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Abstract

Classical cash management models concern how an organisation should maintain

their (liquid) cash balances in order to meet cash demands over time. In these

models the balance can be increased or decreased to offset penalties for not being

able to meet a cash demand or the opportunity cost of holding too much cash,

respectively. The external source from which this money comes from or is sent

to is not explicitly modelled but is assumed to be available at all times. In this

thesis we contribute to the cash management problem by discussing three novel

cash management models.

To begin with, we include a second asset to the cash management model and

assume the cash inflows are generated from this asset. We formulate this problem

as a discrete Markov decision process (MDP) and solve it by the classic backward

iteration method. We show that the optimal cash policy for this model possesses

the two-threshold two-target form. Moreover we observe that the agent should take

a ‘safer’ cash policy when the company has a balanced cash inflows and outflows.

Then we introduce loan opportunities to the model. In this problem, we allow

the agent taking loans from financial intermediates. We assume there is one type

of unsecured loan with fixed interest rate and the manager can take this loan

repeatedly once his previous debt is paid off. We also solve this model via the

discrete MDP approach. Moreover we propose a heuristic for this problem based

on the policy improvement which is shown to perform strongly in our experiments.

At last, we consider an agent managing a cash account and a number of as-

sets accounts. Hence both cash policies and asset allocation policies are studied

simultaneously. Moreover we assume the agent wishes to pursuit the net profits

while controlling the risk associated with his management strategies. We solve

this model using a separable Piecewise linear approximate dynamic programming
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(PWL ADP) approach. We also provide a heuristic based on the myopic greedy

algorithm and the discrete MDP approach as benchmarks. The numerical exper-

iments show that the PWL ADP outperforms the heuristic in terms of objective

values and takes significantly less solution time comparing with the discrete MDP.
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Chapter 1

Introduction

The research topic for this thesis is the construction of strategies that optimise

a company’s cash allocation policies over multiple periods. This research starts

at a classic cash management problem where the manager can replenish his cash

balance by selling some of his asset, which is assumed to be available all the

time. Based on this classic cash management model, we introduce three problems:

the one cash account one asset account management problem, the two accounts

management problem with loan opportunities and the cash management problem

with multiple assets. To introduce this thesis, this chapter presents the research

overview, the research significance and contributions, and the thesis outline.

1.1 Overview

Cash management deals with the company’s cash holding and allocation strategies.

With insufficient cash holdings, the company exposes itself to the risk of cash

shortage, which normally results in a great amount of penalty. On the other hand,

a high cash holding level may indicate the inefficient use of resources. By holding

the financial resources in the form of cash, the company renounces the profit it

could have gained if such resources have been invested into other assets. The goal

of cash management is obtaining a cash holding strategy so that the manager,

which will be referred to as ‘the agent’ throughout this thesis, could control the

risk of cash deficit while accruing the profit by investing extra cash into profitable

assets.
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Figure 1.1 illustrates the structure of our study. Our work starts with a tradi-

tional cash management model where the company’s asset is assumed infinite and

available at all times. In this model, the company faces external cash inflows and

cash outflows/demands in each period. At the beginning of each period, the man-

ager can replenish his cash balance or withdraw cash from the asset account. For

each period cash deficit results in shortage costs while positive cash levels causing

cash holding costs. The objective is to minimise the total costs over an infinite

horizon. We use the cash holding level as the system’s state and formulate the

problem as a discrete Markov decision process (MDP). Then we solve this MDP

using the classic backward recursion method.

Next we develop the traditional cash management model to a two accounts

model by the inclusion of a second asset. In this model we consider a company

with a cash account and an asset account. We allow the agent to be able to make

a transfer between these two accounts at each decision epoch with some transfer

fee. A negative cash level causes cash shortage costs while the asset generates

incomes. The goal is to maximise the net profit over the planning horizon. Then

we formulate this model as a discrete MDP using both the cash level and the asset

level as the system’s state. The backward recursion method is also adopted to

solve this model.

At last we propose two advanced models based on the two accounts cash man-

agement model. In the first advanced model we introduce loan opportunities to

the two accounts model. That is we allow the agent to take loans from financial

intermediates. Once the loan is taken, the cash account receives that loan im-

mediately and the offset continues in following periods till the debt is paid off.

We assume the agent can take this loan repeatedly if the company has no pre-

vious debt outstanding. Two approaches are proposed to solve this model. The

first approach is formulating the model as a three-dimensional discrete MDP and

solve it using the backward iteration method. The second approach is a heuristic

based on the policy improvement algorithm. In the second advanced model we

replace the asset account with multiple assets. To solve this problem we propose a

double-pass separable Piecewise linear approximate dynamic programming (PWL

ADP) approach, which is a multi-dimensional version of the successive projective

2



Figure 1.1: Structure of our study
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routine (SPAR) proposed by Powell et al. (2004). We also solve this problem via

the discrete MDP approach and a heuristic approach which is based on the static

stochastic programming approach and use the results as benchmarks.

1.2 Research significance and contributions

This thesis contributes to both the cash management theory and the associated

strategic algorithms. In terms of enriching the literature of cash management mod-

els, our studies address the source of cash inflows. In traditional cash management

studies, cash inflows are considered exogenous to the model and are normally de-

scribed by a stochastic process. In our research, we discuss the scenario where

the cash inflows are equivalent to the incomes generated by company’s assets. To

find the cash management policy under such condition, we present a two accounts

cash management model where the agent adjusts the holdings of a cash account

and an asset account to accrue net profits over an infinite planning horizon. Our

study shows the optimal policy of the two accounts model can be seen as a multi-

dimensional version of the classic two-threshold two-target policy presented by

Eppen & Fama (1968).

Our research also contributes to the literature by the inclusion of loan op-

portunities. In practice, taking loans from financial intermediates is common for

companies to finance themselves. However in the literature, very few cash man-

agement studies discuss the possibilities of taking loans. To our best knowledge,

only Sastry (1970) and Nascimento & Powell (2010) consider loans in the cash

management model. In their work, taking short term loans is considered as a com-

pulsory action when the company’s cash balance cannot meet the cash demand.

The repayment of loan interest is seen as a type of cash shortage penalty. In our

research we expand the cash management model to a cash-asset-loan management

model where the agent is allowed to replenish his cash balance by selling asset as

well as taking short term loans.

At last we present a cash management model with multiple assets i.e. instead

of one general asset account, we allow the agent investing his cash surplus to a

portfolio. The agent’s objective is to maximise the net profit over the planning

4



horizon by adjusting his cash balance as well as the holdings of each asset ac-

count. This model can be seen as a combination of a cash management model

and a portfolio management model. To our best knowledge, our work is the first

work combining a dynamic cash managment model with the dynamic portfolio

management theory.

In the algorithmic sense, we propose a novel heuristic for the cash management

with loans problem based on the policy improvement method. The basic idea can

be described as follows: we first solve the cash management problem where the loan

is unavailable to the manager. Then we solve the problem in which a bank offers

one loan option to the manager. Regardless of the manager’s decision, the loan

opportunity expires after this time period. We show that this cash management

model with one loan opportunity can be easily solved given the optimal policy

from the no loan model. We also show that the cash management model with

any number of loan opportunities can be solved given the result from the model

with one less loan opportunities. Hence start with the no loan model, we solve the

model with one more loan opportunity at each iteration until the state values (i.e.

the expected net profits) do not change significantly. We show that after a number

of iterations, the result from this model is a good approximation of the model with

infinite loan opportunities. We also formulate the cash management model with

infinite loan opportunities as a discrete Markov decision process and solve it via

the traditional backward recursion method. Compared with this discrete MDP

approach, the heuristic is shown to perform strongly in our experiments while

requiring significant less solution time.

Moreover in the cash management model with multiple assets we present a

double-pass separable PWL ADP approach which is based on the SPAR algorithm

proposed by Powell et al. (2004). To our best knowledge, this is the first attempt in

the literature using this algorithm to solve a high-dimensional, combined, dynamic

cash and asset model. We also solve this model via a heuristic method and a

dynamic programming method as benchmarks. The PWL ADP approach is shown

to outperform the heuristic method in terms of the objective value while taking

less computational cost comparing with the dynamic programming method.
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1.3 Thesis outline

This thesis is organised in eight chapters:

Chapter 2 presents the literature of cash management studies. It starts with

an introduction to the origin of cash management including the first research ad-

dressing the cash management problem (Baumol 1952), the first cash management

model introducing stochastic elements into the model (Miller & Orr 1966), and

Eppen & Fama’s research (Eppen & Fama 1968) which suggests the two-trigger

two-target form of cash policies that is widely accepted in following studies. Then

we discuss some new perspectives in cash management studies including the mod-

elling of the uncontrolled cash flows, the operation conditions (i.e. the transfer

fees, the holding costs and the cash shortage penalties), the incorporation of cash

management in asset management, and the methodologies adopted in cash man-

agement studies. At last we present some studies on cash policies from a financial

perspective.

Chapter 3 provides some basic concepts and tools used throughout this thesis.

Here we present the framework of the discrete Markov decision process. Then

we explain how the state values are estimated using the tabular method and the

min-affine functions. At last we introduce the conditional value-at-risk and some

other time consistent risk measures.

In Chapter 4 we discuss the traditional model where the agent is allowed to

replenish his cash balance by selling some of his assets which are assumed available

all times. Moreover we formulate this problem as a discrete MDP and solve it

via the backwards recursion method. At last we conduct a series of numerical

experiments under different operational conditions.

Chapter 5 develops the traditional cash management model by the inclusion of

a second asset. This asset generates an income which is considered as the source

of cash inflows. We also formulate this problem as a two dimensional MDP. In

addition, we show that with a small modification, the MDP approach can be used

to calculate the company’s insolvency probabilities. Furthermore we discuss the

scenario where the second asset does not generate a cash income directly. Instead,

the asset grows at a fixed rate. This model may applies to the case where the

agent holds financial assets.

6



Chapter 6 introduces loan opportunities to the two accounts model. In this

chapter we propose two approaches to solve this cash-asset-loan model. The first

approach is formalising the model as a discrete MDP and solve it via the backward

recursion method. We also propose a heuristic based on the policy improvement

method. At last we conduct numerical experiments to compare the performance

of these two approaches and examine the policies under different loan conditions

(i.e. the loan interest rate, the loan age, and the loan size).

Chapter 7 discusses the model where the agent holds multiple assets instead of

one general asset account. Three approaches are proposed to solve this model: a

heuristic approach based on a static model, the discrete MDP approach, and the

approximate dynamic programming approach where we use the separable Piece-

wise linear functions to approximate state values. At last we conduct a set of

numerical studies based on the real data and compare the accuracy and the effi-

ciency of these approaches.

Chapter 8 summarises the thesis and points out the research limitations and

the plan of future research.
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Chapter 2

Literature Review in Cash

Management

2.1 Introduction

In financial management, cash is a unique asset which has full liquidity and low

profitability. Holding too much cash means the inefficiency of financial resource

allocation, while an insufficient cash balance normally exposes companies to the

risk of becoming overdrawn. Hence cash holding strategies are of a great interest

to the decision makers. In this section we give a literature review in the topic

of cash management. To begin with, we briefly introduce the origin of the cash

management studies. We highlight three important early studies: Baumol’s study

(Baumol 1952) which is the first study on the cash management problem, Miller

& Orr’s model (Miller & Orr 1966) which introduces a stochastic element into

cash management models and Eppen & Fama’s research (Eppen & Fama 1968)

which suggests the two-trigger two-target form of cash policies that is widely ac-

cepted in following studies. Then we introduce the new developments on the cash

management studies focusing on the following aspects: (a) the discussion of cash

flows/demands process, (b) the operational conditions including the transaction

costs, the cash holding/shortage costs and the risk consideration, (c) the incorpo-

ration of cash management in asset management, (d) the methodologies adopted

in cash management studies and (e) the discussion of the determinants on cash

policies from the perspective of financial theories.
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2.2 Origin of cash management studies

One of the earliest studies on cash management problems is contributed by Baumol

(1952) where the cash is considered analogous to other types of inventory and

the author consequently makes a parallel between monetary theory with inventory

theory. In their study, the economic order quantity (EOQ), which is one of the most

common approaches in inventory studies, is adopted to analyse the advantages and

the disadvantages of holding cash. They identify two sources of cash management

cost, the transaction cost i.e. the cost associated with investment or withdrawal

transactions and the opportunity cost i.e. the ‘opportunity cost’ which represents

the profit renounced by the manager when he holds the cash instead of investing

into profitable assets. In their model it is assumed that the manager withdraws £a

cash from asset each time spaced evenly throughout the year. They also assume

the demand for cash over each year is predetermined and denoted by D. Hence

for each year D/a transactions are required and if the transfer fee Γ is fixed for

each transaction, the total transaction cost for this year is ΓD/a. If the manager

withdraws £a and spends it in a steady stream, the average cash holding will be

a/2. The ‘opportunity cost’, namely the profit the manager could have gained if

he had invested this cash into the asset, with annual return rate r is equal to rx/2.

management cost function:

TC =
ΓD

a
+

ra

2
.

The optimal withdrawals can be given by taking the first derivatives of the total

cash management cost function with respect to a and it can be written as:

a =

√
2ΓD

r
.

Many early studies on the cash management problem are based on this model.

For example, Tobin (1956) completes Baumol’s model (Baumol 1952) by permit-

ting the number of transactions into cash to take on only positive integer values.

Moreover, Tobin’s model (Tobin 1956) maximises his earnings of interest net of

transaction costs instead of minimising the total cost of cash management and

proves one of the Baumol’s assumptions (Baumol 1952), namely the cash with-

drawals should be equally spaced over time and equal in size. Sastry (1970) in-

9



troduces the concept of the cash shortage and takes into consideration of the cash

shortage penalty. In this study, once the company has cash deficit, the manager

must take a loan from financial intermediaries and pay the related interest. They

modify the optimal cash withdrawals to

a =

√
2ΓD

r
· h

r + h

where h is the cash shortage penalty coefficient (e.g. loan interest rate). Later

Whalen (1966) develops the cash management theory with the consideration of

cash deficit and introduces the concept of the cost of cash illiquidity. In addition,

Whalen (1966) allows the variability in cash inflows and outflows and shows that

the optimal precautionary cash balance should be higher in scenarios with more

uncertainty in cash flows.

Miller & Orr (1966) formally identify two accounts in the cash management

model: a short term asset account which has low risk and high liquidity and a cash

account which can be used to meet the cash demand. At any time, the manager

can sell his asset to replenish the cash account or invest his cash into the profitable

asset. For each transaction, regardless of the transaction size, a fixed transfer fee

must be paid. They also introduce a stochastic element into the model by assuming

that the cash flows can be described by Bernoulli process, i.e. for each period the

cash level will either increases by £m with probability ∆x or decreases by ∆x

with probability 1− p. Then they show that the optimal cash management policy

poccesses the (L,B, U) form where two limits for the cash holding level, namely

the upper limit (U) and the lower limit (L) will be defined. The agent should

adjust his cash balance to a target level B only when the firm’s cash holding level

reaches the upper limit or the lower limit.

Miller & Orr’s study (Miller & Orr 1966) is developed in Eppen & Fama’s work

(Eppen & Fama 1968) where the authors formalise the cash management prob-

lem into a Markov decision process and adopt the linear programming method.

Through numerical experiments, Eppen & Fama (1968) suggest that for a model

with the fixed plus proportional transaction cost function, the optimal cash man-

agement policy is of the two-trigger two-target form, i.e. if the cash holding level

exceeds the upper trigger level, the agent should buy the asset and reduce his cash
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level back to the upper target and if the cash level goes below the lower trigger

level, the agent should sell his asset and replenish the cash account back to the

lower target. Later this two-trigger two-target form of cash management strategy

is proved optimal by Constantinides & Richard (1978), Harrison et al. (1983) and

Milbourne (1983).

2.3 Cash flows/demands process

Since Eppen & Fama (1968) and Milbourne (1983) proposed the two-trigger two-

target policy, the theory of cash management has been developed in many aspects.

One of the most important aspect is the consideration of the uncontrolled cash

flows process (or equivalently the cash demands process) in the cash management

theory. For example, in Bar-Ilan et al.’s study (Bar-Ilan et al. 2004), the process of

cash flows is assumed to be a superposition of Brownian Motion and a compound

Poisson process with positive and negative jumps. According to Bar-Ilan et al.

(2004), this assumption provides a more general model for cash demand as the

Brownian motion is a good description in normal times while the compound Pois-

son process describing the critical losses in financial crisis. Similar studies are also

conducted by Benkherouf & Bensoussan (2009) where the cash demand is assumed

to be a mixture of a diffusion process and a compound Poisson process, Yamazaki

(2016) where the uncontrolled cash flows follow a general Levy process with only

negative jumps, and Azcue & Muler (2019) where a compound Poisson process

with two-sided jumps and negative drift is used to describe the money stock.

The limitation of the classic independent identical distribution (i.i.d.) assump-

tion on cash flows is pointed out by Hinderer & Waldmann (2001). In their work,

they propose a new ‘environmental variable’ to describe the business environment.

The ‘environmental variables’ are self-related and the random variables of cash

flows are realised depending on the ‘environmental variables’. The i.i.d. assump-

tion is also relaxed in Gormley & Meade (2007) where the authors use a data set

from a large multinational and develop a time series model to forecast the cash

flows. In light of the idea of applying forecasting techniques into the cash man-

agement problem Salas-Molina et al. (2017) examine the effect of the accuracy
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of cash flows’ forecasts on cash management strategies and provide a model to

help the manager to decide whether it is worthy to improve the forecasts accuracy

while making cash management strategies. On the other hand, Yao et al. (2006)

reckon that the past historical data is unable to provide a forecast for cash de-

mand and hence consider the cash demands based on the fuzzy logic concepts and

develop a fuzzy stochastic single-period model. In their work, the cash demands

are described as a ‘hybrid data’ which consists of fuzzy information and random

components.

Moreover, the multi-dimensional cash flows/demands are also studied in the

literature. Baccarin (2009) studies a general multi-dimensional cash manage-

ment problem where the cash process is viewed as a diffusion process in a multi-

dimensional space. In his work, the existence of the optimal policy is proved and

a numerical experiment in two dimensions is calculated as an example. Alvarez

& Lippi (2013) studies the problem where the demand for cash comes from two

sources: one is frequent and small and the other one is infrequent and large. Nasci-

mento & Powell (2010) studies a mutual fund cash management problem where

the institutional and retail cash demands are identified separately. In their model,

it is assumed that if the cash balance cannot meet the total demand, the manager

must liquidate his portfolio and hence the liquidation cost occurs. If the institu-

tional demand is higher than the cash balance, the manager must take a loan from

financial intermediaries and the financial cost is also charged.

2.4 Operational conditions

In the literature there are mainly three types of transaction cost function adopted

in the cash management models: the fixed transaction cost where a fixed amount of

transfer fee is charged for each transaction (e.g. Baumol (1952) and Tobin (1956)),

the proportional transaction cost where the transfer fee is charged depending on

the size of the transaction (e.g. Bensoussan et al. (2009) and Nascimento & Pow-

ell (2010)) and the fixed plus proportional transaction cost function which is a

combination of both (e.g. Hinderer & Waldmann (2001), Baccarin (2002) and

Salas-Molina, Pla-Santamaria & Rodriguez-Aguilar (2018)).
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However other types of transaction cost are also considered in the literature.

For example, Baccarin (2009) imposes polynomial growth conditions on the trans-

action costs since they reckon that the transaction costs normally increase less

than proportionally to the size of the transaction. Sato & Sawaki (2009) consider

the scenario where the company is financed via two short term funds, hence two

different transaction costs occur in the model. In Baccarin & Sanfelici (2006),

the transaction cost function is a mixture of a fixed component and a variable

component which is assumed to be sublinear. This assumption is based on the ob-

servation of the real world that two separate transfers are usually more expensive

than implementing the same with one transaction.

Another essential aspect of cash management models is the holding/shortage

costs. The cash holding cost measures the price of keeping too much cash while the

shortage cost measures the price of not having sufficient cash balance. Early studies

have proved the existence of optimal solutions in the cash management models with

the linear holding/shortage costs function (e.g. Constantinides & Richard (1978),

Harrison & Taylor (1978) and Harrison et al. (1983)). Penttinen (1991) is one of the

earliest studies considering the nonlinear holding/shortage costs functions in the

cash management problem. In their model, general convex functions are adopted to

describe the holding/shortage costs. Later Baccarin (2002) proves that an optimal

control band policy always exists in the model with a quadratic holding/shortage

costs function. In light of these studies, Baccarin & Sanfelici (2006) and Baccarin

(2009) impose polynomial growth conditions on the holding/shortage costs in their

cash management model.

Keeping idle cash increases the ‘opportunity cost’, but an insufficient cash

holding level exposes the company to the risk of overdraft penalties. Most stud-

ies in the literature focus on minimising the expected cost of cash management

strategies over the planning horizon. However there are scholars who also take into

consideration the risk associated with the cash policies. For example Salas-Molina,

Pla-Santamaria & Rodriguez-Aguilar (2018) incorporate risk considerations with

the cash management problem and propose a multi-objective model that allows

the manager adjust his cash policies based his risk preference. In addition a cost-

risk space is derived in Salas-Molina, Rodriguez-Aguilar & Díaz-García (2018) for
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the cash management models and loss curves are constructed to assess the per-

formance of models under different operational conditions (e.g. transaction cost

parameters, risk preference). Salas-Molina (2020) studies the robustness of the

multi-objective cash management model to the misspecifications in both means

and variances of the cash flows process.

2.5 Incorporation of cash management in asset

management

Most studies in the literature only focus on the management of cash balance. A

recent development on the topic of cash management is considering cash as one

of the financial assets and studying the cash policies within the topic of asset

management. Bensoussan et al. (2009) consider a cash management model with

two types of financial asset: one is the deposits in a bank account and the other

one is the investment in stock. The bank deposit is an asset with high liquidity and

low profitability and it can be used to meet the cash demand. The stock, on the

other hand, cannot fulfil the demand for cash directly but generates two types of

profit: the fixed dividends and the uncertain capital gain. Wu & Li (2012) propose

a mean-variance portfolio optimisation model with the consideration of cash flows

and cash holding strategies. Then they show the existence of optimal solutions in

their model and analyse the mean-variance efficient frontier. da Costa Moraes &

Nagano (2014) propose a management model for three accounts: apart from the

cash account, there are two potential assets: the first asset has the full liquidity

but lower profitability and the second asset has higher profitability but requires 0

to 30 days of lead time. Yao et al. (2013) and Yao et al. (2016) incorporate the

cash management problem into the asset-liability management model where the

cash account is treated as one of many assets affecting the company’s liability. In

these studies, a mean-variance model over multiple period horizon is proposed and

formulated as a stochastic optimal control problem.

14



2.6 Methodologies

Various methodologies have been adopted in cash management studies. In Baumol

(1952), the cash management model is considered as a special case of the inventory

model and the economic order quantity (EOQ) method, which is one of the most

common approaches in inventory studies, is adopted in their studies. The basic idea

of the EOQ approach is analysing both advantages and disadvantages of holding

an inventory and looking for the optimal management strategies. Later in Eppen

& Fama (1968), the cash management problem is formulated as a Markov decision

process and solved via the linear programming approach. Based on the results

from the numerical studies, they suggest that the optimal solution of their cash

management model possesses the (L, l, u, U) form. Since then, the optimal impulse

control technique firstly introduced by Bensoussan (1984) is widely adopted in the

studies of cash management (e.g. Feinberg & Lewis (2007), Baccarin (2009) and

Baccarin & Marazzina (2014)). In an optimal impulse control problem, actions

are taken when the pre-decided cash holding levels are hit. A usual technique

in impulse control problems is associating the problem with a quasi-variational

inequality. The optimal policy can be derived once a regular solution of this

inequality is found (see Constantinides & Richard (1978), Harrison et al. (1983),

Eastham & Hastings (1988) and Korn (1997)). A number of machine learning

techniques are also used in cash management studies. Liu & Xin (2008) and

Schroeder & Kacem (2019) design online algorithms to study the cash management

strategies which do not require the knowledge of the distribution of cash flow,

only the information on the lower and upper bound of the future cash demand.

Relying on machine learning and mathematical programming techniques, Salas-

Molina (2019) also relaxes the assumption of knowing the cash flow’s distribution

and provides a data-driven procedure to fit the cash management models to the

data. da Costa Moraes & Nagano (2014) adopt genetic algorithm and particle

swarm optimisation algorithms in cash management models with multiple assets.

Through numerical experiments they show that both algorithms are applicable

in finding the optimal solutions and the particle swarm optimisation algorithms

outperforms genetic algorithm. Nascimento & Powell (2010) formulate the cash

management problem as a dynamic program and provide an approximate dynamic
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programming algorithm in finding the optimal cash policy. In their algorithm,

Piecewise linear functions are used to estimate the value of states and the optimal

solution is derived from not the value of each Piecewise linear function but the

gradient of each segment of the functions.

2.7 Cash policies from a financial perspective

Although the modelling of cash management is a popular topic in the field of

operations research (O.R.), the cash control policies have also been discussed from

the perspective of financial theories. Although they differ from the studies of cash

management in O.R. to a large extent, these financial studies provide essential

insight on the determinants of cash policies and could be highly valuable to the cash

management modelling. Almeida et al. (2004) study the sensitivity of corporate

cash holding level to the volatility of the cash flows. Their study shows that the

constrained company tends to hold more cash in the scenario with the volatile

cash flows. Such relationship is not valid for the unconstrained companies, i.e. the

companies that have unrestricted access to the external capital. The sensitivity

of cash holding to the cash flow’s volatility is also identified in Yan (2006) where

they study the cash holding strategies adopted by the mutual fund companies.

Khurana et al. (2006) show that the financial developments increase the sensitivity

of companies’ cash holding level to the cash flows and Kusnadi & Wei (2011) argues

that compared to financial developments, the legal protection of investors plays

a more essential role in companies’ cash controlling policies. Chen et al. (2014)

take a survey in China covering 12, 400 firms in 120 cities and show that the high

quality of local government leads to lower cash holding levels for the companies.

