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ABSTRACT

Demand forecasts are the basis of most decisions in supply chain management. The granularity
of these decisions lead to different forecast requirements. For example, inventory replenishment
decisions require forecasts at the individual SKU level over lead time, whereas forecasts at higher
levels, over longer horizons, are required for supply chain strategic decisions. The most accurate
forecasts are not always obtained from data at the 'natural’ level of aggregation. In some cases,
forecast accuracy may be improved by aggregating data or forecasts at lower levels, or disaggre-
gating data or forecasts at higher levels, or by combining forecasts at multiple levels of aggregation.
Temporal and cross-sectional aggregation approaches are well established in the literature. More
recently, it has been argued that these two approaches do not make the fullest use of data avail-
able at the different hierarchical levels of the supply chain. Therefore, consideration of forecasting
hierarchies (over time and other dimensions), and combinations of forecasts across hierarchical lev-
els, have been recommended. This paper provides a comprehensive review of research dealing with
aggregation and hierarchical forecasting in supply chains, based on a systematic search. The review
enables the identification of major research gaps and the presentation of an agenda for further
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1. Introduction

Forecasts are required to support most of the decisions
in managing the supply chain. Two of the main dimen-
sions that characterise the granularity of the decisions are
the time and the product. For the product dimension,
decisions go from the individual SKU level, such as in
inventory control, up to the level where all SKUs are con-
sidered, such as in aggregate capacity planning. For the
time dimension, operational decisions are made at the
daily or weekly levels, whereas tactical and strategic deci-
sions are made at monthly and yearly levels. At the strate-
gic level, supply chain managers deal more and more with
an uncertain capacity and face increasing market and
technological changes, which pushes them to consider
the assortment of all products offered to those markets
when managing capacity and deciding about distribution
channels (online, store or omnichannel). At the tactical
level, decisions are taken about product assortments, and
production and warehousing capacities. Finally, at the
operational level, decisions are made to control activities
such as inventory replenishment, production schedules,

transportation plans, workforce rostering and after-sales
services.

1.1. Framework

Traditionally, planning processes at different levels have
been conducted independently. It is now recognised that
there are advantages of co-ordinating logistical plans
through a ‘Sales and Operations Planning’ process (Har-
well 2015; Lapide 2016; Fildes, Ma, and Kolassa 2019).
This is intended to ensure coherence between strategic,
tactical and operational plans and decisions across long-,
medium- and short-term horizons, and determines why
forecasts are needed, as indicated in the leftmost column
of Figure 1. This figure aims to give a unifying frame-
work for the topics covered in this review. The arrows
going from left to right show how planning and decision
processes should inform forecast requirements and dif-
ferent ways in which forecasts may be implemented. The
bottom arrow, going from right to left, indicates that the
final forecasts should inform the planning and decision
processes.
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Figure 1. Framework for aggregation and hierarchical approaches in demand forecasting.

The granularity of the forecasting requirements, both
cross-sectionally and temporally, should be determined
by the planning and decision requirements. These links
are shown by the dashed arrows between the first and
second columns of Figure 1. For example, as discussed
earlier, an inventory replenishment decision requires
short-term forecasting over lead time at the individual
SKU level. Considerations such as these address the ques-
tion of what to forecast.

It has also become evident that forecasting methods
can be conducted at all levels simultaneously. Forecast-
ing at different levels does not have to rely only on data
at the level of interest. The question of how to forecast
can be addressed by methods that utilise data or fore-
casts at any level of the hierarchy (shown by the arrows
between the second and third columns in Figure 1). This
change in perspective opens up opportunities for dif-
ferent approaches to forecasting, by combining forecasts
over different levels of a hierarchy. Alternatively, forecasts
can be derived using bottom-up or top- down methods,
shown by the vertical arrows in Figure 1 and discussed
further in the next sub-section.

1.2. Aggregation approaches

Different aggregation approaches have been used to deal
with the historical demand and forecasting data granular-
ity. Temporal and cross-sectional aggregation approaches
represent the oldest approaches. These approaches were
presented as good alternatives to manage the demand

and to reduce the degree of uncertainty through
‘risk-pooling’ (Chen, Hsu, and Blue 2007; Chen and
Blue 2010). Temporal aggregation refers to aggregation
across time, whereas cross-sectional aggregation refers to
aggregation across a dimension (e.g products) in a partic-
ular time period (Syntetos et al. 2016). There has been a
considerable body of literature dealing with forecasting
by aggregation, extending back to the 1950s, mainly in
the economics and finance literature, e.g. Theil (1954),
Quenouille (1958) and Amemiya and Wu (1972). Aggre-
gation approaches started to attract the attention of sup-
ply chain forecasting researchers in the 2000s, with a
stream of literature dealing with the bottom-up (BU)
and top-down (TD) approaches. The TD approach can
be viewed as a demand aggregation approach (associ-
ated with a disaggregation mechanism of the forecasts),
whereas BU can be viewed as a forecast aggregation
approach. Two temporal aggregation approaches have
been considered in the supply chain forecasting literature:
aggregation with blocking and aggregation with resam-
pling (or bootstrapping). In the former, overlapping or
non-overlapping blocks of consecutive time periods are
used to aggregate the demand. In the latter, demand over
random (not necessarily consecutive) time periods are
aggregated. The choice of aggregation approach (or com-
binations of forecasts across the hierarchies) should be
driven by accuracy considerations, subject to the con-
straints of the data available to the forecaster. For exam-
ple, if transactional time-stamped data is available, then
there is complete freedom to employ any level of temporal



aggregation. On the other hand, if the finest level of gran-
ularity available is one week, then additional data would
need to be collected to allow the application of forecasting
methods based on daily patterns.

1.3. Previous reviews

Over recent years, there have been a few review papers
in the literature dealing with topics related to our paper,
such as forecasting for inventory planning, supply chain
forecasting and the bullwhip effect (Syntetos, Boylan,
and Disney 2009; Syntetos et al. 2016; Wang and Dis-
ney 2016). The most recent and the closest to our topic is
by Syntetos et al. (2016), which identified gaps between
theory and practice in supply chain forecasting. They
proposed a framework based on three dimensions of
the supply chain: length, depth and time. Temporal and
cross-sectional aggregation were identified as important
aspects of the "time” and “depth” dimensions, respec-
tively, within the proposed framework. In the last five
years, the field has moved on rapidly, particularly with
regard to hierarchical forecasting. Recent developments
are covered in the current review.

1.4. Aims of this review

This paper seeks to achieve three aims relating to demand
forecasting in supply chains. Firstly, informed by the
framework in Figure 1, we bring together the most recent
work on aggregation and hierarchical forecasting, based
on a systematic review. Compared to a traditional ‘nar-
rative’ literature review, a systematic literature search
enables a more transparent, rigorous and comprehen-
sive review (Meza-Peralta et al. 2020). We emphasise the
importance of improving both accuracy and inventory
performance. These common objectives can be achieved
by data aggregation (prior to forecasting), or by forecast
aggregation, or combining using hierarchical approaches.
Although the means differ, the objective is the same -
namely to improve performance at a given level of the
hierarchy.

Secondly, we aim to identify open research questions
in aggregation and hierarchical forecasting. Specific gaps
in research are identified at the end of each of the major
sections of this review. We bring these findings together
at the end of the paper, leading to our presentation of an
agenda for further work in this area.

Thirdly, we aim to generate debate on themes that
cut across both aggregation-based and hierarchical fore-
casting. These themes relate to the requirements of such
forecasts and their evaluation.

The paper is structured as follows. The following
section presents the methodology used to conduct the
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systematic review. Section 3 reviews the literature that
deals with temporal aggregation, covering research on
blocking and resampling procedures. In Section 4, we
discuss research related to cross-sectional aggregation,
with a focus on the top-down and bottom-up approaches.
Section 5 addresses the latest advances in forecasting
hierarchies and combinations. In Section 6, we discuss
the practical implications of recent developments. We
close the paper with conclusions and identified gaps in
the literature.

2. Review methodology

We performed a systematic review of the literature to (i)
identify all published supply chain forecasting research
articles that deal with aggregation and hierarchies; and
(ii) qualitatively evaluate their contribution to the field of
supply chain forecasting and aggregation; and iii) sum-
marise their findings, strengths and limitations.

The Scopus and Web of Science electronic databases
were used to search for all articles published between
1900 and 2021. The following search ontology was
used: ‘[“supply chain” OR “inventory” OR “spare partx”
OR “intermittent demand”] AND [“forecastx”] AND
[“aggregat+” OR “bootstrapx”]". This search ontology
was restricted to the title, or keywords, or abstract. The
keywords used in the search ontology were determined
by the authors of this review by examining well-known
papers in the area and identifying appropriate key words
to address the three aspects of ‘supply chain’, ‘forecasting’
and ‘aggregation’. It was found that many papers address-
ing supply chain issues do not use the term as a keyword
or in the abstract, and so alternatives were provided.
Similarly, some papers do address temporal aggregation
using bootstrapping but do not use the term ‘aggrega-
tion” explicitly. The terms ‘combination’ and ‘hierarchy’
were considered but not used because they generated too
many papers outside the scope of this review. However,
the number of papers in this area is still quite modest and
checks have been made to ensure that there have been no
significant omissions.

Application of the search ontology yielded 673 docu-
ments. Then, we screened the documents in both Scopus
and Wed of Science databases, excluding a document if:

Source type is not ‘Journal’

e Document types is not ‘Article’
Subject (research) area is not relevant, e.g. Physics and
Astronomy, Chemistry

e Source title (Journal) is not relevant, e.g. International
Journal Of Vehicle Design

e Language is not English
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After these exclusions, 310 documents remained.

We also included 78 articles from other sources. These
articles include methodological and background papers
on temporal and cross-sectional aggregation, not nec-
essarily related to supply chain topics. This judgment
was made by the authors of this review, based on their
knowledge of the literature.

Following that, we checked for duplication and
removed duplicated articles. After their removal, 303
documents remained. Then, unique records were assessed
for eligibility to be included in the review sample. Our
inclusion criterion consists of any article that is related to
supply chain forecasting by temporal or cross-sectional
aggregation. The exclusion criteria were identified by the
authors of the review after reading all of the abstracts
and, in some cases, the full-text articles. It was agreed
between the authors of this review to exclude a document
from the review sample if it falls into one of the following
categories:

e DP - demand planning rather than forecasting

e EI - economics of inventories, i.e. aggregate inven-
tories in the economy rather than in a supply
chain

e IP - inventory planning, primarily about optimisation
rather than forecasting
IS - information sharing and bullwhip effect
NSC - not supply chain
TM - using aggregation terminology but not in
the sense defined in this paper as temporal, cross-
sectional, hierarchies and cross-temporal.

