
Controller-in-the-Middle: Attacks on Software Defined
Networks in Industrial Control Systems

Joseph Gardiner
Bristol Cyber Security Group,

University of Bristol
Bristol, UK

joe.gardiner@bristol.ac.uk

Adam Eiffert
University of Bristol

Bristol, UK
zg18997@bristol.ac.uk

Peter Garraghan
Computing and Communications,

Lancaster University
Lancaster, UK

p.garraghan@lancaster.ac.uk

Nicholas Race
Computing and Communications,

Lancaster University
Lancaster, UK

n.race@lancaster.ac.uk

Shishir Nagaraja
Computing and Information Sciences,

University of Strathclyde
Glasgow, UK

shishir.nagaraja@strath.ac.uk

Awais Rashid
Bristol Cyber Security Group,

University of Bristol
Bristol, UK

awais.rashid@bristol.ac.uk

ABSTRACT
Programmable networks are an area of increasing research activity
and real-world usage. The most common example of programmable
networks is software defined networking (SDN), in which the con-
trol and data planes are separated, with switches only acting as
forwarding devices, controlled by software in the form of an SDN
controller. As well as routing, this controller can perform other
network functions such as load balancing and firewalls. There is
an increasing amount of work proposing the use of SDN in indus-
trial control systems (ICS) environments. The ability of SDN to
dynamically control the network provides many potential benefits,
including to security, utilising the dynamic orchestration of security
controls. However, the centralisation of network control results in
a single point of failure within the system, and thus potentially a
major target of attack. An attacker who is capable of controlling the
SDN controller gains near full control of the network. In this paper,
we describe and analyse this very scenario. We demonstrate a num-
ber of simple, yet highly effective, attacks from a compromised SDN
controller within an ICS environment which can break the real-time
properties of industrial protocols, and potentially interfere with the
operation of physical processes.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Maintainability and maintenance; • Secu-
rity and privacy → Embedded systems security.

KEYWORDS
Industrial Control Systems; ICS SecurityCritical infrastructure;
SCADA; Operational Technology; Cyber physical security;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPSIOTSEC’21, November 15, 2021, Seoul, South Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM Reference Format:
Joseph Gardiner, Adam Eiffert, Peter Garraghan, Nicholas Race, Shishir
Nagaraja, and Awais Rashid. 2021. Controller-in-the-Middle: Attacks on
Software Defined Networks in Industrial Control Systems. In 2021 Joint
Workshop on CPS & IoT Security and Privacy (CPSIOTSEC’21), November 15,
2021. ACM, Seoul, South Korea, 6 pages.

1 INTRODUCTION
In recent years, the notion of programmable networks has become
a widely researched area. Whilst the control and data planes tra-
ditionally reside within the same device and were relatively static
and deterministic, the control plane has increasingly shifted into
software, allowing for real-time control of network flows. A well-
known programmable network model is software-defined network-
ing (SDN), wherein switches are purely forwarding devices which
operate using a rule-based flow table populated through the use
of a controller. An SDN controller can run multiple applications,
providing specific functions past normal routing, including load
balancing, firewalls and traffic monitoring. SDN most commonly
refers to the specific Openflow [9] protocol for switch-controller
communication, and is already in use in major organisations [7].

The additional control provided by SDN has led to it being pro-
posed as a useful tool in the industrial control system (ICS) and
supervisory control and data acquisition (SCADA) setting [6, 13,
17, 18]. Whilst SDN networks are usually largely static in nature,
SDN can provide benefits such as redundancy, and also be able to
assist in security through dynamic firewalls and the ability to react
to attacks .

