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Dynamic Planned Lead Times in Production Planning and Control 

Systems: Does the Lead Time Syndrome Matter? 

 

Abstract 

Many companies in practice want to dynamically adjust planned lead times in their production 

planning and control systems in response to demand fluctuations. But for decades it has been 

recognized that this can lead to escalating planned lead times and realized throughput times. 

Authors have highlighted the negative impact of this “lead time syndrome”, especially in the 

context of Material Requirements Planning systems, prompting the development of alternative 

concepts intended to overcome its vicious cycle, such as Workload Control. Yet some authors 

have shown that increasing planned lead times has advantages – it can improve end-item 

service levels. To resolve this paradox, we conjecture that the effects of the lead time syndrome 

are limited when demand is independent of internally planned lead times, such as in make-to-

order companies, and subsequently use simulation to prove this conjecture. We show that 

although dynamic planned lead times have a detrimental effect on performance in make-to-

order systems, it is not an increase in planned lead times that leads to a performance loss. Rather, 

it is the decrease of lead times in low load periods that increases workloads in upcoming periods 

of high load. This questions the use of upper bounds (WIP-cap) in these contexts.  
 

Keywords:  MRP; Drum Buffer Rope; Workload Control; Dynamic Production Control; 

Lead Time Syndrome. 
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1. Introduction 

Production planning and control systems such as Material Requirements Planning (MRP; see, 

e.g., Orlicky, 1975; Gelders & Van Wassenhove, 1981; Guide & Srivastava, 2000) and the 

Theory of Constraints’ Optimized Production Technology (OPT; Goldratt & Cox, 1984; 

Goldratt, 1990; Watson et al., 2007; Ikeziri et al., 2019) are widely applied in practice. Both 

MRP and OPT use planned lead times to explode the bill of materials backwards from a 

customer due date to determine production start dates, either for all or a subset of parts (Thürer 

et al., 2021). Production start dates are then used to exercise material flow control, i.e. to decide 

whether a job should be released onto the shop floor and whether a station should be authorized 

to produce at a production stage (Graves et al. 1995). Traditional MRP systems assume infinite 

capacity and constant planned lead times (Milne et al., 2015); but realized throughput times 

may vary in practice due to the influence of several external (e.g. unplanned demand) and 

internal factors (e.g. capacity constraints). If planned lead times become inaccurate, 

performance is likely to deteriorate (Ioannou & Dimitriou, 2012) or additional safety stock will 

be needed, which can be costly (Dolgui & Ould-Louly, 2002). As a result, a key managerial 

challenge concerns both the initial setting of appropriate planned lead times and the dynamic 

adjustment of these lead times if demand fluctuates (Schneckenreither et al., 2021). A broad 

literature has consequently emerged on stochastic and deterministic methods for both make-to-

order and make-to-stock environments, including based on analytical modeling, mathematical 

programming, simulation models and machine learning (e.g. Enns, 2001; Dolgui & Ould-Louly 

2002; Teo et al., 2012; Ben-Ammar & Dolgui 2018; Haeussler et al. 2019; Missbauer, 2020). 

Graves (2021) recently subdivided the literature on planned lead times into: literature that 

focuses on how to understand and manage the dynamics that planned lead times can induce 

within a planning system (e.g. Selçuk et al., 2006; Schneckenreither et al., 2021; Haeussler et 

al., 2021); literature that takes realized throughput times as exogenous random variables and 

then prescribes how to set the planned lead times, thereby ignoring any dependence between 

the throughput time and planned lead times (e.g. Dolgui & Ould-Louly, 2002; Jansen et al., 

2019; Ben-Ammar et al., 2020a,b); and literature that treats throughput times as endogenous 

(due to constrained resources) and seeks to determine planned lead times from the solution of 

a deterministic constrained optimization model (e.g., Missbauer & Uzsoy, 2020; Missbauer, 

2020). This study contributes to the first stream of the literature. It focusses on contexts where 

planned lead times are dependent on the realized lead time. An important phenomenon in this 

context is the vicious cycle of lead times, or the so-called “lead time syndrome” (Wight, 1970; 

Mather & Plossl, 1977; Plossl, 1988).  



4 
 

The lead time syndrome reflects the way in which planners behave in practice and how their 

planning interventions impact the behavior of the planning and control function (Haeussler et 

al., 2021). It explains that if discrepancies between the realized throughput times and planned 

lead times result in the late completion of parts or orders then planners will increase planned 

lead times. This leads to work being started earlier, which will increase workloads and realized 

throughput times in the production system, thereby creating a vicious and escalating cycle 

(Zäpfel & Missbauer, 1993; Graves, 2021). In other words, dynamic planned lead times that 

are based on the workload in the system can create a “self-reinforcing” feedback loop (Sterman, 

1989, 2000; Knollmann & Windt, 2013) that causes an unavoidable increase in throughput 

times and contributes to unstable and inefficient decision-making (Herer & Masin, 1997; 

Selçuk et al., 2006). A similar phenomenon has been described by recent literature in the 

context of supply chains (Disney & Lambrecht, 2008, Fransoo & Lee, 2013, Cannella et al. 

2018). While the lead time syndrome is a behavioral phenomenon that has been known for 

decades, it is likely to become even more important in the era of smart manufacturing due to 

new technologies that enable the continuous tracking and tracing of throughput and 

transportation times (Gaukler et al., 2008). Managerial biases are not resolved via the use of 

new technology, rather they can easily be embedded into new technologies (Land et al., 2021). 

The lead time syndrome has received significant research interest (e.g. Selçuk et al., 2006 

and 2009; Moscoso et al., 2010; Bendul & Knollman, 2016; Haeussler et al., 2021) since the 

first reference was made to the phenomenon back in 1970 (Wight, 1970). Further, production 

control systems such as Workload Control have been developed specifically to overcome its 

negative performance effects (Kingsman et al., 1989; Breithaupt et al., 2002; Stevenson & 

Hendry, 2006; Thürer et al., 2011). Despite this attention in the academic literature, we often 

find that the lead time syndrome is not a phenomenon that is of major concern to managers in 

practice. Further, Hoyt (1978) and Melnyk & Piper (1985) found that increases in planned lead 

times consistently improve, rather than diminish, end-item service levels. This runs counter to 

what would be expected from the lead time syndrome and its vicious cycle of increasing 

planned lead times and realized throughput times. To resolve this paradox, this study asks – 

under what conditions does the lead time syndrome matter?  

