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Abstract—With the advent of smart vehicles, several new
latency-critical and data-intensive applications are emerged in
Vehicular Networks (VNs). Computation offloading has emerged
as a viable option allowing to resort to the nearby edge servers
for remote processing within a requested service latency require-
ment. Despite several advantages, computation offloading over
resource-limited edge servers, together with vehicular mobility,
is still a challenging problem to be solved. In particular, in order
to avoid additional latency due to out-of-coverage operations,
Vehicular Users (VUs) mobility introduces a bound on the
amount of data to be offloaded towards nearby edge servers.
Therefore, several approaches have been used for finding the
correct amount of data to be offloaded. Among others, Federated
Learning (FL) has been highlighted as one of the most promising
solving techniques, given the data privacy concerns in VNs
and limited communication resources. However, FL consumes
resources during its operation and therefore incurs an additional
burden on resource-constrained VUs. In this work, we aim to
optimize the VN performance in terms of latency and energy
consumption by considering both the FL and the computation
offloading processes while selecting the proper number of FL
iterations to be implemented. To this end, we first propose
an FL-inspired distributed learning framework for computation
offloading in VNs, and then develop a constrained optimization
problem to jointly minimize the overall latency and the energy
consumed. An evolutionary Genetic Algorithm is proposed for
solving the problem in-hand and compared with some bench-
marks. The simulation results show the effectiveness of the
proposed approach in terms of latency and energy consumption.

Index Terms—Vehicular Edge Computing, Computation Of-
floading, Federated Learning, Latency, Energy consumption,
Genetic Algorithm

I. INTRODUCTION

MODERN cities are characterized by the presence of an
increased interest in mobility management for a higher

urban life sustainability. The ongoing COVID-19 pandemic
has increased the importance of a sustainable smart transport
infrastructure [1]. In this context, road users are becoming
smart, requiring a tighter interaction with the Internet and
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among them in order to strengthen vehicular requirements [2].
This has introduced the possibility of implementing several
services and generated a large amount of data, hence requiring
the introduction of suitable computation and storage resources,
which vehicles are not capable of providing [3].

Due to a lack of available resources, Vehicular Users (VUs)
tend to offload computation tasks to the nearby edge and
cloud computing servers [4], [5]. Computation offloading
enables several data-intensive and latency-critical services and
applications with the potential of enhancing service quality
for consumers. Within this scenario, Cloud Computing has
been envisaged as one of the most important technologies for
assisting Vehicular Networks (VNs) by executing services at
remote cloud platforms. However, Cloud Computing results in
high response time, which is not acceptable in latency-critical
environments, such as VNs. To this aim, resorting to the Edge
Computing technology, namely Vehicular Edge Computing
(VEC), allowing to deploy edge servers in the proximity of
the vehicles, by gaining from the presence of Road Side
Units (RSUs) is a promising solution. Even though RSUs can
reduce the connectivity latency due to their proximity, they
still have limited computational and communication resources.
This requires optimized resource management strategies by
selecting the proper RSU and the amount of data to be
offloaded. In addition, due to their small coverage range, only
a limited number of vehicles/VUs can access RSU services
without incurring an additional latency (due to, e.g., vehicle
handover, service migration).

To cope with the limited RSU resources and to avoid
the additional latency costs, the VUs can perform a partial
computation offloading, where they can offload a portion of
their computation loads towards edge servers and can compute
the remaining tasks locally [5]–[7]. Finding a suitable RSU for
the remote task processing and jointly optimizing the amount
of data to be offloaded allow to reduce the overall latency.
However, several factors have to be considered while solving
the computation offloading problem in VNs, including VUs
velocity, locations, RSU capacity, RSU coverage, RSU density,
environmental conditions, nature of roads, etc. In addition,
VUs often demand services with a target Quality of Services
(QoS) level, such as critical latency requirements, as well as an
increased requirement of energy saving mechanisms. Modern
and future vehicles are often based on electrical engine, not
to name the recently introduced micro-mobility solutions,
where energy saving is a condition. In addition, mobility in
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VNs adds a further complexity dimension during the service
provision and needs to be handled carefully. Consequently, the
computation offloading problem in VNs is a complex problem
to be solved [8].

Machine Learning (ML) is a class of algorithms recently
gaining lots of attention due to their ability in managing large
amount of data for solving complex decision problems [9].
Their effectiveness has been recently demonstrated in wireless
communication networks to solve complex problems, e.g.,
communication resource management and allocation, spectrum
management, power control, base station switching [10], [11].
In traditional centralized ML approaches each agent sends its
data to a centralized entity, e.g., a centralized cloud server or a
base station, that is in charge of gathering data for the learning
process. Several issues, like users’ privacy concerns, limited
communication resources and a limited amount of energy
supply, have narrowed the use of centralized approaches in
wireless communication environments. In [12], the authors
proposed a novel approach, named Federated Learning (FL)
with the potential of avoiding the previously discussed short-
comings. In the case of FL, instead of sending raw data to the
centralized entity, users limit their communication only to the
ML parameters of the locally trained model. The centralized
servers collect the updates from the agents and create the
new global update parameters, and send them back to the
users. During the FL training phase, the device can participate
in several communication rounds aiming at refining the ML
model. Each communication round utilizes communication
and computing resources.

When applying FL to the vehicular scenario some issues
should be considered. On one side, VNs are affected by
the limited coverage of RSUs, posing some challenges to
the offloading procedure. On the other side, FL requires a
centralized node able to gather the information from all the
vehicles. In the case of RSUs acting as a centralized server for
the FL process, only a reduced number of VUs can participate
in the training process due to the RSU coverage limitations. In
the past, it had been proven that FL process convergence cost
(in terms of latency) can be largely impacted by the number
of FL devices participating in it [13]. Recently, air-ground
integrated networks are increasing their importance allowing
the integration of an aerial communication network, composed
of several Low and High Altitude Platforms (LAPs and HAPs),
with the terrestrial communication networks, e.g., VNs [14].
HAPs, such as aircrafts, balloons, and airships, have several
advantages including a larger coverage area, renewable power
source, and long endurance, allowing to help VNs to cope
with the stringent user requirements [15]–[17]. In addition,
HAPs can be a viable option with respect to the satellite
systems with a considerable reduction in the round trip time,
low deployment costs, and favorable channel conditions. Thus
HAPs can act as a powerful centralized entity with a more
global view during the implementation of an FL in VNs
scenarios.

During the FL process, resource-constrained wireless nodes
are in charge of implementing ML algorithms to infer useful
information from their datasets. FL process can converge to a
predefined loss function value after a certain number of com-

munication rounds [18], defining the FL process performance.
However, if on one side each FL round helps in terms of
convergence, it also introduces an additional cost in terms of
computational and communication resources to the resource-
constrained devices. As a result, there is a trade-off between
the FL process accuracy and the training cost, which needs to
be explored for resource-constrained communication networks
like VNs.

First, we aim at defining a FL-based platform assisted by
the HAPs, acting as FL servers, to find a solution for the
computation offloading problem in VNs. To this aim, we have
considered a three-layer network architecture composed of
VNs, RSUs, and HAPs. The first layer contains several VUs,
characterized by limited computation and storage resources.
They can communicate with the RSUs within a specific range
and with at least one HAP. The layer two is composed of RSUs
having richer computational and storage capabilities. They can
serve as a computation offloading platform for vehicles. In
layer three, we use HAPs as FL servers.

The system aims at performing task offloading within a FL
architecture. The FL framework enables learning information
that is useful for the computation offloading decision phase.
Although FL assists a better decision making in computation
offloading procedure, it imposes some cost in terms of energy
and delay. Since FL consumes some resources in terms of
time and energy, hence impacting on the resources left to the
users willing to offload, we aim at optimizing the resource
sharing between learning and offloading phases. This is done
by allocating sufficient time to both phases, by considering the
learning convergence toward the optimal offloading parameters
estimation. It has to be clarified that in this work we are
not investigating the learning procedure, hence we resort to
a simplified FL-inspired distributed approach for modeling
the interactions of the FL process. In particular, given the
limited available resources of each vehicle and RSUs, we aim
at jointly optimizing the delay and energy performance of VNs
for both FL and offloading phases.

The system has been solved by resorting to a clustering
approach, where three policies have been defined. While in
the first, all the VUs requesting the offloading service perform
also the FL process, aiming at optimizing them jointly, in
the second, a probabilistic clustering policy considers that
only a subset of the VUs participates to the optimization
process, modeling the possibility that some of the VUs are not
capable of performing the FL. As third policy, we still select
a subset of VUs while based on their position within the RSU
coverage area. The clustering policies are also compared with a
distributed policy where each VU acts independently. Further,
a Genetic Algorithm (GA) from the family of evolutionary
computing methods is considered for solving the previously
introduced policies.

The main contributions of this paper can be summarized in:

• We define an air-ground integrated FL-inspired dis-
tributed learning platform for enabling a run-time eval-
uation of the computation offloading parameters. We
consider the HAPs as FL servers and VUs as distributed
FL devices/clients, while the RSUs act as processing
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devices accepting computation offloaded by the VUs
acting as sources.