The negative relationship between the cash holding and both the geographic and

industrial diversification is pointed out by Fernandes & Gonenc (2016). Kusnadi

& Wei (2011), Sasaki & Suzuki (2019) and Cui et al. (2020) study the impact

of banks policies on the non-financial companies’ cash policies. Their researches

show that healthy banks or banks with more liquidity normally induce the growing

firms to hold more cash. These determinants on cash holding policies verified by

empirical studies are rarely considered by O.R. scholars and could be important
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reference to the future studies on cash management.
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Chapter 3

Basic Concepts and Notations

3.1 Introduction

In this chapter we summarise the basic concepts and the notation that will be used

in following chapters. To begin with we introduce the framework of the discrete

Markov decision process (Bellman 1957) which will be adopted throughout this

study. In Chapters 4, 5, and 6, the cash management problem will be formu-

lated as a discrete Markov decision process and the value for each state will be

approximated via the linear interpolation method. In Chapter 7, the state value

will be approximated by a set of Piecewise linear functions. Both the linear in-

terpolation method and the Piecewise linear functions approximation method are

introduced in Section 3.3. Then in Section 3.4, we give a brief introduction to

the conditional value-at-risk (Rockafellar et al. 2000). We also highlight the lack

of time consistency of the conditional value-at-risk and introduce some studies on

the time consistent risk measures. The risk measure will be adopted in Chapter 7

as a component of the investor’s objective.

3.2 Markov decision process

A Markov decision process (MDP) is a discrete-time stochastic control process

which models decision making problems in which outcomes are partly stochastic

and partly under the control of the manager. According to Puterman (2014), five

elements are normally identified in the framework of a Markov decision process
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(MDP), namely decision epochs, states, actions, transition probabilities and re-

wards. At each decision epoch in the planning horizon, the system occupies a

state which can be observed by the decision maker. Based on the information of

the current state, an action is chosen from a set of feasible actions by the agent. As

a result the agent receives an immediate reward (or a penalty which can be seen as

a negative reward) and the system transitions to another state determined jointly

by the action and some probability functions. The goal is to find the optimal

decision rule that maximises the cumulative reward over the planning horizon.

1. Decision epochs

Assume, in a decision making problem, the agent can take actions over a

planning horizon and wishes to find the optimal decision rule. In the MDP

framework, the continuous planning horizon is divided into discrete periods.

The set of discrete periods can either be finite (i.e. T = {1, 2, ..., T} for some

integer T < ∞) or countably infinite (i.e. T = {1, 2, ...,∞}). We write

T = {1, 2, ..., T} , T ≤ ∞

to include both cases. The decision epoch is the point of time when the

decision is made and we let it correspond to the beginning of each period.

2. States

At the beginning of period t ∈ T , the system occupies a state st. Take the

cash management problem as an example, in a problem where only the cash

account management is of interest to the agent, we could define the state

as the amount of cash holdings. However when the management strategy

involves more than one account, a N -dimensional state s⃗t = (s1t , s
2
t , ..., s

N
t )

where s⃗t ∈ St = S1
t ×S2

t ×...×SN
t should be adopted. Note that St represents

the set of all possible states at time t and for n = {1, 2, ..., N}, Sn
t represents

the set of all possible values for the nth state element snt .

3. Actions

We let A be the set of all possible actions and At ⊆ A be the set of all

feasible actions at period t. At each decision epoch, the agent observes the
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system’s current state st and takes an action at ∈ At based on the state

information. We define a decision rule Aπ
t as the mapping from the state set

to the action set, i.e.

Aπ
t : St → At.

In addition, we define a policy π as the set of all decision rules over the

planning horizon, i.e.

π = (Aπ
1 , A

π
2 , ..., A

π
T ), T ≤ ∞, π ∈ Π

where Π represents the set of all possible policies.

4. Transition probabilities

If at period t, the system occupies the state st and the action at is taken by

the decision maker, the system state at the next decision epoch is determined

by the transition probability pt(st+1|st, at). We assume that

∑
st+1∈St+1

pt(st+1|st, at) = 1.

In the MDP, we also assume the Markov property, i.e. given any current

state st, the future states are independent of how the system reached st.

5. One-step reward

In our study, we let the agent receive an amount of immediate reward as a

result of taking the action at in the state st. Hence the immediate reward

for a state-action pair can be computed via a two-argument function Rt :

St × At → R. Note that the reward can be interpreted as the value of an

income or the negative value of a penalty.

Assume that the future rewards are discounted by the factor γ and the agent’s

objective is to find the optimal policy that maximises the expected discounted

cumulative rewards over the planning horizon T = {1, 2, ..., T}.

max
π∈Π

E

{
T∑

τ=1

γτ−1Rτ (sτ , aτ )

}
, T ≤ ∞. (3.1)
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To reduce the complexity of the optimisation problem (3.1), we formulate it

as a dynamic program using the classic backward recursion method. We first

introduce the concept of a state value Vt(st), which is defined as the expected sum

of the discounted reward received in following periods given the system visiting

the state st at time t and the optimal policy is adopted afterwards, i.e.

Vt(st) = max
π∈Π

E

{
T∑

τ=t

γτ−tRτ (sτ , aτ )

}
, T < ∞.

In the infinite horizon case, the value of state s can be expressed as:

V (s) = max
a∈A

E

{
∞∑
τ=0

γτR(s, a)

}
.

The state value can be expressed by the recursive equation which is known

as the Bellman’s optimality equation. In the finite horizon case, the recursive

equation can be written as:

Vt(st) = max
at∈At

Rt(st, at) + γ
∑

st+1∈St+1

pt(st+1|st, at)Vt+1(st+1)

 . (3.2)

In the infinite horizon case the recursive equation can be written as:

V (s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)

}
. (3.3)

In the case of a finite planning horizon, we define the terminal value state

VT (sT ) based on the state information sT . In the case of an infinite planning

horizon, the terminal state information is negligible due to the discount factor γ.

Then the state values as well as the optimal policy over the planning horizon can

be obtained recursively via the equation (3.2) and (3.3).

3.3 State value estimation

In a cash management problem, the levels of cash balance and other asset-holdings

are normally used as the MDP states. However the level of each financial account
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is continuous while the discrete MDP framework normally requires discrete states.

Hence the estimation of state values plays an essential role in our studies. In this

section we discuss two estimation methods for the state values. In the problem

with a small state space, we use the tabular method where the state space is

discretised and the value of each discrete state is recorded in an array of a table.

The values for those states among the discrete states are approximated via the

linear interpolation method. In the problem with a large state space, we use

separable Piecewise linear concave functions to estimate the state values.

Tabular method and linear interpolation

In the task with a small state space, we approximate the value using the tab-

ular method. Assume that we are dealing with a problem with N -dimensional

continuous states s⃗ = (s1, s2, ..., sN) where s⃗ ∈ S = S1 × S2 × ... × SN . In the

tabular method, we discretise the space of the nth state element into a discrete

set Sn =
{
sn[1], s

n
[2], ..., s

n
[M ]

}
for n = {1, ..., N}. Then we use arrays or tables to

record the discrete state values. When we recursively solve the equation (3.2) and

the state st+1 lies in the middle of discrete states, the value Vt+1(st+1) can be

approximated using the linear interpolation method. In the case of a one dimen-

sional state problem, the linear interpolation method can be described as follows:

if the state s lies between the discrete states s[m] and s[m+1] and the values V (s[m])

and V (s[m+1]) can be obtained from a lookup table, the value of state s can be

approximated as:

V (s) ≈
s− s[m]

s[m+1] − s[m]

(
V (s[m+1])− V (s[m])

)
. (3.4)

In the case of a multi-dimensional state model, the approximation equation (3.4)

can be implemented for each dimension. For example, if we want to approximate

the value of a N -dimensional state s⃗ = (s1, s2, ..., sN) and for each state element

sn, the adjacent discrete states are sn[mn] and sn[mn+1], the value V (s1, s2, ..., sN) can

be approximated via the following procedure:
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

V (s1, s2, ..., sN) ≈
s1 − s1[m1]

s1[m1+1] − s1[m1]

(
V (s1[m1+1], s

2, ..., sN)

− V (s1[m1], s
2, ..., sN)

)
V (s1[m1], s

2, ..., sN) ≈
s2 − s2[m2]

s2[m2+1] − s2[m2]

(
V (s1[m2], s

2
[m2+1], s

3, ..., sN)

− V (s1[m1], s
2
[m2], s

3, ..., sN)
)

V (s1[m1+1], s
2, ..., sN) ≈

s2 − s2[m2]

s2[m2+1] − s2[m2]

(
V (s1[m1+1], s

2
[m2+1], s

3, ..., sN)

− V (s1[m1], s
2
[m2], s

3..., sN)
)

V (s1[m1], s
2
[m2], s

3, ..., sN) ≈
s3 − s3[m3]

s3[m3+1] − s3[m3]

(
V (s1[m1], s

2
[m2], s

3
[m3+1], s

4, ..., sN)

− V (s1[m1], s
2
[m2], s

3
[m3], s

4, ..., sN)
)

...

.

(3.5)

Separable Piecewise linear concave approximation

One limitation of the tabular method is that a large amount of memory is required

to approximate state values and policies, especially when the model states involve

multiple dimensions. Hence we implement approximation functions to estimate

state values when we deal with optimisation problems with multi-dimensional

states. To be specific, in Chapter 7 we consider the separable Piecewise linear

concave approximations for the values of combinations of cash and risky assets.

In the literature, the separable Piecewise linear approximation approach is

wildly adopted in optimisation problems. For example, Godfrey & Powell (2002a)

and Godfrey & Powell (2002b) adopt the separable Piecewise linear approximations

for the net profit in fleet management. In Godfrey & Powell (1997), the Piecewise

linear approximation is applied to inventory and distribution problems. In He

et al. (2012), the separable Piecewise linear function is used to approximate the

secrete estradiol levels and the ovary diameters in the dosage control problem in

the controlled ovarian hyperstimulation treatment.

The basic idea of the separable Piecewise linear approximation can be explained
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as follows. Given a N -dimensional state s⃗ = (s1, s2, ..., sN) we assume that the

contribution of each state element to the state value can be described as a min-

affine function and the value for the state can be approximated as the sum of all

the min-affine functions, i.e.

V (s1, s2, ..., sN) ≈
N∑

n=1

min
m=1,...,M

{bm,ns
n + cm,n} .

One advantage of this approximation is that the optimisation of the separable

Piecewise linear concave function can be easily transformed to a linear program-

ming model, i.e. the objective function

max
N∑

n=1

min
m=1,...,M

{bm,ns
n + cm,n}

is equivalent to

max
N∑

n=1

zn

s.t. zn ≤ bm,ns
n + cm,n for n = 1, ..., N ; m = 1, ...,M.

(3.6)

3.4 Conditional value-at-risk and time consistent

risk measure

In a typical cash management problem, the goal of the investor is usually to

maximise net profit or minimise the total cost. However the agent may also be

interested in the risk associated with management strategies. Hence in Chapter 7,

the policy risk is considered as a component of the investor’s objective as well as

the net income.

The expected shortfall, also known as the conditional value-at-risk (CVaR) is

wildly adopted in financial management studies as a risk measure. CVaR which

accounts for the expected return or loss in the worst scenarios is defined as follows:

Let g(r⃗, a) be the gain function given a stochastic return vector r⃗ ∈ R and an action

a ∈ A. Let f(r⃗) be the probability density function of r⃗. The probability of the
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gain g(r⃗, a) at least equal to a threshold ρ is:

Ψ(r⃗, ρ) =

∫
g(r⃗,a)≥ρ

f(r⃗)dr⃗.

With respect to a specified probability level α ∈ (0, 1), the values of value-at-risk

(VaRα) is the highest amount ρ such that with probability α, the gain will at least

equal to ρ, i.e.

ρα(r⃗) = max {ρ ∈ R : Ψ(r⃗, ρ) ≥ α} .

The α-CVaR is the conditional expectation of gains lower than or equal to the

amount VaRα(r⃗), i.e.

ϕα(r⃗) =
1

1− α

∫
g(r⃗,a)≤ρα(r⃗)

g(r⃗, a)f(r⃗)dr⃗.

The main advantage of adopting CVaR in our study as the risk measure is

its coherency, i.e. satisfies properties of monotonicity, sub-additivity, homogeneity

and translational invariance (see Artzner et al. (1999) and Pflug (2000)). The

monotonicity property states that the investment with higher gains leads to less

risk, i.e. if g1 ≥ g2, then we have

ϕ(g1) ≥ ϕ(g2).

The sub-additivity property suggests that two investments together is at least as

good as adding two risks separately, i.e.

ϕ(g1 + g2) ≥ ϕ(g1) + ϕ(g2).

The homogeneity property states that the risk measure is proportional to the size

of the investment, i.e. if c ∈ R+, then

ϕ(cg1) = cϕ(g1).

At last, the translation invariance implies that any cost involved with the actions
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reduces the risk measure by the same amount, i.e. if c ∈ R, then

ϕ(g1 − c) = ϕ(g1)− c.

Another advantage of the CVaR measure is that for discrete scenarios, CVaR

can be expressed as a linear program which can be easily incorporated in optimi-

sation problems. According to Rockafellar et al. (2000), the risk measure ϕα(r⃗)

can be expressed as:

ϕα(r⃗) = sup
ρ∈R

{
ρ− E{g(r⃗, a)− ρ}−

1− α

}
(3.7)

where g(.)− = −min{g(.), 0}. If we generate J simulations of the return vector,

the equation (3.7) is equivalent to the following linear program:

max
ρ,a,z1,...,zJ

ρ− 1

(1− α)J

J∑
j=1

zj

s.t. zj ≥ ρ− g(r⃗j, a) for j = 1, .., J

zj ≥ 0 for j = 1, ..., J.

Although CVaR is a very useful risk measure in static optimisation problems,

it is difficult to adopt CVaR in multi-period problems due to the lack of time

consistency. The concept of time consistent risk measures is introduced by Boda

& Filar (2006) and can be defined as follows. Let ϕt for t ∈ T be a risk measure

for period t and let ϕt1→t2 for t1, t2 ∈ T be the function measuring the risk from

period t1 to period t2, the risk measure ϕ is called time consistent if it satisfies the

following condition:

The action a∗t for each stage t = 1, ..., T is optimal in each one-step risk

management problem, i.e.

a∗t = argmax
at

ϕT−t+1(at|a∗t+1, ..., a
∗
T ) for t = 1, ..., T,

if and only if the policy π∗ = (a∗1, ..., a
∗
T ) is the optimal policy in the multi-

stage problem, i.e.

π∗ = argmax
π

ϕ1→T (π).
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A number of time consistent risk measures are discussed in the literature. For

example, Boda & Filar (2006) proposes a target-percentile risk measure model in

which the agent considers not only the state of the original system but also his

target. Cheridito & Kupper (2013) present a time consistent convex monetary

risk measure in terms of one-step penalty functions. Rudloff et al. (2014) suggests

a time consistent risk measure based on the traditional CVaR measure. In their

model, the risk function is recursively defined as
ϕt→T (r⃗t) = sup

ρ∈R

{
ρ− E{ϕt+1→T (r⃗t)− ρ}−

1− α

}
for t = 1, ..., T − 1,

ϕT (r⃗) = ϕT
α(r⃗T ).

where ϕT
α(r⃗T ) is the expected shortfall value for period T .

In Chapter 7, we will adopt the time consistent risk measure proposed by Meng

et al. (2011) which is the sum of CVaR of each period, i.e.

ϕt1→t2 =

t2∑
t=t1

ϕt
α(r⃗t) ∀t1 < t2, t1, t2 ∈ T . (3.8)

In their study, this risk measure is shown to be time consistent and the optimality

equation is also derived.
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Chapter 4

A Cash Management Model with

An Infinite Asset

4.1 Introduction

Traditional cash management models in the literature (e.g. Eppen & Fama (1968))

are mainly focusing on the management strategies of the cash account. In these

models, the company’s asset is assumed to be infinite and can be used to replenish

the cash balance at each decision epoch. The impact of cash policies on the

company’s asset level is normally neglected. In this chapter, we aim to solve this

traditional cash management model via the Markov decision process approach.

This chapter will be used as a benchmark for the following chapters where the

impacts of cash policies on the company’s asset will be closely examined. It can also

be seen as the connection between the cash management models in the literature

and the following cash management models in our thesis.

4.2 Problem description

In this model, we assume the agent manages a company with an infinite asset and

he can replenish his cash holdings by selling his asset. This problem can be viewed

as a trade-off between the cost of cash holding and the cost caused by insufficient

cash balance to meet demands for cash. The cash holding cost can be interpreted

as ‘an opportunity cost’ that represents the profit renounced by the agent when
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he chooses to hold the resource as cash instead of investing into profitable asset.

On the other hand, an insufficient cash balance exposes the company to the risk

of cash deficit which will jeopardise the regular business. Moreover, a low cash

holding level normally requires more frequent cash replenishments and thus incurs

higher transaction costs. The goal of cash management is to find a strategy that

minimises the total cash management cost, i.e. the transaction cost, the cash

holding cost and the cash shortage cost.

At the beginning of each period, the manager can control his cash holding level

by selling or buying the asset. Let at be the action taken at time t and A(xt) be

the set of all feasible actions at period t given the current cash level xt. Note that

at with a positive value represents selling asset to replenish cash balance while at

with a negative value represents a buying action. Each action incurs the transfer

fee which can be described by the transaction cost function Γ(at). The partially

fixed partially proportional transaction cost function (4.1) originally proposed by

Milbourne (1983) is widely used in the literature (e.g. Baccarin (2002), Feng

& Muthuraman (2010) and Salas-Molina, Pla-Santamaria & Rodriguez-Aguilar

(2018)). We also adopt this transaction cost function in our cash management

models.

Γ(at) =


K− − k−at if at < 0

0 if at = 0

K+ + k+at if at > 0

(4.1)

where K+ and K− are the fixed transaction costs which should be paid once the

agent takes a buying/selling action. Meanwhile the variable part of the transaction

costs is proportional to the size of each transfer and k+ and k− are the proportional

transaction cost coefficients.

Additionally, we introduce the concept of a post-decision cash level xat
t , i.e. the

company’s cash holding level at period t immediately after the agent takes action

at. The transition function can be expressed as:

xat
t = xt + at − Γ(at).
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During this period, the cash level varies stochastically. We denote the un-

controlled cash level at time period t by υt and assume that the dynamics of the

uncontrolled cash level can be approximated as a Wiener process with a constant

drift µ and a fixed standard deviation σ, i.e. dυt = µdt+ σdWt

υ0 = x0

(4.2)

where Wt is a standard one-dimensional Wiener process. Let ∆xt denote the

change of the uncontrolled cash flow at time period t.

By the end of period t, if a cash shortage occurs (i.e. xat
t + ∆xt ≤ 0), the

company’s business will be jeopardised. We assume this damage to the company

can be measured quantitatively and be described by a shortage cost function.

On the other hand, if the cash account remains positive (i.e. xat
t + ∆xt > 0),

the relevant cost is the profit the agent could have gained if he had invested the

cash into profitable asset. We use a proportional function (4.3) to describe the

holding/shortage cost:

Θ(xat
t ,∆xt) =

 h−|xat
t +∆xt| if xa

t +∆xt ≤ 0

h+(xat
t +∆xt) if xa

t +∆xt > 0
. (4.3)

Note that the coefficient of cash holding cost h+ is equivalent to the return rate

on the asset.

The timing of each event in one period is shown in Figure 4.1. For a cash

management model in multiple periods, the system transitions to the next state

following:

xt+1 = xt + at − Γ(at) + ∆xt

with the one-step cash management cost:

Γ(at) + Θ(xat
t ,∆xt).

To account for the time value of the total cash management cost, we introduce a

discount factor γ. The discount factor indicates the agent’s time preference (see

Frederick et al. (2002)). Let rf be the risk-free interest rate for each period, £1 at
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Figure 4.1: Timing of events in the model with an infinite asset

period t is equivalent to £1/(1 + rf )
t−1 at period 1, i.e.

γ =
1

1 + rf
. (4.4)

In the cash management model with an infinite horizon, the goal is to find the

best policy that minimises the expected discounted total cost:

min
π∈Π

E

{
∞∑
t=1

γt−1 (Γ(at) + Θ(xat
t ,∆xt))

}
. (4.5)

4.3 Formalising the discrete Markov decision pro-

cess

In this section we formalise the cash management model with an infinite asset as

a discrete Markov decision process and solve the model via the classic backward

recursion method.

To begin with, we discretise the cash level space and use the discretised cash

level as the system’s state st. We fix the minimum cash level s[1] and the maximum

cash level s[M ]. Let St be the set of all possible states at time t, i.e. St =

{s[1], s[2], ..., s[M ]}. Note that the increment of any two successive states is fixed
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(i.e. ∆s = s[m+1] − s[m],∀m = {0, 1, ...,M − 1}). Also note that the state set does

not vary with t, i.e. St = S,∀t. For any cash level xt, the index number m of its

closest state s[m] can be obtained by:

m = ⌊(xt − s1)/∆s⌉ (4.6)

where ⌊x⌉ represents the closest integer to x.

Similarly we discretise the action space. Let a[1] be the ‘minimum action’,

a[M ′] be the ‘maximum action’ and ∆a be the increment of two successive actions

(i.e. ∆a = a[m′+1] − a[m′],∀m′ = {1, 2, ...,m′ − 1}). Note that in most cases,

the ‘minimum action’ a[1] has a negative value, which represents the maximum

cash that can be invested into asset. The ‘maximum action’ a[M ′] normally has a

positive value which represents the maximum fund that can be used to replenish

cash balance. Given s[1], s[M ] and the current cash level xt, a[1] and a[M ′] are

bounded by the following constraints: a[1] ≥ s[1] + Γ(a[1])− xt

a[M ′] ≤ s[M ] + Γ(a[M ′])− xt

. (4.7)

These constraints guarantee that the post-decision cash level is contained in the

space [s[1], s[M ]]. We also need to make sure that the action of ‘doing nothing’ is

contained in the action space, thus the action space can be described as:

At(xt) = {a[1], ..., a[M ′]} ∪ {0}.

Let the uncontrolled cash flow υt be the exogenous information available at

the end of period t. With the assumption of Wiener process, the change of the

uncontrolled cash level (∆x) can be viewed as a random number following a normal

distribution. Note that the probability density function of ∆xt is:

f (∆xt) =
1√
2σ2π

exp

{
−(∆x− µ)2

2σ2

}

where µ and σ are parameters.

As a result of taking action at ∈ At(xt), the transaction cost Γ(at) immedi-
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ately occurs. Moreover, by the end of period t, the holding/shortage cost can be

calculated given xat
t and ∆xt. The reward of (st, at) for period t can be viewed

as the expected total cost, i.e. the sum of the transaction costs and the expected

holding/shortage cost:

R(xt, at) = Γ(at) +

∫ ∞

−∞
f(∆x)Θ(xat

t ,∆x)d∆x. (4.8)

We define the value of a state-action pair Vt(st, at) as the discounted expected

total cash management cost over the infinite horizon once the system visits state

st and the agent takes action at. It can be expressed as:

Vt(st, at) = R(st, at) + γE{V̂t+1(xt+1|st, at)}

= R(st, at) + γ

∫ ∞

−∞
f(∆x)V̂t+1(xt+1|st, at,∆x)d∆x

. (4.9)

Combining equation (4.8) and (4.9), we have:

Vt(st, at) = Γ(at) +

∫ ∞

−∞

(
Θ(xat

t ,∆x) + γV̂t+1(xt+1|st, at,∆x)
)
f(∆x)d∆x. (4.10)

Note that in the backward update process, we first set state values at the end of

time horizon to zeros, i.e.

V̂(0)(s) = 0, ∀s ∈ S.

Then for each iteration we update the state values in the previous period based

on the current state values. Hence for iteration i = 1, 2, ..., I, we have

V(i)(s(i), a(i)) = Γ(a(i))+

∫ ∞

−∞

(
Θ(x

a(i)
(i) ,∆x) + γV̂(i−1)(x(i−1)|s(i), a(i),∆x)

)
f(∆x)d∆x.

(4.11)

Also note that in practice we use the linear interpolation method to estimate

the cash level value V̂(i−1)(x(i−1)) based on the values of the adjacent states, i.e.


m∗ =

x(i−1) − s0
∆s

mf =

⌊
x(i−1) − s0

∆s

⌋
V̂(i−1)(x(i−1)) = (m∗ −mf )

(
V(i−1)(s[mf+1])− V(i−1)(s[mf ])

)
+ V(i−1)(s[mf ])

.

(4.12)
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We define the value of state s(i) as the minimum discounted expected total cost

after the system visits state s(i), i.e.

V(i)(s(i)) = min
a(i)∈A(x(i))

{
R(s(i), a(i)) + γE[V̂(i−1)(x(i−1)|s(i), a(i))]

}
.

Algorithm (1) describes the details of the backward recursion method in MDP.

Note that in Step 2.2 and Step 4.2, we need to solve equation (4.11) by discretis-

ing the continuous random variable ∆x. Now the state-action pair value can be

expressed as:

V(i)(s(i), a(i)) = Γ(a(i)) +
∑
∆x

p(∆x|s(i), a(i))
{
Θ(x

a(i)
(i) ,∆x) + γV̂(i−1)(x(i−1)|s(i), a(i),∆x)

}

where p(∆x|s(i), a(i)) is the probability that the uncontrolled cash flows change by

∆x given the state s(i) and the action a(i).

In practice, we provide two discretisation methods: the simulation method and

the Gauss-Hermite quadrature method (see Steen et al. (1969)). In the simula-

tion method, we generate J realisations of a random variable following a normal

distribution N (µ, σ). Each realisation is viewed as a possible outcome of ∆x with

the same probability p = 1/J . In the Gauss-Hermite quadrature method, we use

the Gaussian quadrature to approximate equation (4.11). Let ∆x =
√
2σxk + µ

and z(∆x) = Θ(x
a(i)
(i) ,∆x) + γV̂(i−1)(x(i−1)|s(i), a(i),∆x). Equation (4.11) can be

approximated by:

V (x(i), a(i)) = Γ(a(i)) +

∫ ∞

−∞
z(∆x)f(∆x)d∆x

≈ Γ(a(i)) +
1√
π

J∑
j=1

wjz
(√

2σxj + µ
) (4.13)

where J is the number of sample points, xj are the roots of the Hermite polynomial

HJ(x), and the corresponding weights wj are given by:

wj =
2J−1J !

