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Abstract

The goal of the Project Management is to organise project schedules to complete
projects before their completion dates, specified in their contract. When a project
is beyond its completion date, organisations may lose the rewards from project
completion as well as their organisational prestige. Project Management involves
many uncertain factors such as unknown new project arrival dates and unreliable
task duration predictions, which may affect project schedules that lead to delivery
overruns. Successful Project Management could be done by considering these
uncertainties. In this PhD study, we aim to create a more comprehensive model
which considers a system where projects (of multiple types) arrive at random to
the resource-constrained environment for which rewards for project delivery are
impacted by fees for late project completion and tasks may complete sooner or
later than expected task duration.

In this thesis, we considered two extensions of the resource-constrained multi-
project scheduling problem (RCMPSP) in dynamic environments. RCMPSP
requires scheduling tasks of multiple projects simultaneously using a pool of
limited renewable resources, and its goal usually is the shortest make-span or the
highest profit. The first extension of RCMPSP is the dynamic resource-constrained
multi-project scheduling problem. Dynamic in this problem refers that new
projects arrive randomly during the ongoing project execution, which disturbs the
existing project scheduling plan. The second extension of RCMPSP is the dynamic
and stochastic resource-constrained multi-project scheduling problem. Dynamic
and stochastic represent that both random new projects arrivals and stochastic
task durations. In these problems, we assumed that projects generate rewards at
their completion; completions later than a due date cause tardiness costs, and we
seek to maximise average profits per unit time or the expected discounted long-run
profit. We model these problems as infinite-horizon discrete-time Markov decision
processes.
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Extended Abstract

The goal of the Project Management is to organise project schedules to complete
projects before their completion dates, specified in their contract. When a project
is beyond its completion date, organisations may lose the rewards from project
completion as well as their organisational prestige. Project Management involves
many uncertain factors such as unknown new project arrival dates and unreliable
task duration predictions, which may affect project schedules that lead to delivery
overruns. Successful Project Management could be done by considering these
uncertainties. In this PhD study, we aim to create a more comprehensive model
which considers a system where projects (of multiple types) arrive at random to
the resource-constrained environment for which rewards for project delivery are
impacted by fees for late project completion and tasks may complete sooner or
later than expected task duration.

In this thesis, we considered two extensions of the resource-constrained multi-
project scheduling problem (RCMPSP) in dynamic environments. RCMPSP
requires scheduling tasks of multiple projects simultaneously using a pool of
limited renewable resources, and its goal usually is the shortest make-span or the
highest profit. The first extension of RCMPSP is the dynamic resource-constrained
multi-project scheduling problem. Dynamic in this problem refers that new
projects arrive randomly during the ongoing project execution, which disturbs the
existing project scheduling plan. The second extension of RCMPSP is the dynamic
and stochastic resource-constrained multi-project scheduling problem. Dynamic
and stochastic represent that both random new projects arrivals and stochastic
task durations. In these problems, we assumed that projects generate rewards at
their completion; completions later than a due date cause tardiness costs, and we
seek to maximise average profits per unit time or the expected discounted long-run
profit. We model these problems as infinite-horizon discrete-time Markov decision
processes.

In Chapter 4, we consider the dynamic resource-constrained multi-project
scheduling problem and explore the computational limitations of solving the
problem by dynamic programming. We run and compare four different solution
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approaches on small size problems. These solution approaches are: a dynamic
programming algorithm to determine a policy that maximises the average profit
per unit time net of charges for late project completion, a genetic algorithm
which generates a schedule to maximise the total reward of ongoing projects and
updates the schedule with each new project arrival, a rule-based algorithm which
prioritises processing of tasks with the highest processing durations, and a worst
decision algorithm to seek a non-idling policy to minimise the average profit per
unit time. Average profits per unit time of generated policies of the solution
algorithms are evaluated and compared. The performance of the genetic algorithm
is the closest to the optimal policies of the dynamic programming algorithm, but its
results are notably suboptimal, up to 67.2%. Alternative scheduling algorithms are
close to optimal with low project arrival probability but quickly deteriorate their
performance as the probability increases. In Chapter 5, we consider the dynamic
and stochastic resource-constrained multi-project scheduling problem and explore
the computational limitations of solving it by dynamic programming. We run
and compare five different solution approaches on small size problems, which
are generated by including stochastic task durations to problems from Chapter 4.
Four of the solution approaches are from Chapter 4 and the fifth is an optimal
reactive baseline algorithm that generates the best schedule to maximise the total
profit of ongoing projects (without considering the new arrivals or the stochastic
task completion). The performance of the optimal reactive baseline algorithm is
the closest to the optimal policies of the dynamic programming algorithm, but
its results are suboptimal, up to 37.6%. In Chapter 6, we consider the dynamic
and stochastic resource-constrained multi-project scheduling problem, which are
larger than the computational limitations of solving it by dynamic programming.
On top of the features considered in Chapter 5, we also consider non-sequential
project networks, availability of multiple resource types and allocation of multiple
resource types for the same task of a project. We use an approximate dynamic
programming algorithm with a linear approximation model, which can be used for
online decision-making. Our approximation model uses project elements that are
easily accessible by a decision-maker with the model coefficients obtained offline
via a combination of Monte Carlo simulation and the least-squares estimation
method. We run and compare our approximate dynamic programming algorithm
along with the solution approaches from Chapter 5. Our numerical study shows
that approximate dynamic programming and optimal reactive baseline algorithm
produce similar results, which are typically both inferior to the optimal results of
dynamic programming. Approximate dynamic programming has an advantage
over optimal reactive baseline algorithm and dynamic programming in that
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approximate dynamic programming could be applied to larger problems. We also
show that approximate dynamic programming generally produces statistically
significantly higher profits than common algorithms used in practice, such as a
rule-based algorithm and a reactive genetic algorithm.

In Chapter 1, the introduction, contributions of this thesis, thesis structure and
status of publications is presented. In Chapter 2, we summarise the literature
of the dynamic resource-constrained multi-project scheduling, the dynamic and
stochastic resource-constrained multi-project scheduling. In Chapter 3, we explain
the methods used in this thesis. In Chapter 7, the conclusion is presented.
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Chapter 1

Introduction

”A project is a unique, transient endeavour, undertaken to achieve planned
objectives, which could be defined in terms of outputs, outcomes or benefits”
(APM, 2012). Uniqueness and time-bound are the main features of a project which
differentiates it from a regular working activity. Coordinating the limited resources
(e.g. human power, equipment) between projects to get the most benefit from
outcomes is called project management.

Project management is a crucial part of most businesses because it provides
plans to manage projects. However, project management is a very challenging
enterprise in that only 40% of projects are completed within their planned time,
46% of projects are completed within their predicted budget, and 36% of projects
realise their full benefits (Wellingtone PPM, 2018).

Project management involves high risk and uncertainty. In many sectors
such as engineering services, make-to-order services, software development, IT
services, construction and R&D, project management involves multiple uncertain
elements; for example, unpredicted new project arrivals and unreliable task dura-
tion predictions, which are frequently ignored by traditional project management
studies.

Project management seeks to maximise project outcome and benefit while
minimising the risks and costs. A reward is released as the outcome of project
completion. However, due to the time-bounded feature of projects, completion of
the project beyond a pre-determined due date may cause penalties which are called
the tardiness cost. The software development project is an excellent example of this
project definition. Alhumrani and Qureshi (2016) state that software development
projects involve the processing of multiple projects at the same time with shared
resources. Furthermore, these projects have strict due dates that, after this date,
the customer may not accept these projects and all spent resources and time may
be lost.
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The motivation of this study is to create a more comprehensive project schedul-
ing model by considering the uncertainties of stochastic task durations and new
project arrivals. The research outcome will be valuable to project managers to plan
their work and calculate costs accurately.

1.1 Thesis contributions

In this thesis, we model the problem as an infinite-horizon discrete-time Markov
decision process (MDP) where decisions about task processing are made in fixed
intervals. The period between two decision is called transition time and used as
a time unit. The time unit can be minutes, hours, days or weeks depending on
the problem. During a transition time, the system processes projects according to
taken decisions, and random changes occur. The random arrival of new projects
and stochastic completion of tasks are considered as random change in Chapter 5
and Chapter 6. In Chapter 4, only the random arrival of new projects is considered.

We contribute to the literature by (i) developing exact models of the dynamic
resource-constrained multi-project scheduling problem (dynamic RCMPSP) and
the dynamic and stochastic resource-constrained multi-project scheduling prob-
lem (dynamic and stochastic RCMPSP) which extends the work of Melchiors
et al. (2018), who only considered single-task projects, by considering multi-task
project types, (ii) developing a new comprehensive MDP model which considers
the random arrival of new projects, stochastic task durations, multiple resource
types, non-sequential project networks, project due dates and tardiness costs, (iii)
comparing the optimal policy obtained by value iteration with optimal reactive
baseline algorithm, genetic algorithm, approximate dynamic programming algo-
rithm and rule based algorithm to evaluate the performance gap between solution
approaches, (iv) illustrating that even in simple problems with 2 or 3 project types,
the suboptimality gap of benchmark policies commonly used in practice (genetic
algorithm and longest-task-first rule) which ignore possibility of new project
arrivals is remarkable. (v) developing a new Approximate Dynamic Programming
(ADP) approximation function that uses project rewards, tardiness costs, spent
processing time and resource usage of projects for decision making, and it is
capable of solving much larger, more complex and much more general problems
than ADPs from existing literature. (vi) efficiency of our ADP approach. In
13.3% of compared problems, the results of our ADP approach are not statistically
significantly different than optimum results of DP. Compare to popular methods
in the RCMPSP literature, our ADP approach generated statistically significantly
higher results than GA and RBA respectively in 57% and 69% of the compared
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problems. The results of our ADP approach are statistically significantly lower
than GA and RBA respectively only in 13% and 2% of the compared problems.

1.2 Thesis structure

This thesis is organised into seven chapters. The next chapter is Chapter 2,
where we summarise the literature of the dynamic RCMPSP and the dynamic and
stochastic RCMPSP. Also, we will mention the origin of our considered problems
such as RCPSP, RCMPSP and their stochastic equivalents, which are the stochastic
RCPSP and stochastic RCMPSP.

In Chapter 3, the methods which are used in this thesis are explained. These
methods are dynamic programming (DP), genetic algorithm (GA), rule-based
algorithm (RBA), worst decision algorithm (WDA), optimal reactive baseline
algorithm (ORBA) and approximate dynamic programming (ADP).

In Chapter 4, we consider the dynamic RCMPSP where projects generate
rewards at their completion, completions later than a due date cause tardiness
costs, and new projects arrive randomly during the ongoing project execution
which disturb the existing project scheduling plan. We model this problem as
a discrete-time Markov decision process (MDP). We explore the performance
and computational limitations of solving the problem by DP with the goal of
maximising the time-average profit. GA and RBA are the most used (or common)
algorithms in RCPSPs. We compare the results of DP with a GA which generates a
schedule to maximise the total profit of ongoing projects and a priority RBA which
prioritises processing of tasks with the highest processing durations. We also use
a WDA, which seek a non-idling policy that minimises the time-average profit, to
make a comparison with the lowest result can be made. Due to the limitation of DP,
we simplify the problem by considering only sequential project networks, single
project arrival at each transition time, a single type of resource, non-preemptive
task processing and a small number of project types with a small number of tasks.

In Chapter 5, we consider the dynamic and stochastic RCMPSP which is an
extension of the dynamic RCMPSP with stochastic durations of tasks. We create
test problems by adding early and late completions probabilities to problems from
Chapter 4. We use the deterministic task durations of problems from Chapter 4
as the expected task duration. In addition to DP, GA and RBA used in Chapter 4,
we introduce an ORBA that generates an optimal schedule for the static problem
(i.e., assumes no new arrivals in the future). Due to the limitation of DP, we use
all assumptions from Chapter 4. For stochastic task durations, we assume that
tasks may complete only one period early or a period later than their expected
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processing times.
In Chapter 6, we extended our work in Chapter 5 by considering multiple

resource types and non-sequential project networks. We also considered bigger
size (more project types and more task number) problems than we consider
in Chapter 5. We model this problem as a discrete-time Markov decision
process (MDP), and we seek to maximise the discounted long time profit. We
use an ADP algorithm with a linear approximation model to approximate the
value function of Bellman’s equation. Our approximation model uses resource
consumption and processing times of project types as features. This model can be
used for online decision-making after estimating coefficients of the linear value
function approximation using a simulation-based training phase. We compare
the performance of our ADP algorithm with solution methods which are used
in Chapter 5. We used the problems from Chapter 5 for comparison. Also, we
generate new comparison problems that are larger and include non-sequential
project networks and multiple resource types. The larger size problems are
computationally intractable for DP and ORBA; thus, we benchmark ADP with GA
and RBA on these problems. In Chapter 6, we assume that only a single project of
each type may arrive at each transition time, tasks may complete only one period
early or a period later than their expected processing times and task processing is
non-preemptive.

In Chapter 7, the conclusion is presented.

1.3 Status of publications

Chapter 4 was presented at ”The OR Society’s 63rd Annual Conference (OR60)”
on September 13, 2018 in Lancaster, and it was presented again at ”The 25th
International Conference on Analytical & Stochastic Modelling Techniques &
Applications (ASMTA-2019)” on October 24, 2019 in Moscow. This work is
published as ”Performance evaluation of scheduling policies for the DRCMPSP” in
Analytical and Stochastic Modelling Techniques and Applications. ASMTA 2019.
Lecture Notes in Computer Science, vol 12023. Chapter 4 is accessible online as
https://doi.org/10.1007/978-3-030-62885-7_8

Chapter 5 was presented at ”The 30th European Conference on Operational
Research (EURO2019)” on June 25, 2019 in Dublin and published as ”Perfor-
mance evaluation of scheduling policies for the Dynamic and Stochastic Resource-
Constrained Multi-Project Scheduling Problem” in International Journal of Pro-
duction Research. Chapter 5 is accessible online as https://doi.org/10.

1080/00207543.2020.1857450
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Chapter 6 was presented at ”The OR Society’s 63rd Annual Conference (OR63)”
on September 14, 2021 and submitted as ”A Simulation-Based Approximate Dy-
namic Programming Approach to Dynamic and Stochastic Resource Constrained
Multi-Project Scheduling Problem” to European Journal of Operational Research.
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Chapter 2

Project scheduling literature

Dynamic and stochastic RCMPSP is an extension of the resource-constrained project
scheduling problem (RCPSP). This chapter will review studies in the field of RCPSP
and its extensions which are shown in Figure 2.1. First, the general RCPSP problem
and its multi-project version resource-constrained multi-project scheduling problem
(RCMPSP) will be mentioned. Then their stochastic extensions, the stochastic
resource-constrained project scheduling problem (stochastic RCPSP) and the stochastic
resource-constrained multi-project scheduling problem (stochastic RCMPSP) will be
reviewed. After that, we will show the literature summary of the dynamic
RCMPSP. Finally, dynamic and stochastic RCMPSP will be discussed in more
detail.

2.1 Project scheduling problem (PSP) and resource-

constrained project scheduling problem (RCPSP)

The project scheduling problem (PSP) is an NP-hard class problem, and its goals
are optimisation of project duration, resource allocation, cost evaluation or cash
flow (Ortiz-Pimiento and Diaz-Serna, 2018). NP-hard refers to the fact that these
problems can not be solved or verified by exact algorithms in polynomial time. In
PSP, the optimisation goals are accomplished by finding the optimal start times of
tasks or the optimal sequence of tasks. Most PSP can be solved by well-known
network-based project management techniques, e.g., the critical path method
(CPM) and the project management and review technique (PERT).

PSP has many extensions. The PSP with at least one type of resource is
constrained by an amount is called resource-constrained PSP (RCPSP) (Kolisch
and Padman, 2001). The goal of RCPSP is determining the best order of the
tasks that maximise project profit (i.e. reward, less tardiness cost) or minimise
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Figure 2.1: A flowchart of RCPSP and its extensions

the project completion time by utilising the limited pool of available resources.
RCPSP is extensively studied by a large number of exact algorithms and heuristic
methods: priority rule-based methods, genetic algorithm, ant colony optimization,
simulated annealing, particle swarm optimization, tabu search, neural network,
scatter search, neighbourhood search and hybrid forms of these methods are some
of the applied solution methods in the literature (Karam and Lazarova-Molnar,
2013).

Karam and Lazarova-Molnar (2013) cites that small-sized RCPSPs can be
solved by exact algorithms within acceptable time but the required computation
time for large-sized RCPSPs is impractical. Thus, usually heuristics methods
are used for large-sized RCPSPs. It also states that the common goal of the
RCPSP is minimising the completion time, and genetic algorithm is the most used
solution algorithm. Well-known RCPSP test problems are available at PSPLIB
(Kolisch and Sprecher, 1997), which is an online RCPSP library (http://www.om-
db.wi.tum.de/psplib).

The RCPSP is one of the most extensively studied research problem (Creemers,
2015). As stated above, many solution approaches have been applied to the RCPSP.
However, it is not the main topic of this thesis, and it is not the purpose of this
study to provide an exhaustive literature review. Thus here, we highlight a few
applications of solution methods used for these problems. Kolisch and Drexl
(1996) proposed an adaptive search procedure using priority rules and random
search techniques for the RCPSP. The objective function is the minimisation of
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the project makespan via minimising the completion times of each task. The
algorithm is tested using the benchmark set of Patterson (1984). Hartmann
(1998) proposed a self-adapting genetic algorithm for the RCPSP. They created
permutation of schedules and compared their performance with a priority rule-
based genetic algorithm using the PSPLIB problems. Hartmann (2002) proposed
another self-adapting genetic algorithm for the RCPSP. This model differs from
Hartmann (1998) by having both serial and parallel schedule generation scheme
(SGS). Khamooshi (1999) claimed that choosing one priority rule during the whole
RCPSP might let a sub-optimal solution. Thus they offered to divide a project into
periods and choose the best priority rule for each period to get a better solution.
This approach is called the dynamic priority scheduling method. They used a DP
model to select the best priority rules for each period. They tested the algorithm
over one hundred problems and outperformed the single period approach on
almost all of the problems.

2.2 Resource-constrained multi-project scheduling prob-

lem (RCMPSP)

In the current economic environment, companies manage multiple projects from
different customers at the same time (Homberger, 2012). Thus simultaneous
management of multiple projects has become very common and crucial (Browning
and Yassine, 2010). The RCPSP, which extended with more than one project, is
called resource-constrained multi-project scheduling problem (RCMPSP). Two RCMPSP
solution approaches exist: (1) the first approach combines projects in parallel with
a dummy start-task and a dummy end-task, then solves the problem as a giant
project network, (2) the second approach maintains the multiple projects networks
separately (Browning and Yassine, 2010). The general goal of the RCMPSP
is minimising the total (for the first approach) or the average (for the second
approach) completion time (Browning and Yassine, 2010). The first approach is
more common in the literature and most algorithms developed for RCPSP can be
applied to RCMPSP with this approach.

An RCMPSP library named MPSPLIB is available at ”http://www.mpsplib.com/”
which contains sets of problems generated by Homberger (2012). We used some
problems from MPSPLIB in our comparison in subsection 6.5.3. Here we highlight
that some researchers used MPSPLIB problems in their comparison. Homberger
(2012) has developed a multi-agent system algorithm for the RCMPSP. The model
uses a coordination mechanism based on an evolutionary search. They used
multi-project test problems, which are combinations of the PSPLIB problems
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and compared the performance of their algorithm with Homberger (2007). The
test problems of this research are available at MPSPLIB. Adhau et al. (2012)
proposed a distributed multi-agent algorithm for the RCMPSP, using auction-
based negotiation. Their algorithm seeks the optimum project delays and total
project completion without resource conflicts. Adhau et al. (2013) developed
this algorithm by considering the cost and duration of moving resource between
projects. The new algorithm aimed to minimise the duration and resource costs in
addition to project delays and total project completion. However, moving resource
is not considered in their comparison chapter to able to solve MPSPLIB problems.

2.3 Stochastic RCPSP and stochastic RCMPSP

Despite the vast number of studies in the field of the RCPSP and RCMPSP,
some researchers (e.g., Creemers (2015) and Chand et al. (2019)) claimed that
these deterministic problems rarely represent real-life problems that involve
uncertainties and considering a deterministic environment is not realistic. In the
literature, the generalisations of RCPSP and RMCPSP with uncertainty in project
features or resources are called the stochastic RCPSP (SRCPSP) and the stochastic
RCMPSP (SRCMPSP) respectively.

The common goal of these stochastic problems is to minimize the expected
completion time (Rostami et al., 2018). Ortiz-Pimiento and Diaz-Serna (2018)
showed that PSP with stochastic task durations have drawn great attention since
2007, stating that approximately half of these papers focused on the stochastic
RCPSP and the stochastic RCMPSP, and the most used solution algorithm for these
problems is genetic algorithm. In the majority of research in the stochastic RCPSP
and the stochastic RCMPSP areas, the uncertainty of stochastic task duration is
considered (e.g. Tereso et al. (2004); Deblaere et al. (2011); Creemers (2015); Li and
Womer (2015); Yassine et al. (2017); Wang et al. (2017); Bruni et al. (2018); Rostami
et al. (2018)). However, some (e.g. Wang et al. (2015); Song et al. (2018); Chand
et al. (2019)) consider the stochastic resource availability.

The literature review of Ortiz-Pimiento and Diaz-Serna (2018) shows that
meta-heuristic methods such as genetic algorithm, particle swarm optimisation,
tabu search, bee colony, ant colony, greedy algorithms, simulated annealing and
distribution estimation algorithm; exact methods such as branch and bound,
dynamic programming and stochastic programming; special procedures such as
priority rules-based, simulation process-based or stage-by-stage analysis based;
critical chain methods are some of the applied solution methods in the literature.
Also, an approximate dynamic programming method is used for stochastic RCPSP
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by Li et al. (2020). Recent examples of the application of such methods are now
described below:

Tereso et al. (2004) considered the stochastic RCPSP with exponentially dis-
tributed multi mode task durations. Their problem have four optional task
durations with equal probabilities and one resource type. First they used a PERT
method with expected task durations to find the critical pathway of the project
network. Using the critical pathway, they used fixed resource usages for un-critical
tasks. Then they solved the problem with dynamic programming with the goal of
minimising the resource allocation and tardiness costs. Finally, they optimised the
un-critical tasks after calculating the expected costs.

Creemers (2015) modelled the stochastic RCPSP as a continuous-time MDP
and used acyclic phase-type distribution for the task durations. The phase-type
distribution is consist of multiple exponentially distributed building blocks. They
offered a stochastic dynamic programming model by extending the study of
Creemers et al. (2010). Their algorithm is capable of solving small to medium size
(up to sixty tasks) problems.

Wang et al. (2015) modelled the stochastic RCMPSP as a discrete-time MDP
where the time unit was a day. They used deterministic task durations to focus on
the uncertainty of resource availability by random events such as resource failures
and resource allocations of out-of-schedule urgent projects. These two events
affect the available number of resources. They proposed a dynamic programming
algorithm with strategy approximation. The goal of the algorithm is minimising
the expected total tardiness penalties. Five priority rules, which are; weigh the
shortest processing time (WSPT), apparent tardiness cost (ATC), earliest due date
(EDD), first-in, first-out (FIFO), and cost over time, are used to limit the action and
state spaces. They stored the system time, numbers of available resources, start
times of the tasks in the state spaces.

Deblaere et al. (2011) considered the stochastic RCPSP and formulated it
as a news-vendor problem with early and late task completion costs. Their
task durations have beta distribution. So they used medians of simulated task
durations. They used a heuristic algorithm to create the initial policy. Then they
performed neighbourhood search to improve the initial policy and evaluated it
with simulation.

Yassine et al. (2017) offered two genetic algorithm approaches for the stochastic
RCMPSP with iteration and triangularly (minimum, most likely, maximum)
distributed task durations. The iteration represents repeating a task processing
according to new feedback such as testing and task integration. They used
repeating probabilities to repeat a task and decreased a task duration after its
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repeat. This study is the first research that compares the performances of a genetic
algorithm and priority rules on this problem.

Wang et al. (2017) compared twenty priority rules taken from Browning
and Yassine (2010) on the stochastic RCMPSP with triangularly distributes task
durations. They categorised the priority rules based on solution quality and
robustness using test scenarios that have different settings. The solution quality
is the duration difference between a solution and the critical pathway, and the
robustness was the consistency of a solution’s performance between different
scenarios. They created the test samples using a project scheduling problem
generator (RanGen2) with uniformly distributed task durations and resource
requirements.

Rostami et al. (2018) used a two-phase meta-heuristic for the stochastic RCPSP.
Their first phase is a greedy randomized adaptive search procedure (GRASP), and
their second phase is a genetic algorithm. They used expected task durations using
simulation.

Chand et al. (2019) focused on the stochastic RCPSP where resource availability
varies with time. They considered random resource disruptions which affect the
resource availability and used pre-emptive task duration during the disruptions.
They proposed a genetic programming hyper-heuristic to evolve priority heuris-
tics and tested their algorithm with scenarios that are created by the combination
of PSPLIB problems and a disruption generator.

Li and Womer (2015) modelled the stochastic RCPSP as a continues-time MDP
where task duration are exponentially distributed. They used a rollout policy
approximate dynamic programming algorithm and a look-up table to reduce
Monte-Carlo simulation samples. First they generated a look-up table which has
state and action pairs with expected task durations by Monte-Carlo simulation.
For a state transition, they finds the action set. then, for each actions, they check
the look-up table for task durations. If action is not available in the look-up table,
They use a heuristic algorithm which creates the task durations with Monte-Carlo
simulation.

Bruni et al. (2018) designed the stochastic RCPSP as a two-stage stochastic
mixed-integer model where task durations discretely distributed. They suggested
a stochastic programming optimisation approach based on the L-Shaped Method
for the problem. The algorithm decomposes the original problem into a master
problem and some sub-problems. The sub-problems are scenarios of task duration
realisations, and the master problem generates a sub-optimal solution based on the
scenarios. They generates a master and sub-problems until an optimal schedule is
found, which minimises the expected make-span over all created scenarios.
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Song et al. (2018) considered the uncertain factors, which could affect the
workability, and uncertain failures, which may lead to repeating a task. They
proposed an agent-based simulation system for the stochastic RCMPSP. The
algorithm aims to minimise the the make-span by generating a baseline schedule.
Then it modifies this schedule according to simulation results.

2.4 Dynamic RCMPSP

The RCMPSP assumes that the arrival times of the projects are known before the
project plan. In reality, it is not usually possible to predict the arrival times of new
projects. The new project arrival is an uncertain event. These uncertain events
deviate from the project plan and lead to missed due dates and associated tardiness
costs (Capa and Ulusoy, 2015).

Many companies accept new projects during the processing of ongoing projects
(Herbots et al., 2007). However, it might not be possible to complete the new
projects before their due date if their processing begins after completion of the
ongoing project schedule. Thus, new projects should be added to execution as
soon as possible without waiting for completion of the ongoing schedule. So the
project plan should be updated when a new project has arrived. We address the
dynamic RCMPSP in Chapter 4.

