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Abstract: Wind energy generation fluctuations and 

intermittency issues create inefficiency and instability in power 

management. The recurrent neural networks (RNNs) prediction 

approaches are an essential technology that can improve wind 

power generation and assist in energy management and power 

systems’ performance. In this paper, a prediction model based on 

Gated Recurrent Unit (GRU) neural networks is proposed to 

predict wind speed and temperature values one week ahead in the 

future at hourly intervals. The GRU prediction model 

automatically learnt the features, used fewer training parameters, 

and required a shorter time to train compared to other types of 

RNNs. The GRU model was designed to predict 169 hours ahead 

as a short-term period of wind speed and temperature values 

based on 36 years of hourly historical data (1 January 1985 to 6 

June 2021) collected from Dumat al-Jandal city. The findings 

notably indicate that the GRU model has promising performance 

with significant prediction accuracies in terms of overfitting, 

reliability, resolution, efficiency, and generalizable processes. The 

GRU model is characterized by its good performance and 

influential evaluation error metrics for wind speed and 

temperature values.   
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I. INTRODUCTION  

Wind power generation has grown exponentially in recent 
years due to awareness of the global climate change crisis which 
has required a transition from fossil fuel sources to renewable 
energy technology. Although it has shown rapid growth in 
consumption, wind energy's performance is restricted due to the 
fluctuations in power generation compared to other types of 
energy generation. The increase in wind power generation 
creates significant implications for operating systems, such as 
variations in wind speed and intermittent and non-dispatchable 
power generation. These factors have an impact on the power 
generation system's quality, operation protection, distribution 
effectiveness, and cost [1]. In addition, the unstable nature of 
wind energy reduces the reliability of the national grid 
connected to large scale wind farms. Wind energy variations can 
be counterbalanced by using battery storage technologies. On 
the other hand, the battery system will play a significant role in 
raising the cost of wind energy generation and using diesel 

generators to support the national grid is not decarbonization 
solution. Forecasting approaches such as neural network deep 
learning can be employed to predict the future performance of 
wind speed based on the analysis of the historical data or 
previous observations. Furthermore, forecasting can reduce 
energy consumption, balance the demand with supply, and 
optimize the grid performance [2]. Deep learning forecasting 
technology has sparked a lot of interest in investigating 
comparable challenges with common uncertain effects [3]. 
Moreover, recurrent neural networks (RNNs) are a type of deep 
learning framework that are effective in interacting with time 
series. The wind farms’ operation can be properly controlled and 
maintained ahead of time sequences by prediction technology 
and statistic models. Neural networks are an active research 
topic in the artificial intelligence field for prediction capabilities 
with fault-tolerant abilities [2]. In addition, the prediction 
accuracy was enhanced by neural network deep learning 
approaches and statistic time sequence models. Nonetheless the 
main issue with RNNs is the vanishing gradient problem, which 
restricts the RNN learning of long data sequences [2]. The 
gradient contains information that is used to update the RNN 
parameters, and when the gradient declines, the updating of the 
parameters becomes minimal, indicating that no meaningful 
learning occurs. The long short-term memory (LSTM) neural 
network with its complex principles and architecture was 
introduced to solve the vanishing gradient issue [4], which was 
proven to have effective performance and outperformed 
traditional prediction approaches for short-term predictions [5-
7]. On the other hand, the challenges are that the prediction 
models must be fast, efficient, and accurate. In 2014, the first 
basic model of a gated recurrent unit (GRU) neural network was 
proposed by Cho et al [8]. The GRU has a simple principle and 
architecture; is fast, efficient, and more accurate; and has fewer 
parameters than LSTM. GRU has been shown to perform on 
smaller and less frequent datasets compared to the LSTM block 
[2].  

In this paper, a prediction model based on a GRU approach 
is developed for predicting and analyzing the future 
performance of wind speed and temperature values of short-term 
hourly intervals (169—h) for one week in advance. In addition, 
this paper aims to contribute to the issue of high uncertainty and 
volatility of wind energy, along with the temperature, which can 



be used to investigate its impacts on the power generation 
system influenced by the factors of wind speeds and 
temperatures. Moreover, the remainder of this paper is 
organized as follows: The GRU model architecture and method 
are discussed in Section II. The results of the experiment and 
discussion are presented in Section III. Conclusions are 
presented in Section IV. 

