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Abstract 

The current study examined the extent to which cognitive fluency (CF) contributes to 

utterance fluency (UF) at the level of constructs. A total of 128 Japanese-speaking learners of 

English completed four speaking tasks—argumentative task, picture narrative task, reading-

to-speaking task, and reading-while-listening-to-speaking task—and a battery of linguistic 

knowledge tests, capturing vocabulary size, lexical retrieval speed, sentence construction 

skills, grammaticality judgements, and articulatory speed. Their speaking performance was 

analyzed in terms of speed, breakdown, and repair fluency (i.e., UF), and scores on linguistic 

knowledge tests were used to assess students’ L2 linguistic resources and processing skills 

(i.e., CF). Structural equation modelling revealed a complex interplay between the 

multidimensionality of CF and UF and speaking task types. L2 processing speed consistently 

contributed to all aspects of UF across speaking tasks, whereas the role of linguistic resources 

in speed and repair fluency varied, depending on task characteristics. 
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Introduction 

Oral fluency is one of the most robust indicators of L2 proficiency (Tavakoli et al., 2020). 

Therefore, in the context of learning, teaching, and assessment of second language (L2) 

speaking skills, oral fluency is commonly regarded as one of the major learning goals. For a 

better understanding of L2 fluency as a construct and as an important language learning 

target, it is essential to examine how underlying linguistic knowledge contributes to students’ 

fluent speech production. Insights into how L2 users’ linguistic resources and processing 

mechanisms contribute to the efficiency of speech production may also assist language 

teachers and materials designers and inform language teaching policymakers what linguistic 

knowledge areas and skills to develop so that L2 learners may become fluent speakers. In L2 

fluency research, underlying linguistic knowledge and the temporal characteristics of speech 

are termed cognitive fluency (CF) and utterance fluency (UF), respectively (Segalowitz, 

2010, 2016). Specifically, CF refers to "the efficiency of the speaker's underlying processes 

responsible for fluency-relevant features of utterance" (Segalowitz, 2010, p. 50). UF is 

concerned with "the oral features of utterances that reflect the operation of underlying 

cognitive processes" (Segalowitz, 2010. p. 50), including speed of delivery and hesitations. 

Although few in number, previous studies have examined the relationship between CF and 

UF (henceforth, CF-UF link), providing important insights into the CF-UF link (De Jong et 

al., 2013; Kahng, 2020). However, previous studies analyzed the measures of CF and UF 

only at the level of observed variables, meaning that the findings may entail measurement 

errors. As any observable phenomena are produced not only by the underlying target 

constructs, but also by some unpredictable random factors (i.e., measurement error), scholars 

in the human sciences have adopted the concept of latent variables and calculate them based 

on the covariance of multiple observed variables (for an overview, see Bollen, 2002; Kline, 
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2016). To further clarify the CF-UF link, the current study, therefore, examines the CF-UF 

link at the level of constructs by means of latent variable analyses. 

 

Literature Review 

Cognitive Fluency 

CF is concerned with how efficiently L2 speakers operate their systems of speech 

production (Segalowitz, 2010). The validity of operationalization of CF can thus be discussed 

in terms of how different cognitive and linguistic processes in L2 speech production are 

reflected in utterances. L2 speech production models (Kormos, 2006; Segalowitz, 2010) are 

commonly based on Levelt’s (1989, 1999) work and assume that L2 speech production 

entails three major phases—conceptualization, formulation, and articulation—which are 

executed serially in this order. Conceptualization is responsible for the generation of the 

preverbal message which includes selected information to convey and its manner of 

communication. Formulation transforms the preverbal message into corresponding linguistic 

forms through different linguistic encoding processes (e.g., lexical retrieval, syntactic 

procedures). Articulation proceeds by moving the speech organs to produce speech sounds. 

In addition to these major processes of speech production, the self-monitoring function 

examines the interim content and eventual outcome of the preceding processes in terms of 

appropriacy and linguistic correctness. Among these speech production processes, 

conceptualization is assumed to be relatively independent of L2 proficiency, because 

conceptualization is responsible for the manipulation of conceptual information prior to 

linguistic encoding processes (Kormos, 2006). In contrast, formulation and articulation draw 

on L2 knowledge and skills, and thus are categorized as L2-specific components of CF 

(Kahng, 2020; Segalowitz, 2016). One clear distinction between formulation and articulation 

is the level of representations of processing. Formulation involves several linguistic encoding 
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modules, all of which manipulate different types of linguistic representations (e.g., lexical 

and phonological representations). Articulation is considered to be purely motoric, meaning 

that the execution of articulation involves the use of gestural movements rather than 

information processing. Meanwhile, the self-monitoring function is related to both conceptual 

and L2-specific aspects of L2 speech production, because it is driven by either content 

accuracy or linguistic errors identified in the course of speech production. Building on the 

notion of L2-specific CF (Kahng, 2020; Segalowitz, 2016), valid measurements of CF should 

therefore tap into formulation and articulation processes and self-monitoring processes 

triggered by language-related problems. 

Looking closely at the literature on CF research, one may argue that previous studies have 

used both broad and narrow definitions of CF. In a narrow sense, in accordance with 

Segalowitz’s (2016) original conceptualization, CF refers to the speed and efficiency of 

linguistic encoding processes. In a broad sense, often adopted in empirical studies (e.g., De 

Jong et al., 2013; Kahng, 2020), CF may include linguistic knowledge resources as well as 

the speed of processing skills. For instance, lexical processing in L2 speech production is 

related to the range of available lexical resources (i.e., breadth and depth of vocabulary 

knowledge) as well as the speed of lexical retrieval (i.e., lexical fluency) (see Kormos, 2006). 

Following the narrow sense, only lexical fluency is regarded as a lexical component of CF, 

while the broad definition of CF concerns both the breadth and depth of vocabulary 

knowledge and lexical fluency as the lexical component of CF. According to Segalowitz’s 

(2010, 2016) framework, CF is conceptualized as a construct that can explain observable 

temporal features of utterances (i.e., UF). From the perspective of L2 speech production 

mechanisms, breakdowns in utterances can be caused by both a lack of linguistic resources 

and a slow processing speed. The valid operationalization of CF may thus involve both 

linguistic resources and processing speed. Therefore, the current study follows the broad 
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definition of CF and subsequently operationalizes CF as linguistic resources and processing 

efficiency at the level of vocabulary, grammar and pronunciation (for a similar 

methodological decision, see De Jong et al., 2013; Kahng, 2020). However, to the best of our 

knowledge, the dimensionality of CF (i.e., the number of subconstructs) has not yet been 

empirically examined. Accordingly, the current study also aims to test different factor 

structures of L2-specific CF. 

 

Utterance Fluency 

Within Segalowitz’s (2010, 2016) framework, UF refers to observable temporal features, 

such as speed of delivery, pauses, and hesitations, which reflect the speaker’s CF. There has 

been a consensus that UF is composed of three subcomponents—speed, breakdown, and 

repair fluency (Skehan, 2003; Tavakoli & Skehan, 2005). Speed fluency is concerned with the 

density of information or speed of delivery and thus is typically measured by articulation rate 

(i.e., the number of syllables produced over speech duration excluding pauses). Breakdown 

fluency refers to pausing behaviour and is commonly operationalized in terms of the 

frequency, duration, type, and location of pauses (S. Suzuki et al., 2021; Tavakoli & Wright, 

2020). Among the different dimensions of pausing behaviour, recent studies have recognized 

the importance of pause location as an indicator of underlying speech processing. Pauses in 

the middle of utterances are hypothesized to reflect disruptions in L2-specific linguistic 

processing, while pauses at clausal boundaries are supposed to capture breakdowns in 

conceptualization-related processes, such as content planning (De Jong, 2016; Tavakoli, 

2011). Finally, repair fluency covers, by definition, a range of disfluency phenomena, 

including self-corrections, false starts, and verbatim repetitions. Some scholars argue that 

repair fluency is in a supplementary relationship with breakdown fluency, because both 

breakdown and repair fluency are assumed to reflect the operation of self-monitoring 
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processes (i.e., covert and overt repairs; see Kormos, 2000, 2006) and are regarded as 

opportunities for speakers to buy time to deal with disruptions in speech processing (De Jong 

et al., 2015). As such, some studies even examine breakdown and repair fluency as 

inseparable phenomena (e.g., Williams & Korko, 2019). 

