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Abstract 25 

A Na Doppler lidar system with three-directional measurements of sodium density, the atmospheric 26 

wind field, and the temperature was established at Zhongshan (69.4°S, 76.4°E), Antarctica. On 14 27 

November 2019, a sporadic sodium layer (SSL) was observed at altitude ranges of 93–103 km. The 28 

temporal/spatial sodium density variations of this SSL are associated with a strong sporadic E (Es) 29 

layer at nearly the same height, which is modulated by the convective electric field. By considering the 30 

structures and the time lags of the SSL’s growth at three positions, the SSL appears to have a horizontal 31 

advection in an approximately westward direction with a velocity of the order of 80 m/s. This is 32 

consistent with the zonal wind velocity derived from the lidar system itself. The temporal/spatial 33 

sodium density variations strongly indicate that the formation and perturbance of SSLs are related to 34 

the evolution of ES layers due to varied electric fields and atmospheric gravity waves, while it is 35 

advected by the horizontal wind. 36 

 37 

Plain Language Summary 38 

To be composed of metallic ions, the sporadic E layer (Es) could be formed, modified, or transported 39 

by the action of magnetospheric electric fields in the high latitude ionosphere. It has been widely 40 

proposed that the Es layer plays an important role in the formation of the sporadic sodium layers (SSL), 41 

but their detailed dynamic process and evolution studies of the Es/SSLs are still lacking. A 42 

three-frequency Sodium (Na) resonance fluorescence Doppler lidar has been recently deployed by the 43 

Polar Research Institute of China, which could measure the sodium density, temperature, and wind 44 

profiles simultaneously in three directions. To clarify the dynamic properties of Es/SSL, we have 45 

performed an event observation at Zhongshan Station (69.4°S, 76.4°E), Antarctica, which includes 46 

sodium density profiles and wind velocity measured by multidirectional lidar system, Es layer detected 47 

by the collocated Digisonde radar, F region ion velocity, i.e., electric field, derived by SuperDARN HF 48 

radar, as well as gravity wave perturbation determined from Davis medium frequency radar. 49 

  50 
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1. Introduction 51 

Since the discovery of a sporadic sodium layer (SSL) that superposed on normal sodium layer in the 52 

mesosphere/lower thermosphere (MLT) [Clemesha et al., 1978], numerous SSL events have been 53 

reported [cf. Clemesha, 1995; Qiu et al., 2016, and references therein]. The SSLs, with the rapid growth 54 

of the sodium atom density over a narrow height range [e.g., Clemesha, 1995; Tsuda et al., 2011], 55 

usually show an extended life span from a few tens of minutes to several hours [e.g., Batista et al., 1991; 56 

Cox and Plane, 1998]. One of the interests in SSL studies is thus exploring the generation mechanism 57 

for SSLs and understanding the controlling factors of their temporal and spatial variations. 58 

Ionospheric sporadic E (Es) layers have been widely accepted as a good candidate for the source of 59 

sodium atoms in SSLs [e.g., Cox and Plane, 1998; Kirkwood and Zahn, 1991; Takahashi et al., 2015]. 60 

Some good correlations between the occurrence of SSLs and ES layers have also been reported [cf. 61 

Croskey et al., 2006; Dou et al., 2009; 2010; Heinselman et al., 1998]. Rocket-bome mass 62 

spectrometric measurements have demonstrated that the ES layers consist of metal ions [Kopp, 1997; 63 

Grebowsky and Aikin, 2002], such as Fe+, Mg+, Na+, etc., and can be vertically driven by the neutral 64 

wind and/or the electric field [Kirkwood and Zahn, 1991]. When horizontal and vertical convergence of 65 

ions occurred under some conditions [e.g., MacDougall and Jayachandran, 2005], the ES layers could 66 

descend/ascend in altitude, such as due to the atmospheric tide and/or gravity waves [e.g., MacDougall 67 

et al., 2000]. As the atmospheric density increases exponentially with descending altitude, the rate of 68 

ion neutralization increases rapidly at lower heights [Collins et al., 2002]; an SSL could thus form via 69 

this rapid ion neutralization [Cox and Plane, 1998]. 70 

The other candidates for the source of sodium atoms could be direct meteor deposition, and/or release 71 

from aerosol particles, as well as redistribution of existing atoms [e.g., Batista et al., 1991; Clemesha, 72 

1995; Clemesha et al., 1978]. However, direct meteor deposition requires a meteor shower with a large 73 

mass, and aerosol particle release requires a background temperature increase [Qiu et al., 2015; 2018]. 74 

The redistribution of existing atoms is another good explanation for SSLs. Using a steerable sodium 75 

lidar system at Winkfield (51.4°N, 0.7°W) that pointed sequentially in three different directions (at 76 

zenith angles of 30°), Thomas et al. [1977] first observed clear evidence of a horizontal variation of the 77 

sodium concentration near the peak of the normal layer. Based on steerable lidar system observations at 78 