• We model the joint learning and offloading process
through its delay and energy consumption, and then we
define the joint delay and energy minimization problem
as a constrained non-linear optimization problem. The
main aim is to select the optimal number of FL process
iterations for each VU given a target delay requirement,
while keeping the energy consumption under a certain
level.

• Three RSU based clustering approaches are introduced
for solving the problem (i.e., full clustering, probabilistic
clustering, distance-based clustering) along with a VU-
based distributed approach.

• A GA evolutionary computing method is proposed for
solving clustered and distributed approaches. Two other
benchmark methods and one simple Heuristic approach
based on a reduced size solution space are also considered
for performance comparison.

• Performance evaluation is carried out under different
VEC environments where the effectiveness of the pro-
posed scheme is shown.

The remaining parts of this paper are organized as follows.
In Section II, the main related works in the area are discussed,
while Section III presents the system model and define the op-
timization problem to be solved. In Section IV, the clustering
policies and the GA-based solution method are discussed. In
Section V, the numerical results obtained through computer
simulations are provided and analyzed. Finally, in Section VI
the conclusions are drawn.

II. RELATED WORKS

The importance of VEC in the VN scenarios has been
highlighted in several survey papers; to this aim [19], [20]
constitute two outstanding starting points for understanding the
working scenario and main challenges. Among several chal-
lenges, the partial computation offloading problem in the VEC-
enabled VNs for the latency-critical applications is considered
by several authors. In [3], a joint load balancing and offloading
problem is formulated as a utility maximization problem by
considering the latency constraints and solved through a low
complexity algorithm. The computation offloading problem in
heterogenous VEC scenarios is studied in [5], where multi-
armed bandit theory is applied, and online and off-policy
learning algorithms are proposed for the network selection
problem. Some attempts have also been made for optimizing
the energy cost while performing computation offloading op-
erations in VN. In [21], a low-complexity heuristic method is
proposed based on the cost-effectiveness of allocated resources
and energy consumption for computation offloading in VEC
scenarios. In [22], authors have studied the energy-efficient
workload offloading problem in VEC and propose a low-
complexity distributed solution based on consensus alternating
direction method of multipliers. Many authors have treated
the latency and energy cost minimization problems separately
even though it is proven that there is a clear trade-off between
latency and energy consumed during computation offloading

towards edge servers [23]. Only a few attempts have been
made for joint minimization of energy and latency in vehicular
scenarios. One such approach can be found in [24] where the
energy-efficient dynamic computation offloading and resources
allocation scheme for minimizing the joint energy and latency
cost in a Vehicular Fog Computing scenario is proposed.

In the recent past, LAPs and HAPs usage as edge com-
puting nodes in vehicular scenarios has been proposed by
many researchers for improving the overall system reliability,
service latency, and energy performance. In [25], authors have
introduced a three-layer network architecture by integrating
the HAP and terrestrial edge network for improving the delay
performance of vehicular nodes through computation offload-
ing and caching over HAPs. An edge computing enabled
integrated space-air-ground network platform is proposed and
analyzed in [26] for providing vehicular services into remote
areas with lower latency and the reduced uses of satellite
resources. In [27], a new energy-efficient, UAV-assisted edge
computing framework allowing a joint optimization of the
trajectory and CPU frequency of fixed-wing UAVs along
with offloading scheduling is proposed. In [28], authors have
proposed a UAV-assisted VEC system architecture for enabling
6G vehicle-to-everything (V2X) applications. This work also
highlights the main challenges in the UAV-assisted VEC sys-
tems including its use for achieving distributed intelligence at
the edge, for implementing vehicular applications and services.

In recent times, several works have highlighted the impor-
tance of the FL process in VEC-enabled scenarios. In [29],
the authors listed several applications, research challenges, and
future directions for the FL research in VNs. A mobility-aware
FL scheme for edge caching in VN is proposed in [30], which
can protect users’ privacy, reduce communication costs, and
support the high mobility of vehicles. In [31], authors have
provided a brief survey of applications and challenges while
using the FL process in vehicular scenarios.

While implementing FL over resource-constrained net-
works, it is important to consider a trade-off between available
resources and the FL performance. This issue has become
clear since few years when researchers started to analyze
the FL process optimization problem in terms of computing
and communication resource allocation, user scheduling, en-
ergy performance, latency performance. Joint energy-efficient
transmission and computing allocation for the FL process
over wireless communication networks has been investigated
in [18]. In [32], the authors have addressed the joint resource
allocation and user selection problem for FL process perfor-
mance improvement. In [33], joint user association, service
sequence, and task allocation problem for minimizing the
weighted sum of the energy and time consumption over a
MEC-enabled balloon HAP network is addressed. In [34], FL
device scheduling policies, taking into account the channel
conditions and the significance of the local model updates,
are provided for better network performance.

Lately, similar analyses have been carried out in the VN
scenarios, with the aim of improving the FL process accuracy
with a limited cost. In [35], the authors have studied FL in a
VEC scenario and have proposed an approach for selecting the
best quality models during the training phase for tackling the
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diverse data quality and corresponding information asymmetry
issue of the FL process. An edge computing-based joint client
selection and networking scheme for vehicular IoT is presented
in [36]. The importance of the trade-off between the accuracy
of the global model and the communication overhead of FL
in vehicular environments is also highlighted.

In several of these works, authors aimed at optimizing the
FL process training phase without paying much attention to the
application latency requirements. Also, the mobility scenarios
in VNs can have a significant impact on the FL process and
are required to be explored. Therefore we aim to perform a
joint optimization of FL and computation offloading processes
in VEC scenarios by considering the latency constraints while
keeping the energy consumption reduced.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an integrated air-ground network composed of
one HAP, a set V = {v1, . . . , vm, . . . , vM} of M VUs, and a
set R = {r1, . . . , rn, . . . , rN} of N RSUs, placed in the area,
supposed to be modeled as a two-lane road scenario.

The generic mth VU, supposed to move in either of the two
directions, is characterized by a processing capability equal to
cv,m Floating Point Operations per Second (FLOPS) per CPU
cycle, while its CPU frequency is fv,m. Each VU is supposed
to be able to communicate on a bandwidth Brsu

v,m during a
terrestrial communication. On the other hand, while commu-
nicating with the HAP in the non-terrestrial communication
network, it is supposed to communicate with a bandwidth
BHAP

v,m . Many new vehicular applications and services, includ-
ing autonomous driving, online gaming, multimedia content
streaming infotainment services, etc., come with strict ap-
plication latency requirements. Such latency constraints need
to be taken into account while solving vehicular networks
problems [22], [37]. Therefore, in this work, the mth VU is
supposed to generate tasks to be processed, where the task
xm is identified through the tuple ⟨Dxm

,Ωxm
, T̄xm

⟩ where
Dxm

is the task size in Byte, Ωxm
are the requested CPU

execution cycles and T̄xm is the maximum latency of the
requested service.

The nth RSU, supposed to be in a fixed position, is char-
acterized by a processing capability equal to cr,n FLOPS per
CPU cycle, with CPU frequency fr,n, and communication ca-
pabilities, supposed to be identified through a communication
technology able to work on a bandwidth Br,n and covering
an area with radius Rr,n. Each RSU provides computation
offloading services to the VUs within its coverage area. In
addition, the area is supposed to be under the coverage
of one HAP equipped with an edge computing server with
much superior computation capabilities compared with the
RSU/VUs [25]. Moreover, we consider multi-beam antenna
forming techniques, placed at an altitude of hHAP above the
ground, where each antenna beam is supposed to cover a
geographical area of radius RHAP and having a communication
bandwidth BHAP. In the following we will refer to a single
beam as the coverage of the HAP. It should be noted that
though HAP coverage is reduced to a single beam for notation
simplicity, our approach can easily be scaled for the overall
HAP coverage with multiple beams.

Fig. 1. System Architecture

Fig. 1 highlights the main system elements of considered
network architecture. It is worth to be noted that we have
considered only one centralized HAP in the following. In a
realistic scenario, for having a better fault tolerance, it can be
complemented by ground-based 5G base stations (5G-gNB)
or replaced by a decentralized HAP network, composed by
multiple HAPs.

A. Vehicular Mobility Model

The generic mth VU is supposed to be located at position
{xv,m(t), yv,m(t)} at time t. Each vehicle is supposed to move
along the x-axis, defining the directions of the two-lane road,
with a speed v̄m, supposed to be constant. The nth RSU is
considered to be in a fixed position {xr,n, yr,n}. Hence, it is
possible to define the remaining distance within which the mth
VU remains under the coverage of the nth RSU as,

Πm,n =
√
R2

r,n − (yr,n − yv,m)
2 ± (xr,n − xv,m) (1)

where Rr,n is the coverage radius of the nth RSU and ±
identifies the two possible directions taken by the mth VU.
It is worth to be noticed that the dependency on t in (1) has
been omitted for a better clarity; moreover, we assume that it
is calculated at a time instant t when the mth VU requests
an offloading service. In addition, it is worth to be noticed
that (1) is valid only if the mth VU is within the nth RSU
coverage area.

