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Abstract—Subpixel mapping (SPM) is a technique to tackle the 

mixed pixel problem and produce land cover and land use (LCLU) 

maps at a finer spatial resolution than the original coarse data. 

However, uncertainty exists unavoidably in SPM, which is an 

ill-posed downscaling problem. Spatio-temporal SPM methods 

have been proposed to deal with this uncertainty, but current 

methods fail to explore fully the information in the time-series 

images, especially more rapid changes over a short-time interval. 

In this paper, a fast and slow changes constrained spatio-temporal 

subpixel mapping (FSSTSPM) method is proposed to account for 

fast LCLU changes over a short-time interval and slow changes 

over a long-time interval. Namely, both fast and slow change-based 

temporal constraints are proposed and incorporated 

simultaneously into the FSSTSPM to increase the accuracy of SPM. 

The proposed FSSTSPM method was validated using two synthetic 

datasets with various proportion errors. It was also applied to 

oil-spill mapping using a real PlanetScope-Sentinel-2 dataset and 

Amazon deforestation mapping using a real Landsat-MODIS 

dataset. The results demonstrate the superiority of FSSTSPM. 

Moreover, the advantage of FSSTSPM is more obvious with an 

increase in proportion errors. The concepts of the fast and slow 

changes, together with the derived temporal constraints, provide a 

new insight to enhance SPM by taking fuller advantage of the 

temporal information in the available time-series images. 

 

Index Terms—Land cover and land use (LCLU), subpixel 

mapping (SPM), super-resolution mapping, spatio-temporal 

dependence, downscaling, Hopfield neural network (HNN). 

 

I. INTRODUCTION 

Land cover and land use (LCLU) patterns are a manifestation 

of land surface activities on in situ properties and, thus, reflect 

local balances between environmental and ecological value and 

economic development [1], [2]. Continuous monitoring of 

LCLU at fine spatial resolution can provide significant 

information for extensive applications such as urban planning, 

disaster assessment and agricultural yield forecasting [3]-[6]. 

However, rapid changes on the surface of the Earth have 

increased the requirement for a more timely and precise LCLU 

change detection. An increasing number of satellites have been 

launched to acquire remote sensing images for global 
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monitoring. However, the trade-off between fine spatial 

resolution and fine temporal resolution of the images has 

brought great challenges for timely and precise monitoring [7]. 

For example, the Landsat sensors can provide 30 m images but 

revisit the same area every 16 days. On the contrary, the 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensor covers the same scene daily, but with a coarser spatial 

resolution of 500 m [8]. As a result, mixed pixels (pixels 

containing more than one type of land cover class) exist 

ubiquitously in the coarse imagery. 

LCLU mapping has been an important topic for long and 

various methods have been proposed [9]-[11]. Conventional 

LCLU mapping is implemented by hard classification at the 

pixel level [12]. That is, each pixel is assigned to a single land 

cover class. Hence, hard classification fails to fully represent the 

information in mixed pixels [13]. In the recent decades, spectral 

unmixing and subpixel mapping (SPM) have been developed 

and viewed as effective solutions to tackle the mixed pixel 

problem. Specifically, spectral unmixing estimates the class 

composition (i.e., known as proportions) of mixed pixels, while 

SPM predicts the spatial distribution of classes within each 

mixed pixel by separating each coarse pixel into s×s (s is the 

zoom factor) subpixels and assigning each subpixel a specific 

land cover class. Therefore, SPM provides a useful solution for 

continuous monitoring of LCLU at a finer spatial resolution [14], 

which can inherit the fine temporal resolution of the input 

images (e.g., daily access to MODIS images) simultaneously. 

SPM is undertaken on the basis of the assumption of spatial 

dependence (i.e., spatially neighboring observations are 

considered more possible to be of the same LCLU class). In 

general, current SPM methods can mainly be summarized into 

two types: subpixel-to-subpixel-based and 

subpixel-to-pixel-based methods. According to the description 

of spatial dependence between observations (i.e., pixels and 

subpixels), spatial dependence for the subpixel-to-subpixel 

group is depicted by the relation between the subpixel and its 

surrounding subpixels. Solutions in this category contain the 

pixel swapping algorithm (PSA) [15], genetic algorithm [16], 

Hopfield neural network (HNN) [17] and maximum a posteriori 

(MAP) [18]. For the subpixel-to-pixel group, the spatial 

dependence refers to the relation between the subpixel and its 

adjacent pixels. Common methods of this type include radial 

basis function (RBF) interpolation [19], subpixel/pixel spatial 

attraction model [20], area-to-point kriging [21], 

back-propagation neural network [22], indicator co-kriging [23] 

and double-calculated spatial attraction model [24]. Moreover, 

both types of spatial dependence can be combined for SPM [25]. 

It is noted that the coarse proportion is used as coherence 

constraint for most SPM methods (both 

subpixel-to-subpixel-based and subpixel-to-pixel-based 

methods mentioned above) that are performed as the 
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post-processing of spectral unmixing. That is, in SPM 

predictions, the number of subpixels for each class needs to be in 

agreement with the coarse proportions. Since spectral unmixing 

remains an open problem, the proportion error is propagated 

inevitably into the proportion-maintained SPM results. To 

mitigate the heavy reliance on proportions, spatial-spectral SPM 

models have been developed by considering the spectral-based 

coherence constraint and the spatial dependence-based goal 

simultaneously [26]. The Markov random field (MRF) [27] is a 

typical spatial-spectral SPM method. However, it remains a 

challenge to estimate automatically the size of spatial 

neighborhood [28] and the parameter that controls the spatial 

and spectral parts, since the accuracy of SPM is considerably 

sensitive to these parameters. 

SPM is a typical ill-posed problem: multiple land cover maps 

at the target fine spatial resolution can fulfill the coherence 

constraint exerted by the coarse proportions [29]. To address this 

issue, various auxiliary data have been considered to decrease 

the uncertainty in SPM, such as vector data [30], color images 

[31], panchromatic images [32], training images [33] and 

subpixel shifted images [34], [35] and point data [36]. 

Learning-based SPM methods have been also developed by 

using fine spatial resolution training data [37-40]. However, 

with respect to the strong demand to produce similar spatial 

structure to the area of interest, these ancillary data are generally 

laborious to acquire. 