√
π

J2 [HJ−1 (xj)]
2 . (4.14)

In experiments, we apply these discretization methods and use the same results in

all states.
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Algorithm 1 The classic backward recursion method in the CM model with an
infinite asset

Step 1: Initialisation:
Step 1.1: Set the value of each terminal state to zero, i.e. V(0)(s(0)) = 0

for s(0) ∈ S.
Step 1.2: Define a small number ϵ. Set the iteration index i := 1.

Step 2: Update backwards:
Step 2.1: For each state s(i) ∈ S, find the feasible action set At(s(i)).
Step 2.2: For each state-action pair (s(i), a(i)|s(i) ∈ S, a(i) ∈ At(s(i))), get the

state-action value V(i)(s(i), a(i)) via equation (4.11).
Step 2.3: For each state s(i) ∈ S, update the state value via:

V(i)(s(i)) = min
a(i)∈A(s(i))

V(i)(s(i), a(i)).

Step 3: Value comparison:
Step 3.1: For each state s(i) ∈ S, record the value difference:

diff(s(i)) = |V(i)(s(i))− V(i−1)(s(i))|.

Step 3.2: If maxs(i)∈S diff(s(i)) ≥ ϵ, set i := i+ 1 and go to Step 2,
else go to Step 4.

Step 4: Policy output:
Step 4.1: For each state s(i) ∈ S, find the feasible action set At(s(i)).
Step 4.2: For each state-action pair (s(i), a(i)|s(i) ∈ S, a(i) ∈ At(s(i))), get the

state-action value V(i)(s(i), a(i)) via equation (4.11).
Step 4.3: For each state s(i) ∈ S, output the optimal action via:

a∗(s(i)) = argmina(i)∈A(s(i))
V(i)(s(i), a(i)).
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Figure 4.2 shows the state values and the corresponding policies with these

two discretisation methods. In this example, we assume that ∆x is following the

distribution N (µ = 0, σ = 10). Moreover, we set parameters K+ = 2, K− =

1, k+ = 0.2, k− = 0.1, h+ = 0.05, h− = 2 and rf = 0.02. In the simulation method,

we generate 300 samples, each of which is a realisation of ∆x with probability

p = 1/300. In the Gauss-Hermite quadrature method, we use 9 sample points.

It is shown that the simulation method returns a smooth state value function

while the Gauss-Hermite quadrature indicates a much more fluctuating curve. In

terms of the policies, on the other hand, both methods give very similar result.

Since the Gauss-Hermite quadrature requires much less sample observations than

the simulation method, its solution time is dramatically lower especially when the

discretisation level of state space gets finer. Hence we will use the Gauss-Hermite

quadrature method with 9 sample points in the following numerical experiments

unless specified otherwise.

State value, simulation Optimal action, simulation

State value, quadrature Optimal action, quadrature

Figure 4.2: The simulation method versus the Gauss-Hermite quadrature method
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4.4 Numerical experiments

This cash management model closely resembles Eppen & Fama’s work (Eppen &

Fama (1968)). In this section, we mainly discuss the impacts of the transaction

costs, the shortage/holding cost and the distribution of uncontrolled cash flows on

the cash management policies. Some results have been discussed in the literature

e.g. Baccarin (2002), Benkherouf & Bensoussan (2009), and Feinberg & Lewis

(2005). We present these results as a baseline for models in next section. All the

experiments are programmed in C++ 12.0.0 on a PC with 2.5 GHz Quad-Core

Intel Core i7 and 8 GB memory.

4.4.1 Transaction cost, holding cost and shortage cost

To illustrate the impact of transaction cost on cash management policies, we con-

sider three transaction cost setting: low, medium, and high. The specific pa-

rameters are shown in Table 4.1. Figure 4.3 shows the optimal policies under

different transaction costs and a simulated path over 100 periods following the

corresponding strategy. Note that for each period, we plot both the pre-decision

and post-decision states to show the patterns of the optimal policies more clearly.

It can be seen that with a low cash balance, the model suggests selling actions

(i.e. replenishing the cash account) and with a high cash holding level, it suggests

buying actions (i.e. reducing cash holdings). Moreover all the policy figures give a

‘do nothing area’ where the agent should not take any action once the system visits

these states. The simulation figures illustrate that the optimal policy is subject to

a ‘two-trigger two-target’ form (also known as the (L, l, u, U) policy).

Table 4.1: Parameters for the transaction cost function

Low Medium High
Fixed into cash account K+ (£) 1 2 3
Fixed from cash account K− (£) 0.5 1 1.5
Proportional into cash account k+ 0.1 0.2 0.3
Proportional from cash account k− 0.05 0.1 0.15

The (L, l, u, U) policy indicates that once the cash balance reaches the trigger

level, it is optimal to adjust them back to the corresponding target level. For
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Policy (low transaction cost) A simulated path (low transaction cost)

Policy (medium transaction cost) A simulated path (medium transaction cost)

Policy (high transaction cost) A simulated path (high transaction cost)

Figure 4.3: The impact of transaction cost on cash management policies
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example, under the medium transaction cost, the agent should take the action of

‘doing nothing’ if his cash balance is between £9 and £47. Once the cash holding

level changes to £10 or any lower position, the agent should sell his asset and

replenish his cash balance back to £21. Likewise, if his cash level exceeds £47,

the agent should keep £31 as cash and invest the rest into asset.

We also want to point out that when the transaction cost are purely fixed, i.e.

k+ = k− = 0, the target levels will merge together (l = u). When the transaction

cost are purely proportional, i.e. K+ = K− = 0, the upper/lower target level

overlaps the upper/lower trigger level (L = l and U = u). Figure 4.4 shows a

simulated sample under these transaction cost functions. It is clear that with the

fixed transaction cost, the optimal policy is of the (L,B, U) form. In other words,

if the cash flow goes above the upper trigger level U or below the lower trigger level

L, it should be adjust back to the target level B. With the purely proportional

transaction cost, we have a (l, u) policy which suggests the cash account should

be adjusted back to the l (or u) level once it is higher (or less) than that level.

Now we examine the impact of shortage/holding cost on the cash management

policies. We use the medium fixed plus proportional transaction cost (as shown

in table 4.1) and set the holding cost coefficient as h+ = (0.01, 0.05, 0.1) and the

shortage cost coefficient as h− = (0.5, 2, 10). Table 4.2 gives the (L, l, u, U) policies

for all shortage cost and holding cost combinations. It is clear that with higher

holding cost, all target and trigger levels are decreasing, which suggests that there

is less motivation to hold cash when the return on investment is high. Likewise

the cash balance is of more value with the increase of shortage penalty coefficients.

Table 4.2: Policies under different holding/shortage cost in the one-account
model

h+ = 0.01 h+ = 0.05 h+ = 0.1
L l u U L l u U L l u U

h− = 0.5 (1 20 62 98) (-3 10 31 43) (-5 10 21 27)
h− = 2.0 (10 22 73 105) (8 21 31 47) (7 10 21 34)
h− = 10 (19 32 73 108) (18 21 42 55) (17 21 31 42)
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Fixed transaction cost

Proportional transaction cost

Figure 4.4: Cash management policies with other types of transaction cost
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4.4.2 Cash flow

So far we have only used cash level as the state in MDP and the drift of cash

flow (µ) is assumed to be zero. Now we consider the cash management model

with other drifts of cash flow and add the drift into the state information. In

other words, at each decision epoch, the agent has access to the information of

both his cash balance and the drift of the uncontrolled cash flow before he takes

actions. Currently the cash flow drift (µ) is still viewed as exogenous information

(i.e. the agent’s action has no impact on µ) and is assumed to be constant over

periods. Note that this model can be seen as a connection between the classic cash

management model and the models in the following sections, in which the cash

flow drift will be considered endogenous to the system.

Figure 4.5 shows the optimal policy obtained from the MDP model under the

medium transaction cost (the rest parameters are set to h+ = 0.05, h− = 2, σ = 10

and if = 0.02). Each vertical line in the figure represents a (L, l, u, U) solution for

a separate MDP problem and Figure 4.5 can be seen as a two-dimensional version

of the two-trigger two-target cash management policy for companies with different

cash drifts in the cash flow. If the system is in the grey area, the agent should

adjust his cash balance and move the system to target spots which are marked by

red crosses. It is clear that trigger levels and target levels are much lower for those

companies with a higher cash flow drifts. In this experiment, once the company

has cash flow with drifts higher than £13, the growth of cash flow itself is sufficient

enough and the agent has no motivation to replenish his cash balance. Moreover,

Figure 4.6 illustrates the impact of the standard deviation σ of the uncontrolled

cash flow on the optimal policies. It shows that the trigger levels and the target

levels are much higher in the case with larger σ. This suggests that with more

volatility in the cash flow, the agent should hold a larger cash balance. Note that

this sensitivity of cash holding strategy to the cash flow’s volatility is observed

empirically by Almeida et al. (2004) and Yan (2006). Our work can be seen as a

theoretical support for their studies.
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Figure 4.5: Cash management policy in MDP with (x, µ)

σ = 5 σ = 15

Figure 4.6: Policies with different standard deviation of cash flow
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4.5 Conclusion

In this chapter, we studied the traditional cash management model where the

company’s asset is assumed to be infinite. This model was formalised as a discrete

Markov decision process and was solved via the classic backward recursion method.

A series of numerical experiments were also conducted in order to examine the im-

pact of transaction costs, shortage costs and the cash flows on the cash policies.

We first showed that with a fixed plus proportional transaction cost function the

cash policy is of the two-trigger two-target form. When the transaction cost func-

tion is purely proportional to the transfer size, the target levels overlap the trigger

levels and the cash policy changes to the (l, u) form. On the other hand, if the

transaction cost function is purely fixed, the upper target level overlaps the lower

target level which leads to the (L,B, U) cash policies. In addition we numerically

showed that the manager should hold a larger cash balance with a higher shortage

cost and hold a smaller cash balance with higher holding cost. At last, through

the experiments on different standard deviations of the external cash outflows we

showed that it is optimal for the manager to hold more cash when the external

cash demand has a higher volatility.
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Chapter 5

A Cash Management Model with

Two Accounts

5.1 Introduction

Traditional cash management models concern how an organisation should maintain

its cash balance in order to meet cash demands over a planning horizon. In these

models the cash balance can be increased or decreased to offset penalties for not

being able to meet a cash demand or the opportunity cost of holding too much

cash. The external source from which this money comes from or is sent to is not

explicitly modelled but is assumed to be available at all times. In this chapter

we aim to contribute to this problem by explicitly modelling this external source

by the inclusion of an asset account. This asset will generate an income which

we allow to be either deposited directly to the cash account or contributes to the

asset account’s volume. Then we will model this two dimensional cash management

problem, in which credits and debits from/to the cash balance are to/from the asset

account and incur transaction costs for these movements, as a Markov decision

process and solve the problem via the classic backward recursion method. To our

best knowledge, this is the first study in the literature explicitly modelling the

external source of cash inflows. We will also show that with a small modification

the backward recursion method can be used to calculate the company’s insolvency

probabilities. Finally the impact of the parameter settings on the optimal policy

will be studied in a series of numerical experiments.
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5.2 Problem description and assumptions

In this model, we include an asset account with finite volume in the cash man-

agement model. Moreover we consider the size of the asset account at each time

as an extra dimension of the state space. This model can be described as follows:

Consider an agent who manages a cash account (x) and an asset account (y). At

each period, the asset generates profit which is viewed as a source of cash inflow. A

transfer (a) between these accounts can be made after the company receives this

internal cash inflow. Then the company faces an external stochastic cash flow.

We assume the external cash outflow normally dominates the external cash inflow

hence it can be viewed as a negative value of the external cash demand. Then

after the process of the uncontrolled external cash flow, a shortage penalty occurs

if there exists cash deficit. Figure 5.1 shows the timing of each event for one time.

The objective of this model is to maximise the expected discounted net profit over

an infinite horizon.

For the sake of simplicity, a few assumptions will be made before we formalise

this model into a Markov decision process (MDP). To begin with, we assume

that the return on asset is deterministic and proportional to the size of the asset

account. One could argue that this assumption is rather unrealistic considering

returns on investment are normally very difficult to predict. But the randomness

of this return can be easily integrated with the stochasticity from the external

cash flow (υt). Similar to the model in Chapter 4, we use Wiener process with

parameters (µ, σ) to approximate the uncontrolled external cash flow. Now the

external cash flow over the whole period t can be expressed as: dυt = µdt+ σdWt

υ0 = x0

(5.1)

where Wt is a standard one-dimensional Wiener process and x0 is the initial cash

balance.

In addition, we adopt the fixed plus proportional function (4.1) to describe the

transaction cost. Note that in the real world, the transfer fees are normally paid

in the form of cash, hence the agent must sell an extra amount of asset to pay
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Figure 5.1: Timing of events in the model with two accounts

the transfer fee when he takes a selling action. In our model, we consider this

extra amount of asset as the selling fee directly. In other words, it is assumed the

selling fee is in the form of asset instead of cash. This can also be interpreted as

selling asset at a lower price due to the lack of liquidity. Let xat
t and yatt denote the

post-decision cash level and the post-decision asset level. The transfer function

can be written as:  xat
t

yatt

 =

 xt + ryt + at − Γ(at) · 1at≤0

yt − at − Γ(at) · 1at>0

 (5.2)

where r is the expected return rate on asset and 1at≤0 is an indicator function:

1at≤0 =

1 if at ≤ 0

0 otherwise
.

Moreover we adopt the proportional shortage cost function (5.3) into this cash

management model, but we discard the holding cost as it represents the profit the

agent could have gained by investing the cash into asset. This ‘opportunity cost’

has already been taken into consideration by maximising the return on asset.

Θ(∆xt, x
at
t ) =

 h|xat
t +∆xt| if xat

t +∆xt < 0

0 otherwise
. (5.3)

We also assume the non-negativity of both cash account and asset account.
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Without a cash shortage at period t, the system transitions to next time period

following:  xt+1

yt+1

 =

 xat
t +∆xt

yatt

 . (5.4)

In the case of a cash shortage, i.e. xat
t +∆xt < 0,the agent will be forced to sell his

asset and offset such deficit with a shortage penalty at the end of each period. Let

dt = |xat
t +∆xt| be the cash deficit at the end of period t, the system transitions

following:  xt+1

yt+1

 =

 0

yatt − dt − Γ(dt)−Θ(xat
t ,∆x)

 . (5.5)

Finally we discount the value in future via the risk-free interest rate rf (see

equation (4.4)) and assume that the goal is to find the optimal policy that max-

imises the expected discounted net profit over the infinite horizon. For each period,

the net profit can be interpreted as the incomes generated from the asset ryt minus

the transaction cost Γ(at) and the shortage penalty Θ(xat
t ,∆x). Hence we have:

max
π∈Π

E

{
∞∑
t=1

γt−1(ryt − Γ(at)−Θ(xat
t ,∆xt))

}
. (5.6)

5.3 A discretised Markov decision process ap-

proach

We study the cash management model with two accounts where the cash account

is used to fulfil the demand for cash while the asset account generates profit which

is pursued by the manager. In this model, we consider the cash flow as a superpo-

sition of an endogenous process and an exogenous process. The endogenous cash

inflow is explained by the return on assets and the exogenous cash flow is assumed

following Wiener process. In this section, we formulate this model as a discretised

Markov decision process and present some preliminary results.
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5.3.1 The discretised MDP model and the classic backward

recursion method

First of all, we discretise the cash level space into the set Sx =
{
sx[1], ..., s

x
[M ]

}
and

the asset level space into the set Sy =
{
sy[1], ..., s

y
[M ′]

}
. The system’s state can be

described by a two-element tuple, s⃗t = (sxt , s
y
t ), s.t sxt ∈ Sx, syt ∈ Sy. For the cash

account, we fix the minimum value sx[1], the maximum value sx[M ] and the cash

state increment ∆sx = sx[m+1] − sx[m], ∀m = 1, 2, ...,M − 1. Similarly for the asset

account, we choose sy[1], s
y
[M ′] and ∆sy as the minimum asset value, the maximum

asset value and the asset state increment respectively. For any cash-asset pair

(xt, yt), the indexes m,m′ of its closest states
(
sx[m], s

y
[m′]

)
can be obtained via:

m =

⌊
xt − sx[1]
∆sx

⌉
, (5.7)

m′ =

⌊
yt − sy[1]
∆sy

⌉
. (5.8)

Note that for simplicity’s sake we set the minimum value for the cash balance

and the asset level (i.e. sx[1] and sy[1]) to zeros in the following experiments unless

specified otherwise.

Given the current cash level xt and the asset level yt, we have the discretised

action set at ∈ At(xt, yt) =
{
0, a[1], ..., a[M ′′]

}
. Note that the action at = 0 implies

doing nothing at period t which is always a feasible action regardless of xt and yt.

We use the value of at to represent the size of the transfer between cash and asset

and use the sign of at to represent the direction of this transfer. An action with a

negative value stands for the cash invested into asset account while a positive at

means selling asset and replenishing cash balance. Now we describe the feasible

action set At(xt, yt) by adding some constraints on a[1] and a[M ′′]:

a[1] ≥ sx[1] + Γ(a[1])− xt − ryt Constraint I

a[1] ≥ yt − sy[M ′] Constraint II

a[M ′′] ≤ yt − Γ(a[M ′′])− sy[1] Constraint III

a[M ′′] ≤ sx[M ] − xt − ryt Constraint IV

.
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Constraint I states that after the buying action with the corresponding transaction

cost, the agent should at least hold the minimum cash level sx[1] in his cash balance.

Constraint II states that the current asset and the newly bought asset together

should not exceed the asset account capacity sy[M ′]. Similarly Constraint III and

Constraint IV ensure that after the selling action, the company still possesses the

asset above the minimum asset value sy[1] and the cash holdings not exceeding

its cash account capacity sx[M ]. The feasible action set can be obtained following

Algorithm (2).

Algorithm 2 Find the feasible action set At(xt, yt)

Step 1: Initialisation:
Set the action increment ∆a;
Set the feasible action set At(xt, yt) = {0};
Set the minimum action:

a[m] = max

{
sx[1] − xt − ryt +K−

1 + k− , yt − sy[M ′]

}
(5.9)

Step 2: Action iteration:
If action a[m] doesn’t violate Constraint III or Constraint IV,
add action a[m] into the feasible action set At(xt, yt), set a[m]+ = ∆a,
go to Step 2;
else return the feasible action set At(xt, yt).

Let the immediate reward of visiting state (xt, yt) and taking action at be the

return on asset minus transaction cost and shortage cost, i.e.

R(xt, yt, at) = ryt − Γ(at)−
∫ ∞

−∞
f(∆xt)Θ (xat

t ,∆xt) d∆xt

where f(∆xt) is the probability density function of the change of the exogenous

cash flow over period t. Now we can write the Bellman equation for this cash

management model:

Vt (s⃗t, at) = ryt − Γ (at) +
∫∞
−∞ (−Θ(xat

t ,∆xt)

+γV̂t+1 (xt+1, yt+1 | s⃗t, at,∆xt)
)
f(∆xt)d∆xt.

(5.10)

Similar to the equation (4.11), the Bellman equation (5.10) can be solved via
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the classic backward recursion method, i.e.

V(0)(s⃗) = 0, ∀s⃗ ∈ S

and

V(i)

(
s⃗(i), a(i)

)
= ry(i) − Γ

(
a(i)
)
+
∫∞
−∞

(
−Θ

(
x
a(i)
(i) ,∆x(i)

)
+ γV̂(i−1)

(
x(i−1), y(i−1) | s⃗(i), a(i),∆x(i)

))
f(∆x(i))d∆x(i).

(5.11)

In practice, we use the bilinear interpolation method to estimate the value V(i−1)(x(i−1), y(i−1))

based on the values of its adjacent states.

Given a pair of cash-asset level (x, y), we firstly obtain the adjacent states:(
sx[m], s

y
[m′]

)
,
(
sx[m+1], s

y
[m′]

)
,
(
sx[m], s

y
[m′+1]

)
and

(
sx[m+1], s

y
[m′+1]

)
via the equation

(5.7) and (5.8). Then using the bilinear interpolation, we have:



θx =
x− sx[1]
∆sx

−m

θy =
y − sy[1]
∆sy

−m′

V̂
(
x, sy[m′]

)
= θxV

(
sx[m+1], s

y
[m′]

)
+ (1− θx)V

(
sx[m], s

y
[m′]

)
V̂
(
x, sy[m′+1]

)
= θxV

(
sx[m+1], s

y
[m′+1]

)
+ (1− θx)V

(
sx[m], s

y
[m′+1]

)
V̂ (x, y) = θyV̂

(
x, sy[m′+1]

)
+ (1− θy)V̂

(
x, sy[m′]

)
. (5.12)

Finally we use the simulation method and the Gauss-Hermite quadrature method

(as discussed in Section 4.3) to discretise the continuous random variable ∆xt.

The performance of these two methods will be compared in Section 5.3.2. Now

the discounted expected net profit over the infinite horizon for each discretised

state can be updated following Algorithm (3).

5.3.2 Preliminary results

In this section, we give some preliminary results from the classic backward re-

cursion algorithm. We assume that for each period the external cash flow can be

viewed as a random number following the normal distribution N (µ = −£5, σ = 5).

Note that we use the negative sign to represent the cash outflow from the cash
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Algorithm 3 The classic backward recursion method in the CM model with two
accounts

Step 1: Initialisation:
Step 1.1: Set the value of each terminal state to zero, i.e. V(0)(s⃗(0)) = 0

for s⃗(0) ∈ S.
Step 1.2: Define a small number ϵ. Set the iteration index i := 1.

Step 2: Update backwards:
Step 2.1: For each state s⃗(i) ∈ S, find the feasible action set A(s⃗(i))

via algorithm (2).
Step 2.2: For each state-action tuple (s⃗(i), a(i)) for all s⃗(i) ∈ S and

a(i) ∈ At(s⃗(i)), get the state-action value V(i)(s⃗(i), a(i)) via
equation (5.11).

Step 2.3: For each state s⃗(i) ∈ S, update the state value via:

V(i)(s⃗(i)) = min
a(i)∈At(s⃗(i))

Vi(s⃗(i), a(i)).

Step 3: Value comparison:
Step 3.1: For each state s⃗(i) ∈ S, record the value difference:

diff(s⃗(i)) = |V(i)(s⃗(i))− V(i−1)(s⃗(i))|.

Step 3.2: If maxs⃗(i)∈S diff(s⃗(i)) ≥ ϵ, set i := i+ 1 and go to Step 2,
else go to Step 4.

Step 4: Policy output:
Step 4.1: For each state s⃗(i), find the feasible action set At(s⃗(i)).
Step 4.2: For each state-action tuple (s⃗(i), a(i)) for all s⃗(i) ∈ S, a(i) ∈ At(s⃗(i)),

get the state-action value V(i)(s⃗(i), a(i)) via equation (5.11).
Step 4.3: For each state s⃗(i) ∈ S, output the optimal action via:

a∗(s⃗(i)) = argmina(i)∈At(s⃗(i))
V(i)(s⃗(i), a(i)).
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account. It is equivalent to the company facing a stochastic cash demand which

follows the distribution N (µ = £5, σ = 5). In terms of the rest parameters, we let

the return rate on asset be r = 5%, the risk-free interest rate be rf = 2% and the

shortage penalty coefficient be h = 2. We focus on the cash management strategy

with cash levels between £0 and £100 and asset levels between £0 and £200.

Figure 5.2(a) reveals the optimal policies when we discretise the random vari-

able of the external cash flow using the simulation method. In this method we

generate 300 samples of the external cash flow and assume that each sample ∆xj
(i)

is realised with probability p = 1/300 for j = 1, 2, ..., 300. Now the updating

equation (5.11) can be approximated by:

V(i)

(
s⃗(i), a(i)

)
≈ ry(i) − Γ

(
a(i)
)
+
∑300

j=1 p
(
−Θ

(
x
a(i)
(i) ,∆xj

(i)

)
+ γV̂(i−1)

(
x(i−1), y(i−1) | s⃗(i), a(i),∆xj

(i)

))
.

(5.13)

The result shows that the suggested policy of this two accounts cash manage-

ment model still possesses the two-trigger two-target form. But instead of the

trigger/target points in the traditional model, this two accounts cash management

model provides trigger/target frontiers related to both the cash levels and the as-

set levels. As shown in Figure 5.2(a) if the company’s state is in the white area,

no action should be taken by the manager; if it is in the grey area, on the other

hand, the agent should adjust its state to one of the target points.

In terms of the Gauss-Hermite quadrature method, the approximate equation

can be expressed as:
V(i)

(
s⃗(i), a(i)

)
≈ ry(i) − Γ

(
a(i)
)
+ 1√

π

∑J
j=1 wjy

(√
2σxj + µ

)
∆x(i) =

√
2σxj + µ

y
(
∆x(i)

)
= −Θ

(
x
a(i)
(i) ,∆x(i)

)
+ γV̂(i−1)

(
x(i−1), y(i−1) | s⃗(i), a(i),∆x(i)

)
(5.14)

where J is the number of sample points, xj are the roots of the Hermite polyno-

mial HJ(x) and the corresponding weights wj can be obtained via equation (4.14).

In practice we select 9 sample points and the optimal policies is shown in Fig-

ure 5.2(b). Compared to the simulation method, the Gauss-Hermite quadrature

method provides much more jagged solutions. But it can be seen that the policy
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(a) Simulation method (b) Gauss-Hermite Quadrature method

Figure 5.2: Optimal policies in the two accounts cash management model:
Simulation method versus quadrature method

is still of the two-trigger two-target form. Note that for each update process, the

approximation equation (5.13) requires 300 observations while the approximation

equation (5.14) only requires 9 observations. This means that the Gauss-Hermite

Quadrature method reduces the computational cost to a large extent. In this exam-

ple, the simulation method takes 5.08 hours while the Gauss-Quadrature method

only takes 0.42 hours.

