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Abstract
Ensembles of chemistry-climate models (CCMs) are fundamental for the exploration
of the chemistry-climate system. A particular focus of chemistry-climate modelling
is stratospheric ozone, whose concentrations have been decreased by anthropogenic
releases of ozone depleting substances. In conjunction with observational data, CCM
ensembles have been relied upon to simulate historic effects of ozone depletion and to
project future ozone recovery.

However, many widely used ensemble analysis methods are simplistic and are based
upon incorrect assumptions about the design of the ensemble. Multi-model means used
to construct future ozone projections do not account for variable model performance
or similarity and therefore give biased and inaccurate projections. Similarly, simplistic
linear regression methods used to infill historic ozone records underestimate interannual
variability and are inaccurate in regions of sparse data coverage. Moreover, given
advances in machine learning and data science and their increased use in environmental
science, it is timely to apply more advanced tools to CCM ensembles.

To address this methodological deficit, this thesis presents a set of novel tools to
improve the predictions and projections from CCM ensembles of stratospheric ozone.
A process-based weighted mean is developed which accounts for model performance
and similarity in CCM ensembles. This improvement over pre-existing methods was
used to generate accurate ozone hole recovery projections. This thesis also developed
a Bayesian neural network (BNN) which fuses together CCMs with observational data
to produce accurate and uncertainty-aware predictions. The BNN framework was used
to produce historic continuous datasets of total ozone column and vertically resolved
ozone, and represents a significant improvement in methods used to ensemble models.

Though designed for CCM ensembles these flexible tools have the potential to
be applied to other environmental modelling disciplines to improve the accuracy
of projections, better understand uncertainty and to make better use of historic
observations.
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Chapter 1

Introduction

This thesis sits at the confluence between statistics, machine learning (ML) and
atmospheric science. Access to increasingly sophisticated ML techniques has improved
for atmospheric scientists, driven by a surge in off-the-shelf tools and codes, and
cheaper access to accelerated computing required in ML applications (Karpatne et al.,
2018; Virts et al., 2020). ML tools have good investigative and predictive powers and
therefore have much to offer atmospheric science (Ford et al., 2016) which regularly
requires analyses of large observational and model datasets (e.g., Taylor et al., 2012;
Eyring et al., 2016b; Morgenstern et al., 2017). These datasets have the 4 Vs of big
data – volume, variety, veracity and velocity – predicated by researchers’ desires to
simulate and observe the earth system at continually increasing resolution, speed and
complexity (Guo et al., 2015). However, much atmospheric data, particularly ensembles
of models, is still analysed and used with traditional methods, as communities have
not yet widely adopted data science research tools to aid data exploration and boost
predictive ability (Faghmous and Kumar, 2014). Given the complexity and nuances of
atmospheric data, modern data science and ML cannot be applied blindly, instead
requiring interdisciplinary efforts within environmental data science (Kanevski, 2009;
Maganathan et al., 2020). Environmental data science, the merger of environmental and
data sciences, explores how new methods and data-driven approaches from statistics
and ML can bring greater insight into environmental data and problems, helping to
tackle many broad and important global challenges (Blair et al., 2019).

This thesis presents a collection of sophisticated data science techniques to make
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1.1. Stratospheric ozone

better use of climate model ensembles, with a particular focus on atmospheric
composition. Atmospheric science relies on ever-increasing model complexity, both
computationally and in the physical processes they represent (Collins et al., 2017;
Morgenstern et al., 2017). Despite the increase in quantity and quality of model
output, many of the techniques for analysing the data have not undergone the
same increase in sophistication (IPCC, 2010; Faghmous and Kumar, 2014). The
set of environmental data science tools presented in this thesis seeks to address this
methodological deficit, through the development of novel and broadly applicable
approaches focussed on ensembles of chemistry-climate models (CCMs), and by doing
so, improve our understanding of the historic and future evolution of ozone in the
stratosphere.

Within this introduction the three overarching themes of the thesis are introduced
and summarised: ozone in the upper atmosphere, which forms the atmospheric theme
to which the developed data science methods are applied; ML and data science and
why these approaches can be beneficial in atmospheric science; and ensembles of
physical models and how modern techniques can aid analysis of these large datasets.
The introduction concludes with a short summary of the thesis contributions where
the remaining thesis structure is also laid out. Subsequent chapters are self-contained
pieces of work each containing separate introductions and literature reviews which
expand upon the following literature review.

1.1 Stratospheric ozone

This thesis explores and develops data science tools focussing on ozone in the upper
atmosphere, although the tools are widely applicable. Stratospheric ozone is chosen
because it has been an active research area of continued interest for the last 40–50 years
(Solomon, 1999; WMO, 2018), resulting in a large range of observational data (e.g.,
Tegtmeier et al., 2013) and CCM simulations necessary for data-driven approaches
(e.g., Eyring et al., 2010, 2013; Morgenstern et al., 2017). The system is relatively well
understood, prompted initially by the immediate need to understand ozone depletion,
and later maintained and encouraged through the Montreal Protocol and subsequent
amendments, alongside associated activities (SPARC/IO3C/GAW, 2018; WMO, 2018).
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1.1. Stratospheric ozone

In this section a broad description of stratospheric ozone is presented: the
production, destruction and transport of ozone and how that influences the distribution
and variability of ozone; the anthropogenic influence on ozone in the form of ozone
depleting substances and how this led to increased ozone depletion; and how ozone in
the stratosphere is modelled and observed.

1.1.1 Ozone photochemistry

Stratospheric ozone is primarily formed by the photochemical reaction

O2 + hν(λ < 243nm)→ 2O (1.1)

followed by a subsequent reaction with a collision partner M, most likely either N2 or
O2 due to their large abundances.

O+O2 +M→ O3 +M. (1.2)

Ozone removal also happens photochemically

O3 + hν(λ < 320nm)→ O+O2 (1.3)

O+O3 → 2O2, (1.4)

completing the cycle of photochemical production and destruction of ozone known as
the Chapman cycle (Chapman, 1930). In the stratosphere, through reactions 1.2 and
1.3, O and O3 quickly reach photochemical equilibrium.

The absorption of ultraviolet radiation (UV) in reaction 1.3 is the dominant cause of
heating in the stratosphere, although the collision in reaction 1.2 is exothermic and also
contributes. This heating creates a stratospheric temperature profile that increases with
height, therefore determining the dynamical stability of the stratosphere (Murgatroyd
and Singleton, 1961). In addition to providing stratospheric structure, the absorption
of UV radiation by ozone and oxygen within the stratosphere is fundamental to the
survival of life on Earth, protecting the DNA and chemical structures of organisms
from UV’s harmful effects (WMO, 2018). Without this protective layer against
UV-C (100–280 nm) and UV-B (280–315 nm) radiation, organisms are vulnerable to
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1.1. Stratospheric ozone

the carcinogenic effects of UV, photodamage and immunosuppression (Harm, 1980;
Schwarz, 2005).

The Chapman cycle has a description of ozone production and loss which is able to
partially describe the structure of ozone in the atmosphere. It generates an ozone layer
because UV radiation, the source of oxygen photolysis, decreases down through the
atmosphere whilst the oxygen density per unit volume increases. However, reaction
1.4 is slow and underestimates the removal of ozone. The Chapman cycle alone is
unable to account for observed abundances.

Ozone is additionally destroyed through other catalytic cycles with odd hydrogen
(HOx = H + OH + HO2) (Bates and Nicolet, 1950), nitrogen (NOx = NO + NO2)
(Crutzen, 1970) and chlorine (ClOx = Cl + ClO) radicals (Stolarski and Cicerone,
1974). Although ozone loss is affected by anthropogenic sources of stratospheric HOx

and NOx (Portmann et al., 2012), for example through emissions of methane and from
combustion, the main source of ozone depletion over the last half a century is due to
anthropogenic emissions of halogenated compounds (WMO, 2018).

These catalytic reactions result in ozone loss but not the loss of the catalyst. They
take the form

X+O3 → XO+O2 (1.5)

XO+O→ X+O2, (1.6)

where X is a catalyst, resulting in a net reaction of

O+O3 → 2O2. (1.7)

The above reactions require a single O atom and therefore dominate in the upper
stratosphere (above 40km) where the abundance of O is highest because of the high
intensity of incident solar radiation. Lower in the stratosphere, catalytic cycles that
do not depend on the availability of O atoms are particularly important. There are
three main types of ozone-specific catalytic cycles. Firstly, a reaction between X and
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1.1. Stratospheric ozone

O3 such as

OH+O3 → HO2 +O2 (1.8)

HO2 +O3 → OH+ 2O2 (1.9)

Net reaction: 2O3 → 3O2, (1.10)

a reaction which dominates below 25 km. Secondly, a cycle which involves two different
X species, for example

Br + O3 → BrO + O2 (1.11)

OH+O3 → HO2 +O2 (1.12)

HO2 + BrO→ HOBr + O2 (1.13)

HOBr + hν → OH+ Br (1.14)

Net reaction: 2O3 + hν → 3O2, (1.15)

in which O2 is eliminated upon formation of the new compound (in this case HOBr).
The third type is similar except that the O2 is eliminated after the formation of a
compound from the reaction of two different X species. A key example is the dimer
cycle (Molina and Molina, 1987) which is the main cause of ozone destruction within
springtime polar vortices and is therefore responsible for the formation of the ozone
hole described in subsubsection 1.1.2.1.

2(Cl + O3 → ClO + O2) (1.16)

2ClO +M→ Cl2O2 +M (1.17)

Cl2O2 + hν → Cl + ClOO (1.18)

ClOO +M→ Cl + O2 +M (1.19)

Net reaction: 2O3 + hν → 3O2. (1.20)

The rates of the above catalytic reactions are controlled in part by null cycles
that temporarily remove catalysts and prevent their reactions with ozone through
the formation of reservoir compounds such as N2O5, which removes NOx during the
absence of sunlight. ClONO2, HNO3, HCl and BrONO2 are other important reservoir
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1.1. Stratospheric ozone

species that lock up halogenated compounds reducing the rate of ozone destruction
and are stable enough to be transported throughout the stratosphere.

1.1.2 Anthropogenic influence on stratospheric ozone

The initial concerns about the stability of stratospheric ozone came in response to
nuclear weapons and high-altitude supersonic flight (Crutzen, 1971; Muller, 2009).
However, over the last half a century the focus has shifted to anthropogenic emissions
of halogenated compounds, initially in the form of chlorofluorocarbons (CFCs) such as
CFC-12 (CF2Cl2), that have been widely used as unreactive refrigerants and propellants
(Molina and Rowland, 1974; Rowland, 2009; WMO, 2018). Although relatively inert
in the troposphere where they are emitted and accumulate, once transported into the
more photochemically active stratosphere these ozone depleting substances (ODSs) are
photolysed into highly reactive halogen gases (e.g., Cl, Br, ClO and BrO) which react
to destroy ozone via any of the three catalytic cycles detailed in reactions 1.8 onward.
As a result, a global decrease in total column ozone has been observed since the 1980s
(Solomon, 1999; Rowland, 2009; WMO, 2018). Beyond the efficient removal of ozone
by catalytic cycling, ODSs pose a long-lasting problem due to their stratospheric
lifetimes of up to 100 years (Owens et al., 1982; Rigby et al., 2013).

1.1.2.1 Antarctic ozone depletion

Antarctic ozone depletion strongly affects the Antarctic climate (Perlwitz et al., 2008),
more widely the surface climate in the southern hemisphere (Polvani et al., 2011;
“Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change”
2011), and the stratosphere which experiences cooling (Randel and Wu, 1999b). The
southern polar region where decline was first identified by Farman et al. (1985)
experiences particularly strong depletion in springtime, resulting from a unique set
of chemical and meteorological conditions (Solomon et al., 1986). This phenomenon
known as the ozone hole in which total column ozone values can fall below 100DU,
begins in autumn when the polar vortex forms around Antarctica as stratospheric air
cools and descends, isolating the polar air and creating a barrier to the ozone rich
mid-latitudes (Schoeberl and Hartmann, 1991). As temperatures decrease, the vortex
strengthens and polar stratospheric clouds form.
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1.1. Stratospheric ozone

Polar stratospheric clouds (PSCs) and heterogeneous chemistry
When stratospheric temperatures fall below -78 °C PSCs can form within polar regions,
influencing ozone depletion via heterogeneous chemistry (Solomon et al., 1986). The
PSCs important in ozone depletion (Type 1) are nitric acid-containing PSCs rather
than their rarer and colder Type 2 counterparts formed of ice particles. Reactions
that take place on the PSCs prime the polar air for depletion during polar night by
converting chlorine containing reservoir species (e.g., HCl, ClNO3 and ClONO2) into
reactive forms of chlorine. During winter these reactions make ClO the most abundant
chlorine species. When sunlight returns in spring, ClO drives rapid depletion through
catalytic cycles (particularly the dimer cycle reactions 1.17–1.20) (Molina and Molina,
1987; Barrett et al., 1988) and creating the ozone hole.

PSCs have a secondary impact on ozone depletion known as the denitrification of
the stratosphere (Salawitch et al., 1989). Nitric acid (HNO3) containing PSCs descend
through the stratosphere over winter and spring at a rate of about 1.5 km per day,
removing a significant proportion of available HNO3 from the ozone layer (Crutzen and
Arnold, 1986; Toon et al., 1986). As HNO3 is a source of NOx , the reaction between
NOx and ClO to form ClONO2 occurs less, resulting in an increased lifetime of ClO
and therefore increased ozone destruction.

1.1.3 Controlling ozone depleting substances

As the UV protection afforded by stratospheric ozone is crucial to the survival of
most life on Earth, international policy was swiftly enacted in an attempt to reverse
depletion (McKenzie et al., 2011). The Montreal Protocol (MP) and its amendments
seek to do this through monitoring and restricting the production of halogenated
compounds, subsequently banning hydrochlorofluorocarbons and hydrofluorocarbons
(the Kigali amendment in 2016) in addition to the initial CFC ban. The MP is
widely considered one of the world’s most successful environmental agreements (Brack,
2003; Gareau, 2015) limiting ozone depletion (Chipperfield et al., 2015) in addition to
mitigating climate change (Velders et al., 2007; Young et al., 2021). However, whether
recovery is significant for different atmospheric regions is still an active research
question (Chipperfield et al., 2017; Ball et al., 2018; Weber et al., 2018; Ball et al.,
2019), one confounded by the relatively short and incomplete observational records,
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difficulty in disentangling trends from atmospheric variability (SPARC/IO3C/GAW,
2018; WMO, 2018), and new unregulated emissions of ODSs (Hossaini et al., 2017;
Montzka et al., 2018). Additionally, as the impacts of ozone depletion are wide reaching,
disrupting tropospheric circulation (Polvani et al., 2011), impacting surface climate
(Perlwitz et al., 2008) and changing the Brewer-Dobson circulation (Abalos et al.,
2019), continued study and monitoring of stratospheric ozone is of vital importance.

1.1.4 Ozone distribution and variability

Ozone concentrations in the stratosphere are governed by photochemical production,
photochemical destruction through catalytic cycles and transport. The dominant
large-scale dynamical system in the stratosphere is the Brewer-Dobson circulation
(BDC) (Brewer, 1949; Dobson, 1956), caused by high latitude Rossby wave breaking
(Dunkerton, 1978). Planetary-scale Rossby waves caused by topographically large
features propagate vertically into the stratosphere, where they deposit westward
momentum decelerating the eastward stratospheric winds and the wintertime polar jet
stream (Andrews and Mcintyre, 1976; Boyd, 1976). To conserve angular momentum a
small poleward flow is produced which drives a poleward circulation, in turn driving
vertical transport in the tropics moving air from the troposphere to the stratosphere
(Butchart, 2014).

The short photochemical lifetime of ozone in the upper stratosphere means that
the BDC has less impact on ozone distributions than in the lower stratosphere, where
the lifetime is longer (on the order of months; Sankey and Shepherd (2003)) and
therefore transport dominates (Shepherd, 2008). Tropospheric air, that is more ozone
deficient than the stratospheric air, is injected into the stratosphere by the BDC
resulting in reduced tropical stratospheric ozone. This transport from troposphere to
stratosphere also injects into the upper atmosphere water vapour and reactive gases,
such as those species required for the catalytic chemistry in subsection 1.1.1. The
tropical air, which receives the highest intensity of sunlight and therefore has the
highest ozone production, is then transported by the BDC poleward. As it does so
the now ozone-rich air descends over extratropical regions into the lower stratosphere,
and as the ozone lifetime here is long, ozone accumulates (Weber et al., 2011).

Total ozone column is the measure of all ozone from surface to atmospheric
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1.1. Stratospheric ozone

Figure 1.1: The mean total column ozone as a function of latitude and season for the
years 1979–2016. Total column data is from the Bodeker Scientific patched (infilled)
total column ozone dataset (Bodeker and Kremser, 2021).

boundary and is observed by both satellites (e.g., the Total Ozone Mapping
Spectrometer (TOMS); Heath et al., 1975) and ground based instruments (e.g., Dobson
spectrophotometers; Komhyr et al., 1989). A climatology of total ozone column is
shown in Figure 1.1 calculated from the assimilated and infilled observational NIWA-
BS dataset (Bodeker et al., 2021). Across the tropics for all seasons there is a clear
minima caused by the upwelling of ozone deficient air into the stratosphere driven by
the BDC. A local minimum centred over the southern pole in September/October, is
the Antarctic ozone hole (discussed in subsubsection 1.1.2.1), a region of large ozone
depletion driven by its unique combination of chemistry and dynamics. Springtime
ozone depletion is also a feature over the northern pole, but it lacks the regularity and
severity of its southern counterpart (Solomon et al., 2007).

Measuring ozone as a total column predominantly captures stratospheric ozone as
this is where the majority (90 %) of atmospheric ozone exists. However, this measure
provides no information about the vertical distribution of ozone, the importance of
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which has already been highlighted by the dependence of ozone production and removal
on altitude. Figure 1.2 shows the variation of ozone in latitude and pressure and
highlights the high-density layer of ozone which resides at altitudes between 20 and
25 km, a region which contains much of the stratospheric ozone. This ozone layer is
higher in the tropics due to the increased height of the tropopause and the transport
of ozone deficient air into the lower stratosphere by the BDC and tropical convection.
Even in its highest concentrations, ozone is still a trace gas reaching a maximum
density of about 10ppm.

Figure 1.2: Average ozone density as a function of pressure and latitude for the period
1980–2016. Ozone data is from the Bodeker Scientific (Tier1.4) patched (infilled)
vertically resolved ozone dataset detailed by Bodeker et al. (2013). Dashed grey lines
show approximate locations of the tropopause (bottom) and stratopause (top) derived
from NCEP reanalysis (Kalnay et al., 1996).

The distribution of ozone varies on several naturally driven timescales. The solar
cycle (T = 11years) partially controls photochemical ozone production through the
modulation of incident UV radiation, displaying a 2–4% variation in the solar ozone
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response in the upper stratosphere and about a 2 % variation in the lower stratosphere
(Dhomse et al., 2016; WMO, 2018). Both chemical and dynamical processes concerning
ozone are affected by the quasi-biennial oscillation (QBO), a major source of tropical
low frequency variability (T = 28months). The circulatory changes produced by the
QBO induce meridional flow, modulating tropical upwelling, transport between the
tropics and extratropics and therefore abundances of ozone and other reactive gases
(Baldwin et al., 2001). Similarly, the El Niño Southern Oscillation (ENSO) affects lower
stratospheric tropical ozone abundance through its modulation of tropical upwelling
(Bodeker et al., 1998; Randel et al., 2009), although partial correlation between ENSO
and QBO confound the dissection of their individual impacts on ozone (Oman et al.,
2013). Identifying the dependence of ozone on natural oscillations is important for
accurately quantifying ozone trends which requires the removal of natural variability
(e.g., Ball et al., 2018; Braesicke et al., 2018; SPARC/IO3C/GAW, 2018).

1.1.5 Ozone observation and modelling

To fully understand these impacts and monitor recovery and adherence to the MP,
accurate and widespread observational datasets are required, in addition to a suite of
numerical models capable of simulating stratospheric chemistry and dynamics (WMO,
2018). CCMs are widely used to project the evolution of stratospheric ozone (Dhomse
et al., 2018) and to investigate the response of the system to different forcing and
emissions (WMO, 2018). These are typically climate models that additionally simulate
chemistry, including gas-phase and heterogeneous chemistry, dependence of reaction
rates on temperature and aerosols, to measure the impact that changing chemical
concentrations has on the atmospheric system (Morgenstern et al., 2010; Weber et al.,
2021). Regular coordinated model intercomparisons are organised to compare and
validate CCMs (Eyring et al., 2008; Eyring et al., 2010; Morgenstern et al., 2017)
and to produce ensemble projections (Young et al., 2013; Dhomse et al., 2018). The
ability of CCMs to recreate and simulate ozone depletion and the ozone hole is well
documented (e.g., Struthers et al., 2009; CCMVal, 2010; Morgenstern et al., 2018).

Throughout this thesis, model runs from the Chemistry-Climate Model Initiative
(CCMI) (Morgenstern et al., 2017) are used. This ensemble has a central focus on ozone
modelling (Eyring et al., 2013) making it extremely suitable for considering future
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ozone projections. Most of the CCMs within CCMI (a couple are chemical transport
models which use offline meteorology) explicitly represent tropospheric chemistry in
addition to stratospheric chemistry, although they vary in their treatment and grouping
of halogen species relevant for simulating ozone depletion. CCMI simulations will be
used in chapter 2 for creating weighted ozone depletion projections, and in chapters 3,
4 and 5 for improving historic predictions of ozone.

Complementary to modelling efforts are observational products, comprising of
measurements recorded by ground-based instruments (e.g., Fioletov et al., 2008),
satellites (e.g., Tegtmeier et al., 2013), ozonesondes (e.g., Witte et al., 2017) and
other airborne in-situ instruments. These observations aid ozone monitoring efforts
and have led to the discovery of illicit ODS production (Montzka et al., 2018; Rigby
et al., 2019). Ground-based observations and those from nadir-viewing satellites
provide measurements of the total ozone column, whereas in-situ instruments and
satellite-borne limb sounders measure a vertically resolved distribution of ozone, both
of which are considered in this thesis. As observations from a single instrument
rarely have continuous coverage, measurements are often assimilated from multiple
observational sources (e.g., Miller et al., 2002; Davis et al., 2016; Ball et al., 2017)
providing long-term partially continuous records that can be used for trend analysis
(Ball et al., 2018; SPARC/IO3C/GAW, 2018) or as inputs to offline models (Cionni
et al., 2011). However, the methods used to infill gaps in observational ozone records
are relatively simple statistical models, lacking physical and chemical understanding
of the system resulting in low accuracy where data is sparse (Davis et al., 2016).
Additionally, a complete estimate of statistical and observational uncertainty is rarely
considered. Producing continuous ozone datasets from sparse observations assimilated
with model simulations forms the basis of chapters 3 and 5 in which a new Bayesian
methodology is designed to fuse together models and observations.

1.2 Why apply ML and data science to atmospheric

science?