L2 fluency research has conventionally measured temporal features of speech, following 

Tavakoli and Skehan’s (2005) triad model of UF (speed, breakdown, and repair fluency). The 

triad model was empirically validated to examine the extent to which fluency is 

distinguishable from other constructs of L2 oral proficiency such as accuracy and complexity, 

and to establish the robustness of the model across four different prompts of picture narrative 

tasks. The results of factor analysis in Tavakoli and Skehan’s (2005) study indicated two 

separate factors of UF: one including both speed and breakdown fluency and the other repair 

fluency. The finding that speed and breakdown fluency were indistinguishable might have 

been due to the lack of any measure that taps solely into speed fluency, that is, articulation 

rate. Following Tavakoli and Skehan’s (2005) study, different UF measures with high 

construct validity, such as articulation rate and mid-clause pause frequency, have been 

employed in L2 fluency research. In addition, even though the triad model of UF was 

validated only with speech data from picture narrative tasks, the model has been applied to a 

variety of speaking tasks, going beyond picture narratives. Therefore, to test the validity of 

Tavakoli and Skehan’s (2005) model of UF in diverse research contexts, it is essential to 

revisit the dimensionality of UF, using a comprehensive set of UF measures based on 

different speaking tasks. 

 

The Cognitive-Utterance Fluency Connection 

According to Segalowitz’s (2010, 2016) framework, a speaker’s CF is assumed to underlie 

the UF of their speech. Although few in number, previous studies have examined what 



 7 

cognitive and linguistic processes can explain variability in UF. Even before Segalowitz’s 

(2010) work, Segalowitz and Freed’s (2004) pioneering research investigated the role of L2-

specific cognitive ability in L2 oral fluency with English-speaking learners of Spanish (N = 

40). Using a semantic classification task and a repeat-and-shift task in both L1 and L2, they 

computed L2-specific cognitive measures for lexical access and attention control by 

partialing out corresponding L1 measures. They found that the length of run without fillers in 

L2 speech was positively associated with the speed of L2 lexical access. Meanwhile, L2 

speech rate correlated negatively with the processing stability of L2 attention control, 

measured by the coefficient of variance (CV) index. Despite the narrow range of cognitive 

processing measures, these findings confirmed the role of cognitive ability in L2 UF. 

Building on Segalowitz’s (2010) framework of oral fluency, De Jong et al. (2013) 

employed a range of linguistic resource and processing measures to predict different UF 

measures. Their data were collected from 179 learners of L2 Dutch from various L1 

backgrounds. Their CF measures covered vocabulary knowledge (vocabulary size, lexical 

retrieval speed), grammatical knowledge (grammatical knowledge, sentence construction 

speed), and pronunciation knowledge (phonetic accuracy, articulatory speed). Their UF 

measures captured speed, breakdown, and repair fluency. Correlational analyses showed that 

relevant components of CF varied across UF measures. For instance, mean syllable duration, 

that is, the inverse measure of articulation rate (speed fluency), correlated with a whole range 

of CF measures. Meanwhile, breakdown fluency measures were related to more specific 

dimensions of CF. Mean duration of pauses correlated weakly with lexical retrieval speed 

only. Moreover, both silent and filled pause ratio measures correlated with lexical and 

grammatical measures. In addition, their linear mixed-effects modelling included a random 

slope of speaking task types for all UF measures, except self-repetition ratio, indicating the 

moderating role of task type in the CF-UF link. 
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Kahng (2020) examined the predictive power of CF measures for UF measures, using a 

personal narrative task with Chinese learners of English (N = 44). Uniquely, Kahng (2020) 

included corresponding L1 UF measures as another predictor variable to partial out the 

covariance between L1 and L2 UF measures. In her study, CF measures covered vocabulary 

size for single words and multi-word phrases, lexical retrieval speed, grammatical resources 

and processing speed, and articulatory speed, largely following De Jong et al. (2013). Their 

stepwise multiple regression analyses resulted in three major findings. First, although mean 

syllable duration (speed fluency) and mid-clause pause ratio (breakdown fluency) correlated 

with both lexical and syntactic measures of CF, different CF measures were identified as 

predictor variables in the regression models. Mean syllable duration was predicted from 

lexical measures of CF (lexical retrieval speed, phrasal vocabulary size), while mid-clause 

pause ratio was predicted from the measure of syntactic processing speed. This finding 

indicates that the primary component of CF can vary across the dimensions of UF. Second, 

the regression models of mid-clause pause ratio and self-correction ratio did not include 

corresponding L1 UF measures as predictor variables. This finding suggests that pauses in 

the middle of clauses and self-repair may specifically reflect L2-specific processing. Third, 

the strongest predictors in the regression models of mean pause duration and filled pause 

ratio were their corresponding L1 UF measures, suggesting that the length of silent pauses 

and the frequency of filled pauses are more closely related to language-general idiosyncratic 

factors than to L2-specific CF.  

Taken together, previous studies suggest two common patterns with regard to the CF-UF 

link. First, different components of CF may be associated with different dimensions of UF to 

varying degrees. Therefore, for a better understanding of the CF-UF link, it is essential to 

consider the dimensionality of CF and UF. Second, the association between CF and UF can 

vary, depending on the speaking task design (De Jong et al., 2013). However, it is still 
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unclear what task design features moderate the CF-UF link because, in their study, De Jong et 

al. (2013) treated speaking tasks as random-effects predictors in their regression models. 

Meanwhile, previous studies employed different measurements of CF and analyzed measured 

scores only at the level of observed variables. It can thus be argued that the findings of 

previous studies may entail measurement errors to some extent. Therefore, L2 fluency 

research may be extended by examining the CF-UF link at the level of constructs by means 

of latent variable analyses. 

 

The Current Study 

Motivated by the scarcity of studies examining the CF-UF link, the current study examines 

the relationship between CF and UF across four speaking tasks at the level of constructs, as 

well as the dimensionality of CF and UF. Accordingly, the study employed a cross-sectional 

design to investigate the factor structure of CF and UF. Building on Segalowitz’s (2010) 

original framework, we predicted the latent variables of UF (i.e., outcome variables) from 

those of CF (i.e., predictor variables), using structural equation modelling (SEM). We also 

included one moderator variable, that is, speaking task at four levels (Argumentative, Picture 

narrative, Reading-to-speaking, and Reading-while-listening-to-speaking). Following De 

Jong et al. (2013) and Kahng (2020), this study operationalized CF as a set of linguistic 

resources and processing skills. Each dimension of UF, that is, speed, breakdown, and repair 

fluency, was also measured. Furthermore, to examine the moderating role of speaking tasks 

in the CF-UF link, we employed four speaking tasks: argumentative task, picture narrative 

task, reading-to-speaking task, and reading-while-listening-to-speaking task. The current 

study is guided by the following research questions: 
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RQ1. What is the relationship between cognitive fluency measures of lexical, 

grammatical, and pronunciation knowledge? 