It is also worth pointing out the impact of the asset account capacity on the cash

management strategies. For example, when the company’s cash and asset holdings

are close to their maximum levels (i.e. the state is in the upper-right corner), the

algorithm suggests taking no action at all since investment causes more transfer

fee but cannot push the asset level beyond its maximum boundary. In addition,

many cash-to-asset targets are pushed on the maximum asset boundary since the

asset level cannot exceed its maximum value (in this case, £200). One way to

alleviate the boundary effect is setting a higher maximum asset level than the

states we actually are interested in. Figure 5.3 shows the optimal policy in the

two accounts cash management model where we set the maximum asset level to

£400. It also includes examples of the policy action when buying and selling the

asset, represented the South-East pointing arrow and the North-West pointing

arrow respectively. Buying an asset incurs a charge and a reduction in the cash

holding and a corresponding increase in the asset holding whereas selling the asset

results in the converse. For any state in the upper-right shaded area in Figure

53



Figure 5.3: Optimal policies in the two accounts cash management model:
Quiver graph

5.3 a buying asset action is triggered with the consequent state adjustment to

lower cash holding and greater asset holding on the red-highlighted control limit.

For any state in the lower-left shaded area, a selling asset action is triggered with

the state adjustment to a greater cash holdings and lower asset holding on the

blue-highlighted control limit.

This figure illustrates that in general the trigger levels and target levels in

terms of cash account drop with the increase of asset size. This is due to the

internal cash inflows generated from the asset account. With larger asset size,

we expect higher cash inflow at each period and thus the agent wishes to hold

lower cash balance. However in Figure 5.3 we spot an exceptional ‘bump’ on the

trigger/target frontier, that is for asset level between £100 and £130, the trigger

and target levels increase with the asset size. At last, we notice that once the

company’s asset account is large enough, the agent does not adopt any selling

action to replenish his cash balance regardless the current cash holding level since

for each period the internal cash inflow itself is enough to fulfill the external cash

demand.
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5.4 Insolvency risk

In the previous section, we present a method to find the optimal policy π that

maximise company’s net profit over the infinite horizon. In this section we will

propose a backward recursion method to measure the company’s insolvency risk

associated with the cash policy π given its initial state s⃗t0 . Let P π(s⃗t) denote the

probability of the company not going bankrupt in the whole planning horizon once

it visits the state s⃗ at time t. For the planning horizon (t0, ..., T ), we calculate the

company’s survival probability backwards. At the last period, the probability of

the company not going bankrupt is 1 if it is not insolvent at time T , i.e. for the

first iteration i = 1:

P π
(i)(s⃗(i)) =

 0 if s⃗(i) = (0, 0)

1 otherwise.

Then at each iteration we calculate the probability one period backwards. The

probability of the company not going bankrupt once it visits state (sxt , s
y
t ) is the

sum of the products of the probability of visiting each state at next time period

and the company’s survival probability once it visits that state, i.e.

P π
(i)(s⃗(i)) =

∫ ∞

−∞
P π
(i+1)

(
x(i+1), y(i+1)|s⃗(i),∆x

)
f(∆x)d∆x. (5.15)

As discussed in Section 5.3.1, we use the bilinear interpolation method to ap-

proximate the company’s survival probability P π
(i+1)(x(i+1), y(i+1)|s⃗(i),∆x) based

on its adjacent states’ survival probabilities and use the Gauss-Hermite quadra-

ture method to discretise the external cash flow ∆x. For a finite horizon problem,

we stop the iteration once i ≥ T . For an infinite horizon problem, we keep the

iteration until the survival probability for each state does not change anymore. In

practice, we set a small number ϵ and stop the iteration once the update cannot

improve the estimations of the survival probabilities at least by ϵ for at least one

state, i.e. the iteration stops if

max
s⃗∈S

∣∣P π
(i)(s⃗)− P π

(i+1)(s⃗)
∣∣ < ϵ.

Assume that the external cash flow for each period is subject to the normal
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(a) Backward recursion method (b) Simulation method (1000 samples)

Figure 5.4: Survival rate of the company:
Backward method versus Simulation method

distribution N (−£5, 5), the transaction cost parameters are (K−, K+, k−, k+) =

(£1,£2, 0.1, 0.2), the return rate on asset is r = 5% and the shortage penalty

coefficient is h = 2. Figure 5.4(a) reveals the probability of the company not

going bankrupt in the infinite horizon given each initial state and the optimal

policy π that maximise its net profit. It shows that the survival probability is

monotonically increasing with respect to cash level and asset level. Moreover,

with small size of initial cash and asset account, the cash demand dominates the

cash inflow generated by asset and hence the company’s survival probability is

close to zero. If the company’s asset account can generate cash inflow that is

enough to offset the cash demand, the survival probability climbs rapidly. Once

the internal cash inflow dominates the external cash demand, the company has a

survival probability very close to one.

We also randomly generate 1000 sample path and run simulations for each ini-

tial state. In each simulation, we assume the company will never become insolvent

once it visits the state (sxmax, s
y
max). The result is shown in Figure 5.4(b). Note that

this method gives a similar result to the backward recursion method but requires

much more computational time: the simulation method takes 42.7 minutes while

the backward method only takes 0.88 minutes for this numerical experiment.
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5.5 A cash management model with asset growth

So far we discussed the cash management model where the asset account is consid-

ered as a source of cash inflow. Consider a firm that invests its cash into business.

With more investment, the manager expect higher return in future. Hence we

assume a deterministic amount of cash inflow that is proportional to the size of

its asset. In this section we consider another scenario where the company invests

its cash into stocks. In this case, the company’s asset does not affect the cash

flow directly, but its asset (stock price) grows at each period. Similar to the two

accounts model with internal cash inflow, we assume the company receives its cap-

ital gain at the beginning of each period before the manager taking actions. Hence

the post-decision state can be modified as:

 xat
t

yatt

 =

 xt + at − Γ(at) · 1at≤0

yt + ryt − at − Γ(at) · 1at>0

 . (5.16)

In the case of no cash shortage, the system transitions to next stage following: xt+1

yt+1

 =

 xat
t +∆xt

yatt

 . (5.17)

If a cash shortage occurs (i.e. xat
t + ∆xt < 0) and the amount of cash deficit is

dt = |xat
t +∆xt|, the system transitions following:

 xt+1

yt+1

 =

 0

yatt − dt − Γ(dt)−Θ(xat
t )

 . (5.18)

Figure 5.5 shows an example of the optimal policies of the cash manage-

ment model with asset growth when we discretise the continuous random variable

∆X via the simulation method (300 samples) and the Gauss-Hermite quadra-

ture method. In this example we assume that the external cash demand fol-

lows the normal distribution N (−£5, 5) and set the operational conditions as

K+ = £1, K− = £2, k+ = 0.1, k− = 0.2, r = 5%, rf = 2%, h = 2. It shows that

the Gauss-Hermite quadrature method compared with the simulation method gives

a much more jaggy solution, but both policies of this cash management model still
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(a) Simulation method (b) Gauss-Hermite Quadrature method

Figure 5.5: An example of the optimal policy in the two accounts model with
asset growth

possess the two-trigger two-target form, i.e. the agent should not take any action

when the company is in the white area. Once the cash holding level reaches the

trigger frontiers, the agent should adjust the company’s state back to one of the

target positions. In addition, similar to the original two accounts model, we spot

the ‘bump’ pattern in the states where the return on asset account is close to the

expected cash outflow. In this ‘bump area’, the cash holding trigger/target level

increases with the size of asset account. Note that in the original two accounts

model where the returns on asset is in the form of cash, there is no lower trigger

frontier (in other words the agent has no motivation to replenish his cash balance)

once the cash inflow from asset dominates the cash demand. In this cash manage-

ment model however, since the asset account does not generate the internal cash

inflow directly, the agent should always replenish his cash account.

5.6 Numerical experiments

So far we presented two cash management models: the two accounts model with

internal cash inflows and the two accounts model with asset growth. In this sec-

tion, we undertake numerical experiments to study the cash management policy

in different scenarios. To begin with we study the effect of discretisation level of

states on the policies. We also discuss the optimal cash management strategies

across a range of problem sizes. We then show the influence of the transaction cost
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parameters. Since the selling and buying transfer fee is assumed to be different and

each transaction cost function consists of a fixed part and a proportional part, we

propose two sets of experiments. In the first set of experiments, we show the cash

management policy in each combination of selling and buying transfer fee and in

the next set, we study the policy in different combination of fixed and proportional

parameters. Furthermore, we study the impact of the shortage penalty coefficient

and the external cash flow on the cash management policy. At last, we report

the proportion of selling states and buying states under different combinations of

parameter settings. All the experiments are programmed in C++ 12.0.0 on a PC

with 2.5 GHz Quad-Core Intel Core i7 and 8 GB memory.

5.6.1 Discretisation level

In our study, we discretise the continuous states (i.e. the cash level and the asset

level) as well as the continuous actions and then formulate the cash management

model as a discretised Markov decision process. In theory, the policy converges at

the optimal solution when states and actions are discretised infinitely. However,

with the increase of discretisation level, the computational cost also climbs dra-

matically. Our goal is to examine the impact of different discretisation level on the

policies and find a suitable discretisation solution that gives a relatively accurate

policy while requiring reasonable computational time.

For the sake of simplicity, we let ∆ be the common discretisation step for cash

states, asset states as well as actions, i.e. ∆ = ∆sx = ∆sy = ∆a. In this section

we adopt 6 discretisation levels, namely ∆ = (£8,£4,£2,£1,£0.5,£0.25), and

undertake numerical experiments for the two accounts model with internal cash

inflow as well as the model with asset growth. In the numerical experiments, we

are interested in the scenarios where cash balance is between £0 and £100 and

asset level is between £0 and £200. However as discussed in Section 5.3.2, it

requires some extra asset states in these models to alleviate the boundary impact.

Hence we set the maximum asset to £400. Moreover, we set other parameters to:

∆X ∼ N (−£5, 5), K+ = £1, K− = £2, k+ = 0.1, k− = 0.2, r = 5%, h = 2, rf =

2%). Figure 5.6 and Figure 5.7 show the optimal cash management strategies

under each discretisation level ∆ for the model with internal cash inflow and the
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model with asset growth. It is clear that all strategies with each discretisation

level have a similar pattern but the model with a finer discretisation level gives a

less jaggy trigger/target frontier. In addition, it is worth to point out that a part

of the jaggedness occurs when we adopt the Gauss-Hermite quadrature method to

discretise the variable of the external cash flow, hence the improvement of state

space discretisation and action space discretisation cannot remove all aliasing from

the policy results.

It is obvious that with a finer discretisation level, the size of state space and

the action space grow rapidly and hence the model needs much more computa-

tional time. Table 5.1 reveals the total number of states and the corresponding

solution time when we adopt each discretisation level. In this table, Model I is

the cash management model with internal cash inflow and Model II is the model

with asset growth. We also compare the objective function value for each state

between every two successive discretisation levels. It can be seen that the maxi-

mum value difference drops when we keep halving the discretisation step ∆ while

the computational time grows rapidly. When we change the discretisation step

∆ from £8 to £4, the state value with maximum difference improves by £42.79

(Model I) and £31.72 (Model II). However if we change the discretisation step

from £0.5 to £0.25, the state values only change by £3.15 (Model I) and £3.79

(Model II) at most while the computational time increases from 93.62 minutes to

603.55 minutes (Model I) and from 91.68 minutes to 598.63 minutes (Model II).

This table shows that ∆4 = £1 is a desirable step considering both Model I and

Model II with discretisation level ∆4 requires computational time less than twenty

minutes. Halving ∆4 only improves the state values by £5.09 (Model I) and £5.94

(Model II) at the most but requires more than 1.5 hours.

Figure 5.8 illustrates the average state values under each discretisation level.

It can be seen that halving the discretisation step ∆ from £8 to £4 (namely from

∆1 to ∆2) improves the average state value by £8.1 in Model I and by £8.05 in

Model II. This improvements decrease rapidly with the increase of discretisation

level. Halving ∆4 only improves the average state values by £0.85 (Model I) and

£1.5 (Model II). Thus in the following numerical experiments, we will use ∆4 = £1

as the discretisation step.
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(a) ∆ = £8 (b) ∆ = £4

(c) ∆ = £2 (d) ∆ = £1

(e) ∆ = £0.5 (f) ∆ = £0.25

Figure 5.6: Optimal policies in the two accounts model with internal cash flow
under each discretisation level

61



(a) ∆ = £8 (b) ∆ = £4

(c) ∆ = £2 (d) ∆ = £1

(e) ∆ = £0.5 (f) ∆ = £0.25

Figure 5.7: Optimal policies in the two accounts model with asset growth under
each discretisation level
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Table 5.1: Convergence speed of different discretised models

Number of states maxs⃗∈S∆i

∣∣V ∆i(s⃗)− V ∆i−1(s⃗)
∣∣ Computational time

Model I Model II Model I Model II
(£) (£) (minutes) (minutes)

∆1 = £8 714 - - 0.08 0.08
∆2 = £4 2,626 42.79 31.72 0.37 0.36
∆3 = £2 10,251 17.50 20.91 2.35 2.26
∆4 = £1 40,501 10.73 19.41 16.71 16.21
∆5 = £0.5 161,001 5.09 5.94 93.62 91.68
∆6 = £0.25 642,001 3.15 3.79 603.55 598.63

(a) Model with internal cash inflow (b) Model with asset growth

Figure 5.8: Average state value under each discretisation level
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At last in Figure 5.9 we plot the positions of the states with maximum value

difference between each two successive discretisation level. It is worth to point

out that after each improvement of the discretisation level, the states with the

maximum value difference are in the places where the company has approximately

balanced cash outflow and cash inflow/capital gain. For these states, an accurate

cash management policy is of essential importance since a good policy may lead

the company to the status where the profit dominates the cash demand and the

company can keep accumulating its wealth. Otherwise it may lead the company to

the status where its profit cannot meet the cash demand and hence the agent needs

to keep replenishing the cash balance by selling his asset which will jeopardise its

profitability further.

(a) Model with internal cash inflow (b) Model with asset growth

Figure 5.9: Policy comparison of ∆1 and ∆6 and positions of states with
maximum value difference

5.6.2 Increasing the scale of the problems

Now we discuss the cash management policy in models with larger state space. We

adopt the discretisation level ∆ = £1 and increase the state space to Sx × Sy =

[£0,£100]× [£0,£1000]. Other parameters are set to: ∆X ∼ N (−£5, 5), K+ =

£1, K− = £2, k+ = 0.1, k− = 0.2, r = 5%, h = 2, rf = 2%. Note that we did not

scale up the cash account. The cash policy in any state with cash level higher than

the upper trigger level is to transfer the extra cash into the asset account. Hence

the states with large cash account is of less interest.

64



(a) [£0,£100]× [£0,£200] (b) [£0,£100]× [£0,£1000]

Figure 5.10: Optimal cash policy in the models with internal cash flow in larger
state space

(a) [£0,£100]× [£0,£200] (b) [£0,£100]× [£0,£1000]

Figure 5.11: Optimal cash policy in the models with asset growth in larger state
space

Figure 5.10 and Figure 5.11 illustrates the optimal cash policy in the original

models and the models with maximum asset level equal to £1000. It can be seen

that in the area Sx×Sy = [£0,£100]× [£0,£200], the optimal cash management

policy in the scaled models closely resembles the policy in the original models.

Note that slight difference exists because of the boundary effects.

In the model with internal cash inflow as shown in Figure 5.10(b), it can be seen

that the upper trigger level decreases with a larger asset. This is because with a

larger asset, the company receives more cash inflow in following periods and hence

needs less cash balance at the current period. If the asset size is enough, the agent

should invest all cash balance into profitable asset because the expected cash inflow
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itself should be able to meet the cash demand. It is worth to note that the upper

target level exceeds the upper trigger level once the asset is large enough. But

this does not suggest a selling action. The trigger level represents the states at

the beginning of each period when the agent has not received the cash inflow but

has to make cash management decisions. The target level reports the states where

the system is expected to be after that the cash inflow has been received and that

the corresponding action has been taken. Hence a target level higher than the

trigger level suggests that the agent should invest all his cash balance at hand and

a portion of the cash inflow he is about to receive.

In the model with asset growth as shown in Figure 5.11(b), it can be seen that

once the asset level is large enough, all trigger levels and target levels do not change

with the size of asset account and the optimal cash management strategy resembles

the (L, l, u, U) policy proposed in Eppen & Fama’s work (Eppen & Fama (1968))

closely. We also spot significant boundary effect in Figure 5.10(b). Once the asset

grows significantly faster than the cash outflow, the asset will keep accumulating

and soon reach the capacity of the asset account. During this process, investing

cash into the asset account brings little profit while incuring transfer fee. Hence

the optimal solution is doing nothing when the asset level is close to the asset

account’s capacity.

Another way to scale up the model is to change the unit monetary mea-

sure in the original model. For instance, in the original model, if we replace

£1 with £4, the scaled up model will study the cash policy in the state space

[£0,£400] × [£0,£800] with parameters ∆X ∼ N (−£20, 20), K+ = £4, K− =

£8, k+ = 0.1, k− = 0.2, r = 5%, h = 2, rf = 2%. If we still set the discretisation

level to ∆ = £1, the shape of the optimal cash policy will be just like the policy

from the original model with discretisation level equal to ∆ = £0.25. In other

words, by studying the cash policy in the models with a finer discretisation level,

we also learned the cash policy in a scaled up but less discretised model.

5.6.3 Transaction cost

In this section we examine the impact of transaction cost on the two accounts cash

management policy. In our models, we adopt the fixed plus proportional transac-
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Table 5.2: Transaction cost parameters

K+ K− k+ k−

Low £0.5 £0.25 0.05 0.025
Medium £2 £1 0.2 0.1
High £5 £2 0.5 0.2

tion cost function and assume the selling transfer fee and the buying transfer fee

are different.

As shown in Table 5.2, three scenarios are considered in the following experi-

ments, namely the low transaction cost, the medium transaction cost and the high

transaction cost. We propose two sets of numerical experiment: the first set exam-

ines each combination of selling transfer fee and the buying transfer fee; the second

set examines each combination of fixed transaction parameters and proportional

transaction parameters. Figure 5.12 and Figure 5.13 shows the cash management

policy with each combinations of selling and buying transfer fee. Note that in

some cases, the upper target cash levels are higher than the upper trigger level.

This is because in these states the internal cash inflow outweighs cash demand to

a large extent. Hence in each period, the post-decision cash level is higher than

the initial cash level even when the agent takes a buying action. In Figure 5.12

and Figure 5.13 each column shows the comparison of different selling transfer fee

given the same buying transfer fee and each row shows the comparison of different

buying transfer fee given each selling transfer fee. It shows that in general the

transaction regions (i.e. the states where the agent should take selling or buying

actions) shrinks with the increase of transaction cost. Moreover each column of

these figures shows that the selling transaction cost mainly affects the selling re-

gion (i.e. the states where the agent should sell his asset and replenish his cash

balance) but also has a relatively small impacts on the buying region (i.e. the

states where the agent should invest his cash into the asset account). Similarly

once we fix the selling price, it can be seen that although the buying transaction

cost affects both buying region and the selling region, the buying region is much

more sensitive to the buying transaction cost than the selling region.

Each column in Figure 5.14 and Figure 5.15 shows the impact of the propor-

tional part of transaction cost function on the cash management policy while each
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row shows how the fixed part of transaction cost function affects the policy. In

Section 4.4.1 we show that in the traditional one account model, the (U, u, l, L)

policy will change to the (L,B, U) form (i.e. the agent should adjust his cash

balance to one fixed target level once his cash level reaches the upper trigger level

or the lower trigger level) if the transaction cost function is purely fixed. Moreover

the optimal policy will change to the (l, u) form (i.e. the trigger levels are the same

to the target levels) once the transaction cost function is purely proportional. A

similar pattern is observed in experiments of the two accounts models. Both Fig-

ure 5.14 and Figure 5.15 reveal that when we set the proportional parameters of

the transaction cost function to a very small value (e.g. k− = 0.025, k+ = 0.05),

the upper target positions and the lower target positions are very close to each

other regardless of the size of the fixed part of the transaction cost function. The

gap between the upper target and the lower target becomes wider once we increase

the proportional parameters. In addition, the gaps between the trigger frontiers

and the target positions widen with the increase of the fixed parameters (K+ and

K−).

5.6.4 Shortage penalty

In the two accounts cash management models, we assume that the cash shortage

penalty is proportional to the size of the cash deficit. In this section we undertake

experiments with different penalty coefficient to examine the impact of the penalty

coefficient on cash management policy. Let the low, medium and high shortage

penalty coefficients be 0.5, 2.0 and 8 respectively. Other parameters are set to

K+ = £2, K− = £1, k+ = 0.2, k− = 0.1, r = 5%, rf = 2%,∆x ∼ N (−£5, 5)

and the optimal policy is shown in Figure 5.16. We spot that the selling region

is amplified with a higher shortage penalty while the buying region shrinks. This

can be interpret as that with a higher shortage penalty, the agent tends to adopt

a ‘safer’ policy to avoid the risk of cash deficit, i.e. replenishing his cash balance

at a higher trigger cash level and keeping more cash remains when he invests into

asset.
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Figure 5.12: Combinations of selling and buying transfer fee in the two accounts
model with internal cash inflow
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K− = £0.25, k− = 0.025 K− = £1, k− = 0.1 K− = £2, k− = 0.2

K
+
=

£
0.
5,
k
+
=

0
.0
5

K
+
=

£
2,
k
+
=

0
. 2

K
+
=

£
5,
k
+
=

0
.5

Figure 5.13: Combinations of selling and buying transfer fee in the two accounts
model with asset growth
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K− = £0.25,K+ = £0.5 K− = £1,K+ = £2 K− = £2,K+ = £5
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Figure 5.14: Combinations of fixed and proportional transfer parameters in the
two accounts model with internal cash inflow
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K− = £0.25,K+ = £0.5 K− = £1,K+ = £2 K− = £2,K+ = £5
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Figure 5.15: Combinations of selling and buying transfer fee in the two accounts
model with asset growth
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(a) Model with internal cash inflow, h = 0.5 (b) Model with asset growth, h = 0.5

(c) Model with internal cash inflow, h = 2 (d) Model with asset growth, h = 2

(e) Model with internal cash inflow, h = 8 (f) Model with asset growth, h = 8

Figure 5.16: Optimal policies in the two accounts model under different shortage
penalty coefficient
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5.6.5 External cash flow

Now we study the cash management policies with different external cash flows. In

our models we assume that for each time period, the external cash flow can be

described by a normal distributed random variable ∆x ∼ N (µ, σ). We undertake

two sets of numerical experiments to examine the impact of external cash flow’s

expected value and volatility separately. In the first set of experiments, we let µ =

(−2.5,−5,−7.5) and σ = 5 and in the second set we let µ = −5 and σ = (1, 5, 10).

For the parameters we set K+ = £2, K− = £1, k+ = 0.2, k− = 0.1, r = 5%, rf =

2%, h = 2.

Figure 5.17 shows that both target levels and trigger levels move to a higher

position when the expected value of the external cash outflow increases. This

means that the agent should hold more cash balance to meet the higher cash

demand. Figure 5.18 shows that with more volatility of the external cash outflow,

the selling region expands while the buying region shrinks. This can be interpreted

as that the agent wishes to adopt a safer policy, i.e. holding more cash and investing

less to the risky asset, when the external cash outflow has more stochasticity.

In addition, Figure 5.17 illustrates that in the model with internal cash inflow,

generally the agent tends to hold less cash with a larger asset account. This

is because large asset generates plenty cash inflow which can be used to offset

the cash demand. Note that in these experiments, the agent stops taking selling

actions once his asset size is large enough and the cash inflow totally dominates

the cash demand. However in these figures we spot a ‘bump’ of the policy which

suggests that when the internal cash inflow approximately matches the external

cash outflow, the agent should hold more cash with the increase of asset. Figure

5.17 reveals that the position of the ‘bump’ changes with the expected value of cash

demand and it is always located in the region where the cash inflow approximately

matches the demand for cash. Figure 5.18 reveals that the magnitude of this

‘bump’ increases in the scenarios where the cash outflow has more volatility.

Here we provide one possible explanation for the ‘bump’ of the cash policy:

when the company’s asset is insufficient to generate enough cash inflow, the agent

needs to replenish his cash balance repeatedly by selling the asset which leads to an

even smaller size of the asset account. In this scenario, the company’s insolvency
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(a) Model with internal cash inflow, µ = −2.5 (b) Model with asset growth, µ = −2.5

(c) Model with internal cash inflow, µ = −5 (d) Model with asset growth, µ = −5

(e) Model with internal cash inflow, µ = −7.5 (f) Model with asset growth, µ = −7.5

Figure 5.17: Optimal policies in the two accounts model with respect to µ
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(a) Model with internal cash inflow, σ = 1 (b) Model with asset growth, σ = 1

(c) Model with internal cash inflow, σ = 5 (d) Model with asset growth, σ = 5

(e) Model with internal cash inflow, σ = 10 (f) Model with asset growth, σ = 10

Figure 5.18: Optimal policies in the two accounts model with respect to σ
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probability is close to one and this probability can be hardly changed by cash

management policies. Considering the company will become bankrupt soon, the

agent is inclined to make myopic decisions which is holding just enough cash to

meet the current cash demand and investing the rest into the profitable asset.

With more asset (but still insufficient to generate the internal cash inflow that

dominates the cash demand), the gap between the cash demand and the cash

inflow decreases and hence the agent will invest more into assets and harvest the

short term gain as much as possible.

However when the asset account is large enough and the cash inflow generated

from company’s asset approximately matches the cash demand, the company’s

insolvency probability is highly sensitive to the cash policies. For these states,

the agent wishes to adopt a safe policy as the price of cash deficit is not just

the shortage penalty paid by the company. It will also jeopardise the company’s

future profitability and dramatically increase the company’s insolvency risk. In

these states, with a larger asset account the company’s insolvency risk is more

sensitive to the cash polices and hence the agent has a higher motivation to adopt

a safe policy and hold/replenish more cash balance. This theory is also supported

by Figure 5.18 where we show that with more volatility of the cash outflow, the

magnitude of the policy ‘bump’ expands. When the standard deviation of the cash

outflow is set to a small value as in Figure 5.18(a), the model has less stochasticity

and hence in the states with balanced cash outflow and cash inflow, the agent has

low motivation to adopt the safe policy. As a result, the magnitude of the policy

‘bump’ is rather small. In Figure 5.18(e ) where the model has high stochasticity,

the policy ‘bump’ is amplified since the agent wishes to take safe policy to improve

his survival probability once the internal cash inflow matches the external cash

outflow.

