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Abstract: Additive manufacturing has already been established as a highly versatile manufacturing
technique with demonstrated potential to completely transform conventional manufacturing in
the future. The objective of this paper is to review the latest progress and challenges associated
with the fabrication of multi-material parts using additive manufacturing technologies. Various
manufacturing processes and materials used to produce functional components were investigated
and summarized. The latest applications of multi-material additive manufacturing (MMAM) in the
automotive, aerospace, biomedical and dentistry fields were demonstrated. An investigation on the
current challenges was also carried out to predict the future direction of MMAM processes. It was
concluded that further research and development is needed in the design of multi-material interfaces,
manufacturing processes and the material compatibility of MMAM parts.

Keywords: multi-material additive manufacturing; functionally graded materials; conventional
manufacturing; interface issues

1. Introduction

Additive manufacturing (AM) is an emergent technology with potentials to transform
conventional manufacturing. AM processes help to reduce the need for tooling and provide
flexibility in design and product customization as compared to conventional processes [1-6].
Recent advances in AM processes have enabled the fabrication of multi-material structures
with complex geometry and parts with various materials that display different thermal,
chemical and physical properties [7-10].

The advantages of manufacturing components with multiple materials with different
chemical and physical properties are key for the successful production of customized
mechanical components with tailored performance characteristics. Multi-material AM
(MMAM) methods have recently been applied to fabricate complex structures in an efficient
way to save production time and the cost of the materials used [11-16]. With the advantage
of fabricating multiple materials in a single manufacturing process, it is possible to produce
functionally graded materials (FGM) with improved material interface characteristics.
With the help of MMAM, arbitrarily complex and locally controlled FGMs can easily
be fabricated. A number of previous attempts have mainly focused on ceramic-metal
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structures [17], metal composites fabricated by selective laser melting (SLM) [18,19], wire-
arc [20,21] and other laser deposition processes [22,23]. Recently, advances in material
jetting processes have enabled the control of the material deposition on a voxel scale [24-26].
With the help of these technologies, the spatial distribution of mechanical properties can
be controlled over very small dimensions. However, the limitation of materials and cost
of these technologies reduce the benefits of the current FGM fabrication. A simplistic
outline highlighting the general material combinations based on suitable material type and
possible material property improvement is presented in Figure 1.

Materials Polymer Composites Ceramic

AM processes FFF, BJ, MJ, VAT, etc. DED, EBM, SL, etc.
Targeted Functionality, hardness, wear resistance,
R e thermal, performance, osteoconduction

Figure 1. Overview of manufacturing and property enhancement possibilities of MMAM.

Multiple material combinations of real structures widely exist in nature. Therefore,
the fabrication of multi-material parts using a low-cost manufacturing process is desirable.
MMAM enables the manufacture of highly complex parts with site-specific properties
without using costly and time-consuming conventional processes. Multi-material parts can
be fabricated with graded regions that provide property gradients over the volume that
can be used for damping, thermal gradients, fracture resistance, and construction materials.
Based on these implementations, it is of great interest to fabricate multi-material parts using
AM technologies. Therefore, investigation of the existing literature is an important step to
identify the current advantages and limitations of MMAM, which enables the prediction of
the future trend of the technology and its possible applications. Figure 2 provides examples
of multi-material parts fabricated using different manufacturing processes.

MMAM has been explored in recent years with a variety of processes and methods.
Recently, Ituarte et al. conducted research on the design and fabrication of functionally
graded structures through multi-material binder jetting technology [27]. One unique
research study performed by Garland et al. investigated the fabrication of multi-material
structures with optimal material distributions [28]. Another research study was performed
by Dorcas et al., who used the voxel-based multi-material deposition process to fabricate
FGM components for tensile tests [26]. Moreover, Doubrovski et al. manufactured a
prosthetic socket that consisted of various material combinations [24]. Some research
studies investigated multi-material parts made by AM technology where the material
joining region had direct contact. Brischetto et al. conducted research to fabricate a
sandwich panel using an AM method [29]. In that study, external layers were produced
with acrylonitrile butadiene styrene (ABS), while an internal core was produced using
polylactic acid (PLA) material using the multi-extruder fused filament fabrication process.
Lopez et al. also investigated the mechanical behavior of tension test specimens made of
PLA, ABS and high-impact polystyrene (HIPS) material combinations [30]. The results
show that producing sandwich structures with a PLA-ABS-PLA material arrangement led
to a higher mechanical behavior than other design combinations. Some studies reported
the combination of polymer-metal and ceramic multi-material parts via the laser powder
bed fusion technique [31,32].
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Figure 2. (a) Volumetric gradient pattern of VeroCyan and VeroYellow polymer materials fab-
ricated by the Stratasys PolyJet ]J750, reproduced with permission from [33], (b) dual-metal
copper parts created using Aerosint’s recoater, photo by Aerosint, reproduced with permission
from [34], (c) multi-material part generated by the Paramatters software and fabricated by the AM
technology, reproduced with permission from [35], (d) 3D-printed multi-material lattice chair fabri-
cated by the Stratasys Object 500 Connex3 with gradient material interfaces, image adopted from [36],
(e) fabrication of 3D multi-material microlattice with dissimilar constituent materials. Images were
reprinted for free with no permission required under http:/ /creativecommons.org/licenses /by /4.0/
through article (accessed on 20 November 2021) [37].

The purpose of the literature review is to explore the current research studies associated
with the fabrication of multi-material parts using AM methods. In addition to the very latest
published research, this review explores the conventional multi-material part fabrication
techniques, potential materials used, AM processes and their application areas. This paper
also outlines the importance of FGM fabrication with the help of MMAM processes.

2. Conventional Methods of Fabricating Multi-Material Parts

Witnessing the advantages of multi-material approaches for part manufacture con-
firms that there is a need to generate different combinations of materials [38,39]. These
multi-material parts or structures need to be carefully designed and evaluated to take full
advantage of their use. Various conventional manufacturing (CM) methods are already
available to join at least two different materials. They are still popular because of the many
advantages they present. Spot welding, drilling, riveting, die casting and extrusion are
some of the CM methods widely used in producing multi-material parts [40]. The CM pro-
cesses presented in Figure 3 are significantly different to AM processes due to their shaping
operations. In casting, a hollow mold of the desired shape is filled with a molten metal or
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alloy. Machining produces workpieces made with subtractive steps through automation.
In forging, raw stock materials (also known as billets) are reshaped with compressive dies.
The joining process involves fusing or connecting two or more components for the purpose
of making a new part.
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Figure 3. Schematic of casting, joining, forging, machining and injection molding processes.

2.1. Casting Process

Metal casting is one of the oldest and simplest processes for producing near net shape
products. This process requires a mold cavity of the desired shape and molten metal to pour
into the mold cavity, usually sand molds [41]. Classical foundry is still a relevant technique
for producing large functional parts (e.g., engine blocks, gears and chassis) despite advances
in big area additive manufacturing [42]. The build parameters of currently available metal
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3D printers and perhaps the physics behind the different AM processes also limit the
production of large parts. Using a foundry provides an advantageous solution if there
is a need to produce multiple copies of parts. The cost of producing many parts will
equally reduce. In contrast, the use of AM could increase the production cost even with
reduced labor. Priyadarshi et al. used the in-mold assembly technique to perform the
multi-material part manufacturing. Injection molding is a technique that involves melting
different polymer materials at their melting point and forcing the resultant substance into a
mold to achieve the desired shape, as shown in Figure 3. Full assembly of the structure can
be produced without the use of other joints such as bolts, glue, welds and fasteners [43].
Casting materials are usually metals or various time setting materials that cure after mixing
two or more components together; examples are epoxy, concrete, plaster and clay.