The uncertainty of project arrivals requires considering the RCMPSP as a
dynamic environment. In this dynamic environment, the RCMPSP with uncertain
project arrivals is called dynamic RCMPSP (DRCMPSP). The goal of dynamic
RCMPSP is to find optimal schedules or scheduling policies that maximise some
function of profit, which is the difference between the completion rewards and
tardiness costs. In general, there are three standard objective functions for dynamic
problems: (i) the expected total profit over a finite horizon, (ii) the expected total
discounted profit over a finite or infinite horizon (e.g., Parizi et al. (2017)), or (iii)
the expected time-average profit over an infinite horizon (e.g., Wang et al. (2015)).

The non-dynamic variants of RCMPSP are extensively studied (Creemers,
2015). However, the dynamic variants of the RCMPSP where new projects
randomly arrive in the system are scarce in the literature. To the best of
our knowledge, there are only three research papers available for the dynamic
RCMPSP, which are Pamay et al. (2014), Parizi et al. (2017) and Chapter 4.

The static RCMPSP methods are not directly applicable to the dynamic problem
since they do not consider the random arrivals of new projects. Two main ap-
proaches are available for the dynamic RCMPSP; (1) reactive baseline scheduling
(e.g. Pamay et al. (2014)), an approach which generates a baseline schedule
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and updates it at each project arrival which allows usage of the static RCMPSP
methods such as genetic algorithm for the dynamic RCMPSP and (2) computation
of optimal policies using approximate dynamic programming (e.g. Parizi et al.
(2017)). Chapter 4 applied both methods to the dynamic RCMPSP and evaluated
their performances. More details about Pamay et al. (2014) and Parizi et al. (2017)
is given below.

Pamay et al. (2014) treated the dynamic RCMPSP as an static problem by
rescheduling a baseline schedule at each project arrival. They assigned earliness
and tardiness costs to each task rather than the completion of projects. They used a
local search heuristic method intending to find a baseline schedule that minimises
the weighted sum of the earliness and tardiness costs of ongoing projects plus the
cost associated with the new project’s completion time.

Parizi et al. (2017) considered dynamic projects arrivals controlled by arbitrary
arrival distribution and modelled the dynamic RCMPSP with deterministic task
durations as a discrete-time MDP. The state-space size, which represents the
queue capacity, limits the maximum number of unfinished projects in the model.
The new projects are rejected after queue capacity is full. They suggested a
simulation-based policy iteration method and used a least-squares fitting to tune
the parameters of value functions approximation. The goal of the algorithm was
to maximise the immediate expected profit. The profit function was the project
completion reward minus the rejected project costs, the holding cost for non-
active projects and the operation costs for active projects. The state information
included the status of tasks whether in a queue, ongoing or completed. They used
simulations simulation profits to train their approximate dynamic programming
model via linear regression. Then the model is used for online decision making.

2.5 Dynamic and stochastic RCMPSP

The stochastic RCMPSP and the dynamic RCMPSP are created to represent
the business environment better than the RCPSP, but they consider different
uncertainties of the environment. However, these uncertainties are usually
features that exist at the same time for most business such as engineering services,
software development, IT services, construction and R&D. By considering the
uncertainties of stochastic task duration and dynamic project arrivals together,
the environment could be modelled better than the stochastic RCMPSP and the
dynamic RCMPSP. The RCMPSP with both random project arrivals and uncertain
task durations is called the dynamic and stochastic RCMPSP. We address dynamic
and stochastic RCMPSP in Chapter 5 and Chapter 6.
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Limited research has considered the both dynamic project arrivals and sto-
chastic task durations together e.g.: Adler et al. (1995); Cohen et al. (2005); Choi
et al. (2007); Melchiors and Kolisch (2009); Fliedner et al. (2012); Capa and Ulusoy
(2015); Melchiors (2015); Melchiors et al. (2018); Chen et al. (2019). The dynamic
and stochastic RCMPSP aims to find optimal schedules or scheduling policies that
maximise the expected total discounted or time-average project reward minus the
costs.

Adler et al. (1995); Cohen et al. (2005); Melchiors and Kolisch (2009) took ad-
vantage of the well-developed queueing network approach where interdependent
resources process project tasks. This requires consideration of projects of relatively
simple structure such as tasks requiring the allocation of: a single unit of a single
type of resource. More details about these studies are available below:

Adler et al. (1995) proposed a queuing network approach for the dynamic and
stochastic RCMPSP and modelled the product development projects as stochastic
processing networks where resources are service stations and tasks are jobs in
queues of service stations. They considered Multi-type projects differentiated by
probability distributions and processing priorities. Also, they considered resource
pooling and extra resource capacities for human resource types. For example, 30%
of engineering work can be given to technicians, or extra working hours can be
applied to engineers. They conducted simulation studies to investigate the factors,
which affect the cycle time, such as the number of resources in resource pools and
input control policies for project arrivals.

Cohen et al. (2005) modelled the dynamic and stochastic RCMPSP as a queue-
ing network where projects arrive randomly according to Poisson processes, and
tasks durations are exponentially distributed. They proposed a Cross-Entropy
based method to minimise the average total stay-time in the system and adopted
the constant number of projects in process (CONPIP) methodology to manage
project arrivals. They defined two types of queues for unprocessed tasks; the first
type of queues is resource queues where tasks are ready to process, the second type
is a queue where tasks wait for the completion of their predecessor tasks to enter
a resource queue. They determined the best task selection policies for resource
queues according to performance function values of multiple simulations results.

Melchiors and Kolisch (2009) also followed a queueing network approach to
solve dynamic and stochastic RCMPSP for R&D projects where arrival times
and task durations are exponentially distributed. The goal of the algorithm is
minimising the expected weighted tardiness. They modelled the resource types as
resource servers with three-unit capacity. They defined two types of project where
project types determine the task network, task numbers (10,20), task distribution
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and project arrival distribution. They used five priority rules and Monte-Carlo
simulations on two projects test problems, which were combinations of different
projects.

Fliedner et al. (2012); Pamay et al. (2014); Capa and Ulusoy (2015) considered
the reactive scheduling method which generates a baseline schedule for current
projects then updates it at each time a new project arrival disrupts the schedule.
More details about these studies are available below:

Fliedner et al. (2012) modelled the dynamic and stochastic RCMPSP problem
as a stochastic RCMPSP by rescheduling a baseline schedule with new project
arrivals. They considered multiple project types with different exponentially
distributed task durations and networks. However, the number of tasks and
resource consumptions are the same for all type of projects. Project arrival rates are
determined by Poisson processes which use the resource utilisation values. They
offered a genetic algorithm with a resource-based policy to minimise the expected
average project completion times.

Capa and Ulusoy (2015) also treat dynamic and stochastic RCMPSP as sto-
chastic RCMPSP by rescheduling it after each project arrival and proposed a
three-phase bi-objective genetic algorithm. The first phase of the algorithm
is an uncertainty assessment to categorise the newly arrived projects for their
predicted resource usage deviation levels. The second phase is a bi-objective
genetic algorithm to minimise the total sum of absolute deviations (TSAD) and
the overall make-span. The algorithm used single and multi-project scheduling
approaches together. The single project approach is used to generate a schedule
only for the newly arrived project according to remaining resources. The multi-
project approach is used to create a schedule for the newly arrived projects and
ongoing projects together. The third phase is rescheduling the project activities
according to changes.

Pamay et al. (2014) treats the dynamic RCMPSP as an RCMPSP by rescheduling
a baseline schedule at each project arrival. They assigned earliness and tardiness
costs to each task rather than the completion of projects. They used a local
search heuristic method intending to find a baseline schedule that minimises the
weighted sum of the earliness and tardiness costs of ongoing projects plus the cost
associated with the new project’s completion time.

Melchiors et al. (2018) modelled the problem as a Markov decision process
(MDP), using dynamic programming to evaluate optimal policies. The solution
approach suffers from the curse of dimensionality and thus can only be used for
unrealistically small problems. Melchiors et al. (2018) investigated the integration
of order acceptance and process planning on the dynamic and stochastic RCMPSP.
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They modelled the problem as a Continues-time Markov decision process and
allowed dynamic arrivals of multiple type projects according to stochastic Poisson
processes. Each project generated with a single task with exponentially distributed
durations. In their case study, there was a piece of equipment as a bottleneck. Thus,
only one resource type was defined. They used a dynamic programming model,
which uses policy iteration with value iteration to determine the optimal policy.
The goal was to maximise the long term average profit per unit time. The profit
function was the project completion rewards minus holding costs and execution
costs. They compared the algorithm on a case where process planning was first
and a case where capacity allocations determined the advance process planning.

Choi et al. (2007); Melchiors (2015) formulate the problem as an MDP and de-
sign a scheduling policy via approximate dynamic programming which is similar
to our approach in Chapter 6. However, our model is notably more comprehensive
and allows for solving larger problems with more complex structure, which are
closer to those appearing in practice.

Choi et al. (2007) considered the dynamic and stochastic RCMPSP where
new project arrivals and task outcomes (success or failure) are uncertain. They
considered applications in the agricultural and pharmaceutical industries. Thus
they modelled their problems with serial project networks, single resource type,
single resource usage per task and no project due dates. They modelled the
problem as a discrete-time MDP model and proposed a Q-Learning based ap-
proximate dynamic programming approach to maximise the optimal expected
final reward. They followed a similar approach with their previous research Choi
et al. (2004) where they took the stochastic task durations, uncertain task outcomes
and uncertain costs into account. However, they extend that stochastic RCMPSP
model by adding dynamic project arrivals, project cancellation and resource idling
decisions. The Q-Learning approach uses stochastic simulations with heuristic
policies to approximate the state transition rules and their value functions, then
records these to a look-up table. The values in the look-up are used for online
decision making.

Melchiors (2015, chapter 7) considered the dynamic and stochastic RCMPSP
where new project arrives randomly using Poisson processes, and task durations
are exponentially distributed. They considered a semi-open project acceptance
system by limiting the maximum project number in it. They suggested an
approximate dynamic programming algorithm that approximates the bellman’s
value function with the goal of minimisation of the average costs. They simulated
the open system using random policies and use the simulation result to train the
approximate value function via linear regression. They conducted experiments
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on small problems with two projects with three tasks with a single unit resource
capacity of each resource types, a single unit resource usage per task, same project
networks for both projects, rejection, holding and processing costs, but no project
due dates.

Chen et al. (2019) divided the dynamic and stochastic RCMPSP into states
according to the project’s completion conditions and then searched best priority
rules for each state. They used 20 priority rules with parallel SGS and four
objective function related to project durations. In their model, only one project
might arrive at a time, and up to two projects might arrive during the entire
scheduling time. The arrival of a new project is random arrival time with a
uniform distribution. In their experiments problems with two uniform, two beta
and one exponentially distributed task durations are used. Also they considered
four resource types. They benchmarked on PSPLIB problems.

2.6 Research gaps

Since most of the literature focuses on the static problem, some research gaps
exist in the dynamic variants of RCMPSP. Table 2.1 compares the literature that
models the dynamic RCMPSP and dynamic and stochastic RCMPSP as MDP
models. There were only two solution approaches available for the dynamic
RCMPSP, which are reactive baseline scheduling and computation of optimal
policies. We applied both methods to the dynamic RCMPSP in Chapter 4. We
used dynamic programming as the computation of optimal policies method and
GA and a priority rule heuristic as reactive baseline scheduling methods. First
time in the literature, we used dynamic programming for the dynamic RCMPSP,
and we evaluated performances of dynamic programming, GA and RBA for the
DRCMPS.

In the dynamic and stochastic RCMPSP literature, only Melchiors et al. (2018)
considered the dynamic programming method. However, they only considered
single task projects. In Chapter 5, we filled the gap in the literature by considering
the dynamic programming method on RCMPSP, which have multiple tasks in
projects. There are multiple researches in the literature that consider the compu-
tation of optimal policies for the dynamic and stochastic RCMPSP. However, none
of them considered multiple tasks that require more than one type of resource on
activation, tasks that consume different amounts of resource, and large projects
with a non-sequential project structure at the same time. This consideration
identifies Chapter 6’s contribution to the literature.

In Table 2.1, for the project network, serial refers to only serial project networks
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Table 2.1: Comparison of literature that modelled dynamic RCMPSP as an MDP

Stochastic Project Solution Resource Resource Problem
task network method type capacity size
duration

Parizi et al. (2017) no any ADP multiple multi-unit large
Chapter 4 no serial DP single multi-unit small
Chapter 5 yes serial DP single multi-unit small
Melchiors et al. (2018) yes single task DP single multi-unit small
Choi et al. (2007) yes serial Q-learning single multi-unit small
Melchiors (2015, chapter 7) yes any ADP multiple single unit small
Chapter 6 yes any ADP multiple multi-unit large

being considered in the research. Any means that the project networks are not
limited to serial project networks. For the resource type, multiple and single refer
to the number of resource types used in the research. For the resource capacity,
multi-unit and single unit refers to the number of resources available for each
resource type. The problem sizes are identified as being small if the problems
are considered as being solvable by dynamic programming and large if not.
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Chapter 3

Methodology literature

This thesis considers the dynamic and stochastic RCMPSP and the dynamic
RCMPSP as an infinite horizon Discrete-Time Markov Decision Process (DT-MDP).
These problems are categorised as NP-hard. NP-hard refers that these problems
can not be solved or verified in polynomial time.

3.1 The problem setting

In the dynamic and stochastic RCMPSP (Chapter 5 and Chapter 6) and the
dynamic RCMPSP (Chapter 4), we consider that J project types which share a pool
of K types of renewable resources to be processed. The available amounts of each
type resources are represented by Bk for k = 1, ..., K. In Chapter 4 and Chapter 5,
we use only a single type resource.

Projects of the same type j share the same features such as arrival probability
Λj , number of tasks Ij , project network, resource usages bkj,i, project due date Fj ,
completion reward rj and tardiness cost wj . In Chapter 5 and Chapter 6, projects
of the same type share minimal possible task duration tmin

j,i , maximal possible task
duration tmax

j,i , task duration distribution γj,i(·) which is conditional on the maximal
remaining processing time. In Chapter 4, the durations are not stochastic, which
can be achieve by setting tmax

j,i = tmin
j,i .

Only one project from each type may arrive to the system each unit time during
processing of the ongoing projects. The project arrival process requires some MDP
terms definitions beforehand. Thus it is described in detail in subsection 3.2.1.

A type j project consists of Ij tasks which are bound to each other with a
predecessor-successor relationship. The order of precedence between tasks is also
called a project network. We consider finish to start precedence relations between
tasks. The project network is an important factor for project scheduling since a task
requires completion of its predecessor tasksMj,i for processing. In Chapter 4 and
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Chapter 5, tasks are processed serially with a successor-predecessor relationship.
In Chapter 6, more general types of finish-to-start successor-predecessor task
relationships are considered.

Processing a task i from a project type j may require allocation of bkj,i amount
from each resource types during its processing. The total number of allocated
resources cannot be higher than Bk. The allocated resources become reusable
after completing the task processing. The un-allocated resources are called free-
resources Bfree

k (s), and allocated resources are added to free resources after their
assigned task is completed. Allocated resources are removed from free resources
when an action to start processing a task is taken. Free resources are important for
decision making and we use free resources to determine the feasible set of actions
in pre-decision state s. Task processing is also assumed to be non-preemptive; thus,
it cannot be paused or cancelled, i.e., once a task has begun processing, it does not
leave processing until completed.

A task is completed after it is processed for its processing duration in Chapter 4.
Task completion in stochastic environment requires some MDP terms definitions
beforehand. Thus it is described in detail in subsection 3.2.1.

When all tasks of a project are processed, the project is completed, and a project
reward rj is earned. Projects have a time limit until their due date (Fj) which
represents the maximum amount of time which can be spent for project completion
to obtain its full reward rj . If the due date is exceeded, the tardiness cost wj is
applied only once, after the project is completed.

3.2 Markov decision process (MDP)

MDP is a mathematical framework for decision-making problems where outcomes
are partly random and partly under the control of a decision-maker (Marinescu,
2018).

We can explain the MDP as a process where a decision-maker uses the current
system information relevant to the decision-making process to chose an action;
then, with the interaction of the action and some random factor, the system
changes and provides a new system information and a reward. Here, the system
information is called state (s). The time when the decision is taken is called decision
epoch. Available actions (a) for the state s are called set of actions (A(s)). The system
change is called transition and the function which defines this transition is called
transition function (P (s′|s, a)). The period which is during the transition occurs is
called transition time. As a result of the state, action and transition function, the
new information which is called future state (s′) and the reward which is called
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the immediate profit (Rs,a) are received. The transition function describes how the
system evolves from one state to another as a result of decisions and information
(Powell, 2011). P (s′|s, a) is the transition function of the system which evolves
from current state s due to effect of the action a to future state s′. The MDP has the
memoryless property that refers that the future state depends only on the current
state and the action.

An MDP may have a finite or infinite horizon. The static problems (RCPSP,
stochastic RCPSP, RCMPSP and stochastic RCMPSP) can be modelled as finite
horizon MDP since these problems end when all projects are completed. On
the other hand, the dynamic problems (dynamic RCMPSP and dynamic and
stochastic RCMPSP) can be modelled as infinite horizon MDP since the system
never completes because new project arrival possibility always exists. As the
infinite horizon MDPs, average or discounted profit options can be used as the
goal function in these problems. In this thesis, we considered dynamic RCMPSP
(Chapter 5) and dynamic and stochastic RCMPSP (Chapter 6 and Chapter 7); thus,
we modelled these problems as infinite horizon MDPs.

3.2.1 Project scheduling as an MDP

The dynamic and stochastic RCMPSP and the dynamic RCMPSP can be modelled
as a DT-MDP by considering that decision epochs occur as fixed intervals or as
a continuous time MDP by considering decision epochs occurs when system is
changed (e.g., task completion, new project arrival). In this thesis, we considered
the former. Both of these models are available for the dynamic and stochastic
RCMPSP and the dynamic RCMPSP in the literature. We decided to use the DT-
MDP because we assumed a system where project manager makes daily decisions
based on the daily updated system information.

In a decision epoch of DT-MDP, a decision-maker (i.e. project manager)
chooses an action (i.e. task processing decision) based on the state. Then, by the
implementation of the action, the transition time begins. During the transition
time, the ongoing tasks are processed for one period, and random events occur.
In both of the dynamic and stochastic RCMPSP and the dynamic RCMPSP, project
arrival is considered as a random event. New projects arrive randomly during the
transition time according to an arrival probability based on their project types (λj).
In the dynamic and stochastic RCMPSP, tasks completions and project completions
(which is a result of task completions) are also random events which occur during
the transition time. A task may complete processing according to a conditional
probability γj,i. We assume γj,i is zero till the task is processed at least its minimal
possible task duration (tmin

j,i ). Then, the completion probability is a function of
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the task’s remaining processing time to the task’s maximal possible task duration
(tmax

j,i ).
In the dynamic RCMPSP, tasks and projects completions are deterministic

events which occur during the transition time. The transition function is expressed
in detail in subsection 4.2.4, subsection 5.2.6 and Section 6.2.3.

The above arrival process is a Bernoulli arrival process, with geometrically
distributed inter-arrival times Tj with mean λ−1

j and probability mass function
P (Tj = k) = (1 − λj)

k−1λj; k = 1, 2, . . .. In this discrete-time process, due to the
memoryless property of the geometric distribution, the probability of an arrival of
a type j project within the current time period is P (T = 1) = λj regardless of the
number of time periods since the last arrival. This is the discrete-time analogue of
exponentially distributed inter-arrival times in continuous time models.

At the end of a transition time, an immediate profit is received, which is the
reward of the completed project minus any tardiness cost. We consider that the
immediate profit belongs to the decision epoch before the transition time. The
immediate profit Rs,a is expressed in detail in subsection 4.2.5, subsection 5.2.7
and subsection 6.2.4.

At a decision epoch, two types of decision problems exist. These are the
acceptance decision of the newly arrived projects and the selection of tasks to
begin processing. The decision of acceptance of projects is called order acceptance
problem, and the decision of tasks to begin processing by considering the limited
resources is called RCMPSP. We divide the state to two parts which are pre-
acceptance state (s∗) and pre-decision state (s). The pre-acceptance state (s∗) corresponds
to system information relevant to the acceptance decision of the newly arrived
projects, and the pre-decision state (s) corresponds to system information relevant
to the selection of tasks to begin processing. The pre-acceptance state is explained
in detail in Section 6.2.3, and the pre-decision state is described in detail for the
dynamic RCMPSP in subsection 4.2.2 and for the dynamic and stochastic RCMPSP
in subsection 5.2.3 and Section 6.2.3.

In this thesis, we focus on task scheduling. Thus we simplify the order
acceptance problem by considering a semi-open system where the system allows
only one project from each project type. The system is full for a project type if
a project from that type is in waiting to be processed or in processing, and the
system is empty for a project type if a project from that type is completed or does
not exist. Newly arrived projects during a transitional time wait in a queue till the
transitional time ends. Then, in the pre-acceptance state, if the system is empty for
the newly arrived project type, the system accepts that new project. Otherwise, the
system rejects the new arrival.
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The action (a) for a pre-decision state represents the information of which tasks
will begin processing in the next transitional time. An action is described in detail
in subsection 4.2.3, subsection 5.2.4 and Section 6.2.3.

At a decision epoch, we also considered a third state which is the post-decision
state (ŝ). A post-decision state represents the system information after the chosen
action is implemented. A post-decision state is located at the end of a decision
epoch when transition time begins. There is no decision available for a post-
decision state. The post-decision state is explained in detail in subsection 5.2.5
and Section 6.2.3.

In summary, we defined three states in each decision epoch and their order is
the pre-acceptance state (s∗), the pre-decision state (s) and the post-decision state (ŝ),
respectively. The transitions from s∗ to s and from s to ŝ are immediate, and
there are no time lag at these transitions. Also no reward can be received during
these transitions. The set of all pre-decision states is called the state space S. All
states consist of the information regarding the remaining task processing times
(x′

j,i, xj,i, x̂j,i) to the late completions and the remaining number of periods until
project is due (dj) for all projects.

3.3 Solution methods used in this thesis

In this thesis, we use six different solution approaches, which are: a dynamic
programming algorithm, an approximate dynamic programming algorithm, a
worst decision algorithm, an optimal reactive baseline algorithm, a genetic algo-
rithm, and a rule based method. Dynamic programming, approximate dynamic
programming and worst decision algorithm are scheduling policies methods.
Optimal reactive baseline algorithm, genetic algorithm and rule based method are
reactive scheduling methods.

3.3.1 Scheduling policies

Dynamic programming (DP)

Dynamic Programming (DP) is a class of methods which uses the Bellman
equation to solve optimal control problems in particular MDPs (Sutton and Barto,
2018). The Bellman equation states that the value of a state is the expected reward
of state iteration plus the (discounted) reward of expected next state, and it also
states that the expected profit of the best action of a state must be equal to profit
of the same state under an optimal policy. (Sutton and Barto, 2018). Using the
Bellman equation, an optimality problem can be solved by finding the best action
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for all of states. In this way, DP divides the complicated problem into simpler
decision problems, and by recursively solving the simpler decision problems it
reaches to the optimal solution of the complicated problem.

In this research we used dynamic programming value iteration. Value iteration
calculates a sequence of value functions (Tijms, 1994). The value function is the
expected long term profit of the MDP model. (3.1), which is from Sutton and Barto
(2018), shows how Bellman equation can be written from the definition of the value
function.

V∗(s) = max
a

Eπ∗ [G|s, a]

= max
a

Eπ∗ [
∞∑
t=0

αtRst+1,at+1 |s, a]

= max
a

Eπ∗ [Rs,a + α
∞∑
t=0

αtRst+2,at+2|s, a]

= max
a

E[Rs,a + αV∗(s
′)|s, a]

= max
a∈A(s)

∑
s′

p(s′|s, a)[Rs,a + αV∗(s
′)]

(3.1)

Here, the first line is the definition of the value function. In the fist line, G is
the expected total discounted profit in a discrete-MDP which can be written as
G = Rst,at + α1Rst+1,at+1 + α2Rst+2,at+2 + ... =

∑∞
t=0 α

tRst+1,at+1 . In the second
line, immediate profit Rst,at can be separated from

∑∞
t=0 α

tRst+1,at+1 as Rst,at +

α
∑∞

t=0 α
tRst+2,at+2 . In the third line,

∑∞
t=0 α

tRst+2,at+2 is the expected reward of
the future state which can be re-written as V∗(s

′). The expectation in the forth line,
can be rewritten as line five which is the Bellman equation.

The above value iteration algorithm which have discounting can be used in a
DP algorithm as Algorithm 2. The Bellman equation can also use time-average
reward setting as it shown in Algorithm 1. The time-average reward setting is one
of the common settings for DP (Sutton and Barto, 2018).

In Algorithm 1 and Algorithm 2, V represents the value function of a pre-
decision state s. p(s′|s, a) is the state transition probability. s′ stands for the future
pre-decision state of s. V old(s′) is the value of s′ from next decision epoch. β is
pre-specified tolerance number. Wmin and Wmax are respectively minimum and
maximum value changes between two iterations. ∆ is the difference between
the minimum and the maximum value changes. α is the discount factor. These
processes are repeated until the stopping criteria is met. Algorithm 1 stops when
the difference between the maximum and the minimum value changes between
two iterations is lower than the minimum value change multiplied by the tolerance
number. Algorithm 2 stops when the largest value change of being in a state is

24



Algorithm 1 Time-average reward value iteration

procedure STATE VALUE ITERATION PROCEDURE
β = 0.000001 ▷ β is the stopping parameter
For each ∀s ∈ S, V old(s) = 0 ▷ initial state values
do

for ∀s ∈ S do
V (s) = max

a∈A(s)

[
Rs,a +

∑
s′∈S p(s

′|s, a)V old(s′)
]

▷ value function

end for
Wmax = max

s∈S
[V (s)− V old(s)] ▷ maximum value change

Wmin = min
s∈S

[V (s)− V old(s)] ▷ minimum value change

∆ = Wmax −Wmin ▷ the difference between max. and min. value changes
Update ∀s ∈ S, V old(s) = V (s)

while ∆ > β ×Wmin

end procedure

Algorithm 2 Discounted value iteration

procedure STATE VALUE ITERATION PROCEDURE
β = 0.001 ▷ β is the stopping parameter
For each ∀s ∈ S, V old(s) = 0 ▷ initial state values
do

for ∀s ∈ S do
V (s) = max

a∈A(s)

[
Rs,a +

∑
s′∈S p(s

′|s, a)αV old(s′)
]

▷ value function

end for
Wmax = max

s∈S
[V (s)− V old(s)] ▷ maximum value change

Update ∀s ∈ S, V old(s) = V (s)
while Wmax > β(1− α)/(2α)

end procedure
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lower than the discounted tolerance number.
DP suffers from “the curse of dimensionality” which means that the number of

states and computational requirements expands exponentially with the number of
state variables (Sutton and Barto, 2018). Our investigation about the limitations of
DP showed that a state space larger than a five projects with two tasks problem is
computationally intractable for our hardware which is a desktop computer with
Intel i5-6500T CPU with 2.50 GHZ clock speed and 32 GB of RAM.

We use DP algorithm in our research to find the optimal policy which generates
the highest profit of the dynamic RCMPSP and Dynamic and Stochastic RCMPSP.
The highest profit helped us to compare other algorithms performance. We
used the same value iteration method for Chapter 4, Chapter 5 and Chapter 6.
However in the DP algorithm in Chapter 6, our goal function is different, thus
we use discounting (α) in the value iteration, and we used a different stopping
criteria. The DP algorithm which is used in Chapter 4 and Chapter 5 is shown in
Algorithm 1, and which is used in Chapter 6 is shown in Algorithm 2.

