Newman, J. and Lucas, M. and Stefanovska, A. (2021) Stabilization of cyclic processes by slowly varying forcing. Chaos, 31 (12): 123129. ISSN 1089-7682
Full text not available from this repository.Abstract
We introduce a new mathematical framework for the qualitative analysis of dynamical stability, designed particularly for finite-time processes subject to slow-timescale external influences. In particular, our approach is to treat finite-time dynamical systems in terms of a slow-fast formalism in which the slow time only exists in a bounded interval, and consider stability in the singular limit. Applying this to one-dimensional phase dynamics, we provide stability definitions somewhat analogous to the classical infinite-time definitions associated with Aleksandr Lyapunov. With this, we mathematically formalize and generalize a phase-stabilization phenomenon previously described in the physics literature for which the classical stability definitions are inapplicable and instead our new framework is required.