Whilst there are clear benefits to the use of SDN in ICSs, there
is however, a downside through the introduction of a single point
of failure in the SDN controller [1, 11, 15, 16]. Whilst it is generally
accepted that SDN provides a potential vulnerability with a large
impact, there is little experimental work demonstrating the impact
of such attacks in a real-world setting. Whereas in a traditional
network gaining control of the network is an intensive process
requiring the compromise of individual switches, or attacking net-
work protocols such as ARP or DNS, within an SDN the controller
has almost total control over network routing. This can also po-
tentially include other previously separate network functions such
as firewalls. If this controller were to become compromised, the



attacker could gain control over the underlying network, poten-
tially allowing them to directly attack devices through routing, for
example by causing denial-of-service through dropping packets,
or facilitate attacks such as person-in-the-middle (PITM) attacks.
Increasingly SCADA systems are moving from serial connections
to TCP-based connections over Ethernet for communication, in-
cluding both for relaying data to SCADA back ends (which can
operate on a slower connection) and for distributed IO between
devices (which often use real-time protocols such as Profinet). With
an increase in Ethernet-based networking the potential for major
impact from a compromised SDN controller is massively increased.

In this paper, we present an analysis of the security of SDN
within an ICS setting. We do this by first providing a model of
the attacker, and then demonstrating a number of attacks against
an ICS network that can be introduced through a compromised
SDN controller. To our knowledge, this is the first demonstration of
attacks caused by an compromised SDN controller in an industrial
control systems setting.

2 BACKGROUND AND RELATEDWORK
2.1 Software Defined Networking
In an SDN network, switches act as simple forwarding devices, with
the control plane separated from the data plane into an SDN con-
troller. This controller is responsible primarily for making routing
decisions for the switch. The most common protocol used between
switches and controllers is Openflow [9]. In an OpenFlow SDN
network, switches maintain a table of flow rules, which match net-
work flows to actions. For example, if a packet destined for mac
address 𝑥 is seen, then output the packet on port 𝑦. On observing
a packet for a new flow not in the table, a switch will forward the
packet to the controller through the use of a PacketIN message. The
controller, on processing the request, will usually respond with a
PacketOUT message, which pushes the packet out of a port (or set
of ports), and a FlowMod, which contains a new flow rule to be
installed within the switches flow table. A flow rule consists of a
match field, a set of actions and usually a time-to-live to remove
rules that have not been used for so many seconds. This is referred
to as the “reactive” mode of control. Controllers can also be “proac-
tive”, installing flow rules automatically, or through human input,
without requiring a PacketIN. Most networks will use a combina-
tion of both approaches. The proactive model is particularly well
suited to an ICS environment where the network remains largely
static, with relatively few new devices appearing.

There are number of OpenFlow SDN controllers built on different
programming languages, for example Ryu (Python) and Floodlight,
Opendaylight and ONOS (Java). These are typically deployed on
general purpose hardware running standard operating systems.

One of the key aspect of SDN is the use of applications, which
are the core components that actually control how the network
operates. The controller interacts with applications through the use
of a northbound interface, such as a RESTful API. These applica-
tions are either packed as part of the controller instance, or could
potentially be remote services themselves.

2.2 Proposed Uses of SDN in ICS
There have been a number of proposed uses of SDN in an ICS
environment. These most often use SDN as a tool to enable dynamic
defences against attack. We discuss a selection of these here.

Silva et al. propose a multipath routing mechanism built using
SDN as a method for mitigating eavesdropping attacks [17]. In this
approach, shortest paths are computed between pairs of devices
(according to Dijkstra’s algorithm), and chosen. After a short time-
out, the cost of the used path is increased, and the shortest path is
recalculated, with the new shortest path then used. This means that
the flow changes path frequently making it harder to eavesdrop on
a flow for a continuous period.

Another use for SDN as a security mechanism is as a network
intrusion detection system (NIDS). Silva et al. propose a one-class
NIDS in which the SDN controller collects snapshots of Openflow
statistics from switches which are sent to a data historian and then
used to detect attacks, relying on the generally static nature of ICS
networks [18].

Derhab et al. propose an SDN-WAN based architecture for IDS,
which migrates the control layer to the cloud [6], along with a in-
trusion detection system to detect forged commands to ICS devices,
and a blockchain-based integrity checking system for identifying
attacks which modify switch flow rules.

