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Abstract

The analysis of solar irradiance has important applications in predicting solar en-
ergy production from solar power plants. Although the sun provides every day more
energy than we need, the variability caused by environmental conditions affects elec-
tricity production. Recently, new statistical models have been proposed to provide
stochastic simulations of high-resolution data to downscale and forecast solar irradiance
measurements. Most of the existing models are linear and highly depend on normality
assumptions. However, solar irradiance shows strong non-linearity and is only mea-
sured during the day time. Thus, we propose a new multi-day threshold autoregressive
(TAR) model to quantify the variability of the daily irradiance time series. We establish
the sufficient conditions for our model to be stationary, and we develop an inferential
procedure to estimate the model parameters. When we apply our model to study the
statistical properties of observed irradiance data in Guadeloupe island group, a French
overseas region located in the Southern Caribbean Sea, we are able to characterize two
states of the irradiance series. These states represent the clear-sky and non-clear sky
regimes. Using our model we are able to simulate irradiance series that behave similarly
to the real data in mean and variability, and more accurate forecasts compared to linear
models.
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1 Introduction

Human activity strongly depends on electricity production. Currently, major sources for
generation of electricity, such as fossil fuels (coal and gas), are non-sustainable sources of
energy, producing air, water, and land pollution. Therefore, there is a high interest in
renewable energy production which grows globally very rapidly. Among different forms of
renewable energies, solar photovoltaic (PV) has been the most popular performer for the
second year in a row, with a newly installed capacity increasing by approximately 33%,
according to REN21 (2020). Every day, the sun provides more energy than we need to
meet many of the challenges facing the world. However, the power production from PV
plants may not be stable, due to the varying environmental conditions, such as cloud cover
and daily temperature. This variability can have severe consequences on PV technologies;
for example, sharp changes (lasting a few seconds) can cause local voltage flicker issues,
and a more extended time scale change can affect the storage system (Kleissl, 2013). Thus,
it is essential to understand such variability for the management of solar power production.

The amount of electricity generated by PV systems depends on the intensity and wave-
length of solar radiation available to the PV device. In this paper, we focus on the analysis
of the global horizontal irradiance (GHI) that measures the total hemispheric down-welling
solar radiation on a horizontal surface (Figure 1(a)). There is a variability (deterministic)
in the GHI daily time series that corresponds to the Sun’s movement during the day, and
that can be precisely predicted. For example, Figure 1(b) shows two examples of daily GHI
time series that raise to a positive value around 6:30 am and drop after 6:00 pm (period
depending on location and season of the year). The main interest in GHI data is to charac-
terize the variability that could be caused by clouds, temperature or any other atmospheric
conditions. Figure 1(b)(left) shows high variability between 11:00 am and 1:00 pm followed
by a long period of low irradiance and Figure 1(b)(right) shows a high variability in the
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Figure 1: (a) Solar radiation measurements (Figure from slidesshare.net) (b) GHI measured
by a pyranometer every 30 sec. Daily irradiance variability can be very different from day
to day and the drops of the irradiance values can be observed in any time of the day.

morning but a very clear sky afternoon with low variability.

One of the main goals for modeling solar irradiance is to quantify the volatility /variability
at a specific location. PV integrated systems rely on this accurate variability estimation,
which is relevant to the grid manager to efficiently distribute the power or select a new site
for new system installation. In practice, estimating the variability means a precise estima-
tion of the probability distribution that generates the data. The most common strategy is
to propose a model that generates synthetic irradiance time series which reproduce similar
expected values and variability. For example, Zhang et al. (2019) proposed a model based
on a non-Gaussian distribution to generate high-frequency solar irradiance scenarios. Re-
cent developments for analyzing GHI data focus on stochastic simulation of high-resolution
data and forecasting of spatiotemporal GHI (Zhang et al., 2021).

Although this method performs extremely well, they need to first classify cloudy and
clear days, based on a fixed threshold rule of low and high variability observed in the
increments of GHI. A more flexible approach where the days are classified by clustering

algorithms was recently introduced by Frimane et al. (2019). Under this model, a posterior
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inference using Markov chain Monte Carlo algorithm is applied to estimate daily distri-
butions of the solar irradiance. Munkhammar and Widén (2019) proposed an alternative
model with a more robust classification procedure between clear and non-clear days. Previ-
ous research efforts in this area also include models with covariates or cloud motion models
(Boland et al., 2001; Bright et al., 2015, 2017; Fernandez-Peruchena et al., 2015). However,
the classes vary among these models and the number of classes may be subjectively selected.

Popular statistical models that allowed regime switching between time-dependent data
are the hidden Markov model (HMM) and the mixture chain model. The HMM assumes
the presence of a hidden random process that determines the changes in the dynamics of
the observed data. An HMM with three hidden states can have an interpretation linked to
three categories of cloud cover (Shepero et al., 2019). However, the goodness of fit for this
model to generate GHI data can be very poor in some cases. More hidden states need to
be considered to improve the fitting, but this increases the computational cost. The use of
multiple time series (Fox et al., 2014) could improve these models, but this option has not
been explored for irradiance time series. Barbi¢ et al. (2004) propose a mixture model to
detect the distinct behavior of motion data. For irradiance data, Munkhammar and Widén
(2019) investigated these models in the case where observations are from different spatial
locations. In this paper, we model irradiance data without an a priori classification. We
allow our model to change the state (clear or non-clear sky) based on its immediate past
values. By considering a two-state model, our proposal is interpretable in terms of clear
and non-clear sky regimes, which can be observed partially across days. Although a model
with more than two regimes could result in a better fitting of the data, the resulting model
might lack interpretability.