Full-text articles were assessed, using these crite-
ria, for eligibility by the authors of this review, inde-
pendently. In case of any conflict in the judgement,
the lead author of the paper made the final decision
whether to include the article in the final review sam-
ple or not. This assessment led to the exclusion of 170
papers. The end result was to identify 133 papers for full
review.

Figure 2 illustrates the systematic literature search and
its result.
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Figure 2. Systematic literature review flow chart.



For the purpose of checking the systematic literature
review process and facilitating future reviews on the same
topic, a file with the final list of papers and the excluded
ones is provided by the authors upon request.

Our review of the papers included in the final list gen-
erated by the systematic literature review revealed three
main topics: i) temporal aggregation, ii) cross-sectional
aggregation and iii) hierarchical reconciliation and com-
bination. These are the themes of the following sections.

3. Temporal aggregation

Temporal aggregation, or aggregation across time, refers
to the process of deriving a low frequency demand
series from a high frequency demand series, e.g.
weekly demand or monthly demand being derived from
daily demand (Nikolopoulos et al. 2011; Petropoulos,
Kourentzes, and Nikolopoulos 2016). In supply chain
forecasting, it is usually performed on demand data
directly. It can also be performed on demand forecasts.
For example, Verstaete, Aghezzaf, and Desmet (2019)
aggregated the estimated sales for the entire selling
period.

The aggregation of demand over time can be done
using blocking or resampling procedures. In the former,
demands are aggregated from blocks of consecutive peri-
ods whereas, in the latter, demands are aggregated from
randomly resampled periods. In the following subsec-
tions, we present each aggregation approach in more
detail, and we provide a review of the related literature.

3.1. Aggregation with blocking

Two blocking procedures are commonly considered for
temporal aggregation: non-overlapping aggregation and
overlapping aggregation. In the former, the demand is
divided into consecutive non-overlapping bucket times,
where the length of the bucket time is the same and
equal to the aggregation level. For example, based on the
daily demand over 28 days, a weekly aggregated demand
is obtained, which consists of four demands over four
blocks of seven days. Non-overlapping temporal aggre-
gation has the advantage of retaining auto-correlation
structures in the demand. However, the main disad-
vantage is the fact that only few blocks are obtained
if demand history is short or the aggregation level is
long. Moreover, if the history length is not a multiple
of the aggregation level, then some of oldest data are
discarded.

In overlapping aggregation, the demand is divided into
consecutive overlapping blocks with a moving block over
time where the block’s size is equal to the aggregation
level. At each time period, the block is moved one period
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ahead, so the oldest observation is dropped and the
newest is included. The main advantage of the overlap-
ping temporal aggregation approach is that more blocks
are available than in the case of the non-overlapping
approach. However, in this approach there is a correlation
that is induced between blocks, even if it is not present
in the original disaggregated demand. Also, under this
approach, less ‘weight’ is given to the most recent obser-
vations, as they appear in fewer blocks.

3.1.1. Theoretical foundational work on aggregation
with blocking

The foundational work on temporal aggregation with
blocking started in the 1970s. It analysed the impact
of temporal aggregation on the characteristics of time
series when they are modelled as autoregressive inte-
grated moving average (ARIMA) processes. The research
started with the work of Amemiya and Wu (1972) for the
non-overlapping aggregation case. It was shown that, if
a time series follows a p-th order autoregressive process,
ARIMA(p,0,0), then the non-overlapping aggregates fol-
low a mixed autoregressive moving average (ARIMA)
model of order (p,0, g*) where gx = [W] and
[x] denotes the integer part of the real number x.
This result was generalised by Weiss (1984) and it was
shown that the temporal aggregation of an ARIMA(p,
d, q) process follows an ARIMA(p, d, r) process where

= [(P td+Dm—1+q . Wei (1978) studied the
m

aggregation effect on univariate multiplicative seasonal
time series models. It was shown that, for an ARIMA
process of order (p,d,q) x (P,D,Q)s, the correspond-

ing aggregate process is an ARIMA(p, d, r) x (P, D, Q)s*
[ (P+d+1)(m_1)+Q] and
m

if s is a multiple of m (where r =
s* =s/m) and an ARIMA(P+p, D+d, r) if m is a
multiple of s. Brewer (1973) also presented a general-
isation of the results for ARIMA models with exoge-
nous variables, i.e. ARIMAX models. It is shown that the
temporally aggregated ARIMAX model is an ARIMAX.
For overlapping temporal aggregation, Hotta, Moret-
tin, and Pereira (1992) have shown that that the tem-
poral aggregation of an ARIMA(p, d, q) process fol-
lows an ARIMA(P, d, Q) process where P < pand Q <
q + m — 1. Mohammadipour and Boylan (2012) exam-
ined the case of integer autoregressive moving average,
INARMA(p, q), processes. They showed that the aggrega-
tion of an INARMA(p, q) process over a forecast horizon
results in an INARMA(p, q) process with the same INAR
and INMA parameters but with a different innovation
parameter. Theoretical results of the impact of tempo-
ral aggregation on the characteristics of time series are
summarised in Table 1.
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Table 1. Impact of temporal aggregation on the characteristics of
time series.

Disaggregate Aggregated process
demand process (over m periods)
Non-overlapping ARIMA(p, d, q) ARIMA(p, d, r)
aggregation
where r =
p+d+Hm-1)+q
[
ARIMA(p, d, q) x ARIMA(p, d,r) x (P,D,Q)s* if
(P,D,Q)s s=kxm
where r =
P+d+DH(m-1)+q
]
ands* =s/m
ARIMA(P+p, D+d, r) if
m=ksxs
Overlapping ARIMA(p, d, q) ARIMA(P, d, Q)
aggregation
where P < pand Q <
g+m-—1
INARMA(p, q) INARMA(p, q)
with innovation with innovation term
term Z; = Po()) Zy = Po(m %))

The above cited research has built the basis for a con-
siderable literature that includes analytical and empirical
research on forecast accuracy and inventory performance
of temporal aggregation with blocking. In the follow-
ing two sections, we review both analytical empirical
research on aggregation with blocking from the perspec-
tives of forecast accuracy and inventory performance.

3.1.2. Forecast accuracy evidence of aggregation
with blocking
Most of the research on forecast accuracy of tempo-
ral aggregation with blocking is empirical in nature.
Nikolopoulos et al. (2011) was among the first studies in
the supply chain literature that empirically analysed the
effect of non-overlapping blocks temporal aggregation
on demand forecast accuracy. Based on the intermittent
demand data of 5000 SKUs from the Royal Air Force
(RAF, UK), the authors showed the potential benefits of
the aggregation-disaggregation approach (referred to as
the ADIDA approach) when it is used with the Naive
and Syntetos-Boylan Approximation (acronym SBA to be
used hereafter) forecasting methods. Different aggrega-
tion block lengths were tested, from two months up to 24
months and the disaggregation process was done using
equal weights. Forecast accuracy was measured with sev-
eral scaled and relative error metrics including the mean
absolute scaled error (MASE) and the relative geomet-
ric root mean squared error (RGRMSE). The empirical
investigation indicated the potential benefit of identifying
an optimal aggregation level.

Spithourakis et al. (2011) extended the work by
Nikolopoulos et al. (2011) to empirically investigate
the performance of the non-overlapping aggregation

approach for fast-moving demand. They used data
related to 1428 monthly time series from the M3-
Competition. The study revealed the considerable reduc-
tion of the symmetric MAPE using the aggregation
approach when it is associated with forecasting meth-
ods such as naive, single exponential smoothing and the
Theta method. Spithourakis et al. (2014) presented the
ADIDA framework as a multi-rate signal processing sys-
tem and they proposed some mathematical properties
of each block of the system. Building on the ADIDA
framework, Fu and Chien (2019) proposed a method
that integrates temporal aggregation and machine learn-
ing techniques to forecast the intermittent demands of
electronics components. Based on demand histories of
265 products from a worldwide leading electronics dis-
tributor, they empirically showed, based on Root Mean
Squared Error, Mean Absolute Error and MASE, that
the proposed method is more accurate than benchmark
forecasting methods for intermittent demand as well
as machine learning methods. Jin et al. (2015) empiri-
cally analysed the impact of non-overlapping temporal
aggregation when order data or point of sales (POS)
are used to generate forecasts. Their empirical inves-
tigation was based on weekly and monthly order and
POS data over two years from a large US consumer
packaged goods manufacturer. The forecast accuracy was
measured using the mean absolute deviation (MAD).
They first empirically confirmed the findings of Rostami-
Tabar et al. (2013) on the direct impact of autocor-
relation in the data on the relationship between the
aggregation approach and forecast accuracy. They also
showed that when order data are used, the aggregated
approach significantly improves the forecast accuracy,
whereas the opposite effect occurs when POS data are
used.

Analytical research on forecast accuracy of tempo-
ral aggregation with blocking is relatively scarce. In
the case of intermittent demand, Mohammadipour and
Boylan (2012) analysed the impact of non-overlapping
aggregation when demand follows integer autoregres-
sive moving average (INARMA) processes. They showed,
through a simulation based on theoretically generated
demand data and empirically by means of data of two
real demand data series from the automotive and aero-
nautics industries, that in most cases, forecasting using
a temporally aggregated process leads to lower mean
square errors (MSE) compared to the cumulative h-step-
ahead forecasting method. The outperformance is pro-
nounced when the autoregressive parameter is high. The
comparative performance is reversed in the case of an
INARMA(1,1) demand process with small autoregres-
sive and moving average parameters and short length of
forecast horizon.



In the case of fast moving demand, temporal aggrega-
tion with blocking was analytically studied by Rostami-
Tabar et al. (2013) and Rostami-Tabar et al. (2014). They
considered auto-regressive moving average (ARMA)
demand processes and the single exponential smooth-
ing forecasting method to derive the MSE of the non-
overlapping aggregation approach. They numerically
and empirically showed that the aggregation approach
usually outperforms non-aggregation for negatively auto-
correlated demand and the outperformance is pro-
nounced for high aggregation levels. More recently,
Rostami-Tabar, Babai, and Syntetos (2021) compared,
numerically and empirically, using monthly time series of
the M4-competition dataset, the MSE of the overlapping
and non-overlapping temporal aggregation approaches
when forecasting finite auto-correlated demand. They
showed that the aggregation approach is preferred
to non-aggregation when forecasting negatively auto-
correlated series. Moreover, they provided evidence
of the outperformance of the overlapping aggregation
approach compared to the non-overlapping one for short
time series and similar performance between the two
approaches when the demand history becomes long.