Casting is ideal for complex parts that would otherwise be challenging or uneconomi-
cal to construct with other manufacturing methods. For instance, machine tool beds and
ship propellers are better cast than joined [42]. In the work of Gouker et al., they success-
fully applied multi-material molding to different types of compliant joints by combining
mold piece joints that provided a degree of freedom ranging from 1 to 3 [44].

In general, AM processes allow the fabrication of highly complex, customized, lightweight
and hollow parts with higher precision, good surface finish, dimensional accuracy and var-
ious infill densities. Post processing operations required for some AM processes are much
easier and quicker than casting processes. Metal casting always requires extra material
removal to cut out the feed head and filling system.

2.2. Joining Process

The multi-material combination technique is very useful in automobile sectors. Steel
is a widely used material in car manufacturing; however, due to its heavy weight factor,
there is a significant need to employ different materials to reduce the weight. Joining is
considered one of the CM processes that allow the fusing or connecting of two or more
components for the purpose of making a new part, as shown in Figure 4. Overall, these
processes connect two or more components permanently. They also require the use of
separate tools. Some of the commonly used joining processes are welding and soldering.
Joining two different materials is a key technology that can play a significant role in the
development of lightweight vehicles. Meschut et al. investigated various welding tech-
nologies for combining different materials to create multi-material structures, establishing
the mechanical-thermal joining of dissimilar metals using resistance element and friction
element welding [45]. Similarly, high mechanical strength at the interface was achieved by
mechanically joining the two materials using friction stir welding [46]. The cost of making
any metal AM component is always higher than any joining process. The conventional
welding of soldering processes are very cost-effective solutions. Post processing is an
essential part of any AM and joining processes. There are still no manufacturing methods
introduced to eliminate the need of heat treating, grinding and deburring yet.

| Monolithic design | | Multi-material design |
Steel-aluminium
* multi-material
Steel \ Al - Al joints
[ ] ( | ]
Load \ /\_‘Global layout Load \ < local layout
criterion criterion
Oversized Weight reduction

Figure 4. Example of a multi-material design using welding process.



J. Manuf. Mater. Process. 2022, 6, 4

6 of 32

2.3. Forging Process

Complete material consumption, high strength, better surface quality and short lead
times can be achieved using the forging technique for multi-material part fabrication.
Forging is one of the oldest manufacturing processes that shapes the raw stock material
by applying compressive dies on it. Based on the temperature at which the operation
is performed, the process can be classified as “hot forging”, “warm forging” or “cold
forging”. Wohletz et al. used the cold and warm forging techniques to combine steel and
aluminum for manufacturing multi-material products. The study concluded that to provide
significant bonding between the steel billet and aluminum billet, the initial temperature
should reach up to 450 °C and 100 °C, respectively [47]. The forging process improves the
mechanical properties of the raw stock material by refining its grain structure, providing a
good grain flow, making it tougher and stronger by the end. Behrens et al. combined two
CM processes to fabricate multi-material parts. They performed the thermo-mechanical
treatment in order to attain grain refinement in the welded materials using the forming
process. This led to the enhancement of the mechanical properties of the final multi-material
part [48]. Parts produced by forging have excellent mechanical properties with minimum
waste. Through minimal waste and cost, the original material is plastically deformed to the
desired geometric shape for targeted and improved mechanical properties [41]. The main
advantage of forging versus AM is the fabrication of large-size objects with less time and
cost. However, continuous research on AM will lead to the more economical fabrication of
large-size objects with ease in near future.

2.4. Machining Process

Machining is a manufacturing process in which a raw stock material is cut to a desired
final shape and size by a controlled material removal operation [49]. Today, computer
numerical control (CNC) is more commonly used due to its advantages in precision and
automation and its better surface finish. CNC manufacturing is the process of producing
machined workpieces with computerized manufacturing techniques. Although numerical
control is the original name given to this technology, it is still used interchangeably with
CNC. These CM processes are the most common methods in subtractive manufacturing.
In these processes, the final geometry of the workpiece is formed by removing material
from the raw stock material. CNC operations use the same G code logic as AM processes.
However, their function is to cut the object in order to shape the final geometry [50].
CNC machining processes many kinds of material (i.e., metal, plastic, wood, ceramic or
composite) to meet specifications by following a coded programmed instruction without
a manual operator directly controlling the machining operation [51]. Compared to CNC
manufacturing, in AM, complex shapes can be fabricated with ease and in both processes
the time it takes to produce a component is dependent on the complexity, size, height and
volume for each process. One of the main advantages of AM in comparison with CNC
machining is the possibility of creating completely hollow, lightweight and chapter objects
with less material waste.

2.5. Limitations of Conventional Manufacturing of Fabricating Multi-Material Parts

CM processes usually take separate components and combine them during post
processing to produce composite parts. However, in general, MMAM uses a single manu-
facturing process to make composite parts. Although there are advantages of CM, various
disadvantages also need to be addressed. The cost and quality of the finished workpiece
are the main factors that need to be considered when selecting the CM technique for multi-
material part generation. Conventional methods require a lot of investment in terms of
consumables and logistics. CMs also consume more energy to fuse the materials together,
which adds on to overall costs. Joining the materials with casting leads to a higher cost
because of its heavy initial investment, consumables for post processing, etc. [40]. Quality is
also another factor to be considered for the case of multi-material part fabrication. Welding
dissimilar materials leads to poor quality at the interface and hence needs to be addressed
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critically. The processing time is also a big issue in CMs, most of which involve a long setup
time and the movement of bulky devices, which increases the processing time.

3. Current Multi-Material Additive Manufacturing Processes

MMAM technology is becoming ever more popular in industrial and research com-
munities. Layer by layer, material is added to build the desired structure to form a solid 3D
model. The raw material used to produce the parts includes metals, thermoplastics, hydro-
gels, ceramics, composites, hybrids and functionally graded materials in liquid, powder
and solid forms. MMAM has several advantages over traditional manufacturing processes,
including minimal material wastage, lightweight production, low-cost processes and its
ability to easily fabricate complex shapes, along with being affordable and environmentally
friendly. Each MMAM technology has its own pros and cons, among them low dimensional
accuracy, the size limitation of components, a limited range of materials, required post pro-
cessing, inefficiency for large volumes and requirements for specific environments. MMAM
technology is relevant in diverse applications for industrial sectors such as aerospace, auto-
motive, healthcare, construction and food processing as well as in research and academic
institutions [39,52]. Broadly, MMAM technology is divided into seven categories: material
extrusion, vat photopolymerization, powder bed fusion, material jetting, direct energy
deposition, sheet lamination, binder jetting and hybrid additive manufacturing.