A feasible approach for modeling GHI is to consider a time series model. Time series

models are efficient in forecasting. Accurate predictions are relevant for efficient energy



management, where efficiency means a precise balance between electricity production and
consumption at any moment. The grid management requires short, medium, and long-term
predictions to feed the electricity networks. Some of the desirable characteristics of such
time series model are seasonality and non-linearity. Grantham et al. (2018) proposed a time
series model that represents the seasonality with as a cosine and sine functions of the main
Fourier frequencies observed on the data and an autoregressive component. To increase the
flexibility of their model, a non-stationary white noise component is considered. However,
the non-stationary assumption may cause inconsistent estimators. Similarly, Al-Awadhi
and El-Nashar (2002) also consider a Fourier expansion to model the seasonality of the
irradiance data, and a bilinear time series component to model the stochastic component of
daily global radiation. However, a priori division of the data set in clear and non-clear days
is also required. Voyant et al. (2020) proposed a prediction model based on the periodic
autoregressive (PAR) model coupled with a Box-Cox transform. This model considers a set
of coefficients per hour that uses all-day information for estimating, which gives flexibility
to the model. Das et al. (2021) proposed a cyclostationary model for short term prediction
of hourly solar irradiance. Althoug, for high temporal resolution data, this might result in a
large number of coefficients for PAR models or non-identifiable cycles due to the high level
of noise variation. To avoid these issues, we propose a non-linear time series approach to
model solar irradiance data. Within the existing non-linear time series, threshold models
have shown to be generally sufficient enough to model cyclical econometric data (Tong and
Lim, 1980). In the literature, we can find some examples of econometric models applied to
environmental data (Magnus et al., 2011; Samanta et al., 2011; Grillenzoni and Carraro,

2021).



The GHI series can be transformed to clear-sky index, K(t), as

(1)

where the time unit ¢ are seconds, I(t) is the GHI observed at time ¢t and I¢g is the hor-
izontal extraterrestrial irradiance that can be computed using an atmospheric model (see
Kleissl, 2013). Then, K(t) isolates the variability caused by random environmental condi-
tions. Generally, researchers model the logarithm of clear-sky index to avoid the restriction
of being strictly positive. In this paper, we propose the use of threshold autoregressive
model on the logarithm of clear-sky index series to forecast and describe solar irradiance
data.

Unlike the typical models developed for econometric time series, we treat daily irra-
diance time series as independent replicates and propose a new multi-day model, where
daily irradiance time series share a common cyclical component but with different intra-
day variability. Our model identifies clear and non-clear day periods without any prior
classification of the data by introducing a threshold effect. We propose an estimation pro-
cedure that takes into account the single day variability and all days common information.
The estimated variability per day also serves as a measure of weather variability across
days. Additionally, we show that our model can forecast the irradiance time series more
accurately than the persistence ensemble model (commonly used on energy forecasting),
some machine learning algorithms, PAR models, and ARIMA models.

This paper remaining is organized as follows: Section 2 introduces the real irradiance
data set from the Guadeloupe island group and presents the preliminaries about the ex-
isting non-linear time series model and its theoretical properties. Section 3 presents our
proposed model and the statistical inference procedure for the model parameters. Lastly,

Section 4 presents a detailed data analysis of the Guadeloupe island group irradiance series



by applying our multi-day model. This section also compares our model with different

competitors and proposes an algorithm for a probabilistic forecast.

2 Irradiance Data and TAR Model

2.1 Data description

Here, we study an irradiance time series, {I(¢)}, from Jan 21, 2011, to Dec 31, 2011.
Data are collected in Guadeloupe island group, a French overseas region located in the
Southern Caribbean Sea (Lat 16.22 - Long -61.53 approximately, see Figure 2). Data
were collected every second, and the global horizontal irradiance is reported. Then, we
use the horizontal extraterrestrial irradiance reported at this location by the National Solar
Radiation Database (NSRDB) (Sengupta et al., 2018) to compute the clear-sky index, K (t).

Figure 3 shows a subset of the I(t) series that corresponds to March 2011 from 7 : 00
am to 5 : 00 pm. On the top of the GHI series, we plot a dashed line that represents the
extraterrestrial irradiance, Icg. On one-second data, a clustering of the I(t) series will
result either in one big cluster (non-clear days) or several small clusters (different degrees
of non-clearness). Therefore, we do not consider a prior classification of the data. We now
compute the logarithm of the clear-sky index defined in (1). Figure 4 shows the log K (t)
series corresponding to March, 2011. We observe that March 9, March 18, and March 31 are
days on which the irradiance is close to the horizontal extraterrestrial irradiance, whereas
March 05, March 14, and March 25 are days on which we observe a high variability on the

horizontal irradiance. In general, irradiance profiles per day are different across the year.
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Figure 2: Location of Guadeloupe Island. Right: Large scale map where the island of
Guadeloupe is inside the box. Left: the island of Guadeloupe is represented in green. The
open sea location encourages the presence of more variable weather conditions.
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Figure 3: GHI time series for one-month data; the dashed line is the interpolated horizontal
extraterrestrial irradiance. Irradiance series can be very different from day to day.
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Figure 4: Log K (t) time series for one-month data; the dashed line at 0 represents the
irradiance equal to the horizontal extraterrestrial irradiance. Drops on the irradiance value
can be observed at any time of the day.

2.2 Nonlinearity and Non-Gaussianity

Linear models are the most commonly used statistical models. However, for complex real
data applications, they suffer from certain limitations. For example, under a linear repre-
sentation of a time series, if a Gaussian white noise is assumed, all the finite-dimensional
distributions of the process are expected to be Gaussian. To visualize if the distribution
of the log K (t) series may be Gaussian, we plot the histogram of the series per day in
March (see Figure 5). Some days, such as March 14 and March 23, show strong evidence
of a bimodal density, which is visually against Gaussianity. The bimodal density strongly
suggests a non-gaussian distribution of noise, even more, the feasible presence of regimes.
Additionally, we plot the bivariate density contour plots of (log K(t),log K (¢t + 1)), where
we observe empirical evidence of a two-state correlation structure on days like March 13,
14, 21, and 23. These visual tools together are evidence against a linear model.

