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8 ABSTRACT9
10

Correlated time series data arise in many applications. This paper describes and compares sev-11

eral prominent single and multiple changepoint techniques for correlated time series. In the12

single changepoint problem, various cumulative sum (CUSUM) and likelihood ratio statistics,13

along with boundary cropping scenarios and scaling methods (e.g., scaling to an extreme value14

or Brownian Bridge limit) are compared. A recently developed test based on summing squared15

CUSUM statistics over all time indices is shown to have controlled Type I error and superior16

detection power. In the multiple changepoint setting, penalized likelihoods drive the discourse,17

with AIC, BIC, mBIC, and MDL penalties being considered. Binary and wild binary segmenta-18

tion techniques are also compared. A new distance metric is introduced that measures differeces19

between two multiple changepoint segmentations. Algorithmic and computational concerns are20

discussed and simulations are given to support all conclusions. In the end, the multiple change-21

point setting admits no clear methodological winner, performance depending on the particular22

scenario. Nonetheless, some practical guidance emerges.23

24

1. Introduction25

Changepoints (abrupt shifts) arise in many time series due to changes in recording equipment, observers, etc. In26

climatology, temperature trends computed from raw data can be misleading if homogeneity adjustments for station27

relocation moves and gauge changes are not a priori made to the record. Lu and Lund (2007) give an example where28

trend conclusions reverse when changepoint information is neglected. Cases with multiple changepoints are also29

frequently encountered; for example, in climatology, United States weather stations average about six station moves30

and/or gauge changes per century of operation (Menne, Williams, and Vose, 2009).31

This paper intends to guide the researcher on the best changepoint techniques to use in common time series scenar-32

ios. Assumptions are crucial in changepoint analyses and can significantly alter conclusions; here, correlation issues33

take center stage. It is known that changepoint inferences made from positively correlated series can be spurious if34

correlation is not taken into account. Even lag one correlations as small as 0.25 can have deleterious consequences on35

changepoint conclusions (Lund, Wang, Lu, Reeves, Gallagher, and Feng, 2007).36

This paper’s primary contribution is to extend/modify many of the popular changepoint methods for IID data to37

correlated settings. Much of our work lies with developing methods that put all techniques, to the best extent possible,38

on the same footing in time series settings. For example, single changepoint tests will be shown to work best when39

applied to estimated versions of the series’ one-step-ahead prediction residuals, computed under a null hypothesis of40

no changepoints. Because of this, tests that handle one-step-ahead prediction residuals need to be developed. Two41

other novel contributions in this article are: (1) developing and proposing a new single changepoint test based on42

the square of the cumulative sum of one-step-ahead prediction residuals (see Section 2.2), and 2) developing a new43

distance that compares multiple changepoint segmentations (see Section 5.1). The comparative aspect of the paper is44

yet another contribution— and there is much to compare. In addition to comparing different statistics via Type I errors45

and powers, the paper also compares different asymptotic scaling methods.46
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Comparing Changepoint Techniques for Time Series

Academic changepoint research commenced with the single changepoint case for independent and identically dis-47

tributed (IID) data in Page (1955). The subject is now vast, with hundreds of papers devoted to the topic. With our48

objectives, some concessions are necessary. Foremost, this paper examines mean shift changepoints only; that is,49

while series mean levels are allowed to abruptly shift, the variances and correlations of the series are held constant50

(stationary) in time. Changepoints can also occur in variances (volatilities) (Chapman, Eckley, and Killick, 2020),51

in the series’ correlation structures (Davis, Lee, and Rodriguez-Yam, 2006; Aue and Horváth, 2013; Picard, 1985),52

or even in the marginal distribution of the series (Gallagher, Lund, and Robbins, 2012). Secondarily, the simulation53

results reported here are for Gaussian series only. Robust and non-parametric changepoint methods for non-Gaussian54

dependent data exist and can be based on the spectrum Picard (1985), empirical characteristic functions Hušková and55

Meintanis (2006), M-estimators (Hušková and Marušiaková, 2012; Hušková, 2013; Chochola, Hušková, Prášková,56

and Steinebach, 2013; Prášková and Chochola, 2014), or bootstrapping (Hušková and Kirch, 2008, 2012; Kirch, 2008).57

Thirdly, we compare the most common types of techniques within the literature, notably excluding those based on en-58

ergy statistics (Matteson and James, 2014), moving sums (Eichinger and Kirch, 2018), andU statistics (Dehling, Fried,59

Garcia, and Wendler, 2015).60

The rest of this paper proceeds as follows. Section 2 overviews single changepoint detection methods, typically61

referred to as at most one changepoint (AMOC) tests. Here, a variety of test statistics and their scalings are reviewed62

and adapted to the time series setting. Akin to the classifications in Aue andHorváth (2013), we specifically discuss two63

methods for modifying changepoint techniques based on IID data: 1) retain the IID test statistic and modify the limiting64

distribution for any correlation; and 2) modify the test statistic to account for the correlation; similar discussions appear65

in Robbins, Gallagher, Lund, and Aue (2011) and Aue and Horváth (2013). Section 3 compares AMOC detectors in a66

simulation study. Thereafter, we move to the case of multiple changepoints. Here, performance assessment becomes67

more challenging. For this, a novel changepoint configuration distance specifically designed for our comparisons is68

developed. Simulations in Section 4 consider a variety of multiple changepoint configurations. We summarize results69

in Section 6 with recommendations for practitioners.70

2. Single Changepoint Techniques71

Let {Xt}Nt=1 be the observed time series and 
(ℎ) = Cov(Xt+ℎ, Xt) be the lag ℎ autocovariance of the series. We
want to test whether there exists a change in the mean structure while assuming the second order structure is constant
over time. An AMOC model with the changepoint occurring at the unknown time k is

Xt =

{

� + �t, for 1 ≤ t ≤ k,
� + Δ + �t, for k + 1 ≤ t ≤ N

, (1)

where � is an unknown location parameter, Δ is the magnitude of mean shift at time k, and {�t} is a stationary time
series with zero mean and lag ℎ autocovariance 
(ℎ). A hypothesis test for this scenario is:

H0 ∶ Δ = 0 versus H1 ∶ Δ ≠ 0 for some k ∈ {1,… , N − 1}. (2)
When {�t} is IID, cumulative sum (CUSUM) and likelihood ratio tests (LRT) are well understood, see Chen and72

Gupta (2011). When incorporating general stationary autocovariance aspects into a changepoint testing framework,73

there are two common strategies: 1) keep the IID test statistic and identify any changes in the limiting distribution74

induced by the correlation; and 2) incorporate the autocovariance within the test statistic. Antoch, Hušková, and75

Prášková (1997) provide a summary of the first approach for many common changepoint statistics and provide simu-76

lations indicating how autocorrelation impacts the performance of the hypothesis tests; Kirch (2007) uses resampling77

techniques to improve the finite sample performance of these tests. Robbins et al. (2011) shows that estimating and78

using the autocorrelation (the second approach) is preferable with CUSUM and LRTs.79

