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Abstract: 12 

The heat transfer capacity of any thermal cooling system depends on two factors, i.e., the selection 13 

of the coolant and the geometrical pattern of the approach. This article summarizes nanofluids' 14 

preparation ranging from 0.01 % to 0.2 % using Graphene nanoplatelets & CNC dispersed in a 15 

base fluid. The combination of water with ethylene glycol (EG) is a form of customary heat 16 

transmit liquids regularly utilized in numerous energy practices to maintain the water's decent 17 

cooling (or heating) capability; thus, 60:40 ratio of EG: W mixture used as the base fluid for 18 

thermo-physical properties enhancements. These nanofluids prepared are not used with surfactants 19 

as it results in generating bubbles and contaminating the heat transfer channels, influencing the 20 

overall performance. XRD & FESEM techniques were used to analyze the surface. The 21 



investigated nanofluids remained stable, with no substantial sedimentation for 30 days. The results 22 

of GNPs/CNC nanofluids at 0.1% volume concentration has proper stability showing excellent 23 

colloidal stability in the base fluid of EG: W at a ratio of 60:40. The present hybrid nanofluid has 24 

the ability to switch the traditional heat transfer fluids leading to efficient & compact thermal 25 

structures. 26 

Keywords: Graphene nanoplatelets (GNP's), Cellulose nanocrystals (CNC), Hybrid nanofluid, 27 

Preparation, Stability. 28 

 29 

1.0 Introduction: 30 

Nanofluids have been found vital; nanofluids have emerged as a significant participant in heat 31 

transfer applications [1]. For the time being, more research is needed on hybrid nanofluids before 32 

they can be put to use in the manufacturing environment. They may have been used in virtually 33 

every area of heat transfer technology [2]. It has increasingly been known that traditional working 34 

fluids (such as water, engine oil, and ethylene glycol) have poor heat transfer capability in various 35 

engineering processes (such as heating or cooling processes, power production, and chemical 36 

processes). As a result, using ultrafine solid particles dispersed in the base fluid as a means of 37 

improving the thermal performance of these fluids was a novel suggestion [3-5]. Even though early 38 

research revealed that using particles of sizes in millimetres or micrometres in solutions improved 39 

performance, obstacles such as low suspension stability and resulting clogging of flow channels 40 

were encountered [6, 7]. Nanosized particle suspensions (1–100 nm) in a conventional base heat 41 

transfer fluid (named "nanofluid") exhibited improved stability, better rheological properties, and 42 

much higher thermal conductivities than a millimetre or micrometre-sized particle suspensions [8]. 43 



In 1995, Choi was the first person to use the term "Nanofluid." The suspension of solid 44 

nanoparticles in a base fluid, on the other hand, does not produce a simple combination and still 45 

has an instability problem; consequently, the stability of nanofluid should be thoroughly 46 

researched [9, 10]. There are numerous ways to improve the stability of nanofluids [11-15]. 47 

Surfactants, on the other hand, are thought to be the simplest and most cost-effective way to 48 

minimize sedimentation and improve the stability of nanoparticles in aqueous media. 49 

Several published studies in the previous few years have drawn academics' attention to the subject 50 

of carbon nanostructure-based nanofluids. The use of carbon nanotubes was the main focus of 51 

researchers in this subject [16], single-walled carbon nanotubes [17], double-walled carbon 52 

nanotubes [18], multi-walled carbon nanotubes [19], graphene oxide [20], Graphene [21], 53 

graphene nanoplatelets [22], and hybrid [23] to prepare nanofluids [24-25]. Because of its 54 

remarkable mechanical, physical, thermal, and electrical properties, Graphene has attracted plenty 55 

of attention [26, 27]. On the other hand, Graphene nanoplatelets combine the advantages of 56 

monolayer graphene, such as high surface area and good heat conductivity, with the advantages of 57 

highly complex graphitic carbon, such as high stability and low cost. GNPs, on the other hand, 58 

tend to aggregate due to the strong Van der Waals relations that result from the high specific 59 

surface area [28-30]. As a result, dispersion stability should be thoroughly explored for the 60 

effective use of GNPs in the nanofluid area [11]. The author produced dispersions with a volume 61 

content of 0.5–4% GNPs in ethylene glycol as a base fluid. Intensive ultrasonication and no 62 

functionalization were used by Lee and Rhee [22]. A thermal conductivity reproducibility test 63 

confirmed the stability of the nanofluids. Using covalent and non-covalent functionalization, some 64 

researchers developed water-based GNP nanofluids with weight concentrations of 0.025 %, 0.05 65 

