Leegood, 2013; Ren et al., 2019; Lundgren and Fleming, 

2020) to the urban solar cells that simulate leaf structure for more efficient energy trapping (Yun et 

al., 2019). Here, we reviewed some common approaches in outlining leaf structure and biochemical 

composition and the optical and structural complexity of the green leaves. While there is not yet a 
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single best solution that could be performed to accurately estimate leaf structure in large and small 

scales and evaluate the leaf dynamic structural and biochemical response to the environmental 

fluctuation, there are multiple complementary techniques available depending on the research 

hypothesis, the expected details and accuracy, budget, and accessible resources. Over the past two 

decades, the ever-growing interest in imaging 3D cells and tracking in vivo cell dynamics have led to 

the blooming of innovations that integrate the modern concepts of optical and quantum physics, 

biochemistry, mathematics, statistics, and machine learning to shed more light on the unknown facts 

inside the leaf. With all these innovations, we have never been as powerful and as close to 

understanding the mechanisms of what Grew (1682)called “the methods which nature takes to 

preserve them [leaves] from the injuries both of the ground and of the weather”.  
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Tables  

Table 1: A summary of microscopy imaging techniques that have been applied in photosynthesis research.  

The advantage and limitations listed here are about leaf and/or photosynthetic cell structure and may not apply to all cell and tissue types. The 

examples listed in the table aim to represent the application of each technique, not to provide a full list of the research in the relative field. We 

appreciate the value of all the works that have not been cited here.  

Technique Advantages Limitations Representative application in 
photosynthesis research 

Optical microscopy1    

Light Microscopy    

Bright-field light microscopy 
White light passes through the 
sample and the image is a result of 
the intensity of light transmitted or 
absorbed by the sample. See Cisek 
et al.,  (2009) for a comprehensive 
review. 
 

 Simple to use and easily available 

 The contrast could be improved 
by sectioning and staining 

 Suitable for live single-cell 
imaging 

 Suitable for imaging cells with 
natural contrast such as 
chloroplast containing plant cells 

 Low resolution for subcellular 
components if not stained or 
pigmented 

 Low magnification 

 Low contrast with live cells 

 Lack of depth 

 Sectioning adds contrast to the 
thick sections such as leaves but 
because the tissue is delicate, 
infiltration in hard medium and 
dehydration is required  

Widely used to  

 Characterize general leaf 
anatomy, stomata morphology, 
and density (Bolhàr-Nordenkampf 
and Draxler, 1993) 

 Identify cell and organelle 
arrangement in diverse 
photosynthetic types e.g. Kranz 
anatomy in C4 species (Edwards 
and Voznesenskaya, 2011) 

 Understand the role of leaf 
anatomy in mesophyll 
conductance to CO2 (Evans and 
Von Caemmerer, 1996; Evans, 
2020) 
 

Darkfield illumination    

Light passes through a disk which 
blocks the central light allowing 
the peripheral light to pass 
through the sample.  

 Improved contrast 

 Suitable for live imaging 
 

 Higher contrast could lead to 
optical artifacts  

 Not suitable for stained cells and 
tissue 

 Low resolution for subcellular 

 Visualize chloroplasts in live cells 
(Higashi-Fujime, 1980; Uwada et 
al., 2017) 
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components 
 

Phase-contrast light microscopy
2 

   

A ring of light illuminates the 
specimen. The background and 
scattered light in the region of the 
specimen interfere in a way that 
increases the contrast (Zernike, 
1955)  
 

 Improved contrast 

 Suitable for single-cell live 
imaging 

 Not suitable for stained cells and 
tissue 

 Dyes and markers are not 
detected 

 Low resolution for subcellular 
components 
 

 Visualize chloroplasts in live cells 
(Higashi-Fujime, 1980) 

Polarized light microscopy
2
    

Polarized light is used to enhance 
contrast. For technical details see 
Oldenbourg et al., (2013)  

 Detect birefringent objects such 
as starch granules in a natural 
state 

 Suitable for transparent single-
cell live imaging such as algae 

 Dyes and markers are not 
detected; not suitable for stained 
samples 

 Low resolution for subcellular 
components 

 

 Identify the arrangement of light-
harvesting pigment-protein 
complexes in thylakoid grana  
(Garab et al., 1988) 

Differential interference or Nomarski interference contrast microscopy (DIC)   

Polarized light is used to enhance 
contrast and depth to the 
specimen. For a review of the 
method see Rosenberger (1977). 
 