São José dos Campos (23°S, 45°W), Batista et al., [1991] systematically investigated sodium density 79 
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variations in twelve SSL events at three horizontal positions. There was no case where the horizontal 80 

advent of SSLs occurred simultaneously at all three positions; time lags of each SSL among the 81 

different positions were always observed. The inferred horizontal velocities from the time lags of SSLs 82 

were mostly less than 100 m/s, except for one case observed by Clemesha et al. [1980] with a velocity 83 

of the order of 200 m/s. However, their hypothesis of horizontal advection was not confirmed by 84 

background wind observations. 85 

In a recent study, an SSL event detected with a five-directional lidar system was reported by Tsuda et 86 

al. [2015]. By utilizing the SSL onset time differences recorded at the five positions, the horizontal 87 

velocity of an SSL was derived and compared with the background wind velocity from the collocated 88 

meteor radar and European Incoherent Scatter radar; both velocities were consistent. Moreover, the 89 

amount of the sodium atom increase at the five positions was mostly equal, which strongly indicates 90 

that the observed SSL was just advected by the background wind. Nevertheless, the ending time of the 91 

SSL event was not observed by Tsuda et al. [2015] due to the sky becoming cloudy. 92 

Although a causal link between the Es layer and SSL has been observed and reported [e.g., Heinselman 93 

et al., 1998; Kirkwood and Collis, 1989; Kirkwood and Zahn, 1991], how the temporal and spatial 94 

variations of SSL relate to the evolution of the Es layers and the horizontal advection by background 95 

wind is still unclear, comprehensive evaluation of the sodium atom production process in SSL and its 96 

related temporal and spatial variations with the Es layer and background wind is still an important 97 

question. 98 

Since February 2019, a three-frequency sodium resonance fluorescence Doppler lidar system has been 99 

operating at Zhongshan Station (ZHS, 69.4°S, 76.4°E), Antarctica. With three-directional beams 100 

toward the zenith, 30° off-zenith to south and west, this system can obtain sodium density, line-of-sight 101 

wind, and temperature at three positions simultaneously. In this paper, an SSL event on 14 November 102 

2019 that was detected by this lidar system is analyzed. We have performed detailed observations, 103 

including the ES layer by a colocated DPS-digisnode, electric field by the Super Dual Auroral Radar 104 

Network (SuperDARN), as well as wind velocity by the lidar system itself, to clarify the temporal and 105 

spatial variations of SSL. In addition, the 1.94 MHz medium frequency (MF) radar [e.g., Reid et al., 106 

2018] data from Davis station (68.6°S, 78.0°E), which lies approximately 116 km northeast of ZHS, is 107 

used to assess the gravity wave activity below the SSL when it occurs. All these observations are 108 
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combined to better understand the rapid sodium atom production process and its related dynamic 109 

properties in the MLT region. In section 2, we will briefly describe instruments and data sets. The 110 

observational results are presented in section 3, while possible generation processes and mechanisms of 111 

SSLs are discussed and proposed in section 4. This paper finally ends with a summary in section 5. 112 

 113 

2. Instruments and data sets 114 

2.1.  The sodium lidar 115 

The three-frequency Sodium (Na) resonance fluorescence Doppler lidar at ZHS mainly consists of the 116 

lidar transmitter, receiver, data acquisition, and system control modules. The lidar laser pulses are 117 

produced by a 4-stage pulsed dye amplifier seeded with a state-of-the-art 589 nm frequency-doubled 118 

solid-state diode laser. Required by the classic three-frequency probing technique [Chu and Papen, 119 

2005, and reference therein], the seed laser is locked to one of the Na D2a Doppler-free saturation 120 

absorption features within ±2 MHz, and then sequentially shifted ±630 MHz by a free-space 121 

acoustic-optical modulator. Three 82-cm diameter microcrystal-glass substrate telescopes of the 122 

parabolic reflecting surface, i.e. the zenith, 30° off-zenith to the south, and 30° off-zenith to the west, 123 

are used to receive returning lidar photons in three directions for wind field measurement, respectively. 124 