Worst decision algorithm (WDA)

Worst decision algorithm (WDA) is another value iteration method and quite
similar to Algorithm 1. However, the value function of WDA aims to minimise
instead of maximise. The value function of WDA is shown in (3.2).

V (s) = min
a∈A∗(s)

[
Rs,a +

∑
s′∈S

p(s′|s, a)V old(s′)

]
(3.2)

Here, A∗(s) is the set of all feasible non-anticipating actions which does not include
the “do not initiate any task” actions (0) unless it is the only possible action in the
action set. Due to this action rule, WDA produces non-idle policies.

We use WDA in our comparison to include the minimum reward can be
achieved with a non-idle policy.

Approximate dynamic programming (ADP)

Approximate dynamic Programming (ADP) is a modelling strategy to overcome
“the curse of dimensionality” problem of DP. Also, ADP can be applied to
problems where the problem model or transition function is not known (Powell,
2011). ADP manages these by replacing the true value function with a statistical
approximation function (Powell, 2009).

In the approximation function, the approximate profit of an assumed best
action takes the place of expected profit of the best action. Also, the state transition
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from current state to future state with the (assumed) best action is done by the
realization of information (random project arrivals and stochastic task durations in
our case) by Monte Carlo simulation. Powell (2011) refers to ADP as “optimizing
simulator” since it has an optimization step where a decision is chosen and a
simulation step where effects of random changes are simulated.

There are multiple strategies to approximate the true value function: for
example, Q-learning, real-time dynamic programming (RTDP), approximate value
iteration, approximate value iteration using the post-decision state variable (Pow-
ell, 2011). Some ADP methods, such as Q-learning, requires keeping the approx-
imate value estimates of visited states in a table which is called a look-up table.
Due to the space requirement of storing the look-up table, this method becomes
computationally intractable for bigger size problems.

Some ADP methods use basis functions, which are also referred to as linear
models; these models capture the behaviour of state transition function (Powell,
2009). Powell (2009) states that basis functions are popular since they are more
straightforward than other ADP methods, but the selection of the effective features
require careful modelling.

In this thesis, we employ an ADP approach that estimates the true value
function (V ∗(s)) of Bellman’s equation given in (3.3) using the approximating
linear model in (3.4), such that V̄ (ŝ) ≈ V ∗(s). The linear approximation uses
two features: the amount of time a project has received processing by the end
of the current period; and the amount of resource consumed by a project during
the current period. Evaluation of the approximation only requires knowledge of
the state, proposed action and model coefficients. This avoids the need to store the
value functions for the entire state space. It also avoids the (potentially) expensive
calculation of the expectation required in (3.3). Hence the linear approximation
is more efficient in terms of memory and computation. This allows for dynamic
decision making in larger problems beyond the scope of classical DP and in
problems where rapid decisions are required.

V ∗(s) = max
a∈A(s)

∑
s′∈S

P (s′|s, a)[Rs,a,s′ + αV ∗(s′)] (3.3)

V̄ (ŝ) =
J∑
j

{
θ1j

I∑
i

{{
tmax
j,i − x̂j,i + 1

}
I {x̂j,i > 0}+ tmax

j,i I {x̂j,i = 0}
}
+

θ2j

I∑
i

K∑
k

{
bkj,iI {x̂j,i > 0}

}} (3.4)
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These features were chosen according to our comparisons with different ap-
proximation functions. In preliminary experiments, we generated eight different
approximation functions which are combinations of features including the amount
of time spent processing the projects in the system, the amount of resources
being used by the projects, the amount of free (unused) resource, the time until
the project due date expires and the total remaining processing times across the
projects. According to our experiments the 2-feature linear approximation model
presented here showed consistently strong performance in comparison to the
alternatives across a range different problem settings.

Coefficients θ1j and θ2j are generated using the least-squares fitting method,
which minimises the residual between the linear approximation model results
and simulated results. The coefficient generation process is summarised in
Algorithm 3.

Algorithm 3 ADP
procedure ADP ALGORITHM

∀j ∈ J, θ1j = θ2j = 0, the initial state s1 = 0. ▷ initial values
for itr = 1 to Iteration do ▷ for each iteration

Ṽsim = 0 ▷ Ṽsim is cumulative simulation profit
for sim = 1 to Simulation do ▷ for each simulation
∀j ∈ J,D1

j (sim) =
∑I

i

{{
tmax
j,i − xj,i + 1

}
I
{
xj,i > 0

}
+

{
tmax
j,i

}
I
{
xj,i = 0

}}
,

∀j ∈ J,D2
j (sim) =

∑I
i

{
bj,iI

{
xj,i > 0

}}
▷ xj,i ∈ s1

for t = 1 to Period do ▷ for each simulation period
find A(st) for st ▷ A(st) is the action set for st
find a = argmax

a∈A(st)

∑J
j

{
θ1j

∑I
i

{
{tmax

j,i − x̂j,i + 1}I{x̂j,i > 0}+ {tmax
j,i }I{x̂j,i = 0}

}
+

↪→ θ2j
∑I

i

∑K
k

{
bkj,iI{x̂j,i > 0}

}}
compute st+1 = sM (st, a, ct+1) ▷ state iteration via simulation
Ṽsim ← Ṽsim + αt−1Rst,a,st+1

end for
s1 ← sPeriod+1 ▷ initial state for the next simulation

end for
∀j ∈ J , θ new1

j = θ new2
j = 0 ▷ initial new coefficients

argmin
θ new1

j ,θ new2
j

∑Simulation
sim=1

{
Ṽsim −

∑J
j

(
θ new1

jD
1
j (sim) + θ new2

jD
2
j (sim)

)}2

↪→ ▷ The linear approximation of the covariance matrix
τ = τharmonic/(τharmonic + itr − 1) ▷ harmonic step size
∀j ∈ J, θ old1j = θ1j and θ old2j = θ2j
∀j ∈ J, θ1j = (1− τ)θ old1j + τθ new1

j

∀j ∈ J, θ2j = (1− τ)θ old2j + τθ new2
j

end for
return ∀j ∈ J , θ1j and θ2j

end procedure
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Here, we train our approximation function with one thousand iterations. In
the first iteration, we assume the initial pre-decision state is an empty state with
no existing project, and coefficients are zero. In each iteration, we run one hundred
simulations, and from each simulation, we collect features D1

j and D2
j of the initial

pre-decision states and cumulative simulated profit (CSP ). After simulations are
completed, we estimate coefficients (∀j ∈ 1 : J θ1j , θ

2
j ) by minimizing the sum of

the squared deviations between the cumulative discounted profits and the linear
approximation model (3.4) using a linear least-squares regression method. We call
estimated coefficients as θ new and existing coefficients as θ old, and we use them
in a dynamic step-size function (3.5) to generate coefficients of the new iteration.

∀j ∈ J,∀h ∈ 1 : 2, θhj = (1− τ)θ oldhj + τθ newh
j (3.5)

We generate the dynamic step-size value τ with the harmonic step-size method
(3.6). We set harmonic step-size value as τharmonic = Iteration0.5. 1

τ = τharmonic/(τharmonic + itr − 1) (3.6)

We use the terminal pre-decision state of the iteration as the initial pre-decision
state in the new iteration. After a specific amount of iterations, the final coefficients
are used in the linear approximation model for online decision making.

During a simulation, we find the action set A(s) of the current pre-decision
state st and, select the most profitable action using the objective function in (3.7).
If multiple actions have the highest profits, we randomly select among them.

a =argmax
a∈A(st)

J∑
j

{
θ1j

I∑
i

{
{tmax

j,i − x̂j,i + 1}I{x̂j,i > 0}+ {tmax
j,i }I{x̂j,i = 0}

}
+

θ2j

I∑
i

K∑
k

{
bkj,iI{x̂j,i > 0}

}} (3.7)

The post-decision state ŝ begins with the implementation of the best action. Then
random events occurring over the transition time, ct+1, are simulated according to
the transition function and the new pre-decision state s′ is achieved. If any project
completes during the transition time, their profit is added to the cumulative profit
with discounting using the discounting function αt−1. This simulation process
repeats for a specific amount of periods, and the final pre-decision state is used
as an initial pre-decision state in the next simulation.

1We chose the step-size value according to Powell (2011). We also tried KESTEN’s Stepsize Rule
but we received better coefficient values with the harmonic step-size in our tests.
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The approximation function evaluated by Algorithm 3 can be used for online
decision making for any pre-decision state. First, all actions for the pre-decision
state are generated, then expected profits are calculated using the approximation
function for each action. The action with the highest profit is used in that pre-
decision state. If multiple actions have the highest profits, one of them is selected
randomly.

We use ADP in our research since it does not suffer from the curse of
dimensionality in contrast to DP, but it considers both the uncertainties of new
project arrivals and task durations. Also, ADP allows us to investigate a wider
range of project networks, to consider multiple resource types and much bigger
size problems.

3.3.2 Reactive scheduling

A reactive scheduling method generates decisions within a deterministic approach
without considering the future uncertainties (Pamay et al., 2014). Then, it
iteratively fixes its first schedule according to random changes and makes the
schedules feasible again (Rostami et al., 2018). The reactive scheduling method
converts each state of the dynamic problem to a static problem, and solution
methods generate a baseline schedule for each state.

Even though the RCMPSP literature is vast, the majority of the literature
focuses on static problems. However, using the reactive scheduling solution
methods for the static environment can be applied to dynamic problems. Thanks
to the reactive scheduling method, we used ORBA and GA for dynamic and
stochastic RCMPSP, and GA for dynamic RCMPSP.

Optimal reactive baseline algorithm (ORBA)

Optimal reactive baseline algorithm (ORBA) is an exact and brute force algorithm
for the static RCMPSP and does not consider new project arrivals. ORBA generates
every feasible task scheduling order (TSO) of any waiting for processing tasks. A
TSO represents the scheduling order of waiting for processing tasks. Then ORBA
calculates the reward and makespan of each TSO by simulation. The simulation
generates start and finish times of tasks in a TSO processing using the parallel
schedule generation scheme (SGS) without considering new project arrivals. Using
parallel SGS on a TSO is explained with more detail in Section 3.3.2. Finally, ORBA
creates a non-idling action for the current pre-decision state from the TSO with
the highest profit. In case of more than one schedule with the highest profit, the
algorithm prioritizes the shortest total makespan between these schedules. If the
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tie continues, the algorithm randomly selects one schedule. A non-idling action
always allocates resources to tasks when it is possible to do so. This process is
shown in Algorithm 4.

Algorithm 4 ORBA
procedure

Yt is the set of tasks (j, i) ∈ state st for which xj,i = −1.
ϵYt

is the set of all feasible permutations of the set Yt.
A feasible TSO is a permutation σ of Yt such that, for any m < n with σ(m) = (j, i) and

σ(n) = (j, k), k /∈Mj,i.

Vmax = 0, makespanmin = inf , TSO∗ = ∅ ▷ initial values
for h = 1 to |Yt|! do ▷ for all permutations of Yt

if ϵYt(h) is a feasible TSO then
evaluate Ṽsim(ϵYt

(h)) and makespansim(ϵYt
(h))

if (Ṽsim(ϵYt
(h)) ≥ Vmax) or (Ṽsim(ϵYt

(h)) = Vmax and makespansim(ϵYt
(h)) <

makespanmin) then
TSO∗ = ϵYt

(h)

Vmax = Ṽsim(ϵYt
(h))

makespanmin = makespansim(ϵYt(h))

end if
end if

end for
return TSO∗

end procedure

Here, Yt is the set of all waiting for processing tasks (xj,i = −1) for a given pre-
decision state st. ϵYt is the set of all feasible permutations of the set Yt. Ṽsim(∗) is
the cumulative profit of TSO. makespansim(∗) is the makespan of TSO. TSO∗ is the
best TSO found so far. Vmax is the highest profit found among the feasible TSOs.
makespanmin is the shortest makespan found among the feasible TSOs.

The generated TSO is converted to non-idling action a for given pre-decision
state st using a serial scheduling generation scheme (SGS). In a SGS, if there are
enough free resources to process the first task in the TSO, its action becomes
one (aj,i = 1) and its resource usage requirements are subtracted from the free
resources. The process then repeats for the remaining tasks in order of the TSO. The
TSO for the remaining tasks can be used to create future actions for the following
periods as long as no new project arrives. If a new project arrival disturbs the
system, the current TSO becomes invalid, and ORBA generates a new TSO.

We use ORBA in our comparison since it generates the best possible result of a
reactive scheduling method. In addition, comparisons with ORBA also give us
insights into the performances of a static environment method in the dynamic
environment. ORBA runs in factorial time. Due to the huge computation time
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requirement of brute force algorithms, only small size dynamic and stochastic
RCMPSP problems can be solved.

Genetic algorithm (GA)

Genetic algorithm (GA) which, was inspired by Charles Darwin’s theory of
evolution in the 19th century, was developed by Holland (1992). The GA is one
of the search algorithms which searches for the global optimum on the solution
space by improving the search samples at each iteration (Mori and Tseng, 1997).
The GA uses bio-inspired operators (e.g. Elitist selection, Crossover and Mutation)
to develop the population, which is a solution set, in each iteration. The GA is the
most-used algorithm for project scheduling problems. However, the algorithm is
not suitable for dynamic problems, and a reactive scheduling method is required
to apply GA to a dynamic problem.

In this thesis, for a given pre-decision state, GA generates one hundred TSOs,
which are random permutations of the waiting for processing tasks. The algorithm
evaluates simulates each TSO using Parallel TSO, founds profits and makespans
of TSOs and ranks the TSOs using these values. Then using the bio-inspired
operators, GA iterate the set of TSOs for one hundred times to create better TSOs
that have higher profits and lower makespans.

At each iteration, GA creates one hundred new TSOs using elitist selection,
crossover and mutation operators. The elitist selection operator copies the top ten
percent highest ranked TSOs from the previous generation of TSOs to the new
generation of TSOs. Crossover and mutation operators fill the rest of the new
generation. The crossover operator randomly selects two TSOs from the previous
generation and randomly selects a task inside of the first TSO. The scheduling
order of tasks from the initial task 2 to the selected task is copied from the first
(selected) TSO, to (make) a new TSO. Then, the crossover operator copies the
remaining of tasks of the first (selected) TSO to the new TSO (to after the randomly
selected task) but changes the order of these tasks according to the order of these
tasks in the second (selected) TSO. The new TSO is always a feasible TSO, since
it is created according to the order of tasks in both selected feasible TSOs. The
new TSO is mutated by the mutation operator with a fifty percent chance or it is
added to the new generation. Under the mutation operation a task is selected at
random and the location of this task in the TSO is randomly re-assigned. The new
location can not be later than the task’s previous order and can not be sooner than
its latest to be processed predecessor task. Thus the mutation operator also ensures
that the newly generated TSO is a feasible TSO. Then the new TSO is added to the

2The initial task represents the first (earliest) to be processed task.
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new generation. When size of the new generation reaches one hundred, TSOs are
ranked the same as in the first generation. GA iterates the generations one hundred
times.

Finally, GA creates a non-idling action for the current pre-decision state
from the TSO with the highest profit using serial SGS. Ties between TSOs are
managed as same as ORBA. The parameters such as elitist selection ratio, mutation
probabilities are taken from Satıç (2014).

We use GA in our comparison since it is the most used solution algorithm
for RCPSP according to Karam and Lazarova-Molnar (2013). Also Fliedner et al.
(2012) and Capa and Ulusoy (2015) proposed reactive scheduling methods based
on GA for the dynamic and stochastic RCMPSP. Thus we include GA to show its
performance difference against DP and ADP.

Rule based algorithm (RBA)

Priority rule algorithms determine which tasks will be processed from the waiting
for processing tasks according to maximum or minimum values of task features
(e.g., resource usage, task duration length, start or end time of task, etc.) These
methods are very simple to apply, but their downside is that these methods
might be suboptimal. Priority rule algorithms can be categorized as single-pass
or multi pass-methods. If the algorithm produces only one schedule it is called
a single-pass method, and if it produces multiple schedules it is called a multi-
pass method (Kolisch and Hartmann, 1999). Ulusoy (2002) summarised the most
popular priority rules as: shortest processing time (SPT), minimum slack (MSLK),
most total successor (MTS), greatest resource demand (GRD), latest finish time
(LFT), latest start time (LST), resource scheduling method (RSM), greatest rank
positional weight (GRPW) and worst case slack (WCS).

In this thesis, our rule-based algorithm (RBA) uses a single-pass priority rule
called the longest task first rule. The rule-based algorithm (RBA) prioritises the
tasks with longer processing times, and if two tasks have the same duration, the
smallest numbered project type, e.g., project type one, is prioritised over type
two or type three. The algorithm generates a baseline schedule for each decision
state using the priority rule and the serial scheduling scheme. Then, the baseline
schedule is converted to an action, similar to ORBA and GA. We use RBA in our
comparison to show the performance comparison of a simple and robust heuristic
algorithm. We selected the longest task first rule amongst others because it is
simple and easy to apply. Also, Frenk and Kan (1987) shows that the longest task
first rule has very strong properties of asymptotic optimality.
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Schedule generation schemes

Schedule generation schemes (SGS) convert TSOs to schedules that show the tasks’
starting and ending dates. There are two SGS methods which are serial SGS and
parallel SGS.

Serial SGS assign tasks to schedule according to their order in the TSO. For
example, the serial SGS assigns the first task in the TSO for processing to the
earliest time in the schedule where all predecessor tasks of the first task are
completed, and there are enough resources to process the task throughout its
processing duration. Then, the resource usage of the task is subtracted from the
available resource amounts during the processing time of the task. After that, serial
SGS repeats this process for other tasks according to their order in the TSO.

Parallel SGS assign tasks to schedule according to the earliest possible start
times of tasks in the TSO. For example, the parallel SGS investigates if the first task
in the TSO can start at the first period (time t) of the schedule. In other words,
the parallel SGS checks that if enough resource is available and all predecessor
tasks are completed at the time t. Suppose investigations show that the first task
in the TSO can begin processing at the time t. In that case, the task is assigned for
processing in time t and its resource usage is subtracted from the available resource
amounts during its processing time. If investigations show otherwise, the parallel
SGS repeat this process for the following tasks in the TSO until all TSO tasks are
investigated. Next, assigned tasks are removed from the TSO. Then, if some tasks
remain in the TSO, parallel SGS repeats this process for time t + 1 and increments
the time till no tasks remained in the TSO.

Overall, it may be said that the serial SGS generates policies that represent the
order in the TSO while the parallel SGS generates non-idle policies. In this thesis,
we used the serial SGS method to measure profits and durations of TSOs in ORBA
and GA. We used the parallel SGS method to create a non-idle action from the best
TSO generated by ORBA, GA and RBA.
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Chapter 4

Performance evaluation of scheduling
policies for the DRCMPSP

Abstract

In this study, we consider the dynamic resource-constrained multi-project
scheduling problem (DRCMPSP) where projects generate rewards at their
completion, completions later than a due date cause tardiness costs and new
projects arrive randomly during the ongoing project execution which disturbs
the existing project scheduling plan. We model this problem as a discrete
Markov decision process and explore the computational limitations of solving
the problem by dynamic programming. We run and compare four different
solution approaches on small size problems. These solution approaches are:
a dynamic programming algorithm to determine a policy that maximises the
average profit per unit time net of charges for late project completion, a genetic
algorithm which generates a schedule to maximise the total reward of ongoing
projects and updates the schedule with each new project arrival, a rule-based
algorithm which prioritise processing of tasks with the highest processing
durations, and a worst decision algorithm to seek a non-idling policy to
minimise the average profit per unit time. Average profits per unit time of
generated policies of the solution algorithms are evaluated and compared. The
performance of the genetic algorithm is the closest to the optimal policies of
the dynamic programming algorithm, but its results are notably suboptimal,
up to 67.2%. Alternative scheduling algorithms are close to optimal with low
project arrival probability but quickly deteriorate their performance as the
probability increases.

keywords : Dynamic programming, Resource constraint, Project scheduling
and DRCMPSP.

4.1 Introduction

Project management is crucial for many sectors such as engineering services,
software development, IT services, construction and R&D, Grey (2007); Capa and
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Ulusoy (2015); Wang et al. (2015); Adhau et al. (2012). However it is a very
challenging enterprise in that only 40% of projects are completed within time, 46%
of projects are completed within their predicted budget and only 36% of projects
realise their full benefit Wellingtone PPM (2018). Many uncertain factors may
affect project execution such as new project arrivals. In this environment, problem
size grows and becomes intractable for an exact solution; thus, approximation al-
gorithms are generally preferred. This study applies an exact solution method and
some approximation methods to project scheduling problems under uncertainty
and compare their performances.

”A project is a unique, transient endeavour, undertaken to achieve planned
objectives, which could be defined in terms of outputs, outcomes or benefits.”
APM (2012). A project consists of a collection of tasks that are connected via
network relationships. A reward is released as the outcome of a project completion.
A project is completed when all of its tasks are processed and an amount of
resources (e.g. manpower, equipment) is spent over time to process these tasks.
Completion of the project beyond a pre-determined due date or to lower standards
than agreed may cause penalties and loss of prestige and goodwill which are
collectively called the tardiness cost.

Determining a task processing order to achieve project goals such as comple-
tion in the minimum time or completion within a specific time is called project
scheduling problem (PSP). The PSP is a vast research area which aims at optimising
of project duration, resource allocation and cost evaluation Ortiz-Pimiento and
Diaz-Serna (2018). In this area, the resource-constrained project scheduling problem
(RCPSP) is one of the most extensively studied research Creemers (2015). The
common goal of the RCPSP is minimising the completion time and genetic algorithm
(GA) is the most used solution algorithm for this deterministic problem in the
literature Karam and Lazarova-Molnar (2013). Well-known RCPSP test problems
are available at PSPLIB Kolisch and Sprecher (1997), which is an online RCPSP
library (http://www.om-db.wi.tum.de/psplib).

Companies usually manage multiple projects simultaneously, and the RCPSP
with multiple projects is called resource-constrained multi-project scheduling problem
(RCMPSP) Adhau et al. (2012). The RCMPSP is a generalisation of the RCPSP,
which is an NP-hard class optimisation problem; thus, RCMPSP and the other
generalisation of RCPSPs are also categorised as NP-hard. Gonçalves et al.
(2008). Two RCMPSP solution approaches exist: (1) the first approach combines
projects in parallel with a dummy start-task and a dummy end-task, then solves
the problem as a giant RCPSP, (2) the second approach maintains the multiple
projects separately Browning and Yassine (2010). The general goal of the RCMPSP
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is minimising the total (for the first approach) or the average (for the second
approach) completion time Browning and Yassine (2010). A RCMPSP library
named MPSPLIB is available at ”http://www.mpsplib.com/” which contains
sets of problems generated by Homberger Homberger (2012).

The RCPSP and RCMPSP are static, where the data of project arrival times and
their type are known before the scheduling begins. However, many companies
accept new projects during the processing of ongoing projects Herbots et al. (2007).
That deviates from the project plan and leads to missed due dates and associated
tardiness costs Capa and Ulusoy (2015). So, instead of focusing only on completion
times, projects are modelled with completion rewards and the objective becomes to
maximise the expected profit which is the difference between expected completion
rewards and expected tardiness costs. The RCMPSP with uncertain project arrivals
and deterministic task durations is called dynamic RCMPSP (DRCMPSP). Two
main approaches are available for the DRCMPSP; (1) reactive baseline scheduling
(e.g. Pamay et al. (2014)), an approach which generates a baseline schedule and
updates it at each project arrival which allows usage of the static RCMPSP methods
such as the GA for the DRCMPSP and (2) computation of optimal policies (e.g.
Parizi et al. (2017)).

In this chapter, we consider the DRCMPSP with uncertain project arrivals.
We model the problem as an infinite-horizon discrete-time Markov decision process
(MDP) which is defined by five elements: time horizon, decision state space, action
set, transition function and profit function. We generated task processing policies
for the DRCMPSP using multiple solution methods. First, we used dynamic
programming value iteration method to maximise the time-average profit. Second,
we used GA to maximise the total completion reward and reactively fixed the
schedule distribution for each project arrivals. Third, we used a rule-based algorithm
(RBA) to generate a policy using the longest task first rule. Finally, we used worst
decision algorithm (WDP) to generate a non-idling policy which aims to minimise
the time-average profit.

We contribute to the literature by (i) developing a DRCMPSP model consid-
ering multi-task project types, extending the work of Melchiors et al. Melchiors
et al. (2018) who only considered single-task projects, (ii) developing an efficient
implementation of the value iteration algorithm in Julia programming language to
solve our model with up to 4 project types, (iii) comparing the (exactly) optimal
policy of value iteration with the above-mentioned benchmark policies to evaluate
the performance gap between solution approaches, and (iv) illustrating that even
in simple problems with 2 or 3 project types, the suboptimality gap of benchmark
policies commonly used in practice (genetic algorithm and longest-task-first rule)
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Figure 4.1: A project network

which ignore possibility of new project arrivals is remarkable.
This chapter is organized as follows: In Section 4.2, we describe the problem

setting, the MDP model. In Section 4.3, we describe the compared algorithms and
discuss comparison results in Section 4.4. In Section 4.5, conclusion is presented.

4.2 Methodology

4.2.1 The problem setting

The DRCMPSP comprises J project types, and the system capacity for each project
type is limited to one. All projects of type j share the same characteristics such as
arrival probability (λj), number of tasks (Ij), task durations (tj,i), project network,
resource usages (bj,i), period till project’s due date (Fj), reward (rj) and tardiness
cost (wj).

A project may arrive to the system at any point during the time unit, which is
the duration between two decision epochs. Only one project for each type may
arrive per unit time with probability λj for a project of type j. Projects are stored
in the system until the end of unit time. Then in the next decision epoch, if the
system capacity for newly arrived project type is not full, it will get accepted to the
system. Otherwise, it will get rejected.

A type j project consists of Ij tasks. In this problem, tasks are connected
sequentially with a successor-predecessor relationship, which defines the project
network. Processing task i of project type j requires completion of its predecessor
tasks (Mj,i) which have an earlier place in the project network. An example project
network is shown in Figure 4.1.

Processing task i from project type j also requires allocation of bj,i amount
of resources during its processing. Only one type of resource is defined in
our model and the amount available is represented by B. The total number of
allocated resources cannot be higher than B. The resources are assumed renewable
which means they become reusable after completion of a task to which they were
assigned. The number of resources which are not allocated for task processing is
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called free-resources (Bfree
s ). After the completion of a task, its allocated resources

return to the free resources.
Task processing is assumed to be non-preemptive; thus, it cannot be paused or

cancelled. i.e., once a task has begun processing, it does not leave processing until
completed.

Projects are completed when all of their tasks are processed, and a project
reward rj is earned. Projects have a time limit until they are due (Fj) which
represents the maximum unit of time which can be spent for project completion
to obtain its full reward rj . If the due date is exceeded, the tardiness cost wj is
applied only once, after the project is completed.

4.2.2 Decision State

The decision state (s) represents the system information relevant to the decision-
making process at each decision epoch Sammut and Webb (2010). Decision
states where the resource limitations are not exceeded and predecessor tasks
were completed before their successor tasks are called feasible and the set of all
feasible decision states is called as the state space S. Elements of a decision state
(s = {P 1,P 2 . . . ,P J}) are project states (P j) for all project types. A project state
consists of task states (xj,i) and the due date state (dj) (P j = (xj,1, xj,2, . . . , xj,Ij , dj)).