3.1.3. Inventory performance evidence of
aggregation with blocking

Porras and Dekker (2008) is the first empirical work
published in the literature to study the inventory per-
formance of the overlapping temporal aggregation when
it is used to estimate the empirical distribution of lead-
time demand. Based on the case of a Dutch petro-
chemical complex, the authors compared the perfor-
mance of overlapping temporal aggregation against the
resampling approach proposed by Willemain, Smart, and
Schwarz (2004) when a reorder point policy is used. The
empirical study revealed that the former approach overall
yielded considerable cost savings compared to the lat-
ter. It was also shown that the overlapping aggregation
approach can lead to low achieved service levels. Van
Wingerden et al. (2014) extended the method of Porras
and Dekker (2008) in two ways. Firstly, the window is
placed at random over L consecutive periods (for a fixed
number of times). Secondly, they allow the window size,
L, to vary, by sampling from the realised lead times. The
new method, called ‘Empirical Plus’, was tested empiri-
cally using 6000 parts from three companies. The evalua-
tion was not conducted using forecast accuracy measures,
but with the inventory metrics of fill rates and hold-
ing costs. The researchers found that, for most parts,
the new method did not perform as well as SBA, but
Empirical Plus was better than SBA for parts with infre-
quent demands and low variability in demand sizes. Zhu
et al. (2017) tackled the service level under-achievement
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issue in Porras and Dekker (2008). They combined the
aggregation approach with extreme value theory (EVT)
to improve the modelling of the tail of lead-time demand.
They conducted an empirical investigation using datasets
composed of 5549 spare parts from the automotive and
aeronautics industries. They showed that the proposed
approach (called ‘empirical-EVT’) gets closer to the tar-
get cycle service level (CSL) than the basic overlapping
aggregation approach.

Babai, Ali, and Nikolopoulos (2012) concluded that
most of the literature dealing with temporal aggrega-
tion focused only on the forecasting accuracy of the
aggregation approaches without assessing their economic
effects. To address this issue, they conducted an empir-
ical investigation using 4815 SKUs from the RAF to
compare the inventory performance (expressed through
inventory holding costs and achieved cycle service lev-
els) of forecasting using a non-aggregated approach
and a non-overlapping aggregation. They demonstrated
that aggregation leads to higher service-cost efficiency
than the non-aggregation approach for high target
CSLs.

Boylan and Babai (2016) was the first paper to con-
duct a theoretical analysis of the accuracy of the over-
lapping and non-overlapping aggregation approaches.
This work focused on the estimation of the cumulative
distribution function (CDF) of demand when demand
is independent and identically distributed (i.i.d.). They
showed that both approaches lead to unbiased estimates
and derived variance expressions of the CDF estimators
for each approach. They also provided evidence, numer-
ically and empirically, that the overlapping approach
often leads to a better estimate than the non-overlapping
one. However, the latter can outperform the former
when the demand history is very short. The analysis
of both approaches under an order-up-to-level inven-
tory control policy revealed that when the aggregation
level increases the overlapping approach leads to a reduc-
tion in backorders when the target cycle service level
is high.

3.2. Aggregation with resampling

3.2.1. Foundational work

Quenouille (1958) and Tukey (1958) proposed jackknife
estimation of a parameter, by systematically omitting
each observation from a dataset, calculating estimates,
and then averaging these estimates. The jackknife can
be used to estimate the bias and variance of an estima-
tor, and its confidence intervals. This approach inspired
(Efron 1979) to develop bootstrap estimation, whereby
observations are resampled with replacement, and each
observation has an equal probability of being selected.
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The bootstrap has been applied in many different
domains and has become a staple method in statistical
science.

3.2.2. Lead-Time demand resampling

Bookbinder and Lordahl (1989) were the first to apply
bootstrapping methods to the estimation of inventory
reorder levels. It is assumed that there is a record of
previous lead time demands (LTDs). Bootstrap sam-
ples, of the same size, are generated by sampling with
replacement. The resulting bootstrap distribution over
the bootstrap samples is used to estimate the parame-
ter of interest. Bookbinder and Lordahl (1989) focused
on the estimation of the p-th fractile of the demand dis-
tribution, assuming that the LTD is a stationary random
variable and the demand for each SKU is independent of
all others. Using synthetic data, they found that the boot-
strap can provide acceptable estimates for two-point and
bimodal distributions, unlike the normal distribution.
No empirical evaluations were undertaken.

Lordahl and Bookbinder (1994) proposed a weighted
average of two order statistics to estimate the reorder
point. Their simulation analyses focused on synthetic
data, generated from a discrete two-point distribution,
and bimodal mixtures of normal distributions that are
approximately symmetric, negatively skewed and posi-
tively skewed. They found the bootstrap method to per-
form well in terms of inventory service, without an undue
increase in inventory costs. However, the effect of auto-
correlated demand was not investigated.

Independently from Bookbinder and Lordahl (1989)
and Wang and Rao (1992) also proposed using boot-
strapping methods to estimate the lead-time demand
distribution and reorder points for an inventory con-
trol system. In their analyses, they recognised that both
demand and lead times may be stochastic, and that
demand may be autocorrelated. The issue of serial inde-
pendence of demand observations had been examined
by Ray (1980), who concluded that the assumption of
independence will be conservative against run-outs when
there is negative autocorrelation, but will be inadequate
when there is positive autocorrelation. Bootstrapping
lead-time demands mitigates this problem, because auto-
correlation of demands over individual periods within
lead time is captured, although autocorrelation of succes-
sive lead times is not. Wang and Rao (1992) investigated
the performance of the bootstrap method, using syn-
thetic data, for a range of auto-regressive parameters in
an AR(1) demand process and mean values for geomet-
rically distributed lead times, with demand assumed to
be normally distributed. The results for the bootstrap
estimates were favourable in terms of bias and standard
error.

3.2.3. Block resampling

Rather than resampling demands from previous lead
times, an alternative approach is to resample demands
from previous blocks of time, of fixed length, which
may not have coincided with the time elapsing between
ordering and receipt. Hall (1985) proposed resampling
non-overlapping and overlapping blocks, in the context
of spatial data. For univariate time series data, proposals
for non-overlapping blocks (Carlstein 1986) and over-
lapping blocks (Kiinsch 1989) were made. The latter
approach is also known as the Moving Blocks Bootstrap.
Park and Willemain (1999) commented on the problem
of the dependence structure near the block endpoints,
which affects both approaches. They proposed a “Thresh-
old Bootstrap’ method to address this problem. Monte
Carlo simulation experiments showed that, if well cali-
brated, the Threshold Bootstrap can perform better than
the Moving Blocks Bootstrap in estimating the standard
error of the sample mean for a variety of auto-regressive
moving average time series.

3.2.4. Resampling demands from individual periods
Fricker and Goodhart (2000) examined the demand
distributions of the Marine Expeditionary Force. They
found that direct sampling of lead-time demands was
infeasible. Because of a lack of historical data on the
inventory position, they could not directly resample lead-
time demands. They also recognised that it was possible
to design a resampling scheme that made more effi-
cient use of the available historical data, for independent
and identically distributed time series. They proposed
random resampling of demand from individual periods
(with replacement). For a fixed lead time of L periods,
the resampling is done L times, to give the first resam-
pled lead-time demand. This process is repeated many
times, and yields estimates of the Cumulative Distribu-
tion Function of lead-time demand, and the associated
quantiles required for inventory reorder levels.

Willemain, Smart, and Schwarz (2004) took this idea
further, in the context of intermittent demand, by includ-
ing a Markov chain structure for the resampling of
demand occurrence, which takes into account the his-
torical conditional probabilities of demand occurrence,
given demand occurrence (or non-occurrence) in the
previous period. Their method was not extended to take
into account autocorrelation in the series of non-zero
demands, nor the cross-correlations between demand
intervals and non-zero demand sizes. This is not merely
of academic interest: Willemain et al. (1994) had found
indications of such correlations in a previous study, sub-
sequently confirmed for a significant minority of aircraft
spare parts from the US Defense Logistics Agency (Altay,
Litteral, and Rudisill 2012).



Willemain, Smart, and Schwarz (2004) also intro-
duced a 9jittering’ procedure, whereby resampled demand
values are adjusted by adding an amount calculated as the
product of a standard normal variable and the square root
of the demand value. This allows for the generation of
plausible values that have not been previously observed.
Rego and Mesquita (2015) identified a bias introduced by
this procedure and proposed an alternative ‘jittering’ pro-
cedure, which significantly reduces the bias, but does not
eliminate it entirely.

A US Patent was granted (Willemain and Smart 2001)
for software including the intermittent demand resam-
pling procedure of Willemain, Smart, and Schwarz
(2004). The features and benefits of the new package were
presented to professional practitioners as well as to aca-
demics, as summarised by Smith and Babai (2011), and
the software has continued to be used by commercial
organisations over the last 20 years.

3.2.5. Resampling demand size and demand intervals
Zhou and Viswanathan (2011) proposed an alternative
resampling approach. Instead of resampling demands
(including zeroes) from individual periods, demand sizes
(non-zeroes only) and demand intervals are resampled
separately. This method has the advantage that it does
not impose a demand interval distribution, although
it does assume that successive intervals are indepen-
dent. Its disadvantage is that there may be few demand
intervals to resample if the demand is highly intermit-
tent. Hasni, Babai et al. (2019) have numerically and
empirically evaluated the inventory performance of this
method and compared it to that of Willemain, Smart,
and Schwarz (2004). They found that the former out-
performs the latter in terms of inventory cost reduction
for moderately intermittent demand data and long lead
times.

3.2.6. Resampling immediately after demand
occurrence

Teunter and Duncan (2009) proposed an adaptation to
simple resampling of demands from previous individual
periods. In their adaptation, the first resample is taken
from non-zero demands, with the remaining resam-
ples over the lead time being taken from all previous
demands. This restricts attention to those review cycles
with some demand and discounts those cycles without
demand.

Teunter and Duncan’s modification may be applied
to the resampling schemes of Willemain, Smart, and
Schwarz (2004) and Zhou and Viswanathan (2011). It
gives the distribution of lead-time demand, conditional
upon that demand being non-zero. The empirical higher
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inventory efficiency of this modified method, when com-
pared to the standard resampling method, was shown by
Hasni, Aguir et al. (2019).

3.2.7. Resampling dependent on elapsed time since
last demand occurrence

Pennings, van Dalen, and van der Laan (2017) introduced
a variant of the Willemain, Smart, and Schwarz (2004)
method, based on approximating the probability of a
demand occurrence using an empirical distribution of
demand occurrences over the lead time (conditional
on elapsed time since the last demand occurrence).
The authors also developed a parametric method tak-
ing this into account. In their empirical analyses of five
datasets, they found their parametric approach to be
better than their non-parametric methods in terms of
of forecast accuracy (Geometric Mean Absolute Error).
Mixed results were obtained for inventory performance.