3.1. Material Extrusion (ME)

ME is one of the most well-known AM processes that uses various materials such
as thermoplastics [53,54], composites [55-57], metal-filled thermoplastic filaments [58—60]
and flexible elastomers [61] to make components in a layer-by-layer fashion. Figure 5
provides a schematic representation of the fused filament fabrication (FFF) process, which
is one of the subcategories of ME that utilizes thermoplastic filament. Filament material is
melted inside the extrusion head and deposited onto a build plate using a bead-by-bead
and layer-by-layer technique. The main advantage of this process is the availability of a
large selection of materials and the easily customizable process to produce tailored multi-
material structures [28,62]. The development and advancement of the modern technologies
make it possible to manufacture multiple-material parts in a single manufacturing process.
Khondoker et al. [63] designed a static mixer inside the extrusion nozzle head of the FFF
machine, which aimed to help mix the two different polymers during the deposition process.
The authors revealed that intermixed specimens could increase the interface strength of
FFF-made parts. Similarly, Zachary et al. [64] designed an extrusion system with a dynamic
mixer inside the extrusion head of the FFF machine. This addition helped to blend the
polymer martials consistently and improved the mixing quality of the polymers. These
studies show that the static and dynamic mixing of two polymer materials could affect
the interface strength of multi-material parts. Advantages of the FFF process include its
fast-processing time, a wide variety of material selection and its low-cost nature. The
disadvantages of the multi-head FFF technique are the inherently poor surface quality of
the parts, limited printing resolution, slow fabrication time and weak interface strength.

3.2. Material Jetting (M])

Material jetting is one of the most efficient and precise AM methods. The working
principle of M] is the same as conventional printing machines. Micro droplets are deposited
layer by layer on the build platform. The fabrication of multiple materials in a single
structure is well established in MJ process. In this process, several photo-curable materials
are processed using a jetting head. Each of these heads has many tiny nozzles, which
allow the printing of multiple materials simultaneously with a high resolution [65-67].
The M]J process enables the production of high-resolution materials, which is one of the
main limitations of other AM processes. Figure 6 highlights a schematic description of
this method.
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Figure 6. Process description of M]J.

Several research studies were performed to fabricate multi-material parts using the MJ
process. Vu et al. [67,68] fabricated acrylic photopolymers using the MJ process to study
the fracture behavior of the material interfaces. In this study, elastomeric (TangoBlackPlus)
and acrylic (VeroWhitePlus) materials were processed to produce fracture specimens. It
was found that failures mainly occurred at the material interface zones. The results also
show that gradient material interfaces could easily be achieved in this process, which
eventually enhance the joint strength of the two material components. The advantages and
disadvantages of this process are shown in Table 1.

Table 1. Advantages and disadvantages of MJ process [66,69,70].

Advantages Disadvantages
Easy fabrication of complex geometries Limited selection of materials
Faster printing time of multiple materials Expensive process
High dimensional accuracy Higher material cost
Parts can be built in a variety of materials with multiple inkjet

Poor mechanical properties of the materials
nozzles

M]J materials are photosensitive and mechanical properties
degrade overtime

Parts have homogeneous mechanical and thermal properties Most parts still require support materials

Low material waste due to accurate jetting Mainly used for non-functional prototypes

Multiple materials can be fabricated with higher resolution
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3.3. Direct Ink Writing (DIW)

DIW is one of the simplest and most easily accessible processes amongst MMAM
methods. This process allows the use of a wide range of materials to fabricate multiple-
material structures with low manufacturing and material cost. Although the process
operation is similar to FFF, DIW does use a heating source to produce parts. The materials
used in this process are introduced in their liquid form rather than solid. The material is
mixed using a rotating impeller and comes through the nozzle when pressure is applied [71].
Figure 7 shows a schematic description of the DIW process.

syringe syringe
pump pump

Mixing
fe—"impeller

Object/model —»

Substrate

Figure 7. Process description of DIW.

The benefit of this process is the availability of a large selection of materials including
materials with biological [72,73], structural [74,75] and electrical properties [76,77]. The
drawback of the DIW technique is the use of a sequential fabrication process for each
material, which slows down the entire manufacturing time. To overcome this challenge, a
single-nozzle DIW system has been developed recently [78]. It allows the fabrication of
multi-material structures using a single-nozzle extrusion head based on the adjustable ratio
of the material deposition. Moreover, the material mixing process can be improved with
the addition of the mixer into the extrusion head, which can increase the homogeneity and
uniformity of the material blends [25,79]. This allows the operator to quickly switch material
blending ratio during the deposition process. The material blending ratio can also be
varied, which enables the deposition of FGMs with tailored thermo-mechanical properties.
However, changing the material ratio requires more time, and printing extra artifacts
increases the production cost and creates material waste. These are still challenges that
need to be addressed in the future. Figure 8 highlights a DIW system that was configured
to mix materials inside the extrusion head to fabricate ceramic carbide specimens. Tailored
heterogeneity was achieved using an in-line mixing system.
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Figure 8. (a) DIW system mounted on LulzBot 6 printer, (b) cross-section of the extrusion head,
(c) continuous gradient printing in green states, (d) sintered states, (e) a sharp transition pattern of
ceramic carbide specimen in green state, (f) in sintered state; light and dark inks are SiC and B4C,
respectively, (g) deposited B4C ink stacks indicate good shape retention, (h) inside-out concentric
infill patterns were found to reduce printing related defects over rectilinear infill patterns. All images
reproduced with permission, Copyright © 2021 [80].

3.4. Vat Photopolimerization (VAT)

The VAT process through stereolithography (SLA) uses photopolymer resin to fabri-
cate materials with high resolution and better surface quality as compared to other AM
processes [81,82]. Photopolymerization is the curing process that occurs when UV light
is exposed to deposited material and cross connections between polymer chains develop,
causing the deposited material to transition from a liquid or semi-solid to a solid state.
Figure 9 shows a schematic description of the VAT process. Fabricating multi-material
parts using this method requires material exchange from one liquid resin to another inside
the vat. This process increases the manufacturing time and is extremely laborious [83]. The
use of multiple materials in VAT process creates challenges in managing contamination
between materials. However, automating this technique to fabricate multi-material parts
was recently proposed [84]. In this process, swapping between materials was automated
using a rotating carousel system. Multiple vats filled with liquid resin were mounted on a
rotating platform. At the time of material change, the required vat is rotated to the fabrica-
tion platform, where the laser power is used for further processing. The pros of this process
include the high dimensional accuracy of the final component and transparent material
fabrication. The major drawbacks of this process include the requirement of extra time to
change between materials, limitation to only photopolymers, material contamination and
possible waste in the process.
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3.5. Direct Energy Deposition (DED)

Lately, metal-based AM methods have evolved to produce direct fabrication of het-
erogeneous components with full spatial material distributions [85-87]. DED is one of the
MMAM methods that falls into different processing categories, such as laser metal deposi-
tion (LMD), laser engineered net shaping (LENS) and direct metal deposition (DMD) [86].
In this process material is used in the form of wire or powder. Materials are melted using
laser, electron beam or plasma arc energy sources in the controlled region. In this process
inert gas is used to prevent the oxidation of the molten pool. In the DED process, powder
material is blown through deposition nozzles where it is melted and deposited layer by
layer on the substrate, which then solidifies. The nozzle has a multi-axis arm and moves
around the object [88]. This procedure includes the use of a variety of materials such as
metal wire and powder, ceramics, functionally graded materials (FGM), metal-matrix com-
posites (MMC) and coatings [39]. In this technique, powders are deposited at a specific time
of build by changing their types dynamically. Figure 10 shows the schematic description of
the DED process with multi-material capability. The advantage of this process is the ability
to change powders at any time during the manufacturing process. Additional pre-mixed
powders can also be added without interrupting the fabrication process. Another benefit of
the DED technique is the possibility of gradual changes in the material deposition process,
which enable the creation of FGM structures with tailored material properties [89].