In the literature, there are several tests to revise whether or not a linear time series
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Figure 5: Empirical evidence against linearity. Top: Daily histogram of logarithm of clear-
A bimodal histogram is a strong evidence against Gaussianity.
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model is reasonable. Two of the most commonly used are the nonlinearity test proposed
by Keenan (1985) and Tsay (1986). Keenan’s test is motivated by the approximation of a

nonlinear stationary time series using a Volterra expansion. Assume the following model,

2
P P
X(t) =60+ diX(t—i)+expgn| D ¢ X(t—3) | ¢+el),
i=1 j=1
where ¢ are iid (0,1). Keenan’s test is equivalent to the F-test for n = 0. It is computa-
tionally simple and handy on small sample sizes. Tsay’s test extends Keenan’s test with a

2
more general nonlinear alternative by replacing the term exp {77 (Z?Zl P;X(t—j )) } by

exp{n(011 X (t — 12 + 812X (t— D)X (t—2) + ... + 01, X (t — D)X (t — p)+

Ga0X (t—2)* 4+ ...+ 02p X (t —2)X(t — p) + S X (t —m)*)}.

Both tests are implemented in the TSA R package (Chan and Ripley, 2018). We apply
both tests to each of the daily log clear-sky index time series from Jan 21, 2011, to Dec 31,
2011, and find strong evidence against linearity (p-value < 0.01).

2.3 TAR model

In general, linear models have been shown to be very useful to predict weakly stationary
processes. However, under the evidence of non-normality or nonlinearity, they can perform
poorly. In nonlinear time series models, one possibility is an autoregressive polynomial
model of higher order degrees. However, such models are not useful for extrapolating, since
they quickly blowup to infinity. In this paper, we propose to use the threshold autoregressive
(TAR) model to describe the dynamics of irradiance time series. We briefly introduce here

the TAR model; more details can be found in Cryer and Chan (2008) and Tong (2010).
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Tong and Lim (1980) proposed the TAR model as a piecewise linearization through the

introduction of a switching mechanism. A general form of the TAR model assumes that
P
X(t)=aos + Y ai s, X(t—1i)+by,e(t),
i=1

where &; are iid (0,1) and {J;} is an indicator time series that takes values between
{1,2,...,J}. To simplify this form, the most commonly used model is the two regime
self-exciting threshold autoregressive (SETAR) model where J; = 1 if X(t — d) < 7 and
Jy =2 if X(t —d) > 7. With this model, the parameter 7 is the threshold parameter, and
d is the delay parameter. Then, we refer to the SETAR model of order p to be

X(t) = $1,0 + Z§:1 61, X(t—j) +oie(t) if X(t—d) <T; o)

G20+ D5 G2 X(t —j) +o2e(t) if X(t—d) >,

where {¢;j,i =1,2, 7 =0,1,...,p} are real constants and ¢; are iid (0,1). When dealing
with time series models, we need to question the existence of the stationary distributions
for the process. Chan and Tong (1985) showed the sufficient conditions for a SETAR
model to be ergodic and therefore the existence of a stationary distribution. However,
these Lyapunov conditions are difficult to verify. In practice, a handy tool is to run the
skeleton model (noise-free model) with different initial conditions (Tong, 2010).

Amendola et al. (2009) showed that the SETAR model with two regimes (2) is weakly
stationary if the matrices 1) and ®® have both dominant eigenvalues less than one,

where

12



I,—1 and Op,_y)x; denote the identity matrix of dimension p — 1 and a matrix of zeros of
dimension p — 1 x 1, respectively.

SETAR models have been widely used in financial time series analysis (Tong, 2010).
The threshold model has also been applied to study epidemiological time series (Watier
and Richardson, 1995) and cyclical fish landings (Samanta et al., 2011). These studies
showed the versatility of SETAR nonlinear time-series models, which is capable of better

describing cyclical fluctuations when there is evidence of non-linearity.

3 Probabilistic Modeling of the Clear-sky Index

We propose a new approach to model the irradiance time series. Our model does not require
a priori classification of days among cloudy or bright days, which makes the statistical

analysis more robust.

3.1 Model

Let log K, (t) be the logarithm of clear-sky time series defined in (1) for day r at time ¢,
where r =1,...,nand t =1,...,T. We propose the multi-day SETAR model as follows:

§Z5170 + Z?:l ¢1,j log Kr(t — ]) + 0'17T€7«(t) if log Kr(t — d) <T;

log K, (t) = (3)

G20 + 25y P2, log Ki(t — j) + 02,6,(t) if log K, (t — d) > T,

where {¢;;,% = 1,2, j = 0,1,...,p} are real constants, {0;,,i = 1,2,7 = 1,...,n} are

positive constants, e, (t) are iid (0,1), 7 is a real value and d is a positive integer number.

Remark 1. Usually, time series analysis is performed with one single long (preferable)

time series. However, in some applications, the available data consist of replicated series
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(Silva et al., 2005). Our model assumes that each day is a replicate of a similar SETAR
model. The model has the same autoregressive coefficients each day, although they may

have different noise variations, {o;,,i = 1,2}.

Since irradiance data can only be recorded during the day time with sunlight (e.g., from
7 am to 5 pm), it is then not reasonable to join the daily time series as a uniquely long
time series. Instead, our model assumes that, for each day, the observed time series is a
replicate of a similar nonlinear cyclical time series, which we model as a SETAR model. To
allow for different stochastic variations on irradiance data across days, which occurs due to

different environmental conditions, we allow (o1, 02,) to be day-specific.