A task state (xj,i ∈ {−1, 0, 1, 2, . . . , tj,i − 1}) represents the status of a task. If a
task is pending for processing, its value is taken as−1. If a task is finished, its value
is represented by 0. If a task is in processing, its value is the remaining processing
time to its completion.

The due date state (dj ∈ {0, 1, 2, 3, . . . , Fj}) represents the number of remaining
time units from the current time epoch to complete the project j without paying
any tardiness cost. When a due date is exceeded, its value becomes 0 and it
expresses that the tardiness cost will be incurred at the project’s completion. A
newly accepted project has the highest due date state value which is Fj .

When a type j project is completed or there is no type j project in the system
(P j = (0, 0, . . . , 0, 0)), all task states (xj,i = 0, ∀i) and due date state (dj = 0) of
project type j are represented by 0.

When a new type j project arrives (P j = (−1,−1, . . . ,−1, Fj)), all its task states
are set to −1 (xj,i = −1,∀i) and its due date state is represented by project’s time
limit Fj (dj = Fj).

An example state matrix with two projects and three tasks is shown in Table 4.1.
Here, rows of the matrix represent each project type j. The columns represent the
task numbers but the last column of the matrix represents the due date state (dj).

Available resources minus resource usage of a decision state determines free
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Table 4.1: State Matrix

Remaining Remaining
duration duration until
of task i project’s due date

Pr
oj

ec
tj 1 2 3 d

1 x1,1 x1,2 x1,3 d1
2 x2,1 x2,2 x2,3 d2

resources (Bfree
s ) which is used as a constraint for the available decisions. Free

resources are the remaining resources available after the resource allocation to
ongoing tasks has been accounted for:

Bfree
s = B −

J∑
j=1

Ij∑
i=1

bj,iI
{
xj,i > 0

}
(4.1)

Here, B is the total amount of resource, bj,i is the resource amount allocated for
processing of task i from type j project, I

{
.
}

is an indicator function that takes the
value 1 if the condition in parentheses is true and takes the value 0 otherwise.

4.2.3 Action representation

The decisions available in a given decision state s is called an action a. At a
decision epoch, the decision maker selects an action a which starts the processing
of the selected pending tasks. An example action matrix with two projects and
three tasks is shown in Table 4.2. If the decision includes processing a pending
task i of a type j project (xj,i = −1), the corresponding action element aj,i will
take the value of 1 in the action matrix. Otherwise, aj,i will be 0. The task
processing decision can be only taken if there are enough free resources to allocate
(
∑J

j=1

∑Ij
i=1 bj,iI

{
aj,i = 1

}
≤ Bfree

s ) and any predecessor tasks (Mj,i) of task i are
completed (xj,m = 0 for ∀m ∈ Mj,i). Thus, an action must satisfy both of these
conditions.

Table 4.2: Action Matrix

Task i

Pr
oj

ec
tj 1 2 3

1 a1,1 a1,2 a1,3
2 a2,1 a2,2 a2,3

All the actions which meet both the resource and predecessor limitations, are
called feasible and set of all feasible actions for a decision state s creates the action
set (A(s) = {0,a′

,a
′′
, . . . }).
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The action, where all action elements are zero ”do not initiate any task”
(0 = (0, 0, . . . , 0)) and it is always a member of the action set 0 ∈ A(s). a

′ and
a

′′ represent alternative feasible actions. The number of alternative actions in
an action set depends on the number of free resources (Bfree

s ), the unprocessed
tasks (with xj,i = −1) and the tasks with completed predecessor tasks (with
xj,m = 0 for ∀m ∈Mj,i).

4.2.4 Transition function

The transition function describes how the system evolves from one state to another
as a result of decisions and information Powell (2011). The period between two
consecutive decision states is the time unit. During the transition period; the
ongoing tasks are processed for one time unit, some tasks are completed and
new projects may arrive according to arrival probabilities λj . The project arrival
probability is considered when a project is to be completed before the next decision
epoch (i.e., the system capacity for type-j project will become available). The
transition function is defined in Equation 4.2.

P (s′|s, a) =
J∏

j=1

Ij∏
i=1

P (x′
j,i|xj,i) (4.2)

P (x′
j,i|xj,i) =



λj, for 0 ≤ xj,i ≤ 1, x′
j,i = −1, i = Ij

λj, for xj,i = −1, aj,i = 1, x′
j,i = −1, i = Ij

1− λj, for 0 ≤ xj,i ≤ 1, x′
j,i = 0, i = Ij

1− λj, for xj,i = −1, aj,i = 1, x′
j,i = 0, i = Ij

1, for xj,i ≥ 2, x′
j,i = xj,i − 1, i = Ij

1, for xj,i = −1, aj,i = 0, x′
j,i = −1, i = Ij

1, for xj,i ≥ −1, x′
j,i ≥ −1, i < Ij

Here in Equation 4.2, the first two lines represent that, with λj probability, there
will be an arrival of project type j during the transition time and the new type
j project will take the place of the previously completed or non-existing type j

project. Due to the sequential project network, completion of the task at the end
of a project network represent the project completion. The third and fourth lines
represent that, with 1 − λj probability, there will be no new arrival of project type
j, which is completed or non-existing, during the transition time. Other lines
represent that, with 100% probability, the arrival of projects will not affect the
status of ongoing or waiting projects of the same type as the new project will be
rejected.
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Figure 4.2: A state transition diagram (for a j = 1 type project with 3 tasks (i =
1, 2, 3) whose due date is Fj = 9 and the selected action means do not initialise any
task.)

In Figure 4.2 an example transition process has been shown. The transition
probability of the first alternative future decision state, where the last task of type
j project is finished and a new type j project arrived, is P (s′′|s, a) = λj . The
transition probability of the second alternative future decision state, where the last
task type j project is finished and no project arrived, is P (s′|s, a) = (1− λj).

4.2.5 Profit representation

The profit function (Rs,a) is the sum of rewards (rj) of completed projects in the
period between current and next decision epoch minus the tardiness cost of late
completions which depend on the remaining number of periods until project is
due.

Rs,a =
J∑

j=1

rjE
[
I
{
xj,I = 1 ∨ (xj,I = −1 ∧ aj,I = 1 ∧ tj,I = 1)

}]

−
J∑

j=1

wjE
[
I
{
xj,I = 1 ∨ (xj,I = −1 ∧ aj,I = 1 ∧ tj,I = 1) ∧ dj = 0

}] (4.3)

Here, the first indicator is for project completion and takes the value 1 if a project
completes and is 0 otherwise. The project completion occurs when the last task
of a project1 The second indicator is for late project completion. It takes the value

1Due to the sequential project network, the task at the end of a project network is the last task of
a project. (xj,I ) is completed. xj,I = 1 represents the situation in which the final task of an ongoing
project will complete at the end of the current period. xj,I = −1 ∧ aj,I = 1 ∧ tj,I = 1 represents the
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1 if a project’s due date has already passed (i.e., the duration until project’s due
date dj = 0) and is 0 otherwise. Recall that, in decision state s, xj,I represents the
remaining processing time of the final task of a type j project and aj,I its the action
element under action a. tj,I is duration of task i of project type j.

4.2.6 Goal function

The goal of the DRCMPSP is to find the policy π that maximises the long-term
average profit per unit time. Long-term average is a standard term for Markov
decision processing and it refers to lim

T→∞
1
T

∑T
t=1. It is also sometimes called long-

run average.

g∗ = max
π∈Π

lim
T→∞

1

T

T∑
t=1

Eπ[Rs(t),a(t)] (4.4)

Here, t is the time epoch. Rs(t),a(t) is the profit function dependent of time epoch t.
π is a policy from the set of all feasible non-anticipating policies (Π) presenting the
action set A(s). A feasible policy is a sequence of action which considers both the
resource limitation and project network.

4.2.7 Solution by dynamic programming

Dynamic Programming is a collection of algorithms which calculates optimal
policies from the MDP model of the solution environment Sutton and Barto
(2018). In this research we used Dynamic Programming Value Iteration. Value
Iteration calculates a sequence of value functions Tijms (1994). The value function
approximates the cumulative reward minus the tardiness cost. The per-period
change in the value function approximates the maximum long-term average profit.
The process steps of the algorithm are below;

For each state ∀s ∈ S, V old(s) = 0

Do
For each state ∀s ∈ S

V (s) = max
a∈A

[Rs,a +
∑

s′∈S p(s
′|s, a)V old(s′)]

End For
Wmax = max

s∈S
[V (s)− V old(s)]

Wmin = min
s∈S

[V (s)− V old(s)]

∆ = Wmax −Wmin

situation in which the final task of a project has a single period duration (tj,I = 1), is waiting for
processing (xj,I = −1), and is selected for processing in the current period (aj,I = 1).
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Update for ∀s ∈ S, V old(s) = V (s)

While ∆ > β ×Wmin

Here, V represents the value function of a decision state s. Rs,a is profit function as
explained in subsection 4.2.5. p(s′|s, a) is the state transition probability. s′ stands
for the future decision state of s. V old(s′) is the value of s′ from next decision epoch.
β is pre-specified tolerance number (0.000001). Wmin and Wmax are respectively
minimum and maximum value changes between two iterations. ∆ is the difference
between the minimum and the maximum value changes. S is the state space which
is defined at subsection 4.2.2. These processes are repeated until the stopping
criteria is met.

4.3 Results and comparisons

We used two heuristic algorithms with reactive scheduling and one worst decision
algorithm to compare their performance to optimal. A reactive scheduling method
generates decisions within a deterministic approach without considering the
future uncertainties Pamay et al. (2014). Then, it iteratively fixes its first schedule
according to random changes and makes the schedules feasible again Rostami et al.
(2018). We used a genetic algorithm and a priority rule algorithm with the reactive
scheduling method.

4.3.1 Genetic algorithm

The discrete-time MDP is considered as a reactive scheduling system by generating
a new baseline schedule for each decision state. The baseline schedules are
generated by a genetic algorithm (GA) which seeks to maximise the profit and
minimising the total completion time. We adapted GA from Satic Satıç (2014). The
GA is one of the search algorithms which searches for the global optimum on the
solution space by improving the search samples at each iteration Mori and Tseng
(1997). The GA uses bio-inspired operators (e.g. Elitist selection, Crossover and
Mutation) to develop the population, which is a solution set, in each iteration.

For each decision state, random numbers (between 1 and 30000) are assigned
to unprocessed tasks, and this assignment is stored as an individual of the
population. Individuals are created until the population number (here, one
hundred) is reached. The random numbers represent task processing priorities
and this method is called the random key representation. The random keys
are converted to a schedule using the serial scheduling scheme as Kolisch and
Hartmann Kolisch and Hartmann (1999) described. Then the population is
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ordered according to their total profit and total completion time.
The first population is iterated one hundred times using the genetic operators.

The best ten percent of the population is transferred to the next population without
any change, and the rest of the next population is created with the crossover
operator. The crossover operator, firstly, selects two individuals from the previous
population, then, copies some random keys from the first individual, after that,
copies the rest from another individual, and finally, creates a new individual.
The new individual is mutated with a fifty per cent probability before joining
to the next population. The mutation operator randomly selects an unprocessed
task and re-assigns its random number. When the new population reaches one
hundred individuals, the random keys are converted to schedules with the serial
scheduling scheme (explained in Section 3.3.2) and the population is ordered again
according to their total profit and total completion time. After the one-hundredth
generation is created; the best schedule is selected as the baseline schedule. A
baseline schedule represents the processing start times of each task. The baseline
schedule is converted to an action. The action is the processing decision of tasks,
which start at the first time unit on the baseline schedule.

4.3.2 Priority rule (longest task first)

An alternative policy is created with a priority based heuristic algorithm. The
algorithm uses a single-pass priority rule called the longest task first rule. Single-
pass rules generate only one action for the given state. The rule based algorithm
(RBA) prioritises the tasks with the longer processing times and if two tasks
have the same duration, the smallest numbered project type, e.g., project type
1 is prioritised over type 2 or type 3. For each decision state, the algorithm
generates a baseline schedule using the priority rule and the serial scheduling
scheme (explained in Section 3.3.2). Then, the baseline schedule is converted to
an action (same as in GA).

4.3.3 Worst decision algorithm

A value iteration method with a non-idling rule is used as the worst decision
algorithm (WDP) which seeks a policy (π′) to get the minimum profit per unit time.
We use WDP in our comparison to include the minimum reward can be achieved
with a non-idle policy.

g′ = min
π′∈Π′

lim
T→∞

1

T

T∑
t=1

Eπ′
[Rs(t),a(t)]. (4.5)
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Here, π′ is a policy from the set of all feasible non-anticipating active policies
(Π′) which does not include the ”to do not active any task” (0) actions unless it
is the only possible action in the action set (|A(s)| = 1). Since the reward and
tardiness costs are modelled to be received after project completions, a minimum
profit algorithm without the priority rule (|A(s)| ̸= 1 ⇒ 0 /∈ π′) delays project
completions infinitely to halt rewards.

4.4 Computational results

4.4.1 Experimental setup

Table 4.3: Problem Parameters

2 projects and 2 tasks problem
Project no Reward Tardiness cost Due date Task no Task duration Resource usage

1 3 1 8 1 2 2
2 2 2

2 10 9 5 1 3 1
2 1 3

2 projects and 3 tasks problem
Project no Reward Tardiness cost Due date Task no Task duration Resource usage

1 12 8 10 1 1 1
2 2 2
3 5 1

2 6 5 15 1 4 1
2 3 2
3 4 1

3 projects and 2 tasks problem
Project no Reward Tardiness cost Due date Task no Task duration Resource usage
1 8 5 10 1 5 1

2 2 1
2 5 3 8 1 1 2

2 3 1
3 20 19 10 1 2 3

2 7 2

4 projects and 2 tasks problem
Project no Reward Tardiness cost Due date Task no Task duration Resource usage
1 18 3 4 1 5 2

2 1 1
2 27 4 5 1 4 2

2 2 1
3 18 5 6 1 3 2

2 3 1
4 18 6 7 1 2 2

2 4 1
*Resource capacities = 3

In this section, we explore the limits of DP on the DRCMPSP, and compare its
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performance with the two heuristic reactive baseline scheduling algorithms and
one worst decision algorithm. The DP and the compared algorithms are coded in
JuliaPro 1.0.1.1. All tests are performed on a desktop computer with Intel i5-6500T
CPU with 2.50 GHZ clock speed and 32 GB of RAM.

We generate four DRCMPSPs (see Table 4.3). For each project in the experiment,
a project’s tasks are performed in sequential numerical order, i.e., a project starts
with task one which is a predecessor of task two which is a predecessor of task
three. See Figure 4.1. The problems vary by number of projects, number of tasks,
resource usage, different reward-tardiness cost settings and length of due date.
We call the difference between a project’s due date and the sum of tasks durations
as slack time. This value also varies for each project in the problems. The total
resource capacity is taken B = 3 for all problems.

The first problem has two project types, and each type has two tasks. Project
type two has a higher completion reward and higher tardiness cost with a shorter
slack time. That means while project type two contributes higher reward opportu-
nities, its late completion is less rewarding compared to the late completion of the
project type one.

The second problem has two project types, and each type has three tasks. The
project type one is as twice as profitable. However, the slack time of project type
one is shorter, so its due date may easily be exceeded leading to tardiness cost.

The third problem has three projects types, and each type has two tasks. In this
problem, resource capacity allows parallel processing for only up to two projects
increasing the chance of tardiness costs from one project. Only project type one
can be processed with other types.

The fourth problem has four projects types, and each type has two tasks. The
slack times of project types one and two are negative, and project type three’s slack
times is zero and project type four’s slack time is one. Thus most of the projects
will be completed later than their planned due date, and the tardiness payment
will be inevitable.

We test each problem consecutively from 1% to 90% project arrival proba-
bilities, increment by 10%. 0% and 100% arrival probabilities are not used in
this comparison, because 0% arrival probability makes the problem static and
100% arrival probability causes a non-ergodic MDP, e.g., the empty state where
no project has arrived cannot be reachable again from any states. We run each
algorithm once on the test problems. However, GA may generate slightly different
results in each run. Since our compared problems are very small, GA is able to
search most of the state space and the difference between results of different GA
runs will be very minor. Thus the results are still competitive.
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Table 4.4: Comparison of the time-average profit deviations from the optimal
results of DP (how much percent lower than optimal results of DP)

Project arrival probability
1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

2 projects and 2 tasks problem
GA 0.7% 6.5% 11.7% 15.4% 18.1% 20.0% 21.2% 21.4% 20.4% 17.0%
RBA 2.1% 19.9% 35.2% 46.1% 53.7% 59.3% 63.7% 67.3% 70.4% 72.7%
WDP 2.8% 25.6% 43.8% 55.4% 62.7% 67.3% 70.2% 72.1% 73.5% 75.5%

2 projects and 3 tasks problem
GA 0.1% 4.9% 13.0% 22.0% 31.1% 39.1% 45.6% 51.6% 58.1% 67.2%
RBA 1.5% 15.3% 25.1% 30.1% 32.3% 32.6% 31.1% 28.2% 23.5% 15.4%
WDP 4.1% 34.3% 49.9% 59.0% 66.4% 72.6% 77.1% 80.2% 82.2% 83.3%

3 projects and 2 tasks problem
GA 0.1% 4.9% 13.0% 22.0% 31.1% 39.1% 45.6% 51.6% 58.1% 67.2%
RBA 1.5% 15.3% 25.1% 30.1% 32.3% 32.6% 31.1% 28.2% 23.5% 15.4%
WDP 4.1% 34.3% 49.9% 59.0% 66.4% 72.6% 77.1% 80.2% 82.2% 83.3%

4 projects and 2 tasks problem
GA 0.0% 1.2% 2.9% 5.8% 6.9% 6.8% 8.0% 11.5% 15.4% 19.0%
RBA 0.4% 6.6% 14.6% 21.4% 25.1% 26.8% 28.7% 31.4% 33.9% 36.1%
WDP 1.4% 21.3% 37.8% 46.2% 50.5% 52.8% 54.8% 57.3% 59.4% 61.5% a

a approximate

4.4.2 Discussion

DP suffers from ”the curse of dimensionality” which means, here, the number of
states grows exponentially with the number of tasks in a project, the number of
project types, task durations and due dates, and the large state space becomes
computationally intractable Sutton and Barto (2018). The model uses the state
space as defined in subsection 4.2.2. In our experiment, a state space for more
than five project types with two tasks each becomes computationally intractable.
Thus the considered problems are limited to four projects and two tasks.

The results shown in Table 4.4 illustrate that the GA produces almost optimal
solutions in 1% arrival rate and produces close to optimal solutions with other low
arrival rates. The GA’s results are generally closer to optimum compared to RBA
for the majority of the considered problems and their task duration variations. The
GA’s results were from 0.003% to 67.2% lower than the optimum results but never
exactly the same.

The RBA’s results are between the GA and the WDP for most of the test
problem. The RBA’s results were from 0.4% to 72.7% lower than the optimum
results. In three projects with two tasks problem, the RBA produced better results
than the GA at higher arrival probabilities. However, in most of the cases, its
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results were closer to the WDP than the optimum since the used priority rule is
not designed for reward maximising.

Since the GA and the RBA are reactive baseline scheduling algorithms, they
generate decisions without considering the new project arrivals. Thus we may
accept that the result of a reactive baseline scheduling algorithm deteriorates
compared to the optimum as problem deviates from the static assumption i.e. no
project arrivals. However, some anomalies were observed for very high arrival
probabilities. These anomalies occur since the tardiness cost is only paid once
when a project is completed. In the current model, high arrival probabilities lead to
postponing some projects infinitely. Thus, they stay in the system without causing
a tardiness cost while the other projects continue processing without causing much
tardiness cost.

4.5 Conclusion

In this paper, we studied the resource-constrained multi-project scheduling prob-
lem with uncertain project arrivals. We modelled the problem as an infinite-
horizon discrete-time MDP. New project arrivals happen during the time unit. We
used DP value iteration to maximise the long-term average profit per unit time.
We tested the limits of the DP on the DRCMPSP and generated four test problems.
We used two heuristic reactive baseline scheduling methods and a worst-decision
DP on the same problems and compared their results with exact results of the DP.
We used GA and RBA as heuristic reactive baseline scheduling methods.

According to our findings, GA produced closer to optimal results than the
simpler heuristic RBA. Since reactive baseline scheduling does not consider the
random changes before they occurred, the GA’s and the RBA’s results are closer to
optimal at low arrival probabilities, and diverge from optimum at the high arrival
probabilities.

In this work, we have seen that DP suffers from the curse of dimensionality
even for the small size problems and reactive baseline scheduling methods do not
produce close to optimum results at the high arrival probabilities. Therefore, as a
future research topic, we suggest to use a technique which will not (or less) suffer
from the curse of dimensionality but will consider the new project arrivals during
the decision phase.
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Chapter 5

Performance evaluation of scheduling
policies for the Dynamic and
Stochastic Resource-Constrained
Multi-Project Scheduling Problem

Abstract

In this study, we consider the dynamic and stochastic resource-constrained
multi-project scheduling problem where projects generate rewards at their
completion, completions later than a due date cause tardiness costs, task
duration is uncertain, and new projects arrive randomly during the ongoing
project execution both of which disturb the existing project scheduling plan.
We model this problem as a discrete-time Markov decision process and
explore the performance and computational limitations of solving the problem
by dynamic programming. We run and compare five different solution
approaches, which are: a dynamic programming algorithm to determine a
policy that maximises the time-average profit, a genetic algorithm and an
optimal reactive baseline algorithm, both generate a schedule to maximise
the total profit of ongoing projects, a rule-based algorithm which prioritises
processing of tasks with the highest processing durations, and a worst
decision algorithm to seek a non-idling policy that minimises the time-average
profit. The performance of the optimal reactive baseline algorithm is the
closest to the optimal policies of the dynamic programming algorithm, but
its results are suboptimal, up to 37.6%. Alternative scheduling algorithms are
close to optimal with low project arrival probability but quickly deteriorate
their performance as the probability increases.

keywords : dynamic; stochastic; resource constrained project scheduling
problem; dynamic programming; reactive scheduling; genetic algorithm;
scheduling policies; DSRCMPSP
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5.1 Introduction

Many factors may bring uncertainty to the project execution plan, such as new
projects arriving after the plan has begun requiring a re-evaluation of the execution
order. Project management is a very challenging enterprise in that only 40% of
projects are completed within their planned time, 46% of projects are completed
within their predicted budget and only 36% of projects realise their full benefit
Wellingtone PPM (2018). Many sectors suffer from the uncertainty ignored by tra-
ditional project management such as engineering services, software development,
IT services, construction and R&D. In this chapter, we propose a comprehensive
model to project scheduling under uncertainty for the dynamic and stochastic
resource-constrained multi-project scheduling problem (RCMPSP) which includes
random project arrival and stochastic task duration uncertainties.

We model the problem as an infinite-horizon discrete-time Markov decision
process (MDP) with the objective to maximise the expected time-average profit.
We extend the research of Chapter 4 by considering stochastic task durations and
use their problems in our comparisons by adding early, normal and late task
completion probabilities.

The resource-constrained project scheduling problem (RCPSP) and its multi-
project equivalent RCMPSP generally consider a static environment. The RCMPSP
is a generalisation of the RCPSP, which is an NP-hard optimisation problem; thus,
RCMPSP and the other generalisation of RCPSPs are also categorised as NP-
hard. (Gonçalves et al., 2008). In the literature, the generalisations of RCPSP
and RMCPSP with uncertainty in task durations are called the stochastic RCPSP
(SRCPSP) and the stochastic RCMPSP (SRCMPSP) respectively. The common goal
of deterministic problems is minimising the total completion time (Browning and
Yassine, 2010), while the common goal of stochastic problems is to minimise the
expected completion time (Rostami et al., 2018). These static environment problems
are extensively studied in the literature. The literature review of Ortiz-Pimiento
and Diaz-Serna (2018) shows that Meta-heuristic methods such as GA, particle
swarm optimisation, Tabu search, Bee Colony, Ant Colony, Greedy Algorithms,
Simulated annealing and Distribution Estimation Algorithm; Exact Methods such
as Branch and Bound, Dynamic Programming and Stochastic programming;
Special Procedures such as Priority Rules-based, Simulation Process-based or
Stage-by-Stage Analysis based; Critical Chain Methods are some of the applied
solution methods in the literature. The Critical Chain Method is used for
stochastic RCPSP with buffer sizing method as in Zarghami et al. (2019). Also,
an approximate dynamic programming method is used for stochastic RCPSP by
Li et al. (2020). The literature review of (Karam and Lazarova-Molnar, 2013) on
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recent approaches shows that the majority of the new approaches are hybrid forms
of previously mentioned methods.

All the models we have described until this point were static, where the
data of project arrival times and their type are known before the scheduling
begins. Despite the vast number of studies in the static field, many companies
accept new projects during the processing of ongoing projects (Herbots et al.,
2007). That deviates from the project plan and leads to missed due dates and
associated tardiness costs (Capa and Ulusoy, 2015). So, instead of focusing only on
completion times, projects are more generally modelled with completion due dates,
completion rewards released as the outcome of project completion, and penalties
or loss of prestige and goodwill which are collectively called the tardiness costs
incurred if projects are completed after their due dates. The aim then becomes
to find optimal schedules or scheduling policies that maximise some function of
profit, which is the difference between the completion rewards and tardiness costs.
In general, there are three standard objective functions for non-static problems: (i)
the expected total profit over a finite horizon (to the best of our knowledge, this
has not been used in projects scheduling literature for non-static problems), (ii)
the expected total discounted profit over a finite or infinite horizon (e.g., Parizi,
Gocgun, and Ghate 2017), or (iii) the expected time-average profit over an infinite
horizon (e.g., Wang et al. 2015). The RCMPSP with uncertain project arrivals
and deterministic task durations is called dynamic RCMPSP (DRCMPSP). Two
main approaches are available for the DRCMPSP; (1) reactive baseline scheduling
(e.g. Pamay et al. (2014)), an approach which generates a baseline schedule and
updates it at each project arrival which allows usage of the static RCMPSP methods
such as the GA for the DRCMPSP and (2) computation of optimal policies using
approximate dynamic programming (ADP) (e.g. Parizi et al. (2017)). Chapter 4
applied both methods to DRCMPSP and evaluated their performances.

The RCMPSP with both random project arrivals and uncertain task durations is
called the dynamic and stochastic RCMPSP. Only a limited number of research con-
sidered both the dynamic project arrivals and stochastic task durations together.
The main approaches for this problem are processing networks (e.g. Adler et al.
(1995); Cohen et al. (2005)), computation of optimal policies using approximate
dynamic programming (ADP) (e.g. Melchiors (2015); Choi et al. (2007)) and
reactive baseline scheduling (e.g. Fliedner et al. (2012); Capa and Ulusoy (2015)).

We contribute to the literature by (i) developing a dynamic and stochastic
RCMPSP model considering multi-task project types, extending the work of
Melchiors et al. (2018) who only considered single-task projects, (ii) developing
an efficient implementation of the value iteration algorithm in Julia programming
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language to solve our model with up to 4 project types, (iii) comparing the (exactly)
optimal policy of value iteration with the policies of GA, rule based algorithm
and optimal reactive baseline algorithm to evaluate the performance gap between
solution approaches, and (iv) illustrating that even in simple problems with 2 or
3 project types, the suboptimality gap of benchmark policies commonly used in
practice (genetic algorithm and longest-task-first rule) which ignore possibility of
new project arrivals is remarkable.