Concentrated
Powder A delivery laser beamss

nozzle

Powder B delivery
nozzle

-Melt zone

“—

Travel direction Fabricated part

—_—

Figure 10. Process description of depositing multiple materials using DED process.
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The fabrication of multi-material parts using the DED process has been extensively
studied among researchers. Recently, Ke et al. [90] studied on the compositionally graded
doped hydroxyapatite coating on titanium using laser and plasma spray deposition tech-
niques for the fabrication of bone implants. This study revealed an innovative way of
enhancing mechanical and antibacterial properties of plasma-sprayed HA coating inter-
faces for load-bearing orthopedic as well as dental implant applications. In another study,
Yan et al. [85] optimized the process parameters on multi-materials, i.e., the fabrication of
cermet composite using Inconel 718 and ceramic powders. The results show that in-house-
built software helped to reduce energy usage and material waste while increasing powder
melting. Detailed studies have been reported in the literature on the use of DED for the
fabrication of multi-material structures. Research studies showed that laser engineered
techniques can be used to produce metallic multi-material parts with high strength and
good surface quality [91-93]. The main advantage of the DED process is the availability of
a wide range of materials, and material interfaces can be produced with high strength. The
disadvantages of this process include the low dimensional accuracy of the printed parts,
residual thermal stress, requirement of atmospheric control and machining process, which
is important for finishing the part.

3.6. Hybrid Additive Manufacturing

The term hybrid additive manufacturing (HAM) describes the combination of two or
more different processes and machines. The primary goal of this method is to overcome the
limitations of MMAM techniques and to improve quality and productivity [94]. Figure 11
shows AM techniques combining FFF, DIW and M]J [95]. In general, HAM combines the
cost-saving AM process with dimensionally accurate subtractive process such as CNC
machining. Since extensive material waste occurs during the CNC machining process,
HAM enables reduced material waste while maintaining the dimensional accuracy of
the machined parts. In HAM techniques, first the AM (the DED process is mainly used)
process is used to manufacture a part, and then conventional manufacturing techniques
are used to increase the surface quality of the final part. Lately, DMG MORI’s Lasertec
125 3D hybrid system was released, which is a HAM process that creates, maintains and
repairs workpieces up to 1250 mm wide and 750 mm high, weighing up to 2000 kg [96].
This system uses a five-axis material fabrication and five-axis milling process within the
same machine. It is noteworthy that automatic shifting between laser deposition welding
and simultaneously five-axis milling in a single manufacturing process reduces fabrication
time by up to 80 percent. Another HAM machine was introduced by Optomec, which
uses CNC milling, lathes, robotic operation and more into one process, creating high
quality components by providing precise motion control during the production process [97].
The limitations of this process are the use of CNC machining operations in overhanging
areas of the printed parts, the time it takes to change tools, and the huge amount of pre-
processing considerations [98]. Overall, Table 2 shows the advantages and disadvantages
of the subtractive and additive processes. Figure 11 depicts the process description of
HAM method.

Table 2. Comparison of additive and subtractive processes.

CNC Machining Direct Energy Deposition
Repeatable or Less material waste ey
Precise o Geometry freedom r
Good surface finish o Material Combos r
High productivity oy Longer cycle-times &
Wasteful i Poor Surface Finish O
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Figure 11. Hybrid AM system which combines DED and CNC machining processes: (a) fabrication

Material A

of multi-material part with the help of DED process, (b) multi-material heat exchanger fabricated by
Lasertec 125 by DMG MORI, reproduced with permission, Copyright © 2021 [96], (¢) CNC machining
process to increase the surface quality of the part, (d) performing DED process on the shaft to fabricate
functionally graded material, (e) FGM-fabricated part with various hardness properties, (f) deposition
of second material during turning process.

3.7. Functionally Graded Additive Manufacturing (FGAM)

Functionally graded additive manufacturing (FGAM) is a layer-by-layer fabrication
process that intentionally modifies the processing parameters and gradually changes the
spatial material distribution within one component to meet the intended function [99]. The
main goal of using FGAM is to produce performance-based freeform components driven
by their gradual change in the material properties. In the case of FGMs, they are fabricated
with the FFF process. The FGAM workflow is shown in Figure 12.

MMAM is revolutionary because its applications provide new opportunities for FGMs
in aerospace, automobile and medical industries [17,18,100]. The interface of multi-material
structures can be fabricated by varying volume concentrations of the materials in a contin-
uous step using a single machine that enables the fabrication of composite parts directly
from the design stage to functional parts. Materials are combined in a single process to
produce polymer-polymer, metal-metal and polymer—composite combinations at desired
locations [101].

Currently, the fabrication of multi-material parts using separate nozzles for each
material limits the capability of printing FGM components because of direct interface
transition. Since a sharp transition at material joints can show high-stress concentrations,
the part will show weaknesses under various stress states. This limitation is controlled
by utilizing a single-nozzle extruder that enables the change of composition continuously
while printing based on the adjustable ratio of the extruder motor. The advantage of
the FGAM process over conventional AM is swapping materials without changing the
extrusion head [9,28,101,102]. Figure 12 describes the entire FGAM workflow from the
design of FGM components to their fabrication and characterization stage.
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Figure 12. Functionally graded additive manufacturing workflow [101,102].

The FGAM process workflow involves several steps, including design modeling
(geometrical modeling, microstructural modeling and materials modeling), simulation,
the optimization of material distribution, slicing and tool path generation, 3D printing, in
situ material characterization and performance analysis [16,101,103]. Since most AM-made
parts have anisotropic material properties due to the heterogeneities created during the
fabrication process, homogenizing material properties is therefore necessary. This needs
to be performed at the initial stage of the material design process. Another important
step is the slicing and tool path generation, which involves converting a mesh model
into small voxels for material characteristics” allocation and tool path slicing. After part
fabrication, various testing methods are applied to characterize part performance for
desired functionality.

The accelerating capabilities of AM processes necessitate enhancement of existing
CAD programs to assess optimal material allocation and distribution in MMAM parts.
Typical CAD workflow is best suited to conventional manufacturing, which requires basic
using shapes and modification processes to create 3D objects. However, in multi-material
components, a dedicated CAD package is required to explicitly allocate materials at desired
locations within the part volume to tailor its functionality.

GraMMaCAD is a CAD program developed by the Computer Graphics Research
of Fraunhofer Institute for multi-material parts with locally defining material properties.
As a graphical interactive tool, it is used for augmenting 3D models stemming from
commercial CAD systems with FGM information to be manufactured with corresponding
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AM technology. It also overcomes the current limitations of many CAD systems that
are based on boundary representations and provides user-friendly interface to add FGM
information to the interior of CAD geometry. Moreover, Fraunhofer conducts research
in alternative volumetric representation schemes to integrate geometric modeling and
simulation (IGA) [104] and multi-material 3D printing [105]. Figure 13 shows a sample part,
with a custom-designed interface from hard to soft material, designed using GraMMaCAD
and fabricated with the help of multi-material 3D printer.