3.3. Empirical evidence

Willemain, Smart, and Schwarz (2004) compared the
lead-time demand distributions generated by their
method with that predicted by Croston’s method coupled
with a normal distribution. The comparison was under-
taken on over 28,000 SKUs from a variety of sectors. It
was conducted using the Probability Integral Transfor-
mation (PIT) technique, recommended by Willemain,
Smart, and Schwarz (2004) and subsequently extended
by Kolassa (2016). Willemain, Smart, and Schwarz (2004)
found their method to perform better than Croston
according to the PIT measure.

Porras and Dekker (2008) compared the overlapping
blocks method with the approach advocated by Wille-
main, Smart, and Schwarz (2004), based on an empirical
analysis of spare parts from a Dutch petrochemical com-
plex. They examined the inventory cost implications of
the two methods, finding that the overlapping blocks
method produced lower costs, with both methods attain-
ing a 90% fill rate.

Rego and Mesquita (2015) analysed over 10,000 SKUs
from a Brazilian automotive manufacturer. They com-
pared an adapted form of the method by Zhou and
Viswanathan (2011) with parametric forecasting meth-
ods, including the Syntetos-Boylan Approximation (Syn-
tetos and Boylan 2005). The evaluation was based on a
trade-off between inventory costs and fill rates, for each
of the quadrants identified by Syntetos, Boylan, and Cros-
ton (2005). They found a clear preference for the method
of Zhou and Viswanathan (2011) for ‘lumpy’ demand, for
the Syntetos-Boylan Approximation for ‘erratic’ demand,
with the results being less clear for the ‘smooth’ and
‘intermittent’ categories.
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Syntetos, Babai, and Gardner (2015) examined over
4000 series from the US jewellery and over 3000 series
from the electronics sector. They compared the approach
of Willemain, Smart, and Schwarz (2004) with Cros-
ton’s method and the Syntetos-Boylan Approximation.
Evaluations of inventories showed modest gains in cycle
service levels for the method of Willemain, Smart, and
Schwarz (2004) for the jewellery data, but with the oppo-
site result for the electronics dataset.

Hasni, Babai et al. (2019) undertook a direct compar-
ison of the bootstrapping methods of Willemain, Smart,
and Schwarz (2004) and Zhou and Viswanathan (2011).
The inventory results were favourable for SBA, but
with the advantage over the bootstrapping methods
diminishing as the backordering costs increased. Babai,
Tsadiras, and Papadopoulos (2020) compared both of
these bootstrapping methods with neural network (NN)
methods, finding that the NN approaches could achieve
better inventory efliciency that the bootstrapping meth-
ods. Hasni, Aguir et al. (2019) proposed a modifica-
tion of these two bootstrapping methods where the
lead-time demand is adjusted by considering that a
demand occurs in the first period of each lead-time
bucket. A service driven inventory system was consid-
ered with two objective service measures: the cycle ser-
vice level and the fill rate. They provided empirical evi-
dence that the proposed adjusted methods result in a
higher service-cost efficiency compared to the original
methods.

Overall, the empirical results are quite mixed, with
no clear ‘winner’ emerging from the published stud-
ies. The idea of comparing results based on data fea-
tures (such as by Rego and Mesquita 2015) seems more
promising. However, a different categorisation method
may be needed than that proposed by Syntetos, Boylan,
and Croston (2005) which was designed for comparing
different parametric methods, and not for comparing
bootstrapping methods.

3.4. Gaps ofresearch

Research on temporal aggregation in the supply chain
forecasting literature has seen many important develop-
ments over the years. However, research has been pre-
dominantly empirical rather than analytical and based on
forecast accuracy evaluations with less interest in supply
chain performance.

In the particular context of intermittent demand,
INARMA process modelling has been used to bring
a foundational framework to develop knowledge on
temporal aggregation (with blocking) for this type of
demand. However, with the exception of the work by
Mohammadipour and Boylan (2012) which focused

only on the forecast accuracy of overlapping aggrega-
tion, there are no analytical developments in this area.
Inspired from the rich supply chain forecasting literature
based on the ARIMA framework, the INARMA mod-
elling should be considered to make important devel-
opments in analysing forecasting by temporal aggre-
gation of intermittent demand (both overlapping and
non-overlapping) and the implications on supply chain
performance.

Itis also worth noting that most of the temporal aggre-
gation research has been built on the non-overlapping
aggregation assumption and little research was dedi-
cated to overlapping aggregation. As shown earlier in
the paper, under the ARIMA framework, the character-
istics of demand when aggregated with an overlapping
approach have not been fully identified yet, which makes
the analytical developments less advanced.

Further, despite the rich literature relating to tem-
poral aggregation with resampling, there has been a
lack of theoretical research on the resampling meth-
ods that are commonly discussed in the literature. For
example, the resampling approach developed by Wille-
main, Smart, and Schwarz (2004) has been implemented
in commercial demand forecasting software used by
many companies without examination of its theoreti-
cal foundations. This opens up an avenue for further
research to analyse the theoretical properties of such
methods.

Finally, although most of the research discussed in
this paper deals with point forecasts, it should be noted
that a stream in the forecasting literature has been devel-
oped to deal with prediction intervals and distributions.
This is very important from the supply chain forecasting
perspective since the determination of safety stocks and
inventory policies parameters rely on such forecasts. This
is in line with the research related to aggregation with
resampling, where the relevant literature develops inter-
esting approaches to forecast lead-time distributions.
However, no research has been conducted on tempo-
ral aggregation with blocking aiming at improving the
forecasting performance under prediction intervals and
distributions, which constitutes a big gap in the supply
chain forecasting literature.

4. Cross-sectional aggregation

Cross-sectional aggregation, also known as hierarchical
or contemporaneous aggregation, refers to the aggre-
gation across a number of SKUs at a specific time
period. Existing approaches to cross-sectional aggre-
gation include the bottom-up, the top-down and the
middle-out approach.



4.1. Top-down, bottom-up and middle-out

The bottom-up (BU) approach is based on forecasting
each series at the bottom-level, and then aggregating
these forecasts to produce forecasts for all the series to
the group level (if a forecast at the aggregate level is
required). Top-down (TD) consists in forecasting directly
at the group level (after aggregating the demand) and
then disaggregating these forecasts down to the bottom
level (if a forecast at the disaggregate level is required).
The middle-out (MO) approach combines bottom-up
and top-down approaches. A middle level is first cho-
sen and then the BU approach (or the TD approach)
is used to generate coherent forecasts for the series
above (or below) the middle level by aggregating (or
by disaggregating) the middle level forecasts. The three
cross-sectional aggregation approaches are illustrated in
Figure 3.

4.1.1. Theoretical foundational work on
cross-sectional aggregation

The foundational work on cross-sectional aggregation
can be divided into two streams. The first stream in the
literature deals with the performance analysis of TD and
BU approaches. This stream of the literature started with
the work of Theil (1954) and was mainly conducted in
the economics domain (Shlifer and Wolff 1979; Liitke-
pohl 2011). There whave been disagreements in that lit-
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Schwarzkopf, Tersine, and Morris (1988), this disagree-
ment is mainly due to type of the generating data pro-
cess, the forecasting method and the considered forecast
accuracy method.

The second stream analysed the impact of cross-
sectional aggregation on the characteristics of time series
when they are modelled with ARIMA processes. Granger
and Morris (1976) showed that the cross-sectional aggr-
gation of the demand of N subaggregate SKUs follow-
ing ARMA(p;,q;) is an ARMA(x,y) demand where x <
Zfi 1(pi) and y < max(x — p; + g;). Particularly, aggre-
gating two subaggregate ARMA(1,1) processes with the
same parameters leads to the same ARMA(1,1) process. It
was also shown by Harvey (1993) that the cross-sectional
aggregation of the demand of two subaggregate SKUs fol-
lowing AR(1) processes with parameters ®; and @, is
an AR(1) process if &1 = ®,, an AR(2) process if &, =
—®;, and an ARMA(2,1) otherwise. Another example is
the work by Silvestrini and Veredas (2008), which showed
that the cross-sectional aggregation of two ARIMA(0,1,1)
processes is an ARIMA(0,1,1) process. These results on
the impact of cross-sectional aggregation on the charac-
teristics of some processes are summarised in Table 2.

Table 2. Impact of cross-sectional
characteristics of time series.

aggregation on the

Subaggregate Cross-sectional
erature on the outperformance of the top—down or the demand processes aggregated process
bottom-up forecasting approach. Theil (1954) and Grun- Nproducts  ARMA(p;,gy) ARMA(x,y) .

.feld and Grl%lches (1960) argued that the TD approach wherex < 3 (o)
is more efficient and more accurate for stable demands =
whereas Orcutt, Watts, and Edwards (1968), Edwards andy < max(x — p; + 4;)
and Orcutt (1969), Dangerfield and Morris (1992), Zell- 2 products AR!(VI;\(U) ARI(VI;A(fLU
. . AR(1 AR(1) if &1 = D,
ner and Tobias (1998) and Weatherford, Kimes, and with parameters ®; and ®; AR if b1 — — b,
Scott (2001)), among others, argued that BU is preferred ARMA(2,1) otherwise
when there are differences across time series. As stated by ARIMA(O,1,1) ARIMA(0,1,1)
Top-Down Middle-Out Bottom-Up
Forecastat this Aggregate Aggregate
level
Di t Forecastata A t
Sub-group 1 Sub-group 2 isaggregate middle level ggregate
m @ @ @ @ Disaggregate Disaggregate Forecastat this

level

Figure 3. lllustration of the bottom-up, top-down and middle-out approaches.
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4.1.2. Performance of cross-sectional aggregation

In the supply chain forecasting literature, the work by
Zotteri, Kalchschmidt, and Caniato (2005) is among the
first that empirically analysed the performance of TD
and BU approaches. They used sales data from a food
retailer to show that both TD and BU can lead to sub-
stantial improvements in the mean absolute percentage
error (MAPE) and that the choice of the best level of
aggregation depends on the underlying demand gen-
eration process. Zotteri and Kalchschmidt (2007) com-
pared the MSE of TD and BU forecasting approaches
where the forecasting is made at the SKU/store level
or at an aggregated level for a set of geographical loca-
tions of SKUs/stores. They assumed stationary and non-
correlated (over time and across SKUs) demand that is
estimated using the minimum MSE method. They con-
cluded that BU should be used only in cases of low
demand variability and small size chains. Viswanathan,
Widiarta, and Piplani (2008) compared the performance
of TD and BU through simulation experiments on sub-
aggregate SKUs with intermittent demand. The forecasts
under the BU approach were generated using Croston’s
method whereas, under TD, the forecasts were calculated
using SES (since the degree of intermittence of the aggre-
gate demand was low). The forecast accuracy was mea-
sured by means of the mean absolute deviation (MAD)
and the inventory performance was reflected through the
total inventory cost including the holding and the short-
age costs). The simulation results showed that when the
variability of demand intervals of the subaggregate SKUs
is low, BU leads to more accurate forecasts than TD (in
forecasting at the aggregate level), but when this variabil-
ity increases, the relative performance of TD improves
and it becomes better than the latter under a high num-
ber of SKUs. Moreover, if one aggregates a high num-
ber of subaggregate SKUs having their demand intervals
and demand sizes highly variable, TD is the best fore-
casting method. They also showed that under TD, SES
outperforms Croston in most cases when forecasting the
aggregate demand. It should be noted that there is a con-
siderable body of research that analysed the performance
of cross-sectional aggregation in terms of forecast accu-
racy or inventory performance, without referring to the
TD or BU approach. This research includes Razi, Kur-
tulus, and Smith (2004), Zhou et al. (2007), Strijbosch,
Heuts, and Moors (2008), Murray, Agard, and Bara-
jas (2018a), Murray, Agard, and Barajas (2018b), Villegas,
Pedregal, and Trapero (2018) and Narayanan, Verhagen,
and Dhanisetty (2019).