%, and 0.1 % [11]. Carboxyl groups and SDBS surfactants were used to make covalently and non-66 



covalently functionalized GNPs, respectively. All of the nanofluids produced had a viscosity 67 

greater than that of water [31]. In addition, nanofluids with non-covalently functionalized GNPs 68 

had a higher viscosity than those with covalent functionalization, attributable to the SDBS 69 

surfactant's presence.  70 

In the literature, a wide range of nanoparticles and base fluids have been studied. Among the 71 

materials studied, carbon-based nanostructures have proven to be particularly promising. From 72 

carbon black [32] to graphite [33], as well as carbon nanostructures, e.g. single, multiwall and 73 

functionalized nanotubes [33], carbon nano horns [34], several nanofluids having nanoparticles of 74 

carbon allotropes have been analyzed for solar energy applications. Graphene is one of the most 75 

captivating carbon allotropes [35]. Graphene nanoplatelets or nanosheets are little flakes made up 76 

of multiple layers of pinned Graphene that have some of the same excellent qualities as Graphene 77 

but at a cheaper cost of manufacture. The dispersion of reasonably large graphene nanoplatelets in 78 

water for solar applications is described in the literature [36-37]. 79 

However, in order to produce a better dispersion process in most aqueous or organic solvents, it is 80 

crucial to chemically change the (hydrophobic) graphene surface, in addition to reducing particle 81 

sizes as much as feasible., e.g., by oxidation [38] or functionalization by a polycarboxylate 82 

chemical alteration, as in the case of the nanoparticles studied in this study. This investigation 83 

demonstrates the novel approach toward hybrid nanofluids by employing nanoparticles as 84 

Graphene nanoplatelets and crystal nanocellulose for improved thermal conductivity of coolants 85 

in thermal applications. CNCs are nanosized natural biopolymers; however, CNCs thermal 86 

properties, crucial for future applications as automated resources, are less investigated. This 87 

research aimed to study the analysis, materials, and equipment used to characterize the nanofluids 88 



for water & ethylene glycol (EG)-based Graphene nanoplatelets (GNPs) & hybrid nanoparticles, 89 

followed by investigation on stability.  90 

 91 

2.0. Materials and methods 92 

2.1. Materials 93 

Graphene nanoplatelets (GNPs) with a specific surface area (SSA) of 800 m2/g have been used in 94 

this study are obtained from Nanografi nanotechnology (Turkey) with specifications; purity: 99.9 95 

%, size: 3 mm, diameter: 1.5 μm. At the same time, crystalline nanocellulose was purchased from 96 

MY Biomass Sdn. Bhd. Malaysia. Due to its hydrophilic nature, extracting CNC in powder form 97 

from the obtained pulp was difficult. For CNC processing in powder form, a spray drying 98 

procedure with a small blower was used. The moisture in the pulp or suspensions was swiftly 99 

evaporated when they came into contact with hot air, which flowed through the spray dryer's 100 

nozzle opening and created a stable CNCs flake. CNC flakes were obtained and pulverized into 101 

powder form. 102 

2.2. Preparation of nanofluid 103 

The required Graphene nanoplatelets & CNC nanofluid was successfully prepared in the Advanced 104 

Automotive Liquid Lab of the Faculty of Mechanical Engineering, University Malaysia Pahang. 105 

