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Abstract: The application of marine bonded hoses has increased in recent times, due to the need for 
more flexible conduits and flexible applications in the offshore industry. These marine structures 
include Catenary Anchor Leg Moorings (CALM) buoys and ocean monitoring buoys. Their attach-
ments include floating hoses, submarine hoses and submarine cables. However, the structural per-
formance challenges of a CALM buoy system from its hydrodynamics water waves and other global 
loadings, have led to the need for this investigation. In this study, a detailed presentation on the 
motion characterisation of the CALM buoy hose system is presented. The CALM buoy is a structure 
with six degrees of freedom (6DoF). A well-detailed experimental presentation on the CALM buoy 
hose model conducted in Lancaster University Wave Tank is presented using three novel tech-
niques, which are: a digital image captured using Imetrum systems, using an Akaso 4K underwater 
camera, using wave gauges arranged in a unique pattern and using underwater Bluetooth sensors. 
The buoy model was also found to respond uniquely for each motion investigated under water 
waves. The results showed that the higher the profile, the higher the response of the buoy. Thus, 
this study confirms the existence of flow patterns of the CALM buoy while floating on the water 
body. 

Keywords: ocean waves; hydrodynamics; catenary anchor leg mooring (CALM) buoy; marine riser; 
marine hose; motion characterisation; CALM buoy model test; ocean engineering; offshore struc-
ture; floating offshore platform (FOS) 
 

1. Introduction 
The need for more energy resources from fossil fuels has led to the development of 

new floating offshore structures (FOS) for more explorations in different water depths [1–
6]. These structures are induced by water waves from shallow waters to intermediate wa-
ters and deep waters [7–13]. This has led to the increase in the trend for the need for lighter 
marine structures and more flexible ones that can be easier for fluid transportation, such 
as marine risers [14–18]. Several innovations on FOS have been reported in ocean engi-
neering, particularly Catenary Anchor Leg Moorings (CALM) buoys [19–26]. These buoys 
are attached with floating hoses, submarine hoses and reeling hoses. The stability of the 
buoy will also determine the lifespan of the marine buoys and mooring lines. However, 
these marine bonded hoses are challenged with different structural issues, despite being 
very efficient in fluid delivery [27–33]. 

Thus, there is the need to investigate the motion characterisation of CALM buoy sys-
tems experimentally. Currently, the design guidelines for these marine hoses are based 
on industry standards like API 17K, GMPHOM OCIMF 2009, DNVGL and ABS specifica-
tions [34–39]. These hoses have some cons, ranging from a shorter service life, kinking, 
matrix cracking, damage from vessel motion, damage from hose response (snaking 
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phenomenon and perturbations), damage from impact (line clashing), damage from dis-
connection (accidental operation) and vibration to other structural challenges [40–44]. On 
the other hand, the buoys have motion responses that are relatively due to the wave loads 
and hydrodynamic properties on the FOS [45–50]. In real-life applications of offloading 
and loading operations in offshore oil terminal systems are made of single point moorings 
(SPM), which are made up of three main mooring configurations: Articulated Single Point 
Moorings (ASPM), Single Anchor Leg Moorings (SALM) and Catenary Anchor Leg Moor-
ings (CALM) [51–55]. The SPM Buoy is a buoy that is securely anchored to the seabed by 
multiple mooring lines/anchors/chains, allowing liquid petroleum product cargo to be 
transferred. A bearing system on the buoy allows a section of it to rotate around the 
moored geostatic portion. The vessel will freely weathervane all around the geostatic sec-
tion of the buoy while it is moored to this rotating part of the buoy with a mooring attach-
ment. The buoy body, mooring and anchoring components, product transfer system and 
ancillary elements make up the SPM system. Static legs connected to the seabed under the 
ocean secure the buoy body in place. The body is attached to the offloading/loading tanker 
by a revolving portion above the water level. The Main Bearing connects these two sec-
tions. For this same arrangement, the moored tanker will weathervane freely around the 
buoy to find a secure spot. The definition of the buoy is determined by the form of bearing 
used and the separation of the rotating and geostatic components. The buoy’s size is de-
termined by the amount of counter buoyancy needed to keep the anchor chains in place, 
and the anchor chains are determined by environmental factors and the size of the vessel. 