Benefiting from the periodic revisit ability of satellites, 

multi-temporal remote sensing images are available from 

various platforms. To borrow the information from temporally 

close images, several spatio-temporal SPM methods have been 

developed, which are promising solutions for continuous LCLU 

mapping at fine spatial resolution. In these spatio-temporal SPM 

methods, the spatial term (i.e., spatial dependence) is 

characterized based on either subpixel-to-subpixel-based or 

subpixel-to-pixel-based model. Ling et al. [41] first introduced a 

subpixel land cover change mapping algorithm, which 

incorporates a pre-date land cover map at the target fine spatial 

resolution. Xu and Huang [42] extended conventional PSA to a 

spatio-temporal PSA (STPSA) model. Li et al. [43] presented a 

spatio-temporal HNN (STHNN) method. Using a pre-date fine 

spatial resolution map, STHNN identifies the changed coarse 

proportions and incorporates the temporal information of 

unchanged pixels in the HNN. Wang et al. [14] developed a 

general spatio-temporal SPM framework for time-series coarse 

image, which is suitable for most SPM methods (i.e., both 

subpixel-to-subpixel-based or subpixel-to-pixel-based methods). 

He et al. [44] incorporated a pre-date fine spatial resolution 

map-derived temporal regularization term in a 

spectral-spatio-temporal MAP-based model. The above 

spatio-temporal SPM methods used one pre-image or 

post-image. For more reliable LCLU mapping of historical 

images, several studies have been developed by using both pre- 

and post-images. Li et al. [45] used two images in the temporal 

constraint term in spatio-temporal SPM. Using pre-date and 

post-date coarse and fine spatial resolution proportion pairs, 

Zhang et al. [46] introduced a spatio-temporal proportion map 

fusion method to predict the fine spatial resolution image on the 

middle date. 

Amongst the existing studies on SPM of time-series images, 

although the subpixel map is predicted by referring to pre-image 

or post-image or both images, temporal correlation is explained 

by assuming that LCLU change is a consecutive process. 

However, in view of the period of land cover changes in 

time-series images, sometimes the change in LCLU can occur 

rapidly within a short period (i.e., no LCLU changes in other 

periods) instead of a long period (i.e., from the beginning to the 

end of the investigated period). Taking the slow change case as 

an example, a road in a developed urban area may remain 

unchanged for several years (e.g., from pre-image to post-image). 

Instead, in the case of fast changes, land cover may change in the 

first short period and then remain unchanged in the second short 

period, such as bare land appearing in the weeks during 

deforestation (e.g., from pre-image to target image) but failing to 

recover during subsequent seasons (e.g., from target image to 

post-image). Therefore, for SPM, it is appealing to exploit the 

unchanged information for the temporal constraints in both long 

and short-time intervals. 

In this paper, a fast and slow changes constrained 

spatio-temporal SPM method (FSSTSPM) is proposed to 

enhance SPM by characterizing slow and fast LCLU changes in 

the long and short-time intervals simultaneously. FSSTSPM is 

constructed based on the HNN model with the availability of 

fine spatial resolution maps acquired on the dates before and 

after the coarse image. The fine spatial resolution maps can be 

acquired conveniently from a variety of data sources, for 

example, classification of remote sensing images available in the 

investigated period. Different from the STHNN proposed by Li 

et al. [43] that integrates a pre-date fine spatial resolution land 

cover map, FSSTSPM employs fast change-based temporal 

constraint in short-time interval and slow change-based temporal 

constraint in long-time interval at the subpixel resolution 

simultaneously, which is also the most important advantage over 

existing studies that commonly use both pre- and post-images. 

Another advantage inherited from the HNN is that FSSTSPM 

can mitigate the heavy reliance on the coarse proportion 

constraint and preserve the small-sized features simultaneously. 

This can help to address the uncertainty in the coarse 

proportions. 

The main contributions of this paper are four-fold: 

1) Theoretically, the fast change-based temporal constraint 

is proposed for spatio-temporal SPM, which uses 

unchanged information within a short period. Meanwhile, 

the slow change-based temporal constraint is integrated 

with the fast change-based temporal constraint to produce 

a more reliable temporal constraint in SPM. 

2) Technically, the idea mentioned above is realized by the 

FSSTSPM method. FSSTSPM is performed directly on 

each subpixel. Moreover, it inherits the advantage of 

HNN, which can reduce the uncertainty in the coarse 

proportions. 

3) For application, FSSTSPM was used to monitor events of 

great concern. Specifically, FSSTSPM was undertaken to 

fine spatial and temporal resolution monitoring of the 

well-known deforestation in the Amazon rainforest and 

the most recent oil-spill incident on the Ambarnaya River 

which occurred on May 29, 2020. 

4) For utilization of data, FSSTSPM was examined using 

various datasets from different satellite sensors, such as 

PlanetScope data, which has received increasing attention 

recently [47]-[50]. 
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The remainder of this paper is organized as follows. In section 

II, the mechanism of HNN is described briefly, and then the 

proposed energy function of the FSSTSPM model is introduced 

explicitly, followed by the details of the fast and slow 

change-based temporal constraints provided by the 

multi-temporal images. Section III provides experimental results 

for synthesized and real datasets. In Section IV, open issues on 

FSSTSPM and its applications are discussed, followed by the 

conclusion in Section V. 

II. METHODS 

A. HNN-based SPM 

The proposed FSSTSPM method is constructed on the basis 

of HNN [51]. In the HNN, each subpixel is viewed as a neuron 

and each neural network layer represents a LCLU class. 

Referring to the coarse proportion images (i.e., spectral 

unmixing predictions), the input of the network layer is 

initialized as the input signal 
ijku , where i and j denote the row 

and column of the subpixels in the layer, respectively. Each 

neuron is updated iteratively to produce the final prediction 
ijkv , 

which can be viewed as a self-optimization process without the 

need of any extra training data, as shown in Fig. 1. 
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Fig. 1. The iteration process of neuron (i, j, k) for HNN. 

 

With the input signal 
ijku , the output signal 

ijkv  is determined 

as 

 
1

[1 tanh( )]
2

ijk ijkv u   (1) 

where parameter   determines the steepness of the tanh 

function, and is always set to 10 to ensure that the tanh( )  term 

ranges [-1, 1]. More details can be found in [17]. In each 

iteration, the output 
ijkv  is used to update dynamically the 

network energy change 
ijkdE  of the neuron. For the t-th iteration, 

the input of the neuron (i, j, k) is updated as 

 
( )

( ) ( ) ( )
ijk ijk

ijk ijk ijk

ijk

du t dE
u t dt u t dt u t

dt dv
      (2) 

where dt is an iteration step length, and the network energy 

function in HNN is characterized as 

 1 2 3

,

( ( 1 + 2 )+ )+ijk ijk ijk ijk ijk

i j k

E w G G w P w M    (3) 

where 1w , 2w , and 3w  are three weights, 1ijkG  and 2ijkG  are 

two spatial constraint functions characterized by the spatial 

dependence assumption (or prior spatial structure information, if 

available). Specifically, 1ijkG  and 2ijkG  are determined by the 

output signal of the eight neighboring neurons of 
ijkv . If the 

average of the outputs of the neighboring neurons is greater than 

0.5, the output of the center neuron is pushed towards 1. In 

contrast, if the average of the outputs of the neighbors is smaller 

than 0.5, the output of the center neuron is pushed towards 0. 