GNPs with different volume concentrations of 0.01%, 0.05%, 0.1%, & 0.2% were weighed using 106 

the internal sartorius analytical balance (Model: BSA224S-CW) followed by magnetic stirring and 107 

scattering in ethylene glycol/distilled water solution at a ratio of 60:40 for about 2-3 hours. 108 

Ultrasonication was carried out using an ultrasonication probe (CE ISO Ultrasonic Homogenizer 109 



Sonicator Processor Cell Disruptor Mixer 20-1000mL) with an output power of 900 W and a power 110 

supply frequency range 20KHz with a probe diameter of φ13mm [28, 39].  111 

 112 

Figure 1: Preparation of nanofluid by a Two-step method 113 

Carbon-based nanoparticles cannot be sustainably distributed in base fluid in the absence of a 114 

surfactant due to their hydrophobic nature. It was investigated that GNPs can be dispersed without 115 

surfactants in a medium having stirrer & probe sonication. Ultrasonication was carried out for 5 116 

hours in order to disperse and stabilize the nanoparticles properly. Similarly, hybrid nanofluid 117 

preparation includes GNPs and CNCs at a ratio of 50:50 is dispersed via magnetic stirring in 118 

Ethylene Glycol-distilled water (60:40) base fluid for about 2-3 hours 5 hours ultrasonication 119 

process with a power output of 50%. During the sonication process, after every 15 minutes, an 120 

interval gap of 5 mins was taken to avoid the nanofluid overheating up related to particles' 121 

properties. The below Figure 1 shows the schematic representation of preparing nanofluid. By 122 

using equation (2), the density of nanoparticles was confirmed for hybrid nanoparticles. 123 



2.3. Characterization of nanofluid 124 

2.3.1. Stability measurements 125 

Because of nanoparticles wide surface area, they agglomerate and disrupt the stability of hybrid 126 

nanofluids, which is a crucial criterion for their use. On this basis, the stability and dispersibility 127 

of nanofluids with the addition of GNP: CNC nanoparticles were investigated using the 128 

sedimentation method with pictures taken at various times, UV–Vis spectroscopy, and Zeta 129 

potential analysis. UV-vis spectroscopy analysis was performed using PerkinElmer's LAMBDA™ 130 

UV/Vis with UV-spectrometer operational array of wavelengths 200– 800 nm using particular 131 

quartz cuvettes suitable for measurement of light absorbance for all the samples to record the 132 

spectra. All samples were diluted in base fluid for proper light transmission across them. The Zeta 133 

potential of the nanofluids prepared was measured by Zeta potential Anton Paar lite sizer 500. The 134 

Zeta potential measurement shows the degree of repulsion among close particles of the identical 135 

charge in nanofluid dispersion. Thermogravimetric analysis (TGA) was used to assess the thermal 136 

stability of all prepared nanofluids from 30 °C to 500 °C at a raging rate of 10 °C min-1 in N2 using 137 

the TA Instrument (Perkin Elmer TGA 4000, USA).  138 

2.3.2. Physicochemical Characterization 139 

Transmission Electron Microscope (TEM) works for the microstructural characterization of 140 

nanofluids. A digital TEM was used to determine the dispersion and particle size measurement of 141 

EG-water based GNPs & hybrid GNPs nanofluids. The nanofluid samples were sonicated for 15 142 

min before TEM analysis. The nanofluid solution composed of GNPs and CNC of the nano-base 143 

fluid and evaluated with a 200 KV voltage by the TEM device (Tecnai G2 20 S-TWIN, USA) with 144 

an accelerating voltage of 200 KV. X-ray diffraction (XRD) was conducted for the GNPs and CNC 145 



nanofluids using a (Rigaku D/MAX-2500PC, Japan) diffractometer with Cu Kα radiation (λ = 146 

1.54056 Å) at 40 KV and 30 mA, with a scan rate of 0.02˚/s. X-ray Diffraction (XRD) analysis 147 

was used to examine phase assessment of the nanoparticle. For microstructure characterization, 148 

the prepared nanofluid samples are coated to analyze the superficial morphology. While the 149 

dispersion of nanoparticles in the fluid was analyzed using (SEM) scanning electron microscopy 150 