II. PREDICTIVE MODEL ARCHITECTURE AND ALGORITHM 

The characteristics, fundamental principles, and architecture 
of the GRU neural network prediction model, as well as their 
algorithms, are discussed in this section. In addition, the 
collected historical data and the error metrics that are used to 
evaluate the performance of the GRU model are described in this 
section. 

A. Recurrent Neural Networks (RNN) 

GRU is a gate mechanism approach that was developed 
based on the artificial recurrent neural networks. The GRUs 
inherit the LSTM's characteristics including several advantages, 
which include the GRU’s lack of an output gate, automatic 
learning of features, the use of fewer training parameters, and a 
shorter time required to train in comparison to the other RNN 
models such as LSTM [9, 10]. In contrast to the LSTM, the GRU 
can process different sizes of dataset frequencies and time series 
including a smaller data range. The GRU block consists of two 
main gates, which are the update gate ����and the forgetting or 

reset gate ���� with an input gate, as illustrated in Fig. 1 [11, 12]. 

GRUs modulate the data via the gate unit; however, memory 
access is not provided by a separate memory unit. The update 
gate is used to regulate the prior state information, which is 
required for the current state. In addition, the update gate 
facilitates the prediction model in estimating and evaluating the 
size of previous data that must be transferred to the future [9]. 
The higher the value of the update gate, the greater the amount 
of state information gathered from the previous instant [13]. 
However, the reset gate is used to govern the state information 
from the previous instant, which is required to be disregarded. 
The reset gate primarily controls the amount of activation 
information that reaches the input as well as how the new input 
is combined with the previous memory [9]. The lower the value 
of the reset gate, the greater the amount of information that is 
ignored. 

 

Fig. 1. Architecture of GRU network. 

 

Mathematically, the GRU network can be demonstrated by 

equations 1� 4, where the ���) is the update gate,  ���) is reset 

gate, and 	��) is the input vector at time �  [12]. In addition, 
 and � are the weight parameters matrices that are required to 

be learned for training. The ℎ�� � 1�  and ℎ�� ) represent the 
output vector of the past state or previous layer and the current 

state, respectively. Moreover, �  is the base vector, (σ� ) is a 

sigmoid element, (σ�) is the hyperbolic tangent,�ʘ� is a factor 
wise multiplication, and the tanh is the activation function that 
is used to control the flowing values via the network. The 

extracted features of the �σ�) and tanh functions are set to be (0, 

1) and (1, 1), respectively [11]. The gradient descent technique 
is used to train the GRU, and the elements are updated 
continuously until convergence [13]. 

���� � σ�� 
�   	� � ��   ℎ���   � ��  �                                                  (1) 

���� � σ�� 
�   	� �  ��   ℎ���   � �� �                                                (2) 

ℎ��� � 1 � �� ʘ ℎ���   �   ��  ʘ ℎ����                                                    (3) 

ℎ���� � σ�� 
�   	� � ��   ���   ʘ ℎ���   � � �� �                                  (4) 

B. Data Description and Preparation 

Dumat al-Jandal city in Al-Jouf region was selected to be a 
case study for this research. Dumat al-Jandal is located in the 
northwest of the Saudi Arabia between 29°48′41″ N in latitude 
and 39°52′06″ E in longitude. A historical dataset was gathered 
in order to analyze and predict the behavior of wind speed (m/s) 
at a height of 80m and temperature (°C) at a height of 2m for 
one week in advance at hourly intervals (169�h). All the real 
historical data utilized in this research cover the period from 1 
January 1985 to 6 June 2021; over 36 years in the historical 
dataset at hourly intervals are presented in Figs 2�7.  

 

      Fig. 2. Historical wind speed performance over 36 years at hourly intervals. 

 

This research used an anemometer to collect the data from the 
Meteoblue weather service portal [14], which provided the 
historical wind speeds and temperature data. During the last 36 
years, geological conditions have differed and varied over the 
time, so this large amount of historical data can provide more 



details, which can be considered by the GRU neural network 
prediction model. Moreover, the quantity and quality of datasets 
are a basic factor for GRU models to extract the required 
features and to obtain an accurate decision for prediction 
outcomes. Moreover, to guarantee that no values were missed or 
duplicated, the data were reviewed, validated, and evaluated. 
The Dickey–Fuller test was applied to ensure that all the data 
were stationary. Furthermore, the p-values were less than 0.05, 
and the p-value hypothesis was evaluated (p-values < 0.05). 
 