2.1. CUSUM Tests80

The CUSUM method was first introduced by Page (1955) and compares sample means before and after each ad-
missible changepoint time via the statistic

max
1≤k<N

|

|

CUSUMX(k)|| ∶= max
1≤k<N

|

|

|

|

|

|

1
√

N

[ k
∑

t=1
Xt −

k
N

N
∑

t=1
Xt

]

|

|

|

|

|

|

. (3)
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CUSUM tests have relatively poor detection power when the changepoint occurs near the boundaries (times 1 or N).
False detection is more likely to be signaled near the boundaries (i.e., when one of the segment sample means has a
comparatively high variance). Because of this, cropped-CUSUM methods, which weight or ignore observations close
to the two boundaries, were developed. Specifically, cropping strategies examine weighted statistics of form

max
1≤k<N

wk ||CUSUMX(k)|| ,

wherewk is some weight (this can be zero for some k). Typically, the weights are smaller for k near the two boundary81

times of 1 and N . Simulations for cropped settings analogous to those below are presented in the supplementary82

material; in general, one loses power by cropping. See Csörgo and Horváth (1997) for more on cropping.83

In our first scenario, the IID test statistic described in (3) is used. Its asymptotic distribution for correlated data, un-84

der the null hypothesis of no changepoints, is known fromMacNeill (1974), Csörgo and Horváth (1997), and Theorem85

1 in Robbins et al. (2011).86

Theorem 1. Assume that {Xt} follows (1), {�t} admits the causal linear representation �t =
∑∞
i=0  iZt−i where

∑∞
i=0 | i| < ∞, and �̂2 is a

√

N-based consistent estimator of �2 under the null hypothesis, the long-run variance
parameter

�2 ∶= lim
n→∞

1
n
Var

( n
∑

t=1
�t

)

. (4)

Then underH0,

1
�̂
max
1≤k<N

|

|

CUSUMX(k)||

←←←←←←←←←←←←←→ sup

t∈[0,1]
|B(t)|. (5)

Here, it is assumed that {Zt} is IID with zero mean, variance �2, a finite fourth moment, and
∑∞
j=0 | j| < ∞.87

Moreover, {B(t), t ∈ [0, 1]} denotes a standard Brownian bridge process obeying B(t) = W (t) − tW (1), where88

{W (t), t ≥ 0} is a standard Wiener process.89

Theorem 1 requires estimation of �2, which is often challenging (Stoica and Moses, 2005).90

While this result provides an asymptotic test, strong correlation often degrades CUSUM performance (Robbins91

et al., 2011). That is, convergence to the limit law is faster for independent data than for positively correlated data.92

As such, it is often beneficial to decorrelate heavily dependent data before applying CUSUM methods. This brings93

us to our second approach, which incorporates the correlation within the test statistic. For CUSUM methods, this is94

achieved by replacing the data by one-step-ahead linear prediction residuals.95

The autoregressive moving average (ARMA) one-step-ahead linear prediction residuals are defined as:
Ẑt = Ẋt − �̂1Ẋt−1 −⋯ − �̂pẊt−p − �̂1Ẑt−1 −⋯ − �̂qẐt−q , (6)

where Ẋt = Xt − �̂t, �̂1,… , �̂p are the estimated autoregressive coefficients, and �̂1,… , �̂q are the estimated moving-96

average coefficients. Here, the edge conditions take Ẋt = Ẑt = 0 for any t < 0. Our notation uses �2 as the variance of97

anyZt. We do not delve into ARMA order selection issues, and take p and q as known. Should this not be the case, one98

can revert to standard AIC and BIC methods to choose ARMA orders. For the CUSUM and SCUSUM tests described99

below, parameters are estimated under the changepoint free null hypothesis; in particular, �̂t ≡ X̄ = N−1∑N
t=1Xt is100

used to demean the time series. To evaluate Gaussian likelihoods, the innovations form of the likelihood is used; see101

Brockwell and Davis (1991). ARMA parameters are estimated in standard ways (for example, Yule Walker methods102

for autoregressions); again see Brockwell and Davis (1991) for additional detail.103

The quantity �̂2 = N−1∑N
t=1 Ẑ

2
t is used to estimate the variance of Zt. The residual CUSUM statistic is

max
1≤k<N

|

|

CUSUMZ (k)|| ∶= max
1≤k<N

|

|

|

|

|

|

1
√

N

( k
∑

t=1
Ẑt −

k
N

N
∑

t=1
Ẑt

)

|

|

|

|

|

|

, (7)

where our notation appends a subscript of Z to indicate use of prediction residuals.104

The asymptotic distribution of the CUSUM of the one-step-ahead prediction residuals was established in Theorem105

2 of Robbins et al. (2011).106
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Theorem 2. Suppose that {�t} is a causal and invertible ARMA series with IID {Zt} having zero mean, variance
�2, and with E[Z4

t ] < ∞. Let {Ẑt} be the estimated one-step-ahead prediction residuals in (6). Then under the null
hypothesis of no changepoints,

1
�̂
max
1≤k<N

|CUSUMZ (k)| −
1
�̂
max
1≤k<N

|CUSUMX(k)| = op(1), (8)

when all ARMA parameters and �2 are estimated via some
√

N-consistent manner. It hence follows that
1
�̂
max
1≤k<N

|CUSUMZ (k)|

←←←←←←←←←←←←←→ sup

0≤t≤1
|B(t)|. (9)

Both of these statistics are compared in Section 3.107

2.2. SCUSUM Tests108

As an alternative to using partial sums to detect mean shifts, several authors have considered summing the squares
of the partial sums. The resulting test statistic converges to the integral of the square of a Brownian Bridge. With
SCUSUM denoting the test’s acronym, for IID data, the test statistic is

SCUSUM ∶= 1
N

N
∑

k=1

[CUSUM(k)
�̂

]2
. (10)

The statistic in (10) also has a Bayesian interpretation with a discrete uniform prior over the changepoint time set109

{1, 2,⋯ , N}. The scenario is similar to the average likelihood ratio test considered in Chan and Walther (2013). The110

squared CUSUM (SCUSUM) test does not by itself yield an estimate of the changepoint location. If the SCUSUM test111

indicates that a changepoint is preferred, then its location is estimated as the argument(s) that maximizes the absolute112

CUSUM statistic.113

We again consider two approaches for modifying the SCUSUM test for correlation. First, the distribution of the114

statistic in (10) for autocorrelated data under the null hypothesis can be quantified. The following result follows from115

Theorem 1 via an application of the continuous mapping theorem.116

Theorem 3. Assume that {Xt} follows (1), {�t} admits the causal linear representation in Theorem 1, and �̂2 is a null
hypothesis based

√

N-consistent estimator of �2, the long-run variance in (4). Then underH0,

SCUSUMX =
1
N

N
∑

k=1

[CUSUMX(k)
�̂

]2 
←←←⟶ ∫

1

0
B2(t)dt. (11)

Our second approach for incorporating correlation uses the one-step-ahead prediction residuals in place of the
original data. The SCUSUM test statistic for this scheme is