The time available by the mth VU before leaving the nth
RSU coverage, i.e., sojourn time, is defined as [6]:

T soj
m,n =

Πm,n

v̄m
(2)

Similarly, supposing that the center beam of the HAP
coverage on the ground is in a fixed position {xHAP, yHAP}, it
is possible to define the remaining distance within which the
mth VU remains under the HAP beam coverage as:

Πm,HAP =

√
R2

HAP − (yHAP − yv,m)
2±(xHAP − xv,m) (3)

which is valid only if the mth VU is within the HAP coverage
area as well. Hence, the HAP sojourn time can be defined as:

T soj
m,HAP =

Πm,HAP

v̄m
. (4)

In Fig. 2, the working scenario is depicted, where we
suppose, as an example, the presence of two VUs (i.e.,
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Fig. 2. VU Mobility Scenarios and Corresponding Distance Matrices

VU1 and VU2) moving in opposite directions, where VU1
is traveling towards right and VU2 moving towards left.
The available distance for each of the VUs before passing
through the coverage area of RSU is determined by using (1).
A similar analysis can be performed for determining the
distances concerning the HAP.

B. Partial Offloading Model

The VUs are supposed to be able to offload their tasks to the
RSUs within their connecting area. In order to minimize the
time spent for the offloading process we assume that the mth
VU is able to split its task in two portions and offload a portion
αm ∈ [0, 1] to any of the RSUs within its connecting area1,
while the remaining (1− αm) can be locally computed [23].

1) Task Offloading Process: When mth VU selects the nth
RSU for offloading its task, the process is composed of the
data transmission toward the selected RSU, task processing at
the RSU, and the reception of computed data back at the VU.
Each of these steps consume some amount of time and energy,
as detailed in the following.

In the following, we resort to the Shannon capacity formula
for evaluating the data rate between any node i and j as a
function of the distance between them, defined as:

ri,j(Bi, di,j) = Bi log2

(
1 +

P tx
i · h(di,j)
N0

)
(5)

where P tx
i is the transmission power of the generic device i,

h(di,j) is the channel gain at a distance di,j between the device
i and the device j, and N0 = NTBi is the noise power, where
NT and Bi are the noise power spectral density and bandwidth
associated to the ith device during communication.

a) VU-RSU Communication: The total time and energy
required for full offloading of task xm from the mth VU
towards the nth RSU is given by,

T xm,tx
m,n =

Dxm

rm,n(Brsu
v,m, dm,n)

, Exm,tx
m,n = P tx

m · T xm,tx
m,n , (6)

where, rm,n(B
rsu
v,m, dm,n) is the data rate between mth VU and

nth RSU, that depends on the available radio resources i.e.,
Brsu

v,m, and the distance between two devices, i.e., dm,n. Also,
P tx
m is the transmission power of m-th VU while transmitting

data towards the RSU.

1More specifically to be managed by the co-located server.

b) RSU Computation: The task computation at the RSU
side depends on the CPU execution cycles requested by the
task, i.e., Ωxm and available RSU processing resources, i.e.,
cr,n and fr,n; hence, the processing time can be modeled as:

T xm,c
n =

Ωxm

cr,nfr,n
. (7)

Here, we assume that the RSUs are connected to the electrical
grid, hence their energy cost is negligible, while the VUs are
in idle state, whose energy consumption can be neglected as it
can be considered an unavoidable basic energy consumption.

c) RSU-VU Communication: The completion of the task
offloading process is performed by sending back the result to
the VU. The time and energy required by the mth VU for
receiving the result from nth RSU is given by,

T xm,rx
m,n =

Dxm,rx

rn,m(Br,n, dn,m)
, Exm,rx

m,n = P rx
m · T xm,rx

m,n , (8)

where, Dxm,rx is the task size processing result at the RSU
side, and rn,m(Br,n, dn,m) is the downlink data rate between
the nth RSU and the mth VU. P rx

m is the reception power of
m-th VU while receiving data from the RSU.

In general, RSUs are located in the proximity of VUs,
resulting in negligible task propagation time during uplink and
downlink communication. Therefore, in this work, we do not
consider the propagation time when modeling the delay of
the task offloading process. Thus, the total time and energy
required for the complete task offloading process is,

T̂ off
m,n = T xm,tx

m,n + T xm,c
n + T xm,rx

m,n (9)

Êoff
m,n = Exm,tx

m,n + Exm,rx
m,n (10)

Since we assume that the mth VU offloads a portion αm of
the task xm towards the nth RSU, the overall time required
to perform the offloading process is:

T off
m,n(αm) = αm · T̂ off

m,n (11)

where we suppose that both communication and processing
latency terms scale linearly. Similarly, the overall energy
consumed by the mth VU for performing the offloading
process is:

Eoff
m,n(αm) = αm · Êoff

m,n (12)

2) Local VU Computation Process: Each VU is able to
locally compute its task and the amount of time and energy
required is based on its processing resources, i.e., cm and fm.
Hence, the local processing time and energy consumption is:

T xm,c
m =

Ωxm

cv,mfv,m
, Exm,c

m = P c
m · T xm,c

m , (15)

where, P c
m is the computational power used during local task

computation at the mth VU. Due to the partial offloading, the
amount of time and energy required for the local computation
at the mth VU is:

T loc
m (αm) = (1− αm)T xm,c

m (16)

Eloc
m (αm) = (1− αm)Exm,c

m (17)
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where αm is the portion of the task to be offloaded by the
mth VU; hence, the overall processing time for the task xm
results:

T xm
m (αm) = max

{
T off
m,n(αm), T loc

m (αm)
}

(18)

where T off
m,n(αm) is the time needed for offloading the portion

of a task αm ·xm to the nth RSU, while T loc
m (αm) is the time

for locally processing the remaining task (1−αm) ·xm by the
mth VU. We suppose that offloading and local computation
can be performed in parallel. Similarly, the overall processing
energy for the task xm results:

Exm
m (αm) = Eoff

m,n(αm) + Eloc
m (αm) (19)

where Eoff
m,n(αm) is the energy consumed offloading the

portion of a task αm · xm to the nth RSU, while Eloc
m (αm) is

the energy consumed during locally processing the remaining
task (1− αm) · xm on mth VU.

3) Partial Offloading Problem: The partial computation of-
floading problem corresponds to set the offloading parameters
αm in an optimal way such that service latency (T̄xm

), sojourn
time (T soj

m,n) and the overall energy consumption constraints
are respected. To this aim, we assume that in an energy
efficient partial offloading operation, the energy spent for the
task xm (Exm

m (αm)) with offloading parameter αm, is less
than the amount of energy required to completely compute
it locally (i.e., Exm,c

m ), since otherwise offloading would not
be beneficial. Therefore, the joint latency and energy con-
strained optimization problem corresponds to find the optimal
A = {α1, . . . , αm, . . . , αM} parameters such that:

P1 : A∗ =

argmin
A

{
1

M

M∑
m=1

(η1T
xm
m (αm) + η2E

xm
m (αm))

}
(20)

subject to the following constraints,

T xm
m (αm) ≤ T̄xm

, ∀m (21a)

T off
m,n(αm) ≤ T soj

m,n, ∀m,∀n (21b)

Exm
m (αm) ≤ Exm,c

m , ∀m (21c)
N∑

n=1

a(m,n) ≤ 1, ∀m ∈M (21d)

M∑
m=1

a(m,n) ·Brsu
v,m ≤ Br,n, ∀n ∈ N (21e)

0 ≤ αm ≤ 1, ∀m ∈M (21f)
0 ≤ η1, η2 ≤ 1, (21g)

where (21a) shows that the total task processing time for
each VU should be limited by the task latency requirement
and (21b) represents that each VU should complete the com-
putation offloading process while it is in the RSU coverage
for avoiding additional latency costs. From (21c), the overall
processing energy of task should be upper bounded by the
amount of energy required to compute it locally. A binary
assignment variable a(m,n) is considered equal to 1 if mth
VU is assigned to the nth RSU, and 0 otherwise. According
to (21d), each VU can offload tasks to no more than one RSU,

Fig. 3. Proposed scheme for the joint FL and task-offloading processes
optimization.

while (21e) shows that the bandwidth resources available for
all active VUs2 in a particular RSU coverage is upper bounded
by its bandwidth. Eq. (21f) limits the offloading parameter
value between 0 and 1. Moreover, in (21g), η1 and η2 are two
weight coefficients between 0 and 1, for balancing latency and
energy consumption.