One particular use case that has been proposed for SDN in an ICS
environment is within smart grids. Rehmani et al, provide a detailed
survey of SDN use within smart grids, including the security and
privacy scheme within such architectures [13].

3 ATTACKER
We assume a targeted, well resourced attacker focused on a particu-
lar network. It is highly unlikely that a “script-kiddie” type attacker
using pre-made malware and scripts will focus efforts on the SDN
architecture of a network. It is expected that the attacker would
have already gained access to the industrial network.

3.0.1 Attacker Goals. The compromise of the SDN controller can
both be used to directly launch attacks, as well as to assist in per-
forming traditional host-based attacks within the network. As the
attacker gains a large amount of control over the routing of the
network, as well as potentially other networking functions such as
firewalls, gaining control over the SDN controller could become
a key target for an attacker. Some of the specific attacker goals
include the following:

Denial-of-Service The attacker wishes to prevent hosts from
communicating.

Eavesdropping The attacker wishes to collect the traffic of either
a single host (targeted) or group of hosts (indiscriminate),
without affecting the availability of the network service.

Data Tampering The attacker wishes to change the contents of
packets for a particular flow in order to carry out a person-
in-the-middle attack.

Service Degradation The attacker wishes to degrade the perfor-
mance of the network for a single host (targeted) or all hosts
(indiscriminate) in order to make the network unusable, or
to introduce errors in external applications that rely on high
speed communications.



Attack Augmentation The attacker uses an attack on the SDN
network to assist a secondary attack. This could include
redirecting flows to assist in person-in-the-middle attacks,
or to open holes in the SDN based firewall.

3.1 Attack Vector
We envision the attacker compromising the controller in one of the
following ways:
CompromisedAdministrative InterfaceMost SDN controllers

provide functionality for remote administration of the SDN
controller through APIs or admin interfaces (such as web-
based pages). If a host is compromised that is authenticated
to these interfaces then the attacker can gain access to the
control provided by the interface. Typically this will include
changing the set of installed applications or manually in-
stalling/modifying flow rules on switches.

Compromised Northbound Interface The attacker compro-
mises a northbound interface in order to interact with the
controller, for example, by performing a person-in-the-middle
attack on a RESTful interface.

Compromised Switch Controller Connection The attacker
compromises the openflow connection between the switch
and controller, for example by performing a person-in-the-
middle attack, and modifies requests and responses.

Malicious application. A malicious application is installed on
the controller by either a malicious admin, through admin
error or through the compromise of a existing application.

Compromised host. In the most severe case, the host on which
the controller resides is compromised, resulting in full at-
tacker control over the controller runtime.

In this paper we focus on the malicious application/compromised
host example, where the attacker can gain control over the core
routing functionality of the SDN controller.

4 ATTACKS
In this section we propose a number of attacks, and where appro-
priate use a small scale demonstration setup using four difference
industrial protocols to demonstrate the attacks.

4.1 Setup
4.1.1 “Physical” Process. In order to measure the effect on a physi-
cal process, we make use of FactoryIO from RealGames 1. FactoryIO
is designed to be used for learning PLC programming, with the
ability to build large scale factory simulations which are controlled
by real-world devices. The software talks to PLCs using an Ethernet
connection and is able to utilise a number of protocols, including
S7Comm, Ethernet/IP and Modbus. This allows us to easily connect
it up to different devices over our SDN network and measure the
impact of the attacks on the different protocols. The scene we test
with is a simple sorting scene, in which small and large boxes are
moved down a conveyor belt and measured. The larger, taller boxes
are pushed onto a secondary conveyor, whilst the shorter boxes are
not. An example of this scene can be seen in Figure 1a.

