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ABSTRACT: A palladium-catalyzed decarboxylative asymmetric allylic alkylation of thietane 1,1-dioxides via linear enolate inter-
mediates from racemic starting materials has been developed. This process installs an a-sulfonyl tetrasubstituted stereogenic center 
with high enantioselectivity. The potential to transform the alkylated products to novel types of enantioenriched spirocycle for me-
dicinal chemistry applications has also been demonstrated. 

 
Four-membered ring-containing spirocycles have become par-
ticularly attractive building blocks in drug discovery,1 with 
much attention placed on the development of synthetic routes 
to achiral (1, A, Scheme 1),2 as well as chiral but racemic (2) 
spirocycles.3 In contrast, chiral, enantiopure analogues 3 are 
much less common.4 In particular, there are no examples of en-
antiopure thietane 1,1-dioxide containing spirocycles 4. 
To access tetrasubstituted carbon centers in enantioenriched 
form, we sought to utilize the palladium-catalyzed decarboxy-
lative asymmetric allylic alkylation (Pd-DAAA) reaction,5 most 
frequently employed in the asymmetric alkylation of cyclic eno-
lates.6 However, the DAAA reaction of linear enolates is less 
developed due to the need for stereoselective enolization of the 
carbonyl substrates in order to achieve high levels of asymmet-
ric induction in the alkylation step.7 The Stoltz group discov-
ered that the Pd-DAAA reaction of linear enol carbonate 5 gives 
6 with high enantioselectivity irrespective of the ratio of E/Z 
enol carbonates 5 due to a palladium-mediated interconversion 
of the intermediate enolates prior to alkylation (B, Scheme 1).7h 
In contrast to enolates, the asymmetric allylic alkylation of a-
anions of sulfones is more challenging.8 Tunge and co-workers 
developed an enantiospecific, stereoretentive decarboxylative 
allylic alkylation of linear sulfones 7 to 8 (C, Scheme 1).8b Their 
study revealed that allylic alkylation occurred faster than race-
mization of the a-sulfonyl anion, retaining the stereochemical 
information in the process. The enantioselective allylic alkyla-
tion of racemic a-sulfonyl nucleophiles remains elusive.9 
To enable an enantioconvergent alkylation of racemic sulfones, 
we incorporated a carbonyl group in thietane 1,1-dioxide 9 as a 
means of simultaneously stabilizing the a-sulfonyl anion and 
ensuring complete stereoablation via planar enolate 10 (D, 
Scheme 1). However, as decarboxylation would likely lead to a 
mixture of E/Z enolates 10, a palladium-mediated 

interconversion of the enolates would be required in order to 
obtain 11 with high ee. Herein we report the first palladium-
catalyzed asymmetric allylic alkylation of thietane 1,1-dioxides 
to generate a-sulfonyl stereogenic tetrasubstituted carbon cen-
ters in 11 from racemic starting materials without the need for 
geometrically pure, pre-formed enol carbonate precursors. We 
illustrate the utility of these products in the synthesis of a novel, 
enantioenriched thietane 1,1-dioxide containing spirocycle 12. 
Scheme 1. Introduction 
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Scheme 2. 3-Step synthesis of ketone and ester precursors 

Reagents and conditions: a) KMnO4 (2 eq.), CH2Cl2/H2O, rt, 94%. 
b) LiHMDS (2.1 eq.), allyl chloroformate, THF, –78 °C, 68%. c) 
NaHMDS (1.1 eq.), R1COCl, THF, 0 °C. d) KHMDS (1.1 eq.), 
R2OCOCl, THF, 0 °C. THF = tetrahydrofuran, HMDS = bis(trime-
thylsilyl)amide. 

Our studies began with a 3-step synthesis of precursors 16 and 
17 (Scheme 2). Oxidation of commercially available thietane 
(13) to thietane 1,1-dioxide (14) and allyl ester installation gave 
15, which was derivatized in a divergent manner to substrates 
16 and 17, bearing ketone and ester substituents, respectively. 
Table 1. Reaction Optimization Studies 

 
 
 

Conditions: a 16a (0.17 mmol), [Pd2(dba)3] (2.5 mol%), (L1–4) (6.5 
mol%); b isolated yield; c enantiomeric excess determined by chiral 
HPLC; d performed at 0 °C. dba = dibenzylideneacetone. 