W 2P

Thermoplastics & Composites m-ceramics

Figure 13. CAD models can be augmented with functionally graded material transitions (e.g.,
from stiff to flexible): (a) The stand produced by multi-material 3D printing damps and cushions
components mounted to it, reproduced with permission [104], (b,c) cut through models, e.g., cayote
and topology optimized model, respectively (green lines are slicing contours), (d,e) fabricated objects
with gradient material interfaces based on volumetric models, all images are reproduced with
permission, Copyright © 2019 [105].

Although FGAM is relatively new, it is growing rapidly in popularity. When it is
fully developed, software companies and research institutions will be able to provide the
manufacturing industry with the needed design approach and solutions.

4. Materials Used to Fabricate Multi-Material Parts with AM Technologies

Different materials for fabricating multi-material AM parts have been documented
and studied in the literature [61,63,106]. Zhangwei et al. [107] provided a review on various
ceramic materials and their properties and applications. To build MMAM objects, achieving
an optimal bond between the materials is fundamental to their performance. Noteworthily,
there are variations in MMAM delivery systems and bonding processes for the various
materials and techniques. Figure 14 shows material classifications used in MMAM. Many
materials have been studied in the context of MMAM materials. The following is a summary
of these materials and the studies that have been conducted to understand their properties.
In the first section pure thermoplastics are covered. Secondly, composites and finally metals
and alloys are discussed.

Materials used in MMAM

Figure 14. Material categories used in MMAM.

4.1. Thermoplastic Polymers and Composites

A combination of various thermoplastic materials has been extensively studied in
MMAM. Thermoplastic materials have a variety of applications in medical, automotive
and aerospace industries due to their relatively easier processing conditions compared
to those of metals [8,44,45,84]. Among various polymers, PLA is the most widely used
plastic filament material in 3D printing. It is the most extensively researched, utilized,
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biodegradable and renewable aliphatic polyester. The production of PLA has numerous
advantages; it is biodegradable, biocompatible, recyclable, compostable and eco-friendly as
its production consumes carbon dioxide. Sudhir Kumar et al. presented an investigation
dealing with the optimization of printing conditions of FDM for PLA /PA6-TiO2 -based
matrix for medicinal applications. Multi-layered components of different materials were
printed successfully and tested for various mechanical, rheological, thermal, and surface
characteristics. From thermal analysis, it was concluded that the polymeric matrices of
PLA and PA6-TiO; are thermally stable for the two repeated cycles of heating and cooling.
Additionally, peak strength was greater for these material combinations than for pure
PLA [108]. One of the widely used polymer material is ABS because of its favorable
mechanical properties, such as impact resistance, toughness, and rigidity, when compared
with other polymers. Additionally, it can be modified for improved impact resistance,
toughness and heat resistance [109-112]. Ranvijay et al. studied multi-material printing of
primary recycled ABS, PLA and HIPS in composite form [113]. Thermal (glass transition
temperature and heat capacity) and mechanical properties (break load, break strength,
break elongation, percentage elongation at break and Young’s modulus) were analyzed
to observe the behavior of multi-material composites. Arash et al. used multi-material
3D printing to deposit an ASA coating on the surface of ABS structures to protect against
UV radiation, moisture and heat [114]. It was observed that ASA coating provides good
protection for the underlying ABS specimen. Janusz Kluczynski et al. focused on the
examination of the internal quality of joints created in MMAM process [115]. PLA and
ABS were used for making different combinations of joints, i.e., 1—Monolithic, PLA; 2—
Pleated connection, PLA; 3—Overlap connection, PLA; 4—Monolithic, ABS; 5—Pleated
connection, ABS; 6—Overlap connection, ABS; 7—Overlap connection, PLA/ABS; 8—
Overlap connection, PLA/ABS. The study revealed that the samples with an “overlap”
joint have greater strength than specimens with a “smooth” joint.

Another widely used thermoplastic material in MMAM is nylon, which obtains high-
strength, good temperature resilience, abrasion resistance and chemical stability [1]. Nylon
describes a family of synthetic polymers composed of polyamides. It is a silk-like thermo-
plastic, generally made from petroleum products processed into fibers, films or shapes.
Nylon polymers can be mixed with additives to meet different manufacturing requirements.
M. A. Wagner et al. studied three classes of hinges using aramid, polyamide and photopoly-
mer materials that were fabricated by different AM processes [116]. The aramid hinge
showed an exceptionally high ultimate line load, outperforming the other two hinge classes
investigated. However, the fatigue resistance was very low due to the deformation mode
of the composite. Otepbergenov et al. performed a numerical simulation to determine the
high stress concentrations of the ankle—foot orthosis model made by PLA [117]. Nylon
was incorporated into the 3D-printed model to reduce high stress concentrations. Other
thermoplastic materials used in MMAM are summarized in Table 3.

Table 3. Thermo-mechanical properties of various materials used in MMAM.

. s . Printing
. . Youngs Modulus Tensile Strength Glass Transition Meltin
Material Density (g/em?) {(;GPA) (MPA) s Temperature (°C) Temperatur% (@) Ten;{];errlrga;ure
ABS 2.28 43 200-250 210-250 [118]
PLA 1.21-1.25[119] 21-60 [119] 45-60 [119] 150-162 [119] 190-230 [118]
PC 1.21 [55] 2.57 [55] - 140 [55] 270 [55] 260-310 [118]
PEEK 1.32[120] 90-100 [120] 143 [120] 343 [120] 360-420 [118]
PEI 1.27 [121] 217 [121] 340-380 [118]
Nylon 1.15 [122] 190-350 [122] 240-270 [118]
HIPS 220-250 [118]
Polyester 1.2-1.5[123] 40-90 [123]
Vinyl ester 1.12-1.32 [123] 73-81[123]

Composite is a category of material that is composed of more than one constituent
combined to produce improved or altered properties that are not attainable in the separate
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constituent materials. For example, by combining a metal with other metals or non-metals,
it may be possible to produce a targeted material that is hard and ductile [124]. Pure
thermoplastics have low strength and stiffness and cannot retain their original shape at
high temperatures to meet specific functional requirements; hence, they are replaced with
their composite blends [118]. Various types of composites, such as those in the form
of particulate, continuous and discontinuous fiber reinforcements, and nanocomposites
were utilized to fabricate multi-material structures [53,125-127]. To fabricate particulate
composite filaments for 3D printing, reinforcement particles are infused into a base polymer
(matrix) and then processed into extruded filaments. The properties of the final material are
dependent on particle size, shape, orientation, volume fraction and the interfaces between
these particles and the matrix. Natural or synthetic fibers (e.g., glass, rice husk and carbon)
are alternative reinforcements available for strengthening polymer matrices. The functional
properties of the reinforced composite depend on the type of fibers and matrix used, fiber
volume fraction, fiber alignment, the interfacial bond between the constituent materials
and the void content [119]. Recently, Christ et al. investigated multi-material, bidirectional
strain sensors that were fabricated using the FFF process [128]. Thermoplastic polyurethane
(TPU) and multi-walled carbon nanotubes (MWCNT) were used. The 3D printer used
for research offered two independent extrusion nozzles, which allowed for the use of two
independent materials during printing. One nozzle deposited the pure TPU filament, while
the second deposited the TPU/MWCNT filament. The printed sensors showed a strong
piezoresistive response and good cyclic repeatability for both electrical and mechanical
performance. In another study, Enrique et al. discussed the influence of micromechanical
aspects such as fiber orientation, fiber distribution, the orientation distribution of fillers,
waviness, and agglomeration on the post-buckling behavior of uniaxially compressed
FGCNTRC (functionally graded carbon nanotube-reinforced composites) curved panels. It
was found that both the axial and bending stiffness of the fabricated parts were enhanced
with the increase in the CNT volume fraction [129].