Some experimental investigations have been conducted on the CALM buoy by vary-
ing the buoy skirts [56–60]. Edward & Dev [60] accessed the motion response of the CALM 
buoy with some empirical estimation on the viscous damping. Cozijn et al. [61] conducted 
an experiment using a 1:20-scaled CALM buoy model and found drag coefficient values 
and damping data for pitch, roll and heave motions. These were also used to compute the 
coefficient of additional mass, which is 1.5 for CALM buoy hoses [61,62]. However, similar 
studies on buoy motion have been conducted using computational fluid dynamics (CFD) 
[63–65]. In principle, CFD models are developed using different discretisation methods 
like interpolating element-free Galerkin (IEFG), the Boundary Element Method (BEM) 
and the Ciarlet–Raviart mixed finite element method (FEM) and finite volume methods 
[66–68]. Figure 1 shows a CALM buoy maintained by Bluewater with two hawsers at-
tached to the FPSO for loading/offloading operations. 

 
Figure 1. CALM buoy with two hawsers attached to the FPSO for loading and offloading operations 
(reproduced, with permission, courtesy: Bluewater; Source: Bluewater, [69]). 
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In this article, an experimental investigation was conducted on the motion character-
isation of a CALM buoy under water waves. Section 1 presents some introduction to this 
buoy study. Section 2 presents the experimental model of the CALM buoy and the mate-
rials and methods. Additionally, some assumptions on the buoy with a skirt and buoy 
with the hose model were presented. Section 3 presents the results and discussion, while 
the concluding remarks on the CALM buoy study are given in Section 4. The CALM buoy 
is a floating buoy designed to operate in six degrees of freedom (6DoFs). It is usually at-
tached to a tanker via hawsers and a floating hose during loading operations. 

2. Materials and Methods 
The experimental modelling aspect is presented in this section on the materials uti-

lised in this experiment and the methodology. The materials included the buoy, subma-
rine hoses, mooring lines and cameras, as discussed in the subsequent subsections. 

2.1. Experimental Setup 
For the experiment, the Lancaster University Wave Tank facility was used in all the 

experimental investigations. The CALM buoy test model was first tested for buoyancy, 
and leakage; then, it was properly ballasted. It was then positioned 5.5 m from the wave 
maker along the central axis of the wave tank. Figure 2 is the flow direction across the 
CALM buoy model’s hull. The buoy model was then moored using 4 steel chain mooring 
lines, and 4 wave gauges were attached to the buoy skirt, as in Figures 7–10. The steel 
chain mooring lines were later replaced with polyester lines, as they suitable. The anchors 
were initially scree points on the floor of the wave tank. It was later replaced by using 
some marked “5kg” weights as anchors for each of the 4 moorings. Video recordings were 
also collected for each run using an underwater camera. It recorded the behaviours of the 
hoses (submarine and floating) and the CALM buoy for different frequencies. The exper-
imental setup shows the Lancaster University wave tank in Figure 3. The first set of the 
experiment was carried out using a flat seabed for different frequencies. Wave gauges 
were attached to obtain the readings using a setup with LabView NXG 5.1. LabView was 
interfaced with a NI-DAQmx Device called National Instruments DSUB Model NI 9205. 
End fittings were connected at both ends of the two hoses connected to the buoy model 
underneath it (submarine hoses) and one hose on the side (floating hose). Mooring lines 
made of 20-mm-diameter steel chains were used, and one end was anchored to the floor 
while the other end was to the skirt of the model for the CALM buoy. The methodology 
for the experiment will be presented in Section 2.10. 

 
Figure 2. Illustration of the flow direction across the CALM buoy model’s hull. 
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Figure 3. Test basin at the Lancaster University Wave Tank facility showing the location of the buoy 
and wave gauges used in the experiment. 

2.2. Lancaster University’s Wave Tank 
The experimental setup for the CALM buoy model is shown in Figure 3. The detailed 

setup for other components are presented in Sections 2.3–2.10. The dimensions of the 
wave tank measure at 15 m lengthwise, 2.5 m in width and 1.7 m in depth. A schematic of 
the key features, dimensions, wave tank details, wave gauge layout, model supporting 
structures and model mounting area on the wave tank is illustrated in Figure 4. The beach 
contains a 2.5-m-lengthwise space, leaving a 12.5-m-lengthwise space available for use in 
the experiments. Also, the depth was adjusted to 1.0 m. The waves are generated using 
force feedback control through seven (7) flappy-type paddles, designed by Edinburgh De-
signs, UK [70]. Each of the paddles has the capacity to produce sinusoidal waves with a 
frequency range of 1.5–0.5 Hz, while the amplitudes are as high as 100 mm. They are also 
capable of creating data files from both irregular and regular waves, depending on the 
input configuration. The wave tank facility has been used in validated studies [71–74]. 