Remark 2. Note that the multi-day SETAR model has the same skeleton model (noise
free) for all days. Then, the conditions shown by Amendola et al. (2009) for the SETAR
model to be stationary are also sufficient conditions for the multi-day SETAR model to be

stationary per day.

3.2 Estimation procedure

Although we know the conditions for the stationarity of the multi-day SETAR model that
can be used to compute the full likelihood, the stationary distribution does not have a
closed form as in the SETAR model and it involves computing multiple integrals. Similar
to the estimation of a SETAR model, we propose a two-step inference procedure. First, we
estimate the threshold and delay parameters, 7 and d, by using log-likelihood criteria. We

then consider a weighted least squares method to estimate the autoregressive parameters,

{(ﬁm’,i:l,Q, j=0,1,...,p}

Estimation of d, 7 and p

We temporarily assume that p is known and assume normality on all €,.(¢). Then, for

14



each day 7 and value (d,7), let My, = {t : logK,(t —d) < 7} and log K1 ,(t) be the
irradiance values log K, (t) with ¢ € M ,. Similarly, we define My, = {t : log K, (t — d) >
7} and log K3 ,(t) be the irradiance values log K, (t) with ¢ € Ms,. Denote by m;, the
cardinality of M;,, and m1, +mo, = T — p for all r. For day r, we regress the series of
log K1 () on its lags 1 to p to find estimates of CE{,O: e QAS{?p and compute the maximum
likelihood noise variance estimate, é}%r, by the sum of squared residuals divided by mq .
Similarly, we estimate &%m using the series of log K2 ,(t). Then, we estimate (d,7) by

maximizing the profile conditional log-likelihood function

td7) = -T2 og(am) — 30 ™ 10g(52,) - 30 T log(e,). (4)
r=1

r=1

In practice, the autoregressive order p can be different for the two regimes. If this is the
case, let p; and ps be the autoregressive orders for the low and high regimes, respectively,

and estimate the parameters (d, 7, p1, p2) by minimizing the AIC, where

AIC(d) Taplvp?) = _2l(d77—) + 2(p1 +p2 + 2)

Remark 3. For each day r, {g&io, e gZ;{’p, AS’O, e ,gggyp} are consistent estimators for the
parameters {¢; ;i = 1,2, j = 0,1,...,p}. However, a pooled estimator for all days r =
1,...,n will have lower variance, i.e, it will be more efficient.

Estimation of {¢;;,1=1,2, j=0,1,...,p}
To estimate the autoregressive coefficients we consider a conditional least squares (CLS)

approach using the information across all days. The CLS estimator is obtained by mini-
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mizing
2

P
log K (t) — ¢1,0 — Z 1,5 log K (t — j)

"
NE

r=1teMi j=1

2
n p
Z Z log Kp(t) = d20 = ) dalog Kt —j) |
r=1te M, j=1

where ¢ denotes the vector or autoregressive coefficients for both regimes. Note that we
assume different variances air and a%r within each day r. The CLS estimator will then
be unbiased but not necessarily the one with the least variance, and therefore not optimal.
Our setting is very similar to the analysis of linear models with m different groups where
variances are constant within each group. Then, weighted least squares (WLS) is the natural
estimation method to apply. Hooper (1993) studied the problem of optimal weighted least
squares for the estimation procedure.

If Jir and (f%r are known for each r, a feasible solution is to apply WLS using weights

1/0?

ir» since these weights correspond to the optimal solution when all noise terms are
normally distributed. However, we do not know the true variability within each day. Em-
pirically, the effect of only using the MSE as estimators for the weights produces a poor
estimation of the AR coefficients by shrinking too much of the data. This issue was already
observed on Hooper (1993) paper and we also observe the poor estimation in our model and
propose a similar strategy. Hooper (1993) shows that a WLS estimator with a set of weights
that combines a model-free and model-based estimators for the variances is asymptotically
optimal (unbiased and lowest variance). We adjust this technique to our model setting as
follows.

The idea of weighted CLS (WCLS) estimation is to transform the variable of interest by

multiplying each term with a weight w; , and then apply the CLS to estimate the parameters
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¢. Our proposed weights combine two elements: 1) the maximum likelihood noise variance
estimate for day r, Ef%r and 6%“ and 2) the Bayesian estimate of noise variance using a
normal model (O’Hagan and Forster, 2004). Our model-based estimator for the variance
is the Bayesian estimator formulated as follows. For each ¢ and r, the prior distribution
for 1/0i27T is Gamma(a, b) and the prior distribution for (¢7,..., ¢§7p)’|azr is N(0, JZZ’TIPH),

where a > 0, b > 0, I,;1 denotes the identity matrix of dimension p + 1 and ’ denotes the

transpose. Then, the corresponding posterior distribution is UZZT‘X, Y ~ I G(%Q'T , ﬁ),
where X, Y denotes all the data information, past and present (analogous to linear regres-
sion models), and IG denotes the inverse-gamma distribution. The posterior parameters

are

1
i :2 ir 2 ezr = )
tor =2 latmie2) i = Y b+ (Y + @A) f2)

where A = (X'X + I,11) 7! and p = AX'Y.
By considering the previous model and applying Theorem 3 in Hooper (1993), we obtain

the optimal weights as
mi + Yi,r
52 o
mz,ro'w« + Yi,rVir

Wi,y =

)

Lastly, the WCLS estimator for ¢ is the one that minimizes:

2
n p
Qo) = Z Z log Z,(t) — ¢10w1,r — Z ¢1,5log Z(t — 7)
r=1teMi , j=1
n p 2
+) 0> | log Ze(t) — doowar — Y dajlog Zu(t —4) | (5)
r=1teMs, j=1

where Z,(t) = wy, log K, (t) if t € My, and Z,(t) = wa, log K, (t) if t € My,.