In Eq. (3), 
ijkP  is the proportion constraint and is expressed as 

  
11

2

1
1 tanh 0.5 ( )

2

y s sx s s
ijk

dek k

d x s e x sijk

dP
v F V

dv s


    

   

        (4) 

where x and y denotes the coordinates of the coarse pixel V that 

subpixel at (i, j) falls in. ( )kF V  is the coarse proportion of class 

k for pixel (x, y), and s is the zoom factor. If the coarse 

proportion calculated in the current version is larger than ( )kF V , 

ijkv  decreases to make the current coarse proportion approach an 

ideal coarse proportion. 

Moreover, 
ijkM  in Eq. (3) is the multi-class constraint, which 

is defined to make the sum of ( 1,2,..., )ijkv k K  for all classes 

equal to 1. When the energy change 
ijkdE  reaches zero or is 

extremely small, the output 
ijkv  is assumed to converge to a 

stable solution. Afterwards, the subpixel located at ( , )i j  is 

assigned to class k if the output 
ijkv  is 1 (or very close to 1). 

Alternatively, the subpixel is allocated to another class if the 

output is 0. 

Note that other than SPM methods which fulfill entirely the 

coarse proportions, the proportion constraint in the HNN is 

approached, but not perfectly satisfied. As a result, isolated error 

pixels (e.g., subpixels caused by proportion errors) can be 

mitigated by the HNN. 

B. The proposed FSSTSPM energy function 

Considering slow and fast LCLU change processes, 

FSSTSPM aims to take full advantage of unchanged information 

in the long and short-time intervals during the investigated 

period, by constructing fast and slow change-based temporal 

constraints. To fully exploit the information in the pre- and 

post-images, the following energy function is constructed in 

FSSTSPM 

 4

,

+ ( 1 + 2 + 3 + 4 )ij ijk slow slow fast fast

i j k

ME E w T T T T   (5) 

where 
ijkME  is the energy function of FSSTSPM, and it 

considers spatial and proportion constraints in the term of 
ijkE  

defined in Eq. (3), and moreover, the proposed multi-temporal 

constraint. Specifically, 1slowT , 2slowT , 3 fastT  and 4 fastT  

represent four terms of the proposed multi-temporal constraint 

(i.e., two terms of the slow change-based temporal constraint 

representing a slow LCLU change process in a long period and 

two terms of the fast change-based temporal constraint 

representing a fast LCLU change process in a short period), 

which will be introduced explicitly in the Sections Ⅱ-C and D. 

4w  is a weight coefficient. 

The methodology of the proposed multi-temporal constraint 

in FSSTSPM is elaborated in Fig. 2. FSSTSPM adopts one 

coarse proportion image predicted by spectral unmixing on the 

target date and two fine spatial resolution land cover maps that 

pre-date and post-date the target image. The coarse proportion 
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images on the pre-date and post-date can be obtained by spatial 

degradation of the two land cover maps with the zoom factor s. 

Subsequently, FSSTSPM constructs slow change-based 

temporal constraint in the long period (i.e., from the pre-date to 

the post-date) and fast change-based temporal constraint in the 

short period (i.e., from the pre-date to the target date or the target 

to the post-date). More details about the formulation of the 

temporal constraints are elaborated in Sections Ⅱ-C and D. 
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Fig. 2. The full designation of the multi-temporal constraint for a neuron in FSSTSPM. 

 

C. The proposed slow change-based temporal constraint 

Following the assumption that the class tends to be unchanged 

for the image on the target date if the land cover changes slowly 

or remains unchanged in the long period (i.e., from pre-date to 

post-date of the target date), the two terms of the slow 

change-based temporal constraint are expressed as 

 
, ,
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in which 
,pre ijv  and 

,post ijv  are temporally neighboring subpixels 

of 
ijkv  located spatially at (i, j) in the pre- and post-images, 

respectively. Moreover, 
,( , )pre ijI v k and 

,( , )post ijI v k  are two 

class indicator functions. Taking the former as an example, it is 

defined as 

 
1,   if   belongs to class 

( )
0,   otherwise

pre,ij

pre,ij

v k
I v ,k .




=  (8) 

In the slow change-based temporal constraint, 1slowT  or 

2slowT  is activated only if , ,( , )= ( , )pre ij post ijI v k I v k , which means 

that the indicator of 
ijkv  in the long-time interval (from the 

pre-date to the post-date) is very likely to be unchanged, and the 

process can be further viewed as a slow change case. 

Specifically, for a subpixel at (i, j) and falling within a coarse 

pixel V, if the class labels of the subpixels in the pre- and 

post-fine land cover maps both belong to class k (i.e., 

,( , )=1pre ijI v k  and 
,( , )=1post ijI v k ), the temporal constraint 

1slowT  pushes 
ijkv  to 1 while 2slowT  exerts no effect on 

ijkv . 

Otherwise, if 
,( , )=0pre ijI v k  and 

,( , )=0post ijI v k , the temporal 

constraint 2slowT  pushes 
ijkv  to 0 while 1slowT  exerts no effect 
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on 
ijkv .  

D. The proposed fast change-based temporal constraint 

The land cover sometimes changes fast in a short period (i.e., 

from the pre-date to the target date or the target to the post-date) 

instead of a long period. That is, the land cover remains 

unchanged in other short periods during the entire period. 

Accordingly, the fast change-based temporal constraint is 

proposed, which is expressed as 

 , ,

3
( , )( 1) 1 ( , )

fast

pre pre ij ijk pre ij ijk

ijk

dT
I v k v I v k v

dv
        (9)

 , ,

4
( , )( 1) 1 ( , )

fast

post post ij ijk post ij ijk

ijk

dT
I v k v I v k v

dv
        (10) 

in which 
pre  and 

post  are two on-off switches guided by the 

temporal difference in proportions. More specifically, if the 

difference in coarse proportions between the coarse spatial 

resolution pixel V and the pre-date pixel 
preV  at the same 

location is less than a threshold   (i.e., ( , )predP V V  ), the 

fast change-based temporal constraint in Eq. (9) is activated (i.e., 

=1pre ). This means that the land cover distribution in pixel V is 

very likely to be unchanged compared to that of 
preV  (see, for 

example, the „red rectangle‟ in Fig. 2). Otherwise, if 

( , )predP V V  , the fast change-based temporal constraint in Eq. 

(9) is not activated (i.e., =0pre ), which indicates that a fast 

change is occurred from the pre-date to the target date, such as 

that for the „orange circle‟ in Fig. 2. This is also the same for the 

determination of the on-off switches in Eq. (10). 