RQ2. What is the relationship between utterance fluency measures of speed, 

breakdown, and repair fluency? 

RQ3. To what extent do components of cognitive fluency contribute to different 

dimensions of utterance fluency? 

RQ4. To what extent is the cognitive-utterance fluency link (RQ3) moderated by 

speaking tasks? 

 

Method 

Participants 

To reach adequate statistical power, the minimum number of for the sample size was 

determined by the ratio of the sample size to the number of variables. Traditionally, the 

optimal ratio for confirmatory factor analysis (CFA) can range from five to ten (Kyriazos, 

2018). As a total of 20 observed variables (11 UF measures and 9 CF measures) was 

predetermined for the current study (see the Analysis section), the minimum number of 

sample size was set at N = 100. A total of 128 Japanese learners of English, ranging from 18 

to 27 years of age (Mage = 20.43, SDage = 1.81), participated voluntarily in the current study 

(Female = 73, Male = 55). Their self-reported university placement test scores suggested that 

most of them could be placed at the B1–B2 levels of the Common European Framework of 

Reference (CEFR; Council of Europe, 2001) scale, while some of them seemed to have 

reached C1 level.  
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Speaking tasks 

The current study aims to examine the moderator effects of speaking task design on the 

CF-UF link. Given the mechanisms of speech production as theoretical underpinnings of CF 

(Segalowitz, 2010, 2016), we selected task design features based on the framework of speech 

processing demands (e.g., Préfontaine & Kormos, 2015; Skehan, 2009), targeting three 

speech processing characteristics: content planning (i.e., conceptualization), the pre-emptive 

activation of relevant linguistic items, and the availability of phonological information. To 

manipulate these speech processing components, the study employed four speaking tasks: (a) 

an argumentative speech task, (b) a related picture narrative task, (c) a reading-to-speaking 

(RtoS) task, (d) a reading-while-listening-to-speaking (RwLtoS) task. All the task prompts 

are available via OSF 

(https://osf.io/zrwmn/?view_only=0eeb1c966cb64afc9834acf80a42ad7e). In the 

argumentative task, students were provided with a statement and argued to what extent they 

agree/ disagree with it (S. Suzuki & Kormos, 2020), while in the picture narrative task, they 

were asked to describe an 11-frame cartoon adopted from Préfontaine and Kormos (2015; 

available in the IRIS database, https://www. iris-database.org). In both RtoS and RwLtoS 

tasks, students were instructed to read a 300-word long expository text written in English and 

to retell the content of the text (for details of the tasks, see Kormos et al., forthcoming). 

However, these tasks differed in the modality of the source text presentation. The RtoS task 

offered a written text (i.e., reading-only), while a bimodal text (reading-while-listening) was 

provided in the RwLtoS task. In order to minimize the effects of source texts, we prepared 

two comparable texts adapted from Millington (2019), and the audio-input for the bimodal 

source text was recorded by a L1 Canadian English speaker with 15 years of English teaching 

experience at universities in Japan. There are three intended contrasts between these tasks. 

First, comparing the argumentative task with the other three tasks, the moderating role of the 

https://osf.io/zrwmn/?view_only=0eeb1c966cb64afc9834acf80a42ad7e
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necessity for content planning in the CF-UF link can be examined. Second, the contrast 

between the picture narrative task and both RtoS and RwLtoS tasks may offer insights into 

how the pre-emptively enhanced activation of linguistic items by means of the source text 

presentation affects the CF-UF link. Third, the impact of the availability of phonological 

information on the CF-UF link can be examined by contrasting the RtoS and RwLtoS tasks.  

 

Utterance fluency measures  

Following previous studies, we targeted three major aspects of UF—speed, breakdown, 

and repair fluency (Tavakoli & Skehan, 2005). There is one measure that only taps into the 

construct of speed fluency, that is, articulation rate, or its inverse measure, mean duration of 

syllables (Tavakoli et al., 2020). However, to construct a latent variable, more than two 

observed variables are ideally loaded onto the latent variable to avoid an under-identified 

model (Brown, 2006). We thus included two composite measures—speech rate and mean 

length of run—as the measures of speed fluency. The selected UF measures are listed below:  

 

Speed fluency 

1. Articulation rate (AR). The mean number of syllables produced per second, divided 

by total phonation time (i.e., total speech duration excluding pauses). 

Composite measures 

2. Speech rate (SR). The mean number of syllables produced per second, divided by total 

speech duration time, including pauses. 

3. Mean length of run (MLR). The mean number of syllables produced in utterances 

between pauses. 

Breakdown fluency 
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4. Mid-clause pause ratio (MCPR). The mean number of silent pauses within clauses, 

divided by the total number of syllables produced. 

5. End-clause pause ratio (ECPR). The mean number of silent pauses between clauses, 

divided by the total number of syllables produced. 

6. Filled pause ratio (FPR). The mean number of filled pauses, divided by the total 

number of syllables produced. 

7. Mid-clause pause duration (MCPD). Mean duration of pauses within clauses. 

8. End-clause pause duration (ECPD). Mean duration of pauses between clauses. 

Repair fluency 

9. Self-correction ratio (SCR). The mean number of self-correction behaviours, divided 

by the total number of syllables produced. 

10. False start ratio (FSR). The mean number of false starts/reformulations, divided by 

the total number of syllables produced. 

11. Self-repetition ratio (SRR). The mean number of self-repetitions, divided by the total 

number of syllables produced. 

 

All the speech data were transcribed and then annotated for the boundaries of clauses. To 

minimize collinearity across different constructs of UF, temporal features for breakdown and 

repair fluency were standardized by the number of syllables produced in pruned transcripts 

rather than speech duration, because speech duration can entail variability in speed fluency. 

To annotate temporal features, Praat software was used (Boersma & Weenink, 2012). After 

annotating and excluding disfluency features, the number of syllables produced in pruned 

transcripts was calculated. Following prior research (Bosker et al., 2013; De Jong & Bosker, 

2013; S. Suzuki et al., 2021), the threshold of silent pauses was defined as 250 ms. With the 

assistance of automated detection of silence, clause boundaries and pause locations were 
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annotated in TextGrid files of Praat. To ensure the validity of pause identifications, 

automatically annotated boundaries of silences and sounds were manually checked and, if 

necessary, modified. 

 

Vocabulary knowledge  

In L2 speech production, vocabulary knowledge mainly plays a role in lexical retrieval 

where the speaker activates and selects lexical items from the mental lexicon that match the 

conceptual meaning of the message (Kormos, 2006). We thus assessed speakers’ vocabulary 

size and lexical retrieval speed. 

 

Vocabulary size 

To estimate the speakers’ vocabulary size, the study used the Productive Vocabulary 

Levels Test (PVLT; Laufer & Nation, 1999). In the PVLT, participants were asked to fill in a 

blank in a sentence in the paper format version of the test. Considering the expected 

proficiency levels of the participants, the study administered tests of 2,000, 3,000, and 5,000 

frequency levels (excluding the 10,000 level and university word list). To avoid collinearity 

with lexical retrieval speed, participants were not given a time limit for their responses.  

The score for vocabulary size was computed as the total number of correct responses out 

of 54 items (18 items from each level). Following De Jong et al. (2013), inflectional errors 

and obvious spelling mistakes were ignored. 

 

Lexical retrieval speed 

To assess the speakers’ speed of lexical retrieval, a picture naming task was employed (De 

Jong et al., 2013; Leonard & Shea, 2017). Participants were presented with pictures and 

instructed to name each picture orally in English as fast and accurately as possible. Target 
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stimuli were selected from Snodgrass and Vanderwart (1980). The final set of picture stimuli 

for the study included 50 pictures (for the selection procedure, see Supplementary 

Information). 