4.2. Metal-Ceramic Materials

Ceramics are used in the chemical industry, machinery, electronics, aerospace and
biomedical engineering because of their functional properties, i.e., their high mechanical
strength and hardness, good thermal and chemical stability, and viable thermal, optical,
electrical and magnetic performance [107,130]. Ceramics were extensively used along with
metals to fabricate multi-material structures using AM technologies. Joining metal-ceramic
materials is a relatively difficult process due to the different thermal-chemical properties
of both material types. This is because the melting point of ceramic materials is higher
than metals [131-133]. On the other hand, ceramic materials have been incorporated into a
metal matrix to enhance the thermal properties, wear resistance, hardness and mechanical
strength of the final composite structure [134-136].

Recently Zhang et al. proposed a multi-ceramic device providing both mechanical
strength (niobium oxide and titanium dioxide-doped alumina) and electrical conductivity
(alumina-doped zinc oxide) [137]. Gheisari et al. described the direct 3D printing of low
temperature co-fired ceramics and floating electrode 3D structures. Slurry-based AM and
selective laser burnout (SLB) were used to fabricate bulk dielectric, Bi2M0209 with silver
(Ag) internal floating electrodes [138]. In another study, Mitun et al. combined metal-
ceramic parts through AM processes to create metallic structures with high-performance
coatings such as silicon carbide composite coatings onto Ti6Al4V [139].

4.3. Metals and Alloys

Manufacturing multi-metal components using AM techniques has gained much atten-
tion amongst researchers. The most used metals in MMAM are titanium, stainless steel,
aluminum, nickel and copper. Heer et al. fabricated compositionally graded magnetic-
nonmagnetic bimetallic structures using a LENS system. A graded magnetic functionality
was implemented by directly transitioning from non-magnetic austenitic stainless steel
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316 (S55316) to magnetic ferritic stainless steel 430 (55430) in a single structure [140]. Yusuf
et al. investigated the interfacial region of multi-material 316L stainless steel/Inconel
718 (316L SS/IN718) fabricated by laser powder bed fusion (L-PBF) [141]. The interfacial
region was characterized by extensive scanning electron microscope (SEM) and electron
backscattered diffraction (EBSD) observations, porosity analysis, and Vickers hardness
testing. The IN 718 region exhibited the highest hardness, compared to the FZ and 316L SS
regions. Tan investigated the effect of the elemental composition of materials on the inter-
facial bond strength through the laser powder bed fusion (LPBF) of two-type iron-based
multi-materials, i.e., the AISI 304 stainless steel (55304) and AISI 1045 carbon steel (CS 45).
Mechanical performance was evaluated by static tensile and flexural tests and dynamic
tension fatigue testing. The results reveal that the interfacial bond strength exceeds the
fracture strength of substrate materials [142]. Sing et al. investigated the multi-material
processing of AlSi10Mg and UNS C18400 carried out by SLM. The interfacial characteristics
of Al/Cu bimetallic laminates had been characterized. The bimetallic Al/Cu laminates
exhibited a higher tensile strength than that of copper but lesser than that of AlSi10Mg,
and the bending test results concluded there is good bonding strength between AlSi10Mg
and C18400 [143]. Demir et al. proposed his work on multi-material SLM platform and
demonstrated its use for producing Fe/Al-125i multi-material structures. The layers of
Fe/ Al-12Si showed large cracks due to the low compatibility and miscibility of these two
materials, whilst the obtained Fe/Al-12Si layers has the advantage of high hardness [144].
In another study, Singh et al. attempted to develop an Al/Al,O3; composite as an FGM by
using a reinforced FDM pattern in the investment casting (IC) process [145]. Similarly, Tan
et al. fabricated a W-Cu (tungsten—copper) FGM firstly by SLM. The effects of the laser
parameter on the interfacial defects, microstructure and bonding strength were discussed. It
was observed that irregular-shaped pores and cracks were the main defects at the interface
due to the intrinsic properties of materials [146]. Table 4 shows the various metals used in
MMAM processes.

Table 4. Materials and their mechanical properties used in MMAM.

. Yield Strength Hardness
Material AM Technology MPa HV
Ti6Al4V /TiC (From 0% to 50% Ti [147] LMD 380-737
TA15/TiC (From 0% to 50% TiC) [148] LMD 806-925
Ti6Al4V /TiC (From 0% to 30% Ti) [149] DED 300-600
Ti6Al4V /SS304 L/V [150] DED 220-850
TiAl4V /Invar (From T16A14V[§(; lp]ulre Invar with 3% increment) DED 350-858
Ti6Al4V /Mo (From T16A14V[§c; 2p]ure Mo with 25% increment) DED 250-450
Ti6Al4V/Al,O5 [153] LENS 350-2365
SS AISI316L [154] SLM 150-220
SS 316L/Stellite12 with few millimeter transition zone [155] LDM 200-650
SS 316L/P21 with 25/50/75% graded layers [156] DED 200-440
SS 316L/P21 + 316L SS/P21 [123] DED 210-330
55430 + SS316 [140] LENS 266 +4, —174 £ 3
AlSi10Mg + C18400 [143] SLM 119.06 £9.1, —71 £ 7.45
316L SS + IN 718 [141] L-PBF 304, 223
CS 45 and CS/MS [142] L-PBF 562 + 22,596
SS 304 [142] L-PBF 514 + 16
Fe/Al-12Si [144] SLM 450-550

5. Applications of MMAM

Through MMAM, single- and multi-functional structures are built to meet require-
ments for complexity and improved performance for applications in industries that include
aerospace, soft robotics, medical, electronics, automotive and food processing [39,102,144].

Within the aerospace industry, MMAM is used to achieve complex shapes and pro-
cessing techniques that are not possible when using conventional methods. Electric motors
and turbine engines with integrated sub-elements of different materials and structures
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are examples of components that are built with the aid of MMAM to attain unique and
superior properties (e.g., microstructure, mechanical, electrical, thermal and magnetic) [52].
Laser-based powder bed fusion is one of the AM processes that can be used or combined
with another AM process to build metallic and non-metallic materials (e.g., metal-metal,
metal-ceramic, and metal-polymer components) with high geometrical resolution [38].

Soft robots are inherently compliant and exhibit large strains in normal operation
compared to conventionally rigid robots [157]. As suggested by their name, they are elasti-
cally soft and capable of safely cooperating with humans or steering through constrained
environments [158]. Soft robotic systems in MMAM are now popular by virtue of improved
materials, and AM processes offer the possibility of directly fabricating mainly elastomeric
components to mimic complex motions such as jumping, movements, gripping and re-
leasing [159]. The manufacturing process mainly comprises the direct printing of smart
materials and molds for soft robotics that are suitable for medical and other industrial
applications [158].