 

Fig. 3. The first three historical weeks of wind speeds performance during 

January at hourly intervals. 

 

 

Fig. 4. The first three historical weeks of wind speeds performance during June 

at hourly intervals. 

Fig. 5. The historical temperature performance over 36 years at hourly intervals. 

 

 

    Fig. 6. The first three historical weeks of temperature performance during  

    January at hourly intervals.  

 

     Fig. 7. The first three historical weeks of temperature performance during 

      June at hourly intervals.   

 

C. Model Architecture 

Python software was used to build and process the codes of 
the GRU model. Moreover, python programming is widely 
used to process a large amount of historical data due to its high-
level programming language, code readability, and large size of 
memory function. The historical wind speed and temperature 
data were screened and cleaned for pre-processing. The GRU-
prediction model was developed as a set of coding functions 
based on the mathematical algorithms (subsection A), including 
the definition of the model parameters (Fig. 8). The training and 
testing sets accounted for 70% and 28% of the historical data, 
respectively, with the remaining data being used to validate the 
proposed method's predicting capability. The number of 
neurons in the first and second layers was adjusted to 64. The 
predicted errors drastically reduced as the number of hidden 
neurons increased. When the number of neurons was between 
50 and 300, the root mean square error, which was caused by 
the randomization of the input weights for the extreme learning 
network, remained practically constant with only minor 
fluctuations. The number of epochs was set to 10, the batch size 
was set to 64, and the validation split was set to 0.02, which 
improved the model's fit. Furthermore, in factorization learning 
networks, the number of inputs and neurons of the hidden layer 
are the most important parameters for the GRU model.  
 
 



   Fig. 8. Flowchart of the GRU model. 

 

D. Prediction Evaluation Criteria 

The prediction error is an essential metric for evaluating 
whether a prediction approach is appropriate for a prediction 
target. Moreover, the error metrics were used to measure the 
fitting of the prediction model by comparing the generated 
values to the historical actual dataset. The correctness and 
reliability of the GRU prediction model can be examined using 
three main statistical error measures, which are the mean 
squared error (MSE), the root mean square error (RMSE), the 
mean absolute percentage error (MAPE), and the mean absolute 
error (MAE). Furthermore, the R-squared (R²) value is a 
statistical measure that quantifies the amount of a dependent 
variable's variation adjusted for an independent variable. 
Whereas the correlation reveals the degree of the association 
between an independent and dependent variable, the R² indicates 
how the variation relationship of one variable reflects the 
variation of the other variable. The error metrics that are 
employed to evaluate the outputs of the GRU prediction model 
are presented by equations 5 � 9. The parameters in these 
equations are ( � ), which estimated the data's generic hour; ( � 
), which represents the number of predicted datapoints; �� �, 

which is the actual value; and � � ^ ), which is the forecasted 

observations value. In addition, the sum of the squared residuals 
is � ""#$%), and the absolute number of squares is �""&'�), which 
is proportional to the variances in the data.  
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III. RESULTS AND DISCUSSION 

The short-term future performance of the wind speed and 
temperature of Dumat al-Jandal city were predicted based on a 
historical dataset covering 36 years using the GRU neural 
network prediction model. The GRU prediction model's results 
revealed good performance and noticeable model fitting (see 
Fig. 9). Despite the enormous quantity of training data, the GRU 
model did not exhibit overfitting, as seen in Fig. 10. In addition, 
the wind speed values for 169 hours ahead from 23:00 7 June 
2021 to 23:00 14 June 2021 were predicted with significant error 
metrics, as shown in Fig. 11. The MSE is 0.44 m/s, the RMSE 
is 0.66 m/s, and the MAE is 0.48 m/s. Moreover, the MAPE is 
5%, which highlights the good quality of the GRU model. The 
R² is 93%, which indicates that the variables have a reasonable 
correlation and variance. The number of variables has a 
significant impact on the accuracy of the projected models. In 
addition, the evaluation metrics for all the prediction results are 
shown in Table I. The epochs size and the error values have a 
significant correlation, which indicates that, if the number of 
epochs increases, the errors obviously will decrease, but the 
training time increases. Furthermore, utilizing a large amount of 
historical data with a huge quantity of training data resulted in 
long simulation periods and significant error readings. The GRU 
prediction model must be processed sequentially, as the 
succeeding steps are dependent on the previous stages. 