ML is an area of study in which computers learn without explicitly being programmed.
Traditional numerical weather prediction predicts tomorrow’s weather by knowing the
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previous days’ weather and the physical laws that govern the meteorological system.
Numerical weather prediction was first suggested by Richardson (1922) who imagined
grids of human computers (about 64000) simultaneously solving the governing laws of
the dynamical atmospheric system, laying the foundations of atmospheric modelling.
In contrast, an ML approach would take the weather from previous days and use these
data to learn the rules and patterns of the evolving weather system, which in turn
can be used to make future weather predictions (Haupt et al., 2018). ML is used
extensively throughout industry and scientific disciplines, excelling at tasks such as
identifying patterns (Anzai, 2012), learning complex relationships amongst big data
(Ratner, 2017) and making accurate predictions (e.g., Kourou et al., 2015; Patel et al.,
2015), all without requiring direct human input.

One particular strength of ML is finding patterns and relationships amongst big data,
for which manual analysis would be time consuming or even unfeasible. Atmospheric
science is awash with large observational datasets, such as the Tropospheric Ozone
Assessment Report database (Schultz et al., 2017) containing over 10 billion entries,
and relies heavily on large output from numerical model simulations of the earth
system, the largest being on the order of 10 PB in size (Eyring et al., 2016b). Not only
are datasets continually increasing in size they are also increasing in scope, ensemble
size and model diversity, regularly measuring or simulating highly nonlinear systems
of a complexity inscrutable by traditional analysis (Faghmous and Kumar, 2014). For
analysing, classifying and predicting large, nonlinear, complex and uncertain data
common in atmospheric science, ML approaches are highly applicable. As a result of
increased access to sophisticated computing and open access ML software, coupled
with a drive to improve on traditional methods, the use of ML in environmental
science has exponentially increased in recent years with 6 % of publications within the
American Geophysical Union containing the term "ML" in 2020 compared to 0.5 % in
2010 and 0.1% in 2000.

In atmospheric science ML has been used to create and improve forecasts of
atmospheric rivers (Chapman et al., 2019) and severe weather (McGovern et al., 2014),
classify extreme weather events (Grazzini et al., 2020) and aerosols (Christopoulos
et al., 2018), and identify signals of climate change (Barnes et al., 2019). Recent
progress in causal discovery has led to new methods to evaluate climate models (Nowack

13



1.3. Model ensembles

et al., 2020) and understand teleconnections in the Earth system (e.g., Kretschmer
et al., 2017). Neural networks are particularly popular ML tools in environmental data
science due to their ability to model complex nonlinear systems at a computational
cost that scales proportionally with the size of the data (Gurney, 2018). They are
however typically black box models (McGovern et al., 2019), which has prompted
active research into explainable artificial intelligence (Samek et al., 2019) and ML
(e.g., Labe and Barnes, 2021; Wang et al., 2021). Neural networks have been readily
applied in atmospheric science, including helping quantify causes of discrepancies in
hydroxyl radical predictions in CCMs (Nicely et al., 2020), weather forecasting (Fente
and Singh, 2018) and downscaling precipitation (Groenke et al., 2020).

Hybrid models created by coupling ML with physical models have found application
in the bias correction of models (e.g., Dhomse et al., 2021) and the replacement of model
components and parameterisations with ML models to refine and speed up simulations
(e.g., O’Gorman and Dwyer, 2018; Keller and Evans, 2019). Hybrid approaches also
have the potential to create models that rely on numerical physical models for their
predictive abilities and knowledge of the physical system, whilst leveraging ML to
apply corrections and fill in knowledge gaps (Pathak et al., 2018). Beyond hybrid
models, recent research is leading the way towards totally data-driven environmental
models, which rather than relying on explicit programming of a system such as in
climate models, instead learn and model system behaviour from data (Schneider et al.,
2017). Aside from possible benefits of increased model speed, data-driven methods
can also learn to simulate not yet understood behaviours in a way that process models
cannot. Environmental data-driven models are already being used to model complex
and chaotic dynamical oceanic and atmospheric systems with physics informed neural
networks (Chattopadhyay et al., 2020; deWolff et al., 2021).

1.3 Model ensembles

One section of atmospheric science where ML and data science approaches are
particularly applicable is in the analysis and assimilation of model ensembles, as the
data is complex, large, and contains many patterns within highly nonlinear systems.
Ensembles of climate and Earth system models are fundamental for international
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climate change assessments (Knutti et al., 2010; IPCC, 2013b; Hoegh-Guldberg et al.,
2018) and ensembles of CCMs are similarly important in determining the future of
atmospheric composition (Dhomse et al., 2018; WMO, 2018). An ensemble is a set
of comparable simulations from multiple models (e.g., Taylor et al., 2012; Lamarque
et al., 2013a; Eyring et al., 2016b). These can be used to improve the accuracy
of projections compared to a single model (Gleckler et al., 2008), and to quantify
uncertainty (Reichler and Kim, 2008; Annan and Hargreaves, 2011b), estimated by
the variance of the simulations across the ensemble (IPCC, 2010). However, the
statistical assumptions made within the construction and analysis of these ensembles
can lack statistical rigour, resulting in the ensemble being an ensemble of opportunity
(Tebaldi and Knutti, 2007), where modelling groups able to take part submit as many
simulations as they can, rather than a systematic sample of model uncertainty, where
an ensemble would be designed to fully sample the structural, parameter and initial
condition uncertainties (IPCC, 2010). How results from model ensembles should be
interpreted and to what extent the ensemble prediction is probabilistic is complex and
still an area of much discussion (Tebaldi and Knutti, 2007; Knutti, 2010; Curry and
Webster, 2011; Knutti et al., 2017; Herger et al., 2018).

In the analysis and assimilation of ensembles there are several confounding factors.
Firstly, models are not created equally, some are better at capturing trends or recreating
past atmospheric states (Gleckler et al., 2008; Reichler and Kim, 2008; Knutti et al.,
2013), and individual models themselves might be more successful in their simulations
of certain regions, time periods or particular atmospheric conditions (Eyring et al.,
2006; Baker and Taylor, 2016). Secondly, models are not independent, duplicating
design ideas, code and even entire model components (Masson and Knutti, 2011;
Abramowitz et al., 2019). These features of differing model performance and similarity
are shown in Figure 1.3 which shows modelled total ozone column from multiple CCMs
from the CCMI (Morgenstern et al., 2017) ensemble alongside the output from four
ensemble assimilation methods: a multi-model mean, a multi-model mean within 1
standard deviation, a performance weighted mean, and a weighted mean that accounts
for performance and similarity.

The multi-model mean, or ‘one model one vote’, is a traditional and widely used
approach that combines model projections in an ensemble by averaging them (e.g.,
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Figure 1.3: Annual total ozone column at 0°latitude and 0°longitude. Historic modelled
total ozone column is shown (in light grey) for 14 models, totalling 28 individual
simulations, from the Chemistry-Climate Modelling Initiative (Morgenstern et al.,
2017). Observations from the Bodeker Scientific total ozone column record are shown
as black crosses (Bodeker et al., 2018). Coloured lines show four simple methods for
assimilating multiple model outputs into a single ensemble output. The mean (blue line)
is a simple arithmetic average across all the model simulations, commonly referred to
as the multi-model mean. The orange dashed line shows the same mean but excluding
models that are more than 1 standard deviation away from the ensemble mean. A
weighted mean, where model weights are calculated as wi = 1/(

∑
(obs−model)2) is

shown in green. A weighting strategy much like one implemented by Knutti et al.
(2017) that accounts for model similarity and model performance is shown in red.
The right hand panel shows the average 68% confidence interval of the assimilated
prediction for each of the four methods.
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IPCC, 2013b; Hoegh-Guldberg et al., 2018). However, as described above, this method
produces a biased projection if the ensemble contains unrealistic or badly performing
models and relies on model simulations being symmetrically distributed around the
truth, otherwise the mean ensemble output will be biased (Annan and Hargreaves,
2011a). It is further skewed by the inclusion of multiple simulations from a single
model, giving that model unequal representation.

A more constrained multi-model-mean only considers simulations that fall within 1
standard deviation of the ensemble mean (e.g., Dhomse et al., 2018), thus removing any
extreme outliers. This approach however, similarly fails to account for variable model
similarity and performance in models that are not outliers but will still produce biased
and potentially unrealistic projections (Knutti, 2010). Other approaches weight models
dependent on their success at replicating the past, assuming that model performance
is transitive from past to future, and account for model similarity (e.g., Waugh and
Eyring, 2008; Knutti et al., 2017; Brunner et al., 2019, see also Chapter 2). Models that
successfully recreate observations get increased weighting, whilst models that are highly
similar to others, e.g., they have submitted multiple simulations from the same model
or two models have the same underlying general circulation model, are down-weighted.
The figure shows two weighting methods, one where models are weighted only on their
ability to reproduce observations and one where they are also weighted on how similar
they are. Although these approaches account for variable model performance within
the ensemble, they fail to account for spatially and temporally varying performance for
individual models, thus missing out on an opportunity to greatly improve the accuracy
of the ensemble projection.

In Figure 1.3 observed ozone values are at the top of the range of the model
simulations, indicating individual model biases of up to 30DU and highlighting the
problem of variable model performance. The issue of model similarity can also be seen
in the bottom most model which has 5 ensemble members which are near identical,
therefore unfairly biasing the ensembled output towards this model. It is clear that
analysis and assimilation of this ensemble will be confounded by unequal model
performance and varying levels of model dependence.

Which method is chosen to analyse model ensembles has a large impact on the
ensemble output. This is seen in Figure 1.3 where the standard mean methods project

17



1.4. Thesis contributions

an ozone column approximately 10 DU less compared to the weighted means. Different
methods also affect the uncertainty of the projection, calculated by a weighted or
unweighted measure of model spread, shown by the average confidence interval of the
projection on the right hand side of the figure. These discrepancies motivate a need for
rigorous ensembling1 methods that account for model performance and similarity and
to develop new ones that increase the utility of under-analysed model ensembles. A
central theme of this thesis is to develop new ensembling methods drawing on advances
from ML to aid analysis, boost predictive capabilities and better estimate uncertainty.

1.4 Thesis contributions

This thesis seeks to address methodological shortcomings in the combination of CCM
model ensembles with observations. Current methods rely on inappropriate, limited or
overly simple methods, such as multi-model means and linear regression, to produce
important projections and predictions of stratospheric ozone. By merging existing
chemistry-climate modelling and observations with advances in ML and data science,
we can improve upon the current standard to produce more accurate, robust and
uncertainty aware projections of ozone recovery and predictions of historic ozone.
Contributions detailed within this thesis are both methodological and application
focussed, and are motivated by both a broader desire to better use pre-existing model
ensembles across environmental science disciplines and to improve our understanding
of modelled and observed stratospheric ozone.

Chapters 2 and 3 have appeared as peer reviewed and published papers, Chapter 4
is unpublished work expanding on the publication in Chapter 3 and Chapter 5 is a
paper which is in the submission process. As a result, each chapter contains detailed
introduction and motivation. The content and contribution of the chapters are as
follows.

Chapter 2 develops a model weighting strategy which accounts for model
performance and similarity across a suite of metrics. Using multiple sources of

1Throughout this thesis the term ensembling will be used as a verb to mean the assembling or
combining of multiple model outputs within an ensemble to form a new estimate or prediction. This
is a very similar definition to one used in the statistical community to describe the combination of
statistical models to generate an improved prediction.
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observations and CCM output from CCMI, weighted projections of Antarctic
ozone recovery are constructed.

Chapter 3 presents the development of a novel ML Bayesian neural network
framework to better combine ensembles of geophysical models by weighting them
spatiotemporally. The framework was tested against synthetic data and applied
to the problem of infilling sparse historic total ozone column data using the
CCMI ensemble, generating a continuous record of total ozone column 1980–2010
with principled uncertainties.

Chapter 4 contains an exploration into the explainability and interpretability of
the Bayesian neural network. This chapter discusses and investigates the quality
of information that can be elucidated from the Bayesian neural network about
the ensembled CCMs’ performance and similarity, and the uncertainty of the
total ozone column observations.

Chapter 5 presents a continuous vertically resolved ozone dataset, produced
using a further developed version of the Bayesian neural network. The dataset
is compared with existing infilled datasets to confirm that it captures historic
ozone depletion and ozone trends.

Chapter 6 concludes the thesis with a summary of all chapters including
discussion on the contributions to ensembles of atmospheric models, the study
of stratospheric ozone, and more widely environmental science as a whole.
Limitations of this work are also discussed alongside future work.
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Abstract

Calculating a multi model mean, a commonly used method for ensemble averaging,
assumes model independence and equal model skill. Sharing of model components
amongst families of models and research centres, conflated by growing ensemble size,
means model independence cannot be assumed and is hard to quantify. We present a
methodology to produce a weighted model ensemble projection, accounting for model
performance and model independence. Model weights are calculated by comparing
model hindcasts to a selection of metrics chosen for their physical relevance to the
process or phenomena of interest. This weighting methodology is applied to the
Chemistry-Climate Model Initiative (CCMI) ensemble, to investigate Antarctic ozone
depletion and subsequent recovery. The weighted mean projects an ozone recovery
to 1980 levels, by 2056 with a 95% confidence interval (2052–2060), 4 years earlier
than the most recent study. Perfect model testing and out-of-sample testing validate
the results and show a greater projective skill than a standard multi model mean.
Interestingly, the construction of a weighted mean also provides insight into model
performance and dependence between the models. This weighting methodology is
robust to both model and metric choices and therefore has potential applications
throughout the climate and chemistry-climate modelling communities.
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2.1. Introduction

2.1 Introduction

Global chemistry-climate models (CCMs) are the most comprehensive tools to
investigate how the global composition of the atmosphere develops, both naturally and
under anthropogenic influence (Flato et al., 2014; Morgenstern et al., 2017; Young et al.,
2018). As with projecting climate change, consensus views of the past and potential
future evolution of atmospheric composition are obtained from coordinated CCM
experiments (Eyring et al., 2008; Lamarque et al., 2013b; Morgenstern et al., 2017)
and subsequent analysis of the ensemble of simulations (Iglesias-Suarez et al., 2016;
Dhomse et al., 2018). Although not a complete sample of structural and epistemic
uncertainty, these ensembles are an important part of exploring and quantifying
drivers of past and future change, and evaluating the success of policy interventions,
such as stratospheric ozone recovery resulting from the Montreal Protocol and its
amendments (Dhomse et al., 2018; WMO, 2018). Typically, analysis of an ensemble
investigates the behaviour and characteristics of the multi-model mean and the inter-
model variance (Tebaldi and Knutti, 2007; Butchart et al., 2010; IPCC, 2013a), rather
than accounting for individual model performance or lack of model independence
(Knutti, 2010; Räisänen et al., 2010). Methods to address these shortcomings have
been proposed for simulations of the physical climate (e.g., Gillett, 2015; Knutti
et al., 2017; Abramowitz et al., 2019), but this topic has received less attention in
the atmospheric composition community. Here, we demonstrate a weighting method
for the CCM simulation of Antarctic ozone loss and projected recovery, where the
weighting accounts for model skill and independence over specified metrics relevant
to polar stratospheric ozone. We apply this to the recent Chemistry-Climate model
initiative (CCMI) (Morgenstern et al., 2017) ensemble and demonstrate the impact of
the weighting on estimated ozone hole recovery dates.

Many years of scientific studies and assessments have tied stratospheric ozone
depletion to the anthropogenic emission and subsequent photochemistry of halogen-
containing gases, such as chlorofluorcarbons (CFCs), hydrofluorocarbons (HCFCs) and
halons (WMO, 2018). This science guided the development of the Montreal Protocol,
and its subsequent amendments, to limit and ban the production of these ozone-
destroying gases, and stratospheric ozone is now thought to be recovering (Solomon
et al., 2016; Chipperfield et al., 2017). Of particular concern is the Antarctic “ozone
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hole”: a steep decline in high latitude stratospheric ozone during austral spring that can
reduce ozone concentrations to near zero at particular altitudes, driven by polar night-
time chemistry, cold temperatures and heterogeneous catalysis on polar stratospheric
clouds (PSCs) (Solomon, 1999). While the ozone hole continues to appear in each
austral spring, it appears to be showing signs of recovery (Langematz et al., 2018).
The strong cooling associated with Antarctic ozone depletion (Thompson and Solomon,
2002; Young et al., 2012) has driven circulation changes in the stratosphere and in the
troposphere, particularly in austral summer. This has notably included an acceleration
and poleward movement of the southern high latitude westerly winds and associated
storm tracks (Perlwitz et al., 2008; Son et al., 2008), leading to summertime surface
climate changes through many lower latitude regions including the tropics (“Signatures
of the Antarctic ozone hole in Southern Hemisphere surface climate change” 2011).

The recovery process is slow due to the long atmospheric lifetimes of ozone depleting
substances, and could be hampered by releases of ozone depleting substances (ODSs)
not controlled by the Montreal Protocol, such as short-lived halogens (Claxton et al.,
2019; Hossaini et al., 2019) or nitrous oxide (Portmann et al., 2012; Butler et al.,
2016), or instances of non-compliance, such as the recent fugitive emissions of CFC-11
(Montzka et al., 2018; Rigby et al., 2019). Recovery itself is often defined as the date
at which the ozone layer returns to its 1980 levels, and this is the benchmark used
by the WMO (WMO, 2018) to assess the progress due to the implementation of the
Montreal Protocol.

The assessment of when the ozone layer will recover is conducted using an ensemble
of chemistry-climate models, forced by past and projected future emissions of ozone
depleting substances (ODSs) and climate forcers (Eyring et al., 2010; Dhomse et al.,
2018). Such ensembles are used to establish the robustness of the model results for a
particular scenario: when several models agree, the prevailing assumption is that we can
have greater confidence in the model projections. Yet, there has been much discussion
about how true this assumption is (Tebaldi and Knutti, 2007; Sanderson et al., 2015a;
Abramowitz et al., 2019). In an ideal scenario, every model within an ensemble would
be independent and have some random error. In this case, we would expect that
increasing the ensemble size would decrease the ensemble uncertainty and allow us to
better constrain the mean value. However, in modern model inter-comparison projects
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this is not the case: although often developed independently, models are not truly
independent, often sharing components and parametrisations (Knutti et al., 2013);
models are not equally good at simulating the atmosphere (Reichler and Kim, 2008;
Bellenger et al., 2014); and lastly, models do not have a predictable random error
but instead have layers of uncertainty extending from uncertainties in parametrising
sub-grid processes (Rybka and Tost, 2014) to structural uncertainties from the design
of the model (Tebaldi and Knutti, 2007; Knutti, 2010).

Given these issues, there is currently no consensus on how best to combine model
output when analysing an ensemble. Probably the most widely used and simplest is
to take a multi model mean where each model contributes equally, and indeed it has
also been established that an ensemble mean performs better than any single model
(Gleckler et al., 2008; Pincus et al., 2008; Reichler and Kim, 2008; Knutti et al., 2010).
A more sophisticated method is to weight individual ensemble members, accounting
for model performance as well as the degree of a model’s independence. Weighting
methods of various forms have been developed and implemented on global physical
climate model ensembles (Tebaldi et al., 2005; Räisänen et al., 2010; Haughton et al.,
2015; Knutti et al., 2017), but seldom for atmospheric composition. In most cases
the weights are calculated from comparison of model hindcasts to observational data,
either for a single variable of interest or over a suite of diagnostics. Additionally,
reliability ensemble averaging (REA) (Giorgi and Mearns, 2002) is an alternative
weighting technique which gives higher weights to those models near the multi model
mean. The main motivation for using a weighted mean is to encapsulate model skill
and model independence, such that we down-weight models which perform less well
and/or are more similar.

Quantifying model skill (or performance) against comparable observations forms an
important part of the validation and analysis of multi-model ensembles (Gleckler et al.,
2008; Flato et al., 2014; Harrison et al., 2015; Hourdin et al., 2017; Young et al., 2018).
Many CCM inter-comparison projects feature validation and assessment through the
use of observation-based performance metrics, which may capture model performance
for particular atmospheric variables (e.g., temperature, chemical species concentrations,
jet position), or be a more derived quantity which gets closer to evaluating the model
against the process it is trying to simulate (e.g., ozone trends vs. temperature trends,
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2.2. The model weighting framework

chemical species correlations, chemistry-meteorology/transport relationships) (Eyring
et al., 2006; Waugh and Eyring, 2008; Christensen et al., 2010; Lee et al., 2015).
Performance metrics are chosen based upon expert knowledge of the modelled system
to ensure that metrics are highly related to the physical or chemical processes that
the models are being evaluated on.

In this study we develop a weighting methodology, originally presented by Sanderson
et al. (2017) and Knutti et al. (2017), for CCM ensembles that accounts for model
performance and model independence. We apply it to the important issue of estimating
Antarctic ozone recovery using several well-established metrics of model performances,
where previously only unweighted means have been used. We first describe our
weighting framework in section 2, before describing the model and observational data
in section 3. Section 4 presents the application of the weighting framework to Antarctic
ozone depletion and the corresponding results. Sections 5 and 6 present a summary
and our conclusions.

2.2 The model weighting framework

In this study, we develop and exploit a framework to calculate model weights based
on recent work in the physical climate science community (Sanderson et al., 2015a,b;
Knutti et al., 2017; Sanderson et al., 2017; Lorenz et al., 2018; Brunner et al., 2019).
Here, for an ensemble of N models, the weight for model i (wi) is given by

wi = exp

(
− D2

i

niσ2
D

)
/

(
1 +

N∑
j ̸=i

exp

(
−

S2
ij

niσ2
S

))
. (2.1)

The numerator captures the closeness of the model to observations. D2
i is the

squared difference between a model and the corresponding observation, which is a
measure of performance. The denominator captures the closeness of a model to all
other models by comparing the squared difference between them (S2

ij). Both σD and σS

are constants which allow tuning of the weighting to preference either independence or
performance (see discussion below). Put more simply, a model has a larger weighting
if it closely matches observations and is suitably different to the other models in the
ensemble. Finally, equation 2.1 differs from similar versions (e.g., Knutti et al., 2017)
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2.2. The model weighting framework

through the addition of ni, which is the size of the data used to create the weighting.
This could be the amount of grid points for a spatial field, the number of points in a
time series, or just one for a single-valued statistic, and it normalises the data by length
allowing for comparison between models and variables with time series of different
length and time invariant parameters.

Investigating and evaluating a phenomenon or complex process often relies on
identifying multiple metrics since it can only be partially expressed by any single
variable. Expert understanding of the physical process is needed to select a set of
relevant metrics with which to develop the process-based weighting. Including multiple
metrics, provided they are not highly correlated, has the further benefit of giving
less weight to models which perform well but do so for the wrong reasons. In this
framework, ensuring that these metrics influence the weighting proportionally is done
by normalising the model data using a min-max scaling between 0 and 1.

When combining multiple metrics into a weighting, the weight of the ith model can
be found from

wi =

(
M∑
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exp
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ik

nikσ2
D

))
/

(
M +

M∑
k=1
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exp

(
−
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ijk

nikσ2
S

))
, (2.2)

where M is the total number of metrics and k is the index of the metric. Note that
the summation is performed separately over the numerator and the denominator. This
means that we calculate the performance and independence scores over all the metrics
combined before merging the scores to create the final weighting which, as before, is
normalised over all the models to sum to 1.