While an ultra-narrow Na Faraday filter is implemented to suppress the solar background during 125 

daytime for continuous diurnal operation. With transmitted laser power of about 0.55 W in each 126 

direction, raw photons returned from the Na layer and collected by the receiving telescopes were 127 

integrated for 15 s with a 45 m range resolution. The uncertainties in temperature and vector wind 128 

measurements induced by photon noise, around the peak of Na layer (~90 km) with 1 hour and 0.5 km 129 

resolutions, can achieve less than ±0.3 K and ±1.6 m/s for nighttime, and ±1.0 K and ±2.8 m/s for 130 

daytime, respectively. 131 

2.2. The Ionosonde radar (DPS-4D) 132 

The Digisonde Portable Sounder (DPS-4D) operated at ZHS can be used to monitor the overhead 133 

ionosphere. It uses one simple crossed delta antenna for transmission, and four crossed magnetic dipole 134 

antennas for reception. Using six digitally synthesized off-vertical reception beams in addition to the 135 

vertical beam, the DPS-4 digisonde can operate in the multi-beam sounding mode [Reinisch et al., 136 
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2009]. For each frequency-range pixel, the beam with the maximum amplitude is selected, and the 137 

amplitude and beam numbers are recorded in the output data [Reinisch et al., 2008]. Currently, the 138 

digisonde operates at 0.05 MHz frequency step from 0.5 to 9.5 MHz and a spatial resolution of 2.5 km 139 

from 80 to 640 km (virtual height), while the ionograms are recorded at a time interval of 7.5 mins. By 140 

manually scaling the ionograms via SAO software, the ionospheric characteristics parameters such as 141 

Es critical frequency (foEs) and virtual height (h’Es) can be obtained. 142 

2.3. The SuperDARN radar 143 

The fields of view of SuperDARN radar cover the majority of the northern and southern hemispheres in 144 

the polar region. Utilizing the HF radio wave refracted to achieve orthogonality with the Earth’s 145 

magnetic field in the E- and F-region ionosphere, the field-aligned irregularities at ~10 m Bragg scale 146 

has maximum backscatter power obtained [Milan et al., 1997]. From the received signal-to-noise ratios 147 

the ionospheric plasma Doppler line-of-sight velocity, the Doppler spectral power, and the Doppler 148 

spectral width can be derived [Greenwald et al., 1995]. Based on all the available velocity data and 149 

merging it from pairs of radars within common-volume areas [Ruohoniemi and Baker, 1998], a 150 

large-scale plasma convection map has been extensively used at the high-latitude ionosphere. The 151 

convection electric field can also be obtained [see Chisham et al., 2007, for more details]. 152 

2.4. The MF radar at Davis 153 

The Medium Frequency (MF) radar at Davis station (68.6°S, 62.9°E) lies approximately 116 km 154 

northeast of ZHS and can be used to measure turbulent strength through velocity variances [Murphy 155 

and Vincent, 2000]. The MF radar consists of a square transmitting array (approximately 40° in beam 156 

half-width at half maximum) and three cross-dipole receiving arrays. By operating in space-antenna 157 

mode at a frequency of 1.94 MHz and using pulsed transmission with half-power full pulse widths of 158 

30 µs, the three complex time series were analyzed using full correlation analysis to produce winds. 159 

The horizontal wind components are theoretically sampled at 2 km intervals between the heights of 64 160 

km and 102 km. 161 

 162 

3. Observation results 163 

A 10 hour continuous daytime observation by lidar radar was made on 14 November 2019 from 14:00 164 
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UT to 24:00 UT (UT = MLT (Magnetic Local Time) – 1.75 hr; UT = LT – 5 hr). The temporal and 165 

altitude variation of sodium density profile from the vertical beam, with a 5 min time and a 450 m 166 

altitude resolution, is shown in Figure 1a. The number of ionospheric echoes recorded by the colocated 167 

DPS-4 Digisonde in the E layer at 130 frequencies from 3 to 9.5 MHz, with 7.5 min time and 2.5 km 168 

height resolution, is shown in Figure 1b as a function of virtual height and UT time simultaneously. By 169 

manually scaling the Es layer, the height variations of Es are overlaid in Figure 1a (i.e. blue asterisks). 170 

Figure 1c shows the corresponding electric field with 10 min time resolution in the northward and 171 

eastward components over ZHS derived by the SuperDARN data at Antarctica. 172 

From Figure 1a, it can be seen that the normal sodium layer at altitudes of ~ 85–95 km. Starting at 173 

17:00 UT, there is an isolated enhanced sodium density layer (i.e. the so-called SSL) observed at 174 

around 101 km, which gradually ascends to about 103 km by 17:30 UT. Half an hour later, a particular 175 

region with much higher sodium density at 93–100 km until 19:15 UT can be easily identified. These 176 

regions with maximum sodium density ~3.2×1010 m-3 are about 10 times higher than the normal 177 

sodium layer. We notice that this SSL exists in two separated layers with different altitudes. One above 178 

96 km with a descending trend, and the other below it with an ascending trend. After 20:00 UT, an SSL 179 

with a short time duration of about ten minutes is observed at an altitude of 97 km. 180 