SCUSUMZ ∶=
1
N

N
∑

k=1

[CUSUMZ (k)
�̂

]2
. (12)

The asymptotic distribution of (12) can be established from Theorem 2 via the continuous mapping theorem.117

Theorem 4. With CUSUMZ defined as in Theorem 2 and under the same assumptions in Theorem 2, under the null
hypothesis of no changepoints,

SCUSUMZ =
1
N

N
∑

k=1

[CUSUMZ (k)
�̂

]2 
←←←⟶ ∫

1

0
B2(t) dt. (13)

The distribution of ∫ 10 B(t)2dt was investigated in Tolmatz (2002). We note that Bai (1993) proposed using the118

sum of the square of partial sums of ARMA residuals to detect a single changepoint in autocorrelated data; this test119

statistic converges to the integral of a squared Brownian Motion rather than the integral of the square of a Brownian120

Bridge. To our knowledge, the variant in (12) has not previously been proposed nor studied in the literature.121

The differences between CUSUM and CUSUMZ statistics were investigated in Robbins et al. (2011). Their sim-122

ulations indicate that the latter statistic is superior to the former in terms of type I error and power. Our simulations123

confirm this finding. As such, in the remainder of the paper, we do not consider SCUSUM tests (without the subscript124

Z) further.125
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2.3. Likelihood Ratio Tests126

While CUSUM tests are non-parametric, likelihood ratio tests (LRTs) are inherently parametric. Several error127

distributions have been considered in LRTs by previous authors, by far the most common being normal — this is the128

distribution considered here.129

The LRT compares the likelihood under the null hypothesis to likelihoods under alternatives with a changepoint.
The LRT statistic for a changepoint has the general form

Λ = max
1≤k<N

Λk, Λk =
L0(�̂0)

Lk(�̂1, �̂2)
, (14)

where L0 denotes a null hypothesis likelihood and Lk is an alternative likelihood when the changepoint occurs at time130

k. Elaborating, �̂0 is the maximum likelihood estimator (MLE) for E[Xt] underH0, and �̂1 and �̂2 are the MLEs for131

the means of the two segments under the alternative when there is a mean shift at time k. The end statistic is then132

the maximum over all admissible changepoint locations k. When correlation exists in {Xt}, the form of the Gaussian133

likelihood can be found in Brockwell and Davis (1991); this form may contain additional ARMA or other correlation134

parameters that require estimation.135

When the errors follow a causal and invertible Gaussian ARMA process, Jandhyala, Fotopoulos, MacNeill, and136

Liu (2013); Aue and Horváth (2013) develop asymptotics, scaling to an extreme value limit. While the asymptotics137

require one to estimate the ARMA parameters in calculation of the Λk statistics, the limit distribution does not depend138

on the ARMA parameters, nor does the scheme require any cropping of the boundary times.139

Theorem 5. Equations (1)-(3) in (Jandhyala et al., 2013). Suppose that {�t} is a causal and invertible ARMA series
with IID {Zt} satisfying the assumptions in Theorem 2. Then the LRT statistic is

U = max
1≤k<N

(

−2 log(Λk)
)

, Λk =
⎛

⎜

⎜

⎝

�̂2k
�̂2H0

⎞

⎟

⎟

⎠

N
2

. (15)

Here, �̂2k is the MLE estimate of the ARMA white noise process variance when there is a changepoint at time k and
�̂2H0

is an estimate of this same variance under the changepoint free null hypothesis. This statistic can be scaled to a
Gumbel extreme value limit:

WU ∶=
√

2U log log(N) −
[

2 log log(N) + 1
2
log log log(N) − 1

2
log�

]

.

Then underH0,

lim
N→∞

ℙ(WU ≤ x) = exp(−2 exp(−x)), −∞ < x <∞. (16)
Specifically,H0 is rejected whenWU is too large to be explained by the distribution in (16).140

Another way of scaling the Λk statistics involves cropping boundary times. Like the CUSUM test, the LRT is
volatile at times near the boundaries. In fact, Λ 

→ ∞ as N → ∞ should the maximum be taken over the entire range
1 ≤ k < N under the null hypothesis of no changepoints. A common cropped LRT simply truncates admissible times
near the two boundaries; for example, with 0 < l < ℎ < 1, l being close to zero and ℎ being close to unity, set

Ucrop = max
l≤k∕N≤ℎ

(−2 log(Λk)). (17)

Robbins et al. (2011) shows that

Ucrop

←←←⟶ sup

l≤t≤ℎ

B2(t)
t(1 − t)

. (18)

As the next section shows, LRTs are not competitive in changepoint detection problems. While simulations are141

presented for the above extreme value test in the next section, simulations for cropped LRTs are delegated to the142

supplementary material — both methods perform poorly.143
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Figure 1: Type I Errors for an AR(1) Series with Different �When N = 1, 000. The grey band is a 95% pointwise confidence
band based on the binomial standard errors

√

p(1 − p)∕N assuming p = 0.05.

As a final comment here, deriving a LRT test for IID data, and then replacing the data with one-step-ahead predic-144

tion residuals, another avenue for dealing with dependence, does not yield a methodologically distinct path. Specif-145

ically, if one derives a LRT statistic for independent Gaussian series and then substitutes one-step-ahead prediction146

residuals in place of the original data, the limit law in (18) again arises. The boundaries again must be cropped to en-147

sure a proper limiting distribution. The discussion around (1.4.22) — (1.4.27) in (Csörgo and Horváth, 1997) provides148

additional detail on this route; see also Lavielle and Moulines (2000) for more on LRTs for correlated data.149

3. AMOC Simulations150

This section investigates the finite sample performance of the Section 2 tests (cropped CUSUMZ , CUSUMZ ,151

SCUSUMZ , LRT) through simulation. Results for the cropped test statistics are delegated to the supplementary ma-152

terial; results for the other tests are presented here.153

Desirable tests have reasonable (non-inflated) false detection rates when no changepoints exist, and large detection154

powers when a changepoint is present, regardless of the degree of correlation. For each statistic under consideration,155

the impact of autocorrelation on the Type I error is first explored. We then examine detection powers of the tests when156

a changepoint exists. First order Gaussian autoregressions (AR(1)) are considered here with �2 = 1; other structures157

are examined in the supplementary material.158

Figure 1 summarizes results with N = 1, 000 across varying values of the AR(1) correlation parameter �. Ten159

thousand independent simulations were run for each considered value of � to produce the figure. Our conclusions do160

not vary for differentN — see the supplementary material. Figure 1 shows that the only method to retain a controlled161

Type I error across all � is the SCUSUMZ . The LRT is the worst performing method, being far too conservative162

except when � = 0.95, when it becomes highly inflated. The poor performance of the LRT is likely due to the slow163

convergence to its extreme value limit, which has been previously noted (see page 25 of Csörgo and Horváth (1997)).164

The CUSUMZ method is also slightly conservative, becoming more so as � increases. We would expect the 0.05 type165

I error to be reasonably maintained whenN = 1, 000.166

We now consider test detection powers. In general, the detection power of an AMOC test depends on the degree of167

correlation, the size of the mean shift, and the location of the changepoint time (Robbins, Gallagher, and Lund, 2016).168

It is reasonable to expect power to be a function of the quantity |Δ|∕�— the magnitude of the mean shift scaled to the169

series standard deviation. Figures 2 (Δ = 0.15) and 3 (Δ = 0.3) show empirical powers based on 10, 000 independent170

Gaussian simulated series of length N = 1, 000. Sample powers are plotted as a function of � when the mean shift171

lies in the center of the series (time 501). The figures demonstrate the drastic effects of autocorrelation on the power of172
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Figure 2: Detection Powers for an AR(1) Series with Different �. Here, N = 1, 000 and Δ = 0.15.