In the fast change-based temporal constraint, for a subpixel (i, 

j) falling in coarse pixel V, if the proportion difference 

( , )predP V V  is less than a threshold, 
ijkv  is assumed to resemble 

the land cover class label on the pre-date (i.e., no changes from 

the pre-date to the target date). That is, 3shortT  takes a positive 

effect on 
ijkv  to approach 

,( , )pre ijI v k . Similarly, if the 

proportion difference ( , )postdP V V  is less than the threshold, 

4shortT  takes a positive effect on 
ijkv  to approach 

,( , )post ijI v k .  

E. Benchmark methods 

The performance of FSSTSPM was examined by comparing 

with six SPM methods, including PSA, RBF, HNN, STPSA, 

spatio-temporal RBF (STRBF) [14] and STHNN [43]. 

Specifically, different from the original STPSA method 

proposed by Ling et al. [52] and Xu and Huang [42] that used 

only pre-date imagery, STPSA in the experiments in this paper 

incorporated both pre- and post-images for fair comparison. 

Moreover, to validate the benefit of considering the fast 

change-based temporal constraint, an incomplete version of 

FSSTSPM, namely, FSSTSPM(S) (i.e., FSSTSPM with only the 

slow change-based temporal constraint), was also compared, 

that is, FSSTSPM(S). SPM is essentially an ill-posed issue and is 

always implemented by exploiting various constraints on 

predictions. Therefore, the differences between spatial, 

proportion and temporal constraints for the seven benchmark 

methods and the proposed FSSTSPM method are listed in Table 

1. 

 

Table 1 The SPM methods used in the experiments 
Constraint Spatial Proportion Temporal 

Methods 
Subpixel- 

to-subpixel 
Subpixel- 
to-pixel 

Strictly 
Not 

strictly 
Single 
image 

Multiple 
images 

PSA √  √    

RBF  √ √    

HNN √   √   

STPSA √  √   √ 

STRBF  √ √   √ 

STHNN √   √ √  

FSSTSPM(S) √   √  √ 

FSSTSPM √   √  √ 

 

1) Spatial constraint: PSA- and HNN- based methods (i.e., 

PSA, HNN, STPSA, STHNN and FSSTSPM) consider 

the spatial dependence between subpixels and subpixels. 

RBF-based methods (i.e., RBF and STRBF) are 

performed by considering the spatial dependence between 

the center subpixel and the adjacent coarse pixels. 

2) Proportion constraint: For methods where the proportion 

constraint is strictly satisfied (i.e., PSA, RBF, STPSA and 

STRBF), the proportion is treated as ideal and the number 

of subpixels for each land cover class is fixed. In contrast, 

the proportions are not maintained perfectly during the 

optimization process in HNN-based methods including 

HNN, STHNN and FSSTSPM. 

3) Temporal constraint: Spatio-temporal SPM methods (i.e., 

STPSA, STRBF, STHNN and FSSTSPM) are degraded to 

traditional SPM methods (i.e., PSA, RBF and HNN) when 

the temporal constraint is removed. In view of the 

spatio-temporal methods, one fine spatial resolution 

image is used in STHNN while both pre-date and 

post-date fine spatial resolution maps are used in STPSA, 

STRBF and FSSTSPM. 
 

III. EXPERIMENTS 

Experiments on four datasets were undertaken to examine the 

proposed FSSTSPM approach, including two synthetic datasets 

and two real datasets. In the experiments on the two synthetic 

datasets, a group of manually drawn images and a group of 

National Land Cover Database (NLCD) land cover maps were 

used. For the first real experiment, we used PlanetScope and 

Sentinel-2 images (PlanetScope-Sentinel-2) for a recent oil-spill 

incident. For the second real experiment, we used Landsat 5 

Thematic Mapper images and MODIS images (Landsat-MODIS) 

for a deforestation case in Amazon rain forest. It should be noted 

that images from the same sensor were co-registered already in 

the published products. Meanwhile, images from different 

sensors (e.g., Landsat and MODIS images on the target date) 

were co-registered manually. Additionally, for the 

PlanetScope-Sentinel-2 dataset, the Sentinel-2 image was 

upscaled to 30 m to simulate a Landsat-like image, where a 

zoom factor of 10 for SPM was considered to produce a 3 m land 

cover map. As stated in Section II-C, seven SPM methods were 

considered for comparison, including PSA, RBF, HNN, STPSA, 

STRBF, STHNN and FSSTSPM(S). In the experiments, the 

parameters for all methods were set empirically or based on the 

suggestions of existing literature. Specifically, the weights in the 

energy functions for HNN, STHNN and FSSTSPM were equally 
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set to 1. The window size was set to 3×3 for all methods. 

Moreover, the threshold ∆ was set to 20% empirically for the 

proposed FSSTSPM. It should be noted, however, ∆ should be 

set case by case in practice, which can be affected greatly by the 

errors in proportions. 

 

A. Experiments utilizing synthetic datasets 

1) Manually drawn images 

In this experiment, three fine spatial resolution images (128 

by 128 pixels) covering two objects (i.e., tree-like and road-like 

objects) were drawn manually, which represent the pre-image at 

T1, reference at T2 and post-image at T3, as displayed in Fig. 3. 

In the simulated time-series dataset, both objects remain 

unchanged in a short-time interval. Specifically, the left 

road-like object remains unchanged from T1 to T2 and the right 

tree-like object remains unchanged from T2 to T3. The input 

coarse proportions were simulated by degrading the image at T2 

with two factors (i.e., s=4 and 8). To evaluate the influence of 

uncertainties in the coarse proportions on SPM, the proportions 

with various errors were simulated by adding a Gaussian 

distributed error to the ideal proportions [43]. The error of the 

simulated proportions was evaluated by the index of root mean 

square error (RMSE). Accordingly, three proportion images 

were produced, with RMSE=0.05, 0.10 and 0.15, respectively. 

Fig.3 shows the SPM results of all methods for both s=4 and 

s=8, where proportions with RMSE=0 and 0.10 were considered. 

It is worth noting that when the RMSE is 0.10, the resultant PSA, 

RBF, STPSA and STRBF method maps contain a number of 

sporadic artifacts. The HNN-based methods (i.e., STHNN+T1, 

STHNN+T3, FSSTSPM(S) and FSSTSPM) produce cleaner 

results compared to the PSA- and RBF- based methods. This is 

because the PSA and RBF methods preserve strictly the class 

proportion in the SPM predictions, resulting in inaccurately 

labeled subpixels when proportion error exists. 