We take the combined weights for each model and apply them to our parameter or
process of interest (the evolution of stratospheric ozone here). As with the metrics
this parameter needn’t be a time series and could be a spatial distribution or a single
measure. The weighted projection is therefore x =

∑N
i=1wixi, where xi is an individual

model projection and wi is the associated weight.
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2.2.1 Choosing sigma values

The two scaling parameters (σS, σD) represent a length scale over which two models,
or a model and observation, are deemed to be in good agreement. For example, a large
σS would spread weight over a greater number of models as more models would lie
within the length scale of σS. On the other hand, a small σS sets a higher tolerance for
measuring similarity. The choice of the sigma values needs to be considered carefully
to strike a balance between weighting all models equally, thus returning to a multi
model mean, versus weighting just a few selected models. As the same values of sigma
apply across all metrics it is necessary for the data to be normalised to the same
values, ensuring that metrics impact the weightings equally. Figure 2.1 shows how the
weighting function depends on σS, σD, model performance and model independence.

As noted in Knutti et al. (2017) there is not an objective way of determining
optimal sigma values. Our method of selecting appropriate parameter values was to
consider a training and a testing set of data, much like a machine learning problem.
We determined the values of sigma using the training data, which in this case is the
refC1SD simulations, such that the weighted training data gave a good fit to the
observations. The testing data (refC2 simulations) allowed us to test the weights and
sigma values out of the temporal range of the training data, which avoids performing
testing on data that was used to tune the parameters.

2.3 Applying the weighting framework to the

Antarctic ozone hole

We demonstrate the applicability of this weighting framework by applying it to the
important and well-understood phenomenon of the Antarctic stratospheric ‘ozone hole’,
for which we can use several decades of suitable observations to weight the models.
Below, we describe the model and observation data used and the metrics selected,
against which we measure model performance and independence.
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2.3. Applying the weighting framework to the Antarctic ozone hole

Figure 2.1: Top right shows the overall weighting function wi (equation 2.1), plotted
for 11 models (N = 11) with σD = 0.1 and σS = 0.1. Top left shows the contribution
to the weighting due to model performance (at S2

ij/ni = 1) and bottom right show
the contribution due to model independence (at D2

i /ni = 10−4). A model which has
higher independence and higher skill receives a larger weight. For the weight due to
performance (top left) we can see that the weight equals e−1 when D2

i /ni = σ2
D. This

shows how σD acts as a length scale that determines how close a model has to be
to observations to receive weight. σS works similarly, setting the length scale that
determines similarity.

2.3.1 Model and observation data sources

CCM output was taken from the simulations conducted under Phase 1 of the Chemistry-
Climate Model Initiative (CCMI) (Morgenstern et al. (2017) and refs. therein),
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2.3. Applying the weighting framework to the Antarctic ozone hole

which represents an ensemble of 20 state-of-the-art CCMs (where chemistry and
atmospheric dynamics are coupled) and chemistry transport models (CTMs, where
the dynamics drives the chemistry, but there is no coupling). A detailed description
of the participating models is provided by Morgenstern et al. (2017), and here we
briefly review their overarching features. Most models feature explicit tropospheric
chemistry and have a similar complexity of stratospheric chemistry although there is
some variation in the range of halogen source gases modelled. Horizontal resolution of
the CCMs ranges from between 1.125°×1.125°to 5.6°×5.6°. Vertically, the atmosphere
is simulated from the surface to near the stratopause by all models, and many also
resolve higher in the atmosphere. Vertical resolution varies throughout the models,
both in the number of levels (34 to 126) and their distribution. All models simulate
the stratosphere, although they differ in whether they have been developed with a
tropospheric or stratospheric science focus.

We focus on two sets of simulations, called refC1SD and refC2, and for the weighting
analysis we only consider models which ran both simulations. Table 2.1 details the
exact model simulations used. The refC1SD simulations cover 1980–2010 and represent
the specified dynamics hindcast, where the models’ meteorological fields are nudged
to reanalysis datasets in order that the composition evolves more in line with the
observed inter-annual variability of the atmosphere. In addition to being nudged by
meteorology the refC1SD runs are forced by realistically varying boundary conditions,
including greenhouse gas (GHG) concentrations, ODS emissions, and sea surface
temperatures (SSTs) and sea-ice concentrations (SICs). The refC1SD simulations
are used to create the model weightings since these are the models’ best attempt at
replicating the past, giving reasonable confidence that any down-weighting arises due
to poorer model performance or strong inter-model similarity. It must be noted that
the nudging process is not consistent across the models (Orbe et al., 2018) and we
should be mindful that it has the capability to influence the weighting. We discuss
the choice to use refC1SD simulations in greater detail in section 2.5.

The refC2 simulations cover 1960–2100 and are used to construct weighted
projections of Antarctic ozone recovery, using the weights calculated from refC1SD.
The forcing from GHGs and anthropogenic emissions follows the historical scenario
conditions prescribed for the fifth coupled model Inter-comparison project (CMIP5)
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2.3. Applying the weighting framework to the Antarctic ozone hole

Table 2.1: The CCMI model simulations used in this analysis and their key references.
Model refC1SD

realisation
refC2
realisation

Reference(s)

CCSRNIES-MIROC3.2 r1i1p1 r1i1p1 Imai et al. (2013)
Akiyoshi et al. (2016)

CESM1-CAM4Chem r1i1p1 r1i1p1 Tilmes et al. (2015)
CESM1-WACCM r1i1p1 r1i1p1 Marsh et al. (2013)

Solomon et al. (2015),
Garcia et al. (2017)

CHASER-MIROC-ESM r1i1p1 r1i1p1 Sudo et al. (2002)
(Sudo and Akimoto, 2007)
Watanabe et al. (2011)
Sekiya and Sudo (2012)
Sekiya and Sudo (2014)

CMAM r1i1p1 r1i1p1 Jonsson et al. (2004)
Scinocca et al. (2008)

CNRM-CM5-3 r1i1p2 r1i1p1 Michou et al. (2011)
r2i1p2a Voldoire et al. (2013)

EMAC-L47MA r1i1p1 r1i1p1 Jöckel et al. (2010)
r1i1p2a Jöckel et al. (2016)

EMAC-L90MA r1i1p1 r1i1p1
r1i1p2a

IPSL r1i1p1 r1i1p1 Marchand et al. (2012)
Szopa et al. (2013),
Dufresne et al. (2013)

MRI-ESM1r1 r1i1p1 r1i1p1 Deushi and Shibata (2011)
Yukimoto (2011),
Yukimoto et al. (2012)

UMUKCA-UCAM r1i1p1 r1i1p1 Morgenstern et al. (2009)
Bednarz et al. (2016)

a Represents the simulations used in the similarity analysis, but that did not form
part of the model weighting.
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2.3. Applying the weighting framework to the Antarctic ozone hole

Table 2.2: The observational products and respective variables used to construct
metrics on which to weight the models.
Product Variable Metric/s Citation
MSU Lower stratosphere

temperature (TLS)
TLS
TLS gradient
Ozone-temperature

Mears and Wentz (2009)

NIWA-BS Total column
ozone V3.4 (TCO)

TCO gradient
Ozone-temperature

Bodeker et al. (2018)

GOZCARDS Hydrogen chloride
concentration

Antarctic hydrogen
chloride concentra-
tion

Froidevaux et al. (2015)

ERA-Interim Eastward wind
speed

Polar vortex break-
down trend

Berrisford et al. (2011)

(Lamarque et al., 2010) up to the year 2000, and subsequently follows representative
concentration pathway (RCP) 6.0 for GHGs and tropospheric pollutant emissions
(Vuuren et al., 2011); the ODS emissions follow the World Meteorological Organisation
(WMO) A1 halogen scenario (WMO, 2011). From CCMI this is the only scenario
which estimates the future climate change and developments to stratospheric ozone.

Model performance was evaluated against a series of well-accepted metrics (see
below), drawing from widely used observational and reanalysis datasets listed in Table
2.2. Assessing models and ensembles using observational data is a principal way of
validating models (Eyring et al., 2006; Waugh and Eyring, 2008; Dhomse et al., 2018)
and this is the methodology we follow, with the addition that we create the weights
based upon this skill, alongside model independence.

Like many ozone recovery studies, we utilise TSAM (time series additive modelling)
(Scinocca et al., 2010) to quantify projection confidence, which produces smooth
estimates of the ozone trend whilst extracting information about the inter-annual
variability. Here, the TSAM procedure involves finding individual model trends for the
refC2 simulations by removing the inter-annual variability using a generalised additive
model. Each model trend is then normalised to its own 1980 value. The weighted
mean (WM) is created by summing model weights with individual model trends. Two
uncertainty intervals are created: a 95% confidence interval, where there is a 95%
chance that the WM lies within; and a 95% prediction interval, which captures the
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uncertainty of the WM and the inter-annual variability.

2.3.2 Metric choices - How best to capture ozone depletion

The first step in the weighting process is to identify the most relevant processes that
affect Antarctic ozone depletion to allow for appropriate metric choice. Suitable metrics
require adequate observational coverage and for the models to have outputted the
corresponding variables. The metrics we chose are as follows:
Total ozone column gradient. This is the first derivative with respect to time of the
total ozone column. Given the discontinuity in the total ozone column record, the years
1992–1996 are excluded. It is a southern polar cap (60°S–90°S) average over austral
spring (October and November). September is not included due to discontinuous
coverage in the observations.
Lower stratosphere temperature. The lower stratosphere temperature for all of
the models are constructed using the MSU TLS-weighting function (Mears and Wentz,
2009). The MSU dataset extends to 82.5°S, and therefore the southern polar cap
average ranges from 60°S to 82.5°S and is temporally averaged over austral spring
(Sept, Oct, Nov).
Lower stratosphere temperature gradient. This is the first derivative with respect
to time of the lower stratospheric temperature found above.
Breakdown of the polar vortex. The vortex breakdown date is calculated as when
the zonal mean wind at 60°S and 20 hPa transitions from eastward to westward as per
Waugh and Eyring, 2008. We find the trend of the breakdown date between the years
1980–2010 and the gradient of the trend forms the polar vortex breakdown metric.
Ozone-temperature gradient. Both the lower stratosphere temperature and the
total ozone column are separately averaged over 60°S to 82.5°S and the October and
November mean was taken. We determined a linear relationship between temperature
and total ozone column and the gradient of this linear relationship forms the ozone-
temperature metric (Young et al., 2013).
Ozone trend-temperature trend gradient. This is similar to the metric above
except that we first calculated the time derivative of the total ozone column and
temperature polar time series before calculating the linear relationship. The gradient
of the linear relationship is the total ozone column trend temperature trend gradient
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metric.
Hydrogen chloride. The hydrogen chloride concentration was averaged over
the austral spring months and over the Southern Polar cap, for areas which have
observational coverage. We consider a pressure range of 316 hPa to 15 hPa to capture
the concentration in the lower stratosphere.

These metrics capture two of the main features of ozone depletion, namely: 1) the
decrease in temperature over the poles caused by the depletion of ozone, and 2) the
breakdown of the vortex which has a major role of isolating the ozone depleted air
mass. The chlorine metric encapsulates the anthropogenic release of ODSs and the
main chemical driver of ozone depletion. Ozone-temperature metrics allow us to look
at model success in reproducing the temperature dependency in ozone reaction rates
and stratospheric structure. By looking at the instantaneous rate of change as well as
the overall trends, we can gather a picture of both short-term and long-term changes
for a range of chemical and dynamical processes.

The metrics are not highly correlated, except for the total ozone column gradient
and the lower stratosphere temperature gradient, which are correlated because of the
strong coupling of ozone and temperature in the stratosphere (e.g., Thompson and
Solomon, 2008). Although this could be cause to discard one of the metrics, to avoid
potential double counting, we retain and use both to weight because the models may
not necessarily demonstrate this coupling that we see in observations. By considering
this variety of metrics, the approach aims to demonstrate that models do not just get
the ‘right’ output, but that they do so for the right reasons.

2.3.3 Evaluating the weighting framework

Two types of testing were used to investigate the usefulness of the weighted prediction
and to validate metric choices. Firstly, we performed a simple out-of-sample test on
the weighted prediction against the total ozone column observations from NIWA-BS.
Although the weights are generated from comparison between the specified dynamics
runs (refC1SD) and observations, it does not necessarily follow that the weighted
projection created using the free running (refC2) runs will be a good fit for the
observations. To test this, we compared the refC2 multi model mean and weighted
projection to the observations. Due to the large inter-annual variability in the total
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column ozone (TCO) observations, we do not expect the weighted average to be a
perfect match; after all, free running models are not designed to replicate the past.
However, we need to test the level of agreement between the weighted mean and
the observations for an out-of-sample period (2010–2016). This serves a secondary
purpose of determining transitivity between the two model scenarios used: i.e., that
the weightings found from refC1SD apply to refC2.

Secondly, we used a perfect model test (also known as model-as-truth or a pseudo
model test) to determine whether our weighting methodology is producing valid and
robust projections. In turn, each model is taken as the pseudo truth and weightings
are found in the same way as described in section 2.2 except the pseudo truth is
used in place of observations. From these weightings we can examine the skill with
which the weighted mean compares to the pseudo truth. We are normally limited to a
single suite of observations, but a perfect model test allows us to test our methodology
numerous times using different pseudo truths, demonstrating robustness.

Perfect model testing also allows us to test transitivity between scenarios since,
unlike with the obvious temporal limit on observations, the pseudo truth exists in both
the hindcast and forecast. If a weighting strategy produces weighted means which are
closer to the pseudo truth than a multi model mean, then we can have some confidence
that we can apply a weighting across model scenarios. Herger et al. (2019) compare
the perfect model test to the cross validation employed in statistics, but note that
although necessary, perfect model tests are not sufficient to fully show out-of-sample
skill which in this case is scenario transitivity. It should be backed up by out-of-sample
testing as described above.

2.4 Applying the weighting framework to Antarctic

ozone simulations

2.4.1 Antarctic ozone and recovery dates

Figure 2.2 shows the October weighted mean (WM) total column ozone (TCO) trend
from the refC2 simulations for the Antarctic (60–90°S). The weights are calculated
using equation 2.2, and are based on both model performance and independence. All
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Figure 2.2: Antarctic (60–90°S) October TCO. The weighted mean (refC2 simulations
weighted upon refC1SD performance and independence) is shown in red, the multi
model mean (refC2 simulations) is shown in blue, and individual refC2 model trends are
shown in grey. The NIWA-BS observations are shown in black. All model projections
and ensemble projections are normalised to the observational 1979–1981 mean shown
as the black dashed line. 95% confidence and prediction intervals for the weighted
mean are also shown with shading.

models simulate ozone depletion and subsequent recovery but with large discrepancies
in the absolute TCO values and the expected recovery to 1980 levels (see Dhomse et al.,
2018), from here on referred to as D18. The WM and multi model mean (MMM) are
similar, given the small number of models considered from the ensemble (N = 11). At
maximum ozone depletion, around the year 2000, the WM projects a significantly lower
ozone concentration (5DU) than the MMM. This steeper ozone depletion seen in the
WM fits the observations better than the MMM, although the modelled inter-annual
variability seems to under predict the observations.

The WM predicts a return to 1980 TCO levels by 2056 with a 95% confidence
interval (2052–2060). For comparison the recovery dates presented in D18 were 2062
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with a 1σ spread of (2051–2082). Although taken from the same model ensemble
(CCMI), the subset of models in this analysis is smaller than that used in D18 meaning
that difference in recovery dates between the two works is attributable to both the
methodology and the models considered. The smaller number of models used in this
study could lead to a narrower confidence interval than the one reported in D18.

The confidence interval for recovery dates is formed from the predictive uncertainty
in the WM from the TSAM (for which the 95 % confidence interval is 2054–2059) and
the uncertainty associated with the weighting process. Choices made about which
models and metrics to include influence the return dates and therefore introduce
uncertainty. This is similar to the concept of an “ensemble of opportunity”, which is
that only modelling centres with the time, resources or interest take part in certain
model ensembles. To quantify this uncertainty, we performed a dropout test where a
model and a metric were systematically left out of the recovery date calculation. This
was done for all combinations of models (N = 11) and metrics (M = 7), providing a
range of 77 different recovery dates between 2052 and 2058. Combining the TSAM
and dropout uncertainties produces a 95% confidence interval of 2052–2060. We
additionally tested dropping out up to three metrics at a time and observed that the
confidence interval did not notably increase in size.

Figure 2.3 shows the model weights for individual metrics and in total as found using
equations 2.1 and 2.2. Good agreement is shown between the models for the metrics
of lower stratospheric temperature, the temperature gradient, and the TCO gradient.
There is one exception of UMUKCA-UCAM which exhibits a colder pole compared
to the ensemble and observations. Resultantly, UMUKCA-UCAM is down-weighted
for its lower performance at replicating the historic lower stratospheric temperature.
Dissimilarity to the rest of the ensemble will contrastingly increase the weighting but
to a lesser effect than the down weighting for performance, due in part to the values of
the sigma parameters. In spite of a bias in absolute lower stratospheric temperature,
UMUKCA-UCAM does reproduce the trend in the lower stratospheric temperature
with similar skill to the other models.

Due to the nudging of temperature that takes place in most of the specified
dynamics simulations, we would expect stratospheric temperatures to be reasonably
well simulated. However, variation exists in nudging methods in addition to inter
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Figure 2.3: Model weights for each of the seven metrics are all shown in blue. The
weights account for both performance and independence and are found using equation
2.1. The total weights, as found from equation 2.2, are shown in red and were the
weights used to construct the weighted mean shown in Figure 2.2. The black dashed
line indicates a uniform weighting as prescribed by a multi model mean.
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model differences and this leads to part of the variability in weights (Orbe et al., 2018;
Chrysanthou et al., 2019). For the ozone-temperature metrics, which although formed
from variables linked to nudged fields are more complex in their construction, we see a
much less uniform spread of weights. Furthermore, for processes not directly linked to
nudged variables (hydrogen chloride, ozone, and the polar vortex breakdown trend)
there is much less agreement between models. This is captured in the weights of these
metrics which show just a few models possessing large weights.

The total weighting, formed from the mean of individual metric weights per model,
is largely influenced by CNRM-CM5-3, which has a weight of 0.27 (297 % the value of a
uniform weighting). The CNRM-CM5-3 simulations are more successful at simulating
metrics whilst being reasonably independent from other models, leading to a weight
with greater prominence than the other models. This does not mean that CNRM-
CM5-3 is the most skilful model. For example, if two nearly identical models had
the highest performance, their final weights would be much lower as they would be
down-weighted for their similarity. All models are contributing towards the weighted
ensemble mean providing confidence that our weighting methodology is not over-tuned
and returning model weights of zero. The lowest total model weight is 45 % the value
of a uniform weighting.

2.4.2 Testing the methodology

We performed a perfect model test (section 2.3.3) to assess the skill of the weighted
mean projection, the results of which are shown in Figure 2.4. The perfect model
test shows that, on average, using this weighting methodology produces a WM which
is closer to the ‘truth’ than the MMM by 1DU. In addition to improvements in
projections, the pseudo recovery dates are better predicted on average, with a maximal
improvement of 6 yr.

Three models, when treated as the pseudo truth, do not show an improvement of
the WM with respect to the MMM. Note that this is not poor performance of the
model in question, rather that the weighting methodology does not do an adequate
job of creating a weighted projection for that model as the pseudo truth. Using
CHASER-MIROC-ESM as the pseudo truth gives a worse WM projection than if
we used the MMM. However, the average correlation between the CHASER-MIROC-
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Figure 2.4: Results of the perfect model test. The mean monthly improvement in the
Antarctic October TCO projection (1960–2095) of the WM compared to the MMM for
each model taken as the pseudo truth. The average shown in red is the improvement
across all the perfect model tests. No conclusions about overall model skill should be
drawn from this plot.

ESM-simulated TCO and other models in the ensemble is the lowest at 0.65, compared
to the average ensemble cross correlation score of 0.81. Since a weighted mean is a
linear combination of models in the ensemble, it is understandable that models with
low correlation to CHASER-MIROC-ESM will be less skilful at replicating its TCO
time series. This is why an improvement is not seen for CHASER-MIROC-ESM as
the pseudo truth in the perfect model testing.

We also performed out-of-sample testing on the WM projection for the years
2011–2016 inclusive by comparing it to the TCO observational time series which was
smoothed as described in section 2.3.1 to remove inter annual variability. The mean
squared error (MSE) was used as the metric for goodness of fit. This range of years is
chosen as it is the overlap between the TCO observations, and the years not used in
the creation of the weighting. The MSE of the WM is on average 202DU2 less than
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the MMM per year and the RMSE values were 1510DU2 and 2720DU2 for the WM
and MMM respectively for the out-of-sample period.

2.4.3 Model independence

Figure 2.5: Inter-model similarity across all refC1SD models as calculated by equation
2.3. A similarity of 1 denotes models which are identical for all the metrics, whereas a
lower similarity shows a greater independence. The orange boxes highlight the model
most similar to the model on the y-axis.

The current design of model inter-comparison projects does not account for
structural similarities in models, ranging from sharing transport schemes to entire
model components. Therefore, a key part of generating an informed weighting is
considering how alike any two models are. The weighting scheme presented here
accounts for model independence through the denominator in equation 2.1.

The refC1SD scenario from CCMI consists of 14 different simulations, some of
which are with different models, whereas others are just different realisations of the
same models. Note that there are more models used here than in the creation of the
Antarctic ozone projection. This is because for the weighted projection we require both
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a refC1SD and a refC2 simulation for each model, but for similarity analysis we can
use all the refC1SD simulations. For these model runs we calculated a similarity index
sij (shown in equation 2.3) which is the similarity between models i and j averaged
across all the performance metrics, where nk is the size of the data for metric k.

sij =
1

M

M∑
k=1

exp

(−S2
ijk

nkσ2
S

)
(2.3)

Similarities between all refC1SD models are shown in Figure 2.5. We also found
the maximum value of sij for each model, indicating the model which model i is
most similar to. The most alike models are the two realisations of CNRM-CM5-3,
which are the same models running with slightly different initial conditions. We
also see high similarity between the two variations of the CESM model, CESM-
WACCM and CESM-CAM4Chem. CESM1-CAM4Chem is the low-top version of
CESM1-WACCM, meaning that up to the stratosphere the two models should be much
alike (Morgenstern et al., 2017). Analysing the EMAC models this way presents an
interesting observation: changing the nudging method, has a greater impact on model
similarity than changing the number of vertical levels (the difference between EMAC-
L47MAr1i1p1 and EMAC-L47MAr1i1p2, and likewise the 90 level model variant, is
that the p1 variant additionally nudges to the global mean temperature (Jöckel et al.,
2016)). CHASER-MIROC-ESM and CCSRNIES-MIROC3.2 are two other models
which are identified as similar albeit at a lower value. Considering that these two
models are built upon the same MIROC general circulation model it is not a surprise
that we see a similarity. That the weighting framework can identify all of the models
with known similarities (same institution, or realisations) confirms confidence in the
methodology and means that we are down-weighting similar models.

2.5 Discussion

The projection of the ozone hole recovery date presented here makes use of an ensemble
of the latest generation of CCMs and a weighting methodology that accounts for
complexities within model ensembles. While the ozone recovery date found in this
work (2056) is different to that found by Dhomse et al. (2018) (2062), these two
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dates are not easily comparable as they are created from different subsets of the same
ensemble. For our subset of models, the MMM recovery date was 3 years earlier (2053)
than the WM. Although the return dates are not significantly different, for the period
of peak ozone depletion (especially between 1990 and 2030) the MMM projection is
significantly different to the WM. As the model subsets in this work, for the WM
and MMM remain the same, the variation in the projections is entirely due to the
construction of the WM.