The sodium density of the SSL observed from 17:00 to 20:20 UT changed drastically with time and 181 

altitude. This is almost consistent with the occurrence and variations of ionospheric echoes for the Es 182 

layer. The strongest SSL observed at the time interval of 18:10–19:00 UT corresponds to a large 183 

number of ionospheric echoes at almost the same height. The number of ionospheric echoes decreases 184 

at higher altitudes at the time around 17:45 and 19:05 UT, that time interval precisely corresponds to 185 

the decreased sodium density at the upper levels. Moreover, the starting and ending times of the SSLs 186 

observed from the lidar vertical beam (indicated by the gray shade in Figure 1) are aligned to the 187 

appearance and disappearance of the ES layer. This implies that the Es layer provides the source of 188 

sodium atoms to the SSL. With convection observations from SuperDARN radar at Antarctica, during 189 

the SSL/Es time interval, the strength of the horizontal electric field over ZHS is less than ~ 12 mV/m 190 

(see Figure 1c), except for time at 19:20 UT, and is dominated by an eastward horizontal ion flow in 191 

the F region with velocities less than 170 m/s (i.e. E = v × B, assuming the geomagnetic field 5.4 × 105 192 

nT). This means that the SSL/Es is located in the duskside convection cell. 193 
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To investigate the relationship between the SSLs sodium density and ionospheric ES layer variations in 194 

more detail, Figure 2a shows variations of the SSL’s in the maximum sodium density from 16:30 to 195 

20:30 UT between 93 and 103 km. Figure 2b represents the ratio of the maximum sodium density to 196 

the background normal sodium density at the same altitude. The background normal sodium density is 197 

the averaged value between 14:30 and 16:30 UT at each altitude where the sodium density varied 198 

smoothly with time. We should notice that both sodium density in Figure 2a and the ratio in Figure 2b 199 

are plotted with an exponential scale on the Y-axis. The critical frequency of the ES layer (foEs) is 200 

shown in Figure 2c. The altitude of the maximum sodium density is shown in Figure 2d (blue line), 201 

while the Es layer-related virtual height variations (i.e. h’Es) , with a 2.5 km error bar indicating 202 

possible manual scaling errors, are also overlaid. 203 

The SSL starts at an altitude of around 102.5 km, and the maximum sodium density increases from 204 

~1.0×109 to ~3.4×109 m-3 within 10 min between 17:02 and 17:12 UT. Soon after, the maximum 205 

sodium density gradually decreases to ~0.04×109 m-3 at an altitude of about 101.5 km till 18:07 UT, 206 

which is about twice the background sodium density. A strong SSL with double-layers occurred around 207 

18:30 UT, and its maximum sodium density varies from ~3.3×109 to ~3.2×1010 m-3, which is about 208 

twenty times higher than the background intensity. Finally, before the end of the SSL at 20:15 UT, we 209 

find the maximum sodium density is almost equal to the onset of SSLs at 17:05 UT and 18:10 UT, but 210 

with a lower height at 96.5 km. From Figure 2c, we can see the ending of the SSL is associated with the 211 

Es layer for foEs at ~5 MHz. This would correspond to the ionospheric electron density at 3.1×1011 m-3. 212 

Moreover, it can be seen that the enhancement of the Es layer at 16:55 UT and 18:00 UT occurs before 213 

the onset of the SSL by at least 5 min. Because the Digisonde observation mode was operated at a 214 

limited frequency range (i.e. 0.5–9.5 MHz), the ionospheric electron density corresponding to the 215 

maximum sodium density of the SSL cannot be properly estimated over this time interval. In Figure 2d, 216 

we can see the variations of the SSL height (blue line) are intimately associated with the average height 217 

of the Es layers. The correlation coefficients for the SSL height within 5 km (29 points) and 2.5 km (18 218 

points) of the Es layer are 0.72 and 0.94, respectively. All these observational results strongly indicate 219 

that the Es layer is most likely the source supply of sodium for the SSL in this event. However, it is 220 

difficult to explain the formation of SSL with double layers (i.e. with upper-layer and lower-layer) at 221 

18:30–18:45 UT. 222 
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To better understand the dynamic properties of SSL, Figures 3a – 3c show height and time variations of 223 

the raw photon count, with temporal 15 s and spatial 45 m resolutions, from the (a) south, (b) vertical, 224 

and (c) west beams at 90–100 km during 18:00–19:00 UT. We have normalized the count data with the 225 

Rayleigh scattering intensity at the lower height, removing the effects of the fluctuations in the laser 226 

power and the transmittance in the lower atmosphere. The normalized raw photon count intensity 227 

would thus be in proportion to the sodium number density and the resonance scattering cross-section. 228 

The SSLs with upper-layer and lower-layer located above and below 96 km respectively, are observed 229 

at all three positions. Both the upper-layer and lower-layer of the SSLs are characterized by an 230 

increased photon count with a narrow altitude range (i.e. typically ~1 km full width at half maximum). 231 