In a real scenario the amount of data to be offloaded
from each VU towards an RSU while respecting the system
constraints is hard to be estimated; several factors, including
VUs position, velocity, directions, RSU resources, task re-
quirements, surrounding environmental conditions, make the
problem hard to be solved. Many of these parameters are
hard to be accessed given their stochastic behaviors. Therefore,
finding a set of optimal offloading parameters (A∗) in a highly
dynamic environment like VN is a challenging problem to
be solved, and advanced optimization methods are needed.
Belonging to the class of the ML approaches, FL has been
recently introduced as an effective way for performing data
augmentation and significantly reducing the communication
overhead in comparison with direct data-sample exchanges,
allowing also to enhance VUs privacy issues. In order to
properly address the latency and energy constrained offloading
problem defined in (20), we propose to exploit a FL framework
for estimating the set A, composing the offloading portions of
all VUs, based on the VU side parameters.

In Fig. 3 we provide a more detailed step-by-step view of
the considered joint FL and task offloading process optimiza-
tion problem and the proposed solution methodologies; it is
possible to notice that the VUs parameters act as input for
the FL-inspired distributed process (Step 1), whose goal is to
properly set the number of iterations to be performed (Step 2)
in order to have a proper solution for setting the offloading
parameters (Step 3) to be later used by each VU (Step 4).

C. Federated Learning Model

FL is based on the idea that the same ML algorithm is
present at both FL server and FL clients sides, where a
centrally located FL server assists distributed clients during the
learning process. Instead of only executing the ML algorithm
in a centralized server node, it is executed in a federated way
among all the involved nodes through the exchange of a set

2We assume that only a subset of the VUs, named active, have data to
process, and potentially to be offloaded to an RSU.
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of parameters defining the weights of the implemented ML
algorithm. To do this, the FL process is composed of several
steps: information exchange between FL-server and devices
for initializing the learning model over devices, local device
training, parameters exchange over wireless links between de-
vices and the FL-server, parameter collection and aggregation
on the server [38]. In the FL process, we assume that the HAP
acts as FL server, assisting the VUs acting as FL clients for
making the offloading decision. For each offloading request,
the VUs perform numerous FL iterations with the HAP aiming
at properly setting the offloading portion toward the selected
RSU. It has to noticed that the HAP computation infrastructure
can be implemented by resorting to the function virtualization
approach through different virtualization technologies, e.g.,
virtual machines, containers, hyper-visors, for performing the
FL process. Moreover, the interaction with FL-clients can
happen through predefined interfaces (e.g., implementing the
REST API technology) allowing a smarter interaction [39].
However, such considerations are beyond the scope of this
work, that instead mainly focuses on the optimization of the
joint FL-offloading framework.

Even though FL allows to reach a global optimum in
distributed environments, the dynamicity of VN scenarios
introduces an additional challenge. Indeed, FL process cannot
be considered as a granted process, as it consumes resources
by itself. Hence, FL is executed at the cost of a reduction
of resources that can be given to the offloading process. It
is however, clear from past studies that the number of FL
iterations required for reaching a predefined convergence value
can be upper bounded [18], [38], [40], [41] depending on
several factors, including the ML model, number of users
participating in the training process, number of local iteration
on the device, type of radio environment, quality of data,
etc. Therefore, without loss of generality, we consider that
after ρopt FL iterations each VU will be able to estimate the
optimal offloading parameter αopt

m , where ρopt = K
M̄

; K can be
considered as a numerical constant setting the overall number
of FL iterations required to achieve the convergence, while M̄
is the number of VUs participating in the FL training process,
so higher the participating VUs, lower the required iterations,
respecting the FL process behavior.

In this work, we assume the learning process converges
after ρopt FL iterations, when each VU is able to estimate
the offloading parameters3. For the purpose of this paper, we
consider that, in case we stop the FL process in advance, some
estimation error should be considered, as later explained. Since
each FL iteration requires a certain amount of communication
and computational resources, performing ρopt iterations over
all VUs can be challenging and sometimes might not be
feasible given the limited VUs resources and the latency
constraints imposed by both service requirements and sojourn
time. The additional energy cost of each FL iteration can
also limit the number of FL iterations performed by VUs.
Therefore, in this work we consider that the generic m-th VU
is able to perform up to ρm FL iterations with ρm ≤ ρopt.

3In the case of a practical system, the convergence can be bounded by some
stopping criteria, e.g., loss function value.

The set I = {ρ1, · · · , ρm, · · · ρM} contains the number of FL
iterations performed by each VU.

In order to understand the impact of the FL process we
can now introduce the FL iterations latency, the corresponding
energy consumption and the joint optimization model.

1) FL Computation Model: The FL computation corre-
sponds to the local training of the ML model based on the
on-device dataset. In local device training, the mth VU has
to compute the local parameter set wit

v,m through the dataset
having size Km data samples; if we assume that, for every
iteration, the total number of FLOPs required for each data
sample d is ψd, the time and energy consumed during FL
process at the mth device is given by [42]:

T FL,c
m =

∑Km

d=1 ψd

cv,mfv,m
, EFL,c

m = P c
m · T FL,c

m . (22)

We suppose for simplicity that the on-device FL processing
time and energy is the same for every iteration. Conversely, the
FL server is limited to the model aggregation, whose time and
energy is considered as negligible given the abundant available
resources at HAP.

2) FL Communication Model: In FL, the devices commu-
nicate the local model updates towards the HAP in uplink
and receive back the updated global model parameters in
downlink. Both uplink and downlink communication processes
are characterized by transmission and propagation delays, due
to the high distance between VUs and HAP. The propagation
time required for each FL iteration is given by,

T FL,prop
m,it = 2 · dm,HAP

σ
, ∀m (23)

where σ is the propagation speed in the considered transmis-
sion medium, dm,HAP is the distance between the mth VU
and the HAP, which can be calculated by using HAP altitude
(hHAP) and the mth VU location through simple algebraic
passages, and the multiplication by 2 is due to the two-way
propagation delay. During the FL processing, at each iteration
it the mth VU sends the parameters set wit

v,m to the HAP.
Supposing that |wit

m| represents the data size of the parameters
set expressed in bits [32], the uplink transmission time and
energy for the FL parameters in the itth iteration is:

T FL,tx
m,it =

|wit
v,m|

ritm,HAP(B
HAP
v,m , dm,HAP)

, EFL,tx
m,it = P tx

m · T FL,tx
m,it ,

(26)
where, ritm,HAP is the uplink transmission rate between mth
VU and the HAP during the itth iteration, which is a function
of the VUs bandwidth (BHAP

v,m ), and the distance (dm,HAP)
between the mth VU and the HAP, modeled through the
Shannon capacity formula under Rice fading conditions [43].
Since the HAP is accessed by multiple VUs, we assume for
simplicity that the HAP bandwidth is equally shared among
the connected VUs. Also, P tx

m is the VUs, transmission power
while communicating with HAP.

In general, HAP needs to wait for all training VUs to trans-
mit their model parameters before performing the averaging
operation. Therefore, the FL transmission time for the itth
iteration is given by,

T FL,tx
it = max

m

{
T FL,tx
m,it

}
, ∀m (27)
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The HAP performs the aggregation of the received model
parameters (e.g., FedAvg [38]) to create a global parameter
vector wit

G for the next iteration and transmits it back towards
VUs over the downlink communication links. Therefore, in
downlink, the global parameters transmission time and energy
are given by,

T FL,rx
m,it =

|wit
G|

ritHAP,m(BHAP, dHAP,m)
, EFL,rx

m,it = P rx
m · T FL,rx

m,it (28)

where ritHAP,m is the downlink transmission rate between the
HAP and the mth VU during the itth iteration when the global
parameter set is broadcast. P rx

m is the power consumed while
receiving data from HAP. Hence, the total time and energy
required for a single FL iteration can be detailed as:

T FL
m,it = T FL,c

m + T FL,prop
m,it + T FL,tx

it + T FL,rx
m,it (29)

EFL
m,it = EFL,c

m + EFL,tx
m,it + EFL,rx

m,it (30)

D. Joint Offloading and Federated Learning Model

Since the FL process is based on multiple iterations for
exchanging the ML model parameters, it is possible to write
the total time and energy for the FL process when focusing
on the mth VU as,

T FL
m (ρm) =

ρm∑
it=1

T FL
m,it, EFL

m (ρm) =

ρm∑
it=1

EFL
m,it (31)

where ρm is the number of FL iterations performed by mth
VU, T FL

m,it is the amount of time spent, and EFL
m,it is the amount

of energy consumed for the itth iteration of the FL process
depending on both FL communication and computation per-
formance. The time needed for completing both FL iterations
and task processing has to be constrained by the maximum
service latency requirement, given by:

Tm(ρm, αm) = T FL
m (ρm) + T xm

m (αm) ≤ T̄xm
(32)

Also the energy consumed for completing both FL iterations
and task processing has to be constrained by the energy
required to compute a complete task locally, given by:

Em(ρm, αm) = EFL
m (ρm) + Exm

m (αm) ≤ Exm,c
m (33)

Due to the dynamicity of the vehicular environment, com-
putation offloading and FL process latencies should also be
bounded by the VUs sojourn times under RSU and HAP beam
coverage. Since the HAP is acting as an FL server, the whole
FL phase should be completed by the HAP sojourn time,
hence:

T FL
m (ρm) ≤ T soj

m,HAP (34)

In addition, each VU should finish the offloading process
within the RSU sojourn time. Thus,

T FL
m (ρm) + T off

m,n(αm) ≤ T soj
m,n (35)

It is worth to be noticed that the sojourn time does not affect
the overall processing time, while only the offloading time,
since the local computation can be performed also out of the
RSU coverage.