The CNRM-CM5-3 model received the largest weight of 0.27, giving it three times
the influence in the WM than in a MMM. Initially this may seem as if we are placing
too much importance on one model, but consider that in a standard MMM, a model
which runs three simulations with different combinations of components will have three
times the influence of a model with a single simulation. Furthermore, CNRM-CM5-3
is not weighted higher because it ran more simulations, it is weighted higher because
it is skilful at simulating hindcasts whilst maintaining a level of independence.

Central to the weighting methodology is the selection of metrics requiring expert
knowledge. The set of metrics we chose, were grounded in scientific understanding and
produce a good improvement of the weighted projection compared to the MMM. There
are numerous other metrics of varying complexity which could be considered, such
as the size of the ozone hole or the abundance of polar stratospheric clouds. These
extra metrics could improve the model weighting and give a more accurate projection,
but testing an exhaustive collection of metrics was not our aim, and there are not
always appropriate measurements to validate the metrics with. We have shown a
weighting framework which improves upon the current methodology for combining
model ensembles, and is also flexible and adaptable to which ever metric choices the
user deems reasonable. Furthermore, the low range in return dates produced from
the dropout testing shows that the results produced in this weighting framework are
robust to metric and model choices. This is a desirable effect of a methodology to
provide stable results irrespective of fluctuations in the input.

It is reassuring to know that the methodology is robust to metric choices which
are compromises between the availability of observational data and expert domain
knowledge. For example, the processes known to be important for ozone hole formation
are not all measured. In this work we benefit from the decades of interest in polar
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ozone which have led to datasets of a length suitable for constructing model weights.
This highlights the importance of continued production of good observational datasets
because, although perfect model testing allows us a form of testing which forgoes the
need for observations, weighting methodologies must be grounded in some estimate of
the truth.

Abramowitz et al. (2019) discuss approaches for assessing model dependence and
performance, and mention caveats around the notion of temporal transitivity: is model
behaviour comparable between two distinct temporal regions? Here, we rephrase the
question to be: are the weights generated from the hindcast scenario relevant and
applicable to the forecast scenario? This not only questions temporal transitivity,
but also that models may have codified differences between scenarios in addition
to differences in physical and chemical regimes. In this study, scenario transitivity
(as we call it) is demonstrated through perfect model testing. On average the WM
produced a better (closer to the pseudo truth) projection than if we had considered
the MMM. This shows that weights calculated from the refC1SD hindcasts produce
better projections from the refC2 forecasts and are therefore transitive between the
two scenarios.

We generated weights from the refC1SD simulations which means that some metrics
we chose are based on nudged variables, such as the lower stratospheric temperature
gradient. As a result, one might expect that the model skill for these metrics should
be equal, although given Figure 2.3 this is not true. One may then expect that the
weighting is not capturing model skill, but instead the skill of the models’ nudging
mechanisms; the models are nudged on different timescales ranging from 0.5 h to 50 h

and from varying reanalysis products (Orbe et al., 2020). We use the perfect model
test to show that the utility of the weighting methodology is not compromised by
using models with such a variety in nudging time-scales and methods.

As the perfect model test produces better projections, for models which are nudged
in a variety of ways, we can conclude that the weighting is not dominated by nudging.
Take for example UMUKCA-UCAM which is nudged quite differently compared to the
ensemble, as evidenced by a southern pole significantly colder than the ensemble. When
we take UMUKCA-UCAM as the pseudo truth (temporarily assuming the UMUKCA-
UCAM output is the observational truth) we generate weights based upon the refC1SD
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simulations and test them on the refC2 simulations. The weights generated are based
on the dynamical system simulated in refC1SD which includes any model nudging.
We can test how well these weights apply to a different dynamical system without
nudging (refC2). As we see an improvement in the WM compared to the MMM we
can conclude that the weights generated from the refC1SD dynamical system can be
applied to the refC2 dynamical system. If there hadn’t been an improvement, then
the dynamical systems described by refC1SD and refC2 may be too dissimilar for this
weighting methodology and the weights may instead have been dominated by how
well models are nudged. Nudging may be influencing the weights, but not to a degree
that the accuracy of the projection suffers. Orbe et al. (2020) highlight the need for
care when using the nudged simulations and we would like any future work on model
weighting to quantify the impact of nudging upon model weights to reflect this.

We justified using the nudged refC1SD simulations, despite these considerations,
for two reasons. Firstly, these nudged simulations give the models the best chance
at matching the observational record, by providing relatively consistent meteorology
across the models. The free running CCMI hindcast simulations (refC1) have a large
ensemble variance and, despite producing potentially realistic atmospheric states, are
not directly comparable to observational records. Secondly, the perfect model testing
discussed above, demonstrates that the nudging doesn’t have a detrimental effect on
the model weighting.

Although we were not seeking to grade the CCMs as per Waugh and Eyring (2008),
the construction of a weighted mean provides insight into model performance which
would not be considered in an MMM. This is of some relevance as the CCMI ensemble
has not undergone the same validation as its predecessors, such as CCMVal (Eyring
et al., 2008). Additionally, we gain insight into model dependence shown in section
2.4.2. Whilst this approach may not be as illuminating as Knutti et al. (2013), where
they explored the genealogy of CMIP5 models through statistical methods, or Boé
(2018), who analysed similarity through model components and version numbers, it
successfully identified the known inter-model similarities. More complex methods
are desirable, especially those that consider the history of the models’ developments.
Nevertheless, the simplicity of quantifying inter-model distances as a measure of
dependence lends itself well to model weighting.
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2.6 Conclusions

We have presented a model weighting methodology, which considers model dependence
and model skill. We applied this over a suite of metrics grounded in scientific
understanding to Antarctic ozone depletion and subsequent recovery. In particular
we have shown that the weighted projection of the total ozone column trend, with
inter-annual variability removed, predicts recovery by 2056 with a 95% confidence
interval of 2052–2060. Through perfect model testing we demonstrated that on average
a weighted mean performs better than the current community standard of calculating a
multi model mean. Additionally, the perfect model test, a necessary step in validating
the methodology, showed a level of transitivity between the free running and the
specified dynamics simulations.

This methodology addresses the known shortcomings of an ensemble multi model
mean which include, the problem of ensembles including many similar models, and
the inability to factor in model performance. It does this by quantifying skill and
independence for all models in the ensemble over a selection of metrics which are chosen
for their physical relevance to the phenomena of interest. This weighting methodology
is still subject to some of the same limitations of taking an ensemble mean: i.e., we are
still limited by what the models simulate. For example, in the case of ozone depletion,
a weighted mean is no more likely to capture the ozone changes due to the recent
fugitive CFC-11 release (Rigby et al., 2019). Instead, it allows us to maximise the
utility of the ensemble and, provided we are cautious of over-fitting, it allows us to
make better projections.

Addressing the shortcomings and presenting possible improvements of methods for
averaging model ensembles is timely given the current running of CMIP6 simulations
(Eyring et al., 2016a). That ensemble could arguably be the largest climate model
ensemble created to date, in terms of the breadth of models considered. Therefore, the
need for tools to analyse vast swathes of data efficiently for multiple interests is still
growing. The models within CMIP6 are likely not all independent, which could affect
the robustness of results from the ensemble by biasing the output towards groups
of similar models. The similarity analysis within this work would allow users of the
ensemble data to understand if ensemble biases are emerging from similar models and
acknowledge how this may impact their results.
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In summary, we have presented a flexible and useful methodology, which has
applications throughout the environmental sciences. It is not a silver bullet for creating
the perfect projection for all circumstances; however, it can be used to construct
a phenomenon-specific analysis process that can account for model skill and model
independence, both of which can improve ensemble projections compared to a multi-
model mean.
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Code and data availability
The jupyter notebook used to run the analysis, along with a collection of functions to
produce weightings from ensembles, can be found at https://doi.org/10.5281/

zenodo.3624522. The CCMI model output was retrieved from the Centre for
Environmental Data Analysis (CEDA), the Natural Environment Research Council’s
Data Repository for Atmospheric Science and Earth Observation (http://data.ceda.
ac.uk/badc/wcrp-ccmi/data/CCMI-1/output), and from NCAR’s Climate Data
Gateway (http://www.earthsystemgrid.org).
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Ensembling geophysical models with
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The following work was published in Advances in Neural Information Processing
Systems 33 (NeurIPS 2020) on December 2020 (citation: Ensembling geophysical
models with Bayesian neural networks, Advances in Neural Information Processing
Systems, 33, 2020, https://proceedings.neurips.cc//paper_files/paper/2020/
hash/0d5501edb21a59a43435efa67f200828-Abstract.html). The published sup-
plementary material can be found in Appendix A, although the plots in section
A.4 are expanded upon in Chapter 4 in greater detail accompanied by further
analysis. As noted in the manuscript, a small coding oversight led to an increased
compute time. For the updated model code see https://github.com/mattramos/

Toy-bayesian-neural-network-ensemble rather than the links in the manuscript.
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The author contributions are listed below.
It should also be noted that the Bayesian neural network described in this chapter is

referred to as the BayNNE, though in the thesis introduction and subsequent chapters
it is referred to as the BNN. These terms are interchangeable and reflect the evolution
of explaining and presenting the BNN to multiple scientific communities.
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manuscript.
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Abstract

Ensembles of geophysical models improve prediction accuracy and express uncertainties.
We develop a novel data-driven ensembling strategy for combining geophysical models
using Bayesian Neural Networks, which infers spatiotemporally varying model weights
and bias, while accounting for heteroscedastic uncertainties in the observations.
This produces more accurate and uncertainty-aware predictions without sacrificing
interpretability. Applied to the prediction of total column ozone from an ensemble
of 15 chemistry-climate models, we find that the Bayesian neural network ensemble
(BayNNE) outperforms existing methods for ensembling physical models, achieving
a 49.4% reduction in RMSE for temporal extrapolation, and a 67.4% reduction in
RMSE for polar data voids, compared to a weighted mean. Uncertainty is also well-
characterised, with 91.9% of the data points in our extrapolation validation dataset
lying within 2 standard deviations and 98.9% within 3 standard deviations.
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3.1 Introduction

Climate models are the primary tool for predicting the evolution of Earth’s uncertain
climate and their output informs international policy (Hoegh-Guldberg et al.,
2018). Based on multi-scale physical and chemical processes they allow us to
simulate conditions outside of the observational record, both spatially and temporally.
Coordinated experiments with an ensemble of multiple models (Taylor et al., 2012;
Eyring et al., 2016b) are typically used to increase the accuracy of prediction and to
quantify predictive uncertainty, with studies often reporting predictions based on the
ensemble average and uncertainty from the ensemble spread.

Such approaches assume that each separate climate model within the ensemble
is independent and able to simulate the Earth system with equal skill, neither of
which are true (Knutti et al., 2013; Eyring et al., 2019). Climate model skill is
established through comparisons against a wide variety of remotely-sensed or in situ
observations. Weighted measures of skill from these comparisons provide a more
sophisticated method of combining an ensemble compared to simple averaging, and
these weighted means are used to constrain ensemble predictions for single or multiple
variables of interest (Knutti et al., 2017; Amos et al., 2020). However, there are
limitations of these approaches: they assume that historic climate model skills and
behaviours can be translated to a future prediction; they rely on observations with
the same spatiotemporal coverage as the models and cannot learn model weights for
regions where data is sparse; they generally, do not account for the varying quality of
observations upon which ensembles are weighted; and they do not account for spatially
varying skill in individual models.

Exploiting machine learning methods to analyse and process ensembles of climate
models is an emerging area of research. Given the complexity and scale of the data
involved, neural networks have obvious benefits. Key examples include emulating
climate model ensembles (Knutti et al., 2003), thus saving on high computational costs;
identifying regional patterns of climate change (Barnes et al., 2019); and examining
and quantifying differences between models’ underlying representations of atmospheric
physics and chemistry (Nicely et al., 2020). The comprehensive review of Reichstein
et al. (2019) provides further examples of how earth system science can – and has
– benefited from neural networks and deep learning. Beyond deep learning, causal
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inference has provided a new way to analyse the skill of climate model ensembles
(Nowack et al., 2020), and newly proposed ensembling methods have improved climate
model predictions (Monteleoni et al., 2011; Xu et al., 2019; Ahmed et al., 2020;
Merrifield et al., 2020).

In this paper, we address the limitations of current ensembling methods and
develop a method which provides more accurate and uncertainty aware predictions. Our
approach combines geophysical models within a Bayesian ensembling framework, which
assigns spatiotemporally varying weights to models and accounts for heteroscedastic
aleatoric uncertainty in observational data, as well as epistemic uncertainty where
data is unavailable. By fusing models, which codify our best physical knowledge,
with observations, we can better interpolate and extrapolate geophysical data. This
provides more accurate future predictions as well as spatiotemporally continuous and
observationally constrained historic states. A key strength of our approach is the data
model’s interpretability, extending its use beyond its predictive capabilities to bring
insight and understanding to the climate models.

The code and pretrained models accompanying this paper are hosted in
a Github repository https://github.com/Ushnish-Sengupta/Model-Ensembler.
The dataset of total column ozone observations (Bodeker et al., 2018) and chemistry-
climate model predictions from 1980 to 2010 (Morgenstern et al., 2017) are processed,
combined and made available as a resource (https://osf.io/ynax2/download) for
future studies in geophysical model ensembling.

3.2 Methods

3.2.1 Problem formulation

We assume that observations y(x, t) can be modelled as a sum of n physical model
predictions Mi(x, t) weighted by their respective weights αi(x, t), a bias term β(x, t)

and a heteroscedastic aleatoric noise term σ(x, t).

y(x, t) =
n∑

i=1

αi(x, t)Mi(x, t) + β(x, t) + σ(x, t) (3.1)
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Model weights form a partition of unity, i.e., αi(x, t) > 0 and
∑n

i=1αi(x, t) = 1 ∀
x, t. The weights, bias and noise are modelled as probabilistic functions by specifying
distributions over the parameters of a neural network. The basic architecture of a
neural network embodying these assumptions is shown in Figure 3.1. The physical
model weights are represented by the output of a softmax layer which enforces the
partition of unity constraint and the weighting of model predictions is performed by a
subsequent dot product layer. We choose tanh activations for the hidden layer because
its mean output is zero-centered, simplifying our prior design. The extrapolation
behaviour of a Bayesian Neural Network with tanh activations outside the training set
is also predictably flat, which means the predicted model bias and aleatoric noise does
not assume unrealistic values even when we extrapolate.

Figure 3.1: Architecture of a neural network where shading depicts external inputs or
data. This single neural network is one in a set of identically designed neural networks,
that together form the Bayesian ensemble.

3.2.2 Prior design

The computational expense of Bayesian inference is only justified if we are able to
encode our domain knowledge into the prior. This can be a challenge since our function
space intuitions about the modelled quantity require translation to distributions over
parameter values or architecture choices. Input warping is an essential first step if
we want to restrict our prior function space to physically realistic functions (Pearce
et al., 2019). While only three numbers – latitude, longitude and time – suffice to
uniquely identify a datapoint, using these directly as inputs would be problematic
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Figure 3.2: Visualizing the prior. a) shows how the warping of the time coordinate
enforces desired quasiperiodicity in the physical model weights generated by the prior.
Different coloured lines depict the model weights for four samples from the untrained
prior and grey dashed lines split the plot into 12 month intervals. b) shows the effect of
pre-softmax layer output variance on the prior distribution of physical model weights
in the 2-simplex at a particular point in time and space, using 1000 samples from the
neural network prior with 3 physical models. c) shows the impact of scaling spatial
input on the lengthscales of physical model weights produced by the neural network
prior.
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because the physical model weights, biases and noise generated by such a prior network
would be discontinuous across the 180th meridian and would not respect seasonality.
In our case study, locations are represented by their Euclidean coordinates (u,v,w)

and the time variable is warped onto the 3D helix (cos(2πt/T ),sin(2πt/T ), t), where
T = 1 year. This transformation of the time variable makes our prior network generate
weights and biases with both a strong annual periodicity and a slow variation over
the years (Figure 3.2a), consistent with our expectations. The input variables also
need appropriate scaling to ensure that our neural network outputs have the desired
characteristic lengthscale. Model skills and biases are likely to vary over the typical
lengthscales spanned by climatic or geographic regions that and the scaling of the
spatial coordinates should be such that this is reflected in the prior. Scaling is also
important for temporal input variables and it can be used to magnify or suppress
seasonal or yearly variations. Figure 3.2c demonstrates the effect of three different
scaling choices for the w coordinate, [−0.1,0.1], [−1,1] and [−4,4] on randomly drawn
samples from the prior: increasing the scale factor favours functions with larger high
frequency components.

Another key component of a well-formulated prior is the variance of the pre-softmax
layer. Since our physical models are competitive, a priori we should assume that any
model combination should be possible at any point in time and space and the αi-s
generated by the prior network should be distributed approximately uniformly in the
physical model weight simplex. We should therefore choose a prior variance for the
incoming connections to the pre-softmax layer such that the variance of the untrained
layer outputs is close to 1.0. Figure 3.2b shows random samples of αi at an arbitrary
point from an untrained neural network with 3 models. It helps us visualize how a
small pre-softmax layer standard deviation (0.1) constrains the prior αi to lie close
to the naive multi-model mean, whereas a standard deviation that is too large (4.0)
pushes all the prior probability mass towards the corners of the simplex.

Similarly, the prior variances of incoming connections to the model bias term should
be scaled to restrict the bias term to zero prior mean and a small variance. While the
model bias is necessitated by the fact that certain regions can be modelled poorly by
all the physical models, we would prefer to have our combination of physical models
do the bulk of the modelling. The prior variances of connections to the heteroscedastic

57



3.2. Methods

noise term should likewise be scaled. However, unlike the bias term whose distribution
should be zero-centered, the noise should have a positive mean added to it that is
informed by our knowledge of the average quality of our observations.

Finally, the number of units in the hidden layer(s) should increase commensurately
with the size and resolution of our dataset. Overparameterization leads to desirable
Gaussian process-like behaviour (Lee et al., 2017) whereas an underparametrized
Bayesian neural network, unable to produce the intricate functions demanded by a
large dataset, will have its posterior collapse to a single point and lose all epistemic
uncertainty outside of the training dataset. Judicious use of prior predictive checks
in conjugation with domain knowledge can thus circumvent the need for expensive
hyperparameter tuning or hyperpriors entirely for our simple network and create a
well-informed prior.

3.2.3 Approximate inference using randomized MAP sampling

Inference is complicated by the size of a typical geospatial dataset for example, the ozone
column dataset used as our case study contains over 2 million datapoints. This rules out
more expensive gold-standard inference techniques such as Markov Chain Monte Carlo
(Neal, 2012) or Hamiltonian Monte Carlo (Chen et al., 2014). Mean-field variational
inference (Blundell et al., 2015) or Monte Carlo dropout (Gal and Ghahramani, 2016),
while scalable, are also inappropriate because one of the objectives of ensembling models
is to fill-in missing data and it has been demonstrated (Foong et al., 2020) that these
techniques are excessively overconfident between well-seperated clusters of training data.
Here, we have chosen a state-of-the-art approximate inference technique: approximately
Bayesian ensembling using randomized maximum a posteriori (MAP) sampling (Pearce
et al., 2018). Ensembling had already been shown (Lakshminarayanan et al., 2017)
to be empirically effective at providing calibrated estimates of uncertainty for neural
networks and the randomized MAP sampling approach grounds this in Bayesian theory.
For the j-th neural network ensemble member, we draw a sample from the prior
distribution over parameters (assumed multivariate normal) θanc,j ∼ N (µprior,Σprior)

and compute the MAP estimate corresponding to a prior re-centered at θanc,j.

θMAP,j = argmaxθj
log(PD(D|θj))−

1

2
∥Σ−1/2

prior(θj − θanc,j)∥22 (3.2)
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If we now consider a dataset of ND observations {yi,xi, ti} and specify the data
likelihood PD(D|θj) for our regression task by assuming heteroscedastic Gaussian noise
σ(x, t), we may equivalently minimize the following loss function for the j-th neural
network

Lossj =
ND∑
i=1

(yi − ŷj(xi, ti))
2

σ2
j (xi, ti)

+

ND∑
i=1

log(σ2
j (xi, ti)) + ∥Σ−1/2

prior(θj − θanc,j)∥22 (3.3)

The prediction of a trained ensemble with ne neural networks is therefore a mixture
of ne Gaussians, each centered at ŷj(xi, ti) with a variance of σ2

j (xi, ti). For
computational convenience, we approximate this mixture as a single Gaussian with
mean 1

ne

∑
j ŷj and variance 1

ne

∑
j σ

2
j + 1

ne

∑
j ŷ

2
j − ( 1

ne

∑
j ŷj)

2, following similar
treatment in (Lakshminarayanan et al., 2017). This also allows us to decompose
the total predictive uncertainty into an aleatoric component (first term) and an
epistemic component (second and third terms).

To disambiguate any reference to ensembling or ensembles in this paper, we refer to
the combination of geophysical models as the "physical model ensemble" and to the set
of neural networks used for approximate inference as the "neural network ensemble".

An outline of the algorithm used to train our BayNNE is provided below.

3.3 Experiments

3.3.1 Synthetic data

To validate the Bayesian neural network ensembler (BayNNE), we create a toy problem
where the ground truth is known. The "monthly observations" are generated by the
function 0.5

(
lat
90

)2
+ 0.25sin

(
2π lon

180

)
− 0.2cos

(
πmon

12

)
(lat, lon and mon are latitude,

longitude, and month number respectively) with varying levels of added Gaussian
noise in different regions to simulate heteroscedasticity– the noise standard deviation
is 0.01 in the northern region (north of 30◦N), 0.02 in the tropics (between 30◦S and
30◦N) and 0.03 in the southern region (south of 30◦S). The four "physical models"
replicate the observations but only in distinct geographical regions: model 1 is correct
in the northern region where it has a bias of +0.03 w.r.t. the observations, models 2
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3.3. Experiments

Algorithm 1: Algorithm for initialising and training the BayNNE
Input :Training dataset of ND observations and physical model predictions

corresponding to locations and times {xi, ti}, physical model
predictions for NT locations and times with missing observations
{xk, tk}

Output :Mean and variance predicted by metamodel for {xk, tk}
1 Transform latitude, longitude and time of each datapoint to 6-dimensional

space-time input
(cos(lati)sin(loni),cos(lati)cos(loni),sin(lati),cos(2πti/T ),sin(2πti/T ), ti).

2 Rescale each column of space-time inputs to the range [−a,a]. Use larger
scales a for input variables on which we expect model weights/ bias to have
stronger dependence.

3 Set prior variances of the fully connected layer weights to li/ninput, where
ninput is the number of nodes in the previous layer.

4 Tune li by performing prior pushforward checks – the output of each fully
connected layer should have mean ∼ 0 and variance ∼ 1.0, except those that
feed the bias and noise terms, whose output variance should be small.

5 Initialize ne neural networks by drawing samples from the prior over
parameters.

6 for j ← 1 to ne do
7 Draw a random sample θanc,j from the prior over parameters.
8 Anchor the loss function of j-th neural network to θanc,j, so that

Lossj =
∑ND

i=1
(yi−ŷj(xi,ti))

2

σ2
j (xi,ti)

+
∑ND

i=1 log(σ2
j (xi, ti)) + ∥Σ−1/2

prior(θj − θanc,j)∥22.
9 Train with ADAM until convergence.