The corresponding time variations in the raw count intensity data for 92–96 km height are also shown 232 

in Figures 3d – 3f. The red, blue, and black lines represent the mean, median, and peak values of the 233 

raw count intensity. The timings (i.e. onset and ending times) of the SSL lower-layer determined at 234 

each beam, i.e. twice the background value, by stating that the ratio of the maximum density to the 235 

background normal density is greater than 2 [cf. Simonich et al., 2005], using both the mean and the 236 

median, are denoted as vertical dashed lines at each panel. For the mean values, it can be seen that the 237 

SSL lower-layer first occurred in the south beam at 18:25:42 UT. After 50 seconds, the enhanced raw 238 

photon count is observed by the vertical beam, whereas the onset time in the west beam lagged by 11 239 

min. A similar situation with a time lag of ~9.08 min is also observed when comparing the ending time 240 

from vertical to west positions. Moreover, through comparing the median values between the vertical 241 

and west beams, time lags of ~11.82 min and ~10.73 min, respectively, for onset and ending time are 242 

also observed. However, the ending of the SSL lower-layer at the south beam is different. This is due to 243 

the ending of the SSL lower layer being accompanied by a wavelike perturbation (see Figure 3a). 244 

Considering the time lags for onset and end of the SSL in the raw count intensity variations at the 245 

vertical and west beams, it is suggested that the horizontal advection of enhanced sodium density plays 246 

an important role for the SSL. 247 

 248 

4. Discussion 249 

4.1. SSL production from the Es layer 250 
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It is important to understand the source that is producing/providing a large number of sodium atoms for 251 

SSLs within a short timescale and a thin vertical range. In this paper, we report an SSL with spatial and 252 

temporal variations over ZHS, Antarctica. The dynamic process of the SSL is closely associated with 253 

the evolution of the Es layer, which means that the conversion of sodium ions to sodium atoms in an Es 254 

layer occurred. Previous studies have discussed the Es layer as a major source for high-density SSLs 255 

appearing between 90 and 100 km. Kane et al. [1993] estimated that the sodium ion abundance in an Es 256 

layer was 10% of that of the atoms at most, while a 4% assumption for the sodium ion abundance was 257 

an underestimation [Hansen and von Zahn, 1990]. In our observations, the SSL occurring after 18:10 258 

UT is at a height below 100 km and the SSL and Es layer have a good height correlation. An SSL- 259 

related sodium density more than twice higher than the background intensity is observed at 18:10–260 

18:45 UT and 20:10–20:15 UT (see Figure 2b). The averaged maximum sodium density of the SSLs 261 

(using an altitude resolution of 0.45 km) at these time intervals are ~1.67×1010 m-3 and ~2.8×109 m-3, 262 

respectively. If we assume that the averaged maximum sodium density is charge exchanged from 263 

sodium ions in the Es layer at the 10% rate noted above, this should correspond to an ionospheric 264 

density of at least ~1.67×1011 m-3 and ~2.8×1010 m-3 at the same height. During these intervals, the Es 265 

layer with f0Es more than 5 MHz (i.e. ~3.1×1011 m-3) is always observed. This means that the 266 

hypothesis about the Es layer alone providing enough of a supply of sodium atoms in this event is 267 

plausible. 268 

Ground-based sodium lidar and ionosonde simultaneous observations of the SSL and Es layers in time 269 

and spatial location have been extensively studied by previous authors [e.g., von Zahn and Hansen, 270 

1988; Williams et al., 2007; Dou et al., 2009]. Although the Es layer is expected to be acting as the 271 

sodium reservoir, and a strong correlation of simultaneous occurrence of SSLs and Es layers was also 272 

observed, the sodium ion chemistry seemed to not provide for a satisfactory explanation of the fast rise 273 

of sodium atom density within the growth phase of SSLs with time constants of 5 min [von Zahn and 274 

Hansen, 1988]. For our current study, the growth phase of SSLs with typical time constants of 10–15 275 

min (see Figure 2a, i.e. the time duration from onset to the maximum of the SSL), and an electron 276 

enhancement of the Es layer preceding the sodium enhancement (see Figures 2a and 2c) is always 277 

observed, which means that our Es layer would be the source of sodium for the SSL. From a statistical 278 

point of view, a seasonal dependence of SSL occurrence correlates well with the annual variation of Es, 279 
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as studied by Dou et al. [2010]. A “meteor-Es-SSL” chain responsible for the recombination process 280 

was taken into consideration by them. However, because meteoric ablation should simultaneously 281 

generate sodium and electron density enhancements at the same altitude [Clemesha et al., 1978], the 282 

observed preexisting Es layer with wavelike fluctuations should rule out direct meteor deposition as the 283 

cause of the SSL. 284 

To exclude the possible redistribution of the background layer resulting in SSLs, the time-sequential 285 

relationship of the SSL/Es is investigated in more detail. Table 1 gives the estimates of the average 286 

descending velocity of the Es layer for the four-time intervals at the lower E region. Comparing these 287 

times to the SSL onset times of at ~17:02, ~18:30, and ~20:00 UT, and with altitudes of ~101, ~93, and 288 