1) Problem Formulation: Following (11), (16), (18), (29),
(31), and (32) the total time Tm(ρm, αm) required for both
phases (i.e., FL and task processing) can be determined. Sim-
ilarly, from (12), (17), (19), (30), (31), and (33) the total energy
Em(ρm, αm) required for both phases can be calculated. The
proposed optimization model aims at minimizing the total
time and energy by properly setting the offloading parameters
and the FL iterations used for determining the offloading
parameters itself. Hence, the problem in (20) can be rewritten
as:

P2 : (I∗,A∗) =

argmin
I,A

{
1

M

M∑
m=1

(η1 · Tm (ρm, αm) + η2 · Em (ρm, αm))

}
(36)

subject to the constraints (21d)-(21g), (32)-(35), and,
M∑

m=1

BHAP
v,m ≤ BHAP (37a)

0 ≤ ρm ≤ ρopt ∀vm ∈ V (37b)

where (32) is the service latency requirement reformulat-
ing (21a) including the FL processing time. Also, (33) is
the reformulated energy constraint defined in (21c) with FL
process energy. Eq. (34) provides an upper bound for the
FL process depending on the HAP sojourn time and (35) is
the reformulated version of (21b), defining the upper bound
of both task offloading and FL process as the RSU sojourn
time: each vehicle should offload the computation data to the
RSU and receive results before it leaves its coverage area.
According to (37a), the sum of bandwidth resources available
for all VUs in non-terrestrial communication links should be
upper bounded by the HAP bandwidth resources. Eq. (37b)
upper bounds the number of iterations performed by each VU
to ρopt.

2) Federated Offloading parameter estimation: Solving the
problem defined in (36) requires finding two sets of op-
timization variables (I,A) and thus is hard to be solved.
However, (I,A) are not two separate sets of variable. As
more iterations are performed, higher is the reliability with
which the offloading parameter is estimated through the FL
process. Hence, the offloading parameter αm can be modeled
as function of the number of FL iterations performed with
the aim of estimating the optimal αopt

m , i.e., αm = αm(ρm).
Without loss of generality, we assume in the following that in
case the m-th VU cannot participate in the FL process, the
offloading parameter is α0

m = αm(ρm = 0), while in case it
can perform ρopt iterations, the estimated offloading parameter
is αopt

m = αm(ρopt). In any other case, the estimated value
αm is a function of ρm FL iterations that are performed by
the mth VU. The exact relationship between αm and ρm is
hard to be set since it depends on several factors such as FL
environment, number of VUs participating in the FL process,
the communication medium between FL clients and server,
etc. To the best of our knowledge there is no model in the
literature aiming at setting the aforementioned relationship.
Therefore, without loss of generality, we consider here that
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Fig. 4. Truncated Normal Distribution of αm as a function of the FL
iterations.

the estimated αm can be modeled as a stochastic value whose
distribution follows a truncated normal distribution with mean
µ and variance σ2, where 0 ≤ αm ≤ 1, since αm is bounded
between 0 and 1 by definition. Therefore, it is possible to
define the probability density function fαm

(·) of αm as,

fαm
(αm;µ, σ)=

 1
σ

ξ(αm−µ
σ )

∆( 1−µ
σ )−∆(−µ

σ )
if 0≤αm≤1

0 otherwise
(38)

where, ξ(·) and ∆(·) are, respectively, the probability density
function of the related standard normal distribution and its
cumulative distribution function, i.e.,

ξ(ω) =
1√
2π
e

(
−ω2

2

)
, ∆(κ) =

1

2

(
1 + erf

(
κ√
2

))
.

In this work we assume that the mean value of the distri-
bution of αm, i.e., µ, and its variance, σ2, are equal to

µ = αopt
m (ρm), σ2 =

(
γ · ρ

opt − ρm
ρopt

)2

(39)

where γ is a numerical constant, used for controlling the
variance of the model. It is worth to be noticed that the
variance is defined in a way that higher ρm, lower is the
variance. This corresponds to say that increasing the number of
iterations reflects in a more reliable estimation of αm provided
that ρm ≤ ρopt. Moreover, the higher the iterations to be
performed, the higher is the time spent in the FL phase, so
the lower is the time left for the offloading phase. This is
the reason why µ is also function of the iterations. This is
consistent with the FL process where more FL iterations turn
out in a better estimation of the offloading parameter. During
simulations, fαm

(αm;µ, σ) is used for estimating the αm for
every mth VU, whose quality will depend upon the number
of FL iterations performed compared with ρopt. A qualitative
representation is reported in Fig. 4 with ρopt = 25, where as the
number of iterations increases, both the distribution variance
and the average optimal offloading parameter become smaller,
leaving less time for the offloading operation.

According to (35) both FL and task offloading processes
should be completed within available sojourn time. Fig. 5
shows the impact of the constraint (35) on the considered
vehicular environment. In particular, we can notice that at the
beginning, the joint FL and offloading process is bounded by
the sojourn time. As the VU moves, despite some iterations

Fig. 5. FL process impact over the offloading parameter value

Fig. 6. FL and Task processing time sharing.

that are performed, the remaining time for completing the FL
process and starting the offloading is reduced, due to the lower
remaining sojourn time.

From the previous description, it is clear that given a certain
amount of time, we have to trade-off between offloading and
FL processes. Let us introduce now a new parameter, named
βm ∈ [0, 1], modeling the portion of time allocated for the FL
process of the mth VU. If βm = 0, the whole time is allocated
for the task processing phase, while if βm = 1 the mth VU
uses the whole available time for the FL phase. Considering
the target latency of the tasks generated by each VU as a
reference time interval, it is possible to set the maximum
number of possible iterations for the FL process:

ρm(βm) s.t. T FL
m (βm) =

ρm(βm)∑
it=1

T FL
m,it ≤ βm · T̄xm

(40)

where B = {β1, . . . , βm, . . . , βM}. Each VU performs nu-
merous FL iterations aiming at finding the optimal offloading
amount to be transferred towards RSU, where any additional
FL iteration reduce the variance in (38), i.e., its reliability,
while reducing its average value.

Fig. 6 shows the available resources for both phases as a
function of βm. As βm increases VU spends more time on
the FL process through additional iterations, which reduces
the available time for the processing phase since both phases
should be completed within the requested service latency.

In the end, the optimization problem defined in (36) can be
rewritten as,

P3 : B∗ = argmin
B

{
1

M

M∑
m=1

(η1Tm(ρm(βm), αm(βm))
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+ η2Em(ρm(βm), αm(βm)))

}
(41)

subject to the constraints (21d)-(21g), (32)-(35), (37), (40) and,

0 ≤ βm ≤ 1 ∀vm ∈ V (42)

where (40) limits the maximum number of FL iterations
performed by each VU based on the available FL process time
and, according to (42), βm can take any value between 0 and 1.

IV. PROPOSED SOLUTIONS

The solution space dimension for the problem P3 can be
estimated as SP = Θ(M), where Θ is the number of possible
values taken by βm, i.e., the smaller step size for βm dis-
cretization, the bigger is the solution space. In a certain service
area, the number of VUs requesting services can also be huge.
Therefore, despite being simplified with respect to P2, solving
P3 for the whole set V , even for a discrete solution space,
is computationally expensive and requires exploring a huge
solution space SP; thus sub-optimal approaches operating
on a subspace of SP are required. In order to address the
problem, first, we propose an RSU-based clustering approach
where each RSU performs the optimization for the VUs under
its coverage. As a second scheme, we consider a distributed
approach, where each VU performs the optimization by itself
without considering the surrounding VUs. In both cases, a GA
is proposed as the solution methodology.

In order to simplify the problem we assume that each
VU will be assigned to the nearest RSU for computation
offloading, hence:

a(m,n) = 1 ⇐⇒ n = argmin
n′

{dm,n′} ∀m,n′ (43)

where dm,n′ is the distance between the mth VU and the n′th
RSU. Each VU starts by downloading the FL model from the
HAP and infers the initial offloading parameter α0

m, supposed
to be a random value between 0 and 1.