Inspired by the BU and TD approaches, Li and
Lim (2018) proposed a method to forecast intermit-
tent demand at the store level for a fashion retail
in Singapore. The method, referred to as the greedy

aggregation-decomposition method, is composed of
three-steps. The first step of the method consists in fore-
casting the daily demand by using a modification of the
Holt-Winters method after cross-sectionally aggregating
the demand of all SKUs. The second step consists in
forecasting the demand size and interval for each SKU
by using SES as in Croston’s method. The last step is
to allocate the total demand to each SKU at each store
based on size and interval forecasts generated in the first
steps, instead of using the popular proportional alloca-
tion method as in the TD approach discussed in Gross
and Sohl (1990). The method was assessed using MAE
and measures related to MASE. The outperformance of
the proposed method was shown when compared to
some benchmark methods commonly used in the liter-
ature for intermittent demand forecasting.

Analytical research on cross-sectional aggregation is
relatively scarce. Widiarta, Viswanathan, and Piplani
(2007) is among the first research works that analyti-
cally evaluated and compared, by means of the MSE,
the performance of TD and BU approaches for auto-
correlated demands in the supply chain. They assumed
an autoregressive AR(1) demand process that is fore-
casted at the SKU level using SES. They showed that if
the lag-1 autocorrelation of the demand for at least one
of the SKUs in the family is higher than 1/3, the BU
approach leads to lower variance of forecast error than
TD. Widiarta, Viswanathan, and Piplani (2008) extended
the previous work when the demand of all the subag-
gregate SKUs follow an MA(1) process. They showed
that the performance of the TD and BU approaches is
the same if the smoothing constants used for forecasting
the subaggregate SKUs and the aggregate family demand
are set to the optimum value or equal to each other.
Under the same demand process and forecasting method,
Widiarta, Viswanathan, and Piplani (2009) additionally
showed, by means of simulation, that when the correla-
tion parameters of the subaggregate SKUs are negative,
TD outperforms BU in terms of variance of forecast error.
When the parameters have different signs, BU performs
better TD when the correlation between the compo-
nents is negative, whereas when the correlation between
the components is positive, TD becomes the preferred
approach.

Sbrana and Silvestrini (2013) and Rostami-Tabar
et al. (2015) analytically derived the MSE expression of
BU and TD approaches when forecasting aggregate and
subaggregate demand in the case of a non-stationary
demand process. They assumed that the sub-aggregate
demand follows an Integrated Moving Average of order
one (i.e. ARIMA(0,1,1)) demand process and it is fore-
casted using SES. By means of numerical experiments,
they showed that when the moving average parameter



for all the subaggregate SKUs or the smoothing con-
stant used for these SKUs are identical, the performance
of BU and TD is the same. Moreover, Rostami-Tabar
etal. (2015) demonstrated, based on an empirical investi-
gation using data of a European superstore, that when the
demands of the subaggregate SKUs are highly autocor-
related, the performance of BU and TD is also the same
for all autocorrelation values, according to ratios of vari-
ances. Their investigation revealed that, at the aggregate
level, BU is preferable to TD when the cross-correlation
between the sub-aggregate SKUs is positive and low or
takes negative values. These findings confirm the early
simulation based results shown by Fliedner (1999) on
the benefit of demand cross-sectional aggregation of
highly negatively cross-correlated subaggregate items. At
the sub-aggregate level, BU outperforms TD when the
smoothing constant is set to its optimal value for both
approaches, regardless of the cross-correlation, the disag-
gregation weight or the values of the process parameters.

Kremer, Siemsen, and Thomas (2016) assessed how
judgment affects the relative accuracy of the BU approach
and the direct forecasting at the group level (referred to
as top-direct) approach. They provided evidence that BU
outperforms top-direct, using an MAE measure, if the
subaggregate items are affected similarly by short- and
long-term shocks, e.g. products that are affected similarly
by general market growth (‘change’) and weather effects
(‘noise’).

4.2, Seasonal group indices

An important special case of cross-sectional aggregation
relates to the forecasting of seasonal time series. These are
ubiquitous in retailing but accurate seasonal estimation
using classical methods requires long demand histories
(Hyndman and Kostenko 2007). In practice, organisa-
tions are often obliged to contend with short demand
histories, because the product is relatively new to the mar-
ket, or because the entire history is not available on an
Enterprise Resource Planning system.

Classical methods for forecasting seasonal demand,
such as the Holt-Winters method, rely only on a product’s
own demand history. Methods like these are sometimes
known as ‘Individual Seasonal Indices’ (ISI) methods.
They will not produce accurate forecasts if there are short
demand histories or even for longer histories if the data
are very noisy. However, there is an opportunity to gen-
erate more accurate forecasts if the individual series is
part of a group of seasonally homogeneous series (for
example, across locations, or across products).

There are two basic methods of seasonal aggregation,
to form ‘Group Seasonal Indices’ (GSI). One approach
is to sum demands across a seasonal group and then
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to estimate the seasonal indices (for all series) from the
aggregate series (Withycombe 1989). This is known as the
‘Withycombe Group Seasonal Index’ (WGSI). The other
approach is to calculate individual seasonal indices for
each item in the group and use this average for all items in
the group (Dalhart 1974). This is known as the ‘Dalhart
Group Seasonal Index’ (DGSI). Both of these approaches
address seasonality for non-trended data.

Chen and Boylan (2007) commented that, instead of
applying the ISI or a GSI method for all products, one
can choose between ISI or GSI for each product and, fur-
ther, choose between WGSI and DGSI. They found that
WGSI is more accurate than ISI. in terms of mean square
error, if the coeflicient of variation of the deseasonalised
individual series is greater than the coefficient of varia-
tion of the deseasonalised aggregate series. These results
show that more noisy time series can ‘borrow strength’
from other series with homogeneous seasonality, but less
noisy series may ‘borrow weakness’ even if the seasonal
patterns are homogeneous.

The above studies are restricted to non-trended data.
Dekker, Van Donselaar, and Ouwehand (2004) and
Ouwehand, Van Donselaar, and de Kok (2005) proposed
an adaptation of the Hot-Winters method, whereby level
and trend estimates are updated at the level of the individ-
ual series, but seasonal indices are updated using aggre-
gated data across a product family. Empirical results on
data from food and electrotechnical wholesalers showed
that the adapted method was more accurate than the clas-
sical Holt-Winters approach, based on an assessment of
MAD, MSE and symmetric MAPE measures.

Most research work on seasonal aggregation has
assumed that the groupings are given. For example, an
organisation’s standard product groupings could be used.
This approach has limitations because homogeneity in
product features is not always associated with seasonal
homogeneity (Zotteri, Kalchschmidt, and Caniato 2005).
Boylan et al. (2014) proposed a k-means clustering
method, based on theoretical linkages to the MSE crite-
rion. Testing on empirical data from a lighting company
showed that the approach may be used with confidence if
a company lacks a grouping method.

4.3. Gaps of research

Despite the huge literature dealing with the compara-
tive performance of BU and TD approaches, there is
still a lack of simple theoretical rules and indications on
which approach should be used in general and complex
situations.

Itis also worth stating that most of the research dealing
with the analysis of performance of the cross-sectional
aggregation approaches in the context of intermittent
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demand has been empirical in nature and simulation-
based. Similar to the case of temporal aggregation, the
INARMA modelling represent an interesting framework
to model such demand patterns, which should be fur-
ther considered in the literature to strengthen the find-
ings in this area with some theoretical properties of the
cross-sectional aggregation approaches.

Finally, another gap in the research dealing with cross-
sectional aggregation consists in the focus of the relevant
research on forecast accuracy and the limits in using
other utility functions when evaluating the effective-
ness of the considered approaches. The inventory service
level/cost is an obvious utility function that should be
considered at the bottom levels of the hierarchy but other
utility functions (e.g. finance, marketing) could be used
at different upper levels of the hierarchy. Evaluating the
performance of cross-sectional aggregation approaches
under different utility functions for different levels of the
hierarchy is lacking in the existing literature.

5. Hierarchical reconciliation and combination

Temporal and cross-sectional aggregations, discussed in
previous sections, are limited in the sense that they do
not fully utilise all the information available at various
levels of aggregation. In this section, we discuss some
approaches designed to overcome this limitation. These
approaches include hierarchical and grouped time series
reconciliation, multiple temporal aggregation, and tem-
poral and cross-temporal hierarchies.

5.1. Hierarchical and grouped time series
reconciliation

In supply chains, a collection of time series can be repre-
sented as a hierarchical or grouped time series structure.
(For example, the total demand for a retail item can be
disaggregated into demand on each regional warehouse,
and further disaggregated by demand on each retail out-
let.) These categories are nested within the larger group
categories and the resulting time series of nested cate-
gories are refereed to as ‘hierarchical time series’ (Hyn-
dman et al. 2011). An alternative aggregation structure
is grouped time series where the collection of time series
can be grouped together in a number of non-hierarchical
ways. For example, a supply chain manager might be
interested in attributes such as product family, customer
type, price range, etc. Such attributes do not naturally dis-
aggregate in a unique hierarchical manner as they are not
nested (Hyndman and Athanasopoulos 2021). In supply
chains, one may have more complex structures including
both hierarchical and grouped time series. For example,
it would be natural for the supply chain manager to be

interested in demand by product family, customer type
and also by geographic locations.