With the increase of company’s asset, the cash inflow starts to dominate the

cash demand. For each time period, the agent has extra cash to invest and the

asset keeps on accumulating. In this scenario, the company’s insolvency probability

decreases quickly and it is no longer sensitive to the cash policies. Hence the agent

gradually loses his motivation to adopt safe policies and start to hold less cash

balance. Eventually the company’s asset is large enough and for each time period
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the cash demand is totally dominated by the cash inflow. Once it visits these

states, the company has a very small chance to become insolvent. The agent only

needs to hold enough cash to avoid the cash deficit for the current time period

since the future cash demand can be offset by the future cash inflow.

Figure 5.17 and Figure 5.18 also show the cash management models with asset

growth and they have similar patterns with the models with internal cash inflow.

That is (a) both cash trigger frontiers and the target cash positions increase with

higher expected value or higher standard deviation of the cash outflow, (b) the

agent tends to hold/replenish less cash balance with higher asset level when the

cash demand outweighs the asset growth or when the asset growth dominates cash

demand, (c) the agent tends to hold/replenish more cash balance with higher asset

level when the cash demand approximately matches the asset growth and (d) the

‘bump’ area where the agent tends to hold/replenish more cash balance with higher

asset level has a larger magnitude in the scenarios with more volatility.

5.6.6 Transaction Region

We have shown that the optimal cash policy of the two accounts cash management

models (including the model with internal cash inflow and the model with asset

growth) possess the two-trigger two target form. Hence the company’s state space

can be divided into three areas: the selling area where the agent should sell his asset

and replenish the cash balance, the buying area where the agent should reduce his

cash-holding level and invest the extra cash into the asset account, and the doing

nothing area where no action should be adopted. In this section, we present the

proportion of selling and buying area under different combinations of parameter

settings. In terms of transaction cost, we considered three scenarios, namely the

low transaction cost, the medium transaction cost and the high transaction cost.

The corresponding parameters are reported in Table 5.2. Moreover, we assume

the external cash flow can be described by a normal distributed random variable

N (µ, σ). Five settings will be examined in this section, namely (µ, σ) = (−1, 1),

(µ, σ) = (−2.5, 2.5), (µ, σ) = (−5, 5), (µ, σ) = (−7.5, 7.5) and (µ, σ) = (−10, 10).

We also examine three cash shortage penalty coefficients: h = 0.2, h = 5 and

h = 8 and three return rates on the asset account: r = 0.01, r = 0.05 and r = 0.1.
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The proportion of the selling area and the buying area under each combination

of parameters reported in Table 5.3 and Table 5.4 provides an overall view of the

two accounts cash management model. We notice that if other parameters remain

the same, with a higher cash shortage penalty coefficient, the proportion of selling

area increases while the proportion of buying area decreases. This implies that the

agent should hold more cash balance and less asset when the shortage penalty is

high. Similarly, the selling area increases and buying area decreases with a lower

return rate on asset or a higher cash demand.In other words, when the asset has

low profitability or the company faces high cash demand, the agent should keep

more cash balance at hand to avoid cash shortage. Moreover we notice that both

selling area and buying area are normally smaller in the scenario with a higher

transaction cost. This pattern can be interpreted as that the agent should make

less transfers between his accounts when the transaction cost is high.

79



Ta
bl

e
5.

3:
Pr

op
or

tio
n

of
tr

an
sa

ct
io

n
ar

ea
s:

th
e

m
od

el
w

ith
in

te
rn

al
ca

sh
in

flo
w

Lo
w

tr
an

sa
ct

io
n

co
st

M
ed

iu
m

tr
an

sa
ct

io
n

co
st

H
ig

h
tr

an
sa

ct
io

n
co

st
h=

0.
2

h=
5

h=
8

h=
0.

2
h=

5
h=

8
h=

0.
2

h=
5

h=
8

(µ
,σ

)
=

(−
1,
1)

r
=

0.
01

Se
lli

ng
ar

ea
0.
26
%

0.
49
%

0.
51
%

0.
29
%

0.
41
%

0.
45
%

0.
31
%

0.
37
%

0.
40
%

Bu
yi

ng
ar

ea
93
.2
7%

93
.1
0%

93
.0
3%

85
.9
9%

85
.7
6%

85
.7
3%

76
.3
4%

76
.2
6%

76
.2
6%

r
=

0.
05

Se
lli

ng
ar

ea
0.
03
%

0.
04
%

0.
04
%

0.
03
%

0.
04
%

0.
03
%

0.
02
%

0.
03
%

0.
03
%

Bu
yi

ng
ar

ea
98
. 3
1%

98
. 2
1%

98
. 2
0%

94
. 3
4%

94
. 3
6%

94
. 3
6%

89
. 3
4%

89
. 3
0%

89
. 3
1%

r
=

0.
1

Se
lli

ng
ar

ea
0.
00
%

0.
01
%

0.
01
%

0.
00
%

0.
01
%

0.
01
%

0.
00
%

0.
00
%

0.
00
%

Bu
yi

ng
ar

ea
98
.3
4%

98
.3
1%

98
.3
0%

97
.5
3%

97
.5
5%

97
.5
3%

94
.9
5%

94
.9
4%

94
.9
4%

(µ
,σ

)
=

(−
2.
5,
2.
5)

r
=

0.
01

Se
lli

ng
ar

ea
1.
04
%

2.
15
%

2.
40
%

1.
44
%

1.
98
%

1.
99
%

1.
57
%

1.
87
%

1.
97
%

Bu
yi

ng
ar

ea
86
.3
0%

85
.3
3%

85
.1
6%

70
.9
7%

70
.4
4%

70
.3
2%

53
.0
2%

52
.5
9%

52
.4
8%

r
=

0.
05

Se
lli

ng
ar

ea
0.
07
%

0.
19
%

0.
20
%

0.
07
%

0.
16
%

0.
18
%

0.
02
%

0.
07
%

0.
15
%

Bu
yi

ng
ar

ea
92
.3
2%

96
.6
7%

96
.5
3%

92
.4
3%

91
.7
8%

91
.6
9%

89
.3
4%

86
.8
9%

86
.7
0%

r
=

0.
1

Se
lli

ng
ar

ea
0.
00
%

0.
05
%

0.
05
%

0.
00
%

0.
05
%

0.
05
%

0.
00
%

0.
03
%

0.
03
%

Bu
yi

ng
ar

ea
98
.0
4%

97
.9
4%

97
.8
7%

96
.6
8%

96
.5
1%

96
.5
0%

93
.2
5%

93
.0
7%

93
.0
3%

(µ
,σ

)
=

(−
5,
5)

r
=

0.
01

Se
lli

ng
ar

ea
3.
13
%

5.
12
%

5.
37
%

3.
33
%

4.
53
%

4.
56
%

3.
48
%

4.
51
%

4.
53
%

Bu
yi

ng
ar

ea
70
.5
0%

68
.9
2%

68
.7
8%

29
.8
3%

28
.7
4%

28
.5
6%

5.
88
%

5.
58
%

5.
52
%

r
=

0.
05

Se
lli

ng
ar

ea
0.
21
%

0.
79
%

0.
89
%

0.
23
%

0.
56
%

0.
60
%

0.
19
%

0.
48
%

0.
49
%

Bu
yi

ng
ar

ea
94
.5
2%

98
.8
2%

92
.5
8%

87
.8
6%

86
.8
0%

86
.5
3%

81
.0
5%

80
.5
0%

80
.2
7%

r
=

0.
1

Se
lli

ng
ar

ea
0.
02
%

0.
22
%

0.
23
%

0.
00
%

0.
18
%

0.
22
%

0.
00
%

0.
12
%

0.
14
%

Bu
yi

ng
ar

ea
97
.4
2%

96
.7
0%

96
.5
8%

94
.6
4%

93
.6
2%

93
.8
3%

90
.0
5%

89
.5
0%

89
.3
1%

(µ
,σ

)
=

(−
7.
5,
7.
5)

r
=

0.
01

Se
lli

ng
ar

ea
5.
25
%

8.
29
%

8.
62
%

4.
82
%

7.
10
%

7.
12
%

4.
66
%

7.
01
%

7.
06
%

Bu
yi

ng
ar

ea
55
.3
5%

53
.0
3%

52
.9
1%

2.
54
%

2.
17
%

2.
17
%

0.
00
%

0.
00
%

0.
00
%

r
=

0.
05

Se
lli

ng
ar

ea
0.
45
%

1.
98
%

2.
74
%

0.
37
%

1.
26
%

1.
44
%

0.
28
%

1.
02
%

1.
11
%

Bu
yi

ng
ar

ea
91
.8
2%

88
.2
3%

87
.7
6%

82
.2
4%

80
.0
8%

79
.6
6%

72
.7
3%

71
.2
5%

70
.8
7%

r
=

0.
1

Se
lli

ng
ar

ea
0.
07
9%

0.
53
%

0.
59
%

0.
01
%

0.
42
%

0.
47
%

0.
00
%

0.
30
%

0.
35
%

Bu
yi

ng
ar

ea
96
.6
6%

94
.9
1%

94
.6
7%

92
.3
7%

90
.3
9%

90
.1
2%

86
.4
0%

85
.1
0%

84
.8
6%

(µ
,σ

)
=

(−
10
,1
0)

r
=

0.
01

Se
lli

ng
ar

ea
7.
48
%

11
.6
6%

12
.0
1%

6.
15
%

9.
74
%

9.
81
%

5.
07
%

9.
60
%

9.
70
%

Bu
yi

ng
ar

ea
41
.0
5%

37
.8
2%

37
.7
3%

0.
00
%

0.
22
%

0.
27
%

0.
00
%

0.
00
%

0.
00
%

r
=

0.
05

Se
lli

ng
ar

ea
0.
75
%

4.
04
%

4.
69
%

0.
56
%

2.
42
%

2.
81
%

0.
35
%

1.
82
%

1.
93
%

Bu
yi

ng
ar

ea
88
.1
7%

83
.5
8%

83
.0
2%

75
.2
0%

71
.9
4%

71
.3
9%

61
.9
1%

59
.4
3%

58
.8
4%

r
=

0.
1

Se
lli

ng
ar

ea
0.
17
%

0.
99
%

1.
11
%

0.
00
%

0.
74
%

0.
84
%

0.
00
%

0.
55
%

0.
63
%

Bu
yi

ng
ar

ea
95
.4
5%

92
.2
8%

91
.9
1%

89
.1
0%

86
.2
6%

85
.9
5%

82
.0
6%

80
.1
4%

79
.7
6%

80



Ta
bl

e
5.

4:
Pr

op
or

tio
n

of
tr

an
sa

ct
io

n
ar

ea
s:

th
e

m
od

el
w

ith
as

se
t

gr
ow

th

Lo
w

tr
an

sa
ct

io
n

co
st

M
ed

iu
m

tr
an

sa
ct

io
n

co
st

H
ig

h
tr

an
sa

ct
io

n
co

st
h=

0.
2

h=
5

h=
8

h=
0.

2
h=

5
h=

8
h=

0.
2

h=
5

h=
8

(µ
,σ

)
=

(−
1,
1)

r
=

0.
01

Se
lli

ng
ar

ea
1.
95
%

1.
96
%

1.
96
%

1.
95
%

1.
95
%

1.
95
%

1.
93
%

1.
94
%

1.
94
%

Bu
yi

ng
ar

ea
78
.2
6%

78
.2
7%

78
.2
5%

52
.3
5%

52
.1
5%

52
.1
5%

27
.7
7%

27
.6
5%

27
.5
9%

r
=

0.
05

Se
lli

ng
ar

ea
0.
99
%

1.
49
%

1.
95
%

1.
03
%

1.
83
%

1.
95
%

1.
77
%

1.
89
%

1.
93
%

Bu
yi

ng
ar

ea
84
. 2
3%

84
. 1
7%

87
. 2
6%

66
. 1
1%

66
. 0
8%

78
. 2
6%

48
. 7
3%

48
. 7
1%

27
. 7
7%

r
=

0.
1

Se
lli

ng
ar

ea
0.
59
%

1.
06
%

1.
34
%

0.
96
%

1.
03
%

1.
14
%

1.
04
%

1.
11
%

1.
30
%

Bu
yi

ng
ar

ea
84
.9
6%

84
.5
3%

84
.3
7%

68
.0
3%

67
.9
7%

67
.9
1%

51
.3
3%

51
.2
9%

51
.2
4%

(µ
,σ

)
=

(−
2.
5,
2.
5)

r
=

0.
01

Se
lli

ng
ar

ea
2.
84
%

3.
44
%

3.
58
%

2.
91
%

3.
00
%

3.
19
%

2.
93
%

3.
04
%

3.
07
%

Bu
yi

ng
ar

ea
66
.4
9%

65
.8
8%

65
.7
4%

26
.4
5%

25
.7
0%

25
.4
9%

0.
00
%

0.
00
%

0.
00
%

r
=

0.
05

Se
lli

ng
ar

ea
1.
52
%

2.
86
%

2.
84
%

1.
96
%

2.
76
%

2.
91
%

2.
03
%

2.
75
%

2.
93
%

Bu
yi

ng
ar

ea
79
.2
9%

78
.4
4%

66
.4
9%

55
.2
8%

54
.7
3%

26
.4
5%

33
.2
9%

33
.0
4%

0.
00
%

r
=

0.
1

Se
lli

ng
ar

ea
0.
61
%

2.
68
%

2.
95
%

1.
75
%

2.
61
%

2.
74
%

1.
92
%

2.
45
%

2.
64
%

Bu
yi

ng
ar

ea
82
.0
6%

81
.0
1%

80
.8
3%

59
.7
7%

59
.2
1%

59
.0
8%

39
.1
2%

38
.8
9%

38
.8
1%

(µ
,σ

)
=

(−
5,
5)

r
=

0.
01

Se
lli

ng
ar

ea
4.
82
%

7.
22
%

7.
44
%

5.
54
%

6.
79
%

6.
82
%

5.
88
%

6.
76
%

6.
83
%

Bu
yi

ng
ar

ea
50
.4
8%

49
.1
8%

49
.0
5%

0.
00
%

0.
02
%

0.
02
%

0.
00
%

0.
00
%

0.
00
%

r
=

0.
05

Se
lli

ng
ar

ea
1.
99
%

5.
47
%

4.
82
%

2.
95
%

4.
77
%

5.
54
%

2.
91
%

4.
47
%

5.
88
%

Bu
yi

ng
ar

ea
74
.1
5%

71
.8
6%

50
.4
8%

43
.8
8%

42
.6
3%

0.
00
%

19
.2
8%

18
.5
0%

0.
00
%

r
=

0.
1

Se
lli

ng
ar

ea
0.
96
%

4.
98
%

5.
58
%

1.
05
%

4.
29
%

4.
85
%

2.
47
%

4.
08
%

4.
38
%

Bu
yi

ng
ar

ea
78
.8
2%

76
.3
2%

75
.9
9%

52
.2
8%

50
.7
9%

50
.5
0%

29
.0
6%

28
.3
7%

28
.2
4%

(µ
,σ

)
=

(−
7.
5,
7.
5)

r
=

0.
01

Se
lli

ng
ar

ea
7.
53
%

10
.4
1%

10
.7
2%

7.
40
%

8.
97
%

9.
04
%

7.
47
%

8.
98
%

9.
08
%

Bu
yi

ng
ar

ea
37
.9
6%

36
.0
4%

36
.0
1%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

r
=

0.
05

Se
lli

ng
ar

ea
2.
77
%

7.
86
%

7.
53
%

3.
75
%

6.
45
%

7.
40
%

3.
86
%

5.
81
%

7.
47
%

Bu
yi

ng
ar

ea
70
.5
4%

66
.6
6%

37
.9
6%

35
.8
1%

33
.6
3%

0.
00
%

9.
54
%

8.
08
%

0.
00
%

r
=

0.
1

Se
lli

ng
ar

ea
1.
74
%

7.
39
%

8.
33
%

1.
36
%

6.
32
%

6.
81
%

2.
75
%

5.
76
%

6.
14
%

Bu
yi

ng
ar

ea
76
.4
9%

72
.9
2%

72
.5
2%

47
.3
5%

44
.8
7%

44
.3
4%

22
.8
2%

21
.5
3%

21
.2
4%

(µ
,σ

)
=

(−
10
,1
0)

r
=

0.
01

Se
lli

ng
ar

ea
9.
83
%

13
.7
9%

14
.0
9%

8.
85
%

11
.9
8%

12
.0
6%

8.
67
%

12
.0
0%

12
.0
6%

Bu
yi

ng
ar

ea
26
.9
2%

23
.7
6%

23
.8
6%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

r
=

0.
05

Se
lli

ng
ar

ea
3.
25
%

10
.0
1%

9.
83
%

3.
54
%

8.
14
%

8.
85
%

5.
86
%

8.
42
%

8.
67
%

Bu
yi

ng
ar

ea
66
.5
8%

62
.1
8%

26
.9
2%

28
.8
0%

25
.6
9%

0.
00
%

3.
12
%

2.
00
%

0.
00
%

r
=

0.
1

Se
lli

ng
ar

ea
2.
52
%

9.
74
%

10
.8
3%

1.
39
%

7.
84
%

8.
64
%

1.
50
%

6.
99
%

7.
51
%

Bu
yi

ng
ar

ea
73
.9
9%

69
.2
0%

68
.7
0%

42
.9
8%

39
.6
5%

39
.0
8%

17
.7
9%

15
.7
0%

15
.3
2%

81



5.7 Conclusion

In the two accounts cash management model, we considered an agent who manages

a cash account and an asset account and controls his cash balance by selling/buying

the assets. We assumed that the profit from the asset is sensitive to the size of the

asset account while the external cash demand is stochastically distributed with a

constant drift. Moreover we proposed an alternative model where the asset does

not generate the profit directly, but its size increases at a certain growth rate.

Using the dynamic programming method, we numerically showed that the opti-

mal cash policy for these two dimensional cash management models also possess

the two-trigger two-target form. Furthermore, we presented a backward method

to calculate the company’s insolvency probabilities given its current state. We

observed that once the company visits the state where the external cash demand

dominates the profit from the asset, the agent has to sell a part of his asset to

offset the cash deficit at each period, which will jeopardise the future profitability

further. In this scenario, the company goes bankrupt quickly regardless of the

manager’s cash policies. On the other hand, if the profit significantly outweighs

the external cash demand, the manager can reinvest the extra profit after fulfilling

the cash demand and hence the asset keeps on accumulating. As a result, the

strategies of the cash management are of great importance to the company with a

balanced internal cash inflow and external cash outflow since a good cash strategy

leads the company to the status with an accumulating asset account. Our study in

this chapter showed that the agent should adopt a ‘safer’ cash policy (i.e. starting

the cash replenishment at higher cash holding level and keep more cash at hand)

in the balanced states than in other states.
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Chapter 6

A Cash Management Model with

Loan Opportunities

6.1 Introduction

In Chapter 5 we considered a cash management model with a cash account and an

asset account. In this two accounts model, the manager can only replenish his cash

holdings by selling a part of his asset. In this chapter we will extend this model

to include the opportunity for the agent to take out a loan to supplement his cash

balance. Moreover we will present two approaches to solve this cash-asset-loan

management problem. In the first approach, we will formulate the problem as a

three dimensional Markov decision process where the loan state is considered as

an extra dimension in addition to the two accounts model. However the decision

of whether to take out a loan or not makes the solution of this extended cash

management problem computationally expensive due to the well-known curse of

dimensionally. Hence we will also propose an approach (namely the policy im-

provement heuristic approach) inspired by the policy iteration algorithm proposed

by Beranek & Howard (1961). We will show that this heuristic approach reduces

the solution time to a large extent while performing strongly in our experiments.
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6.2 Problem description and assumptions

In this model, we introduce loan opportunities to the two accounts cash man-

agement model with the internal cash inflow. Similar to the two accounts model

presented in Chapter 5, we consider an agent who manages a cash account that can

be used to fulfil the external cash demand over each period and an asset account

that generates the internal cash inflow at the beginning of each period. At the

end of each period, a proportional cash shortage penalty occurs with the existence

of the cash deficit. In addition we introduce loan opportunities to this model, i.e.

when the manager decides to replenish his cash balance, he can sell a part of his

asset and/or take a loan from the financial intermediaries. Figure 6.1 shows the

cash flows in this model. Once the agent decide to take a loan, the loan expense

consisting of both the interest payment and the principal payment will be required

in the following periods until the debt is offset. In this model, we consider the

loan from the financial intermediaries as a source of the internal cash inflow and

the loan expense as a source of the internal cash outflow.

To study this cash/loan management problem, we must first define the struc-

ture of the loan opportunity. There are many different types of loan available in

the financial market. One of the most common corporate loans provided by banks

is the unsecured loan with a fixed interest rate. If the manager takes this loan, the

same amount of repayment will be required for each time period until the debt is

offset. This loan can be defined by the tuple (Z,L, ι) where Z is the size of the

loan, L is the loan age (i.e. how many times of the repayment before the loan is

offset) and ι is the loan interest rate. Since the amount of each repayment (ζ) is

the same, it can be given by:

ζ = Z
ι(1 + ι)L

(1 + ι)L − 1
. (6.1)

Hence if the agent decides to take this loan opportunity at time t, the internal cash

inflow will be increased by Z. And then for the following L periods, the internal

cash outflow will be increased by ζ.

For the sake of simplicity, a few assumptions in terms of the loan opportunities

will be made before we formulate this problem into a Markov decision process. To
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Figure 6.1: Cash flows in the model with loan opportunities

begin with, we assume that there is only one unsecured loan with fixed interest

available in the financial market and the company always has access to this loan

regardless of its current cash holdings and asset levels. Moreover we assume that

after taking the loan from the bank, the agent cannot take another loan until its

debt is offset. At last, we discard the consideration of the service charge and the

lead time associated with the action of taking a loan.

The timing of each event for one period is shown in Figure 6.2. Consider a

company with xt in the cash account, yt in the asset account and a debt which

remains l periods of repayment. At the beginning of period t, the company receives

a mount of internal cash inflow proportional to the size of its asset account. Then

if the company has an unpaid loan debt (i.e. l > 0), the manager must make a

repayment ζ. Otherwise if l = 0, the manager can decide whether to take the loan

or not. Once the loan is taken, the cash balance increases by Z. The manager

can also make a transaction between the cash account and the asset account with

the transaction costs which is assumed to be a fixed plus proportional function

of the transaction size (see Equation (4.1)). After the external cash flows during

the period t, the system transitions to next period if there is no cash shortage.
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Figure 6.2: Timing of events in the model with loan opportunities

Otherwise, the agent must sell a part of his asset to offset this deficit as well as

the cash shortage penalty.

6.3 A discrete Markov decision process approach

We have showed the formulation of the two accounts cash management model into

a discrete Markov decision process in Chapter 5. In this section, we develop the

model by adding the loan variable into the state space and the loan action into

the action space.

Since we assume there is only one type of loan and the loan expense for each pe-

riod is the same, the variable l is enough to describe the company’s debt situation.

Note that l denotes the remaining times of the repayment including the current

repayment. Similar to Section 5.3, we discretise the cash level space into the set

Sx =
{
sx[1], ..., s

x
[M ]

}
and the asset level space into the set Sy =

{
sy[1], ..., s

y
[M ′]

}
.

The loan space can be written as Sl = {0, 1, ..., L}. Assuming that at period t,

the company’s state is s⃗t = (sxt , s
y
t , lt) such that (sxt , s

y
t , lt) ∈ Sx × Sy × Sl. The

company first receives the internal cash inflow proportional to the size of its asset

account and makes a repayment of the loan if it has an unpaid debt. After this

repayment, the remaining repayment times reduces by one.
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At each decision epoch, we assume that the agent takes a loan action before

the cash control action. Hence it is possible for the manager to take the loan and

invest a part of the loan into his asset. Let al = 1 denotes the action of taking the

loan and al = 0 denotes not taking the loan. Since we assume that the company

has no access to the loan opportunity if it has an unpaid debt, the space of loan

action can be written as:

Al(l) =

 {0} if l > 0

{0, 1} if l = 0
. (6.2)

After the loan action, the system transitions to the post-loan-decision state:
x
alt
t

y
alt
t

l
alt
t

 =


sxt + rsyt − ζ · 1{lt>0} + Z · 1{alt=1}

syt

(lt − 1) · 1{lt>0} + L · 1{alt=1}

 .

Let Γ(at) be the fixed plus proportional transaction cost function with param-

eters (K+, K−, k+, k−) (see Equation (4.1)). With the knowledge of the post-

loan-decision state, we can define the feasible cash action space at ∈ At(x
alt
t , y

alt
t ).

Similar to the previous models, we assume that the post-cash-decision cash/asset

levels cannot exceed the maximum cash/asset boundary or fall short of the mini-

mum boundary. The cash action space A(x
alt
t , y

alt
t ) can be obtained via Algorithm

(2) with the Equation (5.9) replaced by:

a[m] = max

sx[1] − x
alt
t +Kb

1 + kb
, yLt − sy[K]

 .

After the cash action at, the system transitions to the post-decision state:
xat
t

yatt

latt

 =


x
alt
t + at − Γ(at) · 1{at≤0}

y
alt
t − at − Γ(at) · 1{at>0}

l
alt
t

 .

Assume that the external cash flow υt can be approximated by Wiener process

with parameters (µ, σ) and ∆xt is the change of the uncontrolled cash flow at
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period t. The cash balance at the end of this period is xat
t + ∆xt while the asset

level and the loan state remain unchanged. If the cash balance is non-negative (i.e.

xat
t + ∆xt ≥ 0), the system transitions to the period t + 1 with no cash shortage

cost: 
xt+1

yt+1

lt+1

 =


xat
t +∆xt

yatt

latt

 .

Otherwise the agent must sell a part of his asset to offset this cash deficit dt =

|xat
t +∆xt| as well as the cash shortage penalty Θ(xat

t ∆xt). The proportional cash

shortage function Θ(xa
t ,∆xt) is shown in Equation (5.3). With the cash deficit dt,

the system transitions to:
xt+1

yt+1

lt+1

 =


0

yatt − dt − Γ(dt)−Θ(xat
t )

latt

 .