 
Figure 4. Schematic of the key features, dimensions, wave tank details, wave gauge layout, model 
supporting structures and model mounting area of the Lancaster University Wave Tank. 
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2.3. The Buoy Model 
The buoy model is developed by considering some model assumptions, including 

that the buoy is cylindrical, with a skirt attached to it and the skirt has a thin thickness 
from solid plates. The fabrication of the buoy model was obtained using the modelling 
rules. The parameters for the buoy applied in the design analysis are presented in Table 
1. The model was scaled down, and the model test was constructed with two submarine 
hoses attached underneath the buoy and one floating hose on the side, as shown in Figure 
5a,b. The results of the motion response of the CALM buoy carried out experimentally are 
presented in Section 3, respectively. The fabrication of the buoy model was carried out in 
Lancaster University Engineering Department’s Mechanical Workshop. The considera-
tions used included light metallic buoy materials, buoyancy, draft line, ballasting and 
scaled-modelling rules. To ballast the buoy, an opening was created at the top which was 
used to fill the ballast. The ballasting material used was a measured amount of sharp sand. 
The parameters for the buoy used in the experimental study are presented in Table 1. 

Table 1. Parameters of the model test buoy. 

Parameters Model Test 
Shape of buoy Cylindrical 
Depth of Water (m) 0.90 
Diameter of Skirt (m) 0.68 
Draft size (m) 0.15 
Mass of Buoy (kg) 0.25 
Buoy’s Height (m) 0.20 
Diameter of Buoy’s body (m) 0.50 

 

  
(a) (b) 

Figure 5. Images of (a) the CALM buoy test model fabrication showing a skirt with the underneath 
hoses and (b) the buoy model with floating hoses and attached wave gauges on the buoy skirt. 

2.4. Mooring Lines & Fittings 
The CALM buoy system was moored with two sections of steel chain moorings. The 

mooring arrangement was made up of four (4) mooring lines modelled as catenary moor-
ing lines. The moorings are set up on the buoy and fixed via fairings attached on its skirt, 
as seen in Figure 6. One end of the mooring line was attached to the skirt of the cylindrical 
buoy, while the other end was anchored to the seabed. The schematic for the setup of the 
model using chain moorings is presented in Figure 7. The mooring lines had the same 
stiffness and were 90° apart, as depicted in Figure 7. 



J. Mar. Sci. Eng. 2022, 10, 204 6 of 25 
 

 

  
(a) (b) 

Figure 6. Setting up the moorings on the buoy model, showing (a) the skirt with attached wave 
gauge fittings by mooring line fairleads, and (b) the polyester rope and the chain mooring lines used 
on the moorings during the experiment. 

 
Figure 7. Arrangement of moorings showing (a) a crown view of the buoy and (b) a side elevation 
view of the buoy. 

2.5. Hoses and End Fittings 
A floating hose was also attached on the side to investigate the behaviours of floating 

hoses, such as snaking. The hose material used in the model was about 20 mm in diameter, 
with minimal flexible stiffness, to depict an offshore hose behaviour. Four end fittings 
were also prepared for the hoses, as shown in the Figures 6 and 8a. As can be observed in 
this study that the material chosen for the floating hoses reflects real-life applications [69]. 
These fittings are to ensure that the investigation on the hose behaviour relative to the 
water waves can be investigated in real time. 
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(a) (b) 

Figure 8. Experimental setup showing (a) floating hose attached on the buoy with the attached wave 
gauges on the buoy skirt and (b) the Imetrum system using DCI for data collection during the decay 
test at Lancaster University Wave Tank. 

2.6. Imetrum DIC (Digital Image Correlation) System 
The experiment was conducted using three different novel techniques, which are: a 

digital image capturing using Imetrum systems, using wave gauges arranged in a unique 
pattern and using underwater Bluetooth sensors. The Imetrum DIC system is shown in 
Figure 8b. The study was analysed with a digital image capturing (DIC) mechanism called 
the Imetrum system [75,76]. This system comprises two cameras and one noncontact sys-
tem. It is designed for application in mechanical investigations fluid- and light waves-
related. The Imetrum system can be used to capture both static and dynamic motions. It 
has been applied in capturing motion behaviour and structural investigations. Different 
researchers have applied the Imetrum system in obtaining results on deformation, strain, 
tension, compression and displacement, as well as for other material tests [77–79]. The 
experiment setup details are presented in Sections 2.1 and 2.2. 