A. Clustered Approach

In the cluster-based sub-optimal approach we assume that
it is possible to find βm by considering the active VUs (i.e.,
VUs requesting offloading services) under each RSU coverage,
where Mn corresponds to the VUs managed by the nth
RSU. The RSU communication and computing resources are
supposed to be equally shared among all active VUs in its
coverage area. The solution vector Bn = {β1, β2, · · · , βMn

}
is composed by the Mn values for all the VUs connected to
nth RSU. We aim to determine B∗

n, the optimal parameter set
for the nth RSU. The overall optimal B∗ can be determined
by merging the solutions from all RSUs, i.e., B∗ = ∪nB∗

n.
The problem originally formulated in (41) is thus modified as

B∗
n = argmin

Bn

{
1

Mn

Mn∑
m=1

[η1 · Tm(ρm(βm), αm(βm))

+ η2 · Em(ρm(βm), αm(βm))]

}
(44)

In Algorithm 1 the steps used for the RSU based clustered
optimization are presented. At the beginning, VUs are assigned
to the RSUs based on the minimum distance criterion in (43),
from which the number of VUs requesting services from each
RSU is determined (Line 1-2). After this, the optimal set of
Bn values for all the VUs associated with a given RSU is
determined by using (44) (Line 3-6). In the end, the algorithm
returns the solution set of all RSUs (Line 7).
Algorithm 1 Clustered Approach
Input: N,M, {dm,n}
Output: B∗

1: a(m,n) = 1 ⇐⇒ n = argminn
′ {dm,n

′ } ∀m.
2: Find Mn =

∑M
m=1 a(m,n),∀n

3: for all n = 1, · · ·N do
4: ∀m ∈ Mn

5: Find B∗
n by solving (44)

6: end for
7: return B∗ = {B∗

1 , · · · ,B∗
n, · · · B∗

N}

1) Clustering Policies: In order to better understand the
impact of the clustered approach we have considered three
different clustering policies.

a) Full Clustering Policy (FC): In this policy, all the
active Mn VUs of nth RSU cluster participate to the FL
process before performing offloading, hence,

Mn =

M∑
m=1

a(m,n) ∀n

b) Probabilistic Clustering Policy (PC): In this ap-
proach, we randomly classify the Mn VUs of nth RSU
cluster into two subgroups M̂1

n and M̂2
n. VUs belonging

to M̂1
n perform FL process with optimal β∗

m determined
through (44) while VUs in M̂2

n performs offloading with
initially estimated offloading parameter α0

m, i.e., βm = 0. By
this policy we would like to understand the impact of the
VUs when participating to the FL process. The classification
of VUs into two subgroups is based on a Bernoulli distribution
where the probability of the m-th VU being in M̂1

n is p, i.e.,
P (m ∈ M̂1

n) = p and the probability being in M̂2
n is (1− p),

i.e., P (m ∈ M̂2
n) = (1− p).

c) Distance-Based Clustering Policy (DBC): In this ap-
proach the selection of the VUs is based on the available
distance before they move out of the RSU coverage. In this
policy we would like to give more importance to those VUs
staying longer within the same RSU coverage; hence, we select
them for performing FL. Therefore for the nth RSU we have:

M̂1
n =

{
m|Πm,n ≥ Π̂, m ∈Mn

}
where M̂1

n are VUs that perform FL iterations before the
computation offloading process with optimal βm determined
through (44). Π̂ is the distance bound used for partitioning
VUs into two groups. The remaining VUs, will not participate
into the FL training process, i.e., βm = 0 and given by,

M̂2
n =

{
m|m /∈ M̂1

n, m ∈Mn

}
such that Mn = M̂1

n ∪ M̂2
n
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B. Distributed Approach

Due to its dynamic nature, predicting the exact VUs number
and their characteristics even if within the same RSU is
a difficult task. Some of the main reasons include VUs
unpredictable velocity, directions, drivers’ behaviors, different
types of vehicles, etc. Moreover, in many situations, privacy-
protective VUs are reluctant to share their information with
surrounding nodes, limiting the VUs capability for understand-
ing the surrounding environment. In this situation, each VU
has to offload computation data towards RSU without knowing
how many other VUs have already requested the services from
that particular RSU with certain assumptions over available
RSU resources. In such situations, VUs can act selfishly and
assume that no other VUs have requested services from a
selected RSU and its complete resource pool can be used.
Here, we propose a VU-based distributed approach where
VU makes similar assumptions while offloading data towards
RSU nodes. Thus, in the VU-based distributed approach, we
consider that VUs are not aware of nearby competing VUs
and perform the optimization without considering them. The
problem originally formulated in (41), is modified as

β∗
m = argmin

βm

{η1 · Tm(ρm(βm), αm(βm))

+ η2 · Em(ρm(βm), αm(βm))} ∀m (45)

It is possible to notice that in this case we suppose no mutual
influence among different VUs.

C. Genetic Algorithm

We propose a GA-based solution for solving both cluster-
based and distributed approaches. GAs are evolutionary search
methods inspired by the theory of natural selection and genet-
ics. GA process begins with an initial population space (PS)
that constitutes the set of possible solutions (i.e., individuals),
each having a chromosome (C). Through an iterative process,
involving the creation of a new PS with possibly better
individuals at each step, the sub-optimal solution is obtained.
The evaluation process includes the analysis of each C of the
current PS through a fitness function (FF), the selection of
a parent C is based on a selection function (Sf ), then the
formation of new individuals by using mutation and crossover
GA operators. In the mutation process, a new C is formed by
altering some of the genes in the selected solution from (PS),
while, in the crossover process, two chromosome sets with
good fitness function constitute a C for the next generation
by combining their genes. Each evaluation creates a better
solution set and finally ends by providing a solution point
with a higher fitness value. More comprehensive information
on GA and evolutionary algorithms can be found in [44], while
here we focus on the main elements for the sake of brevity.

a) Chromosome: In this work, we have considered C
constituted by set of βm ∈ Bn values for the nth RSU. Thus,
each βm ∈ [0, 1] acts as a gene for C.

b) Fitness Function: The FF allows to model the prob-
lem to be minimized considering also the constraints; hence,
it is defined by using the objective function in (44), later
written as f(Bn) for the nth RSU, plus three additional penalty

functions related to the constraints in (32), (33) and (35). The
fitness function FF(Bn) is:

FF(Bn) = f(Bn) + Υ1 ·max(0, C1(Bn))+

Υ2 ·max(0, C2(Bn)) + Υ3 ·max(0, C3(Bn)) (46)

where Υ1, Υ2 and Υ3 are the weighting coefficients for the
penalty values, and:

C1(Bn) =
∑
Mn

(
Tm(ρm(βm), αm(βm))− T̄xm

)
C2(Bn) =

∑
Mn

(Em(ρm(βm), αm(βm))− Exm,c
m )

C3(Bn) =
∑
Mn

(
T FL
m (ρm(βm)) + T off

m,n(αm(βm))− T soj
m,n

)
where C1(Bn) is the additional fitness penalty for VUs not
performing FL and offloading process within the service
latency requirement, C2(Bn) is the penalty for not respecting
the energy constraint defined in (33) and C3(Bn) is the
supplementary penalty for VUs not performing the offloading
process before moving out of RSU coverage.

c) Selection: The selection function Sf used for the
parent selection is based on the roulette wheel selection
technique, where the selection probability for an individual to
be selected depends upon its fitness score. It should be noted
that since our problem is latency and energy minimization,
parents with the lowest fitness are selected at each round for
reproduction stage.

d) Crossover: In the crossover operator, new chromo-
somes (Cnew

1 , Cnew
2 ) are generated by alternating genes of

the parents (Cold
1 , Cold

2 ) from a crossover point. Thus, child
chromosomes can be written as

Cnew
1 = ΦCold

1 + (1− Φ)Cold
2 , Cnew

2 = ΦCold
2 + (1− Φ)Cold

1

where Φ is the crossover point uniformly distributed in [Λ, (1+
Λ)], i.e., Φ ∼ U(−Λ, 1 + Λ)

e) Mutation: We have used a Gaussian mutation tech-
nique where selected genes (βm) from a child C can be altered
by adding a random value from a Gaussian distribution, i.e.,
βm → βm+ν, where, ν is a random variable with a Gaussian
distribution, i.e., ν ∼ N (µ, σ2).

Algorithm 2 The proposed GA-based Approach
Input: FF, Gmax,Mn,Φ, ν
Output: B∗

n

1: Generate the initial population space PS with each βm ∈ [0, 1]
2: while i ≤ Gmax do
3: function EVALUATE(PS)
4: Find FF(C), ∀C ∈ PS.
5: end function
6: function SEARCH(PS)
7: Select better fit individuals using Sf

8: end function
9: function CREATE(PS)

10: Generate new Cs through Crossover and Mutation (using Φ, ν).
11: Integrate Cs with current PS and sort them using fitness scores i.e., FF (C)
12: end function
13: Replace current PS with new best set of Cs.
14: i = i + 1
15: end while
16: return B∗

n
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Algorithm 2 shows the steps used during the implementa-
tion of GA for the clustered approach. The main GA steps
include the evaluation of PS (Line 3-5), selection of better fit
individuals as parent Cs (Line 6-8), generation of new possibly
better fit Cs for the next generation (Line 9-12). The algorithm
terminates after a maximum number of iterations Gmax are
reached. A similar process can be used for the distributed
case by considering the individual VUs, where GA performs
optimization for each m ∈ Mn separately. It is worth to be
noticed that, when GA is applied to the clustered approaches
a set of VUs participates in the GA process. GA process can
produce, for some of these VUs, a solution with βm = 0,
corresponding to exclude such VUs from the FL process. Thus,
inherently, GA process is also able to optimize the clusters’
size by including/excluding VUs from the FL process, if there
is an advantage in terms of cost.