Considering the loan as a source of the internal cash inflow and the repayment

as a source of the internal cash outflow, the expected net income for each period

given the current state s⃗t = (sxt , s
y
t , lt) and the action a⃗t =

(
alt, at

)
can be written

as:

Rt(s⃗t, a⃗t) = E
{
rsy − ζ · 1{lt>0} + Z · 1{alt=1} − Γ(at)−Θ(xat

t ,∆xt)
}

= rsy − ζ · 1{lt>0} + z · 1{alt=1} − Γ(at)−
∫∞
−∞ Θ(xat

t ,∆xt)d∆xt

where ∆x is the total change of the cash balance under the influence of the external

cash flow and f(∆x) is the relative probability density function.

Let the rf be the risk-free interest rate and hence the future income will be

discounted by γ = 1/(1+rf )
t−1. The goal of this model is to maximise the expected

discounted total income over an infinite horizon, i.e.

max
π∈Π

E

{
∞∑
t=1

γt−1ryt − ζ · 1{lt>0} + Z · 1{alt=1} − Γ(at)−Θ(xat
t ,∆x)

}
.

Now we can write the Bellman equation for this cash management model with

loan opportunities. Let Vt(s⃗t, a⃗t) be the value of the system visiting the state
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s⃗t = (sxt , s
y
t , lt) at period t and the manager adopts the loan action alt and the cash

action at. For each period, we have:

Vt(s⃗t, a⃗t) = rsyt − ζ · 1{lt>0} + Z · 1{alt=1} − Γ(at)

+
∫∞
−∞

(
−Θ(xat

t ,∆xt) + γV̂t+1

(
xt+1, yt+1, lt+1|alt, at,∆xt

))
d∆xt.

This equation can be solved via the classic backward recursion method where the

value for each state at period t is calculated after the value at period t+1. Similar

to the equation (4.11) and (5.11), we have

V(i)(s⃗t, a⃗t) = rsy(i) − ζ · 1{l(i)>0} + Z · 1{al
(i)

=1} − Γ(a(i))

+
∫∞
−∞

(
−Θ(x

a(i)
(i) ,∆x(i)) + γV̂(i−1)

(
x(i−1), y(i−1), l(i−1)|al(i), a(i),∆x(i)

))
d∆x(i).

(6.3)

At the initial iteration we set V(0)(s⃗(0)) = 0. Then we keep updating the states

value backwards until the maximum change of the values between each iterations

is less than a small number ϵ.

Similar to the previous models, we use the bilinear interpolation method to

approximate the value V̂(i−1)(x(i−1), y(i−1), l(i−1)) based on its adjacent states and

use the Gauss-Hermite quadrature method to approximate the value of the integral

term in Equation (6.3) (see Equation (5.12) and Equation (5.14)).

Due to the limited computational resource we only study the scenario where the

company has access to one type of loan. However, this dynamic model can be easily

formulated as a cash management model with multiple loans. Consider a company

having access to Ξ different fixed-interest loans, i.e. Ξ = {(Z1, L1, ι1), ..., (Zξ, Lξ, ιξ)}.

At time t, the company’s state is s⃗t = (sxt , s
y
t , l

1
t , ..., l

ξ
t ) where lξt represents the re-

maining repayment times of the ξth loan. The action adopted by the manager

at period t can be described as (a1t , ..., a
Ξ
t , at) where aξt denotes whether taking

the ξth loan or not and at denotes the transfer between the cash balance and the

asset account. After the manager taking the action, the cash state transitions to

xat
t = sxt + rsyt +

∑Ξ
ξ=1

(
−ζξ · 1{lξt>0} + Zξ · 1aξt=1

)
+ at − Γ(at) · 1{at≤0}, the asset

state transitions to yatt = syt − at−Γ(at) · 1{at>0} and each loan state transitions to

lat,ξt = (lξt − 1) · 1lξt>0 + L · 1aξt=1 for ξ = {1, ...,Ξ}. The objective function should
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be modified as:

max
π∈Π

E

{
∞∑
t=1

γt−1

(
ryt +

Ξ∑
ξ=1

(
−ζξt · 1{lξt>0} + Zξ · 1{aξt=1}

)
− Γ(at)−Θ(xat

t ,∆xt)

)}
.

In the above equation, ryt, Γ(at) and Θ(xat
t ,∆xt) represent the incomes generated

from the asset, the transaction cost and the cash shortage penalty correspondingly.

The term
∑Ξ

ξ=1

(
−ζξt · 1{lξt>0} + Zξ · 1{aξt=1}

)
represents the expenses on the loan-

taking action.

6.4 A policy improvement heuristic approach

In the last section, we developed the two accounts cash management model to

a model with loan opportunities by adding an extra loan dimension to the state

space. However due to the well-known curse of dimensionality, the computational

cost explodes exponentially. In this section we present an iterative approach based

on policy improvement (PI) that provides solutions close to the MDP approach

within a reasonable solution time.

The main idea of the policy improvement heuristic approach can be described

as follows. We first find the optimal cash management policy assuming no loan

is available on the financial market. Then we improve the cash-loan policies by

adding one more loan offer in the rest of the planning horizon. We determine if

the agent should take up the loan offer using a single policy improvement step.

We repeat this process until adding one more loan in the horizon does not improve

the system’s state values.

In this approach, instead of introducing the loan dimension to the state space,

we solve a loan-decision problem based on the two accounts cash management

model. In the cash-asset-loan model, we assume that at time t, the manager has

a cash account sxt and an asset account syt and he can decide whether to take the

fixed-interest loan (Z,L, ι) or not. If the loan is taken, the internal cash inflow

will increase by Z at this time period and the internal cash outflow will increase

by ζ for the next L periods. Then at period t + L + 1 the manager can decide

whether to take the loan again. Let V l
t (s⃗t) be the maximum value of the company
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s⃗t = (sxt , s
y
t ) with l times of repayments left. The objective is to decide whether to

take the loan or not when l = 0 as well as finding the corresponding cash action.

The value of the company visiting state s⃗ = (sxt , s
y
t ) with no debt and the agent

taking the loan can be expressed as:

V 0
t (s⃗t|alt = 1) = maxat rsyt + z − Γ(at)

+
∫∞
−∞

(
−Θ(xat,∆xt

t ) + γV L
t+1(xt+1, yt+1)|∆xt

)
d∆xt

V L
t+1(s⃗t+1) = maxat+1 rsyt+1 − ζ − Γ(at+1)

+
∫∞
−∞

(
−Θ(x

at+1

t+1 ,∆xt+1) + γV L−1
t+2 (xt+2, yt+2)|∆xt+1

)
d∆xt

...

V 1
t+L(s⃗t+L) = maxat+L

rsyt+L − ζ − Γ(at+L)

+
∫∞
−∞

(
−Θ(x

at+L

t+L ,∆xt+L) + γVt+L+1(xt+L+1, yt+L+1)|∆xt+L

)
d∆xt.

If the company has no debt outstanding and the manager decides not to take this

loan, the value of visiting state s⃗t = (sxt , s
y
t ) at time t can be expressed as:

V 0
t (s⃗t|alt = 0) = maxat {rs

y
t − Γ(at)

+
∫∞
−∞

(
−Θ(xat

t ,∆xt) + γV 0
t+1(xt+1, yt+1)|∆xt

)
d∆xt

}
.

Now the maximum value of visiting state s⃗t = (sxt , s
y
t ) with no debt outstanding

can be written as:

V 0
t (s⃗t) = max

{
V 0
t (s⃗t|alt = 1), V 0

t (s⃗t|alt = 0)
}
. (6.4)

To solve Equation (6.4), we introduce an auxiliary problem, namely the cash

management problem with limited loan offers. In this problem, we assume that at

time t, if the company has no debt outstanding, the bank offers the loan (Z,L, ι)

to the company. Moreover we assume that such opportunity will be offered κ times

including this offer in the rest of the horizon independent of the manager’s loan

decision at period t. Let W l,κ
t (s⃗t) represents the maximum value of the company

visiting state s⃗t with l times of repayments left and the manager having access

to this loan for κ times in the rest of the horizon. In the original cash-asset-loan

model, we assume that without any unpaid debt, the manager always has access to

this loan, i.e. V 0
t (s⃗t) = W 0,∞

t (s⃗t). In addition, the two accounts cash management
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model presented in Chapter 5 can be interpreted as the model where the bank will

offer the loan to the company for 0 times in the rest of the horizon. Hence the

value W 0,0
t (s⃗t) can be obtained via Algorithm (3). Now the value W 0,κ

t (s⃗t) for each

κ can be calculated backwards:

W 0,κ
t (s⃗t) = max

{
W 0,κ

t (s⃗t|alt = 1),W 0,κ
t (s⃗t|alt = 0)

}
W 0,κ

t (s⃗t|alt = 0) = maxat rsyt − Γ(at)

+
∫∞
−∞

(
−Θ(xat

t ,∆xt) + γW 0,κ−1
t+1 (xt+1, yt+1)|∆xt

)
d∆xt

W 0,κ
t (s⃗t|alt = 1) = maxat rsyt + Z − Γ(at)

+
∫∞
−∞

(
−Θ(xat

t ,∆xt) + γWL,κ
t+1(xt+1, yt+1)|∆xt

)
d∆xt

WL,κ
t+1(s⃗t+1) = maxat+1 rsyt+1 − ζ − Γ(at+1)

+
∫∞
−∞

(
−Θ(x

at+1

t+1 ,∆xt+1) + γWL−1,κ
t+2 (xt+2, yt+2)|∆xt+1

)
d∆xt+1

WL−1,κ
t+2 (s⃗t+2) = maxat+2 rsyt+2 − ζ − Γ(at+2)

+
∫∞
−∞

(
−Θ(x

at+2

t+2 ,∆xt+2) + γWL−2,κ
t+3 (xt+3, yt+3)|∆xt+2

)
d∆xt+2

...

W 1,κ
t+L(s⃗t+L) = maxat+L

rsyt+L − ζ − Γ(at+L)

+
∫∞
−∞

(
−Θ(x

at+L

t+L ,∆xt+L) + γW 0,κ−1
t+L+1(xt+L+1, yt+L+1)|∆xt+L

)
d∆xt+L

.

6.5 Numerical experiments

In this section, we conduct numerical experiments to study the performance of

the policy improvement heuristic approach in comparison with the classic Markov

decision process approach. Then we examine the impacts of loan conditions in-

cluding the loan interest rate, the loan age and the loan size on the agent’s loan

action as well as the state values in the cash-loan-asset model. All the experiments

are programmed in C++ 12.0.0 on a PC with 2.5 GHz Quad-Core Intel Core i7

and 8 GB memory.

6.5.1 Performance of the policy improvement heuristic ap-

proach

We adopt the settings of the external cash flow and the operational conditions

proposed in Section 5.3.2. We let the external cash outflow for each period be a

normally distributed random variable ∆xt ∼ N (µ = −£5, σ = 5) and adopt the

92



fixed plus proportional transaction function with parameters (K+, K−, k+, k−) =

(£2,£1, 0.2, 0.1). Moreover we set the proportional shortage penalty coefficient to

h = 2 and the return rate on the asset to r = 0.05. We also set the risk-free interest

rate to rf = 0.02, hence the discount factor can be expressed as γ = 1
1+rf

= 98.04%.

In terms of the loan opportunities in the financial market, we set the loan interest

rate to ι = 0.04, the loan age to L = 10 and the loan size to Z = £20. According

to Equation (6.1), once the manager takes the £20 loan, he will make a repayment

of £2.47 for the next 10 periods. In the numerical experiments, we focus on the

loan/cash policy in states s⃗ ∈ Sx × Sy = [0, 100]× [0, 200]. However, as discussed

in Section 5.3, we set the capacity of the asset account to £400 to alleviate the

impact of the asset boundary on the loan/cash policy.

Figure 6.3 shows the cash policy and the loan policy in the MDP approach and

the policy improvement heuristic (PIH) approach when the company has no debt

outstanding (i.e. l = 0). It can be seen in Figure 6.3(a) that the buying policy

remains the trigger-target form, i.e. when the cash balance reaches the upper grey

area, namely the trigger frontier, the agent should invest his cash into the asset

and adjust the cash balance back to a lower level. Moreover when the company

visits a state with a low cash balance and a low asset level, the company is going

bankrupt in a few periods. In this scenario, it is optimal for the agent to sell all

his asset and use the cash to fulfil the cash demand as much as possible. Figure

6.3(b) shows the optimal loan policy when l = 0. The manager should take the

loan if the company visits states in the grey area and should renounce this loan

opportunity if it is in the white area. This figure suggests that when the company

has a low cash balance and a high asset level, the agent should replenish his cash

account by taking the loan instead of selling his asset. In addition, since the return

rate on asset is higher than the loan interest rate, the company can benefit from

the action of taking a loan and investing it into the asset immediately if it has

both a sufficient cash level and a large asset level.

Figures 6.3(c)-(h) show the cash and loan polices via the policy improvement

heuristic approach after 1 iterations, 10 iterations and 20 iterations. Note that

the cash/loan policy suggested by this heuristic approach after ith iteration can

be interpreted as the optimal cash/loan policy adopted by the manager knowing
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that only i loan offers will be given in the whole planning horizon. With the

increase of the iteration number i, the policy from the policy improvement heuristic

approach is approximating to the optimal policy given by the MDP method. Figure

6.3 reveals that both the policy from the policy improvement heuristic approach

after 10 iterations and the policy after 20 iterations resembles the optimal policy

suggested by the MDP approach to a large extent. Note that the MDP approach in

this cash-asset-loan model requires an extra loan dimension in addition to the two

accounts cash management model and it takes 7.38 hours to solve this numerical

experiment. In comparison, the policies from the PIH approach after 10 iterations

and 20 iterations only takes 0.48 hours and 0.53 hours respectively (including the

solution time for the two accounts cash management model).

In Figure 6.4, the average value of all states in the state space (0, 100)×(0, 200)

is plotted against the iteration number in the PIH approach. The optimal average

state values (given by the MDP approach) of the model with and without the

loan opportunity are also plotted as benchmarks. It can be seen that the optimal

average state value without the loan opportunity is £334.162. Once the company

has access to the loan (Z,L, ι) = (£20, 10, 0.04), the optimal average state value

can be improved by 3.45%. Figure 6.4 reveals that using the PIH approach, the

average state value can be improved by 2.40% after 10 iterations and 3.05% after

20 iterations. After 50 iterations, the percentage difference of state values between

the PIH approach and the MDP approach is around 0.027%.

6.5.2 Loan conditions

We now examine the impact of the loan conditions (namely the loan interest rate,

the loan age and the loan size) on the loan policy as well as the state values in the

cash-asset-loan model.

To begin with, we assume the loan provided by the financial intermediaries is

£20 and must be repaid in next 10 periods. Figure 6.5 shows the loan policies

suggested by the MDP approach and the PIH approach (20 iterations) given three

different loan interest rates (ι = (0.01, 0.04, 0.08)). As shown in this figure, if

the interest rate is too high (e.g. ι = 8%), the agent should renounce this loan

opportunity regardless to its current state. With a lower interest rate, the loan-
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(a) Cash policy (MDP) (b) Loan policy (MDP)

(c) Cash policy (PIH, the 1st iteration) (d) Loan policy (PIH, the 1st iteration)

(e) Cash policy (PIH, the 10th iteration) (f) Loan policy (PIH, the 10th iteration)

(g) Cash policy (PIH, the 20th iteration) (h) Loan policy (PIH, the 20th iteration)

Figure 6.3: Cash and loan policies from the MDP approach and the policy
improvement heuristic approach
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Figure 6.4: The average state value from the MDP approach and the PIH
approach

taking area expands. Figure 6.6 reveals the relationship between the average value

of all states in the space (0, 100)×(0, 200) and the loan interest rate. It shows that

the average state value drops with the increase of the loan interest rate. If the loan

interest rate is higher than 7%, the average value between the model without loan

opportunity and the cash-asset-loan model is almost the same since the optimal

loan policy in this scenario is not taking the loan in any state. Figure 6.6 also

shows that after 20 iterations, the PIH approach is a good approximation to the

MDP approach given any loan interest rate.

To study the impact of the loan age on the loan policy, we set the loan size

to Z = £20, the loan interest rate to ι = 0.04 and experiments on different loan

ages. Figure 6.7 shows the loan policies suggested by the MDP approach and

the PIH approach (20 iterations) when the loan must be paid in L = 4, L = 10

and L = 18 periods. In Figure 6.8, the average values of all states via different

approaches (namely the MDP approach, the PIH approach after 10 iterations and

the PIH approach after 20 iterations) are plotted against the loan age. As shown

in Figure 6.7 and Figure 6.8, with a longer loan age, the loan-taken area expands

and the average state value increases monotonically. This is because a longer

loan age resulting in a lower loan repayment for each period. For the following L
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periods, the company will face a lower total cash outflow and thus need a lower

cash balance. As a result, the company can invest more into the profitable asset

and has a lower cash shortage risk.

At last we fix the loan interest rate to ι = 0.04, the loan age to L = 10

and experiment on different loan sizes. The loan policy obtained from the MDP

approach and the PIH approach (20 iterations) is shown in Figure 6.9 and the

average state values against the loan age is plotted in Figure 6.10. We observe

that the average state value does not always increase with the loan size. If the

loan size is small, the cash balance cannot be replenished by the loan. Hence

the manager needs to sell a part of his asset. On the other hand, if the manager

takes the loan with a large size, he will have too much cash holdings and should

invest a part of this loan into his asset. In both scenarios, an extra amount

of transaction cost occurs and results in a decrease of the state values. In the

numerical studies experimenting on Z = (8, 12, 16, 20, 24, 28, 32, 36), according to

the state values obtained via the MDP approach, the average state value reaches

maximum (£345.7) when the loan size is set to £16 or £20. Figure 6.10 also

shows that for each loan size, the PIH approach after 20 iterations provides a close

approximation to the MDP approach.

6.6 Conclusion

In this chapter we introduced the taking loan option to the cash management

model as an alternatively method to supplement the company’s cash balance. We

also presented two approaches to solve this cash-asset-loan problem. In the first

approach, we add the loan state into the state space of the cash management

model and formulate the cash-asset-loan problem as a three dimensional Markov

decision process. In the second approach (namely the policy improvement heuristic

approach) we start with the cash management model without loan opportunity.

Then we add one loan offer to the planning horizon and solve the loan-decision

problem in addition to the cash holding problem. We repeat this process until

adding one more loan offer in the planning horizon does not improve the system’s

state values. Via numerical studies we showed that the policy improvement heuris-
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(a) ι = 0.01, MDP (b) ι = 0.01, PIH

(c) ι = 0.04, MDP (d) ι = 0.04, PIH

(e) ι = 0.08, MDP (f) ι = 0.08, PIH

Figure 6.5: Loan policies with different loan interest rate
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Figure 6.6: The average state value against the loan interest rate

tic approach after 20 iterations provides very similar policies to the MDP approach

while reducing the solution time to a large extent (from 7.38 hours to 0.53 hours).

At last we examined the impact of loan conditions (i.e. the loan interest rate, the

loan age and the loan size) on the loan policies and the system’s state values. We

observed that the system has a higher state values with a lower loan interest rate

or a longer loan age but the company does not always benefit from the loan with

a larger size.
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(a) L = 4, MDP (b) L = 4, PIH

(c) L = 10, MDP (d) L = 10, PIH

(e) L = 18, MDP (f) L = 18, PIH

Figure 6.7: Loan policies with different loan age
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Figure 6.8: The average state value against the loan age
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(a) Z = 8, MDP (b) Z = 8, PIH

(c) Z = 20, MDP (d) Z = 20, PIH

(e) Z = 36, MDP (f) Z = 36, PIH

Figure 6.9: Loan policies with different loan size
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Figure 6.10: The average state value against the loan size
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Chapter 7

A Cash Management Model with

Multiple Assets

7.1 Introduction

In the previous models discussed in Chapter 5 and Chapter 6 we studied the cash

management policy while both the cash account and the asset account being taken

into consideration. In this chapter we aim to expand the cash management model

into a multiple periods cash-assets management model where the cash is treated

as a special type of investment. We will consider an agent who manages one

cash account and a number of assets, hence both the cash policies and the asset

allocation policies will be studied at the same time. In a typical assets manage-

ment problem, maximising the expected profit and minimising the policies’ risk

are both of great interest to the manager. Thus in our cash-assets management

model we will introduce the risk measure over multiple periods to the objective

function as well as the profit measure. Moreover we will propose three approaches

to solve this cash-assets management problem. In the first approach we start

with a one-period cash holding/investing model which can be solved via the linear

programming method. Based on the static model we will develop a heuristic ap-

proach to solve the multi-periods cash-assets management problem. In the second

approach we will formulate the problem into a discrete Markov decision process

and solve it using the classic back iteration method. At last we will present a

double-pass approximate dynamic programming approach which is based on the
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separable projective approximation routine (SPAR) algorithm proposed by Pow-

ell et al. (2004). Based on the real data from four stocks prices (namely AAL,

BAC, F and LYG), we will conduct a set of numerical studies and compare the

accuracy and the efficiency of these algorithmic approaches. We will also use a

synthetic dataset to examine if the double-pass appoximate dynamic programming

approach can solve the model with a greater number of assets. To our best knowl-

edge, our work is the first study combining the cash management model with asset

mangement theories and the first attempt to adopt the double-pass approximate

dynamic programming method in high-dimensional, combined, dynamic cash and

asset model.

7.2 Problem description and assumptions

We study a cash management problem with multiple assets where the agent wishes

to determine how much financial resource to keep on hand as cash and how much to

invest into the multiple assets. The agent wants to strike a balance between having

enough cash to control cash shortage risk and pursuing profit on his investments.

Both the expected return and the risk of his cash holding/investing strategy will

be taken into consideration.

Consider an agent that manages one cash account and several asset accounts

over a finite time horizon. At any time the agent can sell and/or buy any amount of

assets or make a transfer among these assets. During this horizon, the demand for

cash disbursements occurs continuously. Any nonfulfillment of such demand incurs

the cash shortage penalty. The objective is to find the best joint cash holding and

asset investment strategy in terms of profitability and risk over the whole planning

horizon.

We assume that the planning horizon can be discretised into a finite number of

time periods. At the beginning of each time period, the agent can take an action

such as buying assets, selling assets or transfer among assets and then cannot

take an action until the beginning of the next period. The cash demand occurs

during each period and must be paid from the cash account. It is also assumed

that at the end of each time period, each asset grows with stochastic return rates
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and the return on cash account is always zero. In the occasion of market decline,

the return rate for assets can be negative. Moreover if any action is taken, the

transfer fee must be paid. We consider two sets of transfer fees in our model, the

buying fee and the selling fee. We assume that the buying/selling transfer fee for

different assets are the same and any transfer between two assets must be made

via the cash account. One must pay for both buying fee and selling fee to make

a transfer between two assets. At last we disregard the consideration of a short

market, which means the cash account and all the asset accounts must remain

non-negative. If the cash holding level cannot meet cash demand, the agent will

be forced to sell his assets to offset this cash deficit and the cash shortage penalty.

7.3 The mathematical model

In this section, we formulate this problem as a stochastic dynamic optimisation

model. The goal is to select a best policy in terms of profitability and risk over

the whole planning horizon. Hence we construct an agent’s utility function as our

objective function which is a linear combination of a profit measure and a risk

measure. The key elements of the model can be described as follows.

7.3.1 State

Assume that the agent manages one cash account and N asset accounts over T

time periods. Let s⃗t = {s0,t, s1,t, ..., sN,t} be the state at time t. Let x⃗t be the vector

of account levels where x0,t represents the cash holding level while x1,t, ..., xN,t are

the levels of n asset accounts at the beginning of this time period. Note that in

discrete models, the state vector s⃗ represents the discretised account levels while

in continuous models, s⃗ and x⃗ are used interchangeably. For each time period,

if the agent takes the action at the system transitions into a post-decision state

denoted by s⃗att = {sat0,t, sat1,t, ..., satN,t}. Since we assume non-negativity for each

account, if there is any cash shortage, other assets must be sold to offset such

shortage. Similarly, for any deficit in asset accounts, it will be replenished by the

cash account. Once the total wealth of cash and asset accounts is non-positive,

the system transitions into a boundary state s⃗o = {0, ..., 0}.
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7.3.2 Decision variable

At the beginning of each time period, the manager will examine his current state

s⃗t and take an action of selling and/or buying assets. Since all transfers among

asset accounts must be made via the cash account, the actions at time period t can

be denoted by a two-element tuple a⃗t = (⃗ast , a⃗
b
t) where a⃗st = {as1,t, as2,t, ..., asN,t} and

a⃗bt = {ab1,t, ab2,t, ..., abN,t} are the selling amount and buying amount of each asset.

The notation a⃗t and (⃗ast , a⃗
b
t) are used interchangeably in this chapter. Moreover we

let At be the set of all feasible actions at time t and Aπ
t : St → At be the decision

function that determines the action taken on time period t under policy π given

state s⃗t ∈ St. We use Π to represent the set of all possible policies, i.e. π ∈ Π.

7.3.3 Exogenous information process

We let Wt = (∆xt, r⃗t) be the vector of exogenous information available at the end

of time t, where ∆xt is the change of uncontrolled cash flow and r⃗t = {r1,t, ..., rN,t}

is the vector of asset return rates for this time period. Note that the opposite

number of ∆xt can be viewed as the cash demand at period t. Since the most

usual cash flow probability distribution in the literature is Wiener process (e.g.

Miller & Orr (1966), Feng & Muthuraman (2010) and Baccarin (2009)), we use

a normal distribution with parameters (µt, σt) to approximate ∆xt at each time

period. We also bound the distribution of ∆xt below zero as negative cash demand

is not common in the real world.

For the asset return rates, we use the constant conditional correlation multivari-

ate generalised autoregressive conditional heteroskedasticity (CCC-MV-GARCH)

model proposed by Bollerslev (1990) to capture their behaviours. In the CCC-

MV-GARCH model, the return rates for assets are described by

r⃗t = µ⃗a
t + ϵ⃗t,

ϵ⃗t = C
1/2
t e⃗t,

Ct = L
1/2
t PL

1/2
t .