 

 Suitable for transparent samples 
containing an object with a 
different refraction index, e.g.  
mesophyll cells containing 
chloroplasts 

 Enhances depth relative to bright 
field light microscopes 

 Not suitable for stained samples 

 Low resolution for subcellular 
components 

 Phenotype chloroplasts (Yoder et 
al., 2007; Glynn et al., 2008; Wang 
et al., 2017) 

Fluorescent based optical microscopy 
 

  

Epifluorescence microscopy    

Specific illuminating wavelength 
passes through the objective and 
excites the tissue. The same 
objective collects the emission 
then the emitted light passes 
through wavelength-specific filters 
and to the oculars of the camera.  
  

 Fast and easy 

 Works well with thinly sectioned 
specimens 

 Provide direct observation of the 
samples via oculars 

 Emission from the out of focus 
region creates background noise  

 High cross-talk between different 
channels 

 Lack of depth 

 General limitations for 
fluorescent-based microscopy of 
leaves such as optical 

 Profile the distribution of 
photosynthetic pigments inside 
the leaf (Vogelmann and Evans, 
2002; Borsuk and Brodersen, 
2019) 
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heterogeneity and chlorophyll 
autofluorescence 
  

Laser scanning and hyperspectral
3
 confocal fluorescent microscopy    

Optical sectioning of the tissue is 
enabled by using a pinhole that 
blocks and eliminates the emission 
from out-of-focus regions. The 
confocal imaging method could be 
coupled with other technologies 
such as Raman micro-spectroscopy 
to eliminate out-of-focus signals.  

 Increased signal-to-noise relative 
to epifluorescent microscopes  

 Reduces cross-talk between 
channels 

 Images up to >100 μm of tissue 
depth depending on the 
specimen optical density 

 Long acquisition time  

 Potential photobleaching and 
phototoxicity due to long 
acquisitions 

 General limitations for 

fluorescent-based microscopy of 

leaves such as optical 

heterogeneity and chlorophyll 

autofluorescence 

 
 

 Widely applied to detect 
endogenous and exogenous 
fluorophores inside the leaf 

 Assess fluorescence recovery of 
chloroplasts after photobleaching 
(Mullineaux, 2004) 

 Characterize inner membrane 
dynamics and reorganization of 
chloroplasts in live cells (Johnson 
et al., 2011) 

 Identify the subcellular 

distribution of photosynthetic 

pigments using hyperspectral 

confocal microscopy (Vermaas et 

al., 2008; Hanson et al., 2014) 

 
Light-sheet fluorescent microscopes   

Optical sectioning of the tissue is 
enabled by illumination and 
excitation of a thin layer instead of 
the entire specimen (Santi, 2011; 
Strobl et al., 2017). 

 High signal-to-noise ratio and 
resolution relative to laser 
scanning confocal microscopy 

 Increased speed of imaging 
relative to laser scanning confocal 
microscopy 

 Reduced tissue damage and 
photobleaching 

 Higher depth of imaging  

 Specific sample preparation 
required 

 Small sample holders cannot 
accommodate larger samples of 
leaf  

 General limitations for 

fluorescent-based microscopy of 

leaves such as optical 

heterogeneity and chlorophyll 

autofluorescence 

             
 

 Measure chlorophyll fluorescence 
(Lichtenberg et al., 2017) 

 Determine the light behavior 
inside leaf tissue (Slattery et al., 
2016) 

Spinning disk confocal microscopy    

Improved illumination and multi-
point scanning (vs. single-point 

 Reduced photobleaching and 
phototoxicity due to faster 

 A smaller field of view relative to 
laser scanning confocal 

 Assess organelle dynamics in 
response to stressors (Nakamura 
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scanning in laser scanning confocal 
microscopy) is enabled by placing 
multiple pinholes on a spinning 
disk. 
 

acquisition time 

 Higher special resolution relative 
to laser scanning confocal 
microscopy 

 Great temporal resolution due to 
higher number of frames per 
scanning time 

 Very effective for high 
magnification imaging 
 

microscopy 

 Not as effective for low 
magnification scanning 

 Less available than laser scanning 
confocal microscopy 

 General limitations for 

fluorescent-based microscopy of 

leaves such as optical 

heterogeneity and chlorophyll 

autofluorescence 

 

et al., 2021) 
 

Fluorescence lifetime imaging (FLIM)    

Instead of the intensity of 
fluorescence, FLIM depends on the 
fluorescence lifetime of a 
fluorophore in different 
environments such as the number 
of de-excitation pathways, thus 
analyzing the cellular environment 
based on the molecular behavior 
of the fluorophore (Datta et al., 
2020). 