(HITACHI/TM 3030 PLUS, Czech Republic). The FTIR spectrometer simultaneously gathers 151 

luminous data over a broad spectral scale. FTIR analysis was carried out to investigate the nature 152 

and interaction of the functional groups. The spectrums of the nanofluids were noted between 4000 153 

– 500 cm-1 frequencies to detect the chemical composition of functional groups with KBr by 154 

making pallets of compounds.   155 

2.3.3 FESEM microscopy 156 

The structure of formed filaments was observed using field emission scanning electron microscopy 157 

(FESEM, Zeiss Sigma HD VP, Germany) at 0.5 kV acceleration voltage. All samples were 158 

sputtered with platinum prior to observation. Samples morphologically examined the as-received 159 

powder sputtered with platinum before observation using a FESEM to capture topographical 160 

images [27, 40]. 161 

3. Results and discussion 162 

3.1. Nanofluid preparation  163 

The process of preparation used for graphene nanoplatelets and hybrid nanoparticles dispersion is 164 

a two-step method of preparation. The required Graphene & nanocellulose hybrid nanofluid was 165 

successfully prepared in the Advanced Automotive Liquid Lab (A2LL) of the Faculty of 166 

Mechanical Engineering, University Malaysia Pahang. The Ultrasonication method is the most 167 



influencing method for engendering highly stable GNPs and hybrid nanoparticles dispersion over 168 

an ultrasonication time of 5 hours [27-28, 41]. High ultrasonication time was adopted to break the 169 

nanoparticles and subsequent dispersion into the base fluid without the ease of surfactant with 170 

different concentrations ranging from 0.01%, 0.05%, 0.1%, 0.2%. Characterization and stability 171 

of the as-prepared nanofluids were studied. From an operational standpoint, nanofluid stability 172 

analysis is one of the essential factors in its successful implementation [42]. At the same time, the 173 

best sample was chosen in terms of long-term stability. The parameters such as concentration, the 174 

requisite volume of nanofluid and amount of GNP and CNC to be mixed with the base fluid were 175 

estimated and concluded before the preparation. Weights of nanoparticles were confirmed using 176 

equation (1).  The volume of GNP and CNC were determined by using Equations (1) and (2).  177 

        𝑊G-CNC = (
𝜑

100−𝜑
) × (

𝜌 𝐺−𝐶

𝜌 𝐵𝐹
) 𝑊 bf      Equation (1) 178 

     𝜌G-CNC = 
𝜑G𝜌G + 𝜑CNC 𝜌CNC 

𝜑total

         Equation (2) 179 

Where, 180 

φ means the volume concentration of nanofluids,  181 

W is the weight, and  182 

ρ determines the density.  183 

The subscripts G & CNC are the nanoparticles and bf represent base fluid, respectively.  184 

 185 

3.2. X-ray diffraction 186 



A diffraction pattern is created whenever X-rays interact with a crystalline substance (phase). The 187 

XRD can be described as a fingerprint of the substance because a similar pattern evolved for the 188 

same substance, either analyzed as a single substance or present in the mixture of substances. In a 189 

mixture of substances, each gives its pattern independently of the others. Figure 1 shows 190 

diffraction peaks at 2θ =15.7259°, 22.8375°, 34.6054° and 26.3514°, 43.9549°, 54.1401° 191 

belonging to CNC and graphene diffraction planes, respectively. The peak at 2θ=26.3514° in 192 

Graphene represented a typical diffraction pattern for graphitic carbon [15, 43-45]. 193 