1https://factoryio.com

(a) FactoryIO scene used for testing. The larger, cube-shaped
boxes are pushed off the main conveyor, the rectangular
boxes are not

(b) FactoryIO when under the flow rule blocking at-
tack

4.1.2 SDN. Networking is provided by a Dell EMC PowerSwitch
S3048-ON 1000BASE-T 48-port 1GbE top-of-rack (ToR) switch,
which features support for SDN using Openflow (versions 1.0 and
1.3), and can operate with 3rd party controllers and operating sys-
tems (the “ON” portion of the model number represents “Open
Networking”). The switch is running Dell EMC Networking OS9
(specifically 9.13), and has been configured to use Openflow 1.0. We
use the Floodlight controller [12] to provide network control.

4.1.3 Devices and Protocols. We make use of four common ICS
protocols in our testing:
Profinet - Profinet is a real-time protocol commonly used by

Siemens devices. In particular, it is the protocol in use when
using remote IO on Siemens devices. We make use of two
S2-1200 PLCs running firmware version 4.2. One operates
as the controller, and the second as the remote IO device.
The laptop running FactoryIO is connected to the remote IO
device over Ethernet, using S7Comm to communicate. The
SDN switch sits between the two PLCs for these tests.

S7Comm - The S7Comm protocol is the primary protocol used for
workstations and SCADA systems to interact with Siemens
PLCs. As well as downloading programs to the device, it can
be used to read and write memory addresses to the device.
As an example, it is common for software such as data histo-
rians to use S7Comm to read values from devices. S7Comm is
unencrypted, though newer devices use S7CommPlus which
do use encryption (though this has been shown to be inse-
cure [5]). S7Comm is used between FactoryIO and the remote
IO PLC, with the SDN switch moved between the two. The
connection between the two PLCs is instead through a stan-
dard Mikrotik switch.

https://factoryio.com


Ethernet/IP - Ethernet/IP is an open protocol, most commonly
used by Allen Bradley devices for communication, including
remote IO, although unlike Profinet it is not a real-time
protocol. We use an Allen Bradley Micro850 PLC, connected
to FactoryIO over the SDN switch.

Modbus/TCP - Finally, we use the common Modbus/TCP proto-
col. We use OpenPLC2 installed on a Raspberry Pi 4 Model B
(4Gb Ram). OpenPLC is an open source PLC commonly used
for research projects using the modbus protocol [4]. To use
FactoryIO with OpenPLC, FactoryIO runs a Modbus server,
which OpenPLC treats as a slave device. The SDN switch
sits between OpenPLC and FactoryIO.

The topologies for each protocol are shown in Figure 2. In the
diagrams, the labels on lines indicate the protocols in use. Note that
the SDN controller is not shown, however it is running on a blade
server directly connected to the switches management port. Where
two devices are not shown to be connected using a switch, they are
connected through a direct Ethernet connection.

4.1.4 Implementing the Attacks. All of the proposed attacks are
implemented by simply taking a copy of the default Floodlight
“Forwarding” routing application, and thenmodifying the operation
of this application to perform the attack. In most cases this involves
the portion of the application that produces the FlowMod packets
to send to the switch. For the majority of the proposed attacks,
these modifications only require the addition (or in some cases
removal) of a few lines of code into the application. Floodlight
supports multiple applications to be run at once, with applications
able to specify where in the processing order they sit, and so we
force our malicious application to be the first to process requests.
Requests for non-targeted flows are processed as normal.

4.2 Denial-Of-Service
In this attack, the malicious application clears the flow table of the
switch, and then proceeds to re-build the switches flow table. For
any flow rules destined for a target device, the controller installs
a flow rule with no action fields, which means that any matching
packets are dropped by the switch, performing a denial-of-service.

4.3 Flow Rule Blocking
In this attack, the malicious application takes over the routing for
flows for target devices, while ignoring other flows and allowing
them to be processed as usual. Whereas in the normal case the
routing application, on receiving a PacketIN, will send both a Pack-
etOUT and a FlowMod to install a flow rule into the table, in the
attack case the malicious application only sends a PacketOUT. This
means that the switch needs to send all packets of the target flow
to the controller for processing, producing a large amount of addi-
tional latency. The malicious application can add arbitrary amounts
of delay to increase this latency further.