0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.05

0.0

0.3

0.6

0.9

−1.0 −0.5 0.0 0.5 1.0
φ

P
ow

er

AMOC

Cropped CUSUMz
CUSUMz
CUSUMz−HK
LRT
SCUSUMz

Figure 3: Detection Power for an AR(1) Series with Different �. Here, N = 1, 000 and Δ = 0.3.

changepoint tests. While the LRT had the highest empirical power when � = 0.95, the estimated changepoint location173

of LRT is biased and more variable than that for the CUSUMZ and SCUSUMZ tests — see Figures 4 and 5. The LRT174

test also has a Type I error far exceeding 0.05; as such, its higher power does not suggest better overall performance.175

Overall, the CUSUMZ and SCUSUMZ tests are more powerful than the others. Note also that SCUSUMZ has higher176

power than CUSUMZ for each � considered. Additional simulations (not shown) duplicate this conclusion for other177

sample sizes. The SCUSUMZ statistic is clearly the best.178

The variance of an AR(1) series is �2∕(1 − �2) and changes with �. Analogous simulations to the above where179

Δ is taken to make |Δ|∕� constant for all � were conducted. This makes power comparisons fairer across varying �.180

The results are shown in the supplementary material. The performance orderings of the methods in the above figures181

does not change.182
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Figure 4: Boxplots of Detected Changepoint Locations for an AR(1) Series with Different �. Here, N = 1, 000 and
Δ = 0.15.

It is possible to increase detection power (2) by estimating the ARMA model parameters under the alternative183

hypothesis. A procedure inspired by Hušková and Kirch (2008) finds an initial estimate of the changepoint time using184

the argument that maximizes (3), then demeans the the two segments to estimate any time series nuisance parameters.185

After this, any AMOC statistic from the previous section can be used. We find that this method indeed increases power,186

but sometimes also increases Type I error. For the CUSUMZ statistic, this is seen in Figures 1-3 where the procedure,187

denoted by CUSUMZ -HK has increased power, but an inflated type I error for � > 0.5. Similar results (not shown188

here) were found for the other statistics. While using the estimator in (19) below could improve results, this was not189

pursued since our purpose is to make relative comparisons between the tests.190

Finally, we examine the effect of the changepoint location. Simulation specifications are as above, but the location191

of the changepoint is now varied and� is fixed as 0.5. Figure 6 displays empirical powers. The largest detection powers192

occur when the changepoint is near the center of the record, as expected, with power decreasing as the changepoint193

time moves towards a boundary. The SCUSUMZ appears to be the most accurate overall; however, the LRT test is194

preferable when the changepoint occurs near the beginning of the record.195

4. Multiple Changepoint Techniques196

Now suppose that {Xt}Nt=1 has an unknown number of changepoints, denoted by m, occurring at the unknown
ordered times 1 < �1 < �2 < ⋯ < �m ≤ N . Boundary conditions take �0 = 1 and �m+1 = N + 1. These m
changepoints partition the series intom+1 distinct regimes, the itℎ regime having its own distinct mean and containing
the data points {X�i+1,… , X�i+1}. The model can be written as Xt = �t + �t, where �t = �r(t) and r(t) denotes theregime index at time t, which takes values in {0, 1,… , m}, and {�t} is a stationary causal and invertible ARMA(p, q)
time series that applies to all regimes. Observe that

�t =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�0, 1 ≤ t ≤ �1,
�1, �1 + 1 ≤ t ≤ �2,

⋮
�m, �m + 1 ≤ t ≤ N

.

There are many challenges in the multiple changepoint problem. For us, estimation of the global autocovariance197

function that applies to all regimes, which is considered further in Section 4.2, is difficult. One also has to estimate an198
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unknown number of changepoints, their locations, and all segment parameters in a computationally feasible manner199

for some of the techniques.200

While many authors have considered multiple changepoint issues, most assume IID {�t}. For IID errors, dynamic201

programming based approaches (Auger and Lawrence, 1989; Killick, Fearnhead, and Eckley, 2012), model selection202

methods using LASSO (Harchaoui and Lévy-Leduc, 2010; Shen, Gallagher, and Lu, 2014), and moving sum statistics203

(Eichinger and Kirch, 2018) have all been applied to multiple changepoint problems — this list is not exhaustive. As204

in the AMOC setting, techniques for independent series may not work well for dependent series (Davis et al., 2006; Li205

and Lund, 2012; Chakar, Lebarbier, Lévy-Leduc, and Robin, 2017).206

The multiple changepoint techniques considered here can be put into two broad categories: 1) recursive segmenta-207

tion and algorithmic methods using AMOC techniques, and 2) direct approaches that fit all series subsegments jointly.208
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The two approaches are completely different in their perspective. Elaborating, most recursive techniques employ209

AMOC single changepoint methods in an iterative manner, identifying at most one additional changepoint in each210

series subsegment at each recursion level. In contrast, direct techniques model and estimate the multiple changepoint211

configuration jointly; here, penalization methods typically drive the discourse. No hypothesis testing paradigm under-212

lies any multiple changepoint approach — there is not a clear alternative hypothesis here. Some multiple changepoint213

techniques apply only to special time series structures. For example, Chakar et al. (2017) is exclusively designed for214

AR(1) series. Their techniques are not considered here as they cannot be applied to all of our considered scenarios.215

4.1. Recursive Segmentation Approaches216

Recursive segmentation approaches first focus on finding a single changepoint (usually the most prominent one),217

thereafter iterating in some manner to identify additional changepoints. The primary tool here is binary segmentation218

(Scott and Knott, 1974), which estimates a multiple changepoint configuration via any AMOC method. Elaborating,219

binary segmentation first tests the entire series for a single changepoint. Should a changepoint be found, the series is220

split about the changepoint time into two subsegments that are further analyzed for additional changepoints using the221

AMOC strategy. The process is repeated until no subsegment tests positive for a changepoint. Binary segmentation222

works best when the changepoints are well separated and the segment means are distinct. In our comparisons, the223