10 end
11 for k ← 0 to NT do
12 µpred,k =

1
ne

∑
j ŷj(xk, tk)

13 σpred,k =
1
ne

∑
j σ

2
j (xk, tk) +

1
ne

∑
j ŷ

2
j (xk, tk)− ( 1

ne

∑
j ŷj(xk, tk))

2

14 end
15 Compute negative log-likelihood of predictions on test data. If NLL not

converged, return to step 5 and train more neural networks.
16 return µpred, σpred
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and 3 are correct and unbiased in the equatorial region and model 4 is correct in the
south with a bias of −0.03. In regions where the models are not designed to be skilful,
they output random noise. Model predictions and observations are shown in Figure
3.3. The synthetic observations span 20 years, and we train the BayNNE on 85% of
the data from the first 10 years. The last 10 years are left for out-of-sample validation.

Results of a BayNNE with 50 neural network ensemble members with 1 hidden
layer of 100 nodes trained on this synthetic dataset are shown in Figure 3.3. We
observe that it has successfully recovered the expected physical model weights: models
only have weights in the regions where they are skilful and where multiple models
are equally skilful (models 2 and 3 in the equatorial region), they are assigned equal
weights on average. We also find that the magnitudes of the recovered model biases
and aleatoric noise match their engineered values. The uncertainty quantification is
excellent out of sample with 68.2, 95.4 and 99.7 percent of points lying within 1, 2
and 3 standard deviations respectively. The overall predictive skill is consistent across
the training, testing and out of sample datasets, with near-optimal RMSEs of 0.022,
close to the average noise in our observations. This test validates the ability of the
BayNNE to successfully capture model skill, bias and aleatoric noise, demonstrating
competence in accurate ensembling.

3.3.2 Total column ozone dataset

For a more compelling case study with real-world implications, we consider the problem
of predicting monthly averaged total column ozone, which is the integrated amount of
ozone from the surface to the atmosphere’s boundary with space. Total column ozone
provides a good estimate of stratospheric ozone and its variability, as approximately
90 % of ozone resides in the stratosphere. Studying and predicting ozone concentrations
is an important scientific endeavour, particularly for monitoring the impacts of the
Montreal protocol which was designed to protect the ozone layer from anthropogenic
emissions (WMO, 2018). This sustained interest has produced a good coverage of
observational records and models suited to simulating ozone, both of which we use.
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3.3. Experiments

Figure 3.3: Summary of the toy problem results, showing the synthetic observations
and model predictions for a single month 5 years out of sample. These are shown
alongside the model weights recovered by the BayNNE for each model, the model bias,
and aleatoric noise.
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3.3.2.1 Description of dataset

We use total column ozone output from 15 chemistry-climate models within the
Chemistry-Climate Modelling Initiative (CCMI)(Morgenstern et al., 2017). This
ensemble of process models simulates the changing climate, the chemical composition
of the atmosphere, and couplings within the chemistry-climate system. We use the
hindcast simulation (1980–2010) from CCMI where the models have been nudged
(Orbe et al., 2020) so that they replicate the observed meteorology of the past. This
simulation represents the models’ best attempt at recreating the chemical composition
for this 30-year period, making it a suitable comparison to observations.

The observations we use are the NIWA-BS total column ozone record (Bodeker et al.,
2018) which is a dataset constructed from satellites and ground-based observations.
Coverage is limited by satellite availability and the method of observation, which for
some instruments requires daylight. For this reason, a large proportion of missing
observations are over polar regions during winter months, an area of interest as this
covers the formation of the ozone hole.

3.3.2.2 Constructing the validation set

Significant spatial and temporal correlations present in geospatial data mean that
a randomised train-test split will not adequately validate the skill of the BayNNE.
Instead, we withold a set of data for validation which mimics the spatial structure and
the temporal occurrence of the data missing from the observations. This is a more
rigorous test of the intended application of the BayNNE. To test interpolation, we
consider 2 forms of data voids in the observations: data missing from tropical regions
(often gaps between satellite tracks) and small irregular missing features. Using historic
satellite data, we create synthetic patterns resembling those usually associated with
missing data due to incomplete satellite coverage, sometimes covering the majority
of the tropics. The total data withheld for the purposes of interpolation validation
is 24 months of the entire region 30◦S to 30◦N, 48 months of synthetic data voids
due to incomplete satellite coverage and an additional 500 randomly distributed small
scale features (up to 15◦ × 15◦). We test temporal extrapolation by withholding the
last 3 years of data, and spatial extrapolation by withholding data from polar regions.
The latter is either an area extending from a latitude of either 60◦ or 70◦ to the pole,
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which replicates the inability of some instruments to measure ozone at high latitudes
during wintertime (Kiesewetter et al., 2010). In total, 24 months of polar cap data for
both the north pole and south pole is used for the purpose of validation. Overall, the
BayNNE is trained on 77 % (1.8 million datapoints), tested on 4 % (85,000 datapoints)
and validated on 19% (440,000 datapoints) of the available data.

3.3.2.3 Results

The BayNNE used to ensemble the 15 chemistry-climate models for predicting total
column ozone comprises of 65 neural network ensemble members, each containing a
single hidden layer with 500 nodes. An ensemble of 65 neural networks appropriately
sampled the possible combinations of physical models and ensured convergence of the
weights, bias, noise and therefore, prediction which can be seen in Figure A.1. The
width of the single hidden layer provides adequate overparameterisation as the weight
functions the BNN is learning are smooth and simple, and epistemic uncertainty does
not collapse out of sample.

Comparisons between BayNNE and commonly used ensembling and interpolation
methods are shown in Table 3.1. Interpolation in non-polar regions, including
predominantly large gaps in the tropics from incomplete satellite coverage, is compared
against bilinear interpolation (Abatzoglou et al., 2018; Meher and Das, 2019), and
spatiotemporal kriging (Wardah et al., 2011; Yang and Hu, 2018) using a stochastic
variational Gaussian process (Matthews et al., 2017) on 3 year sections of observational
data. Spatial and temporal extrapolation skill (root mean squared error) is compared
to a uniformly globally weighted multi-model mean (Lamarque et al., 2013a; Dhomse
et al., 2018) and 2 weighted means where weights per model are found from the ability
of a model to replicate observations in the training set (Knutti et al., 2017; Sanderson
et al., 2017). The reader is referred to the supplementary information file for more
details on prior design for the BayNNE, training and baseline comparisons.

The BayNNE predictions are significantly better than the baselines in nearly all
subsets of the validation dataset (Table 1). Particular improvement over existing
methods is seen for ozone predictions over the southern polar cap and for future
predictions. Chemistry-climate models are typically less good at simulating ozone
over the south pole compared to the north pole due to cold biases (Eyring et al.,
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Figure 3.4: Physical model weights and uncertainties recovered by BayNNE when
predicting total column ozone. a) shows the average weight per chemistry-climate
model globally and for three regions of interest. b) depicts the spatially averaged model
weight for the same three models. Vertical dashed lines show the beginning of the year.
c) shows the temporally averaged model weight for the three highest weighted models.
d) shows the predicted average aleatoric uncertainty and two temporal snapshots of
epistemic uncertainty: in sample (with red hatching depicting areas with available
training data), and out of sample. DU is a Dobson unit; a measure of the amount of a
trace gas in a vertical column.
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Table 3.1: Area weighted root mean squared errors of predictions in Dobson units
using various methods. NP and SP represent missing north polar and southern polar
cap data respectively. For interpolation ‘Tropics’ covers a block of missing data 30◦S to
30◦N, ‘Satellite voids’ (SV) represents the incomplete satellite coverage in the tropics,
and small features (SF) are up to 15◦ × 15◦.

Extrapolation Interpolation

Temporal SP NP Tropics SV SF

Multi model mean 15.7 30.5 8.8 9.8 9.2 16.4
Weighted mean 8.7 22.1 12.3 8.2 8.5 10.2
Spatially weighted mean 9.8 19.6 6.6 5.5 5.2 10.0
Spatiotemporal kriging* – – – 7.0 2.2 3.4
Bilinear interpolation* – – – 31.2 1.7 3.4
BayNNE 4.4 6.6 4.7 2.7 2.1 3.2

* Used for interpolation only

2006) and discrepancies in simulating the polar vortex (Lin et al., 2017; Gillett et al.,
2019). However, by spatiotemporally identifying skilful models, BayNNE is better at
predicting southern polar ozone than other ensembling standards in the modelling
community. Skill in temporally extrapolating is also much improved, meaning that
using BayNNE may provide more accurate future predictions, which is extremely
desirable.

Interpretability, a key benefit of using this technique, is highlighted in Figure 3.4,
allowing for identification of seasons and regions in which particular models contribute
more to the ensemble prediction. For example, we identify the three chemistry-climate
models with the largest contributions to the ensemble prediction: IPSL, MRI and
UMUKCA. IPSL contributes highly, particularly in far northern regions but also
globally, and UMUKCA is the most dominant model in the tropics. Also of note (not
shown), is the CCSRNIES model, whose weight for the southern pole in austral winter
is approximately half, overwhelmingly making it the dominant model for predicting
the build-up period before the springtime Antarctic ozone hole.

Figure 3.4d shows how the BayNNE successfully handles uncertainty. Epistemic
uncertainty is increased for regions lacking observations and temporally out of sample.
This is highly desirable behaviour as we do not want an ensembling method to be
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overly confident beyond data it has seen. To quantify success at handling uncertainty
we compare the number of predictions which lie within 1,2 and 3 standard deviations
of the truth, which ideally should be 68.3%, 95.5% and 99.7% respectively. These
values are: 61%, 92% and 99% for temporal extrapolation; 62%, 94% and 99%
for the south pole; and 56%, 87% and 97% for the north pole. The negative log
likelihoods for these three regions are −2.56, −2.19 and −2.33.

3.4 Conclusions

We have presented Bayesian neural network ensembling (BayNNE), a principled
approach to geophysical model ensembling, which learns spatiotemporally varying
model weights and bias based upon the physical models’ ability to replicate observations.
This uncertainty-aware approach incorporates a heteroscedastic aleatoric uncertainty,
which accounts for the varying quality of observational data and other sources
of irreducible uncertainties. Additionally, the epistemic uncertainties inherent in
a Bayesian framework prevent overconfident extrapolation when BayNNE is not
constrained by observations.

We have validated BayNNE on a synthetic dataset where we demonstrated its
ability to recover the correct model weights, biases and noise. We then applied
it to the more challenging problem of ensembling 15 chemistry-climate models to
predict total column ozone. BayNNE predictions were significantly more accurate
than current ensembling techniques, both temporally out-of-sample and for infilling
historic observations. As a result, we have produced an accurate and complete gridded
reconstruction of total column ozone for the period 1980–2010, which offers new insights,
particularly for the ozone hole. Interpretability is maintained and model weights/
biases offer an understanding of localised model performance, allowing diagnosis by
modellers. Considering that most physical model ensemble weighting techniques do
not vary weights in space and time and do not take account of uncertainties in the
observations used to create model weights, this ensembling technique represents a
significant improvement.

Accurately ensembling geophysical models (e.g. climate models) improves the
predictive capability of the ensemble, allows for better investigation of historic
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conditions through the imputation of discontinuous observations and in the case
of climate models, is vital for investigating the evolution of the climate. Moreover,
quantifying the certainty of predictions is fundamental for constraining future change
and describing our confidence in the predictions. Future work should not only look
at applying this tool to other climate modelling problems but also to problems in
other disciplines, such as hydrology, where competing model predictions need to
be similarly combined in light of observational evidence. We note that the nudged
chemistry-climate models in our case study have their behaviour partially constrained
by observed meteorology, whereas free running models predicting the future cannot
have this constraint. A proper treatment of the chaos-induced uncertainty in free
running models would be worth investigating for use in forecasting using ensembles.
Finally, it would also be interesting to consider physical model weights as a function
of model variables (e.g. ozone-temperature gradient) that causally impact model skill,
instead of proxies like location and time, as this may improve forecast accuracy.
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Broader Impact
We created an ensembling technique which takes into account the limitations of
observations and models. This method is applicable to many geophysical models (e.g.
hydrological, regional climate and chemistry-climate models) although nuances in each
field and model ensemble mean the BayNNE should not be blindly used.

Positive impacts include more accurate and better constrained predictions from
model ensembles. This could shift the standard of how model ensembling is performed,
leading to this method (or derivatives) influencing scientific understanding and
downstream policy decisions. The greater understanding offered by combing models
and observations in this way, has the potential to open up sparse historic observational
records, through fusion with geophysical models. This would, for example, allow for
greater understanding of historic climate states.

The response to climate change is influenced by predictions formed from model
ensembles, and although accurate and appropriately certain ensembling could result
in more definitive and correctly concentrated mitigation efforts, highly certain but
wrong predictions could lead to an incorrect pooling of resources and result in negative
socio-economic impacts. For these reasons we must be mindful about dangers of
extrapolating and unknown errors in observational datasets which incorrectly bias
results.
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Chapter 4

Geophysical interpretability of the
Bayesian neural network

This unpublished work extends the published technical paper in Chapter 3, providing
an atmospheric science-led investigation into the interpretability of the Bayesian neural
network for the purpose of ensembling chemistry-climate models. It is entirely my
own work.
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4.1 Introduction

The previous chapter detailed the development of a Bayesian neural network (BNN)
that implemented a weighting strategy for an ensemble of geophysical models to produce
uncertainty aware ensemble predictions (Sengupta et al., 2020). We demonstrated the
utility of the BNN by producing a continuous historic record of total ozone column
by combining sparse observational data (Bodeker et al., 2018) with chemistry-climate
models (CCMs) from the Chemistry-Climate Model Initiative (CCMI) (Morgenstern
et al., 2017). That chapter was predominantly methods focused and through rigorous
statistical testing highlighted the predictive skill of the BNN and its ability to
successfully capture uncertainty.

This chapter presents an investigation into the interpretability of the BNN, asking
questions about what information can be extracted about observational quality and
CCMs from the BNN which produced the infilled historic total ozone column. While
machine learning methods can make informed and accurate decisions and predictions,
they are often seen as opaque, particularly deep learning, with the reasons leading
to a particular decision or prediction obfuscated in largely undecipherable statistical
model parameters (McGovern et al., 2019; Samek et al., 2019). With this in mind, we
designed the BNN to be readily interpretable to provide useful information about the
physical models and observations it assimilates, and to build trust. One of the main
strengths of the Bayesian neural network is that it breaks down complex predictions
into a more readily understood notion of ensembling: linearly combining weighted
models.

As described in Chapter 3, the BNN models observations y(x, t) as a sum of n
physical model predictions Mi(x, t) weighted by their respective weights αi(x, t), a
bias term β(x, t) and a heteroscedastic aleatoric noise term σ(x, t).

y(x, t) =
n∑

i=1

αi(x, t)Mi(x, t) + β(x, t) + σ(x, t) (4.1)

Here we explore the BNN parameters defined above to better understand the quality of
observational data, gain insight into the complex landscape of CCMs and to investigate
how interpretable the BNN is. The BNN parameters are discussed in turn in the
following sections: the model weights, bias and uncertainties. The infilled dataset we
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examine here, and the BNN used to produce it, are the same as described in Chapter 3
for infilling the total ozone column record, and so the reader is referred there for the
technical details.

Throughout this chapter the term model is used in reference to physical models,
often interchangeably with CCM. This clarification is important to avoid confusion
because the BNN is itself a statistical model. The term weight also has two meanings
in this thesis. It can refer to the numerical weights of neural network layers or the
weight of a physical model, calculated within a weighted mean or by the BNN. It is
the latter definition we use in this chapter.

4.2 Model weights

Model weights (α) represent how much individual CCMs are contributing to the
overall ensemble prediction. In Chapter 2 weights represented a combined measure
of model performance and independence, whereas weights learnt by the BNN are not
explicitly designed to quantify performance. This is because the BNN learns how to
optimally combine models in order to match the observations, rather than comparing
each individual model prediction to the observations. An important aspect in the
construction of the BNN is its ability to learn weights that vary spatially, temporally
and seasonally, unlike weights in Chapter 2 which are time and space invariant.

In this section we dissect the BNN derived model weights as a function of space and
time and investigate if the BNN learning is representative of model behaviours. An
initial spatiotemporal summary of model weights is shown in Figures 4.1 and 4.2, which
is followed by a comparison between weights and model similarity or performance to
investigate to what extent model performance and similarity can be inferred from the
BNN derived model weights.

Figure 4.1 shows the average weight in space for each of the 15 CCMs. Large
variation in the spatial patterns is evident between the models, indicating the strong
influence of spatial coordinates on the weighting, particularly the dependence of weights
on latitude. Some models exhibit very localised weighting, such as CCSRNIES that
only has non-negligible weight over the southern pole and UMUKCA that has the
majority of its weight over tropical regions. Nonuniform spatial weighting for different

73



4.2. Model weights

Figure 4.1: Model weights in space (averaged over 1980–2010) from the total ozone
column BNN for each of the 15 CCMs. Note the different colour bar scale for each
subplot.
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models implies that there is a benefit to permitting the spatial variation of weights,
which is seen through an improvement in BNN prediction accuracy.

Average weight in time for each of the 15 CCMs is shown in Figure 4.2. All weights
display strong oscillatory behaviour with an annual periodicity, which justifies our prior
belief used in the design of the BNN that weights are seasonally dependent. CCSRNIES
and CHASER, built upon the same general circulation model, exhibit particularly
strong seasonality that means their weights are negligible during boreal summer.
Some weights display large scale temporal dependence, with some particularly abrupt
changes, such as MRI in 1992, suggesting a similarly quick change in the observational
quality or model prediction.

Both Figures 4.1 and 4.2 show how varied weights can be across the model ensemble.
The maximum weight at a single spatiotemporal point is about 0.6, meaning that
for that grid square a single model prediction contributes about 60% of the entire
ensemble prediction. Conversely, it not uncommon for weights to be approximately 0

and therefore the corresponding model has no contribution to the ensemble prediction.
That weights are highly spatiotemporally dependent is a result of the fact that the BNN
prediction improves significantly when assuming that model contributions should not
be constant in time and space. Therefore, more generally, the predictions from model
ensembles are improved when we assume that model performance, and subsequently
model contribution, is spatiotemporally varying.

4.2.1 Estimating model similarity from weights

In any physical model ensemble, it is unlikely that all models are independent of
one another (Abramowitz et al., 2019; Amos et al., 2020). For ensembles, such as
those within CCMI or the coupled model intercomparison project (CMIP6) (Eyring
et al., 2016b), institutions often submit similar models that may be based on the same
underlying general circulation model or share large sections of model code. Similarly,
model components such as an ocean module, may be shared between institutions and
be part of multiple models. Although attempts have been made to show (Masson and
Knutti, 2011) and account for (Knutti et al., 2017; Amos et al., 2020) model similarity,
quantifying it is challenging because, for example, it is not known how similar two
models that use the same ocean module are, given that these similarities are often
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Figure 4.2: Model weights in time (globally averaged) from the total ozone column
BNN for each of the 15 CCMs.
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hidden in extremely long and complex model code. In the BNN’s predictions, we do
not need to consider the similarity of models because models are weighted simply
by how much their inclusion improves the assimilated ensemble prediction. However,
similarity in the spatiotemporal patterns of the model weights from the BNN may
be indicative of underlying model similarities. We explore this here and investigate
whether the BNN derived weights are consistent with known model similarities and if
they match those calculated in Chapter 2 (Amos et al., 2020).

Figure 4.3: Inter-model similarity calculated from the similarity in CCM weights learnt
by the BNN. This similarity measure is calculated as the reciprocal of the root mean
squared error between normalised CCM pairs. A similarity of 1 indicates these are the
most similar models, not that they are identical.

We define a simple similarity metric as the spatiotemporal average of the reciprocal
of the root mean squared error (RMSE) between model pairs that have undergone
normalisation. This metric increases for more similar model weights and tends to zero
for totally dissimilar weights. We normalise the metric by the highest similarity score
such that it is in the range [0,1] where a score of 1 represents the most similar model
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pair. Figure 4.3 shows the similarity score between model weights for all the CCMI
models used in the total ozone column BNN. The most similar models are CNRMr1
and CNRMr2 which are two realisations of the same model. Other high scoring model
pairs are EMAC47p1 with EMAC47p2 and EMAC47p2 with EMAC90p2, which are all
from the same model but vary in number of atmospheric model levels (47 or 90) and
in the nudging scheme (p1 indicates nudging to the global mean temperature whereas
p2 does not) (Jöckel et al., 2016). High similarity between these models is expected,
as the underlying physical and chemical processes are simulated the same way and so
it is reassuring to see that the weights that the BNN prescribes to similar models are
likewise similar. Even though the BNN is not tasked with identifying similar models,
nor does it directly compare model outputs, model similarity is an emergent feature of
the BNN.

Figure 4.4: Inter-model similarity for the southern polar cap (90°S–60°S) as learnt by
the BNN (left) compared to those calculated by the similarity analysis in Chapter 2
(right).
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In Chapter 2 we calculated model similarity for CCMI models over the southern
polar cap (90°S–60°S) as part of a weighting scheme used to project ozone hole
recovery. Figure 4.4 compares the similarity found between BNN model weights with
the similarity scores calculated from Chapter 2, with BNN model weights constrained
to September, October and November (austral spring) over the southern pole (90°S–
60°S) to match that chapter’s similarity analysis. Like the global view on similarity in
Figure 4.3, known similar models are easily identified as similar (e.g., CNRMr1 and
CNRMr2) by both the Chapter 2 analysis and the BNN. However, the similarity from
BNN model weights only identifies a few highly similar models whereas the similarity
analysis from Chapter 2 highlights many more possible model pairings. One such
pairing identified in Chapter 2, but not this analysis, is between CAM4Chem and
WACCM which are models built on the same underlying GCM (CESM) (Kay et al.,
2015). Though the same circulation model could lead to higher model similarity, in
practice however, CAM4Chem is a low-top model meaning that the models are most
likely similar only up to the lower stratosphere (Morgenstern et al., 2017).

Discrepancies in identified similarities are likely due to differences in the analysis.
For example, the analysis in Chapter 2 only considers the spatially averaged time
series of ozone unlike the BNN analysis which is spatially resolved. Additionally, the
BNN calculates weights from a non-linear combination of spatiotemporal coordinates
whereas the Chapter 2 analysis linearly combines a number of metrics important to
stratospheric ozone.

4.2.2 Model weights as a proxy for model performance

Existing model weighting frameworks (e.g., Knutti et al., 2017; Amos et al., 2020)
calculate model weights from performance metrics, such as the inverse of the squared
difference between model output and observations, that captures an individual model’s
ability to replicate observations or observed statistics. Instead, the BNN optimises
model weights such that it minimises the loss between observations and the ensemble
prediction. Therefore, the BNN model weights are not necessarily indicative of
performance as the models are not compared directly to observations. The purpose of
this section is to determine if some understanding of model performance is retrievable
from the BNN model weights.
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In Figure 4.5 BNN model weights are compared to a commonly used performance
metric, which we call RMSE weight, defined as the reciprocal of the root mean squared
error (RMSE) between models and the same total ozone column observations used to
train the BNN (Bodeker et al., 2018). There is a weakly significant moderate positive
correlation between the BNN derived weights and performance scores (correlation
coefficient = 0.40 at 87% confidence). Although the lowest scoring model (GRIM)
also receives the lowest weighting from the BNN, showing some agreement, some high
scoring models (WACCM and CCSRNIES) are not similarly weighted highly in the
BNN although they still score highly.