The current study administered the picture naming task using the PsychoPy software 

package (Peirce, 2007). Following De Jong et al. (2013), participants were first presented 

with a fixation cross in the middle of the screen for 1,500 ms, followed by a picture stimulus 

with a 10,000-ms response deadline. The order of the picture stimuli was randomized for 

each participant. Prior to the main trials, three practice trials were conducted.  

Lexical retrieval speed was computed as the average reaction time (RT) for correct 

responses. RT was calculated as the response latency between the onset of the presentation of 

picture stimuli and that of the participants’ response. Incorrect responses and outliers were 

treated as missing values. Outliers were identified as RTs below the minimum of 300 ms and 

RTs higher than 3 SD above the group mean for each item. As a result, 2.4% of correct 

responses (k = 127 out of 5375) were removed.  

 

Grammatical knowledge  

Grammatical processing in L2 speech production entails a variety of syntactic and 

morphological processes, such as syntactic procedures and morphological inflections 

(Kormos, 2006). Accordingly, we evaluated students’ grammatical knowledge in terms of 

their accuracy and efficiency in syntactic encoding skills and grammatical monitoring 

processes.  

 

Syntactic encoding skills 

The study used the maze task which is designed to measure the automaticity of syntactic 

processing (Y. Suzuki & Sunada, 2018). In this task, participants were presented with two 
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options for single words on a computer screen and instructed to select the word which can be 

grammatically connected to the sentence being constructed from two options (e.g., The → 

student vs and → ocean vs took → the vs dress→ tests. vs organic.).  

Stimuli were adapted from Y. Suzuki and Sunada’s (2018) study, which consisted of 48 

sentences with 12 sentences including four major syntactic structures each: (a) declaratives, 

(b) wh- questions, (c) relative clauses, and (d) indirect questions. The order of sentence 

stimuli was randomized for each participant. Prior to the main trials, four practice sentences 

were provided. The time limit for each response was set at 4,300 ms, following Y. Suzuki 

and Sunada (2018). Participants were instructed to respond as quickly and accurately as 

possible. The maze task was administered using DMDX software (Forster & Forster, 2003).  

The study computed two measures: (a) the number of correct responses in words and (b) 

the mean duration of the response latency (i.e., RT) of trials correctly responded to. 

Regarding the RT measure, outliers were identified as RTs below 300 ms or higher than 3 SD 

above the group mean of the latency of all word-level responses. As a result, 68 RTs (6.6 %) 

out of 49,406 RTs were removed. 

 

Grammatical monitoring processes 

To capture participants’ grammatical knowledge in the monitoring mode, we employed a 

timed grammaticality judgement test (GJT; Godfroid et al., 2015). Target stimuli were 

adapted from Godfroid et al.'s (2015) study, which included 17 target grammatical features. 

For each grammatical target, four sentence stimuli were devised (68 sentences in total) with 

two for each of the grammatical and ungrammatical conditions. Considering the relatively 

low proficiency of the target population, we used written stimuli.  

Timed GJT was administered using PsychoPy software (Peirce, 2007). Participants were 

instructed to judge the grammaticality of the sentences as fast and accurately as possible. 
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Prior to the main 68 trials, participants completed eight sentences as practice trials. For each 

trial, the term “Ready?” was presented in the middle of the screen for 1,000 ms, and then the 

sentence stimulus appeared on the screen for 10,000 ms.  

To compute accuracy scores based on GJT responses, we assigned one point for each 

correct response, while incorrect responses and no responses within the time limit were 

assigned no points. Only correct responses were used to compute RT scores, excluding 

outliers whose RT was below 300 ms or higher than 3 SD above the group mean for each 

sentence stimulus. Eventually, 28 RTs (0.4%) were removed from the RT analysis. We 

calculated accuracy and RT scores separately for syntactic and morphological features. 

 

Articulatory skills  

The current study solely focused on the speed aspect of pronunciation knowledge, given 

the substantive difficulty of defining what constitutes target-like pronunciation (Harding, 

2018).1 Moreover, prior work reported that a significant slow-down in L2 oral production 

may result from the speed of articulatory movements rather than the accuracy and speed of 

phonological processing (Broos et al., 2018). However, due to the incremental nature of 

speech processing (Kormos, 2006), we measured the efficiency of pronunciation-related 

processes holistically, using a controlled speech production task. The rationale for using 

controlled speech production, as opposed to single word production (e.g., delayed picture 

naming task; De Jong et al., 2013), was that one of the essential processes of phonological 

encoding, syllabification, is supposed to take place not only within words but also between 

words, such as linking (Levelt, 1999).  

Participants were asked to read a 69-word passage of an instruction on shopping silently 

and then read it aloud in English. The passage was adapted from Weinberger’s (2011) speech 
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accent archive (see http://accent.gmu.edu/index.php). Based on the speech data we computed 

the articulation rate measure applying the same procedure as the one for speed fluency.  

 

Data collection procedure 

Data were collected in two sessions: group and individual sessions. Both sessions were 

conducted in a research laboratory and lasted for approximately one hour. In the group 

session, participants worked individually and completed CF tests including the paper-based 

PVLT, the maze task, and the GJT. In the individual sessions, participants performed four 

English speaking tasks, the controlled speech production task, and the picture-naming task in 

this order. All participants first took part in the group session, and approximately one week 

later they participated in individual sessions. In the group testing session, the order of the 

PVLT and the grammar tests (the maze task and the GJT) was counterbalanced across 

participants. In the individual sessions, the order of the argumentative and picture narrative 

tasks was also counterbalanced across participants. Regarding the RtoS and RwLtoS tasks, 

the combination of the text presentation mode and source texts as well as its order was 

counterbalanced across participants. 

 

Analysis 

The current study investigates the CF-UF link at the level of latent variables (RQ3) and its 

variability across tasks (RQ4), using SEM. Prior to SEM analysis, we constructed several 

theoretically motivated CFA models of CF and UF and tested their model fit to identify the 

optimal factor structure of CF and UF (RQ1, RQ2). A SEM model was built to predict the 

latent variables of UF from those of CF. In response to the non-normal distributions of many 

UF measures (for descriptive statistics, see Supplementary Information), estimations of all 

CFA and SEM models were made using Robust Maximum Likelihood estimation (Hu & 

http://accent.gmu.edu/index.php
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Bentler, 1998). Considering the relatively small sample size (N < 250) as well as the 

estimation method (i.e., Maximum Likelihood estimation), we focused on the model fit 

indices of SRMR and CFI (Hu & Bentler, 1998), while reporting the indices of chi square/df 

ratio, TLI, and RMSEA for the sake of comparability with future replication studies. The cut-

off scores for these model fit indices were predetermined as follows: SRMR (< .08), CFI and 

TLI (> .95), chi-square ratio/df (< 2.0), and RMSEA (< .06). To address RQ3, the statistical 

significance of the regression paths from the latent variables of CF to those of UF was tested. 

As for RQ4, the regression coefficients of paths were compared across four speaking tasks 

via standardized coefficients and their 95% confidence intervals, which is analogous to the 

estimation of t-values in t-tests (i.e., path coefficient t-test; Tabachnick & Fidell, 1996). For 

the sake of interpretability of results, CF measures based on RT and breakdown and repair 

fluency measures were inversed in the CFA and SEM analyses. All the CFA and SEM 

models were estimated through the cfa function in the lavaan package (Rosseel, 2012), using 

R statistical software 4.0.2 (R development Core Team, 2020). 