AMOC statistic adopted for binary segmentation is the SCUSUM test applied to one-step-ahead prediction residuals,224

which won our AMOC comparisons in the previous section.225

Extensions of binary segmentation abound and include circular binary segmentation (Olshen, Venkatraman, Lucito,226

and Wigler, 2004), which seeks to identify a segment of data that has a distinct mean from the rest of the series.227

Another popular binary segmentation extension is wild binary segmentation (WBS) Fryzlewicz (2014). WBS samples228

subsegments of the entire series having random lengths and performs an AMOC test on each sampled subsegment.229

Fryzlewicz (2014) suggests sampling at least (9N2) log(N2�−1)∕(�2) subsegments, where � is the minimum spacing230

between changepoints (see Assumption 3.2 of Fryzlewicz (2014)) as this produces a high probability of drawing a231

favorable subsegment. WBS is a randomized search and hence may return different segmentations on different runs. In232

our simulations, WBS uses a standard CUSUM test rather than the cropped CUSUM or SCUSUM since its threshold233

was developed particularly for standard CUSUM methods. In addition, the threshold constant C = 1.3 is used as234

suggested in Fryzlewicz (2014).235

Binary segmentation approaches and their variants are simple to implement and are computationally fast. How-236

ever, they are not guaranteed to achieve the global optimal solution as they essentially are a “greedy algorithm" that237

sequentially makes decisions based solely on information during the current step. Also inherent in these approaches is238

the need for the AMOC statistic to behave appropriately when multiple mean shifts are present — this may not happen.239

To apply the above segmentation methods in the presence of autocorrelation, we need to develop estimates of the240

time series autocorrelation parameters that are robust to mean shifts. This autocorrelation needs to be estimated a241

priori to segmentation. The next section elaborates further.242

4.2. Global Autocovariance Estimation243

For our work, the autocovariance of the series is assumed constant across time and applies to all series subsegments.244

This autocovariance function will be used to decorrelate the series before applying any binary segmentation search245

methods to the one-step-ahead prediction residuals. Unfortunately, accurate estimation of the autocovariance function246

requires knowledge of the underlyingmean structure. In the single changepoint case, the long-run covariance parameter247

in (4) arises in the limit laws; however, this does not extend to multiple changepoint settings, where no theoretical248

equivalent of (5) exists.249

In our setup, the second order (covariance) model parameters are deemed nuisance parameters and are estimated
using the entire series. To account for the impact of unknown mean shifts on these estimators, Yule-Walker type
moment equations will be used on the first order difference of {Xt}. The first order difference Xt − Xt−1 is used
because E[Xt −Xt−1] = 0 unless a changepoint occurs at time t. Define dt = Xt −Xt−1 and note that dt = �t − �t−1except when time t is a changepoint. Let 
d(ℎ) = Cov(dt, dt−ℎ), �d(ℎ) = 
d(ℎ)∕
d(0) and �d = (�d(1),⋯ , �d(p))′.For the AR(p) case, which is our primary interest, estimators of the AR(p) parameters are based on {dt} and have the
form

�̂ = M̂
−1
�̂d , (19)
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where � = (�1,… , �p)′ and

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
2 − 12 −

(

1
2 + �d(1)

)

⋯ −
(

1
2 +

∑p−2
j=1 �d(j)

)

�d(1) �d(0) �d(1) ⋯ �d(p − 2)
�d(2) �d(1) �d(0) ⋯ �d(p − 3)
⋮ ⋮ ⋮ ⋱ ⋮

�d(p − 1) �d(p − 2) �d(p − 3) ⋯ �d(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The elements in M̂ and �̂d simply replace �d(ℎ) with

�̂d(ℎ) =

̂d(ℎ)

̂d(0)

=
∑n−ℎ
t=2 (Xt −Xt−1)(Xt+ℎ −Xt+ℎ−1)

∑n
t=2(Xt −Xt−1)2

.

While Gallagher, Killick, Lund, and Shi (2021) study these AR(p) estimators in detail, the intuition behind them is250

that if m is small relative toN , then the mean shifts will have negligible impact on the estimated covariance structure251

of the differences since dt has zero mean except at the changepoint times. Gallagher et al. (2021) demonstrate that this252

estimate of the covariance outperforms alternatives such as direct and windowed estimation. Due to this, the Yule-253

Walker moment estimators in (19) will be used in our simulations to decorrelate the series for binary segmentation and254

wild binary segmentation.255

4.3. Direct Modelling Approaches256

Direct modelling approaches analyze the whole series at once, optimizing an objective function with a penalty term
that controls the number of changepoints. The techniques seek a changepoint configuration that minimizes

F (m; �1,… , �m) ∶= C(m; �1,… , �m) + P (m; �1,… , �m), (20)
where C is the cost of putting m changepoints at the times �1,… , �m and P is a penalty term to prevent over-fitting.
There are many ways to define the cost and penalties. A frequently used cost is the negative log-likelihood. Here, we
will use

C(m; �1,… , �m) = −2 log(Lopt(�|m; �1,… �m)).

where Lopt(�|m; �1,… , �m) is the time series likelihood (Gaussian based) optimized over all parameters � given that257

m changepoints occur at the times �1,… , �m. From a given changepoint configuration, finding this optimal likelihood258

is a simple time series model fitting exercise that can be rapidly computed.259

Penalties can be constructed in a variety of ways. Common penalties include minimum description lengths (MDL),260

modified Bayesian Information Criterion (mBIC), and the classic BIC penalty. AIC is another popular penalty, despite261

it not providing consistent estimates of the number or locations of the changepoint(s). Of these four penalties, AIC and262

BIC are simple multiples of the number of changepoints, while the MDL and mBIC further incorporate changepoint263

time information. The form of these penalties are listed in Table 1. In these tables, Gaussian dynamics implies that264

−2 log(Lopt(�|m; �1,… �m)) isN ln(�̂2) plus some constant that does not depend on �. The mBIC and MDL penalties265

are multiplied by two to be consistent with the AIC and BIC definitions that use twice the negative log-likelihood.266

Here, �̂2 is the estimated white noise variance of the {�t} process that drives the ARMA errors.267

MDL penalties are based on information theory and are discussed further in Davis et al. (2006) and Li and Lund268

(2012). The mBIC penalty is developed in Zhang and Siegmund (2007). These two penalties are taken as zero when269

m = 0. The mBIC penalty tends to be larger for the same changepoint configuration than the MDL penalty; as such,270

MDL tends to select models with more changepoints than mBIC.271

With penalized likelihood approaches, a computational bottleneck arises. Since there are (N−1m
) different admis-272

sible changepoint configurations in a series with m changepoints (time N cannot be a changepoint), there are 2N−1273

different changepoint configurations to consider when analyzing the entire series. This huge count makes an exhaus-274

tive model search — one that evaluates all admissible changepoint configurations — virtually impossible to conduct,275

even when N is a small as 100. Unfortunately, PELT (Killick et al., 2012) and FPOP (Maidstone, Hocking, Rigaill,276

and Fearnhead, 2017), two rapid dynamic programming based techniques, require the objective function to be additive277
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Table 1
Penalized Likelihood Objective Functions