 
The development of the Pd-DAAA process was undertaken us-
ing ketone substrate 16a (Table 1; see SI for the full optimiza-
tion study). Initial experiments to identify a suitable ligand for 
the enantioselective conversion of 16a to 18a revealed that the 
use of PHOX L1, as well as DACH phenyl and naphthyl Trost 
ligands L2 and L3 resulted in poor ee in 1,4-dioxane as the 

solvent (8%, 34% and 24% ee, respectively, entries 1-3). In con-
trast, (S,S)-ANDEN Trost ligand L4 gave a high ee of 83% of 
18a (entry 4), despite the acyclic nature of the enolate interme-
diate. It was found that a reaction of lower concentration (0.04 
M, entry 4) yielded 18a with higher ee compared to more con-
centrated ones (0.1 M and 0.2 M, entries 5 and 6, respectively). 
Reactions in acetonitrile and toluene were poorly selective (en-
tries 7 and 8). 1,4-Dioxane was also superior to other ethereal 
solvents (entries 9 and 10), presumably due to its ability to bet-
ter stabilize caged ion pairs.10 Despite obtaining an excellent 
yield (98%) of 18a in CH2Cl2 (entry 11), the enantioselectivity 
was also lower compared to 1,4-dioxane. Attempts to lower the 
temperature to 0 °C using a 3:1 mixture of 1,4-dioxane:CH2Cl2 
resulted in no improvement in ee (entry 12), with the reaction 
in 1,4-dioxane at room temperature being optimal (entry 4). 
With optimal conditions identified, the substrate scope was in-
vestigated by subjecting racemic precursors 16 and 17 to the 
catalytic reaction (Scheme 3). We discovered that electronics 
had little effect on the enantioselectivity of the reaction, with all 
substituted phenyl aromatic ketones giving ee of products 18a–
f of 83–86%. In spite of the increased size of o-toluoyl ketone 
substituent in 18b, the yield and ee remained high. p-Fluoro- 
and bromo-substituted phenyl substituents were tolerated, with 
no oxidative addition occurring at the C–Br bond. A slightly 
lower ee of 79% was obtained for methyl ester-containing prod-
uct 18g. Aromatic heterocycles, such as furyl and pyridyl-con-
taining 18h and 18i, were obtained with 81% and 72% ee, re-
spectively. Substitution on the allyl group at the internal or ter-
minal position (18j–m) necessitated a higher catalyst loading 
due to the lower reactivity of these substrates, and the ee also 
dropped significantly to 52–55%. Prenylated substrate 18n did 
not undergo the reaction, presumably due to large steric hin-
drance at the allyl functionality for the initial oxidative addition 
step. Alkyl-substituted ketones were isolated with consistently 
high ee of >90% in the case of large substituents, such as ada-
mantyl (18o), tert-butyl (18p), cyclohexyl (18q) and isopropyl 
(18r). However, as the steric bulk of the substituent decreased, 
the enantioselectivity of the reaction fell: the ee of 18s and 18t 
was 81% and 69%, respectively, whereas product 18u bearing 
a methyl ketone substituent was isolated with a much lower 
39% ee. Using the same reaction conditions, ester-substituted 
products were all obtained with high enantioselectivity, includ-
ing phenyl aromatic esters 19a–c, tert-butyl ester 19d and me-
thyl ester 19e. X-ray crystal structures of 19a and 19b con-
firmed the absolute stereochemical configuration of the major 
enantiomer of product using (S,S)-ANDEN Phenyl Trost ligand 
L4.11 Substrates with an amide as the stabilizing group did not 
undergo decarboxylation under the optimized conditions. 
Given that the alkene geometry of acyclic enolates can affect 
the stereochemical outcome of the allylic alkylation reac-
tion,7d,7h-j we sought to explore the importance of enolate geom-
etry on both the sense and magnitude of enantioinduction. In 
this context, the E- and Z-enol carbonates 20 were prepared and 
reacted under the standard conditions (Scheme 4). Both isomers 
of 20 afforded (S)-18p as the major enantiomer in 76% ee from 
(E)-20 and 88% ee from (Z)-20 with (S,S)-L4 as the chiral lig-
and. In the case of (E)-20, the level of enantioselectivity was 
slightly lower than that when allyl ester 16p was used as the 
substrate (90% ee of 18p). We, therefore, postulate that a palla-
dium-mediated interconversion of E and Z enolates occurs, and 
that alkylation of the Z-enolate results in the formation of 18p. 
(For a rationale for the origins of stereocontrol using the Trost 
‘wall-and-flap’ model, see SI.) 
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Scheme 3. Pd-DAAA of thietane 1,1-dioxides 

Conditions: a isolated yield; b enantiomeric excess determined by chiral HPLC; c [Pd2(dba)3] (5 mol%), (S,S)-L4 (13 mol%). 

 
Scheme 4. The effect of enolate geometry  

Conditions: [Pd2(dba)3] (2.5 mol%), (S,S)-L4 (6.5 mol%), 1,4-di-
oxane (0.04 M), rt, 18 h.  