In biomedical engineering, MMAM has proven to be relevant in the design and manu-
facturing of hand orthoses using PLA and TPU with comparable results to conventional
plaster casts [160]. In dental technology, support structures of castable multi-material
denture frameworks built by material jetting process can be melted away easily in a heated
oven [5]. Similarly, polymeric end-use devices do not require harsh postprocessing like
counterparts fabricated with vat-photopolymerization [5]. Medical models for training
and educational purposes (Figure 15b) exhibit unique and real-life appearances in terms of
color and material transitions when built with MMAM [161].
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Figure 15. (a) Multi-material ceramics 3D printing using CeraFab Multi 2M30 printer, reproduced
with permission, photo by Lithoz GmbH, Copyright © 2021 [162], (b) 3D-printed medical model for
educational purposes [163], (c) optimized material distribution of short carbon fiber reinforcements in
the ABS matrix; mounting bracket part was fabricated by the FFF technology [101], (d) multi-material
functionally graded lattice structure produced on the Stratasys J750 with GradCAD Voxel Print,
reproduced with permission [164], (e) illustration of the loading condition as well as the gradient
design of the printed human intervertebral disk. Reproduced with permission, Copyright © 2018 [78].
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Other unique applications include the possibility to print dual-functional scaffolds
through the direct incorporation of antibiotics [165] and dental resins with antibacterial
monomers to prevent the formation of secondary caries [166].

In general, multi-material systems form essential aspects of 3D bioprinting for tissue
engineering and regeneration, including the precise layering of cells, biologic scaffolds and
biologic factors with the goal of recapitulating biologic tissue [167] and associated innova-
tive research [168]; pharmaceutical development of customized pills [169]; 4D printing of
structures or pre-programmed ‘smart materials’ to assume different shapes and forms when
subjected to different stimuli such as a magnetic field, ultrasound, light, temperature, water,
pH, mechanical and solvent [170,171]; 3D electronic devices of dissimilar materials [106];
metal material extrusion [59]; and fiber-reinforced composites [55,57].

6. Critical Issues and Challenges Associated with MMAM

MMAM is the process of joining materials with different thermo-mechanical properties
to enhance the overall performance of the entire structure. There are limitations of this
process, whether it combines multiple polymers, metals or metal and ceramics. Another
material- and process-related limitation may relate to real-world applications such as
dimensional accuracy and size, the need for post processing, the lack of processability to
combine different materials at the same time under the same environment, etc. MMAM has
been explored in recent years with a variety of processes and methods, but the majority still
tends to produce multiple material structures by assigning materials to different layers. This
approach experiences issues associated with the difficulty of bonding dissimilar materials.

Several research investigations addressed the strength of multi-material interfaces.
Lumpe et al. conducted a study on the tensile properties of multi-material interfaces manu-
factured by material jetting processes [172]. In this study, it was found that interfaces had
strong dependencies on material combination and print orientation. Rigid and compliant
material interfaces were mostly found to be strong as compared to the soft material itself. In
another study, rigid—soft material combinations were applied for robotic applications [173].
The elastic modulus of the multi-material part was varied from 1 MPa to 1 GPa, which
allowed it to soften external impacts while maintaining a semi-rigid overall shape and
survive longer than its purely rigid or flexible counterparts. Vu et al. performed the in-
terface characterization of soft (TB) and stiffer (VW) material combinations using several
test methods. The authors found that fracture failures nominally occurred at the interface
zones [67]. They performed a T-peel test, which demonstrated that the gradient pattern
yielded much better peel resistance than the direct transition interface (62% higher in terms
of both average peel force and energy release rate). Mirzaali et al. [12] investigated the
fracture behavior of bio-inspired functionally graded rigid—soft composites with the help
of a material jetting technique. It was found that the fracture properties of multi-material
gradient specimens were significantly influenced by the longer transition zone.

Lately, researchers have investigated the efficient use of multi-material parts using
a gradient approach [9,90,102,174,175]. These structures with graded regions of varying
materials can be built in a continuous way using a single AM machine that combines various
steps and eventually reduces the manufacturing time and cost. MMAM is a revolutionary
approach, and a broad range of implementations can also generate new opportunities in
the fabrication of advanced FGMs as structural materials with new forms of functionalities
and properties in aerospace, automobile and medical industries [68,176]. The effect of
influencing factors of AM processes on the strength of interfaces was investigated. Freund
et al. [177] conducted a research study to find the effect of factors on the interface strength
of AM-made components. Ezair et al. [178] developed a software interface that allows
designers to volumetrically apply material choices to their designs. Within this framework,
the authors fabricated multi-material structures that demonstrated the control of porous
regions and the deposition of differing materials with repeatable patterns. Similarly, Vu
et al. [67,68] investigated the interface characteristics of soft (TangoBlackPlus, TB) and
stiffer (VeroWhitePlus, VW) material combinations using various test methods. The study
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revealed that the fracture failures nominally occurred at the interface zones. The T-peel
test also showed that the gradient pattern at the boundary region yielded much better
peel resistance than the direct transition interface (62% higher in terms of both average
peel force and energy release rate). Lately, Kuipers et al. performed a new approach to
design interfaces with an interlaced topologically interlocking lattice (ITIL) approach [179]
as shown in Figure 16A—C. In this approach 3D lattice consisting of interlaced horizontal
beams were created at the interface region by vertically aligning them so that they were
topologically interlocked. The results show that the ITIL design satisfied the extrusion
continuity constraint, which led to improvement in the ultimate tensile strength of the
interfaces. Moreover, Stoner et al. designed a multi-material interface mesostructure
with triply periodic minimal surface design patterns (Figure 16D) to improve the joint
region [180]. In other work, Hasanov et al. investigated the gradient interface strength
with respect to direct and interlocked pattern [9] as shown in Figure 16E,F. According to
the study, joining process occurs at the layer-to-layer contact area of two materials. It is
evident that the strength of joining process depends on the intermolecular diffusion quality
between PC and ABS polymer chains (Figure 16H).
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Figure 16. Various interface design strategies: (A) Gcodes generated with Cura Arachne engine
beta. The straight and diagonal ITIL lattices produce continuous extrusion beads; the toolpaths
for the dovetail designs include small, separated segments, (B) broken samples after tensile test,
(C) various applications of dual-material parts using the ITIL approach and A gripper making use
of the straight ITIL variant. A prosthetic hand using the diagonal ITIL variant. A storage box
utilizing the straight ITIL variant. Images (A—C) were reprinted for free with no permission required
under http:/ /creativecommons.org/licenses /by/4.0/ through article (accessed on 20 November
2021) [179], (D) bicontinuous mesostructural geometry with compositional gradation in material
extrusion [180], (E) designed interface patterns using voxelization method and fabricated by the
FFF process, (F) gradient test sample showing higher interface strength, (G) fractured specimens,
(H) direct interface of fused filament fabrication-made multi-material part that has a direct transition
from ABS to polycarbonate (PC) material. Red arrows indicate the tension (loading) direction.
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Another research study relating to interface design was conducted by Guessasma
et al. [11]. The Authors investigated the tensile properties of the interfaces between two
dissimilar polymers (ABS and TPU) printed using the droplet-based AM process. In this
research, porosity analysis was performed using a 3D imaging technique. It was found
that the pore connectivity inside the components was surprisingly low compared to the
filament-based extrusion processes.