~97 km, it seems likely that the descent of the Es layer would trigger the release of sodium atoms, 289 

while the corresponding height may be one important factor controlling the SSL occurrence and its 290 

lifetime. A theoretical explanation proposed by Cox and Plane [1998] has been shown that sodium ions 291 

can be neutralized via an ion-molecule mechanism which describes the conversion of sodium ions to 292 

atomic sodium in a descending Es layer. Similar observational events were also reported by previous 293 

studies [Beatty et al., 1989; Kane et al., 1993; Williams et al., 2007]. By identifying the vertical and 294 

temporal structures of the SSL sodium and the Es layer electron density, Kane et al. [1993] found the 295 

electron enhancement preceded the sodium enhancement at an altitude of 93–97 km were in phase. In 296 

our event, sodium enhancements always correlate with the descent of the Es layer. The high correlation 297 

between the altitude and abundance variations of the SSL and Es layers illustrates that the SSL 298 

formation is strongly related to descending Es layer and most likely involves the neutralization of 299 

sodium ions. 300 

4.2. SSL/Es related dynamics and electrodynamics 301 

Dynamic processes are evident in the temporal and spatial wavelike structures of the SSL/Es layers. 302 

With the thin Es layer declining into the E region, both the electric field and neutral wind effect on the 303 

modulation of the Es layer are expected [e.g., Nygrén et al., 1984, 2008]. According to dynamic and 304 

electrodynamic theory illustrated by Kirkwood and Nilsson [2000], the vertical motion of the ion is 305 

governed by electric fields, neutral wind, gravity, and ambipolar diffusion. Ignoring ion diffusion due to 306 

gradients in the plasma pressure and to the force of gravity, the vertical motion of ions can be expressed 307 

as: 308 
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where viz is the vertical motion of ion (positive downward), ri is the ratio of the ion-neutral collision 310 

frequency to the ion gyrofrequency. EE and EN represent the eastward and northward components of the 311 

electric field, while WN, WE, and WZ are the horizontal (northward and eastward) and vertical (positive 312 

downward) components of the neutral wind. The magnetic dip angle I equal to 71.6° at ZHS. As can be 313 

seen from the equation on the right side, the ion motion above 120–130 km is dominated by the first 314 

term (i.e., eastward electric field and meridional wind) due to the region ion gyro-frequency exceeds 315 

the collision frequency, while the zonal wind and north-south component of the electric field control it 316 

at heights below 100–110 km in the second term. Moreover, when the atmospheric gravity wave exists, 317 

the third term may be significant at any height in the presence of strong vertical motion. The present 318 

SSL/Es event mainly occurs in altitude range of 93–100 km with a southward electric field, and both 319 

the zonal wind and gravity waves contribute to the vertical motion of the Es layer. 320 

The contours of the zonal and meridional wind observed by the lidar system between 14:00 and 24:00 321 

UT are illustrated in Figures 4a and 4b, respectively. While their wind variations with height are shown 322 

in Figure 4c. The zonal wind shows a persistent westward velocity at the heights of 92.5–97 km until 323 

20:00 UT, while a downward propagating phase structure is apparent in the wind. As studied by 324 

Kirkwood and Nilsson [2000] for the relative contributions of the electric field and neutral wind in the 325 

equation for the second term, a strong wind of 100 m/s has almost the same effect as a rather small 326 

electric field of only 5 mV/m. During the time interval of 17:00 – 20:15 UT the northward electric field 327 

with a median value of -8.7 (±4.1) mV was obtained, assuming the zonal wind with a consistent 328 

velocity of –50 m/s and adopting the ratio ri varied with the descending height [Xue et al., 2013, see 329 

their Figure 5a], the combined electric field and neutral wind will result in the Es layer with a 330 

descending speed of ~7.82 (±6.04) m/s at 110 km and ~0.42 (±0.32) m/s at 95 km. This is as a whole 331 

consistent with the estimates of the average descending velocity of the Es layers shown in Table 1, 332 

which implies that the vertical wind velocity decreased sharply with decreasing altitude. Accumulation 333 

of metal ions and/or electrons modulated by the varied north-south electric field component and zonal 334 

wind at a certain altitude would be expected. 335 

The downward propagating phase structure of horizontal wind implies that the formation of the SSL/Es 336 
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layers could also be related to atmospheric gravity wave activity. MacDougall et al. [2000] suggested 337 

that such atmospheric wave motion is very efficient in moving ionization up or down, particularly at 338 

lower heights. The ionization will be concentrated near the gravity wave nulls, with a downward 339 

motion from above and upward motion from below. This process has been observed in this event at 340 

around 18:30 UT at a low height of ~93 km, where the sodium density is largest. During this interval, 341 

the SSL upper layer is descending with the downward motion of the Es layer, followed by the SSL 342 

lower layer ascending. 343 

To assess the gravity wave activity, the 1.94 MHz MF data from Davis station which lies approximately 344 