Compared to the one day estimator, the WCLS estimator ¢y crg = argmin,, Q(¢) has
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a reduced variance by a factor 1/n because of available replicates.

4 Statistical Analysis of Guadeloupe Island’s Data

As mentioned in Section 2, we analyze the log clear-sky index, log K (t), from Jan 21, 2011,
to Dec 31, 2011, corresponding to the Guadeloupe island group. The considered period for
all days is from 7 : 00 hrs to 17 : 00 hrs, and data are collected every second. We have
then a total of 345 daily time series, each consisting of 36,000 measurements. We divide the
complete data set into a training set and a testing set. We fit our multi-day model (3) to
the first 300 days to describe the stochastic variability of the irradiance time series. Then,

we compare the prediction using our fitted model for the last 45 days.

4.1 Estimation of (d, 7, p1,p2)

First, we choose the threshold value 7, delay parameter d, and autoregressive orders p;
and po as described in the previous section. Figure 6 shows the AIC values for different
combinations of the parameter space. We search for the parameter 7 within the 0.15%
and 0.85% quantile of the observed values. The smallest value for d gives lower values for
the AIC function and a threshold value within (—.1,0) for all different combinations of the
autoregressive orders. By increasing the autoregressive order of the high regime, po, we also
decrease the AIC values. In contrast, there is no significant decrement when increasing the
autoregressive order of the low regime, p;. Then, we get p; = 4, po = 5, and by minimizing
the AIC we choose d = 1 and 7 = —0.02.

If log K (t) = 0, then the observed irradiance is equal to the expectation that corresponds
to a clear sky period. Then, the estimated threshold value 7 = —0.02 can be interpreted
as a split between a clear sky regime (high regime, log K(t) > —0.02) and non-clear sky

regime (low regime, log K (¢) < —0.02) due to environmental conditions.
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Figure 6: Estimation of (d,7,p1,p2) via minimum AIC. To reach the minimum AIC the
smaller value of d = 1 is preferable.

4.2 Estimation of noise variability and autoregressive parameters

We fit a SETAR model per each day r with (d,%,]ﬁl, p2) and estimate the across days

2
i,r

variabilities o7 i = 1,2 for the non-clear sky regime and clear sky regime, respectively.
Now, we use these values together with the model-based estimators to compute the weighted
least squares estimator of the autoregressive parameters {¢;;, 7 =1,2,3,6, ¢ = 1,2}. For
the Bayesian normal-mixture model, we fix the hyper parameters a = 0.01 and b = 0.01.
We update the estimated variances 6% values by computing the squared residuals with the
WCLS estimators. Figure 7 shows the distribution of the estimated variability across days,

air and U%,r‘ The noise variability can be higher in the non-clear sky regime than in the
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Figure 7: Estimated variability across days for non-clear sky regime (log K, (t—1) < —0.02)
and clear sky regime (log K. (t —1) > —0.02), respectively. Noise variability is higher under
non-clear sky regime.

clear-sky regime. Lastly, our estimated multi-day model is:

log K, (t) =(0.00024 + 1.538 log K, (t — 1) — 0.614log K, (t — 2) + 0.120 log K, (t — 3)
—0.045log K, (t — 4) + 01y, (t)) 1{log K, (t — 1) < —0.02}+
(—0.00051 4+ 1.601 log K, (t — 1) — 0.790 log K. (t — 2) 4+ 0.240log K, (t — 3)
—0.092K,.(t —4) + 0.040log K, (t — 5) + 02,6,(t))1{log K, (t — 1) > —0.02},
(6)

where {0;,,i = 1,2,r = 1,...,n} are positive constants, ¢,(t) are iid (0,1) and 1{A} is

equal to 1 if A is true.

4.3 Uncertainty of parameter estimates

Based on our 2-step estimation procedure, quantifying the uncertainty propagation is a
challenge. We investigate if the small changes in the selection of the threshold/delay pa-

rameter could produce significant changes on the autoregressive parameter estimates. We
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Figure 8: Results of numeric study to explore the effect of 7 and d selection to the autore-
gressive parameters estimates {¢; j}. Each point corresponds to an estimated autoregressive
parameter given 7 and d (p; and py are fixed).

perform a small numeric experiment, where we select threshold values, 7, between —.01 and
.04, and d = 1,2, 3. Then, we repeat the estimation of the autorregresive parameters as in
section 4.2. Figure 8 shows that there is not a strong influence. We observe variability on
the estimated parameters but the effect is very small in most cases. It might be because
we have a large data set, so the autoregressive estimated parameters are consistent.

Now, we assume our estimated model is the ground truth and generate bootstrap series
as follows. 1) Sample a paired value of (o1,7,02,). 2) Start K(t) =0 for t = 1,...,5.
3) Using Gaussian noise, we generate a series of lengths 7' = 36000 following model 6. 4)
Repeat steps 1-3, 300 times. The results of 1-4 are bootstrapped data series of the same
length and days as the original data. 5) Use the bootstrapped data set to estimate ngjw
We repeat this procedure M = 500 times. Figure 9 shows the boxplots of the estimated

parameters. Overall, the uncertainty is low, being the non-clear sky regime of higher
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Figure 9: Bootstrap results for parameters estimates {¢;;}. Each point corresponds to
an estimated autoregressive parameter using a bootstrapped sample and given 7 = —0.02,
le,p1 :4andp2:5.

estimation uncertainty compare to the clear-sky regime.