D. Limited Search-based Heuristic Approach (LS-HuA)
In order to compare the results with a simpler while

sub-optimal solution, we propose also an intuitive heuristic
approach where we consider a reduced-size solution space ŜP
through a user-defined parameter θhu representing the number
of possible values taken by the parameter βm. In this way we
are going to optimize the problem while considering only a
subset of possible solutions. For example, in case of θhu = 5,
βm ∈ {0, 0.2, 0.4, 0.6, 0.8}. We do not consider the case with
βm = 1, since it corresponds to completely assign the time
interval to the FL process, resulting in an always infeasible
solution for active VUs having tasks to be offload. The smaller
values of θhu reduces the simulation time, while limiting the
accuracy of a solution provided. On the other hand, larger
values of θhu allow the user to search over the larger SP for
finding an optimal solution (i.e., exhaustive search). Also in
this case βm = 0 corresponds to exclude the mth VU from
the FL process.

Algorithm 3 lists the steps followed during the search
process. It includes the creation of a reduced search space
(Line 1), initializing the cost function value (fhu) that stores
the optimal cost for each iteration (Line 2), and iterating over
all possible solution points (Bn) from ŜP for finding the best
possible solution (Line 3-12). In the end, the algorithm returns
the best possible solution point Bhu

n found through iterations.
In case there is no feasible solution available, VU decides to
offload without performing any FL iteration.

Algorithm 3 Limited Search-based Heuristic Approach
Input: Mn, θhu

Output: Bhu
n

1: Create ŜP = {βn} of size θ(Mn)
hu with all possible solution points to be searched

in the reduced-size solution space
2: Initialize fhu = ∞,
3: for all Bn ∈ ŜP do
4: Use (44) for finding total cost f(Bn)
5: Determine all constraint functions values
6: if f(Bn) ≤ fhu and all constraints are satisfied then
7: fhu = f(Bn) and Bhu

n = Bn

8: end if
9: end for

10: if fhu = ∞ (i.e., no feasible solution found) then
11: Bhu

n = {0}1×Mn
12: end if
13: return Bhu

n

E. Optimal Offloading Parameter

Here we aim at finding a closed form expression for the
optimal offloading parameter αopt

m (βm) having set βm. It
should be noticed that this particular analysis is carried out by
considering that all system parameters are known in advance,
which is not the case in reality given the uncertainty of the
environment. Thus the results are used for comparison.

In case we fix βm it is possible to obtain the optimal
offloading parameter αopt

m (βm) by resorting to the equality
conditions in (18), (33) and (35). Resorting to (18), the optimal
offloading parameter (αT1

m ) implies that:

T off
m,n(α

T1
m ) = T loc

m (αT1
m ) (47)

Exploiting (11) and (16), we have the following:

T off
m,n(α

T1
m ) = αT1

m · T̂ off
m,n, T loc

m (αT1
m ) = (1− αT1

m ) · T xm,c
m

Hence, exploiting (47) we have,

αT1
m =

T xm,c
m

T xm,c
m + T̂ off

m,n

(48)

In addition, the equality condition in (35) allows to achieve
an optimal offloading parameter αT2

m (βm) so that,

T FL
m (ρm(βm)) + T off

m,n(α
T2
m (βm)) = T soj

m,n

where,
T off
m,n(α

T2
m (βm)) = αT2

m (βm) · T̂ off
m,n

which returns,

αT2
m (βm) =

T soj
m,n − T FL

m (ρm(βm))

T̂ off
m,n

(49)

In case the mth VU performs the FL process for a longer
time and goes out of the coverage of RSU, i.e., T soj

m,n <
T FL
m (ρm(βm)), it will not be able to offload any data towards

the RSU, i.e., αT2
m (βm) = 0. Hence, (49) can be rewritten as,

αT2
m (βm) = max

{
0,
T soj
m,n − T FL

m (ρm(βm))

T̂ off
m,n

}
(50)

Following the energy constraint defined in (33) equality
holds for a particular optimal offloading parameter αE1

m (βm)
and can be written as,

EFL
m (ρm(βm)) + Exm

m (αE1
m (βm)) = Exm,c

m

Exploiting (12) and (19), we have the following:

Exm
m (αE1

m (βm)) = αE1
m (βm) · Êoff

m,n + (1− αE1
m (βm)) · Exm,c

m

that returns,

αE1
m (βm) =

−EFL
m (ρm(βm))

Êoff
m,n − Exm,c

m

(51)

In such cases where Êoff
m,n > Exm,c

m , performing compu-
tation offloading is not an option since it requires additional
energy and that results into αE1

m (βm) = 0. Therefore, (51) can
be modified to,

αE1
m (βm) = max

{
0,

−EFL
m (βm)

Êoff
m,n − Exm,c

m

}
(52)
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TABLE I
SIMULATION PARAMETERS

Simulation parameters
HAP Beam Coverage (RHAP) 2 Km
RSU Coverage (Rr,n) 25 m
Task Size (Dxm ) 2.5 MB
Task Computation (Ωxm ) 103 ×Dxm FLOPS
Task Results (Dxm,rx) 0.5 MB
VU Flops (cv,n · fv,n) 8 GFLOPS
VU Tx. Energy (P tx

m) 1.3 W [23]
VU Rx. Energy (P rx

m) 1.1 W [23]
VU Comp. Energy (P c

m) 0.9 W [23]
RSU Flops (cr,n · fr,n) 80 GFLOPS
HAP Beam Bandwidth (BHAP) 100 MHz
RSU Bandwidth (Br,n), ∀n 10 MHz
HAP Altitude (hHAP) 20 Km [17]

In the end, (48), (50), and (52) are considered for finding
αopt
m (βm) as:

αopt
m (βm) = min

{
αT1
m , α

T2
m (βm), αE1

m (βm)
}

(53)

This procedure is used as a reference value in the following
for testing the effectiveness of the estimated offloading param-
eters that depends on the FL and, in turns, on its iterations.

V. NUMERICAL RESULTS

Numerical results are obtained through computer simula-
tions with Matlab. A variable number of VUs between 100
and 1000 are considered, assuming that each one is generating
tasks with a probability equal to 0.2, while the remaining have
no task to be offloaded. VUs are uniformly distributed in a
two-lane road and travel in either directions with a velocity v̄m
equal to 10 m/s. Moreover, 80 RSUs are randomly placed on
either sides of the lanes. The task latency requirement (T̄xm)
has been set to 2 s; this value is consistent with other works
in the literature [22], [37] considering similar scenarios and
applications. The other parameters considered in simulation
are listed in Table I.

The GA weight coefficients are Υ1,Υ3 = 10, Υ2 = 1, while
the crossover function parameter is Λ = 0.1, and the mutation
function parameters are µ = 0.02, σ = 0.1. Moreover, we set
an initial population of 30 chromosomes and Gmax=50, α0

m is
uniformly distributed between 0 and 1, while K is 2000, and
both |wi

m| and |wG| have size 1000 bits. The parameter γ is set
to 0.4 while estimating offloading parameters. In DBC policy
Π̂ is equal to Rr,n/2, while p = 0.5 is used in PC. Also, the
numerical value used for both η1 and η2 is 0.5. Finally, we
have considered θhu = 6 when evaluating the results for the
LS-HuA.

In the following, we present the results by comparing the
proposed GA approach with LS-HuA and two static bench-
marks:

• Computation Offloading without Performing any FL Iter-
ations (Without FL): In this approach, each VU decides
to offload data without performing any FL iteration.
Therefore, the offloading operation is performed with
α0
m without adding any FL cost. Since the initial value

of offloading parameter may or may not be optimal,
this approach cannot guaranty the optimal performance.
Though this approach can have a reduced cost, VU
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Fig. 7. Cost Function

performs the offloading operation without taking into
account the available time and energy resources which
may diminish performance in terms of constraint failures.

• Computation Offloading by Performing Complete FL It-
erations (Complete FL): In this particular method, each
VU performs the ρopt FL iterations before offloading data
towards RSU. Thus the offloading operation is performed
with αopt

m , as defined in (53), when βm is such that ρm =
ρopt. Though VUs can perform offloading with optimal
offloading parameters, it is not always feasible to perform
ρopt FL iterations with limited service time, sojourn time,
and energy of VU, which limits the performance of this
approach.

These two benchmarks do not consider the available resources
of VUs while making computation offloading decisions and
may have a sub-optimal performance over long-term simu-
lations. In the following figures, GA-FC, GA-DBC, GA-PC,
and GA-D are the acronyms used for the Genetic Algorithm
technique with FC, DBC, PC, and Distributed Clustering
approaches, respectively.