Demonstration. We apply this attack to all four protocols in our
test setup. The attack is targeted to the PLC device; any other flows
will be unnafected. On first seeing a request to the target device,
the malicious application will allow any handshakes to complete,
and after 20 second clear the flow table of the switch and then apply
2https://www.openplcproject.com

Protocol Real-
time?

Operates with
blocking?

Physical pro-
cess affected?

Additional de-
lay for failure

Profinet Yes No Yes -
S7Comm No Yes No 40ms
Ethernet/IP No Yes Yes 10ms
Modbus/TCP No Yes Yes 10ms

Table 1: Results of flow-rule blocking attack.

the attack. We apply flow rule blocking with no additional delay
introduced by the controller (except the delay of contacting the
controller itself, which is 3-4ms), and also with artificial additional
delay on sending responses from the controller to measure how
much extra latency is enough to cause the physical process to no
longer sort blocks.

We presents the results of this attack on the four protocols in
Table 1. As can be seen in the third column, all of the protocols,
other that Profinet, were able to operate whilst under this attack.
Profinet, the only real-time protocol, quickly raises an alarm once
the attack begins. On inspecting the requests to the controller,
Profinet messages are sent at a sufficient rate that the controller is
unable to process requests and forward packets quick enough and
a backlog forms. This, along with the additional latency, breaks the
real-time properties of the protocol and causes Profinet to fail.

For those protocols that still managed to operate when under
attack, only S7Comm showed no obvious impact on the physical
process. Both Ethernet/IP and Modbus/TCP, when faced with the
additional latency of passing packets through the SDN controller,
both exhibited a noticeable lag in the pusher operation in the phys-
ical process, pushing blocks late and in some cases late enough that
the block remain on the main conveyor. This clearly shows that
there is a potential safety impact from this attack, as the reaction
time of the process for any aspects which rely on this network
communication are impaired.

Finally, we measure how much additional latency is required
to cause the pusher to completely miss blocks, preventing sorting.
S7Comm requires 40ms of additional delay, whilst Ethernet/IP and
Modbus/TCP both only required 10ms additional controller delay
to fail. This small value indicates that both Ethernet/IP and Mod-
bus/TCP could be vulnerable to other SDN attacks that increase
latency, for example through increasing path lengths. This effect
can be seen in Figure 1b.

4.4 Controller Packet Tampering
We extend the previous attack to perform a controller based packet
tampering attack. Depending on the particular switch, packets are
either buffered on the switch, with only packet headers forwarded
to the controller for processing, or the full packet, including data,
is sent to the controller for processing. In cases where the full
packet is sent to the controller, and the protocol is unencrypted (as
S7Comm, Ethernet/IP and Modbus/TCP all are by default) we can
make arbitrary modifications to the packets to perform a person-
in-the-middle attack. The advantage of this attack is that no new
routes are created – the switch already communicates with, and
forwards packets to,the controller. The primary effect on the net-
work is a large increase in the volume of packets sent from the
switch to controller. In this example, we wish to overwrite the
values relating to the pusher in our example process, to prevent
blocks from being pushed off. Packets are modified by modifying
the packet data when the PacketOUT message is created by the

https://www.openplcproject.com


SDN

FIO

S7-1200

S7-1200

S7Comm

Profinet

(a) Profinet

SDN

FIO

S7-1200

S7Comm

(b) S7Comm

SDN

FIO

Micro850

Ethernet/IP

(c) Ethernet/IP

SDN

FIO

OpenPLC

Modbus/TCP

(d) Modbus

Figure 2: Topologies used for testing. SDN = SDN Switch. FIO = FactoryIO host.

malicious forwarding application. Note that we cannot apply this
to the Profinet connection, as the connection fails if packets are
routed through the controller.