4.4 Prediction accuracy of the estimated multi-day SETAR model

We use our estimated model (6) to obtain one step forecasted values. Assume for day
r that we have information up to time ¢. Then, the one-step-ahead forecasted value
is log K/T(t\+ 1) = 0.00024 + 1.538log K-(t) — 0.6141og K,.(t — 1) + 0.1201log K-(t — 2) —
0.0451og K,.(t — 3) if the latest value of log K.(t) belongs to the non-clear sky regime (<
—0.02) or log I?r(?—k 1) = —0.00051 4 1.601 log K, (t) —0.790 log K, (t — 1) 4+ 0.240 log K, (t —
2) — 0.092K,(t — 3) + 0.0401log K (t — 4) in the other case. For h > 1, the h-step-ahead
prediction follows the same rule but replaces the log K,.(t + h — 1) by its predicted value

log K, (t+h—1).

We apply this rule to the training and testing data sets. Figure 10 shows the histogram
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Figure 10: Residuals computed using the one-step ahead forecasted and observed values.
Residuals are very small in both the training and testing data sets.

of the residuals computed between the observed and forecasted values, log K, (t + 1) —
log I?T(? +1). In both samples, training and testing the residuals are close to zero, sug-
gesting a highly accurate fitting of the model to the real data. Figure 11 shows a six-days
subsample (three on the training and three on the testing sets) of the observed and pre-
dicted series. The fitting of our model is highly accurate for both clear sky and non-clear
sky periods.

Additionally, we explore the uncertainty in prediction using the bootstrapped samples
obtained in Section 4.3. We compute 10-sec-ahead predictions on some of the testing days
using the bootstrapped values dgfj. Then, we built prediction bands using the .025 and
.0975 empirical quantiles. Figure 12 shows segments of randomly selected irradiance series
to illustrate better the uncertainty bands. Observed data is indicated using black lines and
dots, blue dots indicate predictions, and the uncertainty prediction bands are red. The
forecast is close to the actual values, even though the observed data is sometimes outside
the uncertainty bands.

An interesting question is whether our method is more accurate than other prediction

focus methods for solar irradiance data. We compare our results with those predictions
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Figure 11: Day examples of model prediction using the one-step-ahead forecast rule. First
row corresponds to dates on the training set and second row corresponds to dates on the
testing set. Observed and forecasted data are shown in black and red, respectively. The
prediction performance is very accurate in both cases (for training and testing dates).
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Figure 12: 10-step-ahead predictions illustration. Blue points are the 10-sec-ahead pre-
dictions and the black line with points are the observed data. Prediction bands (red) are
computed using 500 bootstrap samples.
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obtained by the PAR model, ARIMA model, and two machine learning algorithms, the
multilayer perceptron (MLP) and the Bagged Regression Trees (RT). Fouilloy et al. (2018)
shows a comparative study of machine learning forecast methods under different weather
variability factors. Among these methods, the MLP and Bagged RT were the most accurate
methods. Below, we describe briefly the competitors methods applied to log K,.(t).

1. PAR model assumes that log K, (t) = > 2| ¢;(t)log K, (t — i) + €,(t), where &,(¢) is
a periodic white noise with variance o2(t). In other words, the PAR model assumes
an autoregressive model where the coefficients depend on the day-hour, ¢. To fit the
PAR model, we use least squares for each t using different days’ information. Finally,

the one-step-ahead forecast is

log K, (t + 1) Z@ )log K, (t+1 —1).

2. ARIMA (p,d,q) model is the most general time series model which assumes that
#(B)(1—B)%log K (t) = 6(B)e(t), where B is the backshift operator and ¢(z) and 0(z)
are polynomials of degrees p and ¢ respectively. Using AIC criteria we fit to the data
an ARIMA(1,1,2) model to the irradiance series. More details and the h-step-ahead
predictor see Brockwell and Davis (2006).

3. Bagged RT is an improvement on RT, the model creates B bootstrapped samples
from the training set and finds the best (simple) regression tree within each sample.
Then, we average all the predictions. This procedure reduces prediction variance. We

use 25 added regression trees.

4. MLP is a type of Artificial Neural Networks with one hidden layer and one output

layer used. The prediction of the MLP using m neurons, one output neuron and ¢
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input variables is
o m t—1
log K (t+1) = Z w;ig (Z wj jlog K(t —1i) + bj> ,
j=1 i=0

where w; ; are the weights between the input ¢ and the neuron m, g is the activation
function, and w; is the weight between the output and the hidden neuron. Similar
to Fouilloy et al. (2018), we select m = 5 hidden neurons and the sigmoid activation

function.

For h-step-ahead forecast where h > 1, we apply the same rule as with the SETAR
model. We compare the 5 methods using the Mean Squared Error (MSE),

MSE(h) = 3" 3 (log Kt + h) —log Kot + h))2 .
r t

We use the first 300 days to train the models and compare the forecasts values on the last
45 days. To fit the ARIMA, Bagged RT and MLP we use the R packages forecast, ipred
and neuralnet (Hyndman and Khandakar, 2008; Peters and Hothorn, 2019; Fritsch et al.,
2019).

Table 1 shows the MSE values for 1-sec-ahead and 5-sec-ahead prediction forecast.
We include the standard deviation of the SE (squared error) in brackets. In both cases,
the multi-day SETAR model has the smallest MSE. For the 1-sec prediction, the closest
competitor is the PAR model while for the 5-sec prediction the closest competitors are the
ARIMA and MLP. Notice that PAR 5-sec predictions are considerably high compared to the
other competitors. Based on data results, the PAR coefficients are not robust to large drops
on the irradiance series and highly affect the long-term prediction. Overall, the results agree
with what we expected due to the highly non-linearity observed on the data. We conclude

that our model is preferable since the prediction are as good as other competitors and our
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model has a stronger interpretability in terms of clear-sky and non-clear sky regimes.