Criteria Objective Function

AIC N ln(�̂2) + 2(2m + 3)

BIC N ln(�̂2) + (2m + 2) ln(N)

mBIC N ln(�̂2) + 3m ln(N) +
∑m+1

i=1 ln
(

�i−�i−1
N

)

MDL N ln(�̂2) + 2 ln(m) +
∑m+1

i=1 ln(�i − �i−1) + 2
∑m

i=2 ln(�i)

over distinct regimes. The presence of global parameters like the autocovariance function violates this requirement.278

Regime-additive likelihoods will not arise when {�t} is ARMA(p, q), although Bai and Perron (1998) argues that any279

boundary contribution is negligible if the ARMA parameters are allowed to change at each changepoint time (this is280

not the case here). Unfortunately, the objective function in (20) is not convex, and its optimization is delicate. We will281

use a genetic algorithm (GA), which have successfully dealt with this and similar changepoint optimization problems282

(Davis et al., 2006; Li and Lund, 2012).283

A GA is an intelligent random walk search that is unlikely to evaluate suboptimal changepoint configurations.284

Research indicates that genetic algorithms perform well in nonconvex optimization problems (Hajela, 1990). Our GA285

encodes the changepoint configuration into a binary string and uses the R GA package from Scrucca (2013). This GA286

has proven reliable with our problems.287

5. Multiple Changepoint Simulations288

In presenting simulation results for different scenarios, the main body of the text will only present graphic(s) that289

are judged informative. In general, for each simulation case considered, graphics of configuration distances to truth,290

average number of detected changepoints, and empirical probabilities of estimating the correct number of changepoints291

were produced. The supplementary material contains any graphics that are not included in the main body. Similarly,292

we focus on unit shift mean sizes in the main text body unless otherwise noted; results for different mean shift sizes293

are presented in the supplementary material.294

The changepoint configurations that we consider are illustrated in Figure 7, which shows sample time series gen-295

erated under the various mean shift configurations. These configurations range from scenarios with no or few change-296

points to those with a large number of changepoints. All series have lengthN = 500.297

Due to AIC’s popularity, it is worth mentioning that this penalty performs miserably in all scenarios, always se-298

lecting an excessive number of changepoints. This issue was also mentioned in Yao (1988). Since plotting AIC results299

would degrade our other graphical comparisons, AIC results are not presented so that we may accentuate differences300

in the remaining methods.301

5.1. Comparing Multiple Changepoint Segmentations302

Before presenting our simulations, we discuss how to compare an estimated multiple changepoint segmentation to303

its true value. The estimated multiple changepoint configuration could have a different number of changepoints than304

the true configuration. For a single changepoint method, such a comparison is easy: examine first whether the method305

flags a changepoint, and then its distance from the true changepoint time. With multiple changepoint configurations,306

this comparison is complicated by the fact that different segmentations may have different numbers of changepoints:307

which changepoint times in one particular configuration correspond to those in the other may be nebulous.308

To compare different methods, a distance between the two changepoint configurations 1 = (m; �1,… , �m) and309

2 = (k; �1,… , �k) will now be developed. Several distances have been utilized by the multiple changepoint com-310

munity. Some, such as the mean squared error (MSE) of the fitted means, V-measure, or Hausdorff distance, are not311

specific to changepoint problems. Others, such as the number of changepoints or true/false positive detection rates,312

are more tailored to the changepoint problem. However, each of these statistics quantifies only one aspect of the fit.313

For example, the MSE could be low, but the number of changepoints could still be overestimated; or the number of314
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Figure 7: AR(1) Time Series with Different Changepoint Settings

changepoints could be accurate, but their locations inaccurate. As such, we introduce a new changepoint-specific dis-315

tance balancing the two key components of multiple changepoint analysis: 1) the number of changepoints and 2) their316

individual locations.317

To balance the number and location aspects of changepoint configurations, two components in our distance are
needed. The first measures the discrepancy in the numbers of changepoints in the two configurations, for which we
use absolute difference. The second component measures discrepancies in the changepoint times. This is trickier
to quantify as the number of changepoints may be different in the two configurations and some sort of “matching
procedure" is needed. For two changepoint segmentations, 1 and 2, the distance used here is

d(1,2) = |m − k| + min{(1,2)}. (21)
The term |m−k| assigns the difference in changepoint numbers for any mismatch in the total number of changepoints.
The term min(1,2) reflects the smallest cost that matches changepoint locations in 1 to those in 2. This termcan be computed via the following linear assignment methods:

(1,2) =
k
∑

i=1

m
∑

j=1
ci,jIi,j ,

which is subject to the constraints ∑k
i=1 Ii,j = 1, for j ∈ {1,… , m} and ∑m

j=1 Ii,j ≤ 1 for i ∈ {1,… , k}. Here, the
cost of assigning �i to �j is taken simply as ci,j = |�i − �j|∕N and Ii,j ∈ {0, 1} is the decision variable

Ii,j =

{

1 if �i is assigned to �j
0 otherwise .
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Figure 8: Empirical False Positive Detection Rates for an AR(1) Series with Various �. Truth: No Changepoints.

This linear assignment problem can be efficiently computed via algorithms in Burkard, Dell’Amico, and Martello318

(2012).319

One can verify that (21) defines a legitimate distance satisfying the triangle inequality. The larger the distance is, the320

worse the two configurations correspond to one another. The termmin(1,2) can be shown to be bounded by unity321

and measures how closely the two changepoint configurations match up to one another. When both configurations have322

many changepoints, the distance is dominated by the |m−k| term. In our simulations, estimated multiple changepoint323

configurations will be compared to the true changepoint configuration with this distance.324

5.2. No Changepoints325

Many modern multiple changepoint simulation studies increasingly focus on cases with a large number of change-326

points, eschewing single and no changepoint scenarios. We include low changepoints scenarios here to help illuminate327

the differences between the methods.328

Our first simulation considers the changepoint free case in an AR(1) Gaussian series having various correlation329

parameters � and �2 = 1. Figure 8 shows probabilities of falsely declaring one or more changepoints over 1,000330

independent simulations. Unlike the single changepoint case, the methods here do not control any false positive rate.331

The results show that BIC, mBIC, and binary segmentation perform best, with WBS and MDL performing signif-332

icantly worse. It is worth noting that WBS has a signicantly higher false positive rate, an issue discussed further in333

Lund and Shi (2020). Binary segmentation is arguably best here, an expected finding with no changepoints (an AMOC334

test applied to the series’ one-step-ahead prediction residuals should not see a changepoint and stop any recursion at335

its onset). All methods perform better with negative � than with positive �; performance of all methods degrades as336