Without temporal information, for PSA and RBF, the 

road-like features are aggregated incorrectly into patches, 

especially for a large zoom factor of s=8. Furthermore, the 

boundaries of the tree-like object are over-smoothed in the PSA 

and RBF results. For HNN, some elongated features disappeared 

because of the spatial smoothing effect. For the temporal-based 

methods, the incorporation of fine spatial resolution maps can 

produce more satisfactory SPM results. Specifically, when using 

the T1 image for STHNN (i.e., STHNN+T1), the prediction of 

the road-like object that remained unchanged from T1 to T2 is 

closer to the reference than STHNN+T3. Inversely, for 

STHNN+T3, the reproduction of the tree-like object that 

remained unchanged from T2 to T3 is more accurate than 

STHNN+T1. This is because the STHNN method adopts a fast 

change-based temporal constraint, and if the coarse proportion is 

unchanged, this method outputs a comparable class distribution 

to that of the auxiliary fine spatial resolution map. Moreover, by 

utilizing slow change-based temporal constraints in the 

FSSTSPM(S) method, the unchanged objects from T1-T3 are 

reconstructed; however, land cover that is unchanged over a 

short interval is not well preserved. For the proposed FSSTSPM 

method, fast and slow change-based temporal constraints are 

considered simultaneously, and the available temporal 

information in both pre- and post-images is utilized. As a result, 

the proposed FSSTSPM method produces the most accurate 

results amongst all eight methods. The comparison between the 

FSSTSPM(S) and FSSTSPM methods reveals the importance of 

the fast change-based temporal constraint. 

Fig. 4 presents the quantitative assessment results of the 

overall accuracy (OA) for the eight methods for s=4 and 8 under 

various RMSEs. It turns out that the inaccurate proportions 

impact SPM negatively and the OA values of all the methods 

decrease with an increase in the proportion error. Furthermore, 

as the RMSE increases, the OA values of the HNN-based 

methods decrease much more slowly than for the PSA- and 

RBF-based methods, because the HNN-based methods release 

the proportion constraints and are, therefore, less affected by the 

proportion error. Moreover, the FSSTSPM method is more 

accurate than the STHNN+T1 and STHNN+T3 methods. 

However, the FSSTSPM(S) method produces a smaller OA than 

the STHNN method, suggesting that its advantage in 

considering both fast and slow change-based temporal 

constraints in SPM. In summary, the accuracy of FSSTSPM is 

consistently greater than that of the other methods in the various 

cases. 
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Fig. 3. SPM results of different methods for the manually drawn dataset (s=8). 

 

   
(a)                                                                      (b) 

Fig. 4. OA of different SPM methods for the manually drawn images with different proportion errors. (a) s=4. (b) s=8. 

 

2) NLCD land cover maps 

In this experiment, the pre-date, reference, and post-date fine 

spatial resolution land cover maps were acquired from the 2001, 

2006 and 2011 NLCD, respectively. The NLCD is a 30 m 

raster-based land-cover classification database covering the 50 

U.S. states and Puerto Rico. As exhibited in Fig. 5, the study area 

is located in South Carolina, and each map covers 320×320 

pixels, presenting four classes: urban, agriculture, water, and 

forest. The goal was to reproduce the 30 m NLCD map in 2006, 

where the 2001 and 2011 NLCD maps were used as pre- and 

post-images in SPM, respectively. The spectral unmixing results, 

(i.e., proportion images) in 2006 were produced by degrading 

the binary map of each class in the 2006 NLCD map. Moreover, 

proportions errors with RMSE=0.05, 0.10 and 0.15 were 

considered in the simulation process. Two zoom factors (s=4 and 

8) were utilized to simulate 120 m and 240 m coarse proportion 

images, respectively. 

The resultant maps of all the methods utilizing simulated 

proportion images for s=8 and RMSE=0 and 0.10 are presented 

in Fig. 5. STHNN+2001 and STHNN+2011 denote the STHNN 

method utilizing the 2001 and 2011 NLCD maps for temporal 

constraints, respectively. Without utilizing the land cover spatial 

information in the pre-date and post-date maps, the resultant 

PSA, RBF and HNN method maps are significantly different 

from the reference. Conversely, the temporal-based SPM 

methods, based on spatial and temporal dependences, produce 

more detailed and visually more compelling boundaries. 

Subareas of the resultant maps are enlarged in lines 4 and 6 of 

Fig. 5 to provide a clearer difference between these methods. 

The results of the six temporal-based methods (i.e., STPSA, 

STRBF, STHNN+2001, STHNN+2011, FSSTSPM(S), and 

FSSTSPM) vary with the RMSE. When the RMSE is 0, the 

STPSA, STRBF, and FSSTSPM method SPM predictions are 

visually close to the reference. For the resultant STHNN+2001, 

STHNN+2011, and FSSTSPM(S) method maps, the urban class 

boundary is more compact than the reference, and some 

linear-shaped objects are merged into patches. When the RMSE 

is 0.10, apparent speckle artifacts are present in the STPSA and 

STRBF results. Although the proportion error is spatially 

eliminated in the STHNN+2001 and STHNN+2011 methods, 

some patches are aggregated due to the proportion errors in the 

classes. For example, the urban class is contaminated by other 

classes, and some agricultural patches are reduced in size. 

Notably, even with a proportion error, the proposed FSSTSPM 

method produces visually satisfactory predictions, with most 

features analogous to those in the reference. Furthermore, the 

FSSTSPM method restores more details by utilizing the fast 

change-based temporal constraint than the FSSTSPM(S) 

method. 

Figs. 6 and 7 show the producer‟s accuracy (PA) and OA for 

all eight methods, respectively. Based on the quantitative 

evaluation results, three observations can be made, which are 

described below. 

First, consistent with the visual evaluation from Fig. 5, the 

accuracies of the STPSA, STRBF, STHNN, and FSSTSPM 

methods are greater than those of the PSA, RBF and HNN 

methods, indicating that the resultant SPM map is more accurate 

when temporal constraints are considered. Moreover, the 

proposed FSSTSPM method exhibited the greatest accuracy of 

all eight methods, with PA and OA values exceeding 0.96 and 

0.93 for s=4 and 8, respectively. 

Second, as shown in Fig. 7, the OA values for all the methods 

decrease gradually with increasing RMSE, and the OA value of 

FSSTSPM is the largest amongst all the methods for each RMSE 

value. For the methods incorporating temporal constraints, the 

OA decreases much faster in the STPSA and STRBF methods 

than the FSSTSPM method, indicating that the FSSTSPM 

method can mitigate the negative effect of the proportion error 
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more effectively than the other methods. For example, when the 

RMSE increases from 0 to 0.15 for s=8, the OA of the 

FSSTSPM method decreases from 0.99 to 0.95, while those of 

the STPSA and STRBF methods decrease from 0.98 to 0.79. 