A first indication of a solution was provided by Kanet (1986) who considered the lead time 

syndrome to be a transient phenomenon. In other words, the logical assumption that the long-

term utilization rate of a system or resource is less than 100% guarantees that, at some point in 

time, the effects of an increase in planned lead times will disappear. Yet, in the same paper, 

Kanet (1986, p. 311) weakened this argument by stating that although his analysis appeared to 
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contradict the lead time syndrome, it is really no contradiction at all because, in the lead time 

syndrome’s explanation, an additional assumption is made that management reacts to every 

backlog surge by increasing planned lead times. Similarly, Bendul & Knollman (2016) stated 

that the main trigger for the lead time syndrome is a discrepancy between the latency period 

and the update frequency of the lead time.  

In this study, we argue that there is a further condition that must be met before management 

behavior and the update frequency start to play a role. That is, the assumption that the workload 

can increase. In a make-to-stock context, production precedes actual demand and, therefore, 

increasing the planning period can lead to an increase in (anticipated or forecasted) demand. 

But in a make-to-order context, production only starts – and therefore backlogs can only begin 

to build up – after demand is placed. This means the maximum workload that can be in the 

production system is given by the existing demand. We consequently conjecture that the effects 

of the lead time syndrome are only limited in contexts where customer demand is independent 

from planned lead times, as is typically the case in make-to-order production environments. 

Discrete event simulation will be used to validate our conjecture. From a practical perspective, 

it is anticipated that this will provide an important contingency factor, restricting the lead time 

syndrome to make-to-stock production contexts. From a theoretical perspective, the paper 

seeks to further our understanding of the reinforcing feedback loop underpinning the vicious 

cycle of lead times that characterizes the lead time syndrome.  

 

2. Background and Literature Review 

There are two major shortcomings of production planning and control systems such as MRP 

and OPT that use planned lead times to schedule production – especially when demand 

fluctuates over time, either in terms of the type or quantity of demand. First, these systems 

assume that work-orders can be combined and that the same planned lead times can be used 

for all types of parts or products (Pahl et al., 2007; Ioannou & Dimitriou, 2012; Rossi et al., 

2017). In practice however, different types of products may require different parts or processes, 

where each incurs a different throughput time. Second, these systems assume that 

predetermined lead times can be used when calculating release dates. In practice however, 

fluctuations in demand can impact both the workload and realized throughput times. The 

literature on dynamic planned lead times has consequently focused on how to set planned lead 

times for different products (e.g. Riezebos & Zhu, 2015; Haeussler et al., 2019) and on how to 

set planned lead times in accordance with capacity constraints and/or the current workload 

situation at a station or for the shop as a whole (e.g. Enns & Suwanruji, 2004; Jodlbauer & 
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Reiter, 2012; Teo et al., 2012; Missbauer, 2020; Schneckenreither et al., 2021). If dynamic 

planned lead times are based on realized throughput times, then the lead time syndrome, which 

is a reinforcing feedback loop, may occur.  

The lead time syndrome occurs over time when planned lead times are dependent on realized 

throughput times. This means that there should be fluctuations in demand and any model that 

seeks to assess its impact should be a multi-period model. Meanwhile, the lead time syndrome 

occurs at all control levels for which planned lead times are estimated. This means it relates to 

the control system and its structure, not the production system. For example, in a multi-stage 

production system it may occur at each stage if a planned lead time is used for each stage, as 

in MRP, or at a single stage if a single planned lead time for the shop floor throughput time is 

used. Since it is a dynamic phenomenon that evolves over time, the system cannot be optimized 

towards certain criteria. In fact, it is argued that the lead side syndrome will lead to work-in-

process escalation and a system that never reaches a stable state. Literature on the lead time 

syndrome will be discussed next. 

 

2.1 Literature Review: The Lead Time Syndrome 

The phenomenon of a vicious cycle of planned lead times was first mentioned by Wight (1970), 

but the term “lead time syndrome” was only introduced in 1977 by Mather & Plossl (1977). 

The logical argument underpinning the syndrome can be described as follows: 

(1) The planned lead times for jobs, which are used to backward schedule from due dates to 

find production start dates, turn out to be inaccurate and, as a consequence, due dates are 

not met; 

(2) Planners respond to poor due date adherence by increasing the planned lead times in order 

to provide jobs with more time on the shop floor to complete the necessary production 

steps; 

(3) In accordance with longer planned lead times, orders are released earlier. This increases 

workloads on the shop floor (i.e. the levels of work-in-process) and leads to even longer-

than-planned lead times. Now cycle back to (1) and repeat the steps, resulting in an 

escalating problem and a revolving sequence of ineffective interventions. 

 

The lead time syndrome was observed, for example, by Selçuk et al. (2006), who using 

discrete event simulation found that, under realistic high-variety conditions, dynamic planned 

lead times cause an unavoidable increase in throughput times and, as a result, contribute to 

unstable and inefficient decision-making. However, Selçuk et al. (2006) did not backward 
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schedule from the due date, as would be expected for an MRP or OPT system. Rather, the 

authors used an optimization-based order release model (an integer linear program) based on 

De Kok & Fransoo (2003) to control the flow of goods between different production stages. 

Similarly, although Selçuk et al. (2009) included an extensive discussion on the lead time 

syndrome in the context of MRP, the authors only modelled the production process as a single-

server queue controlled by a Constant Work-in-Process (ConWIP, Spearman et al., 1990) 

system with a continuous arrival and processing rate for production orders. In their simulations, 

orders could be added in or cancelled by a higher-level planning system based on the planned 

lead time.  