This chapter is organized as follows: In Section 5.2, we describe the problem
setting, the MDP model. In Section 5.3, we describe the compared algorithms
and discuss comparison results in subsection 5.4.2. In Section 5.5, a conclusion
is presented.

5.2 Methodology

5.2.1 The problem setting

The dynamic and stochastic RCMPSP comprises J project types, and the system
capacity for each project type is limited to one. All projects of type j share the
same characteristics such as arrival probability (λj), number of tasks (Ij), project
network, resource usages (bj,i), task duration distribution (γj,i), minimal possible
completion time (tmin

j,i ), normal possible completion time (tj,i), maximal possible
completion time (tmax

j,i ), period till project project’s due date (Fj), reward (rj) and
tardiness cost (wj).

A project may arrive to the system at any point during the time unit, which is
the duration between two decision epochs. Only one project for each type may
arrive per unit time with probability λj for a project of type j. Projects are stored
in the system until the end of unit time. Then in the next decision epoch, if the
system capacity for newly arrived project type is not full, it will get accepted to the
system. Otherwise, it will get rejected.

A type j project consists of Ij tasks. In this problem, tasks are connected
sequentially with a successor-predecessor relationship, which defines the project
network. Processing task i of project type j requires completion of its predecessor
tasks (Mj,i) which have an earlier place in the project network. An example project
network is shown in Figure 5.1.

Processing task i from project type j also requires allocation of bj,i amount
of resources during its processing. Only one type of resource is defined in this
problem and the amount available is represented by B. The total number of
allocated resources cannot be higher than B. The resources are assumed renewable
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Figure 5.1: A project network

which means they become reusable after completion of a task to which they were
assigned. The number of resources which are not allocated for task processing is
called free-resources (Bfree

s ). After the completion of a task, its allocated resources
return to the free resources.

Task processing is considered as a stochastic process in which tasks can be
completed early, normal or late according to its completion distribution (γj,i).
The distribution γj,i is assumed to be discrete, with the longest (respectively,
shortest) processing time with a non-zero probability of completion denoted by
tmax
j,i (respectively, tmin

j,i ).
Task processing is also assumed to be non-preemptive; thus, it cannot be

paused or cancelled, i.e., once a task has begun processing, it does not leave
processing until completed.

Projects are completed when all of their tasks are processed, and a project
reward rj is earned. Projects have a time limit until they are due (Fj) which
represents the maximum unit of time which can be spent for project completion
to obtain its full reward rj . If the due date is exceeded, the tardiness cost wj is
applied only once, after the project is completed.

5.2.2 Modelling framework

We model the problem as an infinite horizon Discrete Time Markov Decision Process
(DT-MDP) which is defined by five elements: time horizon, pre-decision state
space, action set, transition function and profit function. Figure 5.2 illustrates this
process.

In a DT-MDP, a decision epoch is the time where a decision is taken for a pre-
decision state. Decision epochs occur as fixed intervals and the period between
two consecutive decision epochs is the time unit. During a time unit, projects are
processed according to the decisions made at the previous decision epoch, and the
new events occur such as project arrivals and tasks completions may occur. Then
the system enters a new decision epoch.

The pre-decision state (s) represents the system information relevant to the
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decision-making process at each decision epoch. In this research, the pre-decision
state consists of the information regarding the remaining task processing times
(xj,i) to the late completion and the remaining number of periods until the project
is due (dj) for all projects. More details about the pre-decision state are provided
in subsection 5.2.3.

The decisions available in a given pre-decision state s is called action (a). At a
decision epoch, the decision maker selects an action a which starts the processing
of the selected pending tasks. All actions must fulfil these two conditions; the
available free-resources can not be exceeded, and predecessor tasks should be
completed. The action is described in detail in subsection 5.2.4.

After the selected action a is applied in the pre-decision state s, system
information is represented by the post-decision state ŝ := (s, a). The post-decision
state is a virtual state before the stochastic processes begin, and it is assumed there
is not any time lag between pre-decision state and post-decision state. The post-
decision state is explained in subsection 5.2.5.

The transition function describes how the system evolves from one state to
another as a result of decisions and information (Powell, 2011). The transition
function is illustrated in Figure 5.3 and described in detail in subsection 5.2.6.
During the transition period; the ongoing tasks are processed for one time unit,
some tasks are completed according to their completion distribution γj,i and
new projects may arrive according to arrival probabilities λj . Conversely, the
probability of no arrival from a project of type j is 1 − λj . If a project arrival
occurs it will be accepted into the system if there is no project of the same type
in the system or, if there is, that active project will complete processing in this
time period. Otherwise the new project arrival will be rejected. Hence, between 0
and J project arrivals may occur in a single time unit. We assume that the arrival
of projects are independent and identically distributed random variables. The
above arrival process is a Bernoulli arrival process, with geometrically distributed
inter-arrival times Tj with mean λ−1

j and probability mass function P (Tj = k) =

(1− λj)
k−1λj; k = 1, 2, . . ..

In this discrete-time process, due to the memoryless property of the geometric
distribution, the probability of an arrival of a type j project within the current
time period P (T = 1) = λj regardless of the number of time periods since the last
arrival. This is the discrete-time analogue of exponentially-distributed inter-arrival
times in continuous time models.

Hence, a stochastic arrival process is employed to model the arrival of new
projects. However, for the tractability of solutions via dynamic programming we
utilise a finite buffer such that a maximum of one project of each type may be
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Figure 5.2: Discrete-time Markov Decision Process

present in the system at any point in time.
The profit function of a post-decision state calculates the reward of the com-

pleted project minus any tardiness cost paid to its latest possible completion at the
end of the transition. The profit calculation is expressed in subsection 5.2.7.

5.2.3 Pre-decision state

The pre-decision state (s) is the system information available at a decision epoch.
Pre-decision states where the resource limitations are not exceeded and predeces-
sor tasks were completed before their successor tasks are called feasible and the
set of all feasible pre-decision states is called as the state space S. Elements of a
pre-decision state are project states (P j) for all project types:

s = {P 1,P 2 . . . ,P J} (5.1)

A project state consists of task states (xj,i) and the due date state (dj):

P j = (xj,1, xj,2, . . . , xj,Ij , dj) (5.2)

A task state represents the status of a task. If a task is pending for processing, its
value is taken as −1. If a task is finished, its value is represented by 0. If a task
is in processing, its value is the remaining processing time to its late completion
duration (tmax

j,i ). In a pre-decision state, xj,i = tmax
j,i −1 represents the task processing
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Table 5.1: State Matrix

Task state Due date state
Project type 1 : x1,1 x1,2 x1,3 d1
Project type 2 : x2,1 x2,2 x2,3 d2

began at the previous decision epoch.

xj,i ∈ {−1, 0, 1, 2, . . . , tmax
j,i − 1} (5.3)

The due date state dj represents the number of remaining time units from the
current time epoch to complete the project j without paying any tardiness cost.
When a due date is exceeded, its value becomes 0 and it expresses that the tardiness
cost will be incurred at the project’s completion. A newly accepted project has the
highest due date state value which is project’s time limit Fj .

dj ∈ {0, 1, 2, 3, . . . , Fj} (5.4)

When a type j project is completed or there is no type j project in the system, all
task states (xj,i = 0,∀i) and due date state (dj = 0) of project type j are represented
by 0:

P j = (0, 0, . . . , 0, 0) (5.5)

When a new type j project arrives, all its task states are set to−1 (xj,i = −1,∀i) and
its due date state is represented by Fj (dj = Fj):

P j = (−1,−1, . . . ,−1, Fj) (5.6)

An example state matrix with two project types and three tasks is shown in
Table 5.1. Here, rows of the matrix represent each project type j. The columns
represent the task numbers but the last column of the matrix represents the due
date state (dj).

A pre-decision state determines its free resources (Bfree
s ) which is used as a

constraint for the available decisions. Free resources are the remaining resources
available after the resource allocation to ongoing tasks has been accounted for:

Bfree
s = B −

J∑
j=1

Ij∑
i=1

bj,iI{xj,i > 0} (5.7)

Here, B is the total amount of resource, bj,i is the resource amount allocated for
processing of task i from type j project, I

{
.
}

is an indicator function that takes the
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Table 5.2: Action Matrix

Actions
Project type 1 : a1,1 a1,2 a1,3
Project type 2 : a2,1 a2,2 a2,3

value 1 if the condition in parentheses is true and takes the value 0 otherwise.

5.2.4 Action representation

An action a is a function of a pre-decision state s and it holds the processing
decisions of pending tasks. An example action matrix with two project types and
three tasks is shown in Table 5.2. If the decision includes processing a pending
task i of a type j project (xj,i = −1), the corresponding action element aj,i will
take the value of 1 in the action matrix. Otherwise, aj,i will be 0. The task
processing decision can be only taken if there are enough free resources to allocate
(
∑J

j=1

∑Ij
i=1 bj,iI{aj,i = 1} ≤ Bfree

s ) and any predecessor tasks (Mj,i) of task i are
completed (xj,m = 0 for ∀m ∈ Mj,i). Thus, an action must satisfy both of these
conditions.

All the actions which meet both the resource and predecessor limitations, are
called feasible and set of all feasible actions for a pre-decision state s creates the
action set A(s):

A(s) = {0,a′
,a

′′
, . . . } (5.8)

The action, where all action elements are zero is called ”do not initiate any task”
(0 = (0, 0, . . . , 0)) and it is always a member of the action set 0 ∈ A(s). a

′ and
a

′′ represent alternative feasible actions. The number of alternative actions in
an action set depends on the number of free resources (Bfree

s ), the unprocessed
tasks (with xj,i = −1) and the tasks with completed predecessor tasks (with
xj,m = 0 for ∀m ∈Mj,i).

5.2.5 Post-decision state

In our model, the post-decision state (ŝ) is used to represent the task state after a
decision is implemented but before any transition time passed. The transition from
a pre-decision state to post-decision is a deterministic process. The post-decision
state is used in this study to reduce computational effort and to store the stochastic
transition outcomes of a pre-decision state and action pair with their occurrence
probabilities.

The same due date state is used for a pre-decision state and its following post-
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Figure 5.3: A state transition diagram (for a j = 1 type project with 3 tasks (i =
1, 2, 3) whose project’s time limit until its due date is Fj = 9 and the selected action
means do not initialise any task.)

decision state. Since there is not any time lag between the post-decision state and
the previous pre-decision state, the remaining duration of the processing tasks and
the state of completed tasks remains the same while the state of the pending tasks
selected by the processing decision changes from −1 to tmax

j,i . This represents that
these tasks begin processing. Thus the maximum remaining duration of a task in
a post-decision state is tmax

j,i while it is tmax
j,i − 1 in a pre-decision state.

x̂j,i ∈ {−1, 0, 1, 2, . . . , tmax
j,i } (5.9)

5.2.6 Transition function

The transition function determines the following pre-decision state. The task
completion probability γj,i(x̂j,i) and the project arrival probability λj affect the
transition probability of the next pre-decision state. In our model a task may
complete within tmin

j,i and tmax
j,i periods once it has begun processing. These periods

represents the task state values x̂j,i ≤ 1 + tmax
j,i − tmin

j,i , since we store the remaining
processing times to task’s late completion in a task state. The sum of completion

probabilities for these task state values is one (
∑1+tmax

j,i −tmin
j,i

x=1 γj,i(x) = 1), and the
completion probabilities for other task state values are zero (γj,i(x̂j,i) = 0 for
x̂j,i > 1 + tmax

j,i − tmin
j,i ).
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The project arrival probability is considered when it is possible for task Ij to
be completed before the next decision epoch, at which point capacity for a newly
arriving project of type j will become available. The system transition probability
is given by

P (s′|s, a) =
J∏

j=1

Ij∏
i=1

P (x′
j,i|x̂j,i) (5.10)

P (x′
j,i|x̂j,i) =



λjγj,i(x̂j,i), for 1 ≤ x̂j,i ≤ 1 + tmax
j,i − tmin

j,i , x′
j,i = −1, i = Ij

(1− λj)γj,i(x̂j,i), for 1 ≤ x̂j,i ≤ 1 + tmax
j,i − tmin

j,i , x′
j,i = 0, i = Ij

γj,i(x̂j,i), for 1 ≤ x̂j,i ≤ 1 + tmax
j,i − tmin

j,i , x′
j,i = 0, i < I

1− γj,i(x̂j,i), for 1 ≤ x̂j,i ≤ 1 + tmax
j,i − tmin

j,i , x′
j,i = x̂j,i − 1

λj, for x̂j,i = 0, x′
j,i = −1, i = Ij

1− λj, for x̂j,i = 0, x′
j,i = 0, i = Ij

1, for x̂j,i = 0, x′
j,i = 0, i < Ij

1, for x̂j,i > 1 + tmax
j,i − tmin

j,i , x′
j,i = x̂j,i − 1

1, for x̂j,i = −1, x′
j,i = −1

In Figure 5.3 an example transition process has been shown. The transition
probability of the first alternative future pre-decision state, where the last task
of type j project is finished and a new type j project arrived, is P (s′′′|s, a) =

λj ·γj,i(x̂j,i). The transition probability of the second alternative future pre-decision
state, where the last task type j project is finished and no project arrived, is
P (s′′|s, a) = (1 − λj) · γj,i(x̂j,i). The transition probability of the third possible
alternative future pre-decision state, where the last task type j project is not
finished thus a project arrival is not considered, is P (s′|s, a) = 1− γj,i(x̂j,i).

5.2.7 Profit representation

The profit (Rŝ) of the post-decision state ŝ is the sum of rewards (rj) of completed
projects in the period between current and next decision epoch minus the tardiness
cost of late completions which depend on the remaining number of periods until
project is due.

Rŝ =
J∑

j=1

rjE
[
I
{
x̂j,I > 0 ∧ x′

j,I ≤ 0
}]
−

J∑
j=1

wjE
[
I
{
x̂j,I > 0 ∧ x′

j,I ≤ 0 ∧ dj = 0
}]

(5.11)
Here, the first indicator is for project completion and takes the value 1 if a project
completes and is 0 otherwise. The second indicator is for late project completion.
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It takes the value 1 if a project’s due date has already passed (i.e., the project’s
remaining dues date dj = 0) and is 0 otherwise. Recall that, in post-decision state
ŝ, x̂j,I represents the remaining maximum processing time of the final task of a
type j project. x′

j,I is the remaining maximum processing time of the final task of
project j at the future pre-decision state (s′).

5.2.8 Goal function

The goal of the dynamic and stochastic RCMPSP is to find the policy π that
maximises long-term average profit per unit time. Long-term average is a standard
term for Markov decision processing and it refers to lim

T→∞
1
T

∑T
t=1. It is also

sometimes called long-run average.

g∗ = max
π∈Π

lim
T→∞

1

T

T∑
t=1

Eπ[Rŝ(t)] (5.12)

Here, Rŝ(t) is the profit function dependent of time epoch t. π is a policy from the
set of all feasible non-anticipating policies (Π) presenting the action set A(s). A
feasible policy is a sequence of action which considers both the resource limitation
and project network.

5.2.9 Solution by dynamic programming

Dynamic Programming (DP) is a collection of algorithms which calculates optimal
policies from the MDP model of the solution environment (Sutton and Barto,
2018). In this research we used Dynamic Programming Value Iteration. Value
Iteration calculates a sequence of value functions (Tijms, 1994). The value function
approximates the cumulative reward minus the tardiness cost. The per-period
change in the value function approximates the maximum long-term average profit.
The process steps of the algorithm are below;

For each state ∀s ∈ S, V old(s) = 0

Do
For each state ∀s ∈ S

V (s) = max
a∈A

[Rŝ +
∑

s′∈S p(s
′|s, a)V old(s′)]

End For
Wmax = max

s∈S
[V (s)− V old(s)]

Wmin = min
s∈S

[V (s)− V old(s)]

∆ = Wmax −Wmin

Update for ∀s ∈ S, V old(s) = V (s)
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While ∆ > β ×Wmin

Here, V represents the value function of a pre-decision state s. Rŝ is profit function
as explained in subsection 5.2.7. p(s′|s, a) is the state transition probability. s′

stands for the future pre-decision state of s. V old(s′) is the value of s′ from next
decision epoch. β is pre-specified tolerance number (0.000001). Wmin and Wmax are
respectively minimum and maximum value changes between two iterations. ∆ is
the difference between the minimum and the maximum value changes. S is the
state space which is defined at subsection 5.2.3. These processes are repeated until
the stopping criteria is met.

5.3 Results and comparisons

We used two heuristic algorithms and one exact algorithm with reactive schedul-
ing and one worst decision algorithm to compare their performance to optimal. A
reactive scheduling method generates decisions within a deterministic approach
without considering the future uncertainties (Pamay et al., 2014). Then, it
iteratively fixes its first schedule according to random changes and makes the
schedules feasible again (Rostami et al., 2018). We used a genetic algorithm, an
optimal reactive baseline algorithm and a priority rule algorithm; note that all
three are based on the reactive scheduling method. Both the optimal DP and the
worst decision algorithm are scheduling policies methods.

5.3.1 Genetic algorithm

The GA is one of the search algorithms which searches for the global optimum on
the solution space by improving the search samples at each iteration (Mori and
Tseng, 1997). The GA uses bio-inspired operators (e.g. Elitist selection, Crossover
and Mutation) to develop the population, which is a solution set, in each iteration.
The GA is the most-used algorithm for project scheduling problems. However, the
algorithm is not suitable for dynamic problems, and a reactive scheduling method
is required to apply GA to a dynamic problem. The reactive scheduling method
converts each state of the dynamic problem to a static problem, and solution
methods generate a baseline schedule for each state. Fliedner et al. (2012) and
Capa and Ulusoy (2015) proposed reactive scheduling methods based on GA for
the dynamic and stochastic RCMPSP. Thus we included GA to our compared
algorithms.

The goal of the genetic algorithm (GA) in this research is maximising the profit.
The algorithm uses the total completion time as tiebreakers between schedules
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with equal rewards. If the tie continues, the model prioritises processing of
lower project type numbers and lower task numbers. We adapted GA from Satıç
(2014). For each pre-decision state, random numbers (between 1 and 30000) are
assigned to unprocessed tasks, and this assignment is stored as an individual of
the population. Individuals are created until the population number (here, one
hundred) is reached. The random numbers represent task processing priorities
and this method is called the random key representation. The random keys
are converted to a schedule using the serial scheduling scheme as Kolisch and
Hartmann (1999) described. Then the population is ordered according to their total
profit and total completion time. So, the first member of the population represents
the best schedule found with highest profit and shortest completion time while the
last member represents the worst schedule.

The first population is iterated one hundred times using the genetic operators.
The best ten percent of the population is transferred to the next population without
any change, and the rest of the next population is created with the crossover
operator. The crossover operator, firstly, selects two individuals from the previous
population, then, copies some random keys from the first individual, after that,
copies the rest from another individual, and finally, creates a new individual. The
new individual is mutated with a fifty per cent probability before joining to the
next population. The mutation operator randomly selects an unprocessed task
and re-assigns its random number. When the new population reaches to one
hundred individuals, the random keys are converted to schedules with the serial
scheduling scheme (explained in Section 3.3.2). Then the population is ordered
from the shortest total completion time to longest, and it is ordered again from
the maximum total profit to the minimum. After the one-hundredth generation
is created; the first schedule in the population (the best schedule) is selected as
the baseline schedule. A baseline schedule represents the processing start times
of each task. The baseline schedule is converted to an action. The action is the
processing decision of tasks, which start at the first time unit on the baseline
schedule.

5.3.2 Optimal reactive baseline algorithm

The optimal reactive baseline algorithm (ORBA) converts each pre-decision state
to a static RCMPSP with the reactive scheduling method and generates all possible
schedules for the static RCMPSP. The profit and the total makespan of the
schedules are calculated using the serial scheduling scheme. The schedule with
highest profit is selected as the best schedule and converted to action. In case of
more than one schedule with the highest profit, algorithm prioritizes the shortest
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total makespan between these schedules. If the tie continues, algorithm randomly
selects one schedule. We included the ORBA to show the best possible result of the
reactive scheduling method.

5.3.3 Priority rule (longest task first)

An alternative policy is created with a priority based heuristic algorithm. The
algorithm uses a single-pass priority rule called the longest task first rule. Single-
pass rules generate only one action for the given state. The rule based algorithm
(RBA) prioritises the smallest numbered project type, if two tasks have the same
duration, e.g., project type 1 is prioritised over type 2 or type 3. For each pre-
decision state, the algorithm generates a baseline schedule using the priority rule
and the serial scheduling scheme (explained in Section 3.3.2). Then, the baseline
schedule is converted to an action (same as in GA). We included the RBA to show
the performance of a simple heuristic algorithm.

5.3.4 Worst decision algorithm

A mix of value iteration and priority rule methods are used as the worst decision
algorithm (WDP) which seeks a policy (π′) to get the minimum profit per unit time
(g′). We used this method in our comparison to show the minimum profit of the
worst non-idling policy.

g′ = min
π′∈Π′

lim
T→∞

1

T

T∑
t=1

Eπ′
[Rŝ(t)]. (5.13)

Here, π′ is a policy from the set of all feasible non-anticipating active policies
(Π′) which does not include the ”do not active any task” (0) actions unless it
is the only possible action in the action set (|A(s)| = 1). Since the reward and
tardiness costs are modelled to be received after project completions, a minimum
profit algorithm without the priority rule (|A(s)| ̸= 1 ⇒ 0 /∈ π′) delays project
completions infinitely to halt rewards.

5.4 Computational results

5.4.1 Experimental setup

In this section, we will explore the limits of DP on the dynamic and stochastic
RCMPSP, and compare its performance with the two heuristic reactive baseline
scheduling algorithms, the optimal reactive baseline algorithm and the worst
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decision algorithm. The DP and the compared algorithms are coded in JuliaPro
1.0.1.1. All tests are performed on a desktop computer with Intel i5-6500T CPU
with 2.50 GHZ clock speed and 32 GB of RAM.

We will use DRCMPSPs with deterministic task durations from Chapter 4
and generate dynamic and stochastic RCMPSP equivalents with stochastic task
duration by adding early and late completion options to these problems. For each
project in the experiment, a project’s tasks are performed in sequential numerical
order, i.e., a project starts with task one which is a predecessor of task two which
is a predecessor of task three. See Figure 5.1.

The model uses the state space as defined in subsection 5.2.3. The number
of states grows exponentially with the number of tasks in a project, the number
of project types, task durations and due dates, and the large state space becomes
computationally intractable which is called ”the curse of dimensionality” (Sutton
and Barto, 2018). In our experiment, a state space for more than five project types
with two tasks each becomes computationally intractable. We limited our problem
sizes to four project types and two tasks.

The problems considered in our experiments vary by number of project types,
number of tasks, resource usages, different reward-tardiness cost settings and
lengths of duration until projects’ due dates. We call the difference between a
duration till project’s due date and the sum of its expected tasks durations as slack
time. This value also varies for each project in the problems. The total resource
capacity is taken B = 3 for all problems.

The completion times of the deterministic task duration problem are the normal
task completion times (tj,i) of the stochastic task duration problem. Further, we
assume that a task can complete 1 period earlier (tmin

j,i = tj,i−1) or later (tmax
j,i = tj,i+

1) than normal in the stochastic version. With completion probabilities uniformly
distributed between [tmin

j,i , tmax
j,i ] when tj,i ≥ 2; and with γj,i(2) = 1/3, γj,i(1) = 2/3

when tj,i = 1.
We test each problem and its versions consecutively from 1% to 90% project

arrival probabilities, increment by 10%. 0% and 100% arrival probabilities are
not used in this comparison, because 0% arrival probability makes the problem
static and 100% arrival probability causes a non-ergodic MDP, e.g., the empty
state where no project has arrived cannot be reachable again from any states. For
deterministic task durations and 100% arrival probability, the system can never be
empty and results in a cycle. Thus the stopping criteria (∆ > β × Wmin) of the
value iteration (subsection 5.2.9) can no be reachable, the Wmin value remains as
zero, and the Wmax value does not change after the best policy is found.
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Table 5.3: 2 project types and 2 tasks problem.

2 project types and 2 tasks problem

Project Reward Tardiness Due Task Normal task Resource
type (j) (rj) cost (wj) date (Fj) no (i) duration (tj,i) usage (bj,i)

1 3 1 8 1 2 2
2 2 2

2 10 9 5 1 3 1
2 1 3

Resource capacity = 3

Table 5.4: 2 project types and 2 tasks problem, differences (percent lower) from
optimal results of DP.

2 project and 2 task problem with deterministic task durations

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.01% 0.5% 1.4% 2.3% 3.1% 4.0% 4.9% 6.0% 7.1% 8.3%
GA 0.7% 6.5% 11.7% 15.4% 18.1% 20.0% 21.2% 21.4% 20.4% 17.0%
RBA 2.1% 19.9% 35.2% 46.1% 53.7% 59.3% 63.7% 67.3% 70.4% 72.7%
WDP 2.8% 25.6% 43.8% 55.4% 62.7% 67.3% 70.2% 72.1% 73.5% 75.5%

2 project and 2 task problem with uniform stochastic task durations (1E 1N 1L)

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.7% 4.9% 7.4% 9.0% 10.1% 10.9% 11.5% 11.9% 12.3% 12.5%
GA 1.2% 9.3% 15.0% 18.5% 20.6% 21.8% 22.5% 22.8% 22.9% 22.8%
RBA 2.0% 17.5% 30.1% 39.2% 45.8% 50.6% 54.3% 57.0% 59.0% 60.2%
WDP 2.4% 21.0% 35.1% 44.5% 50.8% 55.1% 58.0% 61.0% 63.6% 65.9%

2 project types and 2 tasks problem

The two project types and two tasks problem (see Table 5.3) is the smallest problem
in our test sample with 1424 states. Since project type two has a higher completion
reward and higher tardiness cost with a smaller slack time. The project type
two contributes larger reward opportunities, however, its late completion is less
rewarding compared to the late completion of the project type one. Resource usage
of both types of projects allow parallel processing of any task of project type one
with the first task of project type two. Thus, the processing decision of the second
task of the project type two or any tasks of the project type one, is a bottleneck for
this problem.

The minimum difference with optimum is seen at the 1% arrival probability
for both version of the problem. The maximum difference is seen at 70%
arrival probability for deterministic task durations and 80% arrival probability for
stochastic task durations.
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Table 5.5: 2 project types and 3 tasks problem.

2 project types and 3 tasks problem

Project Reward Tardiness Due Task Normal task Resource
type (j) (rj) cost (wj) date (Fj) no (i) duration (tj,i) usage (bj,i)

1 12 8 10 1 1 1
2 2 2
3 5 1

2 6 5 15 1 4 1
2 3 2
3 4 1

Resource capacity = 3

Table 5.6: 2 project types and 3 tasks problem, differences (percent lower) from
optimal results of DP.