2.7. Wave Gauges and Readouts 
The experiment was also conducted using some wave gauges that were calibrated 

with crocodile clips with the right polarity and attached to the lead ends on the model 
test. The maximum signal input was 5 V for each of the 10 wave gauges (WG0, WG1, WG2, 
… WG9). This also aided the instrumentation as an interface to obtain the results. A net-
work was developed in LabView [80,81] to enable the wave gauges to communicate with 
the readout devices and the NI DAQ sets. The wave gauges are shown in Figure 8a, and 
the results obtained are presented in Section 3. 

2.8. WIT Bluetooth Gyro Underwater Motion Sensors 
Figure 9 shows the two BWT901CL WIT Motion’s Bluetooth gyro sensors [82] utilised 

in this experiment. The devices were paired to a Samsung Galaxy 8 smartphone’s mini-
IMU app. The Bluetooth devices had to be charged via a USB cable system before using 
them. The results obtained using these devices are given in Section 3. This smartphone 
operates on android software, and the WitMotion sensor vendors provided the software 
download link [82,83]. The WitMotion WT901B sensor has a 10-Axis AHRS IMU Sensor 
accelerometer, gyroscope, angle measurement, magnetometer and barometer MPU9250 
that works on PC, Android and MCU and, thus, was suitable for use. The Samsung Galaxy 
8 is a smartphone that runs on an Android Operating System [84,85]. The smartphone was 
more flexible than using the laptop PC software running on the Windows Operating 
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System. The android application called mini-IMU was downloaded on the phone and on 
the laptop PC (personal computer) running on Microsoft Windows 10. 

 
Figure 9. Experiment using 2 underwater Bluetooth WIT motion sensors paired on a Samsung Gal-
axy 8 smartphone, showing (a) the PC for running the wave tank calibration software and (b) the 
interface of the Samsung Galaxy phone displaying the WIT motion’s mini-IMU app. 

2.9. Underwater 4K Camera 
Two AKASO EK7000 waterproof underwater cameras with Ultra-High Definition 

(UHD) 4K image quality with 170° wide views [86] were used to record the images and 
videos of the experimental runs. Each camera was positioned strategically to obtain the 
target images and video recordings for postprocessing of the motion study with respect 
to the time response. The image of the AKASO camera utilised is represented in Figure 
10a. The underwater views of the CALM buoy and submarine hoses are shown in Figure 
10b. The reflection of the buoy skirt can be seen in Figure 10b which is an issue with a 
wave tank with smaller size in comparison to the size of the buoy model. To reduce the 
effect of this reflection, a dark surface was used on one side of the wave tank. 

  
(a) (b) 

Figure 10. Setting up the CALM buoy model, showing (a) the underwater camera and top view of 
the buoy, and (b) underwater view of the buoy and submarine hoses (with reflection of buoy’s skirt). 

(a) (b) 
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2.10. Methodology 
The experimental setup was conducted as given in Section 2.1. The methodology for 

the experiments was based on the phases. During this research, four different phases of 
the experiment were conducted. The first phase was the buoy motion study, while the 
second was a hose response study. The third phase was a snaking hose study, while the 
fourth was a reeling hose connection. The snaking hose study was investigated using the 
idealisation from the marine hose developments reviewed in earlier studies [28–31]. 

In the experimental model presented in Figures 3–6, the floating hose was attached 
from a CALM buoy model to an FPSO model. It can be observed that the snaking phe-
nomenon was evident, which was due to the water waves. Additionally, the floating hose 
model was 20 mm in diameter and made of a flexible material to reflect the typical marine 
bonded hoses. It was attached to another FPSO model. Thus, this model was applied on 
the snaking hose study. The findings on the buoy motion study are detailed in Section 3. 
However, in the present paper, both the results of the hose snaking and the hose response 
studies are not included, but in another paper by the authors. The present results concen-
trated on the buoy motion, using the buoy attachments with hoses and the mooring lines. 