Few studies have used backward scheduling to evaluate the lead time syndrome, and these 

studies have first increased customer lead times (or due dates) before scheduling new release 

dates (Knollmann & Windt, 2013; Knollmann et al., 2014; Windt & Knollmann, 2014). It has 

been argued that it is the interaction between due date setting and subsequent order release that 

amplifies the control feedback loop (Windt & Knollmann, 2014). Note that there also exists a 

broad literature on dynamic planned lead times in the context of due date estimations. But in 

due date setting we face a fundamentally different problem specification compared to the order 

release problem, and a longer due date will not lead to an increase in workload if it is not 

followed by earlier releases. The vicious cycle of the lead time syndrome and its effects on the 

production system do not exists if only due dates are increased in response to increases in 

workload. In this study, we assume that the order release mechanism is predetermined and 

independent of the assignment of due dates. 

Finally, Haeussler et al. (2021) used behavioral experiments with deterministic demand and 

given due dates where participants had to estimate lead times to determine release dates. But it 

remains unknown how each participant estimated or calculated the planned release dates and 

whether they used backward scheduling or some alternative heuristic. 

 

2.2 Discussion of the Literature 

A major shortcoming of the above literature is its focus on planned lead times and realized 

throughput times. This neglects the important role of the workload. In fact, the lead time 

syndrome argues that increases in planned lead times expand the workload, which in turn 

lengthens realized throughput times. Thus, the existing workload sets a limit on any increase 

in throughput times. In a make-to-stock environment, however, there is theoretically no limit 

on the workload because production precedes demand. That is, for production to commence it 

is irrelevant whether or not forecasted demand actually materializes. In contrast, in a make-to-
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order system, particularly customized production contexts, demand and thus the workload is 

limited since production can only commence once an order has been placed. This means that 

the maximum workload in the system is determined by existing demand, and the resulting 

maximum throughput time is typically referred to as the range (Nyhuis & Wiendahl, 2008) or 

the planned backlog length (Hendry & Kingsman, 1993). 

In this study, we consequently conjecture that the lead time syndrome is only of limited 

relevance in make-to-order companies. In the worst-case scenario, all orders are released 

immediately as and when they arrive at the production system. To further prove our conjecture, 

we assess the performance of MRP and OPT using a discrete event simulation model of a multi-

stage assembly system where demand for components or product parts depends on the market-

driven demand for end products.  

 

3. Simulation Model 

We use SIMIO software to implement two discrete event simulation models, one for MRP and 

one for OPT. The use of commercial software such as SIMIO with common random numbers 

ensures comparability across models. The models can be requested from the corresponding 

author. Both simulation models follow Thürer et al.’s (2021) adaptation to Jodlbauer & Huber’s 

(2008) model of a multi-stage assembly system. The two models differ in terms of the 

implemented control structure. The shop contains six stations or production stages, where each 

is a single, constant capacity resource. There are eight different end products, with the structure 

of the products summarized in Table 1. For example, Product 1 requires two units of item B1 

to be assembled at Station 1 (the final station). B1 is produced at Station 2 and requires three 

units of item C1. In total, each end product needs six assembly operations to be completed 

across stations 1 to 6. Raw materials for Station 6 (the gateway station) are always available 

and there is an output buffer after each station. Since we consider OPT, there should be a 

bottleneck station, and this will be Station 3. 

 

[Take in Table 1] 

 

Operation processing times before the adjustment made to create the bottleneck follow a 2-

Erlang distribution with a mean of 0.5 time units at stations 1 and 2 and a mean of 1.0 time 

units at the remaining four stations. The 2-Erlang distribution was chosen since it better 

approaches processing times in real-life shops than, for example, an exponential distribution 

(Oosterman et al., 2000). Given the part quantities in Table 1, this results in a balanced shop. 

The shop has one bottleneck station – Station 3 – which is created by reducing the processing 
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times at non-bottleneck stations by 5%. The arrival of demand is a stochastic process where 

the demand rate follows a Poisson distribution, and all end products have the same probability 

of arriving. We chose a Poisson distribution since it is arguably the most commonly used 

distribution to model customer arrival rates (Law & Kelton, 2000, pp. 289). There are fixed 

periods (e.g. weeks) in which demand occurs. In our study, the average demand arrival rate is 

9 end products per period of 10 time units. The average demand has been set such that it 

deliberately results in a utilization level of 90% at bottleneck Station 3. Finally, three levels of 

due date tightness are considered, which are created by adding 50 (loose), 45 (medium) or 40 

(tight) time units to the order entry date. 

 

3.1 Production Planning and Control 

Two different production planning and control systems are implemented as follows: 

• MRP: Production start dates for each station are calculated for each part by backward 

scheduling using planned lead times. Planned lead times will be described in Section 3.2 

below. Production is then executed at each station according to the calculated start date (i.e. 

production cannot start if this start date is not reached). If the scheduled production start 

date of a station is reached but not all parts are yet available from the upstream station, then 

and only then is safety stock used, if indeed it is available. We use safety stock for all parts 

and for the end products. The safety stock level or buffer size at each stage is set to 8 items, 

based on Thürer et al. (2021). The total stock level is distributed equally over the number of 

part types.  

• OPT (or Drum-Buffer-Rope): In contrast to MRP, where components are planned and 

released on a level-by-level basis (Steele et al., 2005), OPT schedules only the resource(s) 

that constrain(s) the system (later called the “Drum”). In our models, this is Station 3. We 

therefore use two buffers – an output buffer at Station 4, to protect Station 3, and an output 

buffer at Station 1. Products from Station 1’s output buffer can be moved into the finished 

goods inventory immediately, which means demand is satisfied from this buffer (although 

the product is still not delivered to the customer before the due date). Production start dates 

are then calculated for each part at Station 3 (our bottleneck) and at Station 6 (our gateway 

station) using the planned lead times described in Section 3.2. Identical buffer sizes are 

considered at both the finished goods buffer and at Station 4. Both buffers are set to 16 items 

to limit their effect. The total buffer level is equally distributed across the number of part 

types. Again, all parameters are based on Thürer et al. (2021) who assessed the impact of 

different parameter settings. 
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Note that MRP buffers all production stages whereas OPT only buffers a subset, which leads 

to lower work-in-process levels for OPT systems. Finally, priority dispatching on the shop floor 

is based on the calculated production start dates for MRP. Meanwhile, for OPT, production 

start dates are calculated for each part by backward scheduling from the due date using the 

same planned lead times as for the release calculations. 