 Powerful in imaging endogenous 
fluorophores such as 
photosynthetic pigments 

 Discriminates spectral overlap 
based on fluorescent lifetime 

 The fluorescent decay time is 
independent of microscope 
settings such as laser intensity so 
FLIM is more reproducible by 
different instrumental settings 

 Depth imaging is possible when a 
multi-photon technique is 
combined with FLIM 

 Long acquisition time  

 Sensitive to changes in cellular pH 
and viscosity  

 General limitations for 

fluorescent-based microscopy of 

leaves such as optical 

heterogeneity and chlorophyll 

autofluorescence 

 

 Reduce chloroplast 
autofluorescence in live imaging 
(Kodama, 2016) 

 Determine the spatial distribution 
and dynamics of PSI and PSII in 
vivo (Broess et al., 2009; Iermak 
et al., 2016) 

 Analyze in vivo chloroplast 
function based on chlorophyll 
fluorescence (Ryu et al., 2014) 

 Assess viral infection effect on 
leaf health by measuring 
chlorophyll fluorescence lifetime 
(Lei et al., 2017) 
 

Super-resolution microscopy    

Embraces a variety of techniques 
that have been developed to 
overcome Abbe diffraction limit 
(~200 nm) in optical microscopy by 
methods ranging from localizing 
single molecule to structured and 
patterned illumination coupled 
with sophisticated image analysis 

 Achieves as high as 10 nm lateral 
resolution in live-cell imaging that 
fills the resolution gap between 
confocal live imaging and 
destructive EM practices  

 Powerful visualization of 
ultracellular structure and 
molecular interaction 

 General limitations for 

fluorescent-based microscopy of 

leaves such as optical 

heterogeneity and chlorophyll 

autofluorescence 

 Labeling barriers of leaf tissue 

may imposes could limit the 

application of Super-Resolution 

 Structured Illumination 

Microscopy (SIM) was used to 

visualize thylakoid organization 

and dynamics (Iwai et al., 2018),  

endoplasmic reticulum running 

through plasmodesmata that 

connects parenchyma cells in 

tobacco leaves (Fitzgibbon et al., 
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(Schermelleh et al., 2019) 
 

 Single-Molecule Localization 

Microscopy 

  

2010) and FtsZ ring – which is also 

involved in plants chloroplast 

division - during cell division in 

cyanobacteria (Riyue et al., 2021). 

Two-(multi)photon microscopy    

The energy of one short-
wavelength photon (e.g. 400 nm) 
is divided into two long-
wavelength photons (e.g. 800 nm 
each) which are absorbed 
negligibly by most biological 
objects but can still excite them 
(Adur et al., 2016; Parodi et al., 
2020) 

Relative to laser scanning confocal 
microscopy, two-photon microscopy 
has 

 Increased depth of imaging up to 
2-3 times  

 Reduced total photobleaching 
and photodamage due to lower 
energy wavelengths of excitation 

 Reduced autofluorescence 

 Increased resolution and contrast 
 

 Although reduced, general 

limitations for fluorescent-based 

microscopy of leaves  

 Photobleaching in the focal plane 
may exceed the single-photon 
excitation photobleaching rate 
 

 Determine the spatial distribution 
and dynamics of PSI and PSII in 
vivo (Broess et al., 2009; Iermak 
et al., 2016) 

 Detect in vivo chloroplast 
response to light (Ryu et al., 
2014)  

Electron microscopy4
    

Transmission Electron Microscopy (TEM)   

Electron beam transmits through a  
an ultra-thin layer of the tissue. 
The image reflects the density of 
the tissue as the denser parts 
transmit less electron beam and 
appear darker.  