 

Results 

Confirmatory factor analysis of cognitive fluency 

To specify the factor structure of CF (RQ1), three proposed CFA models were tested. For 

these proposed CFA models of CF, residual covariances were set across CF tasks (e.g., the 

RT and accuracy measures of the maze task). The R code and anonymised data set will be 

made available on the IRIS database (https://www.iris-database.org/iris/app/home/index). 

The first model (CF Model 1; see Fig. 1) was a single-factor model, which assumes that 

CF is a unitary construct. One statistical advantage of a single-factor model is that the model 

is constructed with the minimum number of parameters, meaning that the estimation of the 

proposed model is relatively robust for a small sample size.  

https://www.iris-database.org/iris/app/home/index
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Figure 1. A single-factor model of cognitive fluency (CF Model 1). 

Note. Residuals are omitted for the sake of brevity. 

 

The second model (CF Model 2; see Fig. 2) consisted of two subconstructs of CF, namely, 

linguistic resource and processing speed. These two subconstructs were conceptualized in 

accordance with the distinction made in empirical studies (De Jong et al., 2013; Kahng, 2020) 

and the theoretical assumption of causes for breakdowns in utterances (see the section on 

Cognitive fluency). The latent variable of linguistic resource consisted of CF measures 

capturing the range of linguistic resources (the PVLT score, the accuracy score of the maze 

task, and the accuracy scores of the GJT), while the latent variable of processing speed was 

composed of RT-based measures and the articulatory speed measure. 
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Figure 2. A two-factor model of cognitive fluency (CF Model 2). 

Note. Residuals are omitted for the sake of brevity. 

 

Finally, we proposed a three-factor model which comprises linguistic resources, 

processing speed, and monitoring speed (CF Model 3; see Fig. 3), separating monitoring 

processes from encoding processes. In L2 speech production, linguistic resources for 

monitoring processes are identical to those for linguistic encoding processes (Kormos, 2006; 

Levelt, 1999). Therefore, only the RT measures of the GJT (GJT Morphology RT, GJT 

Syntax RT) were used to create the third latent variable of CF, that is, Monitoring speed. 
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Figure 3. A three-factor model of cognitive fluency (CF Model 3). 

Note. Residuals are omitted for the sake of brevity. 

 

The indices of SRMR and CFI indicated an optimal fit for all three models, while two- and 

three-factor models showed a slightly better fit than the single-factor model (see Table 1). In 

principle, the more parsimonious the model is (i.e., fewer parameters), the more robust is the 

estimation of the model (Schoonen, 2015). We thus adopted the two-factor model for the 

factor structure of CF (for the model parameters of the CF Model 2, see Supplementary 

Information). 

 

Table 1. Selected model-fit indices for the three tested CFA models of cognitive fluency. 

Model df χ2 p-value χ2/df ratio CFI TLI SRMR RMSEA [90%CI] 

One-factor 20 65.179 < .001 3.259 0.919 0.854 0.078 0.133[0.098, 0.169] 

Two-factor 19 32.296 0.029 1.700 0.976 0.955 0.051 0.074[0.024, 0.117] 

Model.CF.3 = Three-factor model
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Three-factor 17 32.286 0.014 1.899 0.973 0.942 0.051 0.084[0.037, 0.127] 

 

Confirmatory factor analysis of utterance fluency 

We proposed several CFA models for UF. First, due to its advantage of statistical 

robustness, a single-factor model was proposed (UF Model 1, see Fig. 4). Second, motivated 

by speech production mechanisms, we proposed a two-factor model (UF Model 2; see Fig. 5) 

by categorizing the temporal features of speech into processing smoothness and processing 

disruptions.  

 

 

Figure 4. A single-factor model of utterance fluency (UF Model 1). 

Note. Residuals are omitted for the sake of brevity. 
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Figure 5. A two-factor model of utterance fluency (UF Model 2). 

Note. Residuals are omitted for the sake of brevity. 

 

Finally, following Tavakoli and Skehan (2005), a three-factor model (UF Model 3; see 

Fig. 6) was proposed, consisting of speed, fluency, and repair fluency. In the proposed CFA 

models of UF, residual covariances were set between mid- and end-clause pause ratio 

measures and mean length of run, because their measurement errors are commonly attributed 

to pause annotation. 

 

Speech rate

Mean length of run

Articulation rate

Mid-clause pause ratio

End-clause pause duration

End-clause pause ratio

Filled pause ratio

False start ratio

Processing 

disruptions

Model.UF.2 = Two-factor model

Mid-clause pause duration

Self-repetition ratio

Self-correction ratio

Processing 

smoothness



 25 

 

Figure 6. A three-factor model of utterance fluency (Model UF 3). 

Note. Residuals are omitted for the sake of brevity. 

 

Although the three-factor model showed a relatively better fit across tasks, none of the 

proposed models optimally fit the data. To explore a better CFA model, a data-driven 

approach was taken to modify the factor structures. First, overall intercollinearity among the 

UF measures was inspected by means of correlation coefficients pooled over tasks. We then 

excluded speech rate due to its strong correlation with mid-clause pause ratio (r = .845). In 

addition, motivated by the strong correlation between mid- and end-clause pause duration (r 

= .735), we also replaced mid- and end-clause pause duration with a single measure of mean 

pause duration without the distinction of pause locations. Second, modification indices were 

calculated to explore potential residual covariances and improve the model fit. The following 

three residual covariances were adopted: (a) between mean pause duration and filled pause 

ratio, (b) between mid-clause pause ratio and self-correction ratio, and (c) between end-

clause pause ratio and false start ratio (for details of model modification, see Supplementary 

Information). 
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The revised models of UF (one-, two-, and three-factor models; UF Model 4, UF Model 5, 

and UF Model 6, respectively) were inspected for goodness of fit. SRMR indices indicated 

that all the models may fit well to the current data set, while the other model fit indices (e.g., 

CFI) consistently showed that the three-factor models better fit the current data set (see Table 

2). 

 

Table 2. Selected model-fit indices for the three revised CFA models of utterance fluency. 

Model df χ2 p-value χ2/df ratio CFI TLI SRMR RMSEA [90%CI] 

One-factor (revised; UF Model 4)  

Argumentative 24 74.682 < .001 3.112 0.903 0.854 0.062 0.128[0.096, 0.162] 

Pic.Narrative 24 116.370 < .001 4.849 0.856 0.784 0.070 0.173[0.143, 0.206] 

RtoS task 24 135.293 < .001 5.637 0.822 0.733 0.075 0.190[0.160, 0.222] 

RwLtoS task 24 109.895 < .001 4.579 0.837 0.756 0.073 0.167[0.136, 0.200] 

Two-factor (revised; UF Model 5) 

Argumentative 23 67.223 < .001 2.923 0.915 0.867 0.062 0.123[0.089, 0.157] 

Pic.Narrative 23 112.831 < .001 4.906 0.860 0.781 0.070 0.175[0.143, 0.208] 

RtoS task 23 128.507 < .001 5.587 0.831 0.736 0.074 0.189[0.158, 0.222] 

RwLtoS task 23 107.323 < .001 4.666 0.840 0.750 0.073 0.169[0.138, 0.202] 

Three-factor (revised; UF Model 6) 

Argumentative 21 57.550 < .001 2.740 0.930 0.880 0.056 0.117[0.081, 0.153] 

Pic.Narrative 21 95.357 < .001 4.541 0.884 0.802 0.067 0.166[0.133, 0.201] 

RtoS task 21 110.689 < .001 5.271 0.857 0.754 0.070 0.183[0.150, 0.217] 

RwLtoS task 21 92.648 < .001 4.412 0.864 0.767 0.066 0.163[0.130, 0.198] 

 

The revised three-factor model of UF measures also suggested strong correlations between 

latent variables of speed and breakdown fluency (r = .929–.960), indicating redundancy in 

the distinction between these two latent variables. We thus proposed another factor structure 
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with speed and breakdown fluency measures loaded onto one latent variable (UF Model 7; 

see Fig. 7). 