 

3.2 Dynamic Lead Times 

This study focusses on contexts where the planned lead time is dependent on the realized 

throughput time, i.e. the processing time plus the queue waiting time. An estimate of the lead 

time b at production stage i is calculated using the same exponential smoothing technique as in 

Selçuk et al. (2006):  

𝑏𝑖,𝑡 = 𝛼𝐿𝑖,𝑡−1 + (1 − 𝛼)𝑏𝑖,𝑡−1    (1) 

where 𝐿𝑖,𝑡−1 is the realized average throughput time in period 𝑡 − 1, and α is a smoothing 

constant, which is set to 0.1, 0.5 and 0.9. The update frequency is set to 10, 20 and 30 time 

units (i.e. 1, 2 and 3 times the demand period). We do not round to the next integer since we 

model continuous time. As a baseline, we also execute experiments with a constant lead time 

set to 6 time units for the bottleneck station and 4 time units for each non-bottleneck station. 

These values are based on the realized operation throughput times in preliminary simulation 

experiments. 

 

3.3 Experimental Design and Performance Measures 

Our study considers: (i) two production control systems (MRP and OPT); (ii) three different 

levels of due date tightness (loose, medium and tight); (iii) three levels of the smoothing 

constant α (0.1, 0.5 and 0.9); and, (iv) three levels of the update frequency (10, 20 and 30 time 

units). We used a full factorial design with 54 (2x3x3x3) scenarios, each of which was 

replicated 100 times. Results were collected over 13,000 time units following a warm-up period 

of 3,000 time units. These simulation conditions allow us to obtain stable results while keeping 

the simulation run time to a reasonable level. As in previous literature comparing this type of 

production planning and control system (e.g. Steele et al., 2005; Jodlbauer & Huber, 2008; 

Thürer et al., 2021), three main performance measures are considered: (1) the Service Level 

(SL), referring to the fraction of the number of customer orders delivered on time; (2) the 

Finished Goods Inventory (FGI), which is the number of end products completed and assigned 

to a customer order; and, (3) the Work-In-Process (WIP) inventory, which is the number of 

parts (and end products) in the production system that have departed from raw material 
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inventory but have not yet entered into the FGI. The work-in-process includes buffers, which 

will lead to higher values for MRP. This however is not considered an issue since we are not 

interested in comparing MRP and OPT, but rather we want to assess the impact of dynamic 

planned lead times for each production planning and control system. 

 

4. Results and Analysis 

To obtain a first indication of the relative impact of the experimental factors, statistical analysis 

has been conducted by applying ANOVA. The results for MRP and OPT are summarized in 

Table 2 and Table 3, respectively. All main effects for the two factors influencing the dynamic 

planned lead time – the smoothing constant α and the update frequency – are statistically 

significant. The main effect of due date tightness is significant at 0.05 for MRP in terms of the 

service level and work-in-process inventory. There are some significant two-way interactions, 

and no significant three-way interactions.  

 

[Take in Table 2 & Table 3] 

 

Detailed performance results for MRP and OPT are given in Table 4 together with the 95% 

confidence interval for dynamic and constant planned lead times. In addition, the significance 

of the differences between the outcomes of individual experiments for dynamic and constant 

lead times have been verified by paired t-tests, which comply with the use of common random 

number streams to reduce variation across experiments. Whenever we discuss a difference in 

outcomes between two experiments, the significance can be proven by a paired t-test at a level 

of 97.5%.  

 

[Take in Table 4] 

 

From the table we can observe that the service level improves with the stability of the 

planned lead time, i.e. with decreases in α and the update frequency. Constant planned lead 

times result in the best performance, but this is at the cost of a higher finished goods inventory. 

Meanwhile, work-in-process inventories increase with dynamic planned lead times for MRP 

but remain relatively constant for OPT. In general, these results appear to contradict our 

conjecture – particularly the results for the service rate – because there is a negative 

performance effect for dynamic planned lead times. But is this due to the lead time syndrome? 

This question requires further analysis. 

 

4.1 Performance Analysis 
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To better understand how performance is realized, we monitored the following for the MRP 

system: (i) the planned lead time; (ii) the realized throughput time; and, (iii) the work-in-

process of our bottleneck station (Station 3). Results for 5,000 time units of an arbitrary 

simulation run are given in Figure 1. We only present results for a due date of 45 time units 

(medium) and an update frequency of 10 time units, given patterns where similar across these 

factors. 

 

[Take in Figure 1] 

 

By comparing the results for a constant planned lead time with the results for a dynamic 

planned lead time, we can observe a much higher work-in-process when dynamic planned lead 

times are used, specifically around 4,000 and 5,500 time units. We can also see that the higher 

the α value, the higher the update magnitude of the planned lead time. In fact, dynamic planned 

lead times create a reinforcing feedback loop. Further, increases in work-in-process precede 

increases in realized throughput times, which in turn precede increases in planned lead times. 

In other words, fluctuations in the workload appear to trigger the lead time syndrome. This 

somewhat deviates from the commonly held explanation, which starts with inappropriate 

planned lead times triggering the reinforcement cycle, and it links the lead time syndrome to 

MRP nervousness, as will be discussed in Section 5. But first we analyze the reinforcing 

feedback loop. 

 

4.2 Analysis of the Reinforcing Feedback Loop 

Demand, and consequently the workload, follow a stochastic process in our simulations. They 

are independent from the planned lead time, i.e. the planned lead time does not impact the size 

of the workload increase. Rather, the planned lead time only affects the workload distribution 

over time. We would therefore expect work-in-process to rise faster for dynamic planned lead 

times compared to constant lead times, but we did not expect the amplitude of the increase 

observed. There must be some other effect explaining at least part of this work-in-process 

increase.  

Taking a closer look at the results for dynamic planned lead times we can observe that there 

are periods when dynamic planned lead times are lower than constant lead times. At the same 

time, and as assumed by MRP, jobs do adhere to planned release dates in our simulations. This 

is required because otherwise the production planning and control system would not exercise 

any material flow control, i.e. it would not determine whether a job should be released to the 

system or whether it should be authorized to be produced at a station (Graves et al., 1996). If 
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the planned lead time does not determine whether a job should be released or produced, then 

its effect is restricted to the impact of sequencing deviations, as was discussed, for example, in 

Lödding & Piontek (2017). In our simulations sequencing would have no effect since the 

priority ordering of parts is not affected. 