One small issues arose when developing this attack. If the data is
simply changed, the TCP checksum is then incorrect and FactoryIO
disconnects. This means that our malicious application needs to
deconstruct the TCP layer of the packet, modify the TCP payload,
and then rebuild the TCP header. This adds a very small amount of
additional latency to the connection.

Demonstration. For S7Comm, FactoryIO uses a ReadVar S7Comm
packet to read the state of the output addresses on the PLC. Within
the response, the final 2 bytes of the packet, containing the read
values, are returned, which are “B100” when the pusher is not being
pushed, and "B900" when the pusher is active. Therefore, for any
packets from the target device which contain "B900" as the final
2 bytes, these are replaced by "B100", successfully preventing the
pusher from operating.

In the Modbus/TCP setup, OpenPLC updates the coil state to
FactoryIO using the “Write Multiple Coils” request type, sending 2
bytes of data over. When the pusher is inactive, these 2 bytes are
“B300”, changing to“BB00” when the attack is active. Similarly to
S7Comm, these are the final 2 bytes of the packet. Again, the attack
successfully blocks the pusher from operating.

The attack is a little more complicated in the case of Ethernet/IP.
Whereas S7Comm and Modbus/TCP both request/write all of the
output registers in a single request, within Ethernet/IP each indi-
vidual output register is requested individually. This means that
we need to observe the request from FactoryIO to the PLC for the
register corresponding to the pusher (in this case “BOOL_OUT_3”,
and then only modify the following response, replacing the final 3
bytes of the packet - “C10001” with “C10000”. As with this other
two protocols, however, the attack is successful.

In this demonstration we prevent the pusher from pushing, how-
ever the same attack could be applied to, for example, overwrite
values being sent to a SCADA server, potentially preventing alarms
from being raised.

4.5 Controller Eavesdropping
A second extension to the Flow Rule Blocking attack is the ability of
the controller to eavesdrop on packets that are sent to the controller,
in particular if packets are not buffered by the switch and full
packet contents are forwarded to the controller. For an attacker

there are two obvious benefits to this. First, it is useful in asset
discovery, as it reveals IPs, MAC addresses and protocols in use
to the controller. Further, in some protocols, such as S7Comm,
device specific details such as model numbers are sent as part of
the protocol which can also aid in asset discovery. The second
benefit is that if the protocol in operation can be observed, then the
attacker can potentially learn about the behaviour of the underlying
process by observing transmitted data. For example, Ethernet/IP
reads and writes each individual register, including the register
name, as individual requests. If these are used for remote IO or a
data historian, an attack could monitor these over a period to learn
which registers could be tampered with to affect the process.

4.6 Third-party Eavesdropping
Aflow rule can havemultiple action fields. If a flow rule has multiple
action fields instructing the switch to forward packets to multiple
ports, then the switch will mirror packets to those ports. This can
allow an attacker to mirror traffic to a collection point to perform
passive asset discovery and eavesdropping, without requiring cap-
ture in promiscuous mode. This does require the attacker to know
the port number of the switch to which their eavesdropping ma-
chine is connected. This is information stored by the SDN controller
itself and would be visible on any administrative interface.

Demonstration. Our malicious forwarding application, on cre-
ating a flow rule, adds an additional action field to output packets
to the port where our attack laptop is connected, on which we run
Wireshark, As soon as a new target flow is setup, then Wireshark
will start capturing all traffic on the flow. S7Comm packets only
appear into the network capture when the attack is started, as the
laptop does not usually have visibility onto those packets, even
when running in promiscuous mode.

It is important to note that for established flows, the simple
version of this attack will not work as the controller will not be
contacted to install the flow rule for the target device. The controller
will have to direct the switch to delete the existing flow rule, and
then install an updated flow rule proactively. The controller can
do this in one command, which will prevent any disruption to the
existing network.