116 km northeast of ZHS has been analyzed. To balance short-term variations against the quality of 345 

tidal fit, a 4-day window of hourly averaged winds is chosen to calculate the amplitude and time of a 346 

maximum of the diurnal, semidiurnal, and terdiurnal components of the zonal and meridional wind. 347 

These fitted parameters are then used to reconstruct the underlying tidal wind field over a two-day 348 

interval centered on the occurrence of the SSL. The MF radar wind determinations were averaged into 349 

10 min bins over the days surrounding the ZHS SSL event. Tidal fits were made to a 4-day interval of 350 

these data and the reconstructed tides were removed from the time series [Murphy, 2002]. The resulting 351 

perturbation winds with a 3-point smoothing applied are thus shown in Figures 4d (zonal) and 4e 352 

(meridional), while the corresponding perturbation velocities at 92 km are shown in Figures 4f. 353 

Downward propagating phase structures are apparent in the upper levels of these panels (i.e., Figures 354 

4d and 4e) suggesting the presence of an upward propagating gravity wave. These phase structures are 355 

steep, with rapid velocity transitioning from positive to negative at the time of the SSL, indicating a 356 

large vertical wavelength node at the observed heights. The performance of the gravity wave activity 357 

illustrated by the MF radar data at the nearby station suggests such atmospheric wave motions could 358 

also modulate the temporal and spatial variations of the SSL intensities. 359 

In comparison to 5 min averaged data shown in Figure 1a, there is another interesting feature that the 360 

15 s data in Figure 3 reveals considerably more fine structures of the SSL. In Figures 3a–3c, the double 361 

layers of the SSL show predominant wavelike structures with periods of 7–11 min at 96–100 km and 362 

~3–4 min at 94–96 km, which is especially evident in the south direction in Figure 3a. This is very 363 

different from the observations of the Es layer at ionosonde and the gravity wave at MF radar, in which 364 

only a long period of perturbations could be derived. Quasi-periodic fluctuations on a timescale on the 365 
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order of several minutes in the peak height and the peak density of SSLs as a universal feature but 366 

could be concealed by the lower temporal resolution [Pfrommer et al., 2009]. Tsuda et al. [2011] 367 

suggested that the 7–11 min wavelike structure would be signatures of atmospheric gravity waves, 368 

while the 3 min wavelike structure may be signatures of an atmospheric gravity wave or acoustic wave. 369 

Moreover, Hansen and von Zahn [1990] analyzed sodium density data with time-resolution of 1-min 370 

and demonstrated upward and downward movements of the SSL height with the time scale of ~20-min. 371 

They also suggested that such movements are signatures of atmospheric gravity waves. However, the 372 

careful reader will notice that the fine-scale ~3 min wavelike structure seems to occur locally (see 373 

Figure 3a), due to the vertical and west beams without detecting such fine-scale wavelike structure at 374 

the lower layer of SSL. In conclusion, as the lidar probes the sodium along with three directions, 375 

variations will occur as the SSL is carried across the beam by the neutral wind. The changes that we see 376 

could be some combination of intrinsic temporal changes and spatial variations along the direction of 377 

advection. 378 

As mentioned in the Introduction, horizontal advection of the SSLs was hypothesized by Clemesha et 379 

al. [1980], but no background wind confirms it. By detecting the onset time and amounts of the sodium 380 

density of SSLs via a five-direction lidar system combining derived background wind, Tsuda et al. 381 

[2015] verify the horizontal advection of the SSLs. However, the ending time of their SSLs was not 382 

available due to the cloudy sky. Since the sodium lidar observed SSLs in the vertical, and 30° 383 

off-zenith to the south and west, it is possible to assess the role of advection in SSL variation. From 384 

Figures 3e and 3f, we observe the SSL lower layer has similar structures in the vertical and west beams, 385 

while the lifetime of the SSL is about 14.63 min at the vertical position and 12.65 min at the west 386 

position, respectively. The onset and ending time lags between the vertical and west beams are about 387 

11 min and 9.1 min, respectively. Cross-correlation analysis of the SSL upper-layer and lower-layer 388 

also indicates that both layers with a time lag of about 11 min between the vertical and west beams. 389 