The traditional methods discussed in Section 4 (BU,
TD and MO) have some limitations. They only use base
forecasts from a single level of aggregation which have
either been aggregated or disaggregated to obtain fore-
casts at other levels. Hyndman et al. (2011) proposed
the optimal combination (OC) approach as an alterna-
tive which uses the information available at all levels of
the structure. This approach first generates forecasts at
each node of the hierarchy separately and then combines
and reconciles all forecasts, in order to produce coher-
ent forecasts. That is, forecasts can add up in a way that
is consistent with the aggregation structure of the hier-
archy or group that defines the collection of time series.
For example, considering the demand for a retail item,
forecasts of demand for the item in regional stores should
add up to demand forecasts for regional warehouses,
which should in turn add up to give a demand fore-
cast at the total level. Following the development of the
optimal combination approach, several extensions have
been proposed that focus on the theoretical advancement
of forecast reconciliations on both points (Hyndman,
Lee, and Wang 2016; Wickramasuriya, Athanasopoulos,
and Hyndman 2019; Panagiotelis et al. 2021) and prob-
abilistic forecasts (Taieb, Taylor, and Hyndman 2017;
Jeon, Panagiotelis, and Petropoulos 2019; Taieb, Tay-
lor, and Hyndman 2021; Panagiotelis et al. 2020). While
these hierarchical time series reconciliation and combi-
nation approaches have wide applications, there are a
limited number of studies that investigate the applica-
tion in the real supply chains. Mircetic et al. (2021) used
real time series of a supply chain distribution network
from a European brewery company to assess the per-
formance of optimal reconciliation proposed by Wick-
ramasuriya, Athanasopoulos, and Hyndman (2019) and
Hyndman and Athanasopoulos (2021) against the BU
and TD approaches using an empirical investigation. The
dataset available for the purpose of this research con-
sisted of weekly time series for 56 SKUs for the period
from 2012 to 2015. These time series were then grouped
based on: (i) regions (marketing regions); (ii) distribu-
tion centres; (iii) wholesalers; and (iv) product types. The
ETS models from the forecast package in R were used
to produce the out-of-sample base forecasts for 52-steps-
ahead (one year ahead), which is required for planning.
They reported forecast accuracy using Root Mean Square
Scaled Error (RMSSE) and showed that the forecast per-
formance of BU and OC evaluated across the whole
structure is not statistically different. They also examined
the point forecast combination of BU and OC instead
of using them individually. They showed that combining
the forecasts of OC and BU produce consistently more



accurate forecasts through all nodes of the supply chain
grouped structure.

There are three studies (Abolghasemi et al. 2019, 2020;
Spiliotis et al. 2020) that use a dataset containing sales of
55 products for 120 weeks, obtained from a food man-
ufacturing company in Australia. Each product forms a
hierarchy with three levels: 12 distribution centres at the
bottom, two retailers in the middle and the total, giving
660 product-location combinations at the bottom level.
Retailers at the middle level of the hierarchy have dif-
ferent sales patterns, while the bottom level series have
a similar sales pattern to the middle-level series.

Abolghasemi et al. (2019) investigated the hierarchi-
cal forecasting problem of sales time series in the pres-
ence of promotion on a three-level structure including
top, middle and bottom levels. They used a middle-out
(MO) approach to generate forecasts at all levels. Fore-
casts are first generated at a middle level and then the
middle-level forecasts are aggregated to the top level and
disaggregated to the lower levels. They proposed using
machine learning (ML) models including artificial neural
networks (ANN), extreme gradient boosting (XGBoost),
and support vector regression (SVR) for dynamic hier-
archical forecasting where the time series dynamics may
change due to promotion. These models estimate the
proportions of lower-level time series from the upper
level. They also compared the proposed approaches with
various variations of optimal combination, BU, TD and
MO approaches. They used ARIMAX with price as the
explanatory variable to generate base forecasts of four-
step-ahead and eight-step-ahead averages. The symmet-
ric MAPE measure was used to evaluate the forecast
accuracy. The results showed that the performance of the
considered approaches depends on the forecasting hori-
zon and the level of the hierarchy. At the bottom level, the
XGBoost outperforms the other ML and statistical mod-
els. For the top level, they showed that the best forecasts
across the entire horizon are generated with the TD and
the top-down forecasted proportions (TDFP) model.

From the existing hierarchical approaches, the accu-
racy of an optimal combination approach with mini-
mum trace was shown superior in many empirical studies
over other alternatives (Wickramasuriya, Athanasopou-
los, and Hyndman 2019). However, there are still some
circumstances where this method may fail, which are
summarised in Abolghasemi et al. (2020). In fact, there
is no single approach that generates accurate forecasts
across all levels of different hierarchical and/or grouped
time series structures. The suitability of approaches may
depend on the characteristics of the time series and the
structure of the hierarchy. Abolghasemi et al. (2020)
examined the selection of suitable approaches, based on
time series features, and used Machine Learning (ML)
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for classification. They compared the proposed approach
against BU, TD and MO approaches. To generate fore-
casts for 4 weeks ahead, they used a regression model
with ARMA errors (Reg-ARMA), where product prices
are used as a predictor variable. They used the MASE
and RMSSE error metrics to examine the performance
of hierarchical approaches. The results indicated that,
on average, the proposed approach was the most accu-
rate hierarchical forecasting method. A detailed analysis
showed that the TD approach outperforms the proposed
approach at the top level. They recommended to expand
model selection to reconciliation method selection when
dealing with forecasting hierarchical and grouped time
series. While the hierarchical combination approaches
explored in the literature are generally linear in nature,
Spiliotis et al. (2020) proposed a non-linear approaches to
the problem of hierarchical forecast reconciliation. They
used Random Forests (RF) and XGBoost (XGB) methods
to derive the combination weights for the forecasts across
the various aggregation levels. These methods have been
shown to perform well in time series contexts and cross-
learning. They used ARIMA to estimate the base fore-
casts and to act as a benchmark against BU, TD and OC.
They evaluated the forecasting performance of the hier-
archical forecasting methods using MASE, RMSSE and
absolute mean scaled error (AMSE). They showed that
ML reconciliation approaches were superior to existing,
linear ones, in terms of forecast accuracy.

The above studies have examined the application of
the OC approach and its extensions in the supply chain.
The overall conclusion is that using information across
the hierarchy improved forecast accuracy, compared to
a situation when separate levels are used to generate
forecast requirements. Moreover, using a combination of
hierarchical approaches or multiple approaches instead
of using a single approach for the entire hierarchy can
improve accuracy. However, it is not easy to draw con-
crete conclusions on when each approach provides more
accuracy. Datasets used in these studies have weekly
granularity, so it may not be appropriate to generalise
results to other granularities such as sub-daily, daily and
monthly. More studies with other time granularities in
the supply chain should be considered.

The M5 forecasting competition (Makridakis, Spilio-
tis, and Assimakopoulos 2020) was organised as an online
contest to predict the sales of thousands of products from
a US retailer (Walmart). It is the biggest, so far, of a
series of forecasting competitions organised since 1982
by Professor Makridakis, aimed at enhancing forecast-
ing methodology and practice (Makridakis et al. 1993).
The purpose of the M5 forecasting competition was to
compare the empirical accuracy of forecasts (up to 28
days ahead) using a wide range of forecasting methods
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in a hierarchical supply chain with grouped time series,
thereby allowing assessment of methods based on aggre-
gation and hierarchies. The dataset contains 42,840 daily
time series of sales data in total. It has a structure with
the SKU items at the bottom level and aggregation based
on three states in the US, store, department and prod-
uct categories. In addition to the sales time series, it also
includes the exogenous variables of promotions, price,
and special events for the bottom level series. Both point
forecasts and prediction intervals are generated at all lev-
els for 28 days ahead. Results of the M5 competition
(Makridakis et al. 2021; Makridakis, Spiliotis, and Assi-
makopoulos 2020) show that ML approaches such as
LightGBM outperform statistical models in forecasting
hierarchical retail sales. Moreover, results indicate that
using exogenous variables improves forecast accuracy,
according to RMSSE for point estimates. The M5 com-
petition is the most comprehensive experiment related
to hierarchical forecasting in supply chains so far. There
is a special issue under preparation for the International
Journal of Forecasting that will be dedicated to the com-
petition.

There are some other studies that proposed hierar-
chical forecasting approaches that are more specific to
the context of supply chains. These approaches also used
all information available in a hierarchy. Nenova and
May (2016) used an empirical approach to create a model
to forecast the optimal forecast aggregation technique for
a data set with two levels of hierarchies: bottom and top.
The approach establishes a relationship between corre-
lation of time series at the bottom level and the outper-
forming aggregation. Therefore, it is possible that various
approaches are used in the forecasting process instead
of using one approach. They developed an analytical
model to choose an expected optimal forecast consol-
idation strategy. They showed an accuracy gain from
using the proposed procedure, as opposed to using the
same strategy (e.g. BU or TD) for all datasets. (Accu-
racy of hierarchical approaches was reported using MAE
and RMSE.) The paper does not explicitly describe what
values of correlation favour the BU or TD approach.
Also, their approach was not compared with the OC
approach in terms of performance or computational
time.

Pennings and Van Dalen (2017) proposed an inte-
grated hierarchical forecasting approach to forecast the
demand of products at different hierarchical aggrega-
tion levels. It first generates forecasts at all levels and
then incorporates available information. The generated
forecasts are already reconciled and add up in the same
manner as data in the hierarchy. Therefore, this approach
avoids ex-post revising of forecasts, as is done in the OC
approach. Two different datasets from food and personal

care sectors were used to evaluate forecasting and inven-
tory performance. The results demonstrate that forecast
accuracy and inventory performance can be substantially
improved with respect to the BU, TD and the optimal
combination approaches. (Forecast accuracy based on
MAPE.)