4.7 SDN Enabled Person-in-The-Middle
In this attack, we use the routing capability of the compromised
SDN controller in order to allow a attacker controlled device on



the network to perform a PITM attack. This attack clearly demon-
strates the ability of an SDN attacker to modify the routing with an
SDN. Traditionally, a technique such as ARP spoofing is required
to redirect flows to an attack controller machine to perform a PITM
attack. Instead, the attacker, who controls a machine within the
target network, redirects a target flow through the use of malicious
flow rules installed on switches. This has the benefit that the at-
tacker machine itself only needs to receive and send on packets,
and not launch the attack itself through a technique such as ARP
spoofing, which is easily detectable and already covered well by
intrusion detection systems.

Demonstration. We demonstrate this attack using FactoryIO
with a Siemens S7-1200 PLC using S7Comm. We introduce a third
device into the network, a laptop running Ubuntu 18.04. The laptop
has two Ethernet connections to the switch, and on the laptop a
virtual network switch is deployed using OpenVSwitch (OVS), with
both physical adapters added as ports to the virtual switch. The
OVS switch is controlled by its own Floodlight instance, which
simply directs packets out of the adapter which the traffic did not
come in on, effectively making the virtual switch a proxy. The
OVS controller instance also has our controller packet tampering
application installed, and so will intercept all target packets and
modify them in the same way as our previous attack, however
this behaviour is contained to the attacker laptop. On the core
SDN switch, flow rules are manually installed through a malicious
application to direct target flows through the laptop.

Through this attack, we are successfully able to perform a person-
in-the-middle attack without the use of traditional techniques such
as ARP spoofing.Within the data plane there are no unusual packets,
only flows taking an unusual route. As with the controller packet
tampering attack, as well as interfere with the physical process
this attack could be used to modify packets sent back to SCADA
systems to prevent monitoring and alarms.

4.8 Attack Mitigation
By installing monitoring on the control network between switches
and controllers, and applying anomaly detection, attacks such as
the flow rule blocking and its derived attacks (controller packet
tampering and controller eavesdropping) could be detected. When
these attacks are applied, the switches will generate a large volume
of requests to the controller, far higher than the number expected
in a relatively static ICS network. This anomalous behaviour can
be easily identified.

For less obvious attacks that modify routing, such as the SDN
enabled person-in-the-middle attack, identifying when these have
occurred is amore difficult problem, as the network operationwhilst
under attack is not too dissimilar to normal network operation.
There are a number of works that propose systems for detecting
malicious flows in SDN, such as [2, 3, 8, 10, 14].

If SDN were to be deployed into an ICS network, it is important
that the host on which the controller resides is kept up to date and
secured. As SDN controllers generally run on top of desktop operat-
ing systems, any host vulnerabilities, including poor configuration
such as insecure passwords, can lead to controller compromise,
therefore steps to mitigate these vulnerabilities can go some way
to preventing these SDN attacks.

5 CONCLUSION
With the increase attention on programmable networks, there have
been a number of proposed uses for software defined networking
in ICS environments. Whilst the use of SDN can provide a large
number of benefits, in particular when used to improve security, the
use of SDN itself introduces a potential vulnerability by centralising
network control into a single point of failure. If the SDN controller
were to become compromised, then an attacker could gain a control
over the operation of the network, allowing them to either directly
attack the ICS from the SDN controller, facilitate further host-based
attacks. In this paper, we modelled an attacker who would target
the SDN component of an industrial network, and provided, to
our knowledge, the first demonstration of a number of attacks
on an SDN-based ICS network. We hope that this work leads to
further consideration of the security of SDN when used in ICS
environments.

REFERENCES
[1] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov. Security in software defined

networks: A survey. IEEE Communications Surveys Tutorials, 17(4):2317–2346,
2015.

[2] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and S. Guizani. Securing
software defined networks: taxonomy, requirements, and open issues. IEEE
Communications Magazine, 53(4):36–44, 2015.