 194 

Figure 2: XRD analysis of CNC and Graphene nanoplatelets nanoparticles. 195 

Furthermore, a negatively diffracted peak at 22.8375° demonstrated the linked carbon in cellulosic 196 

form. It can also be seen in Figure 2 that the intensity of the peak in CNC is stronger than the 197 



graphene peak. It could be explained that Graphene Nanoplatelets' amount and quality increased 198 

at higher reaction temperatures. Adequate pre-intercalation to weaken the resistance force and 199 

intensified bubble generation to increase driving force via temperature manipulation is essential 200 

for highly efficient graphite exfoliation [46]. 201 

 202 

3.3. Macrostructure characterization  203 

SEM (scanning electron microscopy) examines the material's topographic, crystalline, 204 

composition, and morphology. Sample preparation was done by adding a consecutive drop (2 to 3 205 

drops) of nanofluid on a clean glass slide and dried in the oven at 60° C followed by platinum 206 

coating. A scanning electron microscope analyzes a specimen with a beam of electrons to create 207 

an amplified object image. Electrons from the beam collide with the object's surface and come 208 

back. These dispersed electrons are detected and converted into an image.  In the current research, 209 

SEM was used to photograph the surface analysis of the dispersion of the nanoparticles in the base 210 

fluids. Particle dispersion of Graphene and CNC was photographed at various magnifications, as 211 

shown in Figure 3.  212 



 213 

Figure 3: SEM images of Graphene nanoplatelets & hybrid nanoparticles in base fluid at 214 

different volume concentrations (a) G 0.01% (b) G 0.05% (c) G 0.1% (d) G 0.2% (e) G+CNC 215 

0.01% (f) G+CNC 0.05% (g) G+CNC 0.1% (h) G+CNC 0.2 % 216 

Figure 3 (a-d) represents the uniform distribution of GNPs in the base fluid. While upon deep 217 

observation small degree of agglomeration can see as concentration increases from 0.05% to 0.2%. 218 

Figure 3 (e-h) represented the surface chemistry of hybrid nanofluid with an agglomeration pattern 219 

towards higher concentration. Agglomeration can be described mainly due to improper mixing of 220 

temperature effect causing hybrid nanoparticles to coalesce [47]. Furthermore, the Figure supports 221 

the rising shift of GNPs in base fluids (EG/Water), i.e., 0.01% GNPs-EG/W nanofluid showing 222 

less amount (Figure 3a) and 0.20% GNPs-EG/W nanofluid showing the high amount. Dispersion 223 

of nanoparticles in the base fluid is a critical step. The prepared nanofluid should be an 224 

agglomerate-free, stable suspension [48]. 225 

 226 



3.3 Thermogravimetric (TGA) analysis 227 

TGA is an analytical technique for determining a material's thermal stability and the percent of 228 

volatile substances by measuring the weight change while a sample is heated. The weight is 229 

recorded as a function of increasing temperature and is generally conducted in air or an inert gas, 230 

such as Helium or Argon. The measurement is sometimes done in a lean oxygen atmosphere ((1 231 

to 5) percent O2 in N2 or He) to slow oxidation. TGA measurement was carried out for all 232 

GNP/GNP: CNC-EG/W nanofluids with distinct volume concentration by verifying the sample 233 

mass loss through heating in the temperature range of 30 °C to 500 °C and obtained results are 234 

shown in Figure 4. There is different weight loss observed for GNPs and GNP+CNCs as we can 235 

observe from the below image that from 100 °C -200 °C there is a weight loss displayed at ramps 236 

around 130 °C for G (0.01-0.2) & G+CNC (0.01-0.05%) while at the ramp around 150 °C for CNC 237 

(0.1-0.2%) attributed mainly to loss of moisture contents. When the volume concentration of GNP 238 

and GNP: CNC nanoparticles increases, the degradation temperature shifts to the upper side. The 239 

change in the TGA curve shows that adding nanoparticles to nanofluids allows them to survive 240 

higher temperatures than the base fluid (i.e., EG/W). The final weight loss at 200 °C was attributed 241 

to the removal of oxygen-containing groups.  This could also be ascribed to the high-water 242 

repulsive nature of Graphene Nanoplatelets and Cellulose Nano Crystals. In addition, the weight 243 

change in an air atmosphere is typically a superposition of the weight loss due to oxidation of 244 

carbon into gaseous carbon dioxide and the weight gain due to oxidation of residual metal on the 245 

catalyst [49-51]. 246 



 247 

Figure 4: Nanofluid Weight (%) vs Temperature(˚C) graph for TGA analysis 248 

 249 

3.4 FTIR 250 

The chemical composition of single and hybrid nanofluids was investigated using FTIR spectra, 251 

and the results are displayed in Figure 5 for various ratios of graphene nanoplatelets and CNC. For 252 