The inclusion of multiple highly similar models in the ensemble presents difficulties
when analysing model performance as the RMSE weight is calculated independent of
other similar model runs, whereas the BNN derived weight is not. This means that if
n identical models were included within the BNN we would expect the learnt model
weights to be 1/n times the value that would be learned if we had included just one
of the identical models. This result of identical models being down-weighted is also
seen in the synthetic dataset test in subsection 3.3.1. To account for highly similar
models within the ensemble, both the family of EMAC models and CNRM models
have been averaged to find the average RMSE weights and summed to find the BNN
derived weights for EMAC and CNRM. This combination of RMSE and BNN derived
weights can be seen in Figure 4.5.

An obvious feature of Figure 3.4 from Chapter 2 is the high weighting the
CCSRNIES model of up to 60 % over the southern pole in austral spring, suggestive of
the model having a higher predictive skill here. We compare the BNN inferred model
weights to the RMSE weight for the average monthly weights for the southern polar cap
(90°S–60°S) in Figure 4.6. To avoid an unfair comparison, data were only included in
these averages if there were collocated observations, since the BNN derived weights are
spatially continuous whereas the model performance metric only includes data where
there were observations. In August, September, October and November, CCSRNIES
is the most dominant model and also the highest performing model in the ensemble.
Outside of these months the contribution to the ensemble from CCSRNIES is much
decreased which matches the low values of the performance metric. However, a second
model (UMUKCA) with high southern pole weighting, shown in the same figure, does
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4.2. Model weights

Figure 4.5: Globally averaged model weights for the CCMs learnt by the BNN compared
to globally averaged weights derived from a performance metric of the reciprocal of
the root mean squared error between the observations and model predictions. Models
with highly similar simulations have been grouped to find average weights for each
model family (EMAC and CNRM). To find these central point, BNN model weights
are summed and RMSE weights are averaged, which are depicted in the plot by the
empty circles being combined into a filled circle.

not show a similar relationship between performance and weight, indicating that a
rationalisation of model performance given the BNN derived weights is not always
possible.

4.2.3 Model weight discussion

Quantifying model performance and similarity is complex. It depends on the quality
and availability of the comparative observations, the chosen metric or score, and
whether we consider one or multiple model outputs. For these reasons, the above
analysis comparing weights to a performance score does not imply that the BNN
derived weights are not indicative of model performance, rather that they are not
indicative of model performance as measured by the reciprocal of the root mean squared
error. Instead, the BNN model weights inform us which models provide the most utility
to the weighted ensemble prediction. As the BNN is a complex weighting framework,
where the weight of a model is determined by a highly nonlinear combination of
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Figure 4.6: Seasonal model performance (left), calculated as 1/RMSE, and seasonal
BNN model weight (right) averaged over the southern polar cap (90°S–60°S) for the
15 CCMs. Two models are shown in blue or orange and the other models are shown in
grey.

the input coordinates, it is not surprising that there is disagreement between the
model weights and a comparatively simple performance measure. The same is true
when considering model similarity. Although it is reassuring to recover known model
similarities from the BNN derived weights, quantifying true model similarity is highly
complex and calculating a simple similarity metric only captures a small part of this.
Further confounding the interpretation of BNN model weights is that they are strongly
linked to the availability of observational data. The continuous model weights are the
BNN’s extrapolated and interpolated model weights that, for sparse data, might not
be representative of underlying model performance. For these reasons it is suggested
that the BNN should not be used as a tool to investigate model performance.

4.3 Model bias

The model bias (β) is the small correction applied to the linear combination of weighted
models to rectify any offset between the ensembled model prediction and observations.
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Like the model weights, the bias is a function of space and time, encompassing our
prior knowledge that model performance varies spatiotemporally. In this section we
explore model bias as calculated by the BNN, testing if it corresponds to known model
biases in CCMs or observations.

Figure 4.7 shows the BNN bias averaged spatially and temporally. Spatially the
bias exhibits very clear boundaries between positive and negative bias, particularly at
a constant latitude of about 35°S. Poleward of 35°S and very high northern latitudes
have an average negative bias correction. All other regions have positive bias which
is especially high in the tropics. This means that the linear weighted combination of
models, determined by the BNN, over-predicts in polar regions and under-predicts
elsewhere.

Figure 4.7: BNN bias in Dobson units shown as a temporal average (left) and a spatial
average (right). The right panel shows the global average and the global annual average
as described in the legend, and a grey dashed line demarcating zero.

Temporally, the bias is very oscillatory with a period of a year showing that the
bias has strong seasonal dependence, although the seasonal amplitude decreases after
about 2002. When annually averaged the bias is small and approximately zero centred.
The seasonality of the BNN bias is shown in Figure 4.8 alongside the seasonal bias
from the CCMs, calculated as the observations used to train the BNN (Bodeker et al.,
2018) minus model prediction. All CCMs exhibit the same strong seasonal bias which
peaks in boreal spring/summer, much like the bias learnt by the BNN. Through the
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training process, with the aim of optimally combining models, the BNN has successful
learnt a bias which not only improves predictions but also is representative of the
biases in the underlying models it is ensembling.

Figure 4.8: Average seasonality of bias, predicted and corrected for by the BNN (blue),
and for each CCM (grey), calculated as model output minus observation. To show
the biases on a comparable scale each model bias is shown relative to its average bias,
hence for this plot the average bias for each model equals zero.

4.4 Model uncertainty

The total uncertainty from the BNN prediction is formed from a combination of two
uncertainties: an aleatoric uncertainty (σ), which is an estimate made by the BNN
of the uncertainty in the observational data; and an epistemic uncertainty which is
caused by a lack of data, such as in the data sparse polar regions. Chapter 3 showed
the skill with which the BNN framework accurately determined both uncertainties.
As with the model weights and bias, these uncertainty terms are dependent on space
and time. This section explores the BNN uncertainty and considers how it provides
insight into the variable quality of observations and informs where prediction accuracy
is reduced due to data deficiencies.
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4.4.1 Aleatoric uncertainty - data uncertainty

Figure 4.9: Aleatoric uncertainty as predicted by the BNN averaged temporally (left)
and spatially (right). The uncertainty is plotted at the 1 sigma level which encompass
approximately 68% of the data. Global mean time series are shown in the right plot
for the monthly time series and an annual mean.

The aleatoric uncertainty, or observational noise (σ in equation 4.1) is designed
to account for the imprecision of observations and uncertainties that arose in the
assimilation of multiple observational sources into the BSTier0 dataset. Figure 4.9
shows how the estimated observational noise varies in space and time. Uncertainty is
maximum over polar regions, decreases towards to tropics and has an average value of
3.2DU, relating to a fractional uncertainty of approximately 1%. It is very latitudinally
dependent but exhibits little longitudinal dependence. Temporally, uncertainty has
a strong decrease post-2004 which coincides with the AuraMLS satellite becoming
operational (Waters et al., 2006), a satellite product which "performs exceptionally
well in most regions" (Tegtmeier et al., 2013). The high uniform coverage of AuraMLS
and its improved accuracy (5 % or less throughout the stratosphere (Froidevaux et al.,
2008)) has previously been shown to improve the accuracy of other total ozone column
datasets (McPeters and Labow, 2012), as it also does here. We further note that these
findings are in agreement with analysis summarised in Figure 5.3.

The observational uncertainty has strong seasonal dependence, peaking during both
boreal and austral winter/spring periods. As can be seen in Figure 4.10, these peaks
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are caused by increased uncertainty over the polar regions during the winter and spring
periods, whereas the uncertainty contribution from 60°S–60°N is comparatively small.
Winter and spring in polar regions are periods of complex dynamics, including the
polar vortex and its subsequent breakdown in spring, which affects ozone distribution
and concentrations (Schoeberl and Hartmann, 1991; Butchart, 2014). These dynamics
are difficult to simulate accurately, with many models predicting delayed polar
vortex breakdowns, which is further confounded by differences in modelling responses
and feedbacks between ozone depletion and stratospheric cooling (Lin et al., 2017).
Additionally, CCMs have historically suffered from a ‘cold pole problem’ (Austin
et al., 2003), which is particularly prevalent in the southern hemisphere during
winter and spring and is still exhibited in UMUKCA (Dennison et al., 2019). The
increased aleatoric uncertainty during these periods is most likely a response to the
larger differences between models and observations driven by the complex dynamics
and coupling between the chemistry-climate system, which increases the uncertainty
estimated by the BNN.

Figure 4.10: Mean aleatoric uncertainty estimated by the BNN shown at a 1 sigma
level (approximately a 68 % confidence interval) for both polar regions (90°S–60°S and
60°N–90°N), near-global (60°S–60°N) and global (90°S–90°N).
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4.4.2 Epistemic uncertainty - statistical model uncertainty

Figure 4.11: Spatially averaged epistemic uncertainty (blue) compared to the percentage
of data coverage within the training dataset (orange). There is zero data coverage for
the years 2008, 2009 and 2010 because these years were removed from the training
dataset for testing purposes.

4.4.3 Epistemic uncertainty - statistical model uncertainty

Epistemic uncertainty is a measure of the reduction in predictive ability driven by a
lack of data availability or information. In a BNN epistemic uncertainty arises because
each of the BNN’s individual neural networks produce different predictions, which
vary more from each other in regions of sparse data where the predictions are less
strongly constrained. The inverse relationship between data availability and epistemic
uncertainty can be clearly seen in Figure 4.11, which shows time series of globally
averaged epistemic uncertainty and data coverage. In temporal periods of zero data
coverage the epistemic uncertainty quickly increases: 1994–1996, where no observations
were available, and 2008 onward which was removed for testing. This is extremely
desirable behaviour as we should not expect the BNN to know what the model weights
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Figure 4.12: Temporally averaged epistemic uncertainty (right) compared to the
percentage of data coverage within the training dataset (left).

and bias, and therefore the overall ozone prediction, should be in regions which we have
little to no observations. This behaviour is also exhibited spatially in 4.12, resulting in
higher epistemic uncertainty over the polar regions, due to their increased sparsity
from the absence of observations in polar night, and the tropics.

4.5 Discussion

One of the main strengths of the BNN is that it breaks down predictions of a variable
or state into a more regularly understood notion of ensembling: a linear combination
of weighted models. The BNN models for every point in time and space, providing a
useful resource into investigating and interpreting model contribution. However, model
performance and similarity inferred by the BNN are only qualitatively comparable
with other performance and similarity metrics. This is in part due to the difficulty in,
and lack of agreed approach for, assessing model performance (Katzav et al., 2012)
and similarity (Masson and Knutti, 2011). Just because a model output matches the
observations does not mean that it is simulating the entire system well, or that it will
do in the future.

Despite a lack of rigorous quantification of model performance and similarity,
using simple metrics does reveal some ability of the BNN to recover known model
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similarities. Although the BNN weights do not match directly represent measures of
model performance, the BNN still accounts for variable model performance through the
spatiotemporal variability of weights, which greatly improve the accuracy of predictions.
In addition to improving upon traditional weighting methods (e.g., Räisänen et al.,
2010; Knutti et al., 2017; Brunner et al., 2019), the interpretability of the BNN is an
important but not exclusive feature. Interpretability is incorporated into the framework
by modelling observations as a linear combination of physical models. Although other
ML methods such as Gaussian processes or vanilla neural networks could be applied to
this ensembling challenge, none scale efficiently to large datasets whilst also quantifying
uncertainty appropriately.

Alongside insight from model weights, the bias and both uncertainty terms provide
useful insight into observational quality and the predictive accuracy of the BNN.
With this information we could select the geographical placement of new stations or
instrumentation that best improves the predictions. The weights, bias and uncertainty,
not only help dissect the BNN prediction, but also build trust in this deep learning
ensembling method, hopefully encouraging wide community use.

The analysis in this chapter and the previous one emphasise the utility of the
BNN as a tool to ensemble models by leveraging the spatiotemporal variability of
model performance and the BNN’s capabilities in estimating uncertainties. The BNN
produces accurate predictions that consider observational quality and availability,
through a framework in which model contributions and uncertainties can be analysed.
Although this chapter has shown links between BNN derived model behaviours and
those derived from traditional analysis, such as performance and similarity, the BNN is
designed and excels as a model ensembling tool rather than one designed for ensemble
analysis.
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Chapter 5

A continuous vertically resolved ozone
dataset from the fusion of chemistry
climate models with observations
using a Bayesian neural network
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Abstract

Continuous historic datasets of vertically resolved stratospheric ozone, support the
case for ozone recovery, are necessary for the running of offline models and increase
understanding of the impacts of ozone on the wider atmospheric system. Vertically
resolved ozone datasets are typically constructed from multiple satellite, sonde and
ground-based measurements that do not provide continuous coverage. As a result,
several methods have been used to infill these gaps, most commonly relying on
regression against observed time series. However, these existing methods either provide
low accuracy infilling especially over polar regions, unphysical extrapolation, or an
incomplete estimation of uncertainty. To address these methodological shortcomings we
used and further developed an infilling framework that fuses observations with output
from an ensemble of chemistry-climate models within a Bayesian neural network. We
used this deep learning framework to produce a continuous record of vertically resolved
ozone with uncertainty estimates. Under rigorous testing the infilling framework
extrapolated and interpolated skillfully and maintained realistic interannual variability
due to the inclusion of physically and chemically realistic models. This framework
and the ozone dataset it produced, enables a more thorough investigation of vertically
resolved trends throughout the atmosphere.
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5.1 Introduction

Ozone in the upper troposphere and stratosphere is monitored predominantly by
ozonesondes (e.g., Witte et al., 2017), satellites (e.g., Tegtmeier et al., 2013) and
ground based instruments (e.g., Fioletov et al., 2008). Vertically resolved ozone datasets
combining measurements from multiple instruments (e.g., Miller et al., 2002; Ball
et al., 2017) are regularly used to investigate ozone trends throughout the atmosphere,
including the monitoring of ozone recovery in accordance with the Montreal protocol
(Chipperfield et al., 2017; Ball et al., 2018; WMO, 2018), and processes such as the
impacts of changing ozone concentrations on the atmospheric system, the Brewer
Dobson circulation (Polvani et al., 2018) and surface climate (Ivy et al., 2017). In
determining ozone recovery it is especially useful to use vertically resolved datasets
rather than the total ozone column, as the latter can show ozone recovery when in
fact depletion in the lower stratosphere might be disguised by increasing tropospheric
ozone (Ball et al., 2018; Gaudel et al., 2018).

Gaps are present in these datasets, originating from gaps in the records of individual
instruments, due to the finite lifetimes of instruments, difficulty of measuring during
polar night (Bowman and Krueger, 1985; Randel and Wu, 1999a) as well as funding
concerns, leading to an incomplete picture of atmospheric ozone that is particularly
prevalent over polar regions (Bodeker et al., 2021). Several statistical infilling methods
have been developed to address these observational gaps creating spatially and
temporally complete ozone datasets (e.g., Bodeker et al., 2013; Davis et al., 2016)
for use as continuous climatologies and for the running of climate models which
do not simulate chemistry. These data-driven statistical infilling approaches are
comparatively simple and are not well suited to infilling regions of sparse observations
because they lack the physical and chemical understanding of the system in the way
that chemistry-climate models do not. Here, we describe and demonstrate a new
methodology to produce a spatially and temporally continuous vertically resolved
ozone dataset. We use a Bayesian neural network as described by Sengupta et al. (2020)
to fuse together our best physical and chemical understanding of the chemistry-climate
system, represented by chemistry-climate models, with discontinuous observations to
construct an assimilated product of vertically resolved ozone.

Continuous ozone datasets, such as those of Randel and Wu (2007), Bodeker
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Scientific (Bodeker et al., 2013) and SWOOSH (Davis et al., 2016) are generated
from statistical models fitted to observations. These observational datasets themselves
are constructed from multiple satellite observations, accounting for satellite drift and
applying bias corrections, often further supplemented by the addition of ozonesondes
or ground based measurements. Satellite measurements of ozone are typically from
instruments such as the total ozone mapping spectrometer (TOMS) which measures
total column ozone from backscattered UV radiation (Heath et al., 1975), or limb
sounders that measure across an atmospheric section providing vertically resolved
ozone concentrations (Froidevaux et al., 2008). These satellite measurements are often
limited in their coverage, both spatially, particularly over the poles as solar occultation
limb sounders require sunlight absent in polar winters, and temporally, by the finite
lifetimes of the satellites and their orbits.

Understanding and attributing ozone change and variability is aided by a continuous
ozone record that is resolved in time, latitude and height. In addition to the benefits
of historic ozone records in monitoring ozone depletion and recovery, ozone records
and climatologies are used as offline fields in a variety of climate models that do not
compute their own interactive chemistry (Cionni et al., 2011), or for chemical transport
models. To this end, there have been several datasets that have produced continuous
vertically resolved ozone records by leveraging a variety of infilling techniques. In the
following paragraphs we describe infilling techniques used in several of these ozone
products, that takes place after the pre-processing, gridding and merging of individual
satellite outputs into a single product. These infilling methods represent standard
data approaches, which use observational data and supplementary datasets to infer,
with some interpolation or regression tool, what the missing values should be.

Randel and Wu (2007) and Bodeker Scientific (Bodeker et al., 2013) (BSTier1.4)
created infilled ozone records by using multi-linear regression to model ozone as a sum
of global time series such as the quasi-biennial oscillation and the solar cycle expanded
into harmonic components (WMO, 2018). Bodeker et al. (2013) additionally expanded
the coefficients of the regression model as Legendre polynomials which implemented
latitudinal structure to aid spatial infilling. The advantages of infilling based on
regression against observed time series is that the infilling is partially grounded in
our observations and knowledge of the physical system. The limitations of such an
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approach are caused by the linearity of the regression model smoothing the ozone field
resulting in an underestimate of interannual variability. Additionally, as with existing
filled vertically resolved ozone datasets, sources of uncertainty from both data and
infilling method are not fully considered.

In the SWOOSH dataset (Davis et al., 2016), two infilling methods are used. Firstly,
gaps near the poles (on regular latitude) are filled by taking data from ozone gridded on
an equivalent latitude grid and imputing this data. This method likely underestimates
ozone for regions within the polar vortex as any given equivalent latitude will be
less than the corresponding geographic latitude. Secondly, data is interpolated for
each vertical level using a radial basis function with an inverse multi-quadric function
that imputes the mean of the surrounding points adjusted to preference closer points.
Where the data is unbounded, such as the poles, interpolation is performed between
existing data and the climatological average. This method of interpolation will perform
less well over large regions of sparse data and as such the authors comment that
the pre-1990 section of the filled dataset should be used with caution. Additionally,
bounding the interpolation with the climatology risks not capturing the true trend of
the data and as a result the authors recommend not using the filled version for trend
analysis.

Another common method used for infilling and data assimilation in atmospheric
and climate science is 4-dimensional variational assimilation (4D-Var) (Courtier et al.,
1994). This is used in numerical weather prediction to produce historical reanalyses
(e.g., Rienecker et al., 2011; Hersbach et al., 2020) where observations are assimilated
within the physical constraints of a numerical model. 4D-Var reanalyses are commonly
used across environmental disciplines (e.g., Viste et al., 2013; Blunden and Arndt,
2016; Amos et al., 2020) but the method does have limitations. Firstly, it is extremely
computationally expensive as the assimilation involves running a numerical model
and optimising the model against millions of observations. Secondly, whereas climate
projections are typically computed from an ensemble of different models (allowing
for variable model performance within the ensemble), in 4D-var the observations are
assimilated to a single model which may have inherent biases.

Hybrid modelling approaches, statistical or machine learning models with physical
models, are beginning to find application in data infilling for atmospheric composition.
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One such approach is bias correcting a physical model with a machine learning
algorithm. Dhomse et al. (2021) learn and correct for the bias in a chemical transport
model (TOMCAT) when compared to observations. Similarly to 4D-Var, this method is
reliant on only a single model, which might introduce biases which would be accounted
for by considering an ensemble of models. Furthermore, this approach does not attempt
to quantify the uncertainty of estimates, either from the observations or the model
which learn the model bias, in this case a random forest.

The described infilling methods have their strengths and weaknesses. BSTier1.4
and 4D-Var predictions benefit from an infilling approach grounded in the physical
and chemical understanding of the system. However, for BSTier1.4 this is through a
simple linear regression, which cannot capture full variability, and for 4D-Var only a
single model with high computational expense is used. The infilling from BSTier1.4
and SWOOSH are suitably quick to run but their simplicity results in less accurate
infilling, particularly when extrapolating and infilling large regions. Additionally, not
all methods consider the complete uncertainty in the infilled predictions.

In this paper we describe a fundamentally different approach to infill historic ozone
to produce a continuous vertically resolved record by using archived chemistry-climate
models (CCMs), which grounds the infilling method to our understanding of the
physical system. These CCMs are weighted, combined and bias corrected within a
Bayesian neural network which accurately infills missing data and alongside providing
a principled quantification of uncertainty. This approach is also computationally
cheap compared to 4D-Var and, despite being a deep learning algorithm, maintains
interpretability such that the predictions can be dissected back to individual model
contributions. Section 5.2 introduces the CCMs, ozone observations and the necessary
pre-processing steps to prepare the data for the Bayesian neural network, which is
described in section 5.3, alongside the process of testing and validation. In section
5.4 we explore the trends and coverage of the infilled ozone dataset and compare it to
existing infilled products. Finally, we make concluding remarks in section 5.5.
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5.2 Ozone and model data

Our approach to infilling vertically resolved ozone combines observations from the
Bodeker Scientific observational dataset (Bodeker et al., 2013) with an ensemble
of chemistry climate models from the Chemistry-Climate Model Initiative (CCMI)
(Morgenstern et al., 2017). In this section we summarise the characteristics of these
data and detail how we processed them in order to build a machine learning-style
dataset to train the Bayesian neural network.

5.2.1 Bodeker Scientific vertically resolved ozone

We used the tier 0 data of vertically resolved ozone from Bodeker scientific (Bodeker
et al., 2013) (hereafter referred to as BSTier0) as observations. This dataset combines
merged measurements from ozonesondes and satellites onto a coarse resolution grid,
following quality checking and screening to remove anomalous values as is described
by Bodeker et al. (2013). From BSTier0 we extracted a vertical pressure range of
{500–0.3 hPa} and screened values that were less than 1 ppb as the original dataset
had negative concentrations. This cut-off concentration was chosen because, for the
upper troposphere and stratosphere region of interest, concentrations have not been
measured to fall below the order of magnitude of 1 ppb even in the ozone deficient
tropical tropopause (Newton et al., 2018).

5.2.2 CCMI model output

The CCMI data (Morgenstern et al., 2017) consists of an ensemble of chemistry-
climate models (CCMs) that include a detailed description of atmospheric chemistry to
better understand the behaviour of compounds whose abundances depend on chemical
processes. Similarly to its predecessor initiatives (Eyring et al., 2008; Lamarque
et al., 2013b), a focus of CCMI is exploring and understanding stratospheric ozone
distributions (Morgenstern et al., 2018) and projections (Amos et al., 2020), making
this ensemble highly appropriate for our uses.