 High resolution, resolves 
distances up to 0.5 nm  

 Routine and standard protocols 
have been developed and tested 
for plant leaves 

 Destructive 

 Heavy use of hazardous chemicals 
and heavy metals  

 Tissue processing could introduce 
artifact and size alteration 
 

Widely used to 

 Characterize ultracellular 
structure and organization in 
photosynthetic cells (Tomás et al., 
2013; Stata et al., 2016)  

 Detect structure and organization 
of the thylakoids (Staehelin and 
Paolillo, 2020) 

 Detect subcellular localization 
proteins via immunolocalization 
(Khoshravesh et al., 2020) 

 Identify the density and 
localization of plasmodesmata 
(Bell and Oparka, 2011) 
 

Scanning Electron Microscopy (SEM)    

Electron beam interacts with the 
surface; scattered and transmitted 

 Obtains sub-nanometer  Destructive   Characterize leaf epidermis, 
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beam provides information on the 
topology of the object surface.  
 

resolutions  

 Provides limited 3D information, 
e.g. of stomata patterning or 
freeze fractured leaves 

 Does not preserve membranes 
and subcellular details 

 Feezing and critical point drying 
may cause shrinkage, size 
alteration, and structural 
deformation 

stomata morphology, and density 

(Van Gardingen et al., 1989; 

Matthaeus et al., 2020) 

 Quantify plasmodesmata density 

in photosynthetic cells (Danila et 

al., 2016, 2018, 2019) 

 View internal leaf structure in 3D 

(Sage and Sage, 2009) 

 Visualize immunogold labeling of 

photosynthetic enzymes inside 

cells (Miyake et al., 2001) 

 
Serial Block-Face Scanning Electron Microscopy (SBF-SEM)   

The face of a resin block is 
repeatedly sectioned by an 
ultramicrotome and imaged by 
SEM, allowing the creation of 
many hundreds of high-resolution 
2D sample views that are used for 
3D reconstruction.   
 

 Provides high-resolution volume 
information on cell and tissue  

 Cover large fields of view that 
enable characterization of cell 
and tissue geometry 
simultaneous with organellar 3D 
reconstruction 

 Similar drawbacks of tissue 
preparation for TEM 

 Time-consuming and labor-
intensive due to manually 
segmented organelles  

 Manual subcellular segmentation 
may introduce human error and 
inconsistency in reproduction 

 Lower resolution relative to the 
other EM-based 3D imaging

4
 

 

 Reconstruct ultrastructural 
features in 3D, evaluate 
morphological features, and 
quantify the volume of leaf cells 
and chloroplasts (Yamane et al., 
2018; Harwood et al., 2020) 
 

Focused Ion Beam Scanning Electron Microscopy (FIB-SEM)   

The ion beam removes layers from 
the face of a resin-embedded block 
and the SEM images backscattered 
electrons. Repeating this process 
allows the creation of many 
hundred high-resolution images 
from cellular and ultrastructural 
volume reconstruction (Kizilyaprak 
et al., 2019). 

 Provides volume information on 
cellular ultrastructure with the 
resolutions comparable to TEM 

 Strong in high-resolution imaging 
of membranes that suits the 
technique for chloroplast inner 
membrane characterization 

 Similar drawbacks of tissue 

preparation for TEM 

 Manual subcellular segmentation 

may introduce human error and 

inconsistency in reproduction 

 The small field of view suits the 

method for organelle 3D 

evaluation and may not cover the 

large mesophyll cells 

 Visualize chloroplast inner 
membranes in response to viral 
infection in 3D (Jin et al., 2018) 

 Evaluate starch granules in 
chloroplasts (Crumpton-Taylor et 
al., 2012) 
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Electron tomography    

Ultra-thin sections of the resin 
embedded tissue are imaged by 
TEM from different angles, the 
images are used to reconstruct the 
volume (Neumüller, 2018) 

 Up to sub-nanometer resolution 

suits the method for visualization 

of membranes  

  Similar drawbacks of tissue 

preparation for TEM 

 Manual subcellular segmentation 

may introduce human error and 

inconsistency in reproduction 

 Restricted volume suitable only 

for very small cellular 

ultrastructures such as thylakoids 

and plasmodesmata 

 Characterize 3D network of 
chloroplast membrane 
organization, e.g. the helical 
arrangement of thylakoid (Bussi 
et al., 2019; Mai et al., 2019)  

1See Cisek et al., 2009 for a comprehensive review on optical microscopes 
2 The polarized and phase-contrast techniques discussed here are based on the conventional methods initially developed to complement bright-

field light microscopes.  
3Hyperspectral data collection gathers the full spectrum emitted from each pixel in an image. As a result, each optical section is a complex 3D 

data set containing pixels with x, y, and corresponding spectrum of wavelengths (lambda). This is in contrast to the more conventional signal 

detection methods that collect the intensity of the signal, or a few discrete signals (red, green, blue), to create images (Gao and Smith, 2015). 