To gain further insight into the mechanism of this reaction, an 
enolate crossover experiment of 16a and deuterium-labelled 
[D]-16c was performed (A, Scheme 5). The isolated product 
mixture comprised all four crossover compounds 18a, [D]-18a, 
18c and [D]-18c, as confirmed by high resolution mass spec-
trometry. The complete scrambling of enolates suggests that the 
ion pairs generated in this reaction undergo fast ion exchange.7d 
To test whether an enolate as part of an ion pair is a long-lived 
intermediate in the reaction, a water additive was used (B, 
Scheme 5). We expected water to quench a free enolate to at 
least some extent if such a species was present in the reaction 
and significantly impact the yield, and potentially ee, of product 
18a. However, neither the yield nor the enantioselectivity of the 
reaction was affected even when up to 20 equivalents of water 
were added (see SI for further details), indicating that a free 
enolate is an unlikely species in the reaction. 

Scheme 5. Mechanistic Study 
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Finally, to elucidate whether an inner- or outer-sphere enolate 
alkylation operates, substituted allylic electrophile cis-21 was 
prepared (C, Scheme 5). In the case of an outer-sphere alkyla-
tion, net retention of the allylic center would be expected in 22. 
Alternatively, the inner-sphere mechanism would result in net 
stereochemical inversion in 23. Unfortunately, 21 failed to un-
dergo the desired alkylation due to the sterically encumbered 
nature of the allylic electrophile (see SI for further details). 
Using this information, a catalytic cycle for the Pd-DAAA re-
action of thietane 1,1-dioxide is proposed (Scheme 6). Follow-
ing ionization of 16, palladium-carboxylate ion pair 24 is 
formed. We believe it is at this stage that ion crossover occurs. 
Given that the reaction is unaffected by water, it is likely that a 
free enolate is not formed due to the slow decarboxylation of 
24.12 This decarboxylation step is assisted by palladium (25),13 
which facilitates the requisite E/Z enolate equilibrium between 
26a and 26b via a carbon-bound palladium enolate to afford en-
antioenriched 18 and release the palladium(0) catalyst.  
Scheme 6. Reaction mechanism 

 
The enantioenriched tetrasubstituted thietane 1,1-dioxides ob-
tained by the Pd-DAAA methodology are excellent building 
blocks for further derivatization into novel spirocycles (Scheme 
7). In this context, the key allylic alkylation process of 17d was 
scaled up, furnishing 19d in 86% yield and 96% ee on 5 g scale. 
The alkene in 19d was subjected to a hydroboration, oxidation 
and reductive amination sequence, and removal of the tert-butyl 
group afforded amino acid 27. Subsequent lactamization, amide 
reduction and deprotection furnished spirocycle 12. Lastly, to 
exemplify the utility of spirocycle 12 in the generation of com-
pound libraries, the amine in 12 successfully underwent reduc-
tive amination, amide bond formation and Buchwald-Hartwig 
processes, efficiently furnishing products 28a–c. 
In conclusion, we have developed the first enantioconvergent 
palladium-catalyzed DAAA reaction of thietane 1,1-dioxides, 
in which a carbonyl substituent enables the key stereoablation 
required to produce enantioenriched alkylated products from ra-
cemic precursors. In spite of the likely formation of both E- and 
Z-enolates in the reaction, a palladium-mediated enolate inter-
conversion is thought to occur, resulting in high levels of enan-
tioselectivity. The synthetic utility of these products has been 
demonstrated by their expedient derivatization into a novel, en-
antioenriched thietane 1,1-dioxide-containing spirocycle as a 
high-value sp3-rich building block for use in medicinal chemis-
try applications. 

Scheme 7. Synthesis and functionalization of spirocycle 12  

[a] 9-BBN, NaOH, H2O2, THF, 62%; [b] Dess-Martin periodinane, 
CH2Cl2, 78%; [c] NH2Bhz, AcOH, NaBH(OAc)3, DCE, 57%; [d] 
TFA, CH2Cl2, quant.; [e] EDCI×HCl, pyridine, DMAP, CH2Cl2, 
89%; [f] BH3×THF, THF, 96%; [g] Pd(OH)2/C, H2, EtOH, TFA, 
81%; [h] 4 N HCl, 1,4-dioxane, 95%. Functionalizations: [i] 12 
(0.15 mmol), 4-bromobenzylaldehyde, AcOH, NaBH(OAc)3, 
DCE, 53%; [j] 12 (0.07 mmol), 4-bromobenzoyl chloride, Et3N, 
CH2Cl2, 84%; [k] 12 (0.15 mmol), 4-bromoacetophenone, 
Pd(OAc)2, rac-BINAP, Cs2CO3, toluene, 61%. 9-BBN = 9-borabi-
cyclo[3.3.1]nonane;  Bhz = benzhydryl; DCE = 1,2-dichloro-
ethane; TFA = trifluoroacetic acid; EDCI = N-(3-dimethyla-
minopropyl)-N’-ethylcarbodiimide; DMAP = 4-(dimethyla-
mino)pyridine; BINAP = 2,2’-bis(diphenylphosphino)-1,1’-
binaphthalene. 
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