In the above equations, µ⃗a
t is the mean vector for asset return rates, C1/2

t is the

Cholesky decomposition factor of the covariance matrix of r⃗t, e⃗t is a random vector
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with E[e⃗t] = 0 and Var[e⃗t] = IN , IN is a N by N identity matrix, Lt is the diagonal

matrix of conditional variance and P is the conditional correlation matrix.

7.3.4 Cost function

There are normally three types of cost in cash management models: transaction

cost, cash shortage cost and cash holding cost. In our model, we adopt the first two

costs and discard the cash holding cost since it is an opportunity cost representing

the profit renounced by the agent when he decides to hold the resource as cash

instead of investing into assets. By pursuing return on assets, we have already

taken the cash holding cost into consideration implicitly.

Let Γ(⃗at) be the transaction cost associated with action a⃗t = (⃗ast , a⃗
b
t). In our

model, we adopt the proportional transaction cost function with coefficients k+

and k−. The total transaction cost given the action at is:

Γ(⃗at) = k+

N∑
n=1

asn,t + k−
N∑

n=1

abn,t.

The cash shortage cost only occurs when the cash demand exceeds the post-

decision cash holding level i.e. xat
0,t +∆xt < 0. We assume that the cash shortage

cost is proportional to the size of cash deficit with coefficient h. Let Θ(xat
0,t,∆xt)

be the cash shortage cost function, we have

Θ(xat
0,t,∆xt) = max

{
−h(xat

0,t +∆xt), 0
}
.

7.3.5 Transition function

Assume that at the beginning of time period t, the agent’s holdings for all accounts

are x⃗t = {x0,t, x1,t, ..., xn,t} and the agent decides to take the action a⃗t = (⃗ast , a⃗
b
t).

The post-decision state can be written as:
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s⃗a⃗tt =


xa⃗t
0,t

xa⃗t
1,t

...

xa⃗t
N,t

 =


x0,t +

∑N
n=1 a

s
n,t − (1 + k−)

∑N
n=1 a

b
n,t

x1,t − (1 + k+)as1,t + ab1,t

...

xN,t − (1 + k+)asN,t + abN,t

 .

During this time period, the uncontrolled cash flow changes by ∆xt and the

asset accounts grow with rate vector r⃗t. If the post-decision cash holding level

is sufficient to fulfil the cash deficit, the state transitions into next time period.

Otherwise, the agent must sell his assets to offset the cash deficit along with the

corresponding cash shortage cost. For the sake of simplicity, we assume that the

agent is not allowed to choose which asset to sell. The asset will be sold in a

pre-fixed order in the case of a cash shortage.

7.3.6 Objective function

In a cash management problem, the agent wishes to choose the best joint cash

holding and assets investment policy in terms of both his profitability and risk.

Hence we introduce an agent’s utility function U(s⃗t, a⃗t) which is a linear combina-

tion of a profit measure and a risk measure. At time period t, given the state s⃗t

and the action a⃗t the agent’s one-step utility can be written as:

U(s⃗t, a⃗t|∆xt, r⃗t) = (1− λ)ω(s⃗t, a⃗t|∆xt, r⃗t) + λϕ(s⃗t, a⃗t|∆xt, r⃗t).

In the above function, λ indicates the agent’s preference towards to risk, ω(.) is

a function to measure profit while ϕ(.) is a function to measure risk. We use the

expected value of net profit to measure the profitability of this action, i.e.

ω(s⃗t, a⃗t|∆xt, r⃗t) = E

{
N∑

n=1

rn,txn,t − Γ(⃗at)−Θ(xa⃗t
0,t,∆xt)

}
.

Moreover we use the negative of the CVaR proposed by Rockafellar et al.

(2000) to measure the relative risk. The negative CVaR value at probability level

α ∈ (0, 1) is defined as
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ϕ(s⃗t, a⃗t|∆xt, r⃗t) = sup
ρ∈R

ρ−
E
{∑N

n=1 rn,txn,t − Γ(⃗at)−Θ(xa⃗t
0,t,∆xt)− ρ

}−

1− α


where f(.)− = −min{f(.), 0}.

Although the CVaR is not time consistent (see Boda & Filar (2006) and Rudloff

et al. (2014)), Meng et al. (2011) shows that the sum of CVaR of each period pro-

vides a good risk measure in multi-period portfolio optimisation models. Since the

cumulative utility function can be written as a linear combination of the cumu-

lative net profit and the sum of CVaR of each period, we adopt this cumulative

utility function as the objective in our stochastic dynamic optimisation model, i.e.

max
π∈Π

E

{
T∑
t=0

Ut(s⃗t, a⃗t)

}
. (7.1)

7.4 Algorithmic strategies

In this section, we present three approaches to solve the cash-assets management

problem: the first approach is a heuristic algorithm based on linear programming

method. The main idea of this approach is that at each decision epoch, the decision

maker solves a static model assuming that no other action can be taken in future.

The second approach is formulating the problem into a discrete Markov decision

process (MDP) and solving it via the classic backward recursion method. The last

approach is a multi-dimensional version of the SPAR algorithm proposed by Powell

et al. (2004). In this approach, we use Piecewise linear functions to approximate

the values of holding cash or investing in assets. The SPAR algorithm, instead of

predicting the value of each account, updates the gradient of each segment of each

Piecewise linear function. At each epoch, the agent make decisions based on these

gradients instead of the Piecewise linear function values.

7.4.1 A static model and a heuristic approach

Assume that at the current period t, the agent’s holdings for all accounts are

s⃗t = (x0,t, x1,t, ..., xN,t) and the agent wishes to find the decision that maximises
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his utility for the whole planning horizon T = {t, t + 1, ..., T}. In a static model,

the agent must decide his policy for the whole planning horizon and cannot change

his policy afterwards.

Hence the objective function at time t can be written as

max
a⃗t ,⃗at+1,...,⃗aT

Ut→T{s⃗t, a⃗t, a⃗t+1, ..., a⃗T}

where Ut→T (.) is the agent’s cumulative utility function over periods from t to

T . Rockafellar et al. (2000) has shown that the optimisation of CVaR value can

be formulated as a linear programming model. Based on their method, we add

the transaction cost function and the cash shortage cost function into the model

and formulate the static cash holding/investing problem as a linear programming

model.

In this model, the objective is to maximise the agent’s utility from the current

time period t to the terminal period T , which is a combination of a profit measure

function ωt→T and a risk measure function ϕt→T on his assets. We define the

profit measure as the expected net income function, i.e. the expected total income

generated from the assets minus the sum of the total transaction cost and the cash

shortage cost from period t to T . The profit measure function can be written as:

ωt→T = E

{
N∑

n=1

xa⃗t
n,t

(
T∏

τ=t

(1 + rn,τ )− 1

)
−

T∑
τ=t

(
Γ(⃗aτ ) + Θ(xa⃗τ

0,τ ,∆xτ )
)}

Then we let the expected shortfall from time t to T (i.e. the Conditional Value

at Risk) be the risk measure function. According to Rockafellar et al. (2000), this

risk measure can be obtained via solving:

max
ρ∈R,⃗at ,⃗at+1,...,⃗aT

ϕt→T (s⃗t, a⃗t, a⃗t+1..., a⃗T )

s.t. ϕt→T (s⃗t, a⃗t, a⃗t+1, ..., a⃗T ) ≥ ρ− E {ωt→T (s⃗t, a⃗t, a⃗t+1..., a⃗T )− ρ}−

1− α

Note that with the increasing of time periods, this model soon becomes impractical

to solve. For the sake of simplicity, we assume the agent can only take an action

at time t, i.e. we add the constraint a⃗t+1 = ... = a⃗T = 0 to this model. Now we
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can write the linear programming model as:

max
ρ∈R,⃗at∈At

(1− λ)E

{
N∑

n=1

xa⃗t
n,t

(
T∏

τ=t

(1 + rn,τ )− 1

)
−

T∑
τ=t

(
Γ(⃗aτ ) + Θ(xa⃗τ

0,τ ,∆xτ )
)}

+ λϕt→T (s⃗t, a⃗t, a⃗t+1..., a⃗T )

s.t. ϕt→T (s⃗t, a⃗t, a⃗t+1, ..., a⃗T ) ≥ ρ− E {ωt→T (s⃗t, a⃗t, a⃗t+1..., a⃗T )− ρ}−

1− α
I

xa⃗t
0,t = x0,t +

N∑
n=1

asn,t − (1 + k−)
N∑

n=1

abn,t II

xa⃗t
n,t = xn,t − (1 + k+)asn,t + abn,t, n = 1, ..., N III

xa⃗t
n,t ≥ 0, asn,t ≥ 0, abn,t ≥ 0, n = 0, ..., N IV

a⃗t+1 = ... = a⃗T = 0 V
(7.2)

In model (7.2), Constraint (I) is the linear reformulation of CVaR (Rockafellar

et al. 2000). Constraint (II) and Constraint (III) specify the post-decision state

vector x⃗a⃗t . Constraint (IV) guarantees the non-negativity of the post-decision state

vector and the action vector. Constraint (V) represents the simplicity assumption

that the agent can only take actions at time t.

To solve this model numerically, we generate J simulations of ∆xj
τ and r⃗jτ for

j = 1, ..., J, τ = t, t + 1, ..., T . We also need to replace the cash shortage cost

function

Θ(xaτ
0,τ ,∆xj

τ ) = max
{
−h(xa⃗τ

0,τ +∆xj
τ ), 0

}
for τ = t, t+ 1, ..., T

with linear functions. Hence we introduce the new parameter djτ to represent the

cash deficit at time τ of the jth simulation. Note that at time t, Θ(xa⃗t
0,t,∆xj

t) is

equivalent to hdjt subject to djt ≥ 0 and djt ≥ −(xa⃗t
0,t + ∆xj

t). For periods from

t + 1 to T , given that a⃗t+1 = ... = a⃗T = 0, the cost function can be replaced with

hdjτ along with constraints djτ ≥ 0 and djτ ≥ −
∑τ

l=t

{
xa⃗t
0,t +∆xj

l

}
− h

∑τ−1
l=t djl for

τ = t+1, t+2, ..., T . Now the model (7.2) can be equivalently formulated as (7.3).
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max
ρ,⃗at,zj ,d

j
τ ,∀j,∀τ

(1− λ)
1

J

J∑
j=1

{
N∑

n=1

xa⃗t
n,t

(
T∏

τ=t

(1 + rn,τ )− 1

)
−

T∑
τ=t

hdjτ

}

+ λ

(
ρ− 1

(1− α)J

J∑
j=1

zj

)
− Γ(⃗at)

s.t. zj ≥ ρ−

(
N∑

n=1

xa⃗t
n,t

(
T∏

τ=t

(1 + rn,τ )− 1

)
−

T∑
τ=t

hdjτ

)
for j = 1, ..., J I

xa⃗t
0,t = x0,t +

N∑
n=1

asn,t − (1 + k−)
N∑

n=1

abn,t II

xa⃗t
n,t = xn,t − (1 + k+)asn,t + abn,t, for n = 1, ..., N III

xa⃗t
n,t ≥ 0, asn,t ≥ 0, abn,t ≥ 0, for n = 0, ..., N IV

djt ≥ −(xa⃗t
0,t +∆xj

t), for j = 1, ..., J V

djτ ≥
τ∑
l=t

−(xa⃗t
0,t +∆xj

l )− h
τ−1∑
l=t

djl ,

for j = 1, ..., J ; τ = t+ 1, ..., T VI

zj ≥ 0, djτ ≥ 0

for j = 1, ..., J ; τ = t, t+ 1, .., T VII
(7.3)

In Constraint (I), we consider the profit measure function as the gains from

assets minus the cumulative cash shortage penalties from time t to T . We estimate

the expected profit by calculating the net profit in each simulation. Similar to

model (7.2), Constraint (II), (III) and (IV) specify the post-decision states and

ensure the non-negativity of states as well as actions. Constraint (V) and (VI)

describe the cash deficit at time t and the cumulative cash deficit from time t+ 1

to T correspondingly. At last, Constraint (VII) ensures the non-negativity of the

auxiliary variables.

In a static model where the agent can only take actions at time t (and no

other action can be taken afterwards), the optimal decision a∗t can be found by

solving model (7.3). Now we propose a heuristic approach that provides a dynamic

solution allowing the agent to take actions at any time period. The main idea of

this approach as shown in algorithm (4) is repeatedly solving model (7.3) at each
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period in the whole planning horizon assuming that no action can be taken in

future. This approach will be used in the next section as a baseline.

Algorithm 4 The heuristic approach
Step 1: Generate J random numbers/vectors as the simulated cash

changes and asset return rates for the whole planning horizon:
∆xj

t , r⃗
j
t for t = 1, ..., T, j = 1, ..., J .

Step 2: Observe the current state s⃗t, obtain the static solution by solving:

a⃗∗t = arg max
a⃗t∈At

Ut→T

{
s⃗t, a⃗t|⃗at+1 = ... = a⃗T = 0,∆xj

τ , r⃗
j
τ ,∀j = 1, ..., J, τ = t, ..., T

}
Step 3: Calculate the post-decision state s⃗

a⃗∗t
t .

Step 4: Observe the cash changes and asset return rate ∆xt, r⃗t, calculate
the state for next time period s⃗t+1.

Step 5: If t <= T , update t := t+ 1, s⃗t := s⃗t+1 and go to Step 2
else Return a⃗∗t ,∀t = 1, ..., T .

7.4.2 The discrete Markov decision process approach

If we discretise the state space and the decision space, the cash management prob-

lem can be formulated as a discrete Markov decision process. Consider an agent

managing one cash account and n asset accounts and each account is discretised

into m states. Such discretisation requires mn+1 states in total. Now we use the

backward dynamic programming method to find the policy that maximises the

cumulative utility function (7.1) over the finite planning horizon by solving the

Bellman equation:

Vt(s⃗t) = max
a⃗t∈At

{
Ut(s⃗t, a⃗t) + E

[
V̂t+1(x⃗t+1)|s⃗t, a⃗t

]}
= max

a⃗t∈At

Ut(s⃗t, a⃗t) +
∑

s⃗t+1∈St+1

p(s⃗t+1|s⃗t, a⃗t)V̂t+1(s⃗t+1)

 (7.4)

where St+1 is the set of all possible discretised state space at time t+ 1.

In this approach, we create two look-up tables: the pre-decision state table and

the post-decision state table.

Then we recursively update the state value for each table for each period. For

each post-decision state, we sample 300 paths to represent the company’s different

financial performance. Based on these samples, we calculate the expected return,
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the expected shortfall (i.e. CVaR) and the agent’s utility for the current time

period. The post-decision state value is updated via the following equation:

Vt(s⃗
a⃗t
t ) = Ut(s⃗

a⃗t
t ) + E

{
V̂t+1(x⃗t+1|s⃗a⃗tt )

}
≈ Ut(s⃗

a⃗t
t ) +

1

300

300∑
j=1

V̂t+1(s⃗t+1,j)
(7.5)

where x⃗t+1,j is company’s accounts holding-levels at time t+1 in the jth path. For

the sake of simplicity, we round it to the nearest discretised state s⃗t+1,j.

Once the table for the post-decision state value at time t is updated, it is easy

to get the pre-decision state value table at the same time period by solving

Vt(s⃗t) = max
a⃗t∈At

{
−Γ(⃗at) + Vt(s⃗

a⃗t
t )
}
. (7.6)

7.4.3 The approximate dynamic programming approach

Since the objective of our model is to maximise the cumulative utility function

over the planning horizon, at each time period, the optimal action can be written

as:

a⃗∗t(s⃗t) = arg max
a⃗t∈At

Ut(s⃗t, a⃗t) + E{V̂t+1(s⃗t+1)}, t = 0, ..., T.

Although the the MDP method can be used to solve this model, due to the well-

known curses of dimensionality, it quickly becomes impractical when the number

of accounts increases or the discretisation level of state space gets finer.

In this section, we present a double-pass separable Piecewise linear approximate

dynamic programming approach, which is a multi-dimensional version of the SPAR

algorithm proposed by Powell et al. (2004). The main idea of this approach is to

construct an approximating function, learning the gradients of each cash/asset

holdings, i.e. the marginal utility gains for each investment over iterations.

Post-decision state

A typical Q learning approach requires the estimation of each state-action pair,

which is a form of post-decision state. Note that the agent’s utility function,

namely the objective function, is a linear combination of the expected returns on
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assets accounts ω(st) and the expected shortfall ϕ(st), i.e. the CVaR value. Since

both ω(st) and ϕ(st) have the property of translation-equivariant, i.e. with respect

to a random function f r(.) and a deterministic function fd(.) we have

ω(f r + fd) = ω(f r) + fd,

ϕ(f r + fd) = ϕ(f r) + fd,

the utility function can be rewritten as a function of the post-decision state:

Ut(s⃗t, a⃗t) = (1− λ)ω(s⃗t, a⃗t) + λϕ(s⃗t, a⃗t)

= (1− λ){ω(s⃗a⃗t)− Γ(⃗at)}+ λ{ϕ(s⃗a⃗tt )− Γ(⃗at)}

= −Γ(⃗at) + Ut(s⃗
a⃗t
t ).

Now the optimal action can be written as a function of the post-decision state:

a⃗∗t = arg max
a⃗t∈At

{
−Γ(⃗at) + E(Vt(s⃗

a⃗t
t ))
}

(7.7)

where

Vt(s⃗
a⃗t
t ) = Ut(s⃗

a⃗t
t ) + max

a⃗t∈At

{
−Γ(⃗at+1) + E(V̂t+1(s⃗

a⃗t+1

t+1 ))
}
.

Separable PWL function approximation

To solve function (7.7), it is necessary to approximate the post-decision state value

Vt(s⃗
a⃗t
t ). It is apparent that Vt(s⃗

a⃗t
t ) is a concave function at each accounts holding-

level due to the concavity of CVaR measure (see Rockafellar et al. (2000)). In

Figure 7.1, we plot the post-decision state value at t1 with regard to each account

size in a two time period model with one cash account and two asset accounts. In

this experiment, the agent starts at a fixed initial position s⃗t0 = [10000, 1000, 1000]

and takes a random action at t1 and the optimal action at t2. Since at1 is obtained

randomly, the system visits random post-decision states at the first period. Then,

with only one time period left, it can be considered as a static model and the

optimal action taken by the agent can be obtained via solving the model (7.3).

Figure 7.1 illustrates the concavity of the post-decision state values with respect
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(a) Vt(S
at
t ) by x0 level (b) Vt(S

at
t ) by x1 level (c) Vt(S

at
t ) by x2 level

Figure 7.1: Post-decision state value at t1 in a two-period model

(a) True state value (b) Separable PWL functions
approximation

Figure 7.2: Separable PWL functions approximate the true state value

to each account holding level.

In the light of this, we approximate Vt(s⃗
a⃗t
t ) using separable and additive Piece-

wise linear functions, each of which is a min-affine function of the correspond-

ing account holding-level. To be more specific, we use the min-affine function

minm=1,...,M

{
btm,nx

a⃗t
n,t + ctm,n

}
to represent the ‘contribution’ of the nth account to

the post-decision state value and we use the sum of each ‘accounts contribution’

to approximate the post-decision state value. Figure 7.2 illustrates the basic idea

of this approximation. This approximate function can be written as

E{Vt(s⃗
a⃗t
t )} ≈

N∑
n=1

min
m=1,...,M

{ctm,n + btm,nx
a⃗t
n,t}.

Substituting this approximate function into equation (7.7), the decision func-

tion at each iterations can be written as

a⃗∗t = arg max
a⃗t∈At

{
−Γ(⃗at) +

N∑
n=0

min
m=1,...,M

{
btm,nx

a⃗t
n,t + ctm,n

}}
. (7.8)
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The optimal action vector can be obtained by solving the linear programming

model (7.9).

max
a⃗t∈At

−
N∑

n=1

(
k+asn,t + k−abn,t

)
+

N∑
n=0

yn,t

s.t. x0,t +
N∑

n=1

(asn,t − (1 + k−)abn) ≥ 0 I

xn,t − (1 + k+)asn,t + abn,t ≥ 0,

for n = 1, ..., N II

ctm,0 +

(
x0,t +

N∑
n=1

(asn,t − (1 + k−)abn)

)
btm,0 ≥ y0,t,

for m = 1, ...,M III

ctm,n +
(
xn,t − (1 + k+)asn,t + abn,t

)
btm,n ≥ yn,t,

for m = 1, ...,M ;n = 1, ..., N IV

asn,t, a
b
n,t ≥ 0, n = 1, ..., N V

(7.9)

Constraint (I) and (II) specify that the post-decision states (cash holding lev-

els and assets levels) must remain non-negative. Moreover the second term in

equation (7.8) (i.e. maxa⃗t

{∑N
n=0minm btm,nx

a⃗t
n,t + ctm,n

}
) can be reformulated as

maxa⃗t
∑N

n=0 yn,t under Constraint (III) and Constraint (IV). Constraint (V) en-

sures the non-negativity of action vectors.

Note that the parameters ctm,n for m = 1, ...,M ;n = 0, ..., N do not affect the

action vectors a⃗t and hence can be dropped from the model. In other words, we

do not need the value of the approximate function, but only the gradient btm,n in

each min-affine function.

Double-pass separable PWL ADP algorithm

Algorithm (5) describes the double-pass separable PWL ADP algorithm. In Step 1,

we discretise each accounts holding-level into M segments with the same increment

∆m. (In practice, we set M = 100 unless specified otherwise). Because of the

concavity of the approximate function, we know that btn,m ≥ btn,m+1 for m =

1, ...,M − 1. In other words, all the gradients must be decreasing in each account
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dimension. In the initialisation step, we set all gradient parameters to zeros. We

also fixed the total iteration number I and the total time period number T for the

planning horizon in this step.

Algorithm 5 The double-pass separable PWL ADP algorithm
Step 1: Initialisation:

Step 1.1: Set the total iteration number I, the total segment number M
for each accounts and the total number of time periods T .

Step 1.2: Set initial estimates of the gradients to zeros for each segment m
of the post-decision cash/assets holding level btm,n = 0, ∀n,m, t.

Step 1.3: Set the iteration index to 1, i.e. i = 1.
Step 2: Path sampling

Step 2.1: Generate a starting state: s⃗t0
Step 2.2: Sample/Observe ∆xt,(i), r⃗t,(i), ∀t.

Step 3: The forward pass: set t = 1, s⃗t = s⃗t0 .
Step 3.1: Solve a∗t = argmaxa⃗t∈At

{
−Γ(⃗at) + minm=1,...,M

{
btm,nx

a⃗t
n,t + ctm,n

}}
;

Step 3.2: Calculate and record the post-decision state s⃗a⃗tt ;
Step 3.3: Observe the next pre-decision state s⃗t+1 given ∆xt,(i), r⃗t,(i);
Step 3.4: Update the state and time index: s⃗t := s⃗t+1, t := t+ 1.
If t ≤ T go to Step 3.1, else go to Step 4.

Step 4: The backward pass: set t = T, V̂T+1(s⃗
a⃗t+1

T+1) = 0,∀s⃗a⃗T+1

T+1 .
Step 4.1: Retrieve the post-decision state s⃗a⃗tt .
Step 4.2: Get Ut(s⃗

a⃗t
t ) using the simulation method and calculate the new

observed post-decision state value:
Vt(s⃗

a⃗t
t ) = Ut(s⃗

a⃗t
t ) + maxa⃗t+1∈At+1

{−Γ(⃗at+1) + V̂t+1(s⃗
a⃗t+1

t+1 )}
Step 4.3: For n = 0, ..., N , do

Step 4.3.1: Generate state s⃗a⃗tt,n+ by replacing xa⃗tt,n with x⃗a⃗tt,n+∆m;
Generate state s⃗a⃗tt,n−by replacingxa⃗tt,n withx⃗a⃗tt,n−∆m;

Step 4.3.2: Calculate the post-decision state value Vt(s⃗
a⃗t
t,n+), Vt(s⃗

at
t,n−)

and the corresponding segment index m∗.
Step 4.3.3: Calculate the new gradients b̃tm∗+1,n and b̃tm∗,n.

b̃tm∗+1,n = (Vt(s⃗
a⃗t
t,n+)− Vt(s⃗

a⃗t
t ))/∆m

b̃tm∗,n = (Vt(s⃗
a⃗t
t )− Vt(s⃗

a⃗t
t,n−))/∆m

Step 4.3.4: Calculate b̂tm∗,n = (1− θtm∗,n)b
t
m∗,n + θtm∗,nb̃

t
m∗,n and

b̂tm∗+1,n = (1− θtm∗+1,n)b
t
m∗+1,n + θtm∗+1,nb̃

t
m∗+1,n

Step 4.3.5: Update the gradients using the projection function.
i.e. btm,n = Ω(btm,n, b̂

t
m∗,n, b̂

t
m∗+1,n),∀m.

Step 4.4: Update time index: t := t− 1.
If t ≥ 1 go to Step 4.1, else go to Step 5.

Step 5: Update the iteration index: i := i+ 1.
If i <= I go to Step 2, else Return btm,n, ∀t,∀n,∀m.

In Step 2, we generate the path for the whole planning horizon. To begin with,

we fix a singe initial state s⃗t0 . Then we generate the exogenous information for

the path i, i.e. the stochastic cash flows ∆xt,(i) and the return rate vector r⃗t,(i)

for t = 1, ..., T . Note that at time t, the decision maker only has access to the
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previous information (∆x1,(i), r⃗1,(i)), ..., (∆xt−1,(i), r⃗t−1,(i)).

Now we update the gradients for each account holding level using both the

forward pass and the backward pass. For the forward pass, as described in Step 3,

at the beginning of each time period, the agent observes his current holding level

for each account s⃗t = (x0,t, ..., xN,t). Then a decision is made by solving model

(7.9) given the current gradient estimation and then we record the post-decision

state. Next, given the exogenous information (∆xt,(i), r⃗t,(i)), the system transitions

into the pre-decision state for next time period.

For the backward pass, we first set the value for all states after the end of

planning horizon to zero. Then we update the gradient parameters backwards.