Hyperspectral data collection has been integrated into a variety of techniques such as confocal and light-sheet fluorescent microscopy in the 

visible as well Raman and IR micro-spectroscopy. 
4To compare EM-based 3D imaging in detail, please see Earles et al. (2019).  
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Boxes 

Box 1. Tissue optical clearing 

In tissue optical clearing (TOC) methods, the whole tissue is fixed in an aldehyde-based fixative and 

embedded in a media such as hydrogel to remove pigments. TOC enables deeper penetration inside a 

large volume and provides hundreds of virtual instead of microtome sectioning (Matryba et al., 2019). 

Modern TOC methods -e.g. PEA-CLARITY or ClearSee- which retains the protein fluorescence signals 

(such as GFP) or allows immunolocalization of proteins in cleared tissue- have been developed for plant 

leaves (Wuyts et al., 2010; Kurihara et al., 2015; Palmer et al., 2015). Tissue preparation for these 

methods could take three days to three weeks depending on the method. However, when preservation 

of proteins for immunolabeling is not intended, a more time-efficient TOC such as ethanol-acetic acid 

fixation and clearing with TDE (2,20-thiodiethanol) to 3-5 passive days with fewer and less-hazardous 

chemical treatments relative to resin infiltration and embedding (Hasegawa et al., 2016; Musielak et al., 

2016). TOC stacks are homogenous (all water phase), thus not enabling the segmentation of gas and 

water phase as is done on micro-CT stacks. However, TOC combined with cell wall staining (Figure 3) is 

possible in every laboratory equipped with a laser scanning confocal or multiphoton excitation 

microscope. Scanning an area of 250 x 250 μm2 with 100 μm depth, 0.49 μm lateral and 0.5 μm axial 

resolution is achievable in 10-15 minutes, providing hundreds of virtual sections (Figure 3) to fulfill the 

minimum requirement of Sm and IAS 2D estimation (Théroux-Rancourt et al., 2017). Moreover, 

morphological segmentation algorithms available in open source applications such as ImageJ (Schneider 

et al., 2012) enable investigation of the individual cell geometry (Figure 3G) and dimension (Wuyts et al., 

2010; Danila et al., 2016, 2018), Sm and IAS 3D estimation, stomata and vein density, and their 

relationship with IAS and Sm. 
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Box 2. X-ray spectroscopy basics 

When atoms interact with the incident X-ray, electrons of low-energy orbitals move up to the higher-

level energy. To restabilize the atomic equilibrium, an atom from higher-level orbitals fills this vacancy of 

the low energy and emits the extra energy as X-ray fluorescence; the absorption and emission patterns 

being identical for each element (Dolenko et al., 2017). Multiple methods of X-ray spectroscopy 

including X-ray fluorescence microscopy (XFM), X-ray absorption spectroscopy (XAS) have been 

developed which have two very basic principles in common: the absorption/emission pattern of each 

element is inferred as its fingerprint and the intensity of the absorption/emission represents the 

concentration of the element of interest enabling simultaneous localization and quantification of a 

specific element in a complex matrix. Synchrotron radiation-based X-ray has been used as the main 

source of radiation in biological X-ray spectroscopy research due to its significantly higher X-ray flux, 

higher time resolution (milliseconds or less), and tunability of the radiation (Lombi and Susini, 2009).  
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Box 3. Infrared and Raman spectroscopy basics 

When materials are illuminated by visible or 

infrared light, the covalent bonds between 

atoms absorb the energy and based on the 

strength of the bond exhibit vibration in 

different forms from stretching to bending 

(Socrates and Socrates, 2000). In Raman 

scattering spectroscopy, the intensity of a small 

portion of light (inelastic light) scattered by the 

atomic bonds is depicted as a function of 

wavenumber [proportionally related to the 

energy of vibration; Graph A (Dietzek et al., 2018)]; In IR absorption spectroscopy, the percent of IR 

radiation absorbed or transmitted by the atomic bonds are expressed as a function of wavenumber, 

Graph B (Stuart, 2015). Symmetric and asymmetric bonds behave differently when interacting with light. 

Usually, symmetrical bonds are Raman active and asymmetrical bonds are IR active. These 

characteristics make IR more efficient in detecting functional groups and Raman in detecting backbones 

(e.g. C-C bond), but some bonds are both Raman and IR active. These differences sometimes list IR and 

Raman spectroscopy as complementary methods that together provide a full image of the chemical 

structure of the molecules (Hashimoto et al., 2019; Farber et al., 2019), however, they are powerful 

when used alone. A is simulated by 

http://www.cheminfo.org/Spectra/IR/Exercises/Browse_Spectra/index.html and B is scanned by a 

WiTec alpha 330 confocal Raman microscope.  
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Figure legends 

 

Figure 1: A schematic figure of a photosynthetic leaf and its relationship with the environment on 

different scales. 