2.11. Engineering Application: Numerical Studies 
The engineering application of the modelling was carried out numerically in previ-

ous studies using the CALM buoy model in two configurations, namely the Lazy-S [87] 
and Chinese lantern [88] configurations. Figure 11 shows the typical numerical modelling 
of a CALM buoy showing two different motion positions of the buoy model in Orcaflex 
11.0f. It was developed using a finite element model (FEM) in Orcina’s Orcaflex as a model 
in the Chinese lantern configuration to confirm the engineering application, as detailed in 
the reference literature [89–92]. From these studies, the engineering application of the 
model was numerically conducted to reflect its applicability and some validity. Another 
application was a sea trial testing using S-lay configuration published in Wang’s study 
[93]. In the present study, further analysis experimental studies were conducted. The rec-
orded results were also postprocessed to confirm the consistency in the CALM buoy hose 
motion response, as presented in Section 3. The analysis of the results from this research 
are based on the experimental output. However, details were still missing when consid-
ering the hydrodynamics theory for the boundary value problem. 

  
(a) (b) 

Figure 11. Numerical model of submarine hoses attached to a floating buoy in Orcaflex 11.0f, show-
ing two different motion response positions for the CALM buoy system, in (a) position 1 at time 1 
and (b) position 2 at time 2, under the same environemental conditions. 

2.12. Experimental Data Postprocessing 
The experiment conducted in the wave tank was also videoed using two AKASO 

EK7000 underwater action cameras with 4K HD capabilities. They were positioned at two 
different angles, one on the side while the other camera was underneath to obtain a video 
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of the buoy and hose motions. To adequately access the motion response, some postpro-
cessing was conducted on the recorded video output using Tracker version 6.0.2 [94–96]. 
From the captured responses and results in Figures 12 and 13, it can be observed that, for 
different profiles, the floating buoy had different responses captured per time. 

 
Figure 12. Resulting plots from the experiment on the model using Tracker postprocessing software, 
showing the profile positions. 

 
Figure 13. Analysis from the experiment using Tracker postprocessing software for profile A1. 

3. Results and Discussion 
The experimental results on the motion response of the CALM buoy with connected 

submarine hoses and floating hose are presented in this section. 
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3.1. Results from Wave Gauges and Readout 
The wave parameters run on the wave tank, and the experimental model is used to 

obtain the results on the influence of the wave angles, amplitude and frequency obtained 
using wave gauges, as shown in Figure 8. Figure 14 gives the waveform results obtained. 

 

 

 

Figure 14. Results from the experiment showing the effect of (a) the wave angles, (b) frequency and 
(c) amplitude. 
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From the results obtained on the wave forms in Figure 14a, a variation in the wave 
angles had varying amplitudes in the wave forms. The effect of frequency from the exper-
iment as described was also conducted as presented in Figure 14b. Using the same ampli-
tude of 0.04 m, the highest frequency was 1.1 Hz, while the lowest was 0.8 Hz. The effect 
of the amplitude is seen in Figure 14c, as the higher the amplitude, the higher the wave 
form. 

3.2. Results from Wave Tank’s Underwater Motion Sensors 
The experiment was setup as described in Section 2.8 using the Bluetooth underwater 

sensors paired to a Samsung Galaxy 8 smartphone, as shown in Figure 9. However, the 
phone was more flexible to use. The phone was paired to the Bluetooth device BWT901CL, 
and then, the waves were run for the desired waves, as in Tables 2 and 3. The wave pa-
rameters run on the wave tank are presented in Table 2, as obtained using the wave tank 
interface in Figures 3 and 9. The results obtained are presented in this section. 

From Figure 15, three equations representing the profiles on: (a) the wave frequency 
versus period, (b) surge response and (c) heave response were obtained as follows: 𝑦 = 0.3339𝑥ଶ − 1.4905𝑥 + 2.1487, 𝑅ଶ = 0.9986 (1)𝑦 = −0.0074𝑥ଶ + 0.0333𝑥 − 0.0208, 𝑅ଶ = 0.998 (2)𝑦 = 0.0618𝑥ଶ − 0.137𝑥 + 0.077, 𝑅ଶ = 0.9413 (3)

However, further processing of the motion response against equations of motion was 
useful in obtaining the terms for the unknowns in each equation. Further hose motion 
response studies can be found in the literature [73,74]. 

In Table 2, it is noteworthy to add that these parameters were used based on the 
calibrations on the Lancaster University Wave Tank at a wave frequency of 1 Hz. The 
wave tank has the capacity for both tidal waves and ocean waves; however, the latter was 
utilised in this experiment. Table 3 presents the results of the experiment using a single 
wave direction, and the flow was calibrated for regular waves. 

Table 2. Parameters for the hydrodynamic experiment on a wave tank. 