Specifically, we retrieve the post-decision state s⃗a⃗tt and calculate the new observed

state value using:

Vt(s⃗
a⃗t
t ) = Ut(s⃗

a⃗t
t ) + max

at+1∈At+1

{−Γ(⃗at+1) + V̂t+1(s⃗
a⃗t+1

t+1 )}

where Ut(s⃗
a⃗t
t ) is the estimation on agent’s utility value for time t obtained via

Monte Carlo method. Since our goal is to update the gradient of the state value

with respect to each account holding level instead of the state value itself, we also

need to observe the values of adjacent states. For each account dimension, there

are two adjacent states whose value we need to observe. For example, the post-

decision state s⃗a⃗tt on the nth dimension has two adjacent states s⃗a⃗tt,n+ and s⃗a⃗tt,n−. If

the state s⃗a⃗tt is in the mth segment on the nth dimension, we can obtain s⃗a⃗tt,n+ and

s⃗a⃗tt,n− by replacing xa⃗t
t with xa⃗t

t +∆m and xa⃗t
t −∆m respectively. The new observed

gradients b̃tm,n and b̃tm+1,n become

b̃tm+1,n =
Vt(s⃗

a⃗t
t,n+)− Vt(s⃗

a⃗t
t )

∆m
,

b̃tm,n =
Vt(s⃗

a⃗t
t )− Vt(s⃗

a⃗t
t,n−)

∆m
.

With these new observed gradients, we update the gradient parameters via

b̂tm,n = (1− θtm,n)b
t
m,n + θtm,nb̃

m
n,t, ∀m, ∀n

where θtm,n is the corresponding stepsize. In this process, due to the stochasticity of
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the data, the estimating function might lose the concavity, thus we must perform

a projection operation to ensure the function’s concavity. In our study, we obtain

the projection function suggested by Nascimento & Powell (2010). The projection

ensures concavity by forcing the newly updated gradients btm∗,n to be greater than

or equal to btm∗+1,n and forcing other gradients that violating the function’s con-

cavity to be equal to btm∗,n or btm∗+1,n. This projection operation can be described

as:

Ω(btm,n, b̂
t
m∗,n, b̂

t
m∗+1,n) =



b̂t
m∗,n+b̂t

m∗+1,n

2
if m = (m∗ or m∗ + 1)

and b̂tm∗,n < b̂tm∗+1,n

b̂tm∗,n if m < m∗

and btm,n < b̂tm∗,n

b̂tm∗+1,n if m > m∗ + 1

and btm,n > b̂tm∗+1,n

btm,n otherwise

.

Stepsize rules

The stepsize indicates how much we adjust our estimate of gradients after each

new observation. The choice of stepsize rule affects the convergence behaviour of

an ADP algorithm to a large extent. In our study, three different stepsize rules

will be evaluated. First of all, we evaluate the constant stepsize rule, i.e. at each

iteration we use a fixed stepsize regardless of the iteration index or the state space.

We also experiment with the harmonic stepsize rule

θi =
o

o+ i− 1
(7.10)

where o is a constant number and i is the current iteration number. This stepsize

rule suggests high values at the first few iterations which will drop very quickly

later.

Both the constant stepsize rule and the harmonic stepsize rule give one global

stepsize value for all gradients. Since the estimate of gradient with different con-

vergence rate requires different stepsize, one global stepsize value might not suit
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all gradients btm,n. Thus we also adopt the stochastic stepsize rule proposed by

George & Powell (2006). It is given by

θs⃗i = 1−
(
σ̄s⃗
i

)2
δ̄s⃗i

where i is the number of visits to state s⃗,
(
σ̄s⃗
i

)2 is the estimate of the variance of

the observation error and δ̄s⃗i is an estimate of the total squared variation between

the observation and the estimate. These are obtained via the following procedure:

ν s⃗
n =

ν s⃗
i−1

1 + ν s⃗
i−1 − ν̄

β̄ s⃗
i =

(
1− ν s⃗

i

)
β̄ s⃗
i−1 + ν s⃗

i

(
X̂n − θ̄n−1

)
,

δ̄s⃗i =
(
1− ν s⃗

i

)
δ̄s⃗i−1 + ν s⃗

i

(
X̂n − θ̄n−1

)2
,

λ̄s⃗
i =

(
1− θs⃗i

)2
λ̄s⃗
i−1 +

(
θs⃗i
)2

,(
σ̄s⃗
i

)2
=

δ̄s⃗i −
(
β̄ s⃗
i

)2
1 + λ̄s⃗

i−1

.

This rule gives each gradient a stepsize value based on the visits of the corre-

sponding states, the estimate variance of the observation error as well as the total

squared variation between the observation and the estimate.

7.5 Numerical experiments

In this section, we conduct numerical experiments to study the performance of the

double pass PWL ADP approach (we will refer it as the ADP in the rest of this

chapter) in the cash management problem described in Section 7.2. Firstly we

describe the instances considered and the data we obtained. Then we study the

convergence behaviours of the ADP algorithm, mainly focusing on the impact of

stepsize rules and discretisation levels. After that, we compare the ADP algorithm

with two alternative algorithms, the heuristic approach where the agent makes the

decision at each epoch assuming that no other actions will be taken afterwards,

and the discrete Markov decision approach, where we discretise the state space

and the action space and then solve the maximisation problem using the classic

backward dynamic programming method. All the algorithms are programmed in
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python 3.7.6 on a PC with 2.5 GHz Quad-Core Intel Core i7 and 8 GB memory.

7.5.1 Problem instances

In the numerical experiments, we propose the following problem instance: the

agent manages one cash account and four asset accounts. The cash account has

zero profitability while the asset price fluctuates at each working day. For each

time period, the agent cares about both his profitability and the risk, in other

words, his utility function for each time period consists of the expected return and

the CVaR value. The goal is to find the best strategy to maximise his cumulative

utility over 5 working days.

We assume that at each working day, the agent has to meet the cash de-

mand which is normally distributed with parameters (µd
t = 100, σd

t = 50) and

is bounded above zero. Apart from holding as cash, the agent can also invest

into four stocks: AAL, BAC, F and LYG. We obtain the weekly return rates

of these four stocks (from 4th-Jan-2010 to 3th-Jan-2020) from Yahoo! Finance

(https://finance.yahoo.com/). Then we assume the CCC-MV-GARCH model can

capture the return rates behaviours and calculate the parameters µt and H
1/2
t

using the historical data. After that, we use this model to generate training

data set as well as the policy evaluation data set. At last we set the buying

cost kb and the selling cost ks to 0.3% and 0.6% respectively. We also choose

St0 = [10000, 1000, 1000, 1000, 1000] as the initial position and h = 50% as the

cash shortage penalty coefficient.

7.5.2 Convergence behaviour of the ADP algorithm

Now we study the convergence rate of the ADP algorithm in terms of stepsize rules

and discretisation levels. To begin with, we use the CCC-MV-GARCH model to

generate a training data set and a policy evaluation data set. Then for each

experiment we train the gradients for 1, 000 iterations using the training data set.

After every 5 iterations, we retrieve the policy and examine its performance using

the evaluation data set. The performance of a policy is measured by the average

simulated objective value of 20 sample paths.

Figure 7.3(a) shows the convergence speed of the ADP algorithm with constant
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(a) Constant learning rate

(b) Harmonic learning rate

Figure 7.3: ADP algorithm with deterministic stepsize rule

learning rates. In our experiments, we choose three different constant learning

rates θ = 0.05, θ = 0.1 and θ = 0.15 and examine policies’ performance every 5

iterations. It can be seen that the algorithm with θ = 0.05 has the lowest conver-

gence rate and the one with θ = 0.15 outperforms others in terms of convergence

speed. Moreover the performance of all three learning rates are quite similar once

they converge.

Instead of a fixed stepsize value, the harmonic stepsize rule gives a stepsize

based on the number of iterations. The rationale behind the harmonic rule is

that in the early iterations, the observations differ from the estimate to a large

extent and thus the algorithm requires a large stepsize. In the later iterations,
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Figure 7.4: Convergence behaviour of ADP with different stepsize rules

the estimate gets closer to the true value and the algorithm needs a small stepsize

to prevent over-sensitivity to new observations. However the harmonic stepsize

rule needs the designer to decide how fast the stepsize value diminishes by tuning

the parameter a in equation (7.10). In Figure 7.3(b), we experiment with three

different parameters: o = 1, o = 10 and o = 100. It can be seen that with

parameter o = 1, the stepsize diminishes quickly and it converges much slower

than other two lines. The harmonic stepsize rules with parameter o = 10 and

o = 100 have very similar performance.

Both the constant stepsize rule and the harmonic stepsize rule requires the

designer to predict parameters a priori. Moreover they give one global stepsize

for all gradient estimates that need to be updated. The stochastic stepsize, on

the other hand, can avoid these drawbacks by assigning a stepsize value to each

estimate based on its performance. We adopt this stepsize rule and compare it

with other stepsize rules with the best performance (for constant learning rate, we

set θ equal to 0.15 and for harmonic learning rate we set o = 100). The result is

shown in Figure 7.4. It can be seen that the ADP approach with stochastic stepsize

rule has a very similar performance with the ADP approach with the harmonic

stepsize rule (o = 100). Both of them outperform the ADP algorithm with the

constant learning rate in terms of convergence rate. All three stepsize rules gives

similar values once they converged.

In the ADP algorithm, we discretise each dimension of the state space into

125



Figure 7.5: Convergence behaviour of ADP with different discretisation level

M segments and then estimate the gradient of the state value in each segment.

The discretisation level is also a vital factor of the convergence behaviour and

the algorithm’s accuracy. We now examine the ADP algorithm with different

discretisation levels (M = [5, 10, 50, 100]) as in Figure 7.5. We observe that the

coarse discretisation levels (M = 5,M = 10) converge quickly but reach a lower

value eventually than the fine discretisation levels (M = 50,M = 100).

7.5.3 Comparison of algorithms

In this section, we compare the ADP algorithm with two alternative algorithms in

terms of the cumulative utility as well as the cumulative net profits for the whole

planning horizon. The heuristic approach, as discussed in Section 7.4.1, solves a

static model via linear programming method at each decision epoch assuming that

no other action can be taken in future. This algorithm takes around 8 seconds to

solve a model with five time periods.

In the MDP approach, we discretise the state space along with the action

space and then solve the dynamic model using the classic backward method. The

discretisation level is one of the major factors that influences the MDP algorithm’s

solution time and the accuracy. To determine the discretisation level in the MDP

method, which will be used as one of the benchmarks for the ADP algorithm,

we experiment on 5 different discretisation levels, i.e. M is set to be equal to

(4, 5, 6, 7, 8). For each discretisation level, we use the same set of training data
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Table 7.1: Comparison on discretisation levels in MDP

Discretisation
level

Number of
states

Solution
time (m)

Cumulative
utility

Mean Std.
dev.

4 10,240 1.9 348.5 66.9
5 31,250 13.4 382.2 61.5
6 77,760 47.6 389.5 61.8
7 168,070 148.3 409.1 69.1
8 327,680 491.4 421.1 67.5

Table 7.2: Comparison on approaches

Algorithm Solution
time (m)

Cumulative
utility

Net profits
(£)

Mean Std.
dev. Mean Std.

dev.
Heuristic approach 0.14 403.1 231.1 1644.9 4125.7
MDP (discretisation level 8) 491.4 421.1 67.5 881.8 1189.2
ADP (150 iterations) 12.7 444.5 164.5 1224.6 2824.6
ADP (1,000 iterations) 79.3 447.8 177.6 1344.1 3048.0

to calculate the post-decision state value Vt(s⃗
a⃗t
t ) for t = 1, ..., 5. After that, we

examine their performance using the same set of evaluation data. The performance

is measured by the average simulated utility value of 1000 sample paths. Table

7.1 shows the experiment result for each discretisation level in the MDP approach.

When the discretisation level (M) changes from 4 to 8, the number of states vary

from 10, 240 to 327, 680 and the solution time increases from 1.9 minutes to around

8 hours. The objective value also rises as the discretisation level gets finer. When

the discretisation level increases from 4 to 8, the agent’s utility value improves by

20.8%.

Now we compare the performance of four algorithms: the heuristic approach,

the MDP approach at discretisation level 8, the ADP algorithm after 150 iterations

and the ADP algorithm after 1000 iterations. For each ADP approach, we use the

stochastic stepsize rule and set the discretisation level to M = 100. Table 7.2

shows the average agent’s utility value along with the average net profit of 1000

samples following these four approaches. Figure 7.6 shows the distribution of these

samples in terms of both agent’s utility and net profit.
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(a) Cumulative utility distributions (b) Net profits distributions

Figure 7.6: Policy evaluation on different algorithms

We observe that both the ADP approach after 150 iterations and the ADP

after 1000 iterations have better performance than the alternative approaches in

terms of agent’s utility. The former one outperforms the heuristic approach and

the MDP approach (discretisation level 8) by 10.3% and 5.6% respectively while

the latter one outperforms the alternatives by 11.1% and 6.3%.

In terms of the net profit, the heuristic approach gives a policy with the highest

expected value but also the highest volatility. The MDP approach, on the other

hand, has the lowest expected profit but with the highest stability. The ADP

approaches give more balanced results: a policy with expected profit higher than

the MDP approach and lower volatility than the heuristic approach. Moreover,

as shown in Figure 7.6(b), most samples (690 out of 1000) following the policy in

the MDP approach generate profits that lie in the interval (0, 2500]. Meanwhile

the heuristic approach, the ADP after 150 iterations and the ADP after 1000

iterations have 268, 340 and 310 samples with profit contained in that interval.

We also identify that 18 out of 1000 samples following the policy in the heuristic

approach lose more than £5000 comparing to 5 out 1000 in ADP approach after

150 iterations, 6 out of 1000 in ADP approach after 1000 iterations and 0 out of

1000 in the MDP approach.

7.6 Extension to a greater number of assets

In order to test the ADP algorithm, we synthetically generate 20 assets. The return

rate of each asset is assumed to be normally distributed with parameters (µn
t , σ

n
t )
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where n is the index of asset. To simulate different assets, we generate µn
t and σn

t

for n = 1, 2, ..., 20 from a uniform distribution over the interval (0.001, 0.01). The

average weekly returns on the stocks AAL, BAC, F and LYG vary from 0.00103 to

0.00811. Hence we believe the interval (0.001, 0.01) is a good approximation of the

real world. Other parameters (namely the cash demand distribution, the trans-

action cost parameters and the shortage penalty coefficient) remain unchanged.

The goal is to determine if the ADP algorithm can solve problems with a greater

number of assets.

We conduct four series of experiments where the agent is assumed to manage

5 asset accounts, 10 asset accounts, 15 asset accounts and 20 asset accounts re-

spectively while managing the cash account. All the assets available to the agent

are randomly chosen from the 20 synthetic assets. For each setting, we repeat 300

times and report the average solution time and the corresponding results in terms

of the objective function (i.e. agent’s cumulative utility). The result is shown in

Figure 7.3. We also report the results from the heuristic method as a benchmark.

Note that the MDP method is not practical in these settings due to the curse of

dimensionality.

Table 7.3: Comparison on problem sizes

Number of assets Algorithm Solution
time (m)

Cumulative
utility

Mean Std.
dev.

5 assets Heuristic approach 0.18 643.55 71.43
ADP (150 iterations) 16.60 715.27 31.93
ADP (1,000 iterations) 136.63 743.57 34.31

10 assets Heuristic approach 0.44 670.09 66.10
ADP (150 iterations) 45.69 729.44 25.92
ADP (1,000 iterations) 364.59 734.88 27.68

15 assets Heuristic approach 0.93 687.69 67.21
ADP (150 iterations) 91.07 739.13 23.63
ADP (1,000 iterations) 738.56 738.25 24.37

20 assets Heuristic approach 1.56 685.33 63.47
ADP (150 iterations) 154.69 740.76 22.14
ADP (1,000 iterations) 1220.51 741.83 22.45

It can be seen that with the increase of the asset account number, the solu-
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tion time of the ADP algorithm grows fast. Specifically, our experiments suggest

the solution time increases super-linearly with the number of assets, but less than

exponentially. Our experiments show that in the case of 20 assets, the ADP al-

gorithm can still solve the problem within reasonable time. The ADP algorithm

with 1000 iterations can solve the problem with 20 assets within 21 hours while

the ADP algorithm with 150 iterations only takes less than 3 hours. However

these two methods provide very similar results in terms of the objective function,

both outperform the heuristic approach to a large extent(8.09% and 8.24% respec-

tively in terms of the average value of the objective function). Moreover, the ADP

algorithms provide strategies with more stability (i.e. less standard deviations)

compared with the heuristic approach. This suggests that in this experimental

settings, the agent should use the ADP algorithm with 150 iterations to obtain

his cash-asset management strategy. Due to the limited time and computational

resources, we only experiment the ADP algorithm on the problem with 20 assets.

The future work includes testing the algorithm on a more-assets model and ex-

amining the accounts limitation given a certain solution time. It would also be

interesting to explore the methods to accelerate the ADP algorithm in dynamic

cash-asset management models.

7.7 Conclusion

In this chapter we proposed a cash-assets allocation problem where the agent

manages one cash account and a number of asset accounts over a finite planning

horizon. We assumed that the agent wishes to maximise his net profit and minimise

his policy’s risk. In this model, we used the expected profit value as the profit

measure and the sum of the conditional value-at-risk for each period as the risk

measure. Then we proposed three approaches to solve this cash-assets management

problem, namely the heuristic approach in which the agent makes decisions at each

epoch assuming that no other action will be taken in future, the discrete Markov

decision process approach and the approximate dynamic programming approach.

Through the numerical studies, we observed that the heuristic approach requires

the least computation time but returns the lowest objective value (i.e. agent’s
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cumulative utility). This approach gives a policy with the highest expected value of

the net profit, but also takes the highest risk. The MDP approach at discretisation

level 8 gives a policy with the most stable performance and the lowest expected

profit. Moreover it takes significantly more solution time (around 8 hours) than

other approaches. It will soon be impractical once the discretisation level gets

finer. The ADP algorithm gives a policy with better performance than other

approaches in terms of the objective value within reasonable solution time. At

last, we examined if the ADP algorithm can solve problems with high dimensions.

We generated a synthetic dataset describing 20 different assets. Then we used

both the heuristic method and the ADP method to solve the problem where the

agent is assumed to manage 5 assets, 10 assets, 15 asses and 20 assets respectively

while managing one cash account. The result shows that although the solution

time increases quickly with the increase of model’s dimensionality, the model with

20 assets still remains solvable. The heuristic method can solve the model rapidly,

but provides worse results in terms of the objective function.
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Chapter 8

Conclusion and Critical

Reflections

8.1 Conclusion of the thesis

This thesis discusses three novel cash management models: (a) the model where

the agent manages one cash account and one asset account, (b) the model where

the agent manages two accounts and is allowed to take loans from financial in-

termediates, and (c) the model where the agent manages one cash account and

multiple asset accounts.

In the study of the two accounts cash management model, we discuss the

scenario where the asset generates an income that is the source of cash inflows and

the scenario where the volume of the asset account grows at a fixed rate instead

of generating the cash income. We formulate both problems as discrete MDP

models and solve them via the classic backward recursion method. In addition,

we show that the insolvency probabilities can also be obtained using the backward

recursion method. Through a series of numerical experiments, we observe that

the optimal cash policies of this two accounts model possess the two-threshold

two-target form and can be seen as the two dimensional versions of the classic

(L, l, u, U) policy. Our study shows that generally the agent tends to hold less

cash with a larger asset account. This is because a larger asset account generates

higher cash incomes which can be used to offset cash demand. Hence the agent

has less motivation to hold cash. However when the system occupies balanced
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states where the income generated from the asset account approximately equals

the expected cash demand, the agent tends to adopt a ‘safer’ cash policy (i.e.

starting to replenish cash balance at higher cash trigger level and increasing the

target cash level). We believe this is because in balanced states the insolvency risk

of the company is sensitive to the cash policy. As a result, the agent in these states

wishes to hold more cash to improve the company’s survival probability. In the

unbalanced states where the cash demand overweights the income or the income

dominates the cash demand, cash policies have litter impact on the insolvency risk

and the agent wishes to hold less cash to harvest the profit as much as possible.

In the cash-asset-loan model, we introduce loan opportunities to the cash man-

agement model. We assume that only one type of loan is available on the financial

market and the agent can only take the loan when previous debt is paid off. We

propose two approaches to solve this model. The first approach is to formulate the

model as a high dimensional discrete MDP and solve the model via the backward

recursion method. We also show that with small modification it can be used to

solve the problem with multiple types of loan. However the computational cost

(i.e. solution time and the computational memory) increases dramatically due to

the well known curse of dimensionality. The second approach is a heuristic based

on the policy improvement. In this approach, we start with a model where the

agent has no access to loans. Note that this model is equivalent to the previous

two accounts model that can be easily solved via the backward recursion method.

Then we add one loan opportunity to the model, that is we assume a bank offering

one loan option to the agent. This offer expires after that time period regardless

of the agent’s loan action. We show that this one loan model can be easily solved

given the results from the no loan model. We also show that the model with any

number of loans can be solved based on the results from the model with one less

loans. Then we keep adding one loan option into the model until the state val-

ues or policies does not change significantly. Conducting a number of numerical

experiments, we show that the second approach performs strongly while requiring

much less computational cost. We also study the loan policies under different loan

conditions (i.e. loan interest rate, loan age and loan size). The results reveal that

lower loan interest rate or longer loan age result in higher profits but the company
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does not always benefit from the loan with a larger size.

At last we present a model where the agent holds a cash account and a portfolio

(i.e. a combination of multiple assets). In this model we assume the agent wishes

to accrue profits while controlling the risk of his policies. We use the expected net

profit as the profit measure and use the conditional value at risk (CVaR) as the

risk measure. Although the CVaR is not time consistent, the cumulative CVaR

over multiple periods also provides a good risk measure (see Meng et al. (2011)).

We then propose three approaches to solve this model: (a) a heuristic based on the

static model, (b) the discrete MDP approach, and (c) the approximate dynamic

programming (ADP) approach with Piecewise linear approximations. We find

that the heuristic method requires lowest solution time and provides the lowest

objective value. The discrete MDP approach returns a higher objective value but

takes much more computational costs. The performance of the discrete MDP

approach can be improved by a finer discretisation level but the computational

costs also climb dramatically due to the curse of dimensionality. Compared with

these approaches, the ADP approach performs strongly in our experiments within

reasonable solution time. We also examine if the ADP algorithm can be used to

deal with models with high dimensionality. The result shows that although the

solution time of the ADP algorithm climbs quickly with the increase of problem’s

dimensionality, the cash management model with 20 assets still can be solved

within reasonable time.

8.2 Research limitations and future research

In this thesis, we proposed three novel cash management models. However there

are many aspects in these models that can be improved upon due to time limita-

tions, limited computational resources, and restricted access to data.

In the two accounts cash management model, we extend the traditional model

by the inclusion of a second asset. This asset generates an income which is con-

sidered as the source of cash inflows. However it is assumed that this income is

deterministic and proportional to the asset. We believe this study could be ex-

tended by the inclusion of a more detailed analyses on the asset’s profitability. For
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example, one could adopt the forecasting techniques to model the profitability of

the asset account and obtain a more accurate estimation on cash inflows. Lead

time is also essential in the study of cash management strategies. In our work,

we assume that if the agent decide to sell his asset, the cash balance can be re-

plenished immediately. It is also assumed that the newly invested asset starts to

generate incomes in next time period. However this is not always the case in real-

ity. Hence future research should address the lead time of each transfers between

the cash and asset accounts. Furthermore, we assumed cash shortage penalties are

always proportional to the cash deficit. However, in practice the influence of cash

deficit is not always quantifiable. For instance, frequent cash shortages may jeop-

ardise the company’s credit and hence damage its future profitability. To our best

knowledge, this influence of cash shortage has not been studied in the literature.

Future research on cash management should closely examine the impacts of cash

shortages.

In Chapter 6, we introduce loan opportunities to the two accounts cash man-

agement model. In this research, it is assumed that there is only one type of loan

on the financial market. Future research can explore the scenarios with multi-

ple loans. Section 6.3 reveals that the model with multiple loans can be easily

formulated as MDP. However it is impractical to solve such model due to the

well known curse of dimensionality. It would be interesting to see how other ap-

proaches such as evolutionary algorithms, reinforcement learning algorithms, and

deep learning algorithms perform in this model. Moreover, the availability of loans

can be clarified in future research. In our study, it is assumed that the company

has access to the loans once its previous debt is paid off. With the analysis of the

loan availability, this model can be expanded to a comprehensive model provid-

ing both loan-taking decisions to the manager and loan-releasing decisions to the

financial intermediates, i.e. the company’s manager only wishes to take the loan

if the company benefits from this loan and the bank manager will release the loan

to this company if he believes that the loan incomes overweight the default risk.

The company only receives this loan successfully if this loan is beneficial to both

parties.

The cash management model with multiple assets explores the scenario where
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the agent holds one cash account and a number of asset accounts. In this research,

we assume the same liquidity for each asset. To be more specific, we assume the

transfer fee of selling each asset is the same and the cash account is replenished

immediately once the selling actions are taken. This assumption normally holds

true with regard to short term securities. However if the agent manages non-

financial assets, different transfer fees and lead time for selling assets should be

considered. In addition, to solve the cash and multiple assets management model

we adopt the separable Piecewise linear approximate dynamic programming ap-

proach which assumes that the objective value of a high dimensional state can be

expressed as the sum of each state element’s contribution and each contribution

can be approximated by a Piecewise linear function of the corresponding state ele-

ment. However, once the objective value includes CVaR, this additive assumption

incurs inaccuracy in the model. Hence it would be very interesting to consider

other approximations. For example, future research could assume the objective

value is a non-linear combination of each Piecewise linear function. Future re-

search could also use the deep reinforcement learning techniques to approximate

state values. Besides, in our study the agent makes his decisions based on the

state information, which is the holding levels of all accounts. Further improve-

ments of the model can be carried out by adding more state information such as

the variance of returns on each asset, the historical price behaviour of each asset,

and other financial indexes. At last, we test if the ADP algorithm can be used to

solve the problem with a large number of asset accounts. Due to the time lim-

itations, we only examine the problem with 5, 10, 15 and 20 asset accounts. It

would be interesting to study a model with even higher dimensions and to check

the accounts limitation for the ADP algorithm given a certain solution time. It

would also be interesting to explore acceleration methods for the ADP algorithm

in high-dimensional models.
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