 

Drawing has been made from the real plants and light and electron micrographs of a sunflower leaf 

following the accurate scales but the abaxial epidermis is modified to represent general broad-leaf 

anatomy with higher stomatal density on the abaxial side. 2PG, 2-phosphoglycolate; 3PGA, 3-

phosphoglycerate; G3P, Glyceraldehyde-3-Phosphate; IAS, intercellular air space; SP, spongy mesophyll; 

PA, palisade mesophyll; ST, stomata; VB, vascular bundle (bundle sheath cells surrounding the vascular 

tissue are shown as circles); c, chloroplast; m, mitochondria; p, peroxisome; ct, cytosol;  cw, cell wall; grt, 

grana thylakoids; stt, stroma thylakoids; va, vacuole.    

 

Figure 2: Number of publications focused on plan cell 3D imaging from 1990-2020.  

 

The area chart represents the number, and the inset pie chart shows the percent of 252 publication 

records focused on plant organ’s 3D cell imaging and internal anatomy from 1990-2020. The 3D plant 

cell research is led by root imaging (43%) and followed by leaf (26 %). The publication records were 

downloaded from the Web of Science using the combination of keywords: “three-dimensional” AND 

“organ” AND “plant” AND “imaging”. The organ list included leaf, root, stem, embryo, and seed. The 

original 436 publications contained 195 records for leaf, 172 for root, and 55 for the stem. After 

removing the content focused on the 3D imaging of the full leaf/shoot/root geometry and morphology 
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rather than internal 3D cellular structures these numbers were reduced to 67 (leaf), 111 (root), and 34 

(stem) internal anatomy.   

 

Figure 3: Two and three-dimensional view of a rice leaf blade.  

 

A) A 2 μm thin cross-section of rice leaf blade obtained from conventional light microscopy 

(Khoshravesh et al., 2017) compared with a TDE cleared leaf (B-F). B) A 3D leaf reconstruction from 

cleared rice leaf stained with 1 % calcofluor white overnight and cleared in 97% TDE (Hasegawa et al., 

2016). C) a low magnification of abaxial epidermis, arrows point to stomata. D-F) virtual sections from 

paradermal (D), longitudinal (E), and cross-sectional (F) view of the cube presented in B. G) a 3D 

reconstruction of a mesophyll cell marked in F. Scale bares = 50 μm For A-F and 10 μm for G. Leaf 

volume imaged by Zeiss LSM 870; 250 x 250 μm2 x 100 μm depth, lateral resolution = 0.49 μm, axial 

resolution = 0.5 μm. 

 

Figure 4: A simplified example of non-destructive spatial identification of cellular components using a 

hyperspectral Raman image of a Sphagnum sp. branch leaf.   

 

A) A paradermal image of a Sphagnum sp. branch leaf taken by light microscopy. B) A 3D reconstruction 

of the Sphagnum branch leaf stained with calcofluor white to detect cellulose (silver) and 

autofluorescence of chlorophylls to detect chloroplast, depicting hyaline and photosynthetic 

chlorophyllose cells. C) Raman hyperspectral image of the rectangular inset in section A, arbitrarily 
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colored. D) Sum of the spectra over the scanned area. E&F) Spatial mapping for the first components 

(C1) of the MCR-AML Analysis for the Raman spectra (E) and MCR-AML corresponding spectra (F, C1-C3). 

C1 spectrum shows a high concentration of cell wall components such as cellulose (peaks 1103, 1118, 

1380) and lignin-like polymers (peaks 1446, 1600, which spatially corresponds with the cell walls of 

chlorophyllose cells and the fibrils of hyaline cells. G) Raman spectrum of commercial cellulose used as a 

reference here. Leaf and cellulose imaged by a WiTec alpha 330; excitation = 523 nm; Lateral resolution 

= 0.3 μm; spectral resolution = 2.3 cm-1. Terminology for leaf cells adopted from Weston et al. (2017); 

Raman peaks were identified following Socrates and Socrates (2000) and Zhu et al. (2018); MCR-AML 

analysis has been done in Matlab Hypertools toolbox (Amigo et al., 2015). 
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