Parameters Amplitude Angle Frequency Distance Max Runtime 
Value 0.078 0.0 1.0 5.0 64.0 
Unit m Degree (o) Hz m secs 

Table 3. Results of the maximum amplitude during the experimental test. 

Parameters for the Wave Max Displacement 
Frequency, f (Hz) Period, T (s) Surge (m) Heave (m) 
0.5 2.0 0.01506 0.04660 
0.6 1.6 0.01301 0.02640 
0.7 1.4 0.01150 0.00190 
0.8 1.2 0.00825 0.00240 
0.9 1.1 0.00633 0.00260 
1.0 1.0 0.00465 0.00220 
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Figure 15. Result plots from the experiment on the model under the maximum displaced amplitude 
showing (a) the wave frequency versus period, (b) surge response and (c) heave response. 
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3.3. Results from DIC Using Imetrum System 
The experiment was set up and also carried out as described in Section 2. The wave 

parameters run on the wave tank are presented in Table 2, as obtained using the wave 
tank interface in Figures 3 and 9. Table 3 presents the results of the experiment using a 
single wave direction, and the flow was calibrated for regular waves. The results of the 
experimental model were obtained with two methods: using the wave gauges via Lab-
View and, secondly, via the Imetrum system for the heave and surge of the CALM buoy 
system. The motions in the X and Z directions were studied, as defined in Figure 2. The 
Imetrum system was used to perform a motion study in the section based on a method 
called the digital image capturing (DIC) methodology. The buoy had spots marked on it 
that were captured during the runup and used to obtain responses against positions per 
time. The wave runup data in Table 3 were used to obtain the plots in Figures 16–21. 

 
Figure 16. Surge motion for the decay test of the CALM buoy using the DIC with the Imetrum sys-
tem for a 62-s run. 

 
Figure 17. Heave motion for the decay test of the CALM buoy using the DIC with the Imetrum 
system for a 62-s run. 

The decay tests conducted in this section show the motion response for different mo-
tion studies conducted under three different run times of 62 s and 80 s. As observed in 
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was undertaken in 62 s. As recorded in the surge motion in Figure 16, the surge was the 
highest in reference 4 at 2117 m at 5.7 s. As recorded in the heave motion in Figure 17, the 
heave was also consistent for the five (5) reference points obtained and was also the high-
est in reference 4 at 1441 m at 5.3 s. As recorded in the roll motion in Figure 18, the heave 
was also consistent for the five (5) reference points obtained and was also the highest in 
reference 4 at 2.3 degrees at 5.4 s. The next set of runs were undertaken in 82 s. As recorded 
in the surge motion in Figure 19, the heave was also consistent for the five (5) reference 
points obtained and was also the highest in reference 4 at 2193 m at 2.7 s. As recorded in 
the heave motion in Figure 20, the heave was also consistent for the five (5) reference 
points obtained and was also the highest in reference 1 at 1511 m at 2.2 s. Lastly, the heave 
motion in Figure 20 showed that the heave was consistent for the five (5) reference points 
obtained and was also the highest in reference 2 at 1.5 degrees at 2.3 s. Additionally, this 
confirmed the buoy response characteristics, as considered during the normal test run and 
the decay tests. The plots showed consistency with the lines of the best fit and the equa-
tions on these relationships. On the roll motion given in Figure 21, the five (5) reference 
points obtained showed a closed correlation for their responses. It could be observed that 
the response amplitude from the wave on the CALM buoy hoses was consistent. The mo-
tion video data from the experimental study was further postprocessed, as presented in 
Section 3.4. 

 
Figure 18. Roll motion for the decay test of the CALM buoy using the DIC with the Imetrum system 
for a 62-s run. 

 
Figure 19. Surge motion for the decay test of the CALM buoy using the DIC with the Imetrum sys-
tem for a 80-s run. 
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Figure 20. Heave motion for the decay test of the CALM buoy using the DIC with the Imetrum 
system for an 80-s run. 

 
Figure 21. Roll motion for the decay test of the CALM buoy using the DIC with the Imetrum system 
for an 80-s run. 