We used output from the so-called refC1SD scenario (Morgenstern et al., 2018),
which are specified dynamics simulations where CCMs are nudged to historic (1980–
2010) meteorological conditions (Orbe et al., 2020). Although the nudging was
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performed differently across the ensemble (Orbe et al., 2020), the simulations
represent the models’ best efforts at replicating past meteorology and past atmospheric
composition. This allows for a straightforward direct comparison between models
and observations unlike if the models were free running, in which case we would
have to compare trends and climate statistics. From the refC1SD ensemble, we
selected 13 simulations of monthly average vertically resolved ozone concentrations
from the 9 models that cover the vertical pressure range {500–0.3 hPa}. The output
was latitudinally regridded to match the resolution of the observations (5◦) and were
longitudinally averaged, producing a zonal mean.

5.2.3 Making the data machine learning ready

We performed coordinate mappings and data scaling to both the BSTier0 observations
and model output. These steps, common in machine learning (ML) applications,
ensure that the data is descriptive of the spatiotemporal domain and allow us to
encode our prior understanding of the system into machine learning (ML) models.

After pre-processing, the ozone data both modelled and observed is described by
time, latitude and a vertical coordinate. The vertical coordinate air pressure p was
mapped using a natural logarithm to ln(p) to provide a consistently decreasing vertical
coordinate which is proportional to height. Latitude (θ), the second spatial coordinate,
is mapped to sin(θ). We mapped time t (in this case the number of months since the
start of the observations) onto seasonal harmonic terms (cos(2πt/12) and sin(2πt/12))

as well as keeping t as a continuous time coordinate. The seasonal mapping requires
two elements to ensure continuity over the first and last months so that the data
reflects that January and December are adjacent months.

Subsequent to the mapping, the coordinates were min-max scaled to between −1
and 1, which ensures that all coordinates are treated as equally important. Additionally,
the model predictions and observations of ozone concentrations were scaled with a
natural logarithm, before being min-max scaled such that the observations are between
−1 and 1. The motivation for the log scaling is twofold. Firstly, the log transformation
means that ML tools can learn evenly across a domain where ozone concentrations
span multiple orders of magnitude. Without performing this log scaling, the learning
efforts would be focussed in the regions of larger concentrations (∼ 1 ppm) because
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Figure 5.1: Depiction of the Bayesian neural network. It shows the overall
framework of combining gridded observations with CCMs using the BNN to produce
infilled predictions alongside uncertainties. The middle box also contains a simplified
diagram of the neural network architecture.

these would be the regions in which an ML model could more easily minimise the
absolute error (the difference between the observations and the prediction). Secondly,
as negative concentrations are unrealistic, the log scaling constrains the prediction to
be strictly positive.

To test the predictive capability of the Bayesian neural network, particularly its
ability to recover realistic uncertainties, we split the data into a training (365,000
datapoints) and three testing datasets. The testing datasets are designed to test
interpolation over small and large scales, and extrapolation. They are the following:
1) interpolation-testing covering all data over a 1.5 year period between July 1997
and December 1998 inclusive (25,000 datapoints); 2) extrapolation-testing covering all
data in the last 1.5 years of the total dataset covering July 2009 to December 2010
(30,000 datapoints); and 3) random-testing which is a randomised sample of 5% of the
data not included in the other testing datasets (20,000k datapoints). The Bayesian
neural network is trained only on the training dataset and the three testing sets are
held out for validating predictive ability and uncertainty quantification.
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5.3 Methods

5.3.1 Bayesian neural networks for fusing CCMs and

observations

The Bayesian neural network we used to fuse CCMs and observations together is an
extension of our earlier work (Sengupta et al., 2020), and is summarised in Figure 5.1.
We took a similar approach to the task of infilling the sparsely sampled ozone
observations (obs) by assuming that they can be modelled as a linear combination of
n nudged CCM outputs (Mi), adjusted by weights (αi), a bias (β) and heteroscedastic
noise (σ):

obs(x, t) =
n∑

i=1

(αi(x, t)Mi(x, t)) + β(x, t) + σ(x, t). (5.1)

These weights, bias and noise are modelled as spatially (x) and temporally (t)
varying, allowing for both the fact that CCMs may better simulate certain spatial
regions or certain seasons and that observational noise is not constant. We used the
Bayesian neural network (BNN) to learn the optimal weights, bias and noise.

In general, BNNs are neural networks (NNs) over whose parameters a prior is
specified and whose posterior distribution can be recovered by a variety of inference
techniques (Neal, 2012). In this paper, we used an anchored ensemble of individual
NNs to approximate Bayesian inference (Pearce et al., 2020). The BNN learns weights,
bias and noise from the spatiotemporal inputs such that, when combined with model
predictions, it can successfully replicate the observations over a training period within
a specified level of uncertainty. Model weighting is a regression task for which there are
numerous capable machine learning models. We justify the choice of a NN approach
for reasons of scalability, since gridded model data, even at coarse resolutions, quickly
becomes large. A detailed description of the statistical underpinnings of the BNN is
presented by Sengupta et al. (2020), including the relevant derivations and a complete
discussion of the BNN design. Here we summarise the main concepts of the BNN for
combining observations and geophysical models.

The probabilistic nature of the BNN allows us to encode our prior knowledge
within it and quantify uncertainty. Our prior for the model weights (α) is that for an
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individual NN, at any point in time and space, any combination of models should be
equally likely. Averaged over all NNs, this prior belief means the untrained prediction
becomes the multi model mean, which is an appropriate starting point for model
ensembles (e.g., Reichler and Kim, 2008; Knutti et al., 2010). Other priors are that the
bias (β) should be small and zero-centred, because the models should predominantly
contribute to the prediction, and that the noise (σ) should similarly be small and
positive as the noise should not be so large that it inhibits finding optimal weights
and bias. Overall, these priors mean that the output from an untrained BNN will be
the multi model mean with a small bias, small noise and a large epistemic uncertainty
which spans the range of predictions made by the different CCMs in the ensemble.

To encode our prior knowledge within a NN we have to determine what values
the parameters of the NN can take in order to produce our prior distribution. NNs
comprise of layers of neurons which have numerical weights and biases and it is these
we encode the prior within. There are many combinations of values that the NN
layer weights and biases can take to achieve this, meaning that our prior is actually a
distribution over neural network parameters.

We encode the prior into the BNN by anchoring the trainable parameters (the NN
weights and biases) of each NN ensemble member to a random draw from this prior
distribution. This anchoring is a form of regularisation that ensures diversity in the NN
predictions in accordance with our prior, from which we can quantify an uncertainty
in the learnt weights and bias. Increased disagreement across the BNN in regions with
no observations, due to the anchoring, means that we are suitably uncertain about the
values of the weight of a CCM, the bias or the noise during extrapolation. This of
course is a highly desirable characteristic. After training, individual NNs are sampled
from an approximate posterior distribution and therefore, given an adequate number of
anchored NNs, we can reconstruct an estimate of the posterior distribution. The BNN
prediction is computed by taking the mean of the individual NN predictions and the
epistemic uncertainty of the prediction is calculated as the standard deviation across
the individual NN predictions. The epistemic uncertainty represents the uncertainty
of the BNN. The total predictive uncertainty σTOT, combining noise predictions with
epistemic uncertainty, is calculated as follows:
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where ne is the number of NN ensemble members, σj is the predicted noise for each
NN ensemble member, and yj is the prediction for each NN ensemble member.

5.3.2 BNN training

The BNN trained for the purpose of infilling the vertically resolved ozone consists of an
ensemble of 48 NNs, an ensemble large enough to ensure the posterior distribution was
suitably resolved. The 48 NNs were independently initialised and anchored according
to our priors before conducting prior predictive checks to ensure the untrained BNN
output reflected our priors (the prediction of the multi model mean with small noise
and small bias). The BNN was trained on the training dataset for 100,000 epochs
on a cluster of 4 T4 GPUs, taking 10 hours to complete and costing about £20 in
cloud computing credits (as of April 2021). The full training details are provided in
the Supplementary Materials (Appendix B).

5.4 The BNN ozone dataset (BNNOz)

The trained BNN optimally fuses the 13 CCM predictions with the sparse BSTier0
observations with full consideration of uncertainty, producing a continuous vertically
resolved ozone and uncertainty prediction, spanning {500–0.3 hPa} for the years
1980–2010. A subset of these infilled results is shown in Figure 5.2, highlighting the
smoothness of the prediction and the variable nature of the predictive uncertainty.

5.4.1 Testing and validation

We assess the performance of the BNN ozone prediction (hereafter BNNOz) using the
root mean squared error (RMSE) between BNNOz and the BSTier0 observations that
were not part of the training dataset, as well as the fractional error, which calculates
the absolute error relative to the true observational value. Fractional error is used
in addition to the RMSE because the latter is dominated by regions of high ozone
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Figure 5.2: A snapshot of the ozone concentration predictions from the
Bayesian neural network (BNN). The top row shows zonal mean plots for January
1981 of (a) the BSTier0 ozone observations used to train the BNN (Bodeker et al.,
2013), (b) the infilled ozone prediction from the BNN and (c) the estimated uncertainty
in that prediction. Dashed grey lines in (a) to (c) show the approximate positions
of the tropopause (lower) and stratopause (upper), defined using NCEP reanalysis
(Kalnay et al., 1996) and CCMI model averages respectively. Panel (d) shows an
example predicted monthly mean ozone timeseries from the BNN at 12.5◦N and
50.4 hPa. The markers show the separate sets of observations used for training and
testing, as specified in the legend (see section 5.2.3 for details), and the shading
indicates the 68%, 95% and 99.7% confidence intervals (moving darker blue to light
blue) for the BNN prediction. 103
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levels and is therefore not an informative measure of performance for regions of low
levels. Alongside RMSE and fractional error, we measure how well the BNN quantifies
uncertainty by calculating what portion of the BNNOz data falls within 1, 2 and 3
standard deviations of the prediction, where the standard deviation is the uncertainty
prediction from the BNN. Under a Gaussian assumption, we would expect these values
to be 68.3%, 95.5% and 99.7% respectively.

Table 5.1: Analyses of the performance of the BNN predictions and uncertainty
quantification for the training and testing data splits. Root mean squared error and
fractional error are used to assess predictive skill, and the skill of the uncertainty
prediction is calculated by the portion of data that fall within the uncertainty prediction.
Under a Gaussian assumption these values would be 68.3%, 95.5% and 99.7%
respectively.

Data split Root mean Mean Percentage of points
squared fractional within 1,2,3

error (ppm) error (%) standard deviations (%)
Training 0.14 1.2 80.0, 97.8, 99.6
Random testing 0.15 1.5 79.1, 97.4, 99.5
Interpolation testing 0.17 1.7 70.1, 94.7, 99.0
Extrapolation testing 0.11 1.5 77.6, 97.4, 99.5

The BNNOz prediction has been tested and validated against the three testing
datasets to ensure that the BNN method can interpolate and extrapolate over large
spatial regions and time periods of missing data, similar to those present in the original
BSTier0 data. The results of these performance and uncertainty tests are shown in
Table 5.1. The mean fractional error is between 1% and 2% for the different testing
splits, showing that the infilling performance of the BNN is good and consistent across
both interpolation and extrapolation tasks. Low fractional error and low RMSE scores
across the training and testing datasets demonstrate that the BNN is capable of
reconstructing the observations accurately from the ensemble of CCMs. Furthermore,
this predictive skill suggests that the BNN can successfully learn meaningful model
weights, bias and noise.

The uncertainty quantification scores, displayed in the final column of Table
5.1, show that the BNNOz uncertainty estimates are good and are even slightly
under-confident for all the testing datasets. Uncertainty estimates of the BNNOz are
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Figure 5.3: The average annual aleatoric uncertainty (standard deviation) calculated
by the BNN (top panel), shown relative to the temporal coverage of satellites used in
the BSTier0 dataset (bottom panel). The aleatoric noise is a measure of the estimated
uncertainty in the observations.

comprised of both aleatoric (observational) and epistemic (knowledge) uncertainties,
and vary in time and space to capture that different instruments with different levels
of precision are used in the BSTier0 observational dataset. Figure 5.3 shows how
the estimated annual aleatoric uncertainty is dependent on which satellite products
are used. Uncertainty is high early in the record and decreases to a minimum after
2004 when the high quality AuraMLS (Waters et al., 2006) satellite data becomes
the main satellite product used. Although the BNN is not given explicit information
about the construction of the original dataset, by allowing BNN parameters to vary
temporally and spatially the BNN has captured and accounted for complex features of
the underlying data.

We would typically expect the performance of the BNN to be lower for extrapolation
than interpolation, as extrapolation tasks are constrained by less surrounding data
than interpolation tasks. However, for this set of models and observations the BNN
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extrapolates more skillfully. The reason for this can be traced back to the construction
of the testing datasets and the original BSTier0 dataset we are infilling, which is a
conglomerate of measurements from multiple instruments. Firstly, the observational
noise decreases in time, as shown in Figure 5.3, meaning that the latter years covering
the extrapolation test (Jul2009–Dec2010) are likely of higher quality than the data
used in the interpolation test (Jul1997–Dec1998). Secondly, the observational data
coverage increases throughout the record meaning the extrapolation testing period is
better constrained. These performance results do not mean that the BNN is better
at extrapolating than interpolating; the opposite is true in general and it is due to
varying quality and availability of ozone observations.

5.4.2 Comparison to existing vertically resolved ozone

datasets

We now compare BNNOz to four existing datasets of vertically resolved ozone datasets,
to highlight some shared similarities and differences, and to demonstrate how the
extrapolation capabilities of the BNN allow new exploration of under observed regions.
Table 5.2 summarises the details of the comparator datasets, and Figure 5.4 indicates
their vertical coverage. Their latitudinal coverage varies from global (90°S–90°N) to
near global (60°S–60°N), depending on the observations and infilling methods used.
The BASIC and SBUV cohesive datasets (acronyms are introduced in Table 5.2) do
not extend down into the troposphere whereas SWOOSH and BSTier1.4 do. None of
these datasets represent independent comparisons to the BNN prediction as they are
all constructed, at least partially, from the same satellite and observational products
present in the BSTier0 data used to train the BNN.

5.4.2.1 Ozone anomalies

To compare ozone datasets, demonstrate the improved coverage of BNNOz and highlight
uncertainty, Figures 5.5 and 5.6 show ozone anomalies for set latitudinal regions and
pressure levels, based on the analyses presented in the Global Ozone chapter (Braesicke
et al., 2018) of the World Meteorological Organisation (WMO) Scientific Assessment
of Ozone Depletion report (WMO, 2018). Anomalies are calculated as the annual
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Figure 5.4: Monthly averaged ozone concentration for March 1995 for 6
datasets showing typical latitudinal and vertical coverage. Dashed grey lines
show the approximate positions of the tropopause and stratopause. Apparent missing
data in the tropical tropopause for SWOOSH are caused by the incompatibility of
negative ozone concentrations with log scaling.
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Table 5.2: Descriptions of the comparative datasets used. BNNOz, BSTier1.4, and
SWOOSH are all infilled datasets, whereas BASIC and SBUV are unfilled. We used
the version of SWOOSH that was filled by a combination of replacing latitudinal gaps
with their corresponding equivalent latitude measurement and radial basis function
interpolation to fill smaller gaps, as this is the most complete SWOOSH ozone dataset.
BSTier1.4 is filled using a multi-linear regression of global time series expanded into
harmonic components. The BASIC (BAyeSian Integrated and Consolidated composite
ozone time-series dataset) version we used for comparison did not use SBUV(/2)
observations.
Dataset Acronym Temporal Vertical Reference

coverage coverage
BNN prediction BNNOz 1980–2010 500–0.3 hPa
Bodeker Scientific BSTier1.4 1979–2016 878.4– Bodeker et al. (2013)
Tier1.4 0.046 hPa
SWOOSH (eq lat SWOOSH 1984– 316.2–1 hPa Davis et al. (2016)
and anomaly filled)
BASIC (without BASIC 1985–2018 146.8– Alsing and Ball (2017)
SBUV obs) 1.2 hPa Ball et al. (2017)
SBUV cohesive SBUV 1980– 50–0.5 hPa Miller et al. (2002)

mean ozone anomaly from deseasonalised time series, relative to the base period of
1998–2008, at pressure levels of 2, 10, 20 and 70 hPa.

Figure 5.5 shows ozone anomalies at pressure levels of 2, 10, 20, 70 hPa for the
near global average (60°S–60°N) and averaged over the southern mid-latitudes (60°S–
35°S), tropics (20°S–20°N) and northern mid-latitudes (35°N–60°N), which are regions
covered by all datasets. Figure 5.6 shows anomalies at the same pressure levels for the
southern polar cap (90°S–60°S), northern polar cap (90°S–90°N) and the entire globe
(90°S–90°N), which are regions that require some form of infilling and as a result are
only shown for BNNOz, BSTier1.4 and SWOOSH. For both figures, the annual mean
ozone anomalies are calculated from a deseasonalised (relative to 1998–2008) ozone
time series and are relative to a 1998–2008 base period.

Figure 5.5 shows that BNNOz is in good agreement with other vertically resolved
ozone products for the four regions within 60°S–60°N. The similarity between the
BNNOz and other products is greater at higher pressures (lower altitudes) where the
BNNOz uncertainty largely encompasses other datasets, although it decreases with
altitude. In time periods of higher data coverage the datasets are more likely to be
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Figure 5.5: Comparison of annual mean deseasonalised ozone anomalies from
a range of ozone datasets: BNNOz, BSTier1.4, SWOOSH, BASIC and
SBUV (cohesive). Anomalies are shown for pressure levels 2, 10, 20 and 70 hPa,
averaged over 60°S–35°S (first column), 20S–20N (second column), 35°N–60°N (third
column) and 60°S–60°N (last column). The anomalies are calculated relative to the
base period 1998–2008 and are area weighted. The shading around the BNNOz shows
uncertainty at 68%, 95% and 99.7% confidence intervals. This figure is based on
figures 3-15 and 3-16 from the 2018 WMO Ozone Assessment Report (WMO, 2018)
itself adapted from the SPARC/IO3C/GAW LOTUS (Long-term Ozone Trends and
Uncertainties in the Stratosphere) report (SPARC/IO3C/GAW, 2018).
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Figure 5.6: Comparison of annual mean deseasonalised ozone anomalies from
infilled ozone datasets: BNNOz, BSTier1.4 and SWOOSH. As per Figure 5.4,
but with anomalies averaged over 90°S–60°S (left column), 60°N–90°N (middle column),
90°S–90°N (right column). The anomalies are calculated relative to the base period
1998–2008 and are area weighted. The shading around the BNNOz shows uncertainty
at 68%, 95% and 99.7% confidence intervals. The BASIC and SBUV datasets are not
shown as they have incomplete coverage beyond the range 60°S to 60°N. This figure is
based on figures 3-15 and 3-16 from the 2018 WMO Ozone Assessment Report (WMO,
2018) itself adapted from the SPARC/IO3C/GAW LOTUS (Long-term Ozone Trends
and Uncertainties in the Stratosphere) report (SPARC/IO3C/GAW, 2018).
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in agreement, compared to early in the record where data availability is lower. This
drop in data availability in the early part of the datasets is reflected in the increasing
uncertainty of BNNOz, particularly between 1980–1985. Overall, for near-global,
mid-latitude and tropical regions, the BNNOz successfully captures the long-term
trends and smaller fluctuations, caused by forcing such as the solar cycle and the El
Niño Southern Oscillation (ENSO) (WMO, 2018), that are seen across the datasets.

Figure 5.6 explores the predictions over polar regions and the global average, where
the differences between ozone products should be more apparent due to the need
for infilling in these regions. The effect of greater data sparsity over these regions,
compared to the more data rich near global predictions in Figure 5.5, is seen in
the increased BNNOz uncertainty. For the polar cap predictions (90°S–60°S and
60°N–90°N) the SWOOSH infilled predictions are typically in agreement with BNNOz
within the uncertainty. The infilled BSTier1.4 prediction similarly falls mostly with
the BNNOz uncertainty but displays much less interannual variability than BNNOz
and SWOOSH, particularly at higher altitudes. As the underlying observations are
then same between BNNOz and BSTier1.4, this difference is therefore a result of the
BSTier1.4 infilling method which has led to a smoothing of the ozone anomaly time
series. In addition to maintaining variability, BNNOz has the benefit of extending the
other global infilled product SWOOSH to five years earlier.

5.4.2.2 Ozone trends

Ozone trends are typically calculated using a regression model which isolates the trend
from background meteorological influences and known drivers of stratospheric ozone
(SPARC/IO3C/GAW, 2018). Here, we calculate ozone trends using dynamical linear
modelling (DLM) which performs regression against the same variables as the more
commonly used multiple linear regression (MLR), but allows for a smoothly varying
nonlinear ozone trend, unlike MLR. Using code from Alsing (2019), our implementation
of DLM follows Ball et al. (2018) using the same regression time series: a latitudinally
resolved stratospheric aerosol optical depth (Thomason et al., 2018), 30 cm radio
flux (for solar variability) (Wit et al., 2014), an ENSO index (NCAR, 2019), and
an index of the quasi-biennial oscillation (QBO) using zonal winds at both 30 and
50 hPa (Berlin, n.d.). Vertically resolved ozone trends for each dataset are calculated
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1985–1997 (pre-1997) and 1998–2010 (post-1997) as 1997 was the approximate peak
of halogen-containing ozone-depleting substances (Newman et al., 2007). The year
1997 also bisects the trend, enabling comparison with existing analysis performed with
piecewise MLR (SPARC/IO3C/GAW, 2018). We then calculate percentage ozone
change relative to the trend value at 1997.

Vertically resolved ozone trends for BNNOz and comparative datasets are shown in
Figures 5.7 and 5.8 for the same latitudinal bands used in Figures 5.5 and 5.6. For the
pre-1997 trends in the regions between 60°S–60°N (Figures 5.7 a, b, c and d), strong
agreement is seen between BNNOz and the other datasets, particularly in the upper
stratosphere where all datasets show significant (at 3-sigma) ozone depletion. For
post-1997 trends (Figures 5.7 e, f, g and h), BNNOz similarly falls mainly within the
dataset spread and shows neither significant widespread depletion or recovery.

For the pre-1997 trends over, and including, the polar regions (Figures 5.8 a, b and
c), SWOOSH and BNNOz are in reasonable agreement with one another especially for
globally averaged ozone (Figure 5.8 c). Similarly to near global regions, the BSTier1.4
displays a much weaker but more confident trend. BNNOz estimates a peak ozone
reduction of 10% at 1 hPa over the southern polar cap for the period 1985–1997,
equating to a loss of 0.26 ppmdec−1. At this same location SWOOSH and BSTier1.4
estimate significantly lower losses of 0.094 ppmdec−1 and 0.052 ppmdec−1 respectively.
Disparity in the trend estimates is largely caused by two factors. Firstly, datasets consist
of various observational sources compiled and assimilated differently which results in
significantly different datasets and therefore trends. Secondly the infilling methods
will have an impact on the ozone datasets, which will be particularly exacerbated
over polar regions. For example, BSTier1.4 extrapolates using an expanded form of
MLR and presents different ozone anomalies and trends compared to BNNOz, itself
based on the same observational data (BSTier0). This difference between BSTier1.4
and BNNOz is even more apparent in Figures 5.8 d, e and f, that show post-1997
trends, where the three continuous datasets (BNNOz, BSTier1.4 and SWOOSH) are
in disagreement about recovery over the southern pole and globally.