 

 

Figure 7. A new two-factor model of utterance fluency (Model UF 7). 

Note. Residuals are omitted for the sake of brevity. 

 

Although the model-fit of the new model was virtually identical to the revised three-factor 

model (SRMR = .058–.070; CFI = .845–.922; see also Supplementary Information), we 

decided to adopt the revised three-factor model (UF Model 6), considering its theoretical 

compatibility with Tavakoli and Skehan’s (2005) triad model of UF and L2 speech 

production mechanisms (Kormos, 2006; Segalowitz, 2010).  

 

Structural equation model of the cognitive-utterance fluency link 

Building on the CFA models of CF (CF Model 2) and UF (UF Model 6), an SEM model 

was constructed to predict the latent variables of UF (speed, breakdown, and repair fluency) 

from those of CF (linguistic resource, processing speed) separately for four speaking tasks. 
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One additional residual covariance was included between the articulatory speed measure of 

CF and the articulation rate measure of UF in the SEM model, because measurement errors 

of these measures can be methodologically shared. 

The indices of goodness-of-fit were first inspected. The proposed SEM model optimally 

fitted the current data set (SRMR < .08), with some potential room for improvement in the 

model’s fit to the data (CFI < .95; see Table 3). The modification indices did not suggest 

paths that can be verified by a theoretical framework of oral fluency and were consistent 

across tasks. We thus regarded the model as the final model of the CF-UF link. The SEM 

model with standardized regression coefficients across tasks is visually presented in Figure 8. 

 

Table 3. Selected model-fit indices for an SEM model of cognitive fluency and utterance 

fluency. 

Model df χ2 p-value χ2/df ratio CFI TLI SRMR RMSEA [90%CI] 

SEM model         

Argumentative 111 207.019 < .001 1.865 0.921 0.891 0.071 0.082[0.065, 0.099] 

Pic.Narrative 111 213.012 < .001 1.919 0.924 0.895 0.067 0.085[0.067, 0.102] 

RtoS task 111 196.925 < .001 1.774 0.933 0.908 0.062 0.078[0.060, 0.095] 

RwLtoS task 111 214.577 < .001 1.933 0.914 0.882 0.069 0.085[0.068, 0.102] 
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Figure 8. Comparison of the regression coefficients across speaking tasks. 

Note. Residuals are omitted for the sake of brevity. Regression coefficients are presented in 

the order of the argumentative task, the picture narrative task, the RtoS task, and the RwLtoS 

task from left to right; LR = Linguistic resource; PS = Processing speed; SF = Speed fluency; 

BDF = Breakdown fluency; RF = Repair fluency. 
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variables of UF. As summarized in Figure 8, speed fluency was associated with linguistic 

resources only in the RtoS and RwLtoS tasks, and with processing speed in all four tasks. 
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and processing speed across tasks. Despite the lack of significant differences, the latent 
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speed (β = .376–.502) than with linguistic resources (β = .221–.345). As for repair fluency, 
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RtoS task, the RwLtoS task). Meanwhile, processing speed was not related to repair fluency 

in any of the speaking tasks.  

The SEM model suggested that the relative importance of linguistic dimensions differed 

between the latent variables of CF in terms of their range of confidence intervals (see 

Supplementary Information). Regarding linguistic resources, the regression coefficients of 

PVLT (β = .845–.879) were significantly higher than those of Maze Word Accuracy, except 

for the picture narrative task (β = .675–.691). As regards processing speed, the highest 

regression coefficients were found in Maze Word RT (β = .794–.821). According to the 95% 

confidence intervals, the strengths of coefficients between Maze Word RT and GJT Syntax 

RT (β = .607–.620) did not reach statistical significance in any of the speaking tasks. 

Significant differences in the regression coefficients were only found between Maze Word 

RT and Picture Naming RT (β = .436–.453). The latent variables of linguistic resources and 

processing speed were strongly associated with each other consistently across tasks (β 

= .664–.676). 

Looking closely at the measurement models of UF constructs, the regression coefficients 

of articulation rate (β = .876–.905) to the latent variable of speed fluency seemed to be 

slightly higher than those of mean length of run (β = .721–.882). Regarding breakdown 

fluency, the coefficients of mid-clause pause ratio (β = .919–.963) were significantly higher 

than those of the other measures—mean pause duration (β = .528–.690), end-clause pause 

ratio (β = .373–.515), and filled pause ratio (β = .545–.628). As regards repair fluency, the 

regression coefficients of self-repetition ratio were significantly higher than those of self-

correction ratio (except for the RtoS task) and false start ratio. Finally, there were strong 

competitive relationships between the latent variables of speed fluency and breakdown 

fluency (β = -|.769–.822|) and between those of speed fluency and repair fluency (β = -
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|.720–.749|), while the latent variables of breakdown fluency were positively associated with 

those of repair fluency (β = .639–.796).2 

 

Discussion 

Motivated by the lack of studies on the CF-UF link at the level of constructs, the current 

study examined the CF-UF link (RQ3), using SEM. We operationalized CF as a set of 

linguistic resources and processing skills involved in speech production, and each dimension 

of UF—speed, breakdown, and repair fluency—was also measured using four different 

speaking tasks. Furthermore, in L2 fluency research, the dimensionality of CF and UF had 

not been revisited, or even specified, especially concerning generalizability across different 

speaking tasks. Therefore, we also examined the factor structure of CF and UF by means of 

CFA (RQ1, RQ2). Finally, in light of the generalizability and robustness of the CF-UF link, 

we explored the variability in the association between the subconstructs of CF and UF across 

different speaking tasks (RQ4). 

 

Dimensionality of cognitive fluency 

We tested the single-, two-, and three-factor models of CF, all of which were proposed 

based on L2 speech production mechanisms (Kormos, 2006; Levelt, 1989; Segalowitz, 2010) 

and Segalowitz’s (2010) conception of CF. We adopted the two-factor model which consisted 

of the latent variables of linguistic resource and processing speed (CFI = .976, SRMR 

= .051). The latent variable of linguistic resources involved the PVLT score (vocabulary 

size), GJT accuracy scores (syntax and morphology), and the maze task accuracy score 

(sentence construction skills), while that of processing speed included the RT measures of the 

picture naming task (lexical retrieval), the maze task, and the GJT, as well as articulatory 

speed in controlled speech production. The strong association between these two latent 
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variables (r = .676) indicates that the subdimensions of CF—linguistic resources and 

processing speed—are interrelated. Compared to the final two-factor model, the single-factor 

model showed a relatively less adequate fit to the current data (CFI = .919, SRMR = .078), 

indicating that the construct of CF may not be regarded as a unitary construct. The current 

finding of two-dimensionality of CF may thus provide supporting evidence for the broad 

definition of CF as well as the existing methodological practice of measuring CF components 

(De Jong et al., 2013; Kahng, 2020).  