We consequently argue that the deterioration in performance observed for dynamic planned 

lead times is not due to an artificial inflation of planned lead times but rather due to planned 

lead times that are too short, i.e. the production planning and control system does not release 

enough work to the system. When planned lead times are too short, it means that parts are 

released tardy during low load periods, which further restricts the workload in the system, 

resulting in lower throughput times, and so on. This cycle may result in low service levels in 

periods of low load, and in an artificial backlog, which then increases the workload in an 

upcoming high load period. To confirm this argument, we executed additional experiments in 

which we set a lower bound of 6 time units for the estimated dynamic planned lead time at the 

bottleneck station and a lower bound of 4 time units at all other non-bottleneck stations. The 

results are provided in Table 5. To facilitate the interpretation and comparison of the results for 

the three approaches to setting planned lead times (constant, dynamic, and dynamic with lower 

bound), Figure 2 also provides a bar chart of the results with medium due date tightness, a 

smoothing constant of 0.5, and an update frequency of 10. The latter parameters for the 

dynamic approaches were selected since they represent the middle level.  

 

[Take in Table 5 & Figure 2] 

 

The results in Figure 2 and Table 5 confirm that, with an appropriate lower bound, the 

service levels clearly improve for dynamic planned lead times when compared to those for 

constant lead times. This is achieved by increasing the workload in high load periods to avoid 

starvation that is otherwise caused by there being no orders authorized to be produced. The 

same effect also explains the increase in finished goods inventory for dynamic planned lead 

times with a lower bound. Meanwhile, work-in-process levels for dynamic lead times remain 

higher when compared to constant planned lead times. But rather counter-intuitively, a lower 

bound reduces the work-in-process inventory. This gives further support to our performance 

analysis above, since it can be explained by the avoidance of artificial backlogs. Note that 

performance differences in terms of work-in-process are less pronounced for OPT, which in 

general operates at lower levels when compared to MRP since it uses less inventory as safety 

stock or as a buffer. 

 



14 
 

5. Discussion and Managerial Implications  

Planned lead times are one of the few parameters that are under the direct control of 

management; but for managers to exercise this control effectively, it is important that they have 

a good understanding of how performance outcomes are affected by the way in which they set 

and adjust planned lead times (Kanet, 1986). This need is even greater in the context of smart 

manufacturing where decisions are often delegated to algorithms or some form of artificial 

intelligence (Kusiak, 2018). In this context, new technologies can draw on timely order 

progress information provided through radio frequency identification (RFID) and the Internet 

of Things (IoT) to estimate appropriate planned lead times (Gaukler et al., 2008; Olsen & 

Tomlin, 2020). However, managers still need to be aware of phenomena such as the lead time 

syndrome and its consequences, not only to overcome their own cognitive biases but also to 

ensure they do not introduce these biases into implementations of new technologies (Bendul, 

2019). In fact, new technology and the abundance of real-time data allows for an increase in 

the update frequency, which makes reinforcing control cycles even more relevant.  

 

5.1 Contribution to Theory 

The lead time syndrome is typically related to how management determines planned lead times. 

It is distinguished or separated out from MRP nervousness, which arises when changes in the 

workload (gross requirements) or the production start dates (scheduled receipts) at one stage 

of the system propagate to another stage, making it necessary to reschedule on a frequent basis 

(see e.g., Whybark & Williams, 1976; Ho, 1989; Murthy & Ma, 1991; Dolgui & Prodhon, 2007; 

Blackburn et al., 1985, 1986; Kadipasaoglu & Sridharan, 1995). In this study, we have shown 

that changes in the workload trigger changes in production start dates if dynamic planned lead 

times are used. This links the lead time syndrome to the literature on MRP nervousness. First, 

it highlights that the lead time syndrome may be triggered by similar factors to MRP 

nervousness, such as lot sizes, demand uncertainties, etc. Second, the effects of the lead time 

syndrome may propagate through the whole production system as part of MRP nervousness. 

This kind of interaction was referred to as the planning bullwhip in Moscoso et al.’s (2010) 

empirical investigation of planning instabilities in advanced planning and scheduling systems. 

Our study contributes by further disentangling the effects of the lead time syndrome and MRP 

nervousness.  

Further, we found that the negative performance effect in our simulations is not due to 

planned lead times being artificially inflated, but rather due to planned lead times being too 

short, which leads to artificial backlogs. Note that this could not be evaluated by simply 
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measuring the difference between planned lead times and realized throughput times, as has 

been common practice in prior studies (e.g., Selçuk et al., 2006; Knollmann & Windt, 2013; 

Knollmann et al., 2014; Windt & Knollmann, 2014). This requires us to rethink the lead time 

syndrome. More specifically, if we understand the lead time syndrome as a reinforcing 

feedback loop then this can lead to either an increase or a decrease in workloads, throughput 

times and lead times. While previous literature on the lead time syndrome has emphasized the 

impact of an increase, this study highlights the impact of a decrease. This also extends the 

results presented in Land et al. (2015), which showed that shop performance is largely 

determined by high load periods. We expand on this by showing that this is dependent on the 

control mechanism being implemented – low load periods may have a larger-than-expected 

impact if, for example, material flow control systems such as MRP or OPT are applied. This 

result also questions the usefulness of a Work-in-Process cap (Hopp & Spearman, 2004) in the 

context of these material flow control systems. Avoiding so-called premature station idleness 

(Land et al., 1998) appears to be more important than limiting the workload.  

 

5.2 Managerial Implications 

From a practical perspective, the results presented in this paper support our initial conjecture. 

That is, the effects of the lead time syndrome are limited in contexts where customer demand 

is independent from planned lead times, as is typically the case in make-to-order production 

environments. We have also shown that a simple lower bound overcomes the negative 

performance effect that occurs when dynamic planned lead times are too short. Thus, rather 

than using an upper bound to overcome the lead time syndrome, as in Schneckenreither et al. 

(2021), a lower bound should be used in make-to-order contexts. If a lower bound is applied, 

then dynamic planned lead times can outperform constant lead times. This provides an 

important contingency factor – the lead time syndrome needs only to be considered in make-

to-stock contexts, where increases in the planning period often increase internal demand (i.e. 

stock to be sold in the future). 