2 project and 3 task problem with deterministic task durations

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.003% 0.2% 0.4% 0.6% 0.8% 1.0% 1.1% 1.1% 1.1% 0.8%
GA 0.003% 0.2% 0.4% 0.6% 0.8% 1.0% 1.1% 1.1% 1.1% 0.8%
RBA 0.4% 3.0% 5.0% 7.1% 9.7% 13.2% 17.6% 23.2% 30.6% 40.6%
WDP 0.9% 8.1% 13.6% 18.2% 23.8% 30.0% 36.2% 42.3% 48.2% 53.6%

2 project and 3 task problem with uniform stochastic task durations (1E 1N 1L)

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.2% 1.0% 1.5% 1.9% 2.2% 2.6% 2.9% 3.1% 3.3% 3.5%
GA 0.2% 1.0% 1.5% 1.9% 2.2% 2.6% 2.9% 3.1% 3.3% 3.5%
RBA 0.5% 3.0% 4.6% 5.8% 6.9% 7.9% 8.8% 9.6% 10.3% 10.9%
WDP 1.6% 11.5% 17.0% 20.3% 22.6% 24.6% 26.3% 27.7% 28.9% 29.9%

2 project types and 3 tasks problem

The two project types and three tasks problem (see Table 5.5) has 16612 states.
Most of the task combination can be processed together, except for second tasks.
The project type one is as twice as much profitable. However the slack time of
project type one is shorter so its due date may easily be exceeded which leads to
pay a tardiness cost.

The GA’s results are equal to optimal reactive baseline algorithm’s results
and both algorithm very close to the optimum at this problem for all arrival
probabilities and task duration variations. The RBA’s results are less good as its
performance deteriorates with higher arrival probabilities.
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Table 5.7: 3 project types and 2 tasks problem.

3 project types and 2 tasks problem

Project Reward Tardiness Due Task Normal task Resource
type (j) (rj) cost (wj) date (Fj) no (i) duration (tj,i) usage (bj,i)

1 8 5 10 1 5 1
2 2 1

2 5 3 8 1 1 2
2 3 1

3 20 19 10 1 2 3
2 7 2

Resource capacity = 3

Table 5.8: 3 project types and 2 tasks problem, differences (percent lower) from
optimal results of DP.

3 project and 2 task problem with deterministic task durations

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.02% 1.7% 6.1% 12.6% 20.0% 26.5% 31.0% 34.1% 36.3% 37.6%
GA 0.1% 4.9% 13.0% 22.0% 31.1% 39.1% 45.6% 51.6% 58.1% 67.2%
RBA 1.5% 15.3% 25.1% 30.1% 32.3% 32.6% 31.1% 28.2% 23.5% 15.4%
WDP 4.1% 34.3% 49.9% 59.0% 66.4% 72.6% 77.1% 80.2% 82.2% 83.3%

3 project and 2 task problem with uniform stochastic task durations (1E 1N 1L)

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.3% 4.2% 8.6% 13.2% 18.0% 21.6% 24.4% 26.5% 28.2% 29.5%
GA 0.6% 6.7% 12.8% 19.1% 25.3% 30.3% 33.9% 36.4% 38.0% 38.9%
RBA 1.3% 13.2% 20.4% 23.4% 24.8% 24.8% 24.2% 23.2% 22.1% 21.0%
WDP 3.7% 29.2% 40.6% 45.9% 50.1% 53.3% 55.7% 57.3% 58.3% 59.0%

3 project types and 2 tasks problem

Three project types and two tasks problem (see Table 5.7) has 212568 states. Three
types of project can not be processed together and this leads to paying tardiness
cost at least for one type of project. A maximum of two project types can be
processed at the same time and only project type one can be processed with others.
Project type three has the largest reward and highest tardiness cost.

As it can be seen from Table 5.8, the algorithms diverge from the optimum
rapidly as arrival probability increases. The GA produced the closest to optimal
and to optimal reactive scheduling results at 1% to 30% percent arrival probabili-
ties. After that the RBA generates better results than the GA. Due to high project
arrival probabilities, project type one almost always exists in the system, and due
to the longest task first rule, RBA always processes project type one. Project type
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Table 5.9: 4 project types and 2 tasks problem.

4 project and 2 task problem

Project Reward Tardiness Due Task Normal task Resource
type (j) (rj) cost (wj) date (Fj) no (i) duration (tj,i) usage (bj,i)

1 18 3 4 1 5 2
2 1 1

2 27 4 5 1 4 2
2 2 1

3 18 5 6 1 3 2
2 3 1

4 18 6 7 1 2 2
2 4 1

Resource capacity = 3

two can be processed in parallel with project type one. But the first task of project
type three requires all available resources, and it can not start processing while
the other projects are processing. Thus the RBA processes type one and type two
projects together, and it delays the processing of type three. This allows the RBA to
complete project types one and two earning the rewards without paying tardiness
costs, while uncompleted project type three never incurs the tardiness cost by the
end of the simulation. Thus the RBA achieves a higher profit than the GA.

4 project types and 2 tasks problem

The four project types and two tasks problem (see Table 5.9) is the largest problem
in our experiments with 1509132 states. All project types have the same resource
usage and sum of task durations. A first task of any project type can be processed
with up to two first tasks or one second task of other project types, however, a
second task can only be processed with a task one of another project type. The
slack times of project one and two are negative, project three’s slack times is zero
and project four’s slack time is one. This implies that most of the projects will be
completed later than their planned due date and the tardiness payment will be
inevitable.

According to results which is shown in Table 5.10, the GA’s results are close
to optimal reactive scheduling results. Best results of the alternative algorithms
are seen at 1% arrival probability and the worst results are seen at 90% arrival
probability.
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Table 5.10: 4 project types and 2 tasks problem, differences (percent lower) from
optimal results of DP.

4 project and 2 task problem with deterministic task durations

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.0003% 0.2% 1.0% 3.2% 4.4% 4.7% 6.4% 10.0% 13.8% 17.8%
GA 0.020% 1.2% 2.9% 5.8% 6.9% 6.8% 8.0% 11.5% 15.4% 19.0%
RBA 0.4% 6.6% 14.6% 21.4% 25.1% 26.8% 28.7% 31.4% 33.9% 36.1%
WDP 1.4% 21.3% 37.8% 46.2% 50.5% 52.8% 54.8% 57.3% 59.4% 61.5% a

4 project and 2 task problem with uniform stochastic task durations (1E 1N 1L)

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.008% 0.4% 1.5% 3.4% 4.8% 5.7% 6.7% 8.1% 9.4% 10.4%
GA 0.021% 0.8% 2.0% 4.1% 5.7% 6.4% 7.3% 8.5% 9.7% 10.8%
RBA 0.3% 5.3% 11.9% 17.4% 21.0% 23.0% 24.5% 26.0% 27.4% 28.6%
WDP 1.1% 19.1% 34.7% 42.3% 46.3% 48.5% 50.1% 51.5% 52.7% 53.7%

a approximate

5.4.2 Discussion

The results shown in Section 5.4 illustrate that none of alternative algorithms
produces the optimum results as the DP. However, the ORBA and GA produce
almost optimal solutions in 1% arrival probability and close to optimal solutions
with the other low arrival probabilities. The ORBA’s results were from 0.0003% to
37.6% worse than the optimum results, and they always deteriorate from optimal
as the arrival probability increases.

The GA’s results are generally closer to optimal reactive scheduling results
compared to RBA for the majority of the considered problems and their task
duration variations. The GA’s results were from 0.003% to 67.2% lower than the
optimum results. For the 2 project types and 3 task problem, GA’results are equal
to optimal reactive scheduling results. In two of the problems; the results with the
deterministic task durations were closer to optimum, while in the other two, it was
vice versa.

The RBA’s results are between the GA and the WDP for most of the test
problem. The RBA’s results were from 0.3% to 72.7% lower than the optimum
results. In three project types with two tasks problem, the RBA produced better
results than the GA at higher arrival probabilities. However, in most of the cases,
its results were closer to the WDP than the optimum since the RBA might prioritise
the less rewarding project types over others. Thus, it can be said that using a single
priority rule usually does not produce good results unless the given priority rule
is designed well for problem features.

Since the GA, the ORBA and the RBA are reactive baseline scheduling algo-
rithms, they generate their decisions without considering the future uncertainties
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such as early or late task completion or new project arrivals. Thus we may
accept that the result of a reactive baseline scheduling algorithm deteriorates
compared to the optimum as problem deviates from the static assumption i.e. no
project arrivals. However, some anomalies were observed for very high arrival
probabilities. These anomalies occur since the tardiness cost is only paid once
when a project is completed. In the current model, high arrival probabilities lead
to postponing some project types infinitely. Thus, they stay in the system without
causing a tardiness cost while the other project types continue processing without
causing much tardiness cost.

5.5 Conclusion

Chapter summary. In this chapter, we studied the resource-constrained multi-
project scheduling problem with uncertain project arrivals and uncertain task
duration. We modelled the problem as an infinite-horizon discrete-time MDP. We
inspected both the cases where the task durations are deterministic or stochastic.
We used the uniform distribution for the stochastic task durations.

We used DP value iteration to maximise long-term average profit per unit
time. We tested the limits of the DP on the dynamic and stochastic RCMPSP
and generated four test problems with both deterministic and stochastic task
duration variations. Our approach generates the optimum policies for the dynamic
and stochastic RCMPSP and contributes to literature by extending the work of
Melchiors et al. (2018) which only considered single-task projects. We used two
heuristic and one exact reactive baseline scheduling methods and a worst-decision
DP on the same problems and compared their results with exact results of the DP.
We used GA and RBA as heuristic and ORBA as exact reactive baseline scheduling
methods.

According to our findings, a reactive baseline scheduling method with a GA
produced closer to optimal results with and without considering arrivals than
the priority rule heuristic for the most of the test problem with different arrival
probabilities and deterministic or stochastic task durations options. The GA
produced the optimal reactive scheduling results for one problem but not for
the others even though the setting for GA were the same. The RBA generally
produced results between the GA and the WDP. Since reactive baseline scheduling
does not consider the random changes before they occurred, the GA’s, ORBA’s
and the RBA’s results are closer to optimal at low arrival probabilities and diverge
from optimum at high arrival probabilities. The GA’s and the RBA’s results are
closer to optimal at deterministic task durations than the stochastic task durations.
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However, a few exceptions have been observed.
Managerial insights. This study provides a performance comparison of the

methods and give insights to project managers for determination of the solution
method in highly dynamic and stochastic environments. We have seen that DP
suffers from the curse of dimensionality even for the small size problems and
reactive baseline scheduling methods do not produce close to optimum results
at the high arrival probabilities or stochastic task durations. We suggest using
DP for small problems and the reactive baseline scheduling methods such as GA
for the environments with low uncertainties. We don’t recommend using GA or
other reactive baseline scheduling methods in highly uncertain environments since
our test results showed that GA may generate up to 67.2% less average profit per
unit time compared to optimal in these environments. We suggest considering
other methods for larger and more complex problems with high or moderate
uncertainties.

Future research direction. Our work showed that for environments which
change frequently, the most popular method GA and other reactive scheduling
methods perform poorly, and alternative solution methods should be considered.
Future work might seek other solution methods and compare their performances
in these environments. An ADP algorithm with a well-designed and tuned
approximation model is a modern example of alternative solution methods. See,
for example, Melchiors (2015), Choi et al. (2007), Parizi et al. (2017), which are to
the best of our knowledge the only attempts in this direction for similar problems.
An extension would be to develop an approximate model and/or approximate
solution approach which would not suffer from the curse of dimensionality while
also considering both the uncertainties of new project arrivals and task durations
as considered here. Other important future research topics are to consider
additional uncertainties such as stochastic resource availability or multiple modes
of task processing.
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Chapter 6

A Simulation-Based Approximate
Dynamic Programming Approach to
Dynamic and Stochastic Resource
Constrained Multi-Project Scheduling
Problem

Abstract

We consider the dynamic and stochastic resource constrained multi-project
scheduling problem which allows for both random arrival of projects and
stochastic task durations. Completion of projects generates rewards, which
are reduced by a tardiness cost in case of late completion. Multiple types
of resources are available, and projects consume different amounts of these
resources when under processing. The problem is modelled as an infinite-
horizon discrete-time Markov decision process and seeks to maximise the
expected discounted long-run profit. We use an approximate dynamic pro-
gramming algorithm (ADP) with a linear approximation model which can
be used for online decision-making. Our approximation model uses project
elements that are easily accessible by a decision-maker with the model
coefficients obtained offline via a combination of Monte Carlo simulation and
least squares estimation method. Our numerical study shows that ADP and
optimal reactive baseline algorithm (ORBA) produce similar results, which are
typically both inferior to the optimal results of dynamic programming. ADP
has an advantage over ORBA and dynamic programming in that ADP could
be applied to larger problems. We also show that ADP generally produces
statistically significantly higher profits than common algorithms used in
practice, such as a rule-based algorithm and a reactive genetic algorithm.

keywords : Project scheduling; Markov decision processes; approximate
dynamic programming; dynamic resource allocation; dynamic programming
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6.1 Introduction

Project management and scheduling is challenging. Engineering services, software
development, IT services, construction and R&D operate in dynamic environ-
ments, often processing multiple projects simultaneously. Many unplanned factors
may disturb the project execution plan with new project arrivals and delays
in task processing. A project management survey from 2018 shows that only
40% of projects are completed within their planned time, 46% of projects are
completed within their predicted budget, and 36% of projects realise their full
benefits (Wellingtone PPM, 2018). This chapter considers dynamic arrivals of new
projects and stochastic durations of tasks and proposes a comprehensive model
and solution approach for the dynamic and stochastic resource-constrained multi-
project scheduling problem (dynamic and stochastic RCMPSP).

The dynamic and stochastic RCMPSP is a generalisation of the resource-
constrained project scheduling problem (RCPSP) which is an NP-hard optimi-
sation problem (Karam and Lazarova-Molnar, 2013). Thus the dynamic and
stochastic RCMPSP is also an NP-hard problem. Dynamic refers to random project
arrivals from different types of projects and stochastic refers to uncertain task
processing times. Dynamic generalisations of RCMPSP are the dynamic RCMPSP
and the dynamic and stochastic RCMPSP. A discussion of the RCMPSP and its
variants can be found in Chapter 5.

The non-dynamic (i.e., static) variants of RCMPSP are extensively studied
(Creemers, 2015). However, the dynamic variants of the RCMPSP where new
projects randomly arrive in the system are scarce in the literature. To the best
of our knowledge, there are only three research papers available for the dynamic
RCMPSP which are Pamay et al. (2014); Chapter 4; Parizi et al. (2017), and there
are only ten research papers available for the dynamic and stochastic RCMPSP
which are Adler et al. (1995); Cohen et al. (2005); Choi et al. (2007); Melchiors and
Kolisch (2009); Fliedner et al. (2012); Capa and Ulusoy (2015); Melchiors (2015);
Melchiors et al. (2018); Chen et al. (2019); Chapter 5. They adopt different solution
approaches, which have their own strengths and weaknesses.

Adler et al. (1995); Cohen et al. (2005); Melchiors and Kolisch (2009) took ad-
vantage of the well-developed queueing network approach where interdependent
resources process project tasks. This requires consideration of projects of relatively
simple structure such as tasks requiring the allocation of a single unit of a single
type of resource. Fliedner et al. (2012); Pamay et al. (2014); Capa and Ulusoy (2015)
considered the reactive scheduling method which generates a baseline schedule
for current projects and then updates it at each time a new project arrival disrupts
the schedule. This approach can be remarkably suboptimal as evidenced in our
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computation study in Section 6.5. Melchiors et al. (2018); Chapter 5 modelled
the problem as a Markov decision process (MDP), using dynamic programming
(DP) to evaluate optimal policies. The solution approach suffers from the curse
of dimensionality and thus can only be used for unrealistically small problems.
Chen et al. (2019) divided the multi-project problem into states according to the
project’s completion conditions and then searched best priority rules for each state,
but priority rules are notably prone to be suboptimal.

Our methodological approach is similar to Choi et al. (2007); Melchiors (2015);
Parizi et al. (2017) in that we also formulate the problem as an MDP and design a
scheduling policy via ADP. However, our model is notably more comprehensive
and allows for solving larger problems with more complex structure, which are
closer to those appearing in practice. Choi et al. (2007) considered applications in
the agricultural and pharmaceutical industries; thus, they focused on serial project
networks, stochastic task outcomes (success or failure), single resource type, single
resource usage per task and no project due dates. Melchiors (2015, chapter 7)
conducted experiments on small problems with two projects with three tasks with
a single unit resource capacity of each resource types, a single unit resource usage
per task, same project networks for both projects, rejection, holding and processing
costs, but no project due dates. Parizi et al. (2017) considered deterministic task
processing times with rejection, holding and processing costs modelled. Their
numerical study had short simulation durations with heavy discounting.

ADP is a powerful tool that provides the researchers with the ability to adjust
the complexity of the optimisation model to trade-off the solution complexity of
large (realistic) problems at the expense of a modest suboptimality. An acceptable
trade-off can be achieved by careful mathematical modelling of the problem in
hand; this is in contrast to general purpose methods such as genetic algorithms
and other heuristics which typically rely only on tuning of algorithm parameters.
Our literature summary shows that ADP has been used in dynamic variants of the
RCMPSP such as Choi et al. (2007); Melchiors (2015); Parizi et al. (2017), and static
variants of the RCMPSP such as Li and Womer (2015); Li et al. (2020). Outside of
applications in project scheduling, ADP methods have been applied areas such as
clinical trials (Ahuja and Birge, 2020), vehicle scheduling (He et al., 2018), capacity
allocation (Schütz and Kolisch, 2012), machine scheduling (Ronconi and Powell,
2010) and missile defence systems (Davis et al., 2017).

6.1.1 Chapter contributions and outline

We consider that new projects arrive randomly during the ongoing project execu-
tion, completion of projects generate rewards, projects arrive with a due date and
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completions later than a due date cause tardiness costs, processing times of the
project tasks are uncertain, multiple types of resources are available and multiple
amounts of resources can exist in each project type. We model the problem as an
infinite-horizon discrete-time MDP and seek to maximise the expected discounted
long-run profit.

In this chapter we show that ADP is a very useful and advantageous method
for the dynamic and stochastic RCMPSP. We use an ADP algorithm with a
linear approximation model to approximate the value function of the Bellman
equation. Our approximation model uses resource consumption and processing
times of project types as features and can be used for online decision making
after estimating the coefficients of the linear value function approximation in a
simulation-based training phase.

We compare performance of our ADP algorithm with four solution approaches
from Chapter 5 a DP algorithm which finds the optimal policy; an optimal reactive
baseline algorithm (ORBA) and a genetic algorithm (GA) that both generate
schedules to maximise the total profit of ongoing projects; and a rule-based
algorithm (RBA) that uses the longest task first rule to guide the allocation of
remaining resources to tasks.

We run our benchmark tests on problems of Chapter 5. Also, we generate our
comparison problems that are larger and include non-sequential project networks
and multiple resource types additional to problems from Chapter 5. The larger size
problems are computationally intractable for DP and ORBA; thus, we benchmark
ADP with GA and RBA on these problems.

We contribute to the literature by (i) a new comprehensive MDP model which
considers the random arrival of new projects, stochastic task durations, multiple
resource types, non-sequential project networks, project due dates and tardiness
costs, (ii) a new approximation function that uses project rewards, tardiness costs,
spent processing time and resource usage of projects for decision making, and it is
capable of solving much larger, more complex and much more general problems
than ADPs from existing literature, (iii) an extensive simulation study illustrating
the strengths and weaknesses of different approaches, (iv) benchmarking with DP
and ORBA whenever tractable and with two other approaches in larger problems,
(v) developing an efficient implementation of ADP method in Julia programming
language to solve dynamic and stochastic RCMPSPs.

This chapter is organized as follows: In Section 6.2, we describe the problem
setting, the MDP model and our goal function. In Section 6.3, we describe our
ADP algorithm and its coefficient training procedure. In Section 6.4, we describe
compared algorithms and discuss comparison results in Section 6.5. In Section 6.6,
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the conclusion is presented.

6.2 The Dynamic and stochastic RCMPSP model

6.2.1 Problem setting

We consider K types of renewable resources and the available amounts of each
type are represented by Bk for k = 1, ..., K. Projects of the same type j share the
same features such as arrival probability Λj , number of tasks Ij , project network,
resource usages bkj,i, minimal possible task duration tmin

j,i , maximal possible task
duration tmax

j,i , task duration distribution γj,i(·) which is conditional on the maximal
remaining processing time, project’s time limit until its due date Fj , completion
reward rj and tardiness cost wj .

Projects arrive in the system between two decision epochs (transition time) with
the arrival probability of their project type Λj . The system always accepts newly
arrived projects until the system capacity for type j projects are reached and rejects
arrivals when capacity is full.

A project is a series of tasks which are bound to each other with a predecessor-
successor relationship. The order of precedence between tasks is also called a
project network. We consider finish to start precedence relations between tasks. The
project network is an important factor for project scheduling since a task requires
completion of its predecessor tasksMj,i for processing.

Task processing requires allocation of resources bkj,i. The allocated resources
become reusable after completing the task processing. The un-allocated resources
are called free-resources Bfree

k (s), and allocated resources are added to free resources
after their assigned task is completed. Allocated resources are removed from free
resources when an action to start processing a task is taken. Free resources are
important for decision making and we use free resources to determine the feasible
set of actions in pre-decision state s. 1

We only consider non-preemptive task processing; thus, task processing cannot
be paused or cancelled after it began until its completion. We allow for stochastic
task durations such that a task may be completed be in some period between tmin

and tmax. The probability that a task completes in the current period is conditional

1Since resource availability is deterministic, two methods are available for maintaining free
resources. (i) Free resources are not stored, but their values are calculated in pre-decision states
as available amounts of resources minus resource usages of ongoing tasks. (ii) Free resources
values are stored in the system. Their value is updated by removing allocated resources of an
action in post-decision states and adding released resources from completed tasks in pre-acceptance
states. In this work, we considered the latter. We compared two methods but did not observe any
performance difference between them.
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Figure 6.1: Discrete-time Markov Decision Process

on the maximal remaining task processing time x̂.
When all tasks of a project are processed, the project is completed, and a project

reward rj is earned. However, tardiness cost wj is incurred if the remaining periods
before expiration of the project due date dj is zero at project completion.

6.2.2 Modelling framework

We consider the dynamic and stochastic RCMPSP as an infinite horizon Discrete
Time Markov Decision Process (DT-MDP) model. A DT-MDP is 5-tuple consisting
of state space S, set of actions A(s), transition function P (s′|s, a), the immediate
reward Rŝ and discount factor α.

The DT-MDP is a discrete decision model where a decision-maker takes action
for a state (s ∈ S) to maximise the discounted profit, and the state randomly
changes for a predetermined discrete period after the action is taken. This process
repeats for all new states over the infinite horizon. Figure 6.1 illustrates this
process.

In this research, we use terms pre-decision state s for a state before the action
is taken, and post-decision state ŝ for a state after the action is taken and pre-
acceptance state s∗ for a state immediately before the decision about accepting or
rejecting projects that have arrived during the current period. These terms are
described in detail below.

We call the moment when an action is taken for a pre-decision state as a decision
epoch. We call the period between two decision epochs as a transition time. We
assume the system transfers from a pre-decision to a post-decision state instantly;
thus, the transition time is equal to the predetermined discrete period.
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6.2.3 Model dynamics

Pre-decision state

For the dynamic and stochastic RCMPSP, a pre-decision state s represents the
system information available at a decision epoch. The set of all pre-decision states
is called the state space S. A pre-decision state s consists of project states P j for all
project types j ∈ J .

s = {P 1,P 2 . . . ,P J} (6.1)

A project state consists of task states xj,i of tasks i ∈ Ij and the due date state dj . 2

P j = (xj,1, xj,2, . . . , xj,Ij , dj) (6.2)

s =


x1,1, x1,2, . . . x1,I1 , d1

x2,1, x2,2, . . . x2,I2 , d2
...

... . . . ...
...

xJ,1, xJ,2, . . . xJ,IJ , dJ

 (6.3)

A task state xj,i represents the status of the ith task of project type j. If task i is
“pending for processing”, its state is−1. If task i is “in processing”, its state shows
the remaining task processing time to its maximal possible duration tmax

j,i . If task i

is “completed”, its state becomes 0.

xj,i ∈ {−1, 0, 1, 2 . . . , tmax
j,i − 1} (6.4)

A due date state dj shows the number of remaining periods from the current
decision epoch to the project due date without paying any tardiness cost. In a
decision epoch, if a due date state value is zero (dj = 0) while the project still has
some uncompleted tasks (i.e., xj,i = −1 or xj,i > 0), a tardiness cost wj is deducted
from the project reward rj at the project’s completion.

dj ∈ {0, 1, 2, . . . , Fj} (6.5)

The absence of a project type j is shown by a project state P j where all task states
are 0 (xj,i = 0,∀i). For these cases the due date state of type j project is taken as 0

(dj = 0).
P j = (0, 0, . . . , 0, 0) (6.6)

An accepted arrival of a project type j in the previous period is represented by a
project state P j where all task states are −1 (xj,i = −1,∀i) and the due date state’s

2(6.3) is not a matrix when project types have different task numbers Ij .
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value is Fj .
P j = (−1,−1, . . . ,−1, Fj) (6.7)

Action

An action a represents the decision of which tasks to begin processing for those
task states that are “pending for processing”. The action consists of action elements
aj,i for each task i ∈ Ij of all project types (j ∈ J). An action element takes the
value of 1 (aj,i = 1) to represent the decision to start processing a qualifying task
and takes the value 0 (aj,i = 0) otherwise.

a =


a1,1, a1,2, . . . a1,I1

a2,1, a2,2, . . . a2,I2
...

... . . . ...
aJ,1, aJ,2, . . . aJ,IJ

 (6.8)

An action a must fulfil three requirements:
(1) The selected tasks for processing must have the task state “pending for
processing”.

aj,i = 1⇒ xj,i = −1 for ∀j ∈ J , ∀i ∈ Ij (6.9)

(2) There must be enough free resources of each type to allocate for processing the
selected tasks.

J∑
j=1

Ij∑
i=1

bkj,iI{aj,i = 1} ≤ Bfree
k (s)∀k ∈ K (6.10)

(3) All predecessor tasks of the selected tasks must be completed.

aj,i = 1⇒ xj,m = 0 for ∀m ∈Mj,i, ∀j ∈ J , ∀i ∈ Ij (6.11)

Here, Mj,i represents the predecessor task set of a task i from project type j.
Elements of Mj,i are tasks required to be completed before task i of project j. m

represents a predecessor of task i (m ∈ {1, 2, ..., Ij} \ i, m ∈ Mj,i). The action with
no task processing decision where all action elements are zero is also a valid action,
and it is called as “do not initiate any task”. More than one action may fulfil all
three requirements for a pre-decision state. The set of these actions is named as an
action set A(s).

Post-decision state

A post-decision state ŝ represents the system information immediately after a
decision epoch and just before the transition time begins. In other words, a post-
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decision state is the system information from the pre-decision state s updated by
an action a but before any task processing or random event occurs (ŝ := (s, a)).
A post-decision state consists of post-decision project states P̂ j . A post-decision
project state consists of post-decision task states x̂j,i of each task i ∈ Ij and the
same due date states dj of the initial project state P j .

ŝ =


x̂1,1, x̂1,2, . . . x̂1,I1 , d1

x̂2,1, x̂2,2, . . . x̂2,I2 , d2
...