� moves towards unity (as expected).337

5.3. A Single Changepoint338

We now move to simulations with one changepoint in the same AR(1) setup above. The changepoint is placed in339

the middle of the series, t = 251. Figure 9 shows the average distances between the estimated changepoint configu-340

rations and the true configuration. While there are no huge discrepancies between the methods, for heavily correlated341

series, binary segmentation is the worst and MDL and mBIC the best. Again, all tests degrade as � approaches unity.342

MDL exhibits the least variability across �. Comparing to the single changepoint results, the multiple changepoint343

penalties are more conservative than the LRT. Also, since the average distance is less than unity, the correct number344

of changepoints is often being identified.345

5.4. A Three Changepoint Staircase346

Our next case moves to a setting with three mean shifts, partitioning the series into four equal-length regimes.347

The changepoints occur at times 126, 251, and 376, with each changepoint shifting the series upward by one unit (up-348

up-up). As before, Figure 10 reports average distances. MDL performs the worst for negative �, the other methods349
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Figure 9: Average Distances for an AR(1) Series with Varying �. Truth: One Changepoint in the Middle Moving the Series
Upwards.
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Figure 10: Average Distances for AR(1) Series with Different �. Truth: Three Equally Spaced Changepoints Moving the
Series Up-Up-Up.

perform similarly here. Perhaps surprisingly, binary segmentation starts to degrade when � becomes positive, with350

the other methods also degrading, but to a lesser extent. BIC performs best across all �.351

5.5. Three Alternating Changepoints352

Next, we consider another three changepoint configuration, the changepoint times again being equally spaced,353

but this time moving the series up, then down, and then up again (up-down-up). Figure 11 reports the distances.354

All methods have a harder time here than with the last up-up-up changepoint configuration. In this setting, binary355

segmentation becomes fooled and estimates too few changepoints; mBIC is inferior to the other methods. MDL and356

WBS work better, the surprise winner being BIC.357

5.6. A Nine Changepoint Staircase358

Next, we move to cases with nine changepoints. Our first set of simulations equally spaces all changepoint times359

in the record, each moving the series higher (All Up). Because the changepoints are more difficult to detect, we have360

increased the absolute mean shift magnitude to two units— this serves to induce more separation between the methods,361

allowing for an easier comparison. Figure 12 displays distances for this setting. The winners are BIC and MDL; losers362
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Figure 11: Average Distances for an AR(1) Series with Varying �. Truth: Three Equally Spaced Changepoints Moving
the Series Up-Down-Up.
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Figure 12: Average Distances for an AR(1) Series with Varying �. Truth: Nine Changepoints, All Up.

are WBS and binary segmentation.363

5.7. Nine Alternating Changepoints364

Our next set of simulations again considers nine changepoints, but the directions of the equally spaced mean shift365

sizes of magnitude two are now alternated in an Up-Down-Up-Down-Up-Down-Up-Down-Up fashion (Alternating).366

Figure 13 displays results. The best method here is BIC again with WBS doing better than in the previous setting;367

mBIC is a laggard and binary segmentation is again the worst.368

5.8. Nine Keyblade Changepoints369

As a different type of setup, we next consider the nine changepoint setting where the sizes of the nine mean shifts370

vary, their shift directions vary, and the changepoint times are not equally spaced. Figure 7(d) shows our chosen pattern371

for E[Xt], which we call a “keyblade". The distances in Figure 14 reveal BIC and MDL as winners, and WBS and372

binary segmentation as inferior.373

Shi et al.: Preprint submitted to Elsevier Page 16 of 21



Comparing Changepoint Techniques for Time Series

0.0

2.5

5.0

7.5

10.0

−1.0 −0.5 0.0 0.5 1.0
φ

A
ve

ra
ge

 D
is

ta
nc

e 
fr

om
 T

ru
e 

C
on

fig
ur

at
io

n

Methods

BIC+GA
BS(SCUSUMz)
mBIC+GA
MDL+GA
WBS(C=1.3)

Figure 13: Average Distances for an AR(1) Series with Varying �. Truth: Nine Alternating Changepoints.
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Figure 14: Average Distances for the Keyblade AR(1) Series with Varying �. Truth: Nine Changepoints.

5.9. Random Changepoints374

We now consider settings with a random number of changepoints simulated from a Poisson distribution with a375

mean of five. The locations of any mean shifts are placed uniformly in the set {2,… , N} without replacement. The376

mean of each segment is simulated from a normal distribution with a zero mean and a standard deviation of 1.5. Figures377

15 summarizes the results: BIC and MDL are again superior and binary segmentation inferior.378

5.10. Varying Series Lengths379

The performance of the simple BIC penalty so far was surprising to us — especially since this penalty does not380

depend on the changepoint times. To investigate this issue further, we fix the AR(1) parameter at � = 0.5 and compare381

BIC and mBIC distances as N varies with one and three changepoints. Here, the changepoints induce equal length382

regimes, all mean shift sizes are of a unit magnitude, and their directions alternate with the first direction being upwards.383

Table 2 reports average BIC and mBIC distances when N ∈ {500, 1000, 2500}. As the sample size increases, the384

additional penalty the mBIC places on the length of the segments results in fewer changepoints identified than BIC.385
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Figure 15: Average Distance between the Estimated and True Changepoint Locations.

Table 2
Comparison of BIC and mBIC. Truth: m changepoints, all of a unit magnitude, placed in alternating directions that equally
space the record length for an AR(1) series with varying lengths N . Here, �2 = 1 and � = 0.5.

Avg. Distance m = 1 m = 3
BIC mBIC BIC mBIC

N = 500 0.227 0.125 1.270 2.420
N = 1000 0.126 0.066 0.311 0.921
N = 2500 0.121 0.047 0.123 0.066

Table 3
Average Distance for an AR(1) Series with Varying Mean Shift Magnitudes.

Δ BIC+GA mBIC+GA MDL+GA BS(SCUSUMZ) WBS(C=1.3)

Δ = 1 1.269 2.424 1.948 2.702 1.686

Δ = 2 0.140 0.051 0.209 0.843 0.149

Δ = 3 0.126 0.042 0.188 0.077 0.079

As N grows, there is a tendency for BIC to add (erroneous) changepoints in some samples. Thus, as the number of386

changepoints andN grows, mBIC does tend to beat BIC. This leads us to recommend mBIC over BIC for largerN or387

numbers of changepoints.388

389

Before moving to non-AR(1) settings, we examine method performance as the mean shift magnitudes increase.390

Here, we fix N = 500, � = 0.5, and �2 = 1 and consider three alternating changepoints placed at the times 126, 251,391

and 376. Mean shift magnitudes Δ are varied from 1 to 3. Average distances over 1, 000 simulations are reported392

in Table 3. As the mean shift magnitudes increases, all methods improve. BIC and MDL, frequent winners of past393

scenarios, perform worst when the mean shift size is largest; moreover, WBS and binary segmentation, two frequent394

past losers, perform best. mBIC reports the smallest average distance when Δ ≥ 2.395

Our final simulation task considers other autoregressive error structures. We begin with AR(2) errors and the case396

of no changepoints. Table 4 shows false positive rates of signaling one or more changepoints when in truth none397

exist for various AR(2) parameters �1 and �2. In this and all four tables below, 1,000 independent simulations are398
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Table 4
False Positive Rates for an AR(2) Series with Varying {�1, �2}. Truth: No Changepoints.