Finally, while demand in make order-to-order contexts is not dependent on the planned lead 

times used for production planning and control, we recognize that demand may be dependent 

on the planned lead times used for quoting due dates to prospective customers. Make-to-order 

companies often have to take part in a competitive bidding process for every order they ‘win’, 

where the criterion considered by customers when awarding tenders can vary and may depend 

on a blend of outcomes, including responsiveness and price (Melnyk et al., 2010). In this 

context, longer planned lead times create later customer due dates. This will increase the 
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likelihood of a customer rejecting the bid or awarding the tender to another company. Rather 

than leading to greater demand and workloads, as would be assumed by the lead time syndrome, 

increasing dynamic planned lead times will lead to lower demand and workloads. In fact, 

Thürer et al. (2014) showed how load-dependent dynamic planned lead times used as part of 

the quotation process during customer enquiry management can stabilize workloads either by 

increasing demand if planned lead times decrease or by decreasing demand if planned lead 

times increase. 

 

6. Conclusions 

Ever since it was first mentioned in 1970, the lead time syndrome and its vicious cycle of 

planned lead times has divided opinions. On the one hand, some scholars have argued that the 

lead time syndrome may significantly impact the performance of production planning and 

control systems such as MRP and OPT that use planned lead times to backward schedule to 

find both release and production start dates. Meanwhile, the Workload Control concept, which 

limits the level of work-in-process in the system to stabilize realized throughput times, was 

designed specifically to overcome the lead time syndrome. On the other hand, practitioners 

appear to be less concerned with the phenomenon while other scholars have been unable to 

observe the phenomenon in their studies. 

To resolve this paradox, this study has used discrete event simulation to assess the 

performance of an MRP and an OPT production planning and control system with dynamic 

planned lead times in a multi-stage assembly system in which the demand for components or 

product parts depends on the market-driven demand for end products. The results confirm our 

conjecture that the lead time syndrome has only a limited effect in shops where demand is 

independent from planned lead times, such as is typical of make-to-order shops. In this context, 

the effect of the lead time syndrome is limited by the use of immediate release and immediate 

authorization at all stations, i.e. by no material flow control being exercised. This provides an 

important contingency factor that determines the impact of the lead time syndrome for 

managers in practice. The negative consequences of the lead time syndrome are restricted to 

make-to-stock contexts where increases in the planning period may affect the workload in the 

system. Finally, the study highlights the direct, negative effect of underestimating planned lead 

times in low load periods, which may lead to artificial backlogs. This requires us to rethink the 

lead time syndrome. Reinforcing feedback loops may not only lead to lead times that are too 

long but also to lead times that are too short. 
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6.1 Limitations and Future Research 

A main limitation of our study is its focus on just two production planning and control systems. 

While MRP and OPT are arguably the most commonly applied systems in practice, future 

research could investigate other production planning and controls systems that use backward 

scheduling, such as Demand-Driven MRP. Another major limitation is our focus on a context 

with externally set due dates, i.e. due dates that are determined by the customer. We posit that 

also in a context where due dates are dependent on planned lead times, and thus internally set 

by the company, the worst case will be immediate release and that there will be no effect on 

realized throughput times. The main effect will be an increase in the finished goods inventory 

if jobs are not directly delivered to the customer after completion. Future research could 

however be conducted to confirm this conjecture.  

In addition, the overall performance of a production system may be determined by low load 

periods and high load periods, depending on the control mechanism applied. This warrants 

further research to better explain how performance is actually realized through production 

planning and control whilst also taking into account interactions between behavior in low and 

high load periods. Finally, future research is also needed to further disentangle the interaction 

between the lead time syndrome and MRP nervousness. More generally, the way in which 

several overlapping feedback loops influence production planning and control warrants further 

exploration. It is currently underrepresented in the literature but is likely to become even more 

important in the new digital manufacturing era that enables more regular feedback from the 

shop floor. 
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Table 1: Product Structure 

Station 1 (Final) Station 2 Station 3 Station 4 Station 5 Station 6 

Output 
Input 

Output 
Input 

Output 
Input 

Output 
Input 

Output 
Input 

Output 
Type Q1) Type Q Type Q Type Q Type Q 

Product 1 B1 2 B1 C1 3 C1 D1 1 D1 E1 1 E1 F1 1 F1 

Product 2 B2 2 B2 C1 1 C1 D1 1 D1 E1 1 E1 F1 1 F1 

Product 3 B3 2 B3 C2 2 C2 D2 1 D2 E2 1 E2 F2 1 F2 

Product 4 B4 2 B4 C2 2 C2 D2 1 D2 E2 1 E2 F2 1 F2 

Product 5 B1 2 B1 C1 3 C1 D1 1 D1 E1 1 E1 F1 1 F1 

Product 6 B2 2 B2 C1 1 C1 D1 1 D1 E1 1 E1 F1 1 F1 

Product 7 B3 2 B3 C2 2 C2 D2 1 D2 E2 1 E2 F2 1 F2 

Product 8 B4 2 B4 C2 2 C2 D2 1 D2 E2 1 E2 F2 1 F2 

Q1) – Quantity 
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Table 2: ANOVA Results – MRP 

 
Source of Variance 

Sum of 
Squares 

Degrees  
of freedom 

Mean  
Squares 

F-Ratio 
p-

Value 

Service Level 

DD Tightness (DD) 352.39 2 176.19 4.10 0.02 

Smoothing Constant (α) 73122.58 2 36561.29 850.49 0.00 

Update Frequency (U) 20042.87 2 10021.44 233.12 0.00 

DD x α 309.55 4 77.39 1.80 0.13 

DD x U 620.17 4 155.04 3.61 0.01 

α x U 10663.49 4 2665.87 62.01 0.00 

DD x α x U 497.49 8 62.19 1.45 0.17 

Error 114908.65 2673 42.99   

Finished 
Goods 
Inventory 

DD Tightness (DD) 3.00 2 1.50 1.94 0.14 

Smoothing Constant (α) 1285.77 2 642.88 834.08 0.00 

Update Frequency (U) 351.86 2 175.93 228.25 0.00 

DD x α 4.66 4 1.17 1.51 0.20 

DD x U 10.64 4 2.66 3.45 0.01 

α x U 227.44 4 56.86 73.77 0.00 

DD x α x U 7.81 8 0.98 1.27 0.26 

Error 2060.27 2673 0.77   

Work-In-
Process 
Inventory 

DD Tightness (DD) 9713.13 2 4856.57 67.24 0.00 

Smoothing Constant (α) 54274.75 2 27137.37 375.71 0.00 

Update Frequency (U) 6462.36 2 3231.18 44.74 0.00 

DD x α 608.81 4 152.20 2.11 0.08 

DD x U 1152.22 4 288.06 3.99 0.00 

α x U 6853.31 4 1713.33 23.72 0.00 

DD x α x U 670.03 8 83.75 1.16 0.32 

Error 193067.29 2673 72.23   
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Table 3: ANOVA Results – OPT 