... . . . ...
...

x̂J,1, x̂J,2, . . . x̂J,IJ , dJ

 (6.12)

A post-decision task state x̂j,i is the updated status of a task from the preceding
pre-decision task state xj,i. It is only the states of tasks that have been selected to
start their processing (aj,i = 1) that change from the pre-decision state of -1 to the
post-decision state tmax

j,i .

x̂j,i =

tmax
j,i , if aj,i = 1

xj,i, otherwise
(6.13)

Pre-acceptance state

A pre-acceptance state s∗ represents the system information at the end of the
transition time but immediately before the pre-decision state s′ at the following
decision epoch. A pre-acceptance state consists of its project states P ∗

j which
consist of pre-acceptance task states x∗

j,i for each task i ∈ Ij and pre-acceptance due
date states d∗j . A pre-acceptance state shows the task processing progress after a
post-decision state during the transitional time without new project arrivals. (6.16)
shows possible task state transitions from a x̂j,i to x∗

j,i with their probabilities. As
(6.14) presents, a pre-acceptance due date state is zero (d∗j = 0) if project type j is
completed or the post-decision due date state is zero. For the other possibilities a
pre-acceptance due date state is equal to post-decision due date state minus one.

d∗j =


0, if dj = 0

0, if x̂j,i ≥ 0 for ∃i ∈ {1, ..., Ij} and x∗
j,i = 0 for ∀i ∈ {1, ..., Ij}

dj − 1, otherwise

(6.14)

If a type j project arrived during the transition time and the j type project state’s
status P ∗

j is completed or empty (x∗
j,i = 0 for ∀i ∈ {1, ..., Ij}), the system accepts

the new j type project. Otherwise, the system rejects the new arrival. From a
pre-acceptance state s∗ to the following pre-decision state s′, the new task status
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becomes −1 and due date state state becomes Fj .

Transition function

The transition function represents the transformation of a system from a post-
decision state ŝ to a pre-decision state s′ at the next decision epoch by random
events ct+1 during the transition time. The random events include new project
arrivals λj , task completions γj,i(x̂j,i) and project completions.

A project from each type may arrive in the system during a transition time
according to its type’s arrival probability λj . We consider a semi-open project
acceptance process where the system only accepts a new arrival of a type j project
if no type j project exists in the system, either in processing or waiting. Otherwise,
the system rejects the new arrival and continues its processing as if there was no
arrival.

A task may complete processing according to a conditional probability γj,i(x̂j,i),
if the task’s processed time following this transition (tmax

j,i + 1 − x̂j,i) is equal to or
greater than its minimal possible duration tmin

j,i .
The probability of reaching a pre-decision state s′ from a post-decision state ŝ

with the transition function P (s′|s, a) is the joint probability of task completions
P (x′

j,i|x̂j,i) and project arrivals P (P ′
j|P̂ j):

P (s′|s, a) =
J∏

j=1

 Ij∏
i=1

P (x∗
j,i|x̂j,i)

P (P ′
j|P ∗

j) (6.15)

P (x∗
j,i|x̂j,i) =



γj,i(x̂j,i), if tmax
j,i − tmin

j,i + 1 ≥ x̂j,i ≥ 1 and x∗
j,i = 0

1− γj,i(x̂j,i), if tmax
j,i − tmin

j,i + 1 ≥ x̂j,i ≥ 2 and x∗
j,i = x̂j,i − 1

1, if tmax
j,i − tmin

j,i + 1 < x̂j,i and x∗
j,i = x̂j,i − 1

1, if x∗
j,i = x̂j,i ≤ 0

0, otherwise
(6.16)

P (P ′
j|P ∗

j) =



λj, if x′
j,i = −1 and x∗

j,i = 0 for ∀i ∈ {1, ..., Ij}

1− λj, if x′
j,i = x∗

j,i = 0 for ∀i ∈ {1, ..., Ij}

1, if x′
j,i = x∗

j,i ̸= 0 for ∀i ∈ {1, ..., Ij}

0, otherwise

(6.17)

Here in (6.16), the first line represents that the post-decision task state of task i

from project type j allows for task completion and, with γj,i(x̂j,i) probability, the
task will be completed by the pre-acceptance state. The second line represents that
the post-decision task state of task i from project type j allows task completion and,
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with 1− γj,i(x̂j,i) probability, the task will not be completed by the pre-acceptance
state. The third line represents that the post-decision task state of task i from
project type j does not allow task completion and, with 100% probability, the task
will not be completed by the pre-acceptance state. The fourth line represents that
the post-decision task state of task i from project type j is completed or waiting
for processing and, with 100% probability, the task will retain its status in the pre-
acceptance state.

In (6.17), the first line represents that, with λj probability, there will be an arrival
of project type j during the transition time and the new type j project will take the
place of the previously completed or non-existing type j project. The second line
represents that, with 1− λj probability, there will be no new arrival of project type
j during the transition time. The third line represents that, with 100% probability,
the arrival of projects will not affect the status of on going or waiting projects of
the same type as the new project will be rejected.

6.2.4 Objective function

The immediate reward represents the state transition reward from ŝ to s′. We
consider a project completion reward rj and a tardiness cost wj . Thus we use the
term profit instead of a reward. The immediate profit Rs,a,s′ is the sum of completed
project rewards minus the tardiness cost of late completions (dj = 0).

Rs,a,s′ =
J∑

j=1

{(
rj − wjI

{
dj = 0

})
I
{
x̂j,i > 0 for ∃i ∈ {1, ..., Ij} and x′

j,i ≤ 0 for ∀i ∈ {1, ..., Ij}
}} (6.18)

Here, the first indicator is for late project completion, and it takes the value 1 if a
project completes later than its due date (i.e., the project’s due date state dj = 0)
and is 0 otherwise. The second indicator is for project completion and takes the
value 1 if a project completes (at least one task is in progress in the post-decision
state and all project tasks are complete at the end of the period) and is 0 otherwise.

Our objective function seeks to find the policy that maximises the expected total
discounted long-run profit:

V ∗(s) = max
π∈Π

Eπ

[
∞∑
t=1

αt−1Rst,a,st+1

]
(6.19)

Here, Rst,a,st+1 is the immediate profit of state transition from pre-decision states st
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to st+1 under the action a at the time t. α is the discount factor between (0, 1)3. π is
a policy from the set of all non-anticipating policies Π that prescribe in every state
s an action from the action set A(s).

6.3 Approximate dynamic programming (ADP)

In theory, the problem (6.19) can be solved using the Bellman equation:

V ∗(s) = max
a∈A(s)

∑
s′∈S

P (s′|s, a)[Rs,a,s′ + αV ∗(s′)] (6.20)

But in practice, it suffers from “the curse of dimensionality”. “The curse of
dimensionality” means that the number of states and computational requirements
expands exponentially with the number of state variable (Sutton and Barto, 2018).
Chapter 5 investigated the limitations of DP and stated that a state space larger
than their five projects with two tasks problem is computationally intractable for
their hardware.

ADP is a modelling strategy to overcome “the curse of dimensionality” prob-
lem of DP due to the use of the Bellman equation (Powell, 2009). In our ADP
algorithm, we estimate the value function of the Bellman equation (6.20) using
a linear approximation model (subsection 6.3.1). The linear approximation model
only requires the current state and action information, and future state information
and storing the states becomes unnecessary. With the linear approximation model,
the decision making is done in an online fashion; thus, ADP can be used for larger
size problems.

6.3.1 Linear approximation model

For the approximate value function V̄ (ŝ), we construct a linear approximation
model with two state variables as features:

V̄ (ŝ) =
J∑
j

{
θ1j

I∑
i

{{
tmax
j,i − x̂j,i + 1

}
I {x̂j,i > 0}+ tmax

j,i I {x̂j,i = 0}
}
+

θ2j

I∑
i

K∑
k

{
bkj,iI {x̂j,i > 0}

}} (6.21)

The first feature is the number of periods that will have been spent processing
each type of project by the end of the current period (

∑I
i

{
tmax
j,i − x̂j,i + 1

}
). Here,

3Note that the limit α = 0 would correspond to the myopic (single-period) profit, while the limit
α = 1 would correspond to the long-run average profit
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{
tmax
j,i − x̂j,i

}
represents task i’s processed time. Since the task’s processed time is

zero when the action is taken (x̂j,i = tmax
j,i ), we use the task’s processed time after

transition time ends (tmax
j,i −x̂j,i+1) to differentiate the effect of actions. This feature

generates a higher score as the project is processed longer, creating a prioritisation
of the ongoing and close to completion project types over new arrivals. So, this
feature helps to reduce the lateness of completions.

The second feature is the amount of resource which is allocated to each type
of project when the action to begin processing has been taken. We considered
the post-decision state resource allocation because it gives the best information
about an action’s resource requirement (e.g., for single period tasks, the resource
allocation information of action may disappear after one transition time. Thus, the
post-decision state’s resource allocation gives the most precise information about
resource usage after the action is taken). This feature generates a higher score
when the resource utilisation is higher, which creates a prioritisation of actions
with higher resource usages. So more tasks can be processed in one transition
period.

Coefficients θ1j and θ2j are generated using simulation training as described in
subsection 6.3.2. The simulation training generates the best coefficient values to
help our linear approximation model to mimic the discounted long-run profit of
simulated project scheduling. The combination of coefficients, the first and second
features, creates a balanced approximation function that seeks to generate high
profits and to process more projects with less lateness of completions.

These features were chosen according to our comparisons with different ap-
proximation functions. In preliminary experiments, we generated eight different
approximation functions which are combinations of features including the amount
of time spent processing the projects in the system, the amount of resources
being used by the projects, the amount of free (unused) resource, the time until
the project due date expires and the total remaining processing times across the
projects. According to our experiments the 2-feature linear approximation model
presented here showed consistently strong performance in comparison to the
alternatives across a range different problem settings.

6.3.2 Generation of approximation function coefficients

The ADP algorithm generates coefficients for features in the linear approximation
model (6.21) using the least-squares fitting method, which minimises the residual
between the linear approximation model results and simulated results. The
coefficient generation process is summarised in Algorithm 5.
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Algorithm 5 ADP
procedure ADP ALGORITHM

∀j ∈ J, θ1j = θ2j = 0, the initial state s1 = 0. ▷ initial values
for itr = 1 to Iteration do ▷ for each iteration

Ṽsim = 0 ▷ Ṽsim is cumulative simulation profit
for sim = 1 to Simulation do ▷ for each simulation
∀j ∈ J,D1

j (sim) =
∑I

i

{{
tmax
j,i − xj,i + 1

}
I
{
xj,i > 0

}
+

{
tmax
j,i

}
I
{
xj,i = 0

}}
,

∀j ∈ J,D2
j (sim) =

∑I
i

{
bj,iI

{
xj,i > 0

}}
▷ xj,i ∈ s1

for t = 1 to Period do ▷ for each simulation period
find A(st) for st ▷ A(st) is the action set for st
find a = argmax

a∈A(st)

∑J
j

{
θ1j

∑I
i

{
{tmax

j,i − x̂j,i + 1}I{x̂j,i > 0}+ {tmax
j,i }I{x̂j,i = 0}

}
+

↪→ θ2j
∑I

i

∑K
k

{
bkj,iI{x̂j,i > 0}

}}
compute st+1 = sM (st, a, ct+1) ▷ state iteration via simulation
Ṽsim ← Ṽsim + αt−1Rst,a,st+1

▷ Rst,a,st+1
explained at subsection 6.2.4

end for
s1 ← sPeriod+1 ▷ initial state for the next simulation

end for
∀j ∈ J , θ new1

j = θ new2
j = 0 ▷ initial new coefficients

argmin
θ new1

j ,θ new2
j

∑Simulation
sim=1

{
Ṽsim −

∑J
j

(
θ new1

jD
1
j (sim) + θ new2

jD
2
j (sim)

)}2

↪→ ▷ The linear approximation of the covariance matrix
τ = τharmonic/(τharmonic + itr − 1) ▷ harmonic step size
∀j ∈ J, θ old1j = θ1j and θ old2j = θ2j
∀j ∈ J, θ1j = (1− τ)θ old1j + τθ new1

j

∀j ∈ J, θ2j = (1− τ)θ old2j + τθ new2
j

end for
return ∀j ∈ J , θ1j and θ2j

end procedure

Here, we train our approximation function with a set amount of iterations. In
the first iteration, we assume the initial pre-decision state is an empty state with no
existing project, and coefficients are zero. In each iteration, we run a set amount of
simulations, and from each simulation, we collect features D1

j and D2
j of the initial

pre-decision states and cumulative simulated profit (CSP ). After simulations are
completed, we estimate coefficients (∀j ∈ 1 : J θ1j , θ

2
j ) by minimizing the sum of

the squared deviations between the cumulative discounted profits and the linear
approximation model (6.21) using a linear least-squares regression method. We
call estimated coefficients as θ new and existing coefficients as θ old, and we use
them in a dynamic step-size function (6.22) to generate coefficients of the new
iteration.

∀j ∈ J,∀h ∈ 1 : 2, θhj = (1− τ)θ oldhj + τθ newh
j (6.22)

We generate the dynamic step-size value τ with the harmonic step-size method
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(6.23). We set harmonic step-size value as τharmonic = Iteration0.5. 4

τ = τharmonic/(τharmonic + itr − 1) (6.23)

We use the terminal pre-decision state of the iteration as the initial pre-decision
state in the new iteration. After a specific amount of iterations, the final coefficients
are used in the linear approximation model for online decision making.

During a simulation, we find the action set A(s) of the current pre-decision
state st and, select the most profitable action using the objective function in (6.24).
If multiple actions have the highest profits, we randomly select among them.

a =argmax
a∈A(st)

J∑
j

{
θ1j

I∑
i

{
{tmax

j,i − x̂j,i + 1}I{x̂j,i > 0}+ {tmax
j,i }I{x̂j,i = 0}

}
+

θ2j

I∑
i

K∑
k

{
bkj,iI{x̂j,i > 0}

}} (6.24)

The post-decision state ŝ begins with the implementation of the best action. Then
random events ct+1 are simulated according to the transition function for during
the transition time and the new pre-decision state s′ is achieved. If any project
completes during the transition time, their profit is added to the cumulative profit
with discounting using the discounting function αt−1. This simulation process
repeats for a specific amount of periods, and the final pre-decision state is used
as an initial pre-decision state in the next simulation.

6.3.3 Online decision making

The approximation function evaluated by Algorithm 5 can be used for online
decision making for any pre-decision state. Online decision making process
is summarised in Algorithm 6. First, all actions for the pre-decision state are
generated, then expected profits are calculated using the approximation function
for each action. The action with the highest profit is used for the state. If multiple
actions have the highest profits, one of them is selected randomly.

6.4 Compared Algorithms

We used DP, ORBA, GA and RBA for benchmarking with our ADP algorithm.
ORBA and GA are applied to the dynamic problem using a reactive scheduling

4We chose the step-size value according to Powell (2011). We also tried KESTEN’s Stepsize Rule
but we received better coefficient values with the harmonic step-size in our tests.
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Algorithm 6 Online Decision Making
procedure ONLINE DECISION MAKING(ADP)

find A(st) for st ▷ A(st) is the action set for st

find ã = argmax
a∈A(st)

{∑
s′t∈S P (s′t|st, a)Rŝt + αt−1

∑J
j

{
θ1j

∑I
i

{{
tmax
j,i − x̂j,i + 1

}
↪→ I

{
x̂j,i > 0

}
+
{
tmax
j,i

}
I
{
x̂j,i = 0

}}
+ θ2j

∑I
i

∑K
k

{
bkj,iI

{
x̂j,i > 0

}}}}
select randomly a π(st) ∈ Π∗ ▷ Π∗ is the set of all best action for st
return ã

end procedure

method which reschedules the plan when a new project arrival occurs by rerun-
ning the algorithm. ORBA and GA generate a task processing order to create an
action for a given pre-decision state. DP generates the optimal policy which we
denote π∗. RBA directly creates an action for a pre-decision state according to
some predefined rules or criteria.

6.4.1 Dynamic programming (DP)

DP calculates optimal policies from an MDP model of the problem by solving the
Bellman equation (Sutton and Barto, 2018). We used the value iteration method.
We used DP only for problems from Chapter 5 for benchmarking.

Algorithm 7 value iteration

procedure STATE VALUE ITERATION PROCEDURE
β = 0.001 ▷ β is the stopping parameter
For each ∀s ∈ S, V old(s) = 0 ▷ initial state values
do

for ∀s ∈ S do
V (s) = max

a∈A(s)

∑
s′∈S p(s

′|s, a)(Rst,a,st+1 + αV old(s′)) ▷ value function

end for
Wmax = max

s∈S
[V (s)− V old(s)] ▷ maximum value change

Update ∀s ∈ S, V old(s) = V (s)
while Wmax > β(1− α)/(2α)

end procedure

6.4.2 Optimal reactive baseline algorithm (ORBA)

ORBA is an exact algorithm for the static RCMPSP and does not consider new
project arrivals. ORBA is a brute force algorithm; it calculates the reward
and makespan of every feasible task scheduling order (TSO) of any waiting for

88



processing tasks and finds the most profitable TSO. The TSO is converted to a non-
idling action for the current pre-decision state. A non-idling action is one that will
always allocate resource to tasks when it is possible to do so. ORBA generates the
best possible result of a reactive scheduling method. The ORBA used here extends
that in Chapter 5 by allowing for multiple resource types.

ORBA is presented in Algorithm 8. For a given pre-decision state st ORBA
selects the feasible TSO of maximal profit. In the case of ties the candidate schedule
with minimal makespan is selected, and the schedule of smallest project and task
indices selected from any remaining candidate schedules.

Algorithm 8 ORBA
procedure

Yt is the set of tasks (j, i) ∈ state st for which xj,i = −1.
ϵYt

is the set of all feasible permutations of the set Yt.
A feasible TSO is a permutation σ of Yt such that, for any m < n with σ(m) = (j, i) and

σ(n) = (j, k), k /∈Mj,i.

Vmax = 0, makespanmin = inf , TSO∗ = ∅ ▷ initial values
for h = 1 to |Yt|! do ▷ for all permutations of Yt

if ϵYt
(h) is a feasible TSO then

evaluate Ṽsim(ϵYt
(h)) and makespansim(ϵYt

(h))

if (Ṽsim(ϵYt(h)) ≥ Vmax) or (Ṽsim(ϵYt(h)) = Vmax and makespansim(ϵYt(h)) <

makespanmin) then
TSO∗ = ϵYt

(h)

Vmax = Ṽsim(ϵYt(h))

makespanmin = makespansim(ϵYt
(h))

end if
end if

end for
return TSO∗

end procedure

Here, Yt is the set of all waiting for processing tasks (xj,i = −1) for a given pre-
decision state st. ϵYt is the set of all feasible permutations of the set Yt. Ṽsim(∗) is
the cumulative profit of TSO. makespansim(∗) is the makespan of TSO. TSO∗ is the
best TSO found so far. Vmax is the highest profit found among the feasible TSOs.
makespanmin is the shortest makespan found among the feasible TSOs.

The generated TSO is converted to non-idling action a for given pre-decision
state st using a serial scheduling generation scheme (SGS). In a SGS, if there are
enough free resources to process the first task in the TSO, its action becomes
one (aj,i = 1) and its resource usage requirements are subtracted from the free
resources. The process then repeats for the remaining tasks in order of the TSO.
The algorithm stops when all waiting for processing tasks have been considered
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and an non-idling action is produced.
The TSO for the remaining tasks can be used to create future actions for the

following periods as long as no new project arrives. If a new project arrival
disturbs the system, the current TSO becomes invalid, and ORBA generates a new
TSO.

ORBA runs in factorial time. Due to the huge computation time requirement of
brute force algorithms, only small size dynamic and stochastic RCMPSP problems
can be solved. Thus we limit our test problems with ORBA to a maximum of 10
tasks.

6.4.3 Genetic algorithm (GA)

GA is a heuristic algorithm which searches the solution space using a set of
solutions (population). GA then improves the population many times (genera-
tion) using bio-inspired operators such as crossover and mutation to find better
solutions. We used the genetic algorithm to benchmark with our ADP algorithm
since GA is the most popular method for RCPSP family. GA is applied to dynamic
problems using a reactive scheduling method. We used GA from Chapter 5 and,
in this chapter, we extended it to multiple resource types.

For a given pre-decision state st, GA generates the desired population size
amount of feasible TSOs, which are random permutations of the waiting for
processing tasks (xj,i = −1). The algorithm evaluates profits and makespans of
TSOs and ranks the TSOs using these values. TSOs with higher profits get a higher
rank. In the case of ties, TSOs with smaller makespans gets higher ranks. If the tie
continues, TSOs ranked according to their creation time (earliest to latest). This
first set of TSOs is called the first generation, and the highest ranked TSO is called
as the best TSO. After the first generation is generated, GA begins iterations.

At the each iteration, GA creates an empty set of TSOs and fills this new set
with TSOs to the desired population size amount using elitist selection, crossover
and mutation operators. The elitist selection operator copies the desired amount
of highest ranked TSOs from the previous generation of TSOs to the new empty
set of TSOs (new generation). Crossover and mutation operators fills the rest of
the new generation. The crossover operator randomly selects two TSOs from
the previous generation and randomly selects a task inside of the first TSO. The
scheduling order of tasks from first task 5 Then, the crossover operator copies the
rest of tasks of the first (selected) TSO to the new TSO (to after the randomly
selected task) but changes the order of these tasks according to order of these

5The first task represent the first(earliest) to be processed task. to selected task is copied from
the first (selected) TSO, to (make) a new TSO.
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tasks in the second (selected) TSO. The new TSO is always a feasible TSO, since
it is created according to order of tasks in both selected feasible TSOs. The new
TSO may be adjusted by the mutation operator with a desired probability or it is
added to the new generation. Under the mutation operation a task is selected at
random and the location of this task in the TSO is randomly re-assigned. The new
location can not be later than task’s previous order and can not be sooner than its
latest to be processed predecessor task. Thus the mutation operator also ensures
that the newly generated TSO is a feasible TSOs. Then the new TSO is added to
the new generation. When size of the new generation reaches to the population
size amount, TSOs are ranked same as in the first generation. GA iterates the
generations till the desired number of generation is reached. The best TSO of the
final generation is used for decision making.

The TSO is converted to an action in the same way as for ORBA. Similar to
ORBA, GA’s TSO can be used for future pre-decision states as long as a new project
arrival does not disturb the system.

Since the reactive scheduling method reruns GA for each time an arrival
disturbs the processing plan, the computational time requirement increases with
the problem size.

6.4.4 Rule based algorithm (RBA)

Rule-Based Algorithm (RBA) is a priority-based heuristic algorithm which uses
the longest task first priority rule. We considered RBA in benchmarking to show
the performance of a simple heuristic algorithm. Due to the simplicity of the
algorithm, it runs very fast for all problem sizes.

For a given pre-decision state st, RBA creates a feasible TSO where the tasks
with the longest task processing durations have priority against other tasks. Then
the TSO is converted to an action as same as in ORBA. In contrast to ORBA and GA,
RBA does not use the same TSO for future pre-decision states, since RBA generates
a new TSO faster than recycling the TSO.

6.5 Computational Results

We simulate the dynamic project scheduling environment with random new
project arrivals and stochastic task durations, and we compare the expected
discounted long-run profit performance of DP, ADP, ORBA, GA and RBA. Al-
gorithm 9 shows the simulation procedure we used in our comparisons. The
statistical significance of ADP against other methods are shown in the tables at
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Algorithm 9 Simulation
procedure PROFIT SIMULATION

Simulation = 100, P eriod = 1000. ▷ initial values
for sim = 1 to Simulation do ▷ for each simulation

Ṽsim = 0 ▷ Ṽsim is cumulative simulation profit
s1 = 0 ▷ the initial empty pre-decision state
for t = 1 to Period do ▷ for each simulation period

a ∈ π ▷ π is the policy of selected solution method
st+1 = H(st, a) ▷ H(st, a) is state iteration using simulation
Ṽsim+ = αt−1Rst,a,st+1

end for
end for
Ṽ = 1

Simulation

∑Simulation
sim=1 Ṽsim

return Ṽ
end procedure

three levels (0.001, 0.01, 0.05). All other statistical comparisons described in the
text are taken at a significance level of 0.05 but at not reported in the chapter.

We used 100 problem scenarios in our comparison which are combination of
10 project settings and 10 project arrival probabilities. These arrival probabilities
λj are 0.01 and from 0.1 to 0.9 with increment of 0.1. Since we considered a
dynamic environment λj = 0 is not used in this comparison instead λj = 0.01

is used to represent the nearly-static case. In 5 of 10 problem scenarios, results
are not statistically significantly different for λj = 0.01, which shows that all the
algorithms are well tuned for the nearly-static case. Also λj = 1 is not used because
it causes a non-ergodic MDP where some feasible states can not be reachable from
any states (for example a state where all projects are completed but no new project
has arrived).

ADP, GA and RBA are compared on all of the 100 scenarios but DP and ORBA
only used in comparison on 30 smaller size problems. ADP and the compared
algorithms are coded in JuliaPro 1.3.1.2. All tests are performed on a desktop
computer with Intel i5-6500T CPU with 2.50 GHZ clock speed and 32 GB of RAM.

Here, we run 100 simulations6 for 1000 simulation periods with an α =

0.999 discount rate. If a period represent a day, this period would represent
approximately three years of processing time. All simulations start from an empty
pre-decision state (s1 = 0). In each simulation period an action is generated
with the policy being investigated (π). Then the following pre-decision state
is generated given the action taken and the transition function. The profit is
then is generated, recorded and included within Ṽsim. The discounted profits of
completed projects during the state iteration are added to Ṽsim. After the end of
the all simulations, the average discounted long-run profit Ṽ of the investigated

616 simulations for GA.
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solution method is calculated.
ADP (Algorithm 5) is trained for 100 iterations each having 100 simulations

with 1000 periods. GA is trained for 100 generations, each with 100 populations.
The elitest selection operator transfers the best 10% of the population to the next
generation. A new TSO created by the crossover operator is handled by the
mutation operator with a 50% chance.

While ADP requires training once prior to the simulations, GA requires
multiple training occurrences during the simulations. GA is required to generate
a new schedule each time a new project arrives. In these settings, despite the fact
that GA generates a baseline schedule very fast, the total computation time of all
GA trainings is much higher than single training of ADP. For balanced comparison
time of the algorithms, we run 16 simulations for GA and 100 simulations for other
methods.

In this chapter, we assume that number of tasks of different project types are
equal and all tasks have a completion duration range tmax − tmin + 1 = 3 (outwith
one exception where this duration is 2). (6.25) shows the completion probabilities
used in this chapter.

γj,i(x̂j,i) =



1
x̂j,i

, if tmax
j,i = tmin

j,i + 2 > 2, tmax
j,i − x̂j,i ≥ tmin

j,i − 1

1
3
, if tmax

j,i = 2 = tmin
j,i + 1, x̂j,i = 2

1, if tmax
j,i = 2 = tmin

j,i + 1, x̂j,i = 1

1, if tmax
j,i = 1 = tmin

j,i , x̂j,i = 1

0, otherwise

(6.25)

6.5.1 Comparison to optimal

We used project settings from Chapter 5. The problems’ data is available
in Chapter 5 and at https://github.com/ugursatic/DSRCMPSP. These
problems are arbitrarily created to be small and solvable by DP. Using these small
size problems we able to compare ADP’s performance with optimal policies of DP,
scheduling orders of ORBA, GA and RBA. The results of compared algorithms
are not statistically significantly different from each other in these problems for
λj = 0.01. Thus we did not include the comparison results at λj = 0.01 to our
results discussion below.