Method 1-step-ahead forecast | 5-step-ahead forecast
Multi-day SETAR 0.00037 (0.0022) 0.01409 (0.1006)
PAR model 0.00048 (0.0006) 206.97 (401.90)
ARIMA(1,1,2) 0.00616 (0.06177) 0.01421 (0.0970)
Bagged RT 0.02455 (0.0680) 0.03490 (0.1096)
MLP 0.00615 (0.0609) 0.01546 (0.0970)

Table 1: MSE Error in the h-step-ahead forecast with standard deviation of SE in brackets.
Smallest values are highlighted in bold.

4.5 Stochastic features of the estimated multi-day SETAR model

In this section, we investigate some probabilistic features of our fitted model. Our goal is
to identify characteristics of the clear-sky and non-clear sky regimes that could be used for
the grid manager to determine in which regime the grid is working. First, we verify if the
estimated model corresponds to a stationary model for each day. To do this, we compute

the eigenvalues of the matrices

1.601 —0.790 0.240 —0.092 0.040
1.538 —0.614 0.120 —0.045
1 0 0 0 0
1 0 0 0
o) = and & = 0 1 0 0 0
0 1 0 0
0 0 1 0 0
0 0 1 0
0 0 0 1 0

Then, the maximum eigenvalue for ®; is 0.9975 and the maximum eigenvalue for ®5 is
0.9969. Following Amendola et al.’s criteria, the estimated model corresponds to a station-

ary model. We also consider the skeleton plot as suggested by Tong (2010). The skeleton

27




Skeleton

0.00-

Xt

-0.75-

. . . . .
0 500 1000 1500 2000
Time

Figure 13: Skeleton of the estimated multi-day SETAR model with different initial values.
The skeleton of the estimated model is bounded when T increases for different initial values
which is a graphical tool of ergodicity.

corresponds to the deterministic part of the model, i.e.,

log K, (t) = (0.00024 + 1.538 log K, (t — 1) — 0.614log K, (t — 2) + 0.120 log K, (t — 3)
—0.0451og K- (t — 4))1{log K, (t — 1) < —0.02}+
(—0.00051 4+ 1.601 log K, (t — 1) — 0.790 log K. (t — 2) 4+ 0.240log K- (t — 3)

— 0.092K,(t — 4) + 0.040log K,.(t — 5))1{log K,(t — 1) > —0.02}.

We start the skeleton with different initial values and follow the trajectory. If the skeleton
is bounded when t increases, then it is visual proof of ergodicity of the process. Figure 13
plots some paths of the skeleton, and it also suggests that our model is stationary. Then,
we have enough evidence to claim that our estimated multi-day SETAR model is stable.
Therefore, we can compute a stationary form of the autocovariance and spectral density
Now, we can compare the characteristics of the clear sky and non-clear sky regimes.
Figure 14 (left) plots the autocorrelation function (ACF) computed with the coefficients

for each regime. Here, a lag corresponds to one second. While the non-clear sky regime is
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more dependent on its past values, the clear sky regime (if we stay on it) values are almost
independent after 10 minutes (600 seconds). Additionally, we visualize the spectral density

for each regime computed as

ol
Silw) = [ fexp(—izmw)) P

where ¢;(z) =1 — ?:1 ¢i ;27 and i = /—1. The spectrum gives information about the
oscillatory behavior of the series. If the spectrum is concentrated in the low frequencies,
it represents a slower oscillation with a longer period and an amplitude larger than that
of a signal with a spectrum concentrated in high frequencies. Figure 14 (right) shows the
spectrum for each regime computed using the mean variance per regime. The non-clear sky
regime shows a higher power on the lowest frequencies in comparison with the clear sky
regime, suggesting slower but stronger oscillations in the non-clear sky regime. This is in
agreement with the fact that we expect higher drops on the irradiance values when we are
on a period of the non-clear sky regime.

Remark 4. Note that the spectrum explains the variability of each regime, assuming
a common constant variance for the noise term that represents the dominating oscillatory
behavior. When the noise for each day has a different variability, the oscillatory behavior
will change accordingly.

Remark 5. Regime models can also be estimated using the oscillatory properties. For
example Hadj-Amar et al. (2021) fitted a HMM assuming that periodicity characterized
each regime. We could use a combination between these ideas and Whittle likelihood to
develop an alternative inference procedure.

As mentioned in the introduction, it is useful to generate synthetic irradiance time
series to quantify the variability of the data. We simulate a one-hour time series from our

estimated multi-day model (6) to verify if we can replicate some of the commonly observed
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Figure 14: Comparison of the clear sky and non-clear sky regimes. The autocorrelation
function suggest a stronger time dependence for the non-clear sky regime. The log-spectrum
shows that the non-clear regime has a higher amplitude than the clear regime.

paths in the data. To simulate from model (6) we need a pair value of (07 ,,03,). We
randomly select an estimated pair value plotted in Figure 7 and then we run the model.
Figure 15 shows four different simulated scenarios; the right plot corresponds to the different
paired noise variability options, and the red dot corresponds to the selection. The first
scenario simulates an hour with a very noisy first half hour but a bright sky on the last
half hour. The third scenario can also reproduce a clear-sky period, although the non-clear
sky period is not as strong (smaller drops) as the one obtained with the first scenario. In
general, our model can capture different scenarios depending on the noise variability of the
day. Another interesting question is whether these scenarios are related to the seasons of
the year. We consider the estimated values for the noise variability and split them into four
groups: Spring, Summer, Autumn and Winter. We then plot the boxplot per group, as
shown in Figure 16. This figure suggests that longer periods of clear sky can be observed
during Spring since the noise variability is smaller for both regimes during this season. In
contrast, Summer and Winter are periods with a higher variability, and as a consequence,

higher drops on irradiance values might be observed. This is a reasonable hypothesis since
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Figure 15: One-hour simulations of the multi-day model with different noise variabilities
(shown in red). Depending on the noise variability, we observed long or short periods of

clear sky regime.
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Figure 16: Boxplot of noise variability values per season: Spring, Summer, Autumn and
Winter.