 
Source of Variance 

Sum of 
Squares 

Degrees  
of freedom 

Mean  
Squares 

F-Ratio 
p-

Value 

Service Level 

DD Tightness (DD) 10.66 2 5.33 0.07 0.93 

Smoothing Constant (α) 6377.39 2 3188.69 43.30 0.00 

Update Frequency (U) 38785.22 2 19392.61 263.31 0.00 

DD x α 480.15 4 120.04 1.63 0.16 

DD x U 112.15 4 28.04 0.38 0.82 

α x U 291.31 4 72.83 0.99 0.41 

DD x α x U 120.67 8 15.08 0.20 0.99 

Error 196862.28 2673 73.65   

Finished 
Goods 
Inventory 

DD Tightness (DD) 0.80 2 0.40 0.17 0.84 

Smoothing Constant (α) 290.98 2 145.49 62.72 0.00 

Update Frequency (U) 1568.28 2 784.14 338.02 0.00 

DD x α 15.89 4 3.97 1.71 0.14 

DD x U 7.13 4 1.78 0.77 0.55 

α x U 11.06 4 2.77 1.19 0.31 

DD x α x U 8.45 8 1.06 0.46 0.89 

Error 6200.89 2673 2.32   

Work-In-
Process 
Inventory 

DD Tightness (DD) 0.28 2 0.14 1.21 0.30 

Smoothing Constant (α) 1.53 2 0.77 6.54 0.00 

Update Frequency (U) 16.79 2 8.40 71.75 0.00 

DD x α 0.71 4 0.18 1.52 0.19 

DD x U 1.53 4 0.38 3.26 0.01 

α x U 0.28 4 0.07 0.60 0.66 

DD x α x U 1.05 8 0.13 1.12 0.34 

Error 312.84 2673 0.12   
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Table 4: Simulation Results – MRP & OPT 