1) Avg. Latency and Energy Cost with Varying VUs: In
Fig. 7, the average cost in terms of joint latency and energy
consumed for both FL and task processing phases using a
variable number of VUs is shown. The results show that
GA and LS-HuA techniques have a considerable advantage
over the Complete FL approach with reduced cost values.
Even though the Without FL approach has the minimum
cost among all the proposed methods, it cannot guarantee
a reliable performance in terms of service latency, sojourn
time, and energy constraints, as shown and discussed later in
Figs. 8-10. The proposed Clustered GA approaches (i.e., GA-
FC, GA-DBC, GA-PC), thanks to a better knowledge of the
surrounding environment, performs FL and task processing
with a lower cost along with better reliability, which can ben-
efit several latency-critical services demanded by VUs having
limited energy resources. Since the required FL iterations to
achieve model convergence reduces with the participation of
more VUs, the cost of the Complete FL process decreases
with increasing VUs, but still it fails to achieve the overall
performance of proposed GA methods.

2) Performance in Terms of Sojourn Time Failures: Fig. 8
shows the percentage of number of VUs failing to perform
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the offloading operation before leaving the RSU coverage.
According to constraint (35), each VU should complete both
FL and task offloading processes within available sojourn
time. The two benchmark methods lack suitable flexibility
while performing the offloading operations as both methods
do not utilize the available latency resources properly while
performing the offloading operations. That results in higher
failures since they are not able to perform both FL and task
offloading operations in a limited sojourn time. It should be
noted that the complete FL approach has a falling curve, which
is due to the fact that by the increase in the number of VUs in
a service area, a shorter time will be required to achieve FL
convergence. On the other hand, both GA schemes and LS-
HuA approach perform an adequate number of FL iterations,
before performing the offloading operations, and, as a result,
have very few failures with reduced cost. The performance of
the Without FL worsens with an increasing number of VUs,
and at a certain point, it has even higher failures than the
Complete FL approach.

3) Performance in Terms of Service Time Outage: Fig. 9
shows the percentage of VUs failing to perform both FL
and the task processing operation within a demanded service
latency. The significant performance improvement in terms
of a reduced number of failures can be observed in the GA
and LS-HuA results, comparing with the benchmark methods.
This is mainly because of the improper allocation of VUs
available resources towards FL and task processing phases
in the benchmark methods. These results also highlight the
importance of proper allocation of VU resources for the FL
and task processing phases (estimation of B), for improving
the overall VNs performance.

4) Performance in Terms of Energy: Fig. 10 shows the per-
centage of VUs violating the energy constraint in (33). Since
each FL iteration costs energy, performing ρopt iterations for
each VU before offloading during the Complete FL approach
decreases its reliability in terms of respecting VUs energy
constraint and can be seen from these results. On the other
hand, GA and LS-HuA approaches have better performance
since they allocate a proper number of FL iterations before
offloading. Thus these results highlight the importance of
performing an adequate number of FL by taking into account
the VUs available resources to achieve a reliable performance
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with FL in dynamic VNs.
5) Offloading Performance: Fig. 11 shows the average error

when estimating the offloading parameters. For a given set M
of VUs, the error in the estimation process is measured by
using the Root Mean Square Error (RMSE) as,

E(M,B∗) =

√√√√ 1

M

M∑
i=1

∣∣∣(αopt
m (β∗

m)
)2 − (αm(β∗

m))
2
∣∣∣

where αopt
m (β∗

m) is the offloading parameter estimated in
(53), while αm(β∗

m) is derived through (38). The value E
decreases for the GA-FC approach with higher values of M ,
as the number of surrounding VUs increases. Other clustered
approaches have reduced offloading performance since only a
lower number of VUs participate in the optimization process
before performing offloading. Also, with limited available
information, the distributed approach fails to adapt itself
properly.

6) Impact of GA Iterations: In the case of GA, the perfor-
mance can be improved by increasing the number of iterations
of the GA. In Fig. 12, we compare the performance in terms
of average latency and energy cost by considering a different
number of GA iterations in the GA-FC policy. It can be seen
that as the number of iterations increases, GA performance
improves. However, after a certain number of iterations (i.e.,
50), performance of the GA process becomes stable, thus,
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performing a higher number of iterations can only increase the
time complexity of the GA process by several folds, without
major gains in terms of offloading solution.

VI. CONCLUSION

In this work, we performed the optimization for a joint FL
and task processing problem over the integrated air-ground
network of HAP-assisted VN. For this, we first modeled the
computation offloading problem in the vehicular scenario in
which each VU can offload a portion of their tasks to the
surrounding RSUs. Next, an integrated air-ground network-
based FL platform was introduced, where powerful HAPs act
as an FL server to assist several VUs (i.e., FL clients) in
estimating the better offloading parameters. A joint compu-
tation offloading and FL process optimization problem aiming
at minimization of overall latency and energy cost was formu-
lated. The proposed solution methods include the RSU cluster-
based approach with several clustering policies and distributed
approaches. An evolutionary search-based GA was proposed to
find both allocated time for the two phases and estimating the
offloaded portions for the VUs. Simulation results demonstrate
that our proposed GA-based approaches, when compared with
other benchmark solutions, show a network-wide performance
improvement.

As future directions of this work, we point out the ex-
tension to autonomous driving scenarios, where VUs data

can be analyzed for solving vehicular problems through the
proposed FL platform. Some other challenges to be faced
include (i) a proper RSU selection for offloading, (ii) the
possibility of considering a network of multiple decentralized
HAPs for a higher fault-tolerance, (iii) the optimization of the
number of VUs participating in the FL process considering
their available resources, (iv) the extension to intermediate
FL layers (e.g., LAPs, UAVs, RSUs) for reducing the com-
munication/computation costs during FL data processing and
communication (i.e., Hierarchical FL).
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[38] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and
H. V. Poor, “Distributed learning in wireless networks: Recent progress
and future challenges,” 2021, arXiv:2104.02151.

[39] M. Isaksson and K. Norrman, “Secure federated learning in 5G mobile
networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications
Conference, Taipei, Taiwan, Dec. 2020.

[40] C. T. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless networks:
Convergence analysis and resource allocation,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 398–409, Feb. 2021.

[41] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive
weighting,” IEEE Trans. on Cogn. Commun. Netw., 2021, Early Access.

[42] X. Mo and J. Xu, “Energy-efficient federated edge learning with joint
communication and computation design,” Journal of Communications
and Information Networks, vol. 6, no. 2, pp. 110–124, Jun. 2021.

[43] N. Sagias, G. Tombras, and G. Karagiannidis, “New results for the shan-
non channel capacity in generalized fading channels,” IEEE Commun.
Lett., vol. 9, no. 2, pp. 97–99, Feb. 2005.

[44] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing,
2nd ed. Berlin, Heidelberg: Springer, 2015.

Swapnil Sadashiv Shinde (Student Member, IEEE)
is a Ph.D. student at the University of Bologna, Italy.
He received the the MS degree in Telecommunica-
tion Engineering from the University of Bologna,
Italy, in 2020. From 2015 to 2017, he worked as
a Project Engineer in the Indian Institute of Tech-
nology, Kanpur, India. His main focus is on the
Connected Vehicles for Beyond 5G Scenarios.

Arash Bozorgchenani (Member, IEEE) Has been a
Research Associate at Lancaster University, the UK
since 2020. During 2016-2020 he obtained his Ph.D.
degree in Telecommunications and IT at University
of Bologna, Italy, where he spent one year as a post-
doctoral researcher. He has been involved in both
national Gaucho (PRIN 2015, Italy) and European
(H2020 SANCUS) projects. His research interests
include resource allocation, machine learning and
optimization techniques in wireless communications.

Daniele Tarchi (Senior Member, IEEE) is an Asso-
ciate Professor at the University of Bologna, Italy.
He holds a Ph.D. degree in Informatics and Telecom-
munications Engineering from the University of Flo-
rence, Florence, Italy, in 2004. He is the author of
more than 130 published articles in international
journals and conference proceedings. His research
interests are mainly on Wireless Communications
and Networks, Satellite Communications and Net-
works, Edge Computing, Fog Computing, Smart
Cities, and Optimization Techniques. Prof. Tarchi is

an IEEE Senior Member since 2012.

Qiang Ni (Senior Member, IEEE) is a Professor at
the School of Computing and Communications, Lan-
caster University, U.K. His research areas include
future generation communications and network-
ing, including green communications/networking,
millimeter-wave wireless, cognitive radio systems,
5G/6G, SDN, cloud networks, edge computing,
dispersed computing, IoT, cyber physical systems,
AI/machine learning and vehicular networks. He has
authored or co-authored 300+ papers in these areas.
He was an IEEE 802.11 Wireless Standard Working

Group Voting Member and a contributor to various IEEE wireless standards.