3.4. Results from Tracker Postprocessing 
The recorded video from this experimental study was postprocessed, as detailed in 

Section 2.12. The postprocessing on the recorded output was conducted via Tracker ver-
sion 6.0.2. From the captured responses and results in Figures 22 and 23, it can be observed 
that, for different profiles, the floating buoy has different responses captured per time. 
Tables 4 and 5 present the result profiles for Profiles A and B, respectively. It shows that 
the Luna axis increases as the baseline axis, x, decreases. This shows a decay rate of the 
motion response, as in Section 3.3. It was observed that the profiles have different sinus-
oidal plots on the wave response. Figures 22 and 23 give the result plots from the experi-
ment on the buoy model under the maximum displaced amplitude. In the results in Figure 
22, the wave response to the four selected profiles: A, A1, B and C are presented. It shows 
that each profile has a different motion response relative to the selected position of the 
profile based on the coordinate positions. Additionally, the result of the postprocessing in 
Figure 22 shows sinusoidal plots with the least trough seen as a drop within the range of 
1.1 m–1.4 m, implying that the motion response is time-dependent for a free-floating buoy. 
From the plot in Figure 23, it can be noticed that the rotation per time for each frame in-
creases for the same angle when using 1.57°. This confirms the motion behaviour of the 
buoy under water waves. 
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Figure 22. Result plots from the experiment for profiles A, A1, B and C. 

 

Figure 23. Plot from the experiment per frame increment for the same angle using 1.57°. 

Table 4. Data analysis from the experiment using Tracker postprocessing software for Profile A. 

Horizontal, n Vertical, x Vertical, Luna 
0 363.5 172.9 
1 362.5 173.9 
2 361.5 170.0 
3 360.5 171.0 
4 359.5 149.4 
5 358.5 128.4 
6 357.5 121.8 
7 356.5 126.8 
8 355.5 117.2 
9 354.5 102.2 
10 353.5 125.5 
11 352.5 162.5 
12 351.5 238.9 
13 350.5 235.4 
14 349.5 227.4 
15 348.5 224.6 
16 347.5 218.3 
17 346.5 215.5 
18 345.5 213.7 
19 344.5 215.1 
20 343.5 215.5 
21 342.5 215.6 

22 341.5 212.8 
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Table 5. Data Analysis from the experiment using Tracker postprocessing software for Profile B. 

Horizontal, n Vertical, x Vertical, Luna 
0 441.5 239.2 
1 440.5 250.3 
2 439.5 250.0 
3 438.5 245.2 
4 437.5 238.6 
5 436.5 235.6 
6 435.5 227.6 
7 434.5 220.6 
8 433.5 214.6 
9 432.5 212.6 
10 431.5 206.4 
11 430.5 203.4 
12 429.5 201.4 
13 428.5 199.4 
14 427.5 199.6 
15 426.5 199.6 
16 425.5 192.5 
17 424.5 188.5 
18 423.5 180.4 
19 422.5 180.4 
20 421.5 175.6 
21 420.5 179.6 
22 419.5 184.9 

3.5. Discussion 
The motion characteristics of a CALM buoy hull structure have been studied experi-

mentally. Figure 13 gives the result plots from the experiment on the buoy model under 
the maximum displaced amplitude, showing (a) the wave frequency versus period, (b) 
surge response and (c) heave response. Decay tests were also conducted in Section 3.3. It 
showed the motion response for different motions conducted under two different run 
times of 62 s and 80 s. From the results presented in Figures 16–21, it could be observed 
that the motion behaviour of the CALM buoy hose system was recorded from the experi-
ment. In the results in Figure 22, the wave response to the four selected profiles: A, A1, B 
and C are presented. It was observed that the profiles had different sinusoidal plots on 
the wave response. However, further study on the research is recommended to look at 
two forms of motion analysis: vortex-induced motion, which is caused by resonance from 
reciprocating shed vortexes, and wave-induced motion, which is caused by the dynamism 
of the wave characteristics. The wave–current interactions and wave-induced motion 
have been conducted experimentally. In this research, the motions caused by the hydro-
dynamic loads were studied at the wave tank facility of Lancaster University. Since the 
buoy had a smaller reciprocating amplitude than larger floating structures like semisub-
mersibles, it can be assumed that it had a better vortex-induced motion (VIM) response. 
This could be due to a number of factors, including the geometric features of the buoy’s 
diameter, the geometric shape and the skirt positioning and mooring configurations. Un-
der regular waves, the wave-produced motions showed a modest response, and the heave 
motion was found to be inversely proportional to the draught size. It is crucial to note that 
the results obtained from the Lancaster University Wave Tank facility were used for the 
experiment. The study results could be used for validation purposes in further studies. It 
can be observed in the results in this section that the buoy motion changes the behaviours 
relative to the water waves on both the buoy and the hoses. 
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The motion video data from the experimental study was further postprocessed. This 
motion postprocessing shows that the responses are consistent on different profiles for 
the hydrodynamic phenomenon, particularly from the high surge response. For the re-
sults from Section 3.4, it could be observed that the surge and heave motions increased as 
the time increased. Additionally, this confirmed the buoy response characteristics, as con-
sidered during the normal test run and the decay tests. The plots showed consistency with 
the lines of best fit and the equations on these relationships. From the postprocessing re-
sults using Tracker software, some tables were generated and used to create plots of the 
profile response per time. This showed stable behaviour of the floating buoy under the 
time investigated. This study can be further developed by using some comprehensive for-
mulations of the buoy for more understanding on the stability and dynamics behaviours 
of floating buoys. 