 
Due  
Date 

α UF1) 
MRP OPT 

SL (%)2) FGI3) WIP4) SL (%) FGI WIP 

Constant  
Lead  
Time 

Loose n/a n/a 69.4±0.47 6.1±0.05 66.8±0.16 69.7±1.88 11.0±0.38 21.5±0.07 

Medium n/a n/a 69.3±0.51 6.1±0.05 66.7±0.18 70.0±1.67 10.8±0.39 21.4±0.06 

Tight n/a n/a 69.6±0.42 6.1±0.04 66.7±0.14 72.1±1.59 11.3±0.37 21.4±0.07 

Dynamic  
Lead  
Time 

Loose 0.10 10 53.5±1.61 4.6±0.22 85.6±2.09 58.2±1.95 7.9±0.35 21.5±0.06 

Medium 0.10 10 57.8±1.43 5.1±0.19 79.5±1.62 58.7±1.92 8.0±0.35 21.5±0.08 

Tight 0.10 10 56.1±1.53 4.9±0.21 79.6±1.65 58.6±1.74 8.0±0.32 21.6±0.07 

Loose 0.50 10 50.9±1.20 4.3±0.16 92.3±2.31 53.2±1.72 6.9±0.30 21.6±0.07 

Medium 0.50 10 51.8±1.15 4.4±0.15 88.2±1.72 53.2±1.70 6.9±0.30 21.7±0.07 

Tight 0.50 10 52.5±1.06 4.4±0.14 85.1±1.77 53.5±1.60 6.9±0.27 21.7±0.07 

Loose 0.90 10 48.3±1.04 4.0±0.14 89.3±1.70 49.9±1.64 6.2±0.27 21.8±0.07 

Medium 0.90 10 49.6±1.05 4.2±0.14 85.6±1.58 50.3±1.56 6.3±0.27 21.7±0.07 

Tight 0.90 10 49.1±1.07 4.1±0.15 84.1±1.83 49.8±1.64 6.2±0.29 21.7±0.06 

Loose 0.10 20 63.4±1.97 6.0±0.27 78.0±2.01 60.5±2.24 8.4±0.40 21.5±0.68 

Medium 0.10 20 63.1±1.52 5.9±0.21 76.2±1.54 60.5±1.67 8.4±0.33 21.5±0.06 

Tight 0.10 20 64.2±1.48 6.1±0.21 73.7±0.94 62.1±1.51 8.7±0.29 21.5±0.07 

Loose 0.50 20 53.5±1.23 4.6±0.16 87.6±1.81 54.5±1.72 7.3±0.29 21.6±0.07 

Medium 0.50 20 52.8±1.22 4.5±0.16 87.1±1.76 54.2±1.82 7.0±0.32 21.7±0.07 

Tight 0.50 20 54.6±1.29 4.7±6.70 83.2±1.79 55.3±1.79 7.3±0.32 21.6±0.07 

Loose 0.90 20 51.6±1.25 4.4±0.17 88.8±1.83 51.7±1.70 6.6±0.30 21.7±0.07 

Medium 0.90 20 50.6±1.23 4.2±0.16 88.4±1.87 52.0±1.71 6.7±0.27 21.7±0.07 

Tight 0.90 20 50.8±1.36 4.3±0.18 86.3±2.19 52.7±1.65 6.9±0.29 21.7±0.07 

Loose 0.10 30 69.5±1.20 6.8±0.17 75.2±0.69 64.1±1.63 9.1±0.32 21.5±0.07 

Medium 0.10 30 68.9±1.55 6.7±0.21 74.2±0.69 62.9±1.75 8.9±0.30 21.5±0.07 

Tight 0.10 30 69.5±1.47 6.7±0.20 72.7±0.84 62.9±1.80 9.0±0.31 21.5±0.08 

Loose 0.50 30 54.7±1.24 4.7±0.16 85.3±1.64 56.3±1.95 7.6±0.33 21.6±0.06 

Medium 0.50 30 54.2±1.17 4.6±0.16 84.8±1.70 56.5±1.74 7.5±0.31 21.7±0.07 

Tight 0.50 30 55.6±1.14 4.8±0.15 80.5±1.65 56.3±1.65 7.5±0.31 21.6±0.07 

Loose 0.90 30 51.3±1.23 4.4±0.16 90.7±1.82 54.5±1.45 7.2±0.25 21.6±0.06 

Medium 0.90 30 53.6±1.18 4.6±0.15 86.1±1.79 53.7±1.66 7.1±0.28 21.6±0.06 

Tight 0.90 30 52.1±1.26 4.4±0.17 85.8±2.00 52.1±1.58 6.7±0.26 21.7±0.07 

UF1) – Update Frequency; SL2) – Service Level; FGI3) – Finished Goods Inventory; WIP4) – Work-In-Process Inventory 
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Table 5: Simulation Results – MRP & OPT with Lower Bound 

Due  
Date 

α UF1) 
MRP OPT 

SL (%)2) FGI3) WIP4) SL (%) FGI WIP 

Loose 0.10 10 78.4±0.39 8.2±0.06 79.8±0.32 72.2±1.97 12.1±0.47 21.5±0.07 

Medium 0.10 10 78.2±0.43 8.1±0.07 77.5±0.26 71.9±1.92 12.1±0.42 21.5±0.07 

Tight 0.10 10 78.4±0.44 8.1±0.07 74.9±0.20 73.1±2.03 12.3±0.46 21.5±0.07 

Loose 0.50 10 76.5±0.43 7.9±0.07 81.6±0.27 77.2±1.72 14.0±0.44 21.5±0.06 

Medium 0.50 10 76.6±0.40 7.9±0.06 78.3±0.22 77.5±1.61 14.2±0.43 21.5±0.06 

Tight 0.50 10 76.2±0.42 7.7±0.07 75.5±0.20 78.5±1.87 14.4±0.44 21.4±0.07 

Loose 0.90 10 76.0±0.40 7.9±0.06 83.3±0.27 77.7±1.85 14.1±0.45 21.5±0.08 

Medium 0.90 10 76.0±0.49 7.8±0.07 79.9±0.27 77.8±1.51 14.0±0.36 21.4±0.05 

Tight 0.90 10 75.9±0.43 7.7±0.06 76.3±0.20 78.7±1.59 14.3±0.41 21.4±0.06 

Loose 0.10 20 79.2±0.48 8.3±0.08 79.8±0.32 72.2±1.97 12.3±0.42 21.5±0.06 

Medium 0.10 20 79.2±0.46 8.3±0.07 77.7±0.25 74.2±1.70 12.6±0.33 21.5±0.06 

Tight 0.10 20 79.4±0.44 8.3±0.07 75.1±0.19 73.3±1.79 12.4±0.44 21.5±0.07 

Loose 0.50 20 76.9±0.45 7.9±0.07 80.5±0.27 76.4±2.08 13.7±0.50 21.5±0.06 

Medium 0.50 20 77.1±0.45 7.9±0.07 77.7±0.27 77.9±1.65 14.1±0.41 21.4±0.07 

Tight 0.50 20 76.9±0.39 7.9±0.07 74.8±0.22 77.0±1.78 13.7±0.42 21.5±0.06 

Loose 0.90 20 76.3±0.38 7.9±0.07 81.7±0.24 78.7±1.61 14.2±0.42 21.4±0.07 

Medium 0.90 20 76.3±0.49 7.8±0.07 78.4±0.26 79.2±1.69 14.5±0.40 21.4±0.06 

Tight 0.90 20 76.1±0.43 7.8±0.06 75.4±0.19 76.7±1.84 13.8±0.42 21.5±0.07 

Loose 0.10 30 79.8±0.43 8.3±0.07 80.3±0.40 72.8±1.96 12.3±0.43 21.4±0.06 

Medium 0.10 30 80.3±0.41 8.3±0.07 78.2±0.23 74.0±1.63 12.4±0.38 21.4±0.07 

Tight 0.10 30 80.0±0.46 8.3±0.07 75.3±0.20 72.7±1.75 12.0±0.40 21.5±0.06 

Loose 0.50 30 77.4±0.50 8.0±0.08 79.9±0.33 76.7±1.85 13.9±0.48 21.5±0.07 

Medium 0.50 30 77.5±0.45 8.0±0.06 77.2±0.26 78.1±1.60 14.0±0.42 21.5±0.07 

Tight 0.50 30 77.5±0.38 8.0±0.07 74.6±0.20 77.9±1.67 14.0±0.44 21.5±0.06 

Loose 0.90 30 76.3±0.44 7.9±0.08 81.0±0.27 78.0±1.58 14.1±0.41 21.5±0.06 

Medium 0.90 30 76.4±0.50 7.8±0.08 78.1±0.29 76.5±1.57 13.8±0.40 21.5±0.07 

Tight 0.90 30 76.4±0.43 7.8±0.06 75.0±0.22 77.1±1.95 13.9±0.46 21.4±0.06 

UF1) – Update Frequency; SL2) – Service Level; FGI3) – Finished Goods Inventory; WIP4) – Work-In-Process Inventory 
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(a) constant 

 

(b) smoothing constant α = 0.1 

 

(c) smoothing constant α = 0.5 

 

(d) smoothing constant α = 0.9 

 

Figure 1: Overtime Results for the Planned Lead Time, the Realized Throughput Time, and 

the Work-In-Process: MRP, Medium Due Date Tightness, and Update Frequency of 10 Time 

Units 
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Figure 2: Graphical Representation of Results for Medium Due Date Tightness, Smoothing 

Constant of 0.5, and Update Frequency of 10 Time Units 

 

 

 