Table 6.1,Table 6.2 and Table 6.3 illustrate discounted long-run profits (which
are averages of simulations) of policy generation methods (vertical) at different ar-
rival probabilities (horizontal). The colour of cells show the statistical significance
of compared algorithms against ADP.
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The simulation results of two projects types, two tasks and one resource
type problem is shown in Table 6.1. The optimal results of DP is statistically
significantly the most profitable. ADP produces statistically significantly higher
profits than GA and RBA, and ADP’s profits are statistically significantly higher
than ORBA from λj = 0.2 to λj = 0.9. ORBA’s results are statistically significantly
better than GA from λj = 0.2 to λj = 0.9. RBA produces statistically significantly
the lowest results than compared methods.

The simulation results of two projects types, three tasks and one resource type
problem is shown in Table 6.2. Profits of DP are statistically significantly higher
than ADP. GA and ORBA are the second and third most profitable methods, but
their results are not statistically significantly different from each other. ADP’s
profits are statistically significantly lower than ORBA at λj = {0.4, 0.5, 0.7}, but
they are statistically significantly higher than RBA at λj = 0.9. ADP’s results are
not statistically significantly different than GA, ORBA or RBA for the other arrival
probabilities.

The simulation results of three projects types, two tasks and one resource type
problem is shown at Table 6.3. DP is the statistically significantly most profitable
method for 5 of λj values and the difference between best values and DP’s results
are not statistically significant at the other 5 of λj values. ORBA and GA are the
second and third most profitable methods, but their results are not statistically
significantly different then each other except for λj = 0.4. ADP produces the forth
highest profits which are statistically significantly higher than RBA from λj = 0.2

to λj = 0.9, and they are statistically significantly higher than ORBA at λj = 0.1

and λj = 0.8.
We see the same result as in Chapter 5 in that the reactive scheduling methods

ORBA and GA have close to optimal profits at λj = 0.01 where the results are not
statistically significantly different from each other. However, their results usually
diverge from optimum as λj increases.

The small problem sizes allowed us to investigate why ADP’s and ORBA’s
profits are below DP’s. For this purpose, we investigated all 1508 states of the
two project types and two tasks problem at λj = 0.7 and compared policies of DP,
ADP and ORBA actions by actions. In this problem, the second project’s reward
and tardiness costs are high. Because of this, the normal completion of the second
project is more rewarding than the first project’s normal completion, but the late
completion of the second project is less rewarding than the late completion of
the first project. Furthermore, processing the second task of project type two is
a bottleneck for this problem since it requires all resource capacity, while task one
of project type two can be processed concurrently with any task of project type
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Table 6.1: two project types and two tasks problem.

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DP 76 507 769 901 1004 1066 1108 1139 1167 1198
ADP 76 469 713 839 910 955 1000 1020 1042 1061
ORBA 73 463 666 777 812 842 853 845 843 829
GA 79 446 638 719 731 744 741 728 722 737
RBA 73 418 521 549 542 523 504 493 480 474

Table 6.2: Two project and three tasks problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DP 119 592 804 908 972 1014 1049 1067 1082 1099
ADP 116 571 761 856 904 937 959 962 978 989
ORBA 119 577 764 863 913 951 968 981 986 996
GA 124 575 777 872 914 949 982 979 970 994
RBA 118 572 766 850 903 934 953 970 981 977

Table 6.3: Three project and two tasks problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DP 189 791 885 941 1019 1101 1190 1255 1340 1384
ADP 184 748 849 899 950 1020 1086 1166 1335 1370
ORBA 192 731 850 951 1050 1135 1208 1274 1329 1366
GA 186 728 849 941 1032 1125 1204 1274 1329 1367
RBA 181 741 814 861 926 991 1057 1123 1175 1230

Significantly lower results than ADP p<0.05, p<0.01, p<0.001
Significantly higher results than ADP p<0.05, p<0.01, p<0.001

one. DP takes different actions than ADP and ORBA at 109 of 1508 states. In these
states, the first task of project type two is on processing while project type one is
waiting or stalled. DP chooses the “do not initiate any task” action and does not
process project type one during a period that would not cause its late completion.
This idling period allows DP to process the second task of type two earlier which
leads a higher project completion profits. Normal completion of project type two
is more profitable and early completion allows the system to accept possible new
arrivals of project type two sooner which may, in turn help the system process
more type two projects. ADP and ORBA are not able to identify that idling period,
thus they process project type one immediately for all of the considered 109 states.

In summary, our comparison on project settings from Chapter 5 shows that
ADP can not match the optimal policy of DP. Still, ADP’s and DP’s results were
not statistically significantly different in 4 of 30 problem scenarios. ADP generated
statistically significantly better profits than ORBA in 10 of 30 problem scenarios.
However, ORBA generated statistically significantly higher profits in 8 problem
scenarios, and the results between ADP and ORBA are not statistically significantly
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different in 12 problem scenarios. ADP produced statistically significantly higher
profits than GA in 9 of 30 problem scenarios; GA’s profit was statistically signif-
icantly higher at 5 problem scenarios, and there was no statistically significant
difference in the remaining 16 problem scenarios. ADP produces statistically
significantly higher profits than RBA in 18 problem scenarios, and results between
ADP and RBA are not statistically significantly different in 12 problem scenarios.
These results show that overall performances of ADP and ORBA are similar, and
they are slightly better than GA and much better than RBA.

6.5.2 Test problem generation

The problems of Chapter 5 were the only dynamic and stochastic RCMPSPs in
the literature that have a reward after completion, a tardiness cost after a given
due date, arrival probability of new projects during a transition time, randomly
early, normal and late task completions. However, Chapter 5 only considered
small size problems where the project network is sequential (serial, OSj = 1). Thus
we generate larger size test problems using ProGen/Max and MPSPLIB problems.

ProGen/Max is an RCMPSP generation software which is developed by
Schwindt (1998) which extends its predecessor ProGen (Kolisch et al. (1995)) with
an option to consider the minimum and maximum time lags between the start of
activities.

We used ProGen/Max to generate RCPSPs with different activity-on-node
networks, order strength, task durations, resource usage, resource availability. We
combined these RCPSPs problems and added stochastic task completion, project
arrival probability, project completion reward, late completion cost, and due date.
We add reasonable completion rewards and tardiness costs to each project. We
used the generated task durations as expected task durations tj,i and added one
minimal possible (tmin

j,i = tj,i − 1) and one maximal possible (tmax
j,i = tj,i + 1)

duration options. We tested all problems with ten different Λj options which
are 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. We generated due date of the project
as (6.26) where ρ is an arbitrary factor, and its value is 1.5. We adjusted the
resource availability using (6.27) because the combination of resource availabilities
of multiple single project problems makes the multi-project problem resource-rich.
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Fj ≈

(1−OSj)max

J
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k=1
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Bk
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k
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)
K


 ρ

(6.26)

Bk ≈
J∑

j=1

(
Bj

k

(
50− 4J

100

))
(6.27)

The MPSPLIB (http://www.mpsplib.com/) is a RCMPSP library which
contains the problem set of Homberger (2007). These RCMPSP problems are made
by combining single project problems of PSPLIB (http://www.om-db.wi.tum.
de/psplib) which is RCPSP library (Kolisch and Sprecher (1997)). PSPLIB
problems are generated with ProGen.

The MPSPLIB contains 140 instances that differ by project type number, project
number, task number, global resource type number and arrival times. Global
resources are shared among all projects, and local resources are only used for
a single project. Compare to our ProGen/Max generated problems, MPSPLIB
problems have predefined tardiness costs and due dates. However, these due dates
(Bestj) are the shortest completion time found for single project problems, which
we need to modify to use in the dynamic multi-project setting.

From the MPSPLIB, we only considered 30 tasks per project problems for
algorithm benchmarking. We only use global resources and convert local resources
to global ones using (6.27). We use the predefined tardiness costs and twice the
tardiness cost as completion rewards to each project. We use the stochastic task
completion and arrival probabilities as same as ProGen/Max generated problems.
We generated due date of the project as (6.28).

Fj ≈Bestj + J

∑K
k=1

(∑Ij
i=1(tj,ib

k
j,i)

Bk

)
K

(6.28)

6.5.3 Larger size problems

We created 5 project settings with ProGen/Max and 2 project settings with
MPSPLIB problems. Detailed information about our problems and more detailed
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test results are available at https://github.com/ugursatic/DSRCMPSP. The
size of these problems exceed the computational limits of DP and ORBA on our
hardware, so we only compared ADP, GA and RBA.

In five project types, five tasks and four resource types problem, small projects
are more profitable, and long projects are less profitable. Hence, RBA with
longer tasks first rule is disadvantageous in this problem, we expect that ADP
outperforms RBA. Table 6.4 shows that while ADP produces statistically signifi-
cantly better results than RBA in all λj values and ADP’s results are statistically
significantly better than GA at λj = 0.01. GA produces statistically significantly
better results than ADP in 7 of 10 λj values.

In two project types, ten tasks and two resource types problem, any task of
project type one has a longer duration than any task of project type two. Also,
project type one’s ratio of reward to sum of task durations is four times more
than project type two’s. Thus this problem is very advantageous for longer task
first priority rule of RBA. However, Table 6.5 shows that ADP usually produces
the statistically significantly highest profits except for λj = 0.01. GA produces
statistically significantly better profits than RBA for most of the λj values, but GA
and RBA’s results are not statistically significantly different from each other for
λj = {0.01, 0.7, 0.8}.

Five project types, ten tasks and two resource types problem has equal rewards
and tardiness costs per task processing time. Thus high resource utilisation is
more profitable than project prioritising. Table 6.6 shows that ADP’s profits are
statistically significantly higher than GA and RBA from λj = 0.1 to λj = 0.9. RBA
produce statistically significantly higher profits than GA for 7 of 10 λj values, and
their result are not statistically significantly different from each other at rest of the
λj values.

Six projects types, five tasks and two resource types problem consists of six
copies of the same project with different reward and tardiness cost combinations.
Table 6.7 ADP produces statistically significantly best profit for all arrival proba-
bilities. Then GA produces the second highest except for λj = 0.01 where there is
no statistically significant difference between GA and RBA.

Ten project types, ten tasks and two resource types problem is the biggest
problem we generated with ProGen/Max. In this problem, we randomly assigned
rewards and tardiness costs. Table 6.8 shows that ADP is statistically significantly
the most profitable method for all λj values. Then GA and RBA produces the
second and third highest profits but their results are not statistically significantly
different from each other.

Two project types, thirty tasks and four resource types problem is the smallest
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MPSPLIB problem in our comparison. The problem name is mp j30 a2 nr2 set in
MPSPLIB, and it has one global and three local resources. We converted the local
resources to global using (6.28). Table 6.9 shows that ADP leads to statistically
significantly higher profits than GA at all arrival probabilities except for λj = 0.01.
ADP’s profits are statistically significantly higher than RBA at λj = 0.01 and λj =

0.1 but they are statistically significantly lower than RBA at λj = 0.6 and λj = 0.9

Five project types, thirty tasks and four resource types problem is the biggest
problem, we have used in our comparison. The problem name is mp j30 a5 nr4 set
in MPSPLIB. The original problem has three global (types 1, 2 and 3) and one
local resource (type 4) types. We combined the local resources of each project to
make one global resource. We used the given due dates in the problem without
changing them. Combining the resources of single project problems as global
resources without reducing their amount made this problem resource rich. Thus
the difference between algorithms are not statistically significant. Table 6.10 shows
that ADP, RBA and GA produces similar profits with no statistically significant
difference except for λj = 0.6 where ADP’s result is statistically significant lower
than GA.

In summary, our comparison of larger size problems shows that ADP’s profit
was statistically significantly higher than GA in 48 of 70 problem scenarios; GA’s
profit was statistically significantly higher for 8 problem scenarios, and there
was no statistically significant difference in the remaining 14 problem scenarios.
ADP generated statistically significantly higher profits than RBA in 51 problem
scenarios; RBA’s profit was statistically significantly higher than ADP only in
2 problem scenarios, and results between ADP and RBA are not statistically
significantly different in 17 problem scenarios. These results show that the overall
performance of ADP is statistically significantly better in the majority of bigger
size problems than the GA and RBA.

6.6 Conclusion

Chapter summary. In this chapter, we modelled the dynamic and stochastic
RCMPSP as an infinite-horizon discrete-time MDP where projects have identical
arrival probabilities at each transition time and tasks have uniformly distributed
completion probabilities. The objective of problem is maximising the expected
total discounted long-run profit. We used a linear approximation model to design
a practical scheduling policy and showed that it performs near-optimally in small
problems and compares favourably to existing heuristics in large problems.

The motivation of this study is to create a more comprehensive project schedul-
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Table 6.4: Five project types, five tasks and four resource types problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 919 1013 971 965 979 972 974 1086 1095 1128
GA 828 1142 1110 1129 1150 1138 1155 1121 1166 1125
RBA 689 593 573 557 564 546 551 541 520 512

Table 6.5: Two project types, ten tasks and two resource types problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 321 471 492 508 518 518 538 535 542 555
GA 297 453 454 458 460 469 458 452 453 461
RBA 297 424 426 432 436 445 448 456 464 471

Table 6.6: Five project types, ten tasks and two resource types problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 1711 2403 2408 2406 2444 2424 2417 2445 2431 2420
GA 1740 2333 2335 2338 2345 2348 2342 2352 2352 2353
RBA 1724 2335 2364 2368 2373 2391 2381 2385 2391 2392

Table 6.7: Six project types, five tasks and two resource types problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 1306 1854 1854 2098 2124 2139 2149 2157 1876 2051
GA 1189 1307 1297 1320 1307 1314 1316 1298 1327 1341
RBA 1183 1156 1102 1106 1101 1105 1097 1089 1111 1073

Table 6.8: Ten project types, ten tasks and two resource types problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 674 1019 1032 927 794 857 870 858 746 973
GA 521 549 541 547 561 536 538 550 526 551
RBA 518 550 557 553 562 554 548 552 550 561

Table 6.9: Two project types, thirty tasks and four resource types problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 172 208 207 208 208 209 204 208 207 204
GA 165 200 192 189 183 192 192 184 190 193
RBA 157 199 208 209 209 211 208 211 209 209

Table 6.10: Five project types, thirty tasks and four resource types problem

λj 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ADP 474 1088 1170 1221 1246 1245 1249 1265 1269 1272
GA 505 1104 1175 1193 1230 1250 1279 1244 1269 1277
RBA 485 1094 1178 1217 1238 1260 1254 1264 1274 1280
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ing model by considering the uncertainties of stochastic task durations, random
new project arrivals, multiple types of resource usages and bigger and complex
project networks. For this purpose we suggest a linear approximation model
which generates decisions based on resource consumptions and processed times
of projects. Our linear approximation model generated the best profits after the
exact methods in our comparisons and contributed to the literature by extending
the work of Chapter 5 which only considered small-sized projects with sequential
networks and single resource type.

Our results show that DP produces statistically significantly better results than
ADP for small size problems. However, it suffers from the curse of dimensionality
and not suitable for bigger size problems. ORBA often produced equally high
profits as our ADP algorithm in the small size problems. However, ORBA runs
in factorial time, and it can not be used in bigger size problems. ADP is the best
solution method for the bigger size problems in our comparisons. ADP produced
statistically significantly higher profits than RBA and GA in majority of problems,
and ADP is outperformed by GA or RBA only in a fraction of test problems.

Managerial insights. This study provides an efficient ADP algorithm for
dynamic and stochastic RCMPSP that generates statistically significantly higher or
equal profits in 88% our comparisons to alternative methods (GA and RBA). Also,
this study gives insights to project managers to determine more suitable methods
for their environment by providing a performance comparison of ADP, DP, ORBA,
GA and RBA methods in various project settings and various arrival probabilities.
We suggest using DP for problems that are smaller than the computational
limitations of DP, such as two projects and four tasks. However, we suggest using
ADP methods for bigger size problems since our test results showed that ADP is
usually statistically significantly more profitable than RBA and GA.

Future research direction. In real life, there are more dynamics and stochastic
elements in dynamic project scheduling environments than those (stochastic task
durations, uncertain new project arrivals, finish to start project networks, multiple
resource type and usage) considered in this chapter. Future work might consider
other elements of the dynamic project scheduling environment, such as stochastic
resource availability or multiple modes of task processing.
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Chapter 7

Conclusion

7.1 Thesis summary

The project execution is frequently gets affected by many uncertainties. For
example, the random arrival of new projects makes the previous schedule invalid
and uncertain task durations makes the project schedules unreliable. Due to these
interruptions, the planned delivery time of the project may be delayed, which may
cause late delivery fees or to lose the benefit of early launching of a new product to
a market which can be classified as tardiness cost. To consider these uncertainties,
the RCMPSP problem should be considered in a dynamic environment. However,
the vast majority of the literature focused on the static side of the problem and
literature on the dynamic side of the problem is very limited. The motivation
of this thesis is to reduce the impact of these uncertainties by considering a
more comprehensive project scheduling model, to suggest appropriate solution
approaches for the dynamic environments and to extend the literature of the
dynamic extensions of the RCMPSP. For this purpose:

In Chapter 4, we studied the dynamic RCMPSP with uncertain project arrivals.
We modelled the problem as an infinite-horizon discrete-time MDP. New project
arrivals happen during the time unit. We used DP value iteration to maximise
the long-term average profit per unit time. We tested the limits of the DP on
the dynamic RCMPSP and generated four test problems. We used two heuristic
reactive baseline scheduling methods and a worst-decision DP on the same
problems and compared their results with exact results of the DP. We used GA
and RBA as heuristic reactive baseline scheduling methods. According to our
findings, GA produced closer to optimal results than the simpler heuristic RBA.
Since reactive baseline scheduling does not consider the random changes before
they occurred, the GA’s and the RBA’s results are closer to optimal at low arrival
probabilities and diverge from optimum at the high arrival probabilities.
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In Chapter 5, we studied the dynamic and stochastic RCMPSP with uncertain
project arrivals and uncertain task duration as an infinite-horizon discrete-time
MDP. We compared the DP, WDA, GA and RBA methods from Chapter 4 on the
dynamic and stochastic RCMPSPs, which are created by extending the problems
from Chapter 4 with uniformly distributed stochastic task durations, and we
included the ORBA method to our comparisons. We also enrich our previous
comparison of the deterministic cases from Chapter 4 with results of ORBA. Our
approach generates the optimum policies for the dynamic and stochastic RCMPSP
and contributes to the literature by extending the work of Melchiors et al. (2018)
which only considered single-task projects. According to our findings, the GA
produced closer to optimal results than the priority rule heuristic for most of the
considered problems. The RBA generally produced results between the GA and
the WDP. We observed the same phenomenon with the Chapter 4 that reactive
baseline methods are closer to optimal at low arrival probabilities and diverge
from optimum at high arrival probabilities. In addition, the GA’s and the RBA’s
results are closer to optimal at deterministic task durations than the stochastic task
durations. However, a few exceptions have been observed.

In Chapter 6, we modelled the dynamic and stochastic RCMPSP as an infinite-
horizon discrete-time MDP where projects have identical arrival probabilities at
each transition time, and tasks have uniformly distributed completion probabil-
ities. The objective of the problem is maximising the expected total discounted
long-run profit. We used a linear approximation model to design a practical
scheduling policy and showed that it performs near-optimally in small problems
and compares favourably to existing heuristics in large problems. Our results
show that DP produces statistically significantly better results than ADP for small
size problems. However, it suffers from the curse of dimensionality and is not
suitable for bigger size problems. ORBA often produced equally high profits as our
ADP algorithm in the small size problems. However, ORBA runs in factorial time,
and it can not be used in bigger size problems. ADP is the best solution method
for the bigger size problems in our comparisons. ADP produced statistically
significantly higher profits than RBA and GA in the majority of problems, and
GA or RBA outperforms ADP only in a fraction of test problems.

7.2 Managerial insights

This thesis provides an efficient ADP algorithm for dynamic and stochastic
RCMPSP that generates statistically significantly higher or equal profits in 88% our
comparisons to alternative methods (GA and RBA). Also, this study gives insights
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to project managers to determine more suitable methods for their environment by
providing a performance comparison of ADP, DP, ORBA, GA and RBA methods
in various project settings and various arrival probabilities. We have seen that
DP suffers from the curse of dimensionality even for the small size problems, and
reactive baseline scheduling methods do not produce close to optimum results at
the high arrival probabilities or stochastic task durations. We suggest using DP
for problems that are smaller than the computational limitations of DP, such as
four projects and two tasks and the reactive baseline scheduling methods such
as GA for the environments with very low uncertainties such as 1% new project
arrival rates. We don’t recommend using GA or other reactive baseline scheduling
methods in highly uncertain environments since our test results showed that GA
might generate up to 67.2% less average profit per unit time compared to optimal
in these environments. We suggest using ADP methods for bigger size problems
since our test results showed that ADP is usually statistically significantly more
profitable than RBA and GA.

7.3 Future directions

7.3.1 Other dynamic and stochastic project scheduling problems

Since most of the literature focuses on the static problem, some research gaps exist
in the dynamic variants of RCMPSP. However, no research considers stochastic
resource availability with or without stochastic task duration in the dynamic
environment available at the moment. Similarly, other extensions of RCPSP, such
as multi-mode problems, can be applied to dynamic environments. Future work
might consider other elements of the dynamic project scheduling environment,
such as stochastic resource availability, multiple modes of task processing or
probability of task processing failure.

The stochastic resource availability considers resource failures or performance
failure of human and technical resources, which reduces the available amount of
the relating resource type for a period that represents repair time of the resource.
The failure of resources may occur in any system. Thus, stochastic resource
availability is an important feature to consider in a model to represent real-life
more realistically. Stochastic resource availability is a known feature of static
RCPSP literature. For example, stochastic RCPSP and stochastic RCMPSP prob-
lems which consider stochastic resource availability with or without stochastic
task duration are getting attention since 2015 (e.g. Wang et al. (2015); Song
et al. (2018); Chand et al. (2019); Zarghami et al. (2019)). Therefore, considering
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the stochastic resource availability in dynamic and stochastic RCMPSP may
lead to more comprehensive models representing real-life cases. However, the
effects of stochastic resource availability can partially be represented just by
using the stochastic task durations. Since stochastic resource availability affects
task processing, the disruption effect of resource failure can be included in task
duration distributions. So rather than considering another stochastic feature, a
more comprehensive task duration distributional might be used. The stochastic
resource availability can be considered in dynamic and stochastic RCMPSP with
minor changes in Monte Carlo simulation of Chapter 6. An ADP method similar
to Chapter 6 might be used for this problem if only amounts of free-resources
are stochastic. Otherwise, the failure of an allocated resource should disturb the
processing of an ongoing task. In that case, pre-emptive task processing or failing
and repeating the task processing or increasing the task processing duration with
fewer resources should be considered. Thus, an ADP method that has a feature for
these uncertainties may generate better results than our model from Chapter 6.

The multiple modes of task processing represent the availability of multiple
task processing time options with different resource usage amounts. In other
words, task processing time can be shorter with higher resource usages by time
unit, or it can be longer with fewer resources usages by time unit. In real life,
most task processing duration can be shortened or extended by changing the
allocated resource amounts by unit time. This feature is used to process important
projects faster or to be able to complete some projects before their due date. The
multiple modes of task processing is a well-known feature for the static RCPSP
literature. Including the multiple modes of task processing to dynamic and
stochastic RCMPSP requires adding the task procession mode selection decision
in addition to project acceptance decision and task processing decision. Because of
this, the state space and the solution space of the problem will increase enormously,
and solution approaches may diverge from the optimum. TThe simplest modelling
of this problem would be creating many combinations of available actions with
different modes. That would increase the size of the action set enormously, but the
ADP method from Chapter 6 can solve that problem model. Our ADP method will
be able to differentiate modes by their resource usage amounts. However, the ADP
method from Chapter 6 will not be efficient since it tries each element of action set
using brute force; thus, the computation time will be rocketed. However, an ADP
method that handles the modes selection before creating the action set may be
more efficient and generate better results.

There are also other types of problems, for example, failure option of tasks
which may lead to project failure or re-processing of the tasks. The task failure
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which leads to project failure is considered in dynamic and stochastic RCMPSP
by Choi et al. (2007). We could not found any research for the task failure, which
leads to re-processing of the task in the dynamic environment. The task failure
option is suitable for general PSP, but it is a feature for some PSP applications such
as medical trial problems, R&D or new product development. The task failure
option can be considered in dynamic and stochastic RCMPSP with minor changes
in Monte Carlo simulation of Chapter 6 and our ADP model can be used without
any changes to solve this problem.

7.3.2 Other solution approaches

Some of solution approaches for the dynamic RCMPSP and the dynamic and
stochastic RCMPSP are explained and used in comparisons in this thesis. Also, the
other approaches for these problems in the literature are explained in Chapter 2.
Most of the solution approaches for the static RCMPSP can be applied to dynamic
problems using the reactive baseline method. However, the ORBA method we
used in our comparison represents the best results of the reactive baseline method.
Thus we will exclude the static RCMPSP methods in this subsection, and we will
focus on other possible methods that approximate the DP. There are three main
approximation strategies according to Powell (2021), which are lookup tables,
parametric models and nonparametric models.

Lookup tables usually store the information about observed or approximated
future rewards for a state and action pair. These values are used during online
decision making at the approximate value function. Lookup tables are usually
generated by exploring the state space with simulations. Since lookup tables
require storing information, they are still prone to the curse of dimensionality
for bigger size problems. Choi et al. (2007) used a Q-learning based ADP for
the dynamic and stochastic RCMPSP, and they used a lookup table to store their
Q-values. Due to the limitation of a lookup table, their model only considers
serial project networks, single resource type, single resource usage per task and
no project due dates. Powell (2021) states that the approximation strategies with
lookup tables are easy to apply and easy to understand, but they can easily become
computationally intractable with bigger size problems.

Parametric models approximate a function using a given analytical model via
training their coefficients. Parametric models are categorized into linear models
and nonlinear models (Powell, 2021). We used a linear model in the Chapter 6.
Usually, nonlinear models are used for problems where linear models do not
represent them. The nonlinear models are more diverse and can be complicated
than the linear models. Some simpler neural networks fit the nonlinear model
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category (Powell, 2021). The nonlinear models may represent the problem better
than the linear model, but it is harder to find the best-fitted model, and they may
require more data to be trained. In Chapter 6, actions of optimal policy and actions
of ADP and ORBA are compared. According to this comparison, it is seen that the
due date state is a factor for the optimal policy of dynamic and stochastic RCMPSP.
Thus, we attempted to create a linear policy that included the remaining number
of periods until project is due as a variable, but it did not fit the problem and did
not provide profit. Thus, we believe that a nonlinear model that considers the due
date state might fit the problem.

Nonparametric models can appropriate any function with arbitrary accuracy
at the expense of requiring huge datasets (Powell, 2021). Kernel regression models
and Deep natural networks, which both require so much data, are given as
examples for the nonparametric models by Powell (2021). He also states that
nonparametric models fit the data very closely, and because of this, the noise in
the data may affect the results of these methods. Unfortunately, we have not
found any paper that uses a nonparametric model for the dynamic RCMPSP or
the dynamic and stochastic RCMPSP. Research that uses the nonparametric model
for these problems will be the first contributor to the literature.
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