4. Concluding Remarks 
In this research, an experimental study on the motion characterisations of a CALM 

buoy under water waves was investigated. Some background on the experimental model 
for the CALM buoy system was presented in Section 2. However, special attention was 
given to the CALM buoy and the skirt. The results showed peculiar characteristics that 
should be considered in the design due to the drag and damping implications. The results 
of the experiment were presented on the motion characterisation study. Some discussions 
were included on the engineering application of the system with numerical computations 
in earlier studies. This study is relevant for enabling engineers to appropriately design 
CALM buoy systems using parametric information on hose behaviour, buoy motion, buoy 
geometry, oceanic data and other environmental conditions. 

The model highlights included the following: firstly, an experimental framework was 
presented on motion characterisation for the CALM buoy model. Secondly, there was a 
well-detailed experimental presentation on the CALM buoy hose model conducted at the 
Lancaster University Wave Tank facility. Thirdly, three different novel techniques were 
presented, which were: a digital image capturing using the Imetrum system using wave 
gauges arranged in a unique pattern, using AKASO underwater 4K UHD action camera 
and using WitMotion underwater Bluetooth sensors. Fourthly, there was an experimental 
study on the motion scenario from the motion response study on wave angles and wave 
amplitudes from the CALM buoy hoses. Lastly, a prediction of the CALM buoy’s motion 
characteristics was presented from the study from postprocessing using Tracker software. 

The study presented response profiles based on the experimental predictions. From 
an offshore mechanical point of view, the motion characterisation phenomenon was con-
firmed to exist as a result of the response from the water waves and other global loads on 
the CALM buoy. The study showed more dimensions of the CALM buoy in a water body 
and buoy motion of the marine hose. The study also showed the wave forces acting on the 
CALM buoy model. This has been confirmed with previous studies by the authors using 
the diffraction and potential theories. Thus, this study will assist in both the manufactur-
ing and installation of CALM buoys. The buoy model was also found to respond uniquely 
to each motion investigated under water waves. The results showed that the higher the 
profile, the higher the response of the buoy. Thus, this study confirmed the existence of 
flow patterns on the CALM buoy while floating on the water body. Further study is rec-
ommended with engineering application on marine hoses using the Orcaflex FEM, which 
could be experimentally validated. Other studies include the numerical fluid study or vor-
tex flow effect on the buoy using CFD. 
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Abbreviations 

θ Angle to the Horizontal Axis 
3D Three-Dimensional 
6DoF Six Degrees of Freedom 
ABS American Bureau of Shipping 
ASPM Articulated Single Point Moorings 
BEM Boundary Element Method 
CALM Catenary Anchor Leg Mooring 
CB Cylindrical Buoy 
CCS Cartesian Coordinate System 
CFD Computational Fluid Dynamics 
CMS Conventional Mooring Systems 
DIC Digital Image Correlation 
DNVGL Det Norkse Veritas & Germanischer Lloyd 
F.C.T Federal Capital Territory 
FEM Finite Element Model 
FOS Floating Offshore Structure 
FPSO Floating Production Storage and Offloading 
FSO Floating Storage and Offloading 
GMPHOM Guide to Manufacturing and Purchasing Hoses for Offshore Moorings 
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ID Inner Diameter 
IEFG Interpolating Element Free Galerkin 
MSL Mean Sea Level 
OCIMF Oil Companies International Marine Forum 
OD Outer Diameter 
RAO Response Amplitude Operator 
SALM Single Anchor Leg Moorings 
SON Standards Organisation of Nigeria 
SPM Single-Point Mooring 
UHD Ultra-High Definition 
U.K United Kingdom 
VIM Vortex-Induced Motion 
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