The measurement models of the subconstructs of CF suggested that the primary 

components of linguistic resource and processing speed were different. To interpret the 

dimensionality of CF in relation to its contributions to UF, the measurement model of CF in 

the final SEM model is discussed. As for the latent variable of linguistic resources, PVLT 

(vocabulary size) had the highest regression coefficients (β = .845–.879). The regression 

coefficients of PVLT were significantly higher than those of Maze Word Accuracy, except 

for the picture narrative task (β = .675–.691). However, there were overlaps of confidence 

intervals between PVLT and GJT Syntax Accuracy (β = .710–.746). Students’ performance 

in the maze task can be explained with reference to their efficiency in the application of 

syntactic encoding procedures in L2 (e.g., word order) as well as accessibility to the syntactic 

properties of lemmas in their mental lexicon. Meanwhile, the accuracy scores of syntactic 

items in the GJT may only represent the mastery of syntactic properties of target lemmas. 

Building on the assumption that the syntactic properties of lemmas (e.g., part of speech) are 

stored in speakers’ mental lexicon (Kormos, 2006; Levelt, 1989), the accessibility of such 

syntactic properties of lemmas can be regarded as part of the construct of depth of vocabulary 

knowledge. As vocabulary size and depth are arguably closely related to each other 

(González-Fernández & Schmitt, 2020), the non-significant difference in the regression 

coefficients between PVLT and GJT Syntactic Accuracy may be explained by the potential 
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overlap between vocabulary size and depth. The relative strengths of those regression 

coefficients suggests that lexical resources can be regarded as a primary component of 

linguistic resources of CF in line with the lexically-driven nature of L2 speech production 

(Kormos, 2006). The construct of linguistic resources in CF can thus be defined as the 

breadth and depth of linguistic knowledge to express speakers’ intended message. 

Regarding the latent variable of processing speed, the strongest regression path was Maze 

Word RT (β = .794–.821) which taps into the speed of sentence construction. Despite the 

slight overlaps of the boundaries of 95% confidence intervals, the regression path of Maze 

Word RT seemed stronger than that of Syntax RT (β = .604–.620), GJT Morphology RT (β 

= .614–.626), and articulatory speed (β = .635–.663) in the SEM model. Note that the 

regression coefficients of Maze Word RT were clearly higher than those of Picture Naming 

RT (β = .436–.453). Therefore, the current results indicate that the primary component of 

processing speed may be the speed of sentence construction (measured by Maze Word RT). 

Such syntactic processing skills might also be more important than lexical retrieval speed 

within the construct of processing speed of CF (for a different pattern, see Kahng, 2020). One 

possible explanation for the primary role of syntactic processing skills in processing speed is 

that variability in the speed of linguistic processing might be aligned with variability in the 

automaticity of L2 syntactic knowledge (cf. McManus & Marsden, 2019; Morgan-Short et 

al., 2014). Taken together, the construct of processing speed can be defined as the 

automaticity of accessing and manipulating linguistic knowledge.  

 

Dimensionality of utterance fluency 

Motivated by theoretical conceptualizations of speech production mechanisms as well as 

Tavakoli and Skehan’s (2005) triad model of UF, the current study tested single-, two- and 

three-factor models of UF. Considering the theoretical distinction between speed and 
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breakdown fluency, the three-factor model, following Tavakoli and Skehan (2005), was 

adopted as the final model of UF, suggesting that the construct of UF consists of speed, 

breakdown, and repair fluency. The optimal model fit in all four tasks (e.g., SRMR 

= .056–.070) indicated the generalizability and robustness of Tavakoli and Skehan’s (2005) 

triad model of UF across different speaking tasks. Moreover, Tavakoli and Skehan’s (2005) 

study only included two composite measures (speech rate, mean length of run) as measures of 

speed fluency, and these two measures and breakdown fluency measures loaded on the same 

latent variable in their study. Tavakoli and Skehan (2005) could thus only conceptually argue 

for distinguishability between speed and breakdown fluency. Meanwhile, the current study 

statistically has proved the distinction between speed and breakdown fluency by including 

the pure measure of speed fluency, that is, articulation rate (Tavakoli et al., 2020).  

The construct definition of each dimension of UF can be revisited with regard to the 

relative importance of observed variables within latent variables. As for speed fluency, the 

regression coefficients of articulation rate (β = .876–.905) seemed to be slightly higher than 

those of mean length of run (β = .721–.882). This may support the statistical procedure of 

handling mean length of run as a measure of speed fluency in the SEM analysis, despite its 

composite nature (Bosker et al., 2013; Tavakoli et al., 2020). The slightly lower regression 

coefficients of mean length of run to the latent variable may indicate that some variance in 

mean length of run can be derived from factors other than the construct of speed fluency, 

such as the construct of breakdown fluency. The primary component of speed fluency is thus 

arguably represented by the measure of articulation rate, which captures the whole range of 

speech processing mechanisms (Kormos, 2006; Segalowitz, 2010). Therefore, the construct 

of speed fluency can be defined as the overall efficiency of speech production. 

Regarding breakdown fluency, the regression coefficients of mid-clause pause ratio (β 

= .919–.963) were significantly higher than those of other breakdown fluency measures—
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end-clause pause ratio (β = .373–.515), filled pause ratio (β = .545–.628), and mean pause 

duration (β = .528–.690; except for the RtoS task). There were no significant differences in 

the regression coefficients among these three measures (mean pause duration, end-clause 

pause ratio, and filled pause ratio). Therefore, the representative component of breakdown 

fluency is the frequency of breakdowns in the middle of utterances, while the length of 

pauses and the frequency of pauses at clausal boundaries and filled pauses might be 

secondary (Bosker et al., 2013). Mid-clause pauses are reflective of disruptions to L2-specific 

processing, such as lexical retrieval and sentence construction (De Jong, 2016; Tavakoli, 

2011). Accordingly, the construct of breakdown fluency may represent L2 users’ ability to 

continue speaking without disruptions to L2-specific speech processing.  

As regards repair fluency, the regression coefficients of self-repetition ratio to the latent 

variable of repair fluency (β = .787–.860) tended, overall, to be significantly higher than 

those of false start ratio (β = .289–.459) and self-correction ratio (β = .487–.632). 

Accordingly, the frequency of self-repetitions can be regarded as the primary component of 

repair fluency, while both self-corrections and false starts are of secondary importance. The 

frequency of self-repetitions may be independent of L2 proficiency (Tavakoli et al., 2020) 

and reflective of learners’ speaking style (De Jong et al., 2015). Alternatively, self-repetition 

can be used as a fluency strategy or problem-solving mechanism (Dörnyei & Kormos, 1998). 

Specifically, the use of self-repetitions can buy time for monitoring or retrieval processes, as 

lexicalized fillers do. From the perspective of speech production, another important 

assumption is that repair fluency is in a complementary relationship with breakdown fluency 

(Tavakoli & Wright, 2020). When a speaker experiences disruption to speech processing and 

is required to repair their utterance, the speaker can engage with the repairing process either 

by producing no speech (i.e., silent pauses) or repeating the previous utterance (i.e., self-

repetition). The strategic use of self-repetition may be determined by the speaker’s individual 
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preference and might consequently obscure the association with L2 competence. Taken 

together, the construct of repair fluency reflects the ability to produce L2 speech with fewer 

disfluency features. 

 

Contribution of cognitive fluency to utterance fluency 

The SEM model revealed the multidimensional interrelationship between CF and UF with 

some variations across four speaking tasks. The latent variable of processing speed of CF 

contributed to that of speed fluency consistently across speaking tasks (β = .431–.609). 