Huber, Gossmann, and Stuckenschmidt (2017) pro-
posed a decision support system to provide hierarchi-
cal forecasts at different organisational levels, based on
point-of-sales data of multiple items. The approach iden-
tifies clusters of items that are used to extend the hier-
archy based on intra-day sales patterns. They used uni-
variate and multivariate ARIMA models to forecast time
series. They evaluated the proposed approach in the con-
text of demand forecasting for an industrialised bak-
ery. The dataset comprises point-of-sales data over 18
months of 16 articles that are sold in six stores and
two regions and articles can be grouped into two cat-
egories. The clustering approach in hierarchical fore-
casting seems to outperform traditional BU and TD
approaches, based on forecast evaluations using MAPE
and RMSE. Li and Lim (2018) proposed a greedy aggre-
gation-decomposition approach to forecast intermit-
tent demand in a hierarchical structure of a fashion
retailer. The proposed approach utilises both forecasts
at top and bottom aggregation levels, unlike the tra-
ditional BU and TD approaches. The performance of
the approach was compared against popular intermit-
tent demand forecasting including Croston, SBA, TSB as
well as temporal aggregation approach such as MAPA
and ADIDA, used in each level separately. Using a
real database of the SKU-store-day demand over two
years provided by a retailer, they showed that the pro-
posed method that combined information in the hier-
archy outperformed other existing intermittent demand
forecasting methods. The revised mean absolute scaled
error (RMASE), MAE and MASE were used to evaluate
forecast accuracy.

There is no consistent agreement among studies to
determine the conditions under which each hierarchi-
cal reconciliation and or combination approach works
better. The performance of these approaches generally
depends on the characteristics of time series, forecast-
ing horizon, level of aggregation and the structure of the
hierarchy.

5.2. Temporal hierarchies and multiple temporal
aggregation

Similar to hierarchical and grouped time series in cross-
sectional aggregation, one can also create coherent fore-
casts in temporal hierarchies, or benefit from obtaining
different information at multiple levels of aggregation



in non-overlapping temporal aggregation. The idea here
is to exploit the information available at various lev-
els of temporal aggregation instead of using only one
single optimal temporal aggregation level (Rostami-
Tabar et al. 2013; Kourentzes, Rostami-Tabar, and
Barrow 2017).

Combinations of forecasts at different levels of tem-
poral aggregation were evaluated empirically by Moon,
Hicks, and Simpson (2012). They tested direct meth-
ods, TD methods and combination methods on a sam-
ple of 300 items with lumpy demand patterns from the
South Korean Navy. Monthly, yearly and quarterly aggre-
gations were compared and it was found that, overall,
the best year-ahead forecasting method was a simple
(unweighted) combination of the forecast for quarterly
aggregated data (adjusted for linear trend) at group level
and a forecast of monthly aggregated data at the item
level. This evaluation was conducted considering both
forecast accuracy and inventory costs. Mean absolute
deviation and RMSE were used to evaluate the forecasting
performance.

Further, Moon, Simpson, and Hicks (2013) examined
features leading to the outperformance of direct methods
or methods based on group level time series. The per-
formance was evaluated according to a measure based
on absolute error to mean demand ratios. It was found
that the correlation between demands for different items,
the variability in demand volume, and the equipment
group had the greatest influence on relative forecasting
performance. A logistic regression classification model
was found to be marginally superior to the method based
on group level time series.

The idea of multiple temporal aggregation was also
explored in a paper by Kourentzes, Petropoulos, and
Trapero (2014). They proposed the Multiple Aggregation
Prediction Algorithm (MAPA) which first constructs
multiple time series from the original series using non-
overlapping temporal aggregation, for example creat-
ing weekly and monthly series from daily series. Then,
an appropriate state-space exponential smoothing (ETS)
model is fitted to each series separately and its respective
time series components are forecast. Next, the time series
components from each aggregation level are combined to
create the final forecast. The advantage of this approach
is that it is not restricted to any assumption regarding
the time series process. It also benefits from forecast
combination (Blanc and Setzer 2016) and reduces the
uncertainty in model selection. However, there are some
limitations in using MAPA: i) the forecasting model is
not flexible because it uses only ETS family of models,
so this is the only forecasting approach available in the
framework; ii) in time series with peaks in the season-
ality (i.e. within day or within week peaks), the approach
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might be problematic because it shrinks seasonal indices.
There are few studies that investigated the application
of this approach and modelling with multiple temporal
aggregation level in general in supply chains. Petropou-
los and Kourentzes (2014) provide empirical evidence on
intermittent demand using a large data set of spare parts
demand. They showed that combination across fore-
casts generated from multiple non-overlapping tempo-
rally aggregated series using the same single forecasting
method or multiple methods improves the forecasting
performance. Five different errors measures including
scaled Mean Error, scaled Absolute Error, scaled Squared
Error, scaled Periods in Stock and scaled Absolute Peri-
ods in Stock were used to assess the performance of the
approaches.

Kourentzes and Petropoulos (2016) extended the
MAPA approach to include external variables such as
promotions. They examined the performance of the
proposed approach using historical demand time series
of cider of a popular brand in the UK. They bench-
marked against the extended exponential smoothing that
includes external promotional data. Their results indi-
cated that the proposed approach outperforms all bench-
marks. (Scaled Mean Error and scaled Mean Absolute
Error were used to report the forecasting performance
of approaches.) Barrow and Kourentzes (2016) also com-
pared MAPA with standard forecasting methods such as
ETS, ARIMA and Theta using time series of sales of prod-
ucts from a major UK fast moving consumer goods man-
ufacturer. They indicated that the forecast resulting from
MAPA outperforms others in terms of forecast accuracy
and bias. They used scaled mean error (sME) and scaled
median error (sSMdE) to measure forecast bias, and scaled
mean squared error (sMSE) and scaled median squared
error (sMdSE) to measure the magnitude of forecast
errors.

Petropoulos, Wang, and Disney (2019) empirically
investigated the inventory performance of MAPA using
the monthly industry series of the M3 competition. They
indicated that multiple temporal aggregation not only
improves the forecasting performance but also generates
smoother forecasts which minimises the bullwhip effect
and has the best trade-oft curves for inventory costs ver-
sus service levels. (Lei, Li, and Tan 2016) proposed a
new algorithm that combines MAPA with fuzzy Markov
chain model (FMC-MAPA). Material demand data from
the STATE GRID Corporation of China was used to test
the forecasting accuracy of the new approach by com-
paring it with the exponential smoothing (ES) and fuzzy
Markov chain (FMC) benchmarks. The results showed
that FMC-MAPA with, an equal weight dissaggregation
method, outperformed the benchmarks. They indicated
that forecasts generated from the combined method are
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more stable and robust than the ES and FMC models,
separately.

Building on the idea of optimal reconciliation pro-
posed by Hyndman et al. (2011) and multiple aggregation
levels by Kourentzes, Petropoulos, and Trapero (2014)
and Athanasopoulos et al. (2017) proposed Temporal
Hierarchies Forecasting (THieF). A temporal hierar-
chy is created considering high frequency time series
at the bottom level (e.g. hourly time series) and lower
frequency time series at higher levels(e.g. daily = 24
hours and weekly = 7 days). It can be created for any
time series using non-overlapping temporal aggregation.
THieF combines forecasts from all levels of the hierar-
chy. This approach overcomes the limitation of MAPA.
It allows for other forecasting models to be used and it
does not shrink the seasonal indices arbitrarily. Given the
fact that supply chain forecasting informs decisions at
multiple level of time granularity (e.g. short term, mid-
term, long-term), this approach was recommended to
practitioners as forecasts are based on the same infor-
mation about the future. Using monthly and quarterly
series of the M3 competition and weekly data of A&E
departments, Athanasopoulos et al. (2017) showed that
forecasting with temporal hierarchies can improve fore-
cast accuracy significantly. The forecasts are evaluated
using the Relative Mean Absolute Error (RMAE) and
MASE. THieF has also some limitations: i) when con-
structing new series from the original series, the fre-
quency of the new time series cannot be a fraction, —
it must be an integer, ii) the approach also uses a lin-
ear combination of forecasts generated at all levels to
create the reconciled forecasts. Therefore, it is sub opti-
mal at each separate level of aggregation. Moreover, the
relationship between final reconciled forecast and fore-
casts at each level might not be linear. We should also
note that both approaches, i.e. MAPA and THieF, are
based on non-overlapping temporal aggregation. These
approaches cannot accommodate the use of overlapping
temporal aggregation.

Building on the THieF framework proposed by
Athanasopoulos et al. (2017) and Kourentzes and
Athanasopoulos (2021) extended the idea to forecast
intermittent demand series in a temporal hierarchy
focusing on forecast improvement at the disaggregate
intermittent demand level. They demonstrated that the
proposed approach brings significant gains for both point
and quantile forecasts, through an empirical investiga-
tion using a dataset of aircraft spare parts. They evaluated
the forecast accuracy using four metrics, the Mean Error
(ME), RMSE, the Mean Interval Score (MIS) and the
Pinball loss (PIN).

5.3. Cross-temporal hierarchies

In the previous sections, temporal and cross- sectional
aggregation are used separately. This means that either:
(i) cross-sectional aggregation is considered only at one
level of temporal granularity (e.g. monthly) or (ii) multi-
ple temporal granularities (e.g. hourly, daily, weekly etc)
are used, assuming a single level in the cross-sectional
structure (e.g. total). Using either of the approaches sepa-
rately in a supply chain provides benefits but, in practice,
multiple levels of temporal granularities across the entire
cross-sectional structure are required. Generating fore-
casts for all levels of temporal and cross-sectional gran-
ularities first requires producing forecasts for each level
of temporal aggregation considering the whole cross-
sectional structure. This will need some post-processing
to generate forecasts for the entire levels, which are also
coherent (Kourentzes and Athanasopoulos 2019). This
problem has been addressed by creating a framework
to generate cross-temporally coherent forecasts that sup-
ports all levels of temporal and cross-sectional aggre-
gation. This framework allows the generation of a sin-
gle version of the forecast, which is critical for sup-
ply chains to align decisions across different horizons
and across different departments. The approach has not
yet been examined using real data from supply chains,
but Kourentzes and Athanasopoulos (2019) indicated
that it provides further forecast accuracy gains to either
cross-sectional reconciliation and its variations (Hyn-
dman et al. 2011) or temporal hierarchies forecasting
(Athanasopoulos et al. 2017). This was based on an anla-
ysis of tourism data, using the Average Relative Mean
Squared Error (AvgRelMSE) to track the forecast accu-
racy. More specific to supply chains, Punia, Singh, and
Madaan (2020) proposed a cross-temporal forecasting
approach that generates coherent forecasts for all lev-
els of decision making for a retailer including products,
time, and channel dimensions of supply chain forecast-
ing. Additionally, the authors investigated the suitabil-
ity of TD and BU approaches in the context of online
and offline retail. They showed that forecasts from the
proposed framework significantly improve forecast accu-
racy, compared to direct forecasts at all levels of retailer
decision making. The following error metrics were used
to examine the forecast accuracy: average relative mean
absolute error (ARMAE), average relative mean squared
error (ARMSE) and the average relative mean absolute
percentage error (ARMAPE). A weekly dataset consist-
ing of ten SKUs for more than two years was used for the
empirical analysis, which is rather too limited for reliable
conclusions to be drawn.