Third, the advantage of utilizing fast change-based temporal 

constraints is obvious for the proposed FSSTSPM method 

compared with the FSSTSPM(S) method. For example, when 

the RMSE is 0 for s=4, the PA values of the FSSTSPM method 

are approximately 0.01, 0.02, 0.01, and 0.01 larger than those of 

the FSSTSPM(S) method for the urban, agriculture, water and 

forest classes, respectively. 

In summary, the qualitative and quantitative evaluations 

demonstrate that FSSTSPM produces the most accurate SPM 

predictions amongst the eight SPM methods. The comparison 

between FSSTSPM(S) and FSSTSPM suggests that the fast 

change-based temporal constraint effectively enhances the SPM 

results. Moreover, the advantage of FSSTSPM is more obvious 

with increasing RMSE in the proportions compared with other 

methods, suggesting that the proposed FSSTSPM method is less 

sensitive to spectral unmixing accuracy. 
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Fig. 5. SPM results of different methods for the NLCD dataset (s=8). 
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Fig. 6. PA of each class for the NLCD dataset. 

 

  
(a)                                                                      (b) 

Fig. 7. OA of different SPM methods for the NLCD dataset with different proportion errors. (a) s=4. (b) s=8. 

 

B. Experiments utilizing real datasets 

1) PlanetScope-Sentinel-2 oil-spill event experiment 

The PlanetScope-Sentinel-2 dataset was utilized to validate 

the proposed FSSTSPM method on an oil-spill event in the 

Ambarnaya River in Norilsk, Russia. The event occurred on 

May 29, 2020 and was cleaned immediately afterwards, leading 

to dynamic changes in distribution of oil-spill, especially in the 

first several weeks. However, it should be noted that the total 

clean up would take several years. Three 3 m PlanetScope 

images were acquired on May 30 and 31 and June 4, 2020 

(T1-T3, respectively). Land cover maps with oil and non-oil 

classes were drawn manually from the images T1-T3, and 

utilized as pre-image, reference, and post-image, respectively. 

Additionally, one 10 m Sentinel-2 image acquired on May 31, 

2020 was utilized as the coarse image. The coarse proportion 

images were produced via the linear spectral unmixing model 

(LSMM) based on the 10 m Sentinel-2 image with 210×210 

pixels, which were utilized as the input for the SPM process. The 

performance of FSSTSPM was further evaluated utilizing a 

larger zoom factor of 10 (e.g., scale difference between the 

PlanetScope and widely utilized Landsat images). Specifically, 

the 10 m Sentinel-2 image was upscaled to 30 m (the spatial 

resolution of the Landsat images) to simulate a coarse image 

with 70×70 pixels, and the resultant proportion image was input 

into the SPM process. The 3 m PlanetScope images, 3 m land 

cover maps, and 30 m coarse proportion image are presented in 

line 1 of Fig. 8. The 3 m land cover map was restored utilizing 

different SPM methods and zoom factors of 3 and 10, as 

presented in lines 3 and 5, respectively, of Fig. 8. Subareas of the 

maps in lines 3 and 5 (Fig. 8) are enlarged to provide an 

enhanced visual comparison and are presented in lines 4 and 6, 

respectively, of Fig. 8. 

The SPM methods produce more detailed oil boundaries than 

the coarse images, and many sporadic artifacts were included in 

the PSA, RBF, STPSA and STRBF method results. Notably, 

although fine spatial resolution map pairs were utilized in the 

STPSA and STRBF methods, the resultant maps are not 

noticeably different from those of the PSA and RBF methods 

because the PSA and RBF methods are slavish to the coarse 

proportions and, thus, the proportion uncertainties are identified 

as noisy pixels. Moreover, smoother boundaries are produced 

via the HNN-based methods (HNN, STHNN+T1, STHNN+T3, 

and FSSTSPM), especially in non-oil areas. However, the oil 

class boundaries in the HNN, STHNN+T1, and STHNN+T3 

predictions are wavy and differ significantly from the reference, 

as shown in line 6 of Fig. 8. The boundaries of the FSSTSPM 

prediction are more continuous and more accurate than those of 

the other methods, with a few speckles presented in the 

predictions for s=3 and 10. 

Fig. 9 shows the error maps of the SPM predictions presented 

in Fig. 8. Many errors can be observed, including many oil pixels 

predicted as non-oil pixels and a few non-oil pixels predicted as 

oil pixels. The main reason is that the errors in the coarse 

proportions reduce the accuracy of the pure non-oil pixels. 

Generally, there are fewer pixel errors in the resultant FSSTSPM 

maps, suggesting that this method can provide a more reliable 

class boundary restoration than the other methods. 

The quantitative evaluation results (i.e., OA and omission and 

commission errors) for all the methods are listed in Table 2. 

Although the STHNN+T1 and STHNN+T3 methods produce 

larger OAs than the other methods, the proposed FSSTSPM 

method, with OA values of 98.42% and 98.85% for s=3 and 10, 

respectively, is the most accurate method, attributed to its ability 

to consider the fast and slow change-based temporal constraints 

simultaneously. In conclusion, based on the visual and statistical 

accuracy assessments, the proposed FSSTSPM method produces 

the most accurate SPM predictions. 
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Fig. 8. SPM results of different methods for the PlanetScope-Sentinel-2 dataset (s=3 and 10). 
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Fig. 9. Error maps for the PlanetScope-Sentinel-2 dataset (s=3 and 10). 

 

Table 2 The omission error (%), commission error (%) and OA (%) of different methods for the PlanetScope-Sentinel-2 dataset 

   PSA RBF HNN STPSA STRBF STHNN+T1 STHNN+T3 FSSTSPM 

s=
3
 

Oil 
Commission error 23.74 23.71 17.52 30.32 30.23 13.33 8.99 1.06 

Omission error 8.38 8.36 7.15 12.88 12.82 2.78 3.25 1.86 

Non-oil 
Commission error 13.87 13.84 12.30 21.30 21.20 4.68 5.68 3.37 

Omission error 15.03 15.01 10.44 19.20 19.14 8.22 5.22 0.58 

 

OA 85.39 85.41 88.89 80.05 80.12 93.05 94.61 98.42 

s=
1
0
 Oil 

Commission error 2.44 2.45 2.46 2.21 2.20 1.37 1.82 1.04 

Omission error 1.52 1.53 0.24 1.28 1.27 0.04 0.12 0.05 

Non-oil 
Commission error 31.37 31.53 6.96 26.41 26.31 0.89 2.98 1.09 

Omission error 42.62 42.76 43.47 38.48 38.39 23.92 31.96 18.21 

 OA 96.23 96.22 97.39 96.69 96.70 98.65 98.14 98.95 

 

2) Landsat-MODIS deforestation event experiment 

An experiment was performed for the deforestation event in 

the Amazon utilizing three 30 m Landsat 5 TM images acquired 

on July 21, 2003 (T1), August 8, 2004 (T2) and August 11, 2005 

(T3), respectively. These images were classified into two classes 

(i.e., forest and non-forest) via a support vector machine and 

employed as the pre-date, reference, and post-date fine spatial 

resolution land cover maps. Additionally, a single eight-day, 467 

m MODIS product (MOD09A1) acquired on August 4, 2004 

was pre-projected and resampled to 480 m. Then, a coarse 

proportion image was produced via LSMM for utilization as the 

SPM input. As shown in Fig. 10, the study area exceeds 5800 

km
2
, and includes 2880×2240 fine spatial resolution Landsat 

pixels and 180×140 coarse MODIS pixels. The SPM methods 

were compared visually based on the resultant and error maps 

presented in Fig. 10. 