CNCs, typical signals from cellulose functional groups occurred. Typical O-H stretching 253 

vibrations are seen at 3400 cm-1, whereas symmetrical and antisymmetric C-H stretching 254 

vibrations are noticed at 2900 cm-1, and C-H scissoring, and rocking vibrations are seen at 1500–255 

1300 cm-1 and 760–720 cm-1, respectively [52]. Bending vibrations of adsorbed moisture create 256 

the sharp peak at 1640 cm-1, whereas C-H scissoring bending is responsible for the band at 1450 257 

cm-1 [53]; this generally has a lower intensity than microcrystalline cellulose, indicating that 258 



intermolecular hydrogen bonds have been disrupted [54]. Finally, the C-O stretching of ether 259 

groups accounts for the bandwidth from 1150 to 1000 cm-1  [55]. When compared to raw cellulose, 260 

certain bands in CNC nanoplatelets faded, indicating that the dissolution process significantly 261 

impacts crystallinity [56]. The existence of a new band in the amorphous area at 990 cm-1, related 262 

to C-O stretching, verified this behaviour, implying that the transition from cellulose happened 263 

throughout the breakdown and regeneration phases [57]. The signal at 1655 and 1550 cm-1, 264 

attributed to the stretching of carboxyl and aromatic groups of GNPs, respectively, confirms the 265 

existence of GNP in the adsorbent and is the main difference between cellulose and cellulose-GNP 266 

spectra [58]. As additives, CNC nanoparticles did not cause any undesirable reaction pathways. 267 

Based on this discussion, it may be determined that no chemical interaction between various 268 

materials has occurred, which may result in a significant change in chemical or functional bonding. 269 



 270 

Figure 5: FTIR analysis for various ratios of graphene nanoplatelets and GNPs/CNC. 271 

3.5. Field Emission Scanning Electron Microscopy (FESEM) 272 

Figure 6 (a & b) represented the FESEM images for GNP and CNC. A uniform dendrite type 273 

irregular shape can be seen for GNPs, as represented in Figure 6(a). The bulk of the particles, as 274 

can be seen in the image, have a platelet structure. The agglomerated particles of GNPs are 100-275 

500nm range. At the same time, CNC showing a porous microstructure with a flower type 276 

arrangement. A uniform porous microstructure layered surface morphology can be observed and 277 

envisioned the homogeneity and uniformity of different phases as a single hybrid nanofluid [59]. 278 

The agglomerated particle range is around 4 µm for CNC. Despite this limitation, image analysis 279 



can provide a general but noticeable assessment. The length of functionalized MWCNT was found 280 

to be between 1 and 3µm using FESEM images with reliable length measurements [60]. 281 

 282 

Figure 6: FESEM images of (a) Graphene nanoplatelets (b) CNC nanoparticles. 283 

 284 

3.6. Transmission electron microscopy (TEM) (Morphological analysis) 285 

To determine the size of the nanoparticles, a Transmission Electron Microscopy (TEM) 286 

experiment was performed [61]. Figure 7 displays CNC and GNPs nanoparticle shape and 287 

dispersion examined by TEM. The various GNPs /CNC (Graphene with crystal nanocellulose 288 

nanofluid) images are shown in Figure 7. The transparency in Figure 7(b) suggests well-dispersed 289 

GNPs with a CNC matrix. It can be observed from the images that the concentration of the 290 

nanoparticles increased, resulting in decreased transparency, indicating the agglomeration. There 291 

are low partial aggregates for a 0.1% volume concentration of hybrid nanofluid compared to 0.2% 292 

GNPs/CNC nanofluid. The microstructure TEM analysis is studied to understand the dispersion 293 

of the Graphene nanoplatelets and Cellulose nanocrystal morphology in the base fluid (EG/W). 294 