       Fig. 9. The actual and predicted wind speed performance. 
 



   Fig.10. Actual and predicted wind speed performance show the model fitting. 

 Fig. 11. The future predicted values of the wind speeds for 169 hours ahead. 

 

The GRU model achieved acceptable improvement in the 
temperature discrimination tasks, as presented in Figs. 12 and 
13. The future performance of the temperature values for 169 
hours ahead from 23:00 7 June 2021 to 23:00 14 June 2021 were 
predicted, as presented in Fig. 14. The MSE, RMSE, and MAE 
error metrics are 0.84 °C, 0.92 °C and 0.68 °C, respectively. The 
MSE, RMSE, and MAE of the predicted temperature results 
increased compared to the predicted wind speed error values; 
however, these error metric values of the GRU model are 
considered to be relatively small values compared to other 
prediction models, which demonstrates their flexibility in new 
dataset observations. In addition, the MAPE and the R² were 
improved which are 2.43% and 99%, respectively. Furthermore, 
improving this model's generalization capabilities and 
producing high-accuracy results was one of the most difficult 
challenges. The variation in model performance when assessing 
previously observed data, such as training data, over data that 
the model has never seen before, such as testing data, is referred 
to as generalizability. Moreover, the model's insufficient 
generalizability will lead to overfitting of the training data.   

In general, the GRU model uses historical time series data to 
increase prediction accuracy by taking into account the effects 
of characteristics on anticipated wind speed and temperature 
values of the next instant. The GRU prediction model does not 
require the usage of a memory to monitor the transferred 
information and utilized all the extracted features immediately 
without any supervision. When a suitable number of historical 
time series data is selected, the efficiency of the GRU becomes 
increasingly clear, and the short-term prediction accuracy is 
developed. 
 

    Fig. 12. The actual and predicted temperature performance.  

      Fig. 13. The actual and predicted temperature performance show the model 
      fitting.   
     

 

     Fig. 14. The future predicted values of the temperature for 169 hours ahead. 

 

TABLE I.  THE FORECASTING ACCURACY OF THE GRU MODEL. 

 

IV. CONCLUSIONS 

The GRU prediction model was built based on RNNs using 

the algorithms’ strength of neural connections, gated units, and 

layers, which are the best prediction sequence processes for the 

Element MSE  RMSE    MAE  
MAP

E (%) 

P-
value 
(%) 

 R2 

(%) 

Wind speed 0.44 m/s 0.66 m/s 0.48 m/s 5 0.001 93 

Temperature 0.84 °C 0.92 °C 0.68 °C 2.43 
5.16 × 

10−18 
99 



future performance of wind speed and temperature. The GRU 

model was validated to predict 169 � h ahead based on a 

historical dataset covering 36 years from Dumat Al-Jandal city 

in Saudi Arabia. The hourly intervals from 01 January 1985 to 

06 June 2021 were utilized to test the GRU prediction model's 

ability to cope with this type of historical dataset. The GRU 

model's underlying architecture provided clearly efficient cell 

structure, which required fewer training parameters, especially 

for short-term prediction. The experimental results show that the 

significant advantages of the GRU model over its competitors 

are a good degree of prediction accuracies, overfitting, 

redundancy reduction, and training and testing execution time 

which showed good performance. The GRU prediction model 

generated notable error metric values such as MSE, RMSE, 

MAE, and MAPE, which are 0.44 m/s, 0.66 m/s, 0.48 m/s, and 

5%, respectively, for the wind speed values, and 0.84 °C, 0.92 

°C, 0.68 °C, and 2.43%, respectively, for the temperature values. 

Furthermore, the representation of the results demonstrated a 

remarkable level of the model’s learning features, computing 

efficiency, fast convergences, and capability of GRU approach. 

However, the model can be improved, and the error metrics can 

be reduced by enhancing the learning performance, improving 

the hidden layers, and setting the epoch number or learning 

iterations. Finally, further study in this area will be expanded 

and proposed to predict wind speeds by utilizing different sizes 

of historical datasets and locations including the solar 

irradiances. 
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