Based on the results, it turns out that SPM produces a more 

detailed land cover map in comparison with the coarse 

proportion image. As shown in the enlarged subareas in line 4 of 

Fig. 10, many small, jagged artifacts exist in the non-forest 

patches of the PSA, RBF, STPSA and STRBF maps. By 

exploiting temporal information from the pre-date or post-date 

fine spatial resolution maps, the FSSTSPM+T1 and 

FSSTSPM+T3 methods produce clearer results than the 

previous four methods, but fail to restore the boundaries of the 

non-forest class smoothly. The prediction of FSSTSPM is 

visually the most similar to the reference. By comparing the 

error maps of the different methods, FSSTSPM is found to 

produce fewer error pixels than the other methods. However, 

error pixels (marked in red in Fig. 10) occur in all the results 

because significant changes occurred from T1 to T3. Thus, 

sufficient boundary information in the temporal constraints is 

unavailable for the SPM process. Furthermore, the non-forest 

class spectrum varies greatly, causing large proportion errors. 

As displayed in Table 3, FSSTSPM produces the smallest 

omission and commission errors for both classes. For example, 

the commission errors are 4.82% and 4.12% for the forest and 

non-forest classes, respectively. Furthermore, the OA of the 

proposed FSSTSPM method is the largest amongst the eight 

methods. 

The uncertainties in classification of fine spatial resolution 

images at T1 and T3 were also considered in this experiment. 

Specifically, 5%, 10% and 15% incorrectly classified pixels 

were simulated in both land cover maps at T1 and T3. As 

presented in Fig. 11, all STSPM methods (i.e., STPSA, STRBF, 

STHNN+T1, STHNN+T3 and FSSTSPM) produce smaller OA 

with an increase of classification error. Under the same 

classification error, however, the FSSSTSPM method produces 

the largest OA amongst all methods. 
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Fig. 10. SPM results of different methods for the Landsat-MODIS dataset (s=16). 

 

Table 3 The omission error (%), commission error (%) and OA (%) of different methods for the Landsat-MODIS dataset 

   PSA RBF HNN STPSA STRBF STHNN+T1 STHNN+T3 FSSTSPM 

s=
1
6
 Forest 

Commission error 12.57 12.48 9.42 11.17 11.22 8.35 7.80 4.82 

Omission error 9.79 9.70 8.77 8.35 8.40 7.25 6.88 2.80 

Non-forest 
Commission error 14.61 14.47 12.62 12.46 12.53 10.50 9.94 4.12 

Omission error 18.47 18.34 13.51 16.42 16.49 12.03 11.22 7.01 

 OA 86.63 86.73 89.27 88.32 88.26 90.78 91.33 95.46 
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Fig. 11. OA of different SPM methods for the Landsat-MODIS dataset with 

various classification errors in the 30 m land cover maps at T1 and T3. 

 

IV. DISCUSSION 

A. Differences between spatio-temporal fusion and the 

proposed FSSTSPM method 

The three main differences between the proposed FSSTSPM 

and existing spatio-temporal fusion methods are discussed 

below. 

First, conceptually, the proposed FSSTSPM method aims to 

produce land cover classification maps instead of multispectral 

images. Therefore, both coarse image downscaling and land 

cover mapping are performed in FSSTSPM. Conversely, 

spatio-temporal fusion is designed to produce temporally 

continuous multispectral images at fine spatial resolution, 

although the output can be used for further land cover mapping. 

Second, although coarse and fine spatial resolution images are 

required for both methods, they have different functions. For the 

proposed FSSTSPM method, only one coarse multispectral 

image is needed to acquire the class proportions based on 

spectral unmixing, and the pre-date and post-date fine spatial 

resolution land cover maps are utilized to construct temporal 

constraints in SPM. In contrast, spatio-temporal fusion generally 

requires at least one coarse-fine image pair pre- or post- the date 

of the coarse image to predict the temporal spectral change of 

each band. Consequently, consistent spectral ranges for each 

band between the fine and coarse images are essential for 

spatio-temporal fusion, whereas the proposed FSSTSPM 

method is able to utilize fine spatial resolution images with 

different spectral ranges. For example, temporally neighboring, 

fine spatial resolution hyperspectral images can also be utilized 

to obtain land cover maps at target fine spatial resolution for the 

FSSTSPM method. 

Third, as an SPM method, FSSTSPM is developed to predict 

more detailed land cover maps than the original coarse image, 

and it can be applied to detect subpixel resolution land cover 

changes across time. That is, it is suitable for dynamic 

monitoring of LCLU changes. In contrast, spatio-temporal 

fusion is generally undertaken based on the assumption of no 

LCLU changes between images on different dates, and the 

prediction is more suitable for dynamic monitoring of 

phenological changes of vegetation (e.g., crop growth). 

B. Uncertainty in the fast change-based temporal constraint 

The experimental results indicate that a fast change-based 

constraint can facilitate spatio-temporal SPM by exploiting 

temporal change information in a short-time interval. It should 

be noted that the performance of fast and slow change-based 

constraint is affected essentially by the speed of land cover 

change, that is, not necessarily the length of time interval 

between images. For example, land cover may change fast 

within several days (e.g., inundation) or change slow within up 

to one year (e.g., urbanization in highly developed cities). 

Generally, for the same area, the land cover change tends to be 

smaller if the temporal distance between two images is also 

smaller. Thus, for implementation of FSSTSPM, we normally 

need to search for the fine spatial resolution images that are 

temporally closest to the target coarse image. However, 

uncertainty exists inevitably in this constraint. In the proposed 

FSSTSPM method, the short interval temporal change is 

detected based on the difference between the coarse proportions 

at two times (one is the estimated coarse proportion based on 

spectral unmixing of coarse images at the prediction time, while 

the other is the coarse proportion degraded from the pre-date or 

post-date fine spatial resolution land cover maps). Generally, 

spectral unmixing assumes that the coarse proportions in the 

coarse pixel are the average of the subpixel indicators within the 

pixel. However, the actual proportion is influenced by various 

factors, such as noise and the point spread function. The latter 

means that the signal of a pixel is influenced by its adjacent 

pixels. Therefore, uncertainty exists in the proportion 

predictions. To account for the uncertainty in the short interval 

constraint, an adaptive model may be considered by including an 

adaptive weight for each coarse pixel based on the proportion 

difference at the two times. This is also our ongoing research. 