[3] E. Al-Shaer and S. Al-Haj. Flowchecker: Configuration analysis and verification
of federated openflow infrastructures. In ACM Workshop on Assurable and
Usable Security Configuration, SafeConfig ’10, page 37–44, New York, NY, USA,
2010. Association for Computing Machinery.

[4] T. R. Alves, M. Buratto, F. M. de Souza, and T. V. Rodrigues. Openplc: An open
source alternative to automation. In IEEE Global Humanitarian Technology
Conference (GHTC 2014), pages 585–589, 2014.

[5] E. Biham, S. Bitan, A. Carmel, A. Dankner, U. Malin, and A. Wool. Rogue7: Rogue
engineering-station attacks on s7 simatic plcs. In Black Hat 2019, 2019.

[6] A. Derhab, M. Guerroumi, A. Gumaei, L. Maglaras, M. A. Ferrag, M. Mukherjee,
and F. A. Khan. Blockchain and random subspace learning-based ids for sdn-
enabled industrial iot security. Sensors, 19(14), 2019.

[7] S. Jain et al. B4: Experience with a globally-deployed software defined wan.
SIGCOMM Comput. Commun. Rev., 43(4):3–14, Aug. 2013.

[8] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: Verifying network-
wide invariants in real time. In Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, page 49–54, New York, NY, USA, 2012. Association for
Computing Machinery.

[9] N. McKeown et al. OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM Comput. Commun. Rev., 38(2):69–74, mar 2008.

[10] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A security
enforcement kernel for openflow networks. In Hot Topics in Software Defined
Networks, HotSDN ’12, page 121–126, New York, NY, USA, 2012. Association for
Computing Machinery.

[11] A. S. Prasad, D. Koll, and X. Fu. On the security of software-defined networks. In
2015 Fourth EuropeanWorkshop on Software Defined Networks, pages 105–106,
2015.

[12] Project Floodlight. Floodlight. http://www.projectfloodlight.org/floodlight/.
[13] M. H. Rehmani, A. Davy, B. Jennings, and C. Assi. Software defined

networks-based smart grid communication: A comprehensive survey. IEEE
Communications Surveys Tutorials, 21(3):2637–2670, 2019.

[14] C. Röpke and T. Holz. Preventing malicious sdn applications from hiding adverse
network manipulations. In Workshop on Security in Softwarized Networks:
Prospects and Challenges, SecSoN ’18, page 40–45, New York, NY, USA, 2018.
Association for Computing Machinery.

[15] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. SDN security: A survey, pages
1–7. Institute of Electrical and Electronics Engineers (IEEE), 2013.

[16] Z. Shu, J. Wan, D. Li, J. Lin, A. V. Vasilakos, and M. Imran. Security in
software-defined networking: Threats and countermeasures. Mob. Netw. Appl.,
21(5):764–776, Oct. 2016.

[17] E. G. d. Silva, L. A. D. Knob, J. A. Wickboldt, L. P. Gaspary, L. Z. Granville, and A. E.
Schaeffer-Filho. Capitalizing on sdn-based scada systems: An anti-eavesdropping
case-study. 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), pages 165–173, 2015.

[18] E. G. d. Silva, A. Silva, J. Wickboldt, P. Smith, L. Granville, and A. Schaeffer-Filho.
A one-class nids for sdn-based scada systems. pages 303–312, 06 2016.

http://www.projectfloodlight.org/floodlight/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software Defined Networking
	2.2 Proposed Uses of SDN in ICS

	3 Attacker
	3.1 Attack Vector

	4 Attacks
	4.1 Setup
	4.2 Denial-Of-Service
	4.3 Flow Rule Blocking
	4.4 Controller Packet Tampering
	4.5 Controller Eavesdropping
	4.6 Third-party Eavesdropping
	4.7 SDN Enabled Person-in-The-Middle
	4.8 Attack Mitigation

	5 Conclusion
	References