That the calculated trends disagree, whilst having a high confidence of the
disagreement, is strongly indicative that the differences are caused by the underlying
observations. For that reason, it is difficult to determine whether datasets differ due
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Figure 5.7: Ozone trends calculated using dynamical linear modelling (DLM)
as a percentage ozone change relative to 1997, for 5 ozone datasets exclusive
of polar regions. Trends are shown for pre-1997 (top row) over latitude bands 60°S–
35S, 20°S–20°N, 35°N–60°N and 60°S–60°N (a, b, c and d respectively), and for
post-1997 (bottom panel) for the same latitude bands (e, f, g and h). The coloured
lines represent each dataset and are shown with shaded uncertainty bars (1, 2 and 3
standard deviations) calculated from the DLM trend estimation.
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Figure 5.8: Ozone trends calculated using dynamical linear modelling (DLM)
as a percentage ozone change relative to 1997, for 5 ozone datasets inclusive
of polar regions. Trends are shown for pre-1997 (top row) over latitude bands 90°S–
60°S, 60°N–90°N, and 90°S–90°N (a, b and c respectively), and for post-1997 (bottom
panel) for the same latitude bands (d, e, and f). The coloured lines represent datasets
that have consistent near global coverage and are shown with shaded uncertainty bars
(1, 2 and 3 standard deviations) calculated from the DLM trend estimation.
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to their infilling method or their observational foundation.

5.5 Conclusion

We have described the BNN methodology of model-observation fusion and demonstrate
an application of producing a globally continuous dataset of vertically resolved ozone
(BNNOz), extending our original application of the BNN in producing a total ozone
column dataset (Sengupta et al., 2020). Using the BNN, we can combine physically
and chemically realistic chemistry-climate model output with observations to generate
predictions of ozone that are accurate and have an associated uncertainty. This
Bayesian deep learning method successfully extrapolates over systematically under-
observed regions and periods, as it relies on chemistry-climate models rather than
a regression model-based method for the extrapolation. We have demonstrated the
extrapolation and interpolation ability of the BNN and compared the BNNOz to
widely used datasets. We anticipate a more exhaustive comparison and validation of
BNNOz against other existing datasets when output from the next phase of CCMI
comes available, extending the simulations.

This BNN approach to infilling observations has a number of advantages over
other commonly used methods. It is a Bayesian approach which, as highlighted by
Ball et al. (2017), is robust to unknown observational uncertainty and quantifies both
statistical and observational uncertainty. Given the construction of the prediction,
from weighted models and bias, it is interpretable as model contributions can be
scrutinised spatially and temporally, to encourage trust beyond other opaque ML
methods. This interpretability also furthers our understanding of the underlying
observations, accounting for the varied quality of different observational sources and
assimilation methods. As the BNN predictions are based on an ensemble of physically
realistic models, we maintain accurate interannual variability, unlike linear regression
methods that can smooth infilled output (e.g., Bodeker et al., 2013), and can recover
trends, unlike infilling techniques that interpolate to climatological averages (e.g.,
Davis et al., 2016). As such, the BNNOz dataset is less limited by the assumptions
made by these other infilling approaches.

The infilled prediction is strongly influenced by the choice of the infilling method.
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This is especially seen by comparing BNNOz and BSTier1.4 that use different infilling
methods but the same original dataset. For BSTier1.4 the ozone anomalies tend to be
more smoothly varying than BNNOz, indicating a lower ability to capture interannual
variability. The differences between the approaches are more pronounced for ozone
trend analyses, where BSTier1.4 exhibits a smaller trend than BNNOz, particularly
in regions such as the poles that require more infilling. Differences in ozone trends
and anomalies originate in the infilling methods, demonstrating the importance of
investigating and testing the various methods, and providing principled uncertainty
quantification.

Separate to differences caused by infilling methods, comparison between datasets
in regions with good observational coverage show us that differences in ozone trends
and anomalies are also due to the underlying observations. This may originate from
the observational products used, retrieval methods or bias correction and as a result,
infilled predictions will be highly dependent on these choices (WMO, 2018). Even
with a principled infilling technique such as the BNN, the infilled product can only
be as good as the ground-truth observational data it learns from. Future efforts
therefore, should concentrate on improvements in observational data assimilation and
pre-processing, or end-to-end approaches from satellite retrieval to infilling which
would allow the propagation of errors throughout all the processing.
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Chapter 6

Conclusion and general remarks

This thesis created, demonstrated and explored new sophisticated tools that improve
upon current methods of assimilating model ensembles and observations, improving the
accuracy and uncertainty quantification of predictions and projections of stratospheric
ozone. By drawing on ideas from data science and machine learning (ML), whilst
balancing the interests of modellers and atmospheric scientists, these new methods
enabled broad investigation of ozone in the upper atmosphere, generating modern ozone
hole recovery estimates, creating a continuous vertically resolved ozone dataset crucial
in trend analyses, and producing ozone predictions for traditionally under-observed
regions or periods. These tools are flexible and can have wide reaching application in
many environmental modelling scenarios where ensembles of geophysical models are
relied upon.

Chapter 1 introduced the key themes of the thesis: stratospheric ozone
– its importance to life, which processes determine its abundance, particularly
anthropogenically driven depletion, and how it is modelled and observed; model
ensembles – how assimilation from multiple models can provide more accurate
predictions, the current methods used to perform assimilation (or ensembling), and
the caveats and limitations in these methods; and, ML and data science – the types of
problems ML is skilled at solving and recent applications of ML within atmospheric
science and environmental modelling. This chapter motivated the need for a better
understanding of both historic and modelled stratospheric ozone and suggested that
ML approaches used in conjunction with model ensembles could achieve this.
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Chapter 2 further developed a model weighting framework used within the climate
modelling community that accounted for variable model performance and similarity
(Knutti et al., 2017) and detailed its application to projecting Antarctic ozone depletion.
Rather than weighting upon a single variable as is commonly done in the climate
community, the CCMs were weighted across a suite of metrics relevant to ozone
depletion over the southern polar cap, requiring the models to simulate multiple parts
of the stratospheric ozone system accurately. This framework was used with CCMs
from the Chemistry-Climate Modelling Initiative (CCMI) (Morgenstern et al., 2017)
and various reanalysis and observational products, to produce a weighted projection
of Antarctic ozone hole recovery. The weighted projection showed ozone hole recovery
(to 1980 levels) by 2056 with a 95% confidence interval of 2052–2060, earlier than
the most recent study (Dhomse et al., 2018) that used the same chemistry-climate
models (CCMs) but non-weighted multi-model means. Perfect model testing and
metric sensitivity testing were conducted which showed this weighting framework’s
ability to produce more accurate projections than the widely used multi-model mean.
This work will feature in the polar ozone chapter of the WMO 2022 Ozone Assessment
Report.

Chapter 3 presented a novel framework for fusing geophysical model ensembles
with observations within a Bayesian neural network (BNN). This framework is capable
of using discontinuous observations to infer spatiotemporally varying model weights
and bias, whilst estimating the spatiotemporally varying observational uncertainty.
Compared to existing model averaging and weighting methodologies, such as those
presented in Chapter 2, the BNN represents a large improvement in model ensemble
and observational assimilation through improved accuracy, representation of total
uncertainty and a more complete consideration of the ensemble design, or lack thereof.
The BNN was rigorously tested using synthetic and real-world data, showing increased
predictive ability and uncertainty quantification over existing model ensembling and
data imputation methods. An application of this framework for infilling historic
records was demonstrated through the infilling of total ozone column using CCMI
models and the NIWA-BS record. By learning optimal weights, bias and noise of the
nudged CCMI model output, the BNN produced temporally and spatially continuous
gridded total ozone column from 1980–2010 complete with uncertainty predictions.

118



Alongside atmospheric science contributions, this chapter, published at an established
ML conference, presented the first use of an anchored BNN which accounts for variable
data uncertainty (heteroscedasticity).

Chapter 4 extended the ML focussed Chapter 3 with a discussion about how
the results from the BNN can inform our understanding about the CCMI models
and observations. This interpretability investigation compared BNN inferred model
weights, bias and uncertainties with more traditional measures of model performance,
bias and similarity. Strong relationships were shown between uncertainty and data
availability, as expected, and between uncertainty and latitude. Polar regions exhibited
much higher uncertainty than tropical regions, showing that the BNN appropriately
represented uncertainties contained in the original ozone dataset used to train the
BNN. The BNN inferred bias matched the seasonality of CCMs’ bias well. There
were some indications to show that BNN inferred CCM weights were correlated with
CCM performance, but this was not consistent across all temporal and spatial scales.
However, similarity between BNN weights for known similar models, showed that the
BNN was capable of identifying similar models. As well as opening the ML black
box, this chapter further highlighted the complexity and difficulty in appropriately
quantifying model similarity and performance, as was discussed in Chapter 1. Although
the BNN displayed some understanding of model performance and similarity, its main
utility, and where it excels, is as an ensembling tool, not an ensemble analysis tool.

Chapter 5 presented a specific application of the Bayesian neural network
framework, extending it to infilling historic vertically resolved ozone, essential for
determining the depletion and recovery of ozone throughout the atmosphere. The
gridded infilled dataset that spans 1980–2010 and 500–0.3hPa addressed flaws in
previous infilled datasets that suffered from underestimated interannual variability
and trends in polar regions, caused by the difficulty in extrapolating over polar regions
and other large areas of missing data. The chapter presented comprehensive trend
analysis, using dynamical linear modelling, of all infilled vertically resolved ozone
datasets, demonstrating the importance of using principled infilling techniques.

As a whole, this thesis presented how our use of CCMs can be improved using ML
and data science methods, which account for the complexity and features of ensembles.
The developed tools improved our capabilities to forecast and hindcast stratospheric

119



ozone leading to datasets that are more accurate and uncertainty-aware than their
predecessors.

The ozone datasets and projections produced in this thesis will enable further and
more detailed investigation of stratospheric ozone. Continued creation of BNN fused
datasets, as and when new CCM ensembles and observations become available, will aid
not only stratospheric ozone monitoring for the determination of ozone recovery and
adherence to the Montreal Protocol, but also the important impacts on ozone depletion
and variability on climate, health and the chemical composition of the atmosphere. The
second phase of CCMI simulations are to be released in 2022, which simulate 1960–2016
offering an extension of the BNN into time before ozone monitoring satellites. It will
be interesting to see how the BNN handles larger uncertainties 20 years out-of-sample
and if the datasets it produces can offer useful and meaningful constraints on ozone
abundances pre-1980. Similarly, the increasing use of CCMs to investigate tropospheric
composition (e.g., Collins et al., 2017; Young et al., 2018) provides new possibilities
for using and testing BNNs and process-based weighted means, applications that will
require using point-based observations rather than previously used gridded observations
and other methodological innovation to account for the high temporal variability.

Analyses in this thesis have heavily relied upon observational datasets, particularly
of ozone. As the use of ML and data-driven approaches grows, the need for large and
accurate datasets will similarly grow, requiring continued addition to and maintenance
of observational records. With particular reference to ozone, it is particularly important
for differences between observational stratospheric ozone products (seen in Chapter 5)
to be reconciled, including the removal or correction of erroneous data that currently
exist in multiple datasets. Otherwise, ML approaches will learn to fit inaccurate data
and in turn produce inaccurate predictions. This of course is not a critique of just
ozone datasets, any data-driven method is liable to learn badly from erroneous data, so
an ongoing challenge in environmental data science is the curation of accurate datasets
for use with data-driven approaches.

Ensembles of environmental models and their outputs are and continue to be a
fundamental part of environmental science (IPCC, 2013b; WMO, 2018). Given the
continual increase in model participation, model complexity and reliance on analyses
of ensembles, the tools used to assimilate model output, analyse petabytes of data and
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validate model output need to continue improving. There is some community uptake in
more sophisticated ensemble methods. The most recent IPCC report notably considers
weighted model means of global mean temperatures, using methods similar to those
in Chapter 2. However, methods that account for variable model performance and
similarity are not broadly used throughout the report as communities lack a universal
and robust framework for weighting model projections.

The tools presented in this thesis, process based weighted means and the BNN
for ensembling models, are part of a wider landscape of environmental data science
methods and algorithms, often relying on ML, which are being developed to address
these challenges and bring new insight to environmental science. ML is not yet set to
replace large scale environmental models, although this research is underway (Schneider
et al., 2017), but it can quickly provide useful and impactful post-hoc analyses of large
observational and model datasets in a way that traditional analyses cannot (e.g., Ryan
et al., 2018; Nicely et al., 2020). Although the field of environmental data science
is growing, further work is required to establish its tools amongst those commonly
used by environmental scientists, including establishing best practices for handling
environmental data in ML applications and building reproducible and easy to use
community specific tools. This thesis suggested several best practices including how to
map geophysical coordinates onto coordinates that are more meaningful to ML tools,
how to rigorously test ML algorithms against irregular environmental data and how
to encode knowledge of physical systems into ML models.

These contributions, the thesis as a whole, and more broadly environmental data
science, are possible through collaborations across environmental science, atmospheric
modelling, ML and statistics. Collaborations provide a cross-disciplinary understanding
of ML tools and environmental data and problems and underpin many of the advances
in environmental data science. Careful balance is required in these collaborations,
as improving on the current environmental science standards is unlikely to require
state-of-the-art ML or novel statistical innovation. However, the collaboration that led
to the BNN in this thesis advanced both environmental science capability and state-of-
the-art ML. It is promising to see that so many institutions (industry and academic),
funding bodies and publishers are understanding of the need for collaborations and
are providing the necessary support.
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The process-based weighting methodology and the BNNs relied upon nudged CCM
runs where the model is forced to observed meteorology (Orbe et al., 2020). These
simulations are models’ best efforts at recreating the past and are therefore extremely
useful as they allow for direct comparison between observations and model output.
However, these types of simulations are not widely used by other environmental
modellers, such as climate modellers or oceanographers. To broaden the applicability
and flexibility of the BNN, future work is required to incorporate free running models
and by doing so, produce probabilistic projections. However, here the benefit of using
a Bayesian approach becomes an issue, as far out of sample projections would generate
large and uninformative uncertainties. Why would we expect the BNN to predict what
the weight of a model should be in 100 years time? To address this issue and enable
the BNN to make projections, I propose a reframing of the problem which requires less
extrapolation. Rather than asking how a model’s weight is expected to vary in time,
we can ask how we expect the model weight to vary dependent on physical parameters.
For example, in the case of stratospheric ozone, we could infer model weights dependent
on a combination of stratospheric temperatures, the amount of equivalent effective
stratospheric chlorine and other process-based measures. Weighting on physical and
modelled variables would require less, or in some cases no extrapolation, and give a
physiochemical sense to the weighting beyond the current spatiotemporal coordinates.
This approach blends the process-based weighting from Chapter 2 with the BNN and
is an area of active research currently.

ML is not a silver bullet that removes the need for process models or their ensembles.
Their grounding in physical and chemical processes and equations is still invaluable
for the exploration of the Earth system and its components. ML and data science
however, do provide us with better ways to use these model ensembles, improving the
robustness, accuracy and utility of their projections and predictions.
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Appendix A

Supplementary material for chapter 3:
Ensembling geophysical models with
Bayesian Neural Networks

A.1 Construction of ozone baselines

We remind the reader that all of these baselines use the same data for training, testing
and validation as the Bayesian neural network ensemble. This validation tests the
ability of the ensembling methods to interpolate and extrapolate, particularly over
regions of interest and sparse data.

A.1.1 Multi-model mean

This is the uniform weighting of all the 15 chemistry-climate models. The prediction
is therefore,

yMMM(x, t) =
1

15

15∑
i=1

Mi(x, t) (A.1)

where yMMM(x, t) is the multi-model mean prediction and Mi(x, t) is the i-th individual
model prediction.

123



A.1. Construction of ozone baselines

A.1.2 Weighted mean

Here the ensemble mean is constructed from model projections weighted by their skill
(in replicating observations) and their independence. This is based on work from
Knutti et al. (2017) and Sanderson et al. (2017). For an ensemble of N models, the
weight for model i (wi) is given by

wi = exp

(
− D2

i

niσ2
D

)
/

(
1 +

N∑
j ̸=i

exp

(
−

S2
ij

niσ2
S

))
, (A.2)

where D2
i is the squared difference between a model and observation averaged over all

space and time, S2
ij is the squared difference between models averaged over all space

and time, ni is the size of data used in constructing the weight, and σD and σS are
constants which allow tuning of the weighting. The weights wi are normalised to sum
to 1. The weighted prediction is therefore

yWM(x, t) =
N∑
i=1

wiMi(x, t). (A.3)

Values of σD and σS were found by minimising the difference between the weighted
prediction and the observations over the training data.

A.1.3 Spatially weighted mean

The ensemble is constructed much the same as the weighted mean presented above,
except that model weights vary in space. The weights are calculated

wi(x, t) = exp

(
− Di(x, t)

2

ni(x, t)σ2
D

)
/

(
1 +

N∑
j ̸=i

exp

(
− Sij(x, t)

2

ni(x, t)σ2
S

))
, (A.4)

and are used to generate the prediction,

ySWM(x, t) =
N∑
i=1

wi(x, t)Mi(x, t). (A.5)
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A.2. Hyperparameter details

A.1.4 Spatiotemporal kriging

We performed spatiotemporal kriging using an implementation of a stochastic
variational Gaussian process (SVGP) from GPFlow (Matthews et al., 2017). Due
to the size of the training data (1.8 million data points) we used a SVGP on 3 year
sections of observational data with 5000 inducing points per section. The kernel we
used was the product of a Matern3/2 kernel acting over latitude and time, and periodic
Matern3/2 kernel acting over longitude. We used an Adam optimiser implemented in
tensorflow to train the SVGP.

A.1.5 Bilinear interpolation

Bilinear interpolation over the training data was performed using the SciPy
function griddata: https://docs.scipy.org/doc/scipy/reference/generated/

scipy.interpolate.griddata.html.

A.2 Hyperparameter details

The pretrained model weights and the code to run the BayNNE for both the synthetic
and ozone experiments can be found here: https://anonymous.4open.science/r/

6bf08e5a-c909-45a3-be63-aa0f5ba187df/. Table A.1 shows the hyperparameters
chosen in the running of the BayNNE for both experiments.

The heteroscedastic loss function is prone to episodes of catastrophic forgetting. To
avoid these, we use large batch sizes, small learning rates and a large number of epochs
so that each neural network ensemble member may be stably trained till convergence.

The neural network ensemble for the 2 million datapoint ozone dataset were trained
across a cluster of 6 P100 GPUs. Each neural network needed 20 hours to be trained
till convergence and the entire ensemble needed 8 days of wall clock time (NOTE that
with a small tweak in the code post submission, the training time was reduced by an
order of magnitude).
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A.3. Derivation of loss function

Table A.1: Hyperparameter values and priors for BayNNE.
Synthetic Ozone

experiment experiment

Spatial coord scaling 2 2
Temporal coord scaling (month of year) 1 2
Temporal coord scaling (total months) 1 1
Number of physical models 4 15
Number of neural network ensemble members 50 65
Bias mean. prior 0 0
Bias std. prior 0.01 0.03
Noise mean prior 0.02 0.015
Noise std. prior 0.004 0.003
Number of hidden layers 1 1
Number of hidden nodes 100 500
Optimiser Adam Adam
Batch Size 2000 25000
Learning rate 5× 10−5 3× 10−5

Number of epochs 6000 125000

A.2.1 Neural network ensemble convergence

An important hyperparameter is the size of the neural network ensemble. We used
65 neural network ensemble members for the total ozone predictions. Figure A.1
demonstrates the convergence of the ensemble as early as an ensemble size of 30.
However, we ran a larger ensemble to ensure convergence.

A.3 Derivation of loss function

In the following, we derive the anchored ensembling loss function for the heteroscedastic
case. For the j-th neural network ensemble member in randomized MAP sampling,
we compute the MAP estimate corresponding to a recentered prior over parameters
θanc,j , P (θj) = N (θanc,j,Σprior). Here θanc,j is a sample from the original multivariate
normal prior over parameters, i.e. θanc,j ∼ N (µprior,Σprior).
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A.3. Derivation of loss function

Figure A.1: The distribution of negative log likelihood dependent on the (neural
network) ensemble size.

θMAP,j = argmaxθj
P (θj|D)

= argmaxθj
PD(D|θj)P (θj) (Bayes’ Theorem)

= argmaxθj
log(PD(D|θj)) + log(P (θj)) (log strictly monotonic increasing)

= argmaxθj
log(PD(D|θj))−

1

2
(θj − θanc,j)

TΣ−1
prior(θj − θanc,j) + const.

= argmaxθj
log(PD(D|θj))−

1

2
∥Σ−1/2

prior(θj − θanc,j)∥22 (diagonal prior cov.)

If we specify the data likelihood for our regression task assuming i.i.d. observations and
additive heteroscedastic Gaussian noise i.e., PD(D|θj) =

∏ND

i=1N (ŷj(xi, ti),σ
2
j (xi, ti)),

we obtain
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A.4. Extra ozone experiment plots

θMAP,j = argmaxθj
− 1

2

ND∑
i=1

(yi − ŷj(xi, ti))
2

σ2
j (xi, ti)

−
ND∑
i=1

log(σj(xi, ti)) + const.

− 1

2
∥Σ−1/2

prior(θj − θanc,j)∥22

= argminθj

ND∑
i=1

(yi − ŷj(xi, ti))
2

σ2
j (xi, ti)

+

ND∑
i=1

log(σ2
j (xi, ti)) + ∥Σ−1/2

prior(θj − θanc,j)∥22

(× -2 throughout)

A.4 Extra ozone experiment plots

In the main text we highlighted the models with the most interesting features and
highest weights. For completeness here, we include a wider range of plots looking at
model weights and modelled bias and uncertainties, for the ozone experiment.

A.4.1 Bias

Figures A.2 and A.3 show the modelled bias averaged in time and space respectively.
Bias is seen to be negative over polar regions especially the southern polar region and
southern mid latitudes.
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Figure A.2: Temporally averaged modelled bias.
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A.4. Extra ozone experiment plots
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Figure A.3: Spatially averaged modelled bias.

A.4.2 Epistemic uncertainty

Figures A.4 and A.5 show the epistemic uncertainty averaged in time and space
respectively. Epistemic uncertainty is highest at polar regions. Epistemic uncertainty
increases for regions with sparse or no data including 2007–2010 (used to validate
extrapolation) and 1993–1997 where there is a greater sparsity of data. This can be
seen clearly in Figure A.5.
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Figure A.4: Temporally averaged epistemic uncertainty.
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A.4. Extra ozone experiment plots
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Figure A.5: Spatially averaged epistemic uncertainty and the number of training points
per month.

A.4.3 Average model weight

Figure A.6 shows the average model weight for all 15 chemistry-climate models used
in the ozone experiment.
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A.4. Extra ozone experiment plots

Figure A.6: Temporally averaged model weights for all 15 chemistry-climate models.
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Appendix B

Supplementary material for chapter 5:
A continuous vertically resolved ozone
dataset from the fusion of chemistry
climate models with observations
using a Bayesian neural network

B.1 Training details

Table B.1: Hyperparameters used in the vertical ozone BNN training
Hyperparameter Value
No. of NNs in BNN ensemble 48
Hidden layer size 500
Learning rate 0.0001
Optimiser Adam
No. epochs 100000
Batch size 7500
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