5.4. Gaps of research

The idea of using available information at various levels
of cross-sectional and temporal aggregation to improve
forecasting performance is promising and there have
been multiple theoretical developments in this area that
potentially could be very useful in supply chain fore-
casting: (i) it can improve forecast accuracy ; (ii) it can
reduce the risk related to model selection and uncertainty
and (iii) it is better aligned with multiple levels of deci-
sion making, which is essential in modern supply chains.
However, there are still important gaps in this area of
research.

Despite the recent developments of hierarchical and
temporal hierarchies, there is a need to examine empir-
ically the validity of these theoretical developments and
how they might benefit supply chains to make better and
more aligned decisions with other parts of the network.
In particular, the challenging problem of investigating
the benefit of both temporal and cross-sectional hier-
archies beyond forecast accuracy still remains a huge
gap in the literature. In fact, forecasts are required at
multiple levels of the hierarchy to inform different type
of decisions in finance, logistics, marketing or trans-
portation planning, etc. These departments might have
different conflicting objective functions. Moreover, the
evaluation requires the knowledge of how these func-
tions are implemented, as well as their relevant utility
functions.

Another important question is how to evaluate the
performance of the entire hierarchy. Currently, forecast-
ing performance is evaluated and reported at each level
separately and the forecasting performance is averaged to
report the performance across the entire structure. It is
desirable that forecasting performance metrics are intro-
duced that would be able to measure the performance of
each approach in the hierarchy as a whole, rather than
focusing on the performance on the top or the bottom or
the middle level.

Research on reconciliation (both temporal and cross
sectional) and combination of multiple levels of aggre-
gation shows that forecasts can be improved, but the
conditions for this improvement remain unclear. Gener-
ally, the structure of the data and its features play a critical
role in determining the conditions under which each
approach should be recommended. Very little research
has examined the association between data structure and
characteristics of time series and the performance of
approaches. This is the case for both continuous and
discrete time series. The association of time series char-
acteristics from all levels of the hierarchy in both cross-
sectional and temporal hierarchies, and not only the orig-
inal series, with the performance of approaches needs to
be investigated.
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Although the hierarchical models utilise the informa-
tion available through the historical time series, this is not
the case for potentially useful exogenous variables. The
potential benefit of incorporating exogenous variables in
ahierarchy structure still needs to be examined. There are
various types of exogenous variables that might be use-
ful in this case: i) variables that are independent of the
aggregation level, ii) variables that could be aggregated
in the same way as the time series data, and iii) variables
that are unique to each level. Determining when incorpo-
rating such models provides benefits to the supply chain,
as well as identifying what type of exogenous variables
should be used, has important implications in practice.

Obviously, point forecasts do not provide information
about the uncertainty in supply chain forecasting. How-
ever, most of the articles reviewed in this study report
only point forecast accuracy. Investigating uncertainty in
forecasting hierarchies in terms of prediction intervals
and/or probabilistic forecast is another important gap.

Finally, the theoretical developments in this area do
not support the count nature of time series. Many fore-
casts ultimately will be used as inputs in count numbers
to other function in supply chains. Therefore, extending
hierarchical, temporal and cross-temporal reconciliation
to account for count time series is of practical as well as
theoretical importance.

6. Practical implications

As previous sections of this review have indicated,
the aggregation and hierarchical forecasting literature
has evolved considerably over recent decades. Greater
emphasis on aggregation and hierarchies in academic
research has been reflected by developments in com-
mercial software. Some examples will suffice to illus-
trate this trend. Demand Works has introduced a feature
enabling users to work at any level of aggregation, without
being constrained by predefined hierarchical structures.
Relex software has extended forecast visibility to any level
of granularity or aggregation. Logility includes facilities
to disaggregate forecasts at higher levels down to the
lowest levels. SAS and SAP have adopted the ‘optimal
combination approach’ as an alternative to the tradi-
tional top-down and bottom-up methods. Finally, Blue
Yonder allows forecasts to be generated at multiple lev-
els of the hierarchy, enabling trends and seasonality at
higher levels to drive forecasts at lower levels. A sur-
vey of forecasting software that includes more details on
forecasting features, such as temporal aggregation and
hierarchical forecasting, is provided in Fildes, Schaer, and
Svetunkov (2018).

These developments now mean that practitioners have
a wider choice of methods that they can implement in
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practice. They should certainly consider using recently
developed hierarchical methods, given the encouraging
empirical evidence on forecast accuracy. Cross-temporal
methods should also be considered. However, the empir-
ical evidence has focussed on a relatively small num-
ber of cross-sectional series (typically less than 100 at
the bottom level of the hierarchy). As the number of
series grows, hierarchical methods can become compu-
tationally expensive. If this problem becomes prohibitive,
then benefits may still accrue from aggregation meth-
ods. Indeed, they should always be used as a benchmark
method, to ensure that the added complexity of hierarchi-
cal methods is worthwhile. There are no comprehensive
rules for the outperformance of top-down or bottom-up
approaches. Simulation comparisons are recommended,
not only in terms of accuracy but also with regard to
inventory performance. For inventory applications, tem-
poral aggregations should be evaluated, using the lead
time as the level of aggregation.

7. Conclusions
7.1. Main findings

The research reviewed in this paper has led to impor-
tant developments, including making better use of the
data available over different time and hierarchical lev-
els. There have been significant advances in the analytical
modelling of aggregation, as summarised in Sections 3
and 4, and in the understanding of hierarchical forecast-
ing, as outlined in Section 5. We summarise in Table 3 the
main findings that arise from the literature with regard to
the contexts where temporal and cross-sectional aggrega-
tions are beneficial. It should be noted that most of these
findings hold when the performance is considered at the
aggregate level. Note also that some of these findings are

supported more consistently in the literature than oth-
ers as discussed earlier in the paper. The corresponding
sections in the paper are also indicated in Table 3.

Furthermore, it has been pointed out in this paper
as one of the findings that hierarchical forecasting does
not generalise the aggregation approach. This is demon-
strated by the fact that forecasting methods based on
temporal aggregation with overlapping blocks is not
integrated within the hierarchical and combinations
approaches proposed in the literature.

7.2. Main research gaps

Opverall, there has been significant progress in the fore-
casting literature in recent years, not only in analyti-
cal developments but also in empirical research. How-
ever, our literature review has identified several research
gaps, which have been discussed in the concluding sub-
sections of this paper. In this section, building on these
gaps, we draw together the major research themes that
provide an agenda for further research. In Section 5.1, we
reviewed the results of the M5 forecasting competition
(Makridakis, Spiliotis, and Assimakopoulos 2020). The
M5 competition included grouped time series, thereby
allowing assessment of methods based on aggregation
and hierarchies through the supply chain. This competi-
tion was important because it went beyond the evaluation
of point forecasts, to include prediction intervals as well.
These intervals are crucial for many supply chain appli-
cations and it is important that future studies also take
interval forecasts into account.

Research on hierarchical forecasting and combina-
tions has mainly focused on statistical forecasting meth-
ods and, more precisely, extrapolative techniques. Fur-
ther research is required to integrate other forecasting
approaches. Judgmental forecasting is used extensively

Table 3. Contexts where aggregation is beneficial: main findings from the literature.

Cross-sectional aggregation

Temporal aggregation

Bottom-up

Top-down

Intermittence  High intermittence degree (Long
demand intervals) and Low
variability of demand sizes
[Section 3.1.3]

Seasonality

Low variability of demand intervals of the
subaggregate SKUs [Section 4.1.2]

High variability of demand intervals and demand
sizes for subaggregate SKUs (especially for a
high number of aggregated SKUs) [Section 4.1.2]

The coefficient of variation of the

deseasonalised individual series is
greater than the coefficient of variation
of the deseasonalised aggregate series

[Section 4.1.1]

Negative cross-correlation between the
subaggregate SKUs (or positive very low
cross correlation)

Correlation Negatively auto-correlated demand

[Section 3.1.2]

and

Correlation parameters of the subag-
gregate SKUs are with different signs
[Section 4.1.2]

High positive cross-correlation between the
subaggregate SKUs

and
Negative auto-correlation of the subaggregate
SKUs [Section 4.1.2]




in demand forecasting in supply chains but, except for
the work by Kremer, Siemsen, and Thomas (2016), no
research has looked at judgmental forecasting when deal-
ing with aggregation and hierarchies. Furthermore, the
M5 competition (Makridakis et al. 2021; Makridakis,
Spiliotis, and Assimakopoulos 2020) has provided evi-
dence on the potential benefit of using machine learning
techniques and incorporating exogenous variables when
forecasting hierarchies and combining forecasts. Hence,
further research into this would appear to be merited.

From the theoretical perspective, the INARMA
demand process modelling has been shown to provide a
good framework to deal with intermittent demand within
supply chains and count series in general (as discussed
in Section 3.1). So far, this modelling framework has
been employed for temporal aggregation but it would
also be an interesting framework to develop a theoret-
ical basis for the research on hierarchical forecasts and
combinations.

7.3. Open debates

In the hierarchical literature, there is an emphasis on
strict coherence, so that there are no discrepancies in the
sum of forecasts at alower level matching the correspond-
ing forecast at a higher level. The emphasis is based on
the assumption that strict coherence of forecasts will con-
tribute towards coherence in decision making. This is an
issue that warrants further debate. Is strict coherence nec-
essary for enhanced decision making? Could a weaker
definition of coherence lead to any benefits in forecasting
or supply chain performance?

The impact of judgemental forecasting has already
been mentioned as a research gap. Empirical and
laboratory-based research on judgement in forecasting is
well established. Questions of how such research should
be conducted, based on judgmental amendments to
aggregation or hierarchical forecasts, have not yet been
debated.

Another issue that is unresolved is the assess-
ment of forecasting accuracy across the whole sup-
ply chain. Accuracy measures for a single series,
or for multiple series at the same level, have been
discussed extensively. Measuring accuracy across the
chain has received less attention. From an accuracy-
implication perspective, the total inventory cost (across
all levels) and the inventory service (at the customer
level) would seem to be paramount. So, how should
accuracy measures be weighted across the different
levels?

In conclusion, aggregation and hierarchical forecast-
ing have seen major advances in recent years. These
advances have not been confined to the pages of academic
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journals. They have been made available to practitioners
through the availability of commercial and open-source
software. It is hoped that this review will stimulate wider
use of the methods surveyed in this paper, debate on
the questions raised above, and further research on the
remaining gaps in our understanding of this important
subject.
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