Figure 7(c) demonstrates as platelet structure of Graphene and CNC exhibiting the fragile structure 295 



behaviour with a clean and smooth surface in the base fluid. In conclusion, the morphology of the 296 

scattered GNPs and CNC indicates the excellent preparation and dispersion of the nanoparticles in 297 

the base fluid of ethylene glycol and water.  298 

 299 

Figure 7: TEM images of prepared nanofluids (a) 0.1% G/CNC at magnification, (b) 0.2% G/CNC 300 

at magnification, (c) 0.1%G/CNC at magnification, and (d) 0.2% G/CNC at different 301 

magnifications 302 

 303 

4. Stability analysis 304 

4.1. Visual observation 305 

GNP tends to remain water repellent and is therefore difficult to disperse in a base fluid because 306 

of this hydrophobicity [62]. For this reason, the nanofluids are well prepared and dispersed using 307 



an ultrasonicator, and there was no sedimentation in the sample that was kept for three months 308 

before being analyzed. The photographs from Figure 8 show good stability without any 309 

sedimentation after 10 days of prepared fluid and even after 60 days of prepared fluid. 310 

 311 

Figure 8: Stability test; visual observation (a) after preparation (b) after 10 days (c) 30 days (d) 312 

60 days  313 

 314 

4.2 UV-VIS Spectroscopic Analysis 315 

In this study, the sedimentation observation of GNPs/GNPs: CNC nanoparticles with various 316 

volume concentrations in EG/W is investigated by UV–vis spectroscopy by recording the 317 

spectrums by applying them in the range of wavelengths 200–800 nm [63]. Quartz cuvettes 318 

suitable for the UV region were used to determine the light absorbance of all samples at specific 319 

time intervals. The UV–vis field for CNC nanoparticles and different dispersed non-covalently 320 



functionalized GNPs. Figure 9(a) shows that the graphene nanoplatelet nanofluid forms can grasp 321 

evident illumination in the 200–400 nm wavelength range. Moreover, the quick absorption band 322 

at 236nm is correlated with the π-π transition of the C=C bond. 323 

It is clear from this that the peak absorption due to the presence of GNPs in all samples occurs in 324 

the wavelength range of 255–269 nm, and that after that peak and within the wavelength range of 325 

255–269 nm, the peak absorption due to the presence of GNPs in all samples occurs in the 326 

wavelength range of 255–269 nm as shown in Figure 9 (b), a decline in absorbance was detected 327 

in all the trials. For the nanofluid with 0.01, 0.05, 0.10 & 0.2% GNPs/GNPs: CNC volume 328 

concentration, a broad absorbance band was clearly visible. Furthermore, it has been discovered 329 

that as the GNPs/GNPs: CNC (hybrid) nanoparticle concentration increases, the revealed band 330 

location for all samples gets broader. Among all nanofluid concentrations, the UV-Vis spectrums 331 

show that 0.20 percent GNPs and GNPs: CNC- EG/W nanofluids had the highest absorption peak, 332 

indicating greater nanofluid suspension stability. 333 

 334 



Figure 9 (a & b): UV-Vis analysis of Graphene nanoplatelets and GNPs/CNC nanofluids. 335 

 336 

4.3. Zeta potential analysis 337 

The zeta potential is a measure of the repulsive and attractive forces between nanoparticles 338 

suspended in liquid, and the magnitude of the zeta potential value can validate the relative stability 339 

of the dispersion [64]. The higher the absolute value, the higher the dispersion stability, and the 340 

closer the zeta potential is to 0 mV, the higher the degree of aggregation. For instance, 341 

nanoparticles in the dispersion are stable when the absolute value of the zeta potential is higher 342 

than ±30mV. This zeta potential stability analysis of single and hybrid nanofluids was carried out 343 

by measuring the conductivity of the nanoparticles, which measures the potential difference across 344 

the boundaries between the solid and the liquid phases (Anton Paar Litesizer 500, Germany) by 345 

testing Zeta potential. This is also known as the Z-potential approach, and it is an efficient and 346 

common way for assessing the stability of colloidal suspensions. Figure 10 shows the zeta potential 347 

measurements to quantitatively characterize the colloidal stability of the Graphene Nanoplatelets 348 