{�1, �2} BIC+GA mBIC+GA MDL+GA BS(SCUSUMZ) WBS(C=1.3)
{0.6, 0.35} 21.5% 2.5% 38.8% 22.6% 50.0%
{0.6, 0.3} 17.5% 2.6% 33.2% 10.2% 36.6%
{0.6, -0.1} 5.9% 1.1% 15.6% 0.3% 17.4%
{0.5, -0.2} 4.1% 1.6% 13.6% 0.0% 11.7%
{0.2, -0.5} 3.0% 0.6% 9.4% 0.1% 9.1%

Table 5
Average Distances for an AR(2) Series with Varying {�1, �2}. Truth: Three Alternating Changepoints of Size Δ = 2.

{�1, �2} BIC+GA mBIC+GA MDL+GA BS(SCUSUMZ) WBS(C=1.3)
{0.6, 0.35} 2.757 2.932 2.759 2.633 2.265
{0.6, 0.30} 2.484 2.895 2.510 2.742 2.337
{0.6, -0.1} 0.167 0.052 0.182 0.818 0.193
{0.5, -0.2} 0.131 0.032 0.163 0.072 0.101
{0.2, -0.5} 0.086 0.023 0.111 0.040 0.068

Table 6
False Positive Rates for an AR(4) Series with Varying {�1, �2, �3, �4}. Truth: No Changepoints.

{�1, �2, �3, �4} BIC+GA mBIC+GA MDL+GA BS(SCUSUMZ) WBS(C=1.3)
{0.5, 0.25, 0.15, 0.05} 66.5 % 44.8% 76.4% 29.7% 54.4%
{0.6, 0.3, 0.1, -0.3} 16.7 % 8.5% 42.0% 0.6% 21.5%
{0.6, 0.3, -0.3, -0.1} 9.9% 4.9% 32.5% 0.1% 14.8%
{0.6, -0.4, -0.2, -0.1} 5.0% 2.5% 27.0% 0.2% 10.3%
{0.6, -0.4, 0.3, -0.2} 5.3% 1.6% 22.9% 0.2% 17.4%

Table 7
Average Distances for AR(4) Errors with Varying {�1, �2, �3, �4}. Truth: Three Alternating Changepoints of Size Δ = 2.

{�1, �2, �3, �4} BIC+GA mBIC+GA MDL+GA BS(SCUSUMZ) WBS(C=1.3)
{0.5, 0.25, 0.15, 0.05} 2.723 2.420 3.360 2.516 2.151
{0.6, 0.3, 0.1, -0.3} 0.615 1.582 1.292 2.318 1.256
{0.6, 0.3, -0.3, -0.1} 0.205 0.107 0.251 0.834 0.211
{0.6, -0.4, -0.2, -0.1} 0.127 0.055 0.319 0.031 0.079
{0.6, -0.4, 0.3, -0.2} 0.161 0.066 0.246 0.228 0.101

conducted,N = 500, �2 = 1, and all mean shift sizes are two units (this adds additional information to the above unit399

mean shift simulations). The structure of the four tables below are discussed in tandem after their presentation.400

Table 5 reports average distances for the AR(2) scenario of the last table, but now with three changepoints. The401

three shifts induce four equal length regimes and shift the series mean in an up-down-up manner.402

Table 6 shows false positive rates of signaling one or more changepoints when in truth there are none for various403

parameter choices in an AR(4) series.404

Finally, Table 7 reports average distances over 1,000 independent simulations for the same AR(4) scenario above.405

The mean shift specifications are repeated from Table 5.406

In the above tables, when there are no changepoints, binary segmentation appears best and MDL and WBS worst,407

as was the case for AR(1) errors. In the tables with three changepoints and heavily positively correlated errors, MDL,408

BIC, and WBS all do comparatively well; when the correlation becomes negative, the situation reverses and mBIC409

and binary segmentation are best. These aspects also held for AR(1) series, although we did not remark about the410

negatively correlated results.411

To summarize our overall conclusions on multiple changepoints, the following points emerge:412

• AIC and binary segmentation are not competitive. Binary segmentation worked well only when no or few413
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changepoints existed and worsened when multiple mean shifts act in opposite directions. We do not recommend414

either of these techniques.415

• Although its penalty does not depend on the changepoint times, BIC performed surprisingly well across a wide416

range of scenarios. However, asN gets larger, mBIC becomes superior.417

• MDL was often the best performing penalized likelihood technique in heavily correlated scenarios, but does not418

work as well with negatively correlated series. MDL also tends to lose to mBIC when the changepoint mean419

shift sizes are large or when changepoints are infrequent.420

• MDL and WBS techniques should be used with caution if there is a possibility that no changes are present, as421

they have high false positive rates.422

• BIC and mBIC perform well in the low frequency changepoint settings.423

We close with one more comment that is not apparent from the reported results. The MDL penalty works reasonably424

in a large variety of positively correlated scenarios. However, when it is wrong, it has a tendency to put changepoints425

times in pairs near each other. This is an attempt by the method to identify an outlier. If one imposes a minimum426

spacing between changepoint times to combat this, MDL will perform better.427

6. Comments and Conclusions428

This paper presented a systematic comparison of common single andmultiple changepoint techniques in time series429

settings. Previous work had demonstrated how applying techniques that assume IID to data could lead to erroneous430

conclusions. Here, we focused on how IID methods could be modified to work in the time series setting, either by431

correcting the asymptotic distribution, or by modifying the test statistic.432

In constructing our comprehensive approach, a summary of the major different techniques available was made in a433

single manuscript; hence, this paper has utility as a reference. A newmultiple changepoint distance was also developed434

that combines the two important features of changepoint detection, identification of the correct number and location(s)435

of the changepoints, within a single metric.436

In the single changepoint case, it was found that the best techniques apply IID methods to the time series of one-437

step-ahead prediction residuals. The best performing single changepoint detection method was the sum of CUSUM438

statistic in Bai (1993). Extreme value based asymptotic tests exhibited poor detection power.439

In the multiple changepoint case, conclusions were more nebulous; however, binary segmentation and AIC are440

not recommended. The penalized likelihoods MDL, mBIC, and BIC all are worthy of additional study. WBS also441

performed reasonably and deserve additional attention, especially given its relatively recent entrance into the literature.442

At this point, it is still not clear whether pure algorithmic techniques can beat penalized likelihood methods. It is our443

view that one should use BIC penalized likelihood methods for the case of large numbers of changepoints and/or small444

data lengths, with mBIC recommended for smaller numbers of changepoints and/or longer lengths of data.445
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