The height of SSL at 94 km corresponds to the distance of about 54.27 km between the vertical and 390 

west beams. Assuming the time lags of the SSL in the vertical and west beams are due to horizontal 391 

advection, the bulk velocity of the SSL onset is estimated to be 82.2 (±1.8) m/s and its rear is estimated 392 

to be 99.4 (±1.8) m/s westward. These velocities are fairly consistent with the observed zonal wind 393 

velocity derived from the lidar system shown in Figure 4c (~80-90 m/s westward). This suggests that 394 
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the temporal and spatial variations of the SSL are consistent with advection by the background wind. 395 

 396 

5. Summary 397 

A new sodium resonance fluorescence Doppler lidar system with three-directional beams has been 398 

established at ZHS, Antarctica. In this paper, we report an SSL with spatial and temporal variations on 399 

14 November 2019. By examining the dynamic properties of this SSL, and comparing it with 400 

collocated Es layers, we find the dynamic process of the SSL is closely associated with the evolution of 401 

the Es layer. We suggest the formation and perturbation of the SSL correlates with the convective 402 

electric field and atmospheric gravity wave activity. However, the onset/end of the SSL was observed 403 

by lidar at different times in the different beams, especially in the east-west direction. By using 404 

observational atmospheric wind field values obtained by the lidar system itself, we have compared 405 

wind velocities to the calculated horizontal advection effect and found the velocities are consistent. We 406 

conclude that the major source for sodium atoms in this SSL event is from the Es layer and the 407 

dynamic properties of the SSL are modulated by the Es layer electrodynamics and the background 408 

wind field. 409 

 410 

Data Availability Statement 411 

The ZHS DPS and lidar data can be downloaded from the polar atmospheric and space physics 412 

database in Chinese National Arctic and Antarctic Data Center (http://www.chinare.org.cn:8000/uap/). 413 

The HF radar data used in this work is available from the Virginia Tech portal at http://vt.superdarn.org. 414 

Davis MF radar data is available from the Australian Antarctic Data Centre at https://data.aad.gov.au. 415 
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Figure and Table Captions 530 

Figure 1: (a) Height-time intensity variations in the sodium density from 14:00 to 24:00 UT on 14 November 2019 531 
between 80 and 105 km are presented. Blue asterisks denote the height of the Es layer derived from DPS-4 532 
Digisonde. (b) The number of ionospheric echoes recorded by the colocated DPS-4Digisonde in the E layer at 533 
frequencies from 3 to 9.5 MHz. (c) The corresponding electric field derived from SuperDARN data, the blue and 534 
red lines represent eastward and northward components, respectively. In this study, we mainly focus on the SSL 535 
occurring for time intervals shown in the gray shade (i.e. 17:00–20:20 UT) 536 

Figure 2: (a) Variations of the SSL’s maximum sodium density from 16:30 to 20:30 UT. (b) The ratio of the 537 
maximum sodium density to the background sodium density at the same altitude. Horizontal black dash line 538 
denotes values with a ratio greater than 2. (c) The variations of critical frequency in Es layer from colocated DPS-4 539 
Digisonde. (d) Variations in altitude of the maximum SSL (blue line) and the Es layer (red asterisks with error 540 
bar). 541 

Figure 3: (a–c) Height and time variations of raw photon count, with 15 s time resolution and 45 m height 542 
resolution, from (a) south, (b) vertical, and (c) west beams. (d–f) The corresponding time variations in the raw 543 
count intensity data for 92-96 km height. Red, blue, and black lines represent data obtained with the mean, median, 544 
and peak values, respectively. (notice: the peak values have been reduced by a factor of three). The onset and end 545 
times, defined as a time when the intensity became twice that before the event, are shown by vertical dash lines. 546 

Figure 4: Time-height contours of the zonal (a) and meridional (b) winds between 14:00 and 24:00 UT derived 547 
from sodium radar. The data has been smoothed to have a vertical resolution of 0.5 km and a temporal resolution 548 
of 1 hour for the wind field. (c) Profiles of zonal (red and blue) and meridional (black and green) winds at 17:30–549 
18:30 and 18:30–19:30 UT. Zonal (d) and meridional (e) 10 min average winds from the Davis MF radar for two 550 
days around the ZHS SSL occurrence. The tidal variations have been removed with the gravity wave activity 551 
remaining. (f) Zonal (red) and meridional (black) perturbation winds at 92 km. 552 
 553 
Table 1: Estimates of average descending velocity of the Es layers 554 

Time interval (hh:mm:ss) Initial height (km) Ending height (km) Descending vel. (m/s) 

16:45:10 – 17:30:10 

17:37:40 – 18:30:10 

19:00:10 – 19:30:10 

19:52:40 – 20:15:10 

120 

122.5 

122.5 

102.5 

100 

92.5 

97.5 

97.5 

~7.41 

~9.52 

~13.89 

~3.7 

 555 
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