Meanwhile, the latent variable of linguistic resource made significant contributions to that of 

speed fluency only in the RtoS task (β = .234) and the RwLtoS task (β = .276). Therefore, the 

overall efficiency of speech production (speed fluency) can be primarily supported by the 

speed of linguistic processing skills. The consistent contributions of the speed dimension of 

CF to speed fluency in the current study may provide some supporting evidence for 

Segalowitz's (2016) claim that CF is mainly characterised by the speed of L2-specific 

linguistic processing. Meanwhile, the task-dependent role of linguistic resources in speed 

fluency can be interpreted with regard to the characteristics of RtoS and RwLtoS tasks, that 

is, the enhanced activation of relevant linguistic items by the source texts. If students have 

acquired those activated items for productive use, the enhanced activation of those items can 

assist students to use the items rapidly (cf. priming effects, McDonough & Trofimovich, 

2008), subsequently increasing their overall efficiency of speech production (i.e., speed 

fluency). Therefore, the contributions of linguistic resources to speed fluency may increase 

when the mastery of relevant linguistic items plays a particularly important role in the 

completion of a given task. 

The latent variable of breakdown fluency was associated with both dimensions of CF 

consistently across speaking tasks, despite the marginally significant contribution of 
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linguistic resources in the RwLtoS task (p = .061). The results indicated that the ability to 

continue speaking without disruption may be underpinned by both the availability of 

linguistic resources and the speed of linguistic processing. This finding is in line with the 

broad definition of CF, which assumes that breakdowns in speech production can be caused 

by either a lack of linguistic resources or a slow processing speed (see Kormos, 2006; see 

also the section of Cognitive fluency). Moreover, the association of breakdown fluency with 

both dimensions of CF may give some insights into how the constructs of speed fluency and 

breakdown fluency are theoretically distinguishable, despite the strong correlation between 

them. Speed fluency was mainly related to the speed dimension of CF, while breakdown 

fluency was connected to the linguistic resources of CF as well as the processing speed 

component.  

The significant contribution of linguistic resources to repair fluency was only found in the 

picture narrative task, the RtoS task, and the RwLtoS task (β = .330–.375). Meanwhile, the 

processing speed of CF was not associated with the latent variable of repair fluency in any of 

the speaking tasks. Previous studies have shown that the construct of repair fluency is 

relatively independent of L2 proficiency (Tavakoli et al., 2020) and reflective of individual 

speakers’ speaking styles (De Jong et al., 2015; Peltonen, 2018). However, the current result 

may suggest that repair fluency is not entirely independent of L2-specific linguistic 

knowledge in some communicative situations where the content of speech is mostly 

predefined (i.e., closed task; see Pallotti, 2009). One essential characteristic of closed tasks is 

that students cannot avoid expressing some information to achieve the given task, even if 

they have not fully acquired the necessary linguistic items to convey the intended 

information. Students are thus required to engage with modifying the intended message or 

search for some alternative expressions using their own resources. As discussed previously, 

students can strategically or subconsciously use self-repetition to buy time to repair their 
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utterances (Dörnyei & Kormos, 1998). Therefore, the contribution of linguistic resources to 

repair fluency may reflect engagement with repair due to the lack of linguistic resources 

needed to express task-essential information. 

 

Conclusion 

Our study is the first one to examine the CF-UF link at the level of constructs and offers 

novel insights into how the subconstructs of CF contribute to those of UF across different 

speaking tasks. Our research has demonstrated that the construct of CF consists of two 

dimensions—linguistic resources and processing speed—and confirmed the robustness of 

Tavakoli and Skehan’s (2005) three-dimensional model of UF (speed, breakdown, and repair 

fluency) across tasks. Based on our analyses, we have argued that key components of 

linguistic resources in CF are the breadth and depth of linguistic knowledge needed for 

encoding speakers’ intended message. This suggests that similar to L1 speech production 

(Levelt, 1989, 1999), semantic knowledge is essential to ensure the efficiency of encoding L2 

speech. We also found that the speed of sentence construction was a key component of the 

construct of processing speed, which highlights the important role of automaticity of 

syntactic encoding processes in L2 spoken performance (cf. Kormos, 2006). The SEM 

analysis also revealed a complex interplay between the multidimensionality of CF and UF 

and speaking task types. Speed fluency was primarily associated with processing speed, 

while linguistic resources might only play a role when relevant linguistic items are activated 

in advance by the input task (i.e., RtoS and RwLtoS tasks). Meanwhile, both linguistic 

resources and processing speed contributed to breakdown fluency consistently across 

speaking tasks, suggesting that encoding problems can occur due to both a lack of resources 

or challenges in accessing and processing linguistic knowledge in real time. Finally, the 

contribution of linguistic resources to repair fluency was significant only when the content of 
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speech was predefined (i.e., picture narrative task, RtoS task, RwLtoS task), while repair 

fluency was generally independent of processing speed. These results confirmed that the 

processing speed of CF showed a consistent pattern of contributions to UF across speaking 

task types, whereas the role of linguistic resources of CF in UF tends to vary, depending on 

task characteristics. 

The current findings offer some insights into what linguistic objectives should be 

prioritized in relation to L2 fluency development. The CFA model of CF showed that 

vocabulary size was found to be the primary component of linguistic resources, while 

sentence construction speed was the primary component of processing speed. Accordingly, 

vocabulary instruction should emphasize widening students' lexical repertoires for productive 

use (Webb et al., 2020), and grammar instruction should focus not only on accuracy but also 

on the speed and efficiency of grammatical encoding which can be enhanced through 

meaningful and engaging practice activities (Y. Suzuki & DeKeyser, 2017). Articulatory 

speed was also found to be another component of the processing speed of CF, indicating that 

training on some suprasegmental features, such as linking and vowel reduction, may also 

facilitate students' fluent speech production (Saito et al., 2019). In addition, our SEM model 

showed that the construct of breakdown fluency may be consistent across tasks, while that of 

speed fluency and repair fluency could vary, depending on task characteristics. Therefore, 

breakdown fluency measures, such as mid-clause pause ratio (for predictive validity in 

perceived fluency, see S. Suzuki et al., 2021), could be adopted as a representative feature in 

automated scoring systems for oral proficiency. 

Two significant methodological limitations need to be acknowledged in interpreting the 

current findings. First, we did not include measures of multiword sequences and 

pronunciation accuracy (cf. De Jong et al., 2013; Kahng, 2020). The processing advantage of 

multiword sequences in L2 speech production has been advocated in L2 fluency research 
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(Tavakoli & Uchihara, 2020). Similarly, despite the substantive difficulty in identifying 

target-like pronunciation, previous studies have found some unique contributions of 

pronunciation, such as syllable structure errors, to listener-based judgements of fluency (S. 

Suzuki & Kormos, 2020). Due to the SEM approach, the latent variables of CF in the current 

study may encompass a certain amount of potential covariance with phraseological 

competence and pronunciation skills. However, future studies can replicate the current study 

with additional CF measures of multiword sequences and pronunciation accuracy. Second, 

two composite measures (mean length of run, speech rate) were used as speed fluency 

measures for statistical reasons to avoid an under-identified model in CFA analyses. 

However, due to the intercollinearity among observed variables of speed fluency, the 

measure of speech rate was excluded from the CFA model of UF. Eventually, the 

measurement model of speed fluency was regarded as an under-identified model. 
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1 As the accuracy or accent of pronunciation is evaluated as a deviation from a target-like benchmark, it is 

necessary to define target-like pronunciation for the assessment of pronunciation accuracy. However, due to the 

fact that there are different models of L2 pronunciation learning, especially in English, the assessment of 

pronunciation entails a substantive difficulty in defining what constitutes target-like pronunciation (Kang & 

Ginther, 2018). Given the potential challenge to the validity of pronunciation accuracy, we thus decided not to 

include a cognitive fluency measure for pronunciation accuracy.  
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2 For the sake of interpretability in the direction of the relationship between the latent variables of UF, these 

regression coefficients were computed without inversion of the observed variables of breakdown fluency and 

repair fluency measures. 
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