Summer and Winter are usually rainy seasons in the Caribbean sea.

4.6 Probabilistic forecasts using the multi-day SETAR model

Although one step prediction are very informative for the mean behave of the irradiance
series, we can obtain more information about the irradiance variability by using probabilistic
forecasts. We consider the following algorithm to generate a probabilistic forecast of log
clear-sky index series. First, we sample a pair of value for the intraday variability (6%’,,, 6%).

Then, given the series up to time ¢ we simulate the future irradiance value as

log K, (t + 1) =(0.00024 + 1.538log K (t) — 0.614log K, (t — 1) + 0.120log K,.(t — 2)
—0.0451og K, (t — 3) + 61,06-(t + 1)) 1{log K, (t) < —0.02}+
(—0.00051 + 1.601 log &, (t) — 0.790 log K, (t — 1) + 0.240 log K, (t — 2)

— 0.092K,.(t — 3) + 0.040 log K, (t — 5) + 62,6, (t + 1))1{log K,.(t) > —0.02},
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where &,(t+1) ~ N(0,1) for all r and ¢. For values of more than one step ahead, log K¢,
h > 1, we use the previous simulated values m as if they are observed values and
apply the same random generator.

To evaluate probabilistic forecasts, we use scoring rules. Scoring rules provide summary
measures based on the predictive distribution and the event or observed value. Gneiting

and Raftery (2007) defined the continuous ranked probability score (CRPS) as

CRPS(F,y) = / (F(z) - 1{z > y})dz,

where F' is the probability distribution corresponding to the probabilistic forecasts, and y
is an observed value. In practice, we may not be able to know the forecasts probability
distribution F'. Then, we can use an estimator of the CRPS based on a generated sample
and a true observed value. We compute the CRPS using the scoringRules R package
(Jordan et al., 2017). There are no direct competitors to our model in the literature of
application of time series models to irradiance data and perform probabilistic forecast.
Then, we consider the Persistence Ensemble (PeEn) as the benchmark for the probabilistic
forecast of irradiance data (Munkhammar et al., 2019). The idea of the PeEn method
involves forecasting a future irradiance value based on the empirical distribution of the
last s past values, i.e., we generate log K, (¢ + 1) by randomly select a value from the set
{log K, (t),...,log Ki—s,}.

In this experimental setting, we evaluate the performance for both methods, using the
testing data set. For each day, we use the series until time ¢ = 12,13, 14 and 15 hours and
we simulate 1000 forecasted 5-minute series (¢t + 300). For the PeEn method, we use the
10-minute previous data. We then estimate the CRPS for each method and calculate the
average per day. Figure 17 shows three different examples of irradiance data scenarios. The

red dashed line corresponds to the PeEn method, and the continuous line corresponds to
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our multi-day SETAR model. On a day where the irradiance series can be very variable, our
model can characterize the variability better than its competitor. When abrupt changes
do not occur, the multi-day SETAR model can describe the irradiance series as well as
the PeEn method. The improved CRPS suggests that our model improves the density
estimation of the irradiance time series. Finally, we conclude that our model can reproduce

the random variability of irradiance series more accurately than its competitor.

5 Discussion

In this paper, we propose a multi-day SETAR model to forecast the irradiance series,
and provide a clear estimation procedure for our model parameters that guarantees the
consistency of the estimators. We also provide a detailed description of the interpretation
of our model for irradiance series. Our model naturally classifies the two regimes as a clear-
sky regime and non-clear sky regime, without any prior classification of the data. Then,
we can study the stochastic features of each regime in detail. Our model can accurately
forecast irradiance values, not only on the average but its variability as well. We did not
face any computational difficulty to fit our model; however, the complexity is similar to
fitting a linear model. It could be a trouble for larger data sets.

Accurate quantification of solar variability in a particular site is crucial to evaluate the
solar-resource risk. These physical requirements will influence both technology development
and financial performance. Our proposed model improves the variability quantification and
reduces the bias of subjective classification for clear and non-clear days. Then we achieved
a more robust and accurate quantification of resource-data uncertainty. Although we do
not explore the online prediction, our model can achieve this purpose. The critical point
is then the selection of noise variation. For a new day, the online prediction algorithm

could start with a prior distribution of the noise variance. After one hour, an update of
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Figure 17: Computed CRPS. We compare our probabilistic forecast, which is based on the
multi-day SETAR model (black continuous line), with the PeEn (red dashed line) method.
Our method can forecast drops on irradiance series more accurately than the PeEn.
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the noise variance can be done using the observed data and draw an update value for the
noise variation needed by the probabilistic forecasts.

SETAR models are versatile models for non-linear time series. Our proposal, a multi-
day SETAR model, uses the advantage of this family and the information provided across
different days in a specific location. One unresolved challenge task is to forecast long
periods of clear-sky state, but this can be improved if more information is available (e.g.
external covariates or spatial neighbors). For example, covariates such as environmental
conditions could be incorporate to model the threshold parameter 7 or the noise variances.
The estimation in such a case will be more challenging, and the proposed procedure here
needs adaptations.

A future extension might be proposed using replicates across days and borrow infor-
mation from different areas to forecast values in not observed nearby regions. A Spatial
SETAR model could use nearby location values to propose a regime indicator variable. We
should consider some specific features related to the data application: 1) Distances depen-
dence; if we take two close locations, the irradiance is likely to be the same values, and
two very far could be completely independent. Therefore a study of accurate location of
sensors or selecting sites needs to be done. 2) Alternative, other spatial covariates might
be more informative. The proposal of a regime indicator based on spatial covariates such

as temperature or cloud movements might significantly impact prediction accuracy.
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