C. Generalization ability of the proposed FSSTSPM method 

In this study, the proposed FSSTSPM method was applied in 

the PlanetScope-Sentinel-2 and Landsat-MODIS dataset 

experiments and was demonstrated to be more accurate than the 

benchmark methods. As mentioned in Section Ⅳ-A, the 

proposed FSSTSPM method can utilize images with different 

spectral ranges. The proposed FSSTSPM method can be applied 

to scenes with temporal land cover changes. More importantly, it 

is a method suitable for various datasets. For example, it can be 

applied for SPM of 300 m Sentinel-3 time-series, with the aid of 

10 m Sentinel-2 images on the pre-date and post-date, to 

reproduce temporally continuous, 10 m fine spatial resolution 

land cover maps. 

D. Limitation of the proposed FSSTSPM 

The proposed FSSTSPM method is developed based on the 

availability of two fine spatial resolution land cover maps that 

pre-date and post-date the target coarse spatial resolution image. 

The slow change-based temporal constraint is constructed using 

pre- and post-images directly. Thus, FSSTSPM is suitable for 

handling historic time-series images, rather than real-time 

images (i.e., the post-fine land cover map is unknown). It would 

be an interesting avenue to develop methods applicable to SPM 

of real-time data. 

Moreover, to extract reliable unchanged information in the 

long and short periods, the fine spatial resolution land cover 

maps closer to the target date are more favorable for FSSTSPM. 

Nevertheless, due to revisit frequency and cloud contamination, 

sometimes the fine spatial resolution data may be temporally far 

from the target time, where land cover may experience great 

changes. Facing with this issue, it may be worthwhile to perform 
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SPM of coarse images closest to the fine spatial resolution data 

first and the prediction is then used as auxiliary data for SPM of 

the next coarse image. The process is repeated until the target 

time is reached. However, errors would be propagated and 

accumulated to the final predictions on the target date. The 

benefits of this potential scheme would depend heavily on the 

speed of land cover changes across time, and the scheme seems 

more suitable for gradual changes. 

E. The common problem of intra-class spectral variation 

In the Landsat-MODIS dataset experiment, the forest and 

non-forest class spectra were extracted for utilization in the 

simple, widely employed LSMM model, and the same estimated 

coarse proportion input was utilized in all the methods. 

Intra-class spectral variation is one of the most challenging 

issues in spectral unmixing, and the accuracy of spectral 

unmixing tends to decrease with an increase in intra-class 

spectral variation. It would be interesting to develop more 

reliable solutions to deal with the unavoidable intra-class 

spectral variation to reduce the uncertainties in the coarse 

proportions, and further, increase the SPM accuracy. In our 

previous research [53], a spatio-temporal spectral unmixing 

(STSU) approach was developed to explore fully the available 

temporal information in the multi-scale time-series images, 

which does not require endmembers and can cope with 

intra-class spectral variation. Specifically, supervised 

information (i.e., spectra of coarse pixel coupled with the 

corresponding land cover proportions) at the prediction time is 

extracted by change detection, which is used to fit a learning 

model for subsequent proportion prediction. STSU, however, 

needs coarse images at both the pre-date and post-date for 

change detection. More importantly, STSU is carried out 

assuming that the land cover changes are unidirectional during 

the investigated period. 

F. Application to oil-spill mapping 

In the oil-spill experiment, oil-spill mapping was utilized to 

detect sudden oil-spill events in Russia. This experiment 

revealed the noticeable capability of SPM to identify more 

detailed oil-polluted areas than traditional classification methods. 

Moreover, despite the general utilization of synthetic aperture 

radar (SAR) imagery, optical images have been demonstrated to 

be more effective for monitoring oil presence, type, and quality 

[54]. Consequently, SPM has great potential for monitoring 

oil-spill areas experiencing rapid land cover changes, which can 

be undertaken without the need for images with both fine spatial 

and temporal resolution. For example, Rajendran et al.[55] used 

historical images with relatively coarse spatial resolution from 

May 23 to June 8 for analyzing the oil-spill event on the 

Ambarnaya river. By applying spatio-temporal SPM (e.g., 

FSSTSPM developed in this paper) to those multi-temporal 

coarse images, oil velocity and direction can be further analyzed 

at a finer spatial resolution, which may contribute more to oil 

cleanup and underwater biological conservation. Furthermore, 

the oil-spill pollution primarily exists above the water surface. 

Therefore, the water mask can be distilled to confine the oil 

mapping boundary (i.e., pixels outside the water mask can be 

directly assigned to the non-oil class) such that commission 

errors resulting from the land surface can be avoided. 

V. CONCLUSION 

SPM has been acknowledged widely as an ill-posed issue. The 

use of temporal information is an important solution to 

overcome this limitation. Existing spatio-temporal SPM 

methods generally assume that LCLU change is a continuous 

process, and only the slow change-based temporal constraint is 

considered. In some cases, however, the LCLU change can be 

considered as a break-point process with fast change in a short 

period, rather than change in the entire period. In existing 

methods, the valuable information in the short period is always 

ignored. In this research, the fast change-based temporal 

constraint was defined to fully explore the information in the 

time-series, and further, both slow and fast change-based 

temporal constraints were considered in SPM to increase the 

prediction accuracy. The proposed FSSTSPM method was 

compared to the PSA, RBF, HNN, STPSA, STRBF and STHNN 

methods based on the experiments on four datasets, including 

two synthetic and two real datasets (for oil-spill and 

deforestation mapping using real datasets). The main findings 

are summarized briefly as below. 

1) Visual and quantitative assessments revealed that 

FSSTSPM can provide more accurate SPM prediction 

than the benchmark methods. 

2) In FSSTSPM, the use of the fast change-based temporal 

constraints is advantageous for enhancing SPM. 

3) As the error (in terms of RMSE) in the proportions 

increases, the SPM accuracy decreases for all methods. 

However, the proposed FSSTSPM method remains the 

most accurate in each case, being less sensitive to the 

proportion error and decreasing more slowly with 

proportion error than the other methods. 

4) As concluded from the PlanetScope-Sentinel-2 and 

Landsat-MODIS experiments, the proposed FSSTSPM 

method can produce satisfactory subpixel maps for the 

key applications of oil-spill monitoring and deforestation 

monitoring with fine spatio-temporal resolution. 
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