& Cellulose Nano Crystal particles in ethylene glycol-water base fluids. The charge on a particle 349 

in the shear plane is known as the zeta potential. This surface charge value is helpful for 350 

understanding and forecasting particle interactions in suspension. The interface that divides the 351 

mobile fluid from the fluid that remains attached to the surface is the electrical potential at the 352 

sliding plane [65]. 353 



 354 

Figure 10: a) Zeta potential diagram, b) zeta potential analysis of Graphene nanoplatelets and 355 

GNPs/CNC nanofluids. 356 

Electrokinetic potential in colloidal dispersions is referred to as zeta potential in science terms 357 

[66]. The zeta potential was slightly higher with -69 and 79 mV values in the below Figure 10. 358 

These values are commonly used to determine if a single or hybrid nanofluid has enough mutual 359 

repulsion force to generate a stable aqueous dispersion. Due to electrostatic repulsion, particles 360 

having a zeta potential of -30 mV to +30 mV are generally considered stable. Experimentally, it is 361 

observed that highest magnitude of zeta potential (ζ) is obtained for 0.2 % graphene platelets 362 

nanofluid with 79.62mV, and -46.76 mV, -52.98 mV, & 57.018 mV for 0.01,0.05 &0.1% 363 

respectively. Similarly for hybrid nanoparticles nanofluids (GNPs/CNC-EG/W) the maximum 364 

magnitude attained at 0.05 & 0.1 % volume concentration with -68.032 mV & 69.192 mV 365 

respectively. The observed graphene dispersion results were negative zeta potentials & positive 366 

zeta potentials for very stable colloidal solutions. The zeta potential value indicated above shows 367 

that Graphene and hybrid Graphene EG/W dispersion exhibit good stability. The particles with a 368 

positive zeta potential have a positive charge. Colloids with a high zeta potential (positive or 369 



negative) are stable electrically, whereas colloids with a low zeta potential tend to coagulate or 370 

flocculate [67-68].  371 

5. Conclusions 372 

Graphene Nanoplatelets & Cellulose Nano Crystal particles in ethylene glycol-water base fluid 373 

dispersion were investigated at various (0.01-0.2) volume % concentrations in preparation and 374 

stability analysis for an application of automotive radiator. The results indicated that the mixing 375 

ratio of Graphene nanoplatelets and CNC particles in a base fluid (0.01wt. %-0.2wt. %) had the 376 

highest change percentage. The results of GNPs/CNC nanofluids at 0.1% volume concentration 377 

has proper stability showing excellent colloidal stability in the base fluid of EG: W at a ratio of 378 

60:40. It is observed from the UV-Vis spectrums that among all the concentrations of nanofluids, 379 

0.10% & 0.2% GNPs and GNPs: CNC-EG: W nanoparticles exhibit maximum absorption peak, 380 

indicating the better stability of the nanofluid suspension. The TGA analysis revealed that the 381 

weight of nanofluid began to decrease at 130 °C temperature and degraded at 500 °C, as the 382 

degradation temperature increased by increasing the GNP and GNP: CNC nanoparticles volume 383 

concentration. The nanofluids with a volume concentration of 0.20 % GNP: CNC nanoparticles 384 

show the most significant shift in degradation temperature compared to the base fluid. At 150 °C, 385 

it begins to degrade, and at 500 °C, it entirely decomposes. FTIR findings show no chemical 386 

reaction between distinct particles that might significantly change chemical or functional 387 

interactions. Finally, it can be concluded that GNPs and CNC nanoparticles can be added to the 388 

EG/W base fluid, and this hybrid nanofluid can be prepared with good dispersion stability, which 389 

can be used for various applications where this stability gives better thermophysical properties.  390 

 391 
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