Apart from interface issues, one must consider the material selection, design and
manufacturing aspects of MMAM issues. The main challenge is to select appropriate
materials, understanding the composition and optimal distribution of materials inside the
fabricated parts [63]. Since mixing materials with variable and non-uniform properties are
complex, background information related to material characteristics, properties, chemical
composition, and manufacturing constraints are necessary prior to processing these mate-
rials [181-183]. Therefore, specific databases should be established to identify the list of
relative materials that can be processed under the same conditions.

As discussed previously, interface issues emerge when joining dissimilar materials in
MMAM. To overcome high stress concentrations at the material transition zone, a gradual
change in materials has been extensively investigated in the literature [101]. However,
investigation on the microstructural formation and chemical composition must be carefully
measured and quantified. Most of the research studies were focused on the processability
of various materials using different AM methods. There is a need to investigate the effect
of transition length and gradient composition. The characterization of thermo-mechanical
properties of the interface zone is still unclear, and more research must be carried out in
this direction [183].

Overall, several research studies have investigated the interface characteristics of AM-
made parts that consisted of different material combinations. Table 5 shows the literature
review of multi-material AM research studies based on methods used to fabricate multi-
material parts and the properties that were investigated. Based on the literature reviews,
most of the research investigations were conducted on the interface characterization of
rigid—soft material combinations with the help of the material jetting process. In general,
according to the reviewed literature, there are challenges in the successful fabrication of
multi-material components using MMAM technologies. These are design-, material- and
process-related issues. One design-related concern is the development of CAD programs
that enable the user to design gradient material interfaces in MMAM. In this context,
specific design protocols and procedures need to be developed. One material-related
challenge is the compatibility issue, especially between dissimilar materials, which creates
weak interface bonds. Another issue could be the contamination between materials during
the nozzle changing process. Contamination makes the processes imperfect and the reuse
of materials difficult. As a result, MMAM has the potential to become an important resource
for the next generation of manufacturing technologies.

Table 5. Literature review of multi-material AM research studies.

Authors/Reference

Methods (AM Technique) Investigated Properties

Garland et al. [28]

Hasanov et al.
[9,101,102]

Brischetto et al. [29]

Lopez et al. [30] Tensile specimen of sandwich structures (FFF)

Kim et al. [184]
Roger et al. [185]

External layer ABS, while internal layer with PLA

Flexural behavior,
Optimization of material distribution
Numerical and experimental investigation of FGM
parts

Bi-level topology optimization (FFF)
Tensile, flexural, compression (FFF)

sandwich structure (FFF) Bending properties

Tensile behavior of various material combinations
of sandwich structures
Tensile test (FFF) Tensile behavior

Topology Optimization (TO), FEA (FFF) Selectively materlalrssllal;:tesment based on FEA
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Table 5. Cont.

Authors/Reference

Methods (AM Technique) Investigated Properties

Singh et al. [145]
Sudbury et al. [175]
Bracket et al. [186]

Zheng et al. [6]

Ituarte et al. [27]
Dorcas et al. [26]

Doubrovski et al. [24]

Freund et al. [177]
Lopes et a. [187]

Guessasma et al. [11]
Vu et al. [68]
Bartlett et al. [173]
Lumpe et al. [172]
Mueller et al. [188]
Mirzaali et al. [12]

Repeatability of mixing and printing process

Compression test, Dynamic Material Analysis

. Tensile behavior of specimens with different
Tensile tests (FFF) printing speed and infill density
Development of BAAM system for FGM

fabrication (BAAM) Cost, weight analysis

(BAAM) Fabrication of FGM sandwich structure

Energy dissipation characterizations, damping

(SLA)
Tensile test, FEA, TO (M]) Tensile behavior
Tensile test (M]) Tensile behavior
Voxel-based design, bitmap printing (M]) Generation of FGM Sdolcsl:‘:)utlon on prosthetic
Peel test, plasma treatment (FFF) Peel resistance
Tensile test (FFF) Interface strength of zebra-like patterns

Strength of different interface patterns, porosity

Tensile test, DIC (B]) analysis using CT scan

Interface characterization, tension test (M]) Fracture resistance
FEA simulation, experiments (MJ) Fabrication of robotic r}g@—ﬂex legs for jumping
applications
Tensile test (M]) Tensile properties of interfaces

Stiffness properties of various concentrations of
rigid—soft composites
Tensile test (M]) Fracture resistance properties

Hardness test (M])

As discussed before, there much effort is still needed to be before multiple materials
can be incorporated in AM commercially. Below, the common challenges and technological
barriers that need to be addressed in MMAM processes are given.

7. Future Trends

MMAM has significant potential that can be explored to expand the scope of cur-
rent applications as it continues to gain popularity. Among the various AM processes,
HAM combined with prefabricated parts in a 3D printer could potentially manufacture
dimensionally accurate smart systems in a continuous single process. MMAM is capable of
making parts that were previously unheard of. It allows for adaptable designs to be made
as well as materials with superior properties in comparison with traditional manufactur-
ing methods. AM technologies allow materials to be joined to form composites, change
their thermo-mechanical properties, or create new materials completely. The future of
this technology will advance the use of polymers for functional materials, fiber-reinforced
composites, metal-matrix composites, and metal-ceramic composites.

3D printing is suitable for manufacturing various smart structures because of its
multi-material compatibility and capacity for personalized customization and integrated
fabrication. Although the 3D printing of multi-material parts promises useful applications
in the future, there are certain issues that need to be addressed. There are a wide range
of functional materials with excellent properties that are not printable because they have
unsuitable thermal and rheological properties. Moreover, several enhanced AM methods
have been proposed, but effective methods for many materials remain lacking, so this
would be an immensely beneficial aim of future work or research directions.

7.1. Improving Software Capabilities

Improving software capabilities to design highly complex FGM patterns is necessary,
as the use of traditional design methodologies limits the ability to exploit the full capabilities
of FGAM creatively and intuitively. More control of gradient transition direction and
transition length is an essential step in modeling FGM designs. Current commercial slicers
are limited to slicing and exporting FGMs to fabricate using FFF technology. Although there
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have been some attempts to design multi-material components with gradient regions, most
of them use in-house computer codes [28,62,189], and defining locally varying material
properties on CAD models is a tedious and time-consuming process. There is a need for
future developments in the design of computer programs to define material properties
interactively and intuitively at specified regions of the components with various directions.

7.2. Thermo-Mechanical Characterization of Material Interfaces

The defects and interface bonding strength of 3D-printed structures significantly
reduce their strength and durability. Since multi-material parts have a wide range of
potential application areas, there is a need to produce reliable components with stronger
interface joints. Additionally, the interface can also be affected by various temperature
conditions, and multi-material parts can be used for energy conversion devices and other
energy-related applications. Multi-material parts can effectively provide a thermal barrier
and can be used as a protective coating in specific applications. Although there have been
some research studies performed to characterize the mechanical strength of the interfaces,
the characterization of thermal properties at material joints is an essential step for designing
multi-functional products with improved thermo-mechanical properties.

7.3. Incorporating Big Area Additive Manufacturing (BAAM) into MMAM

The large-scale manufacturing process would allow the fabrication of functional parts
for aerospace, construction and some other fields. Since material cost and weight are
important design considerations, it is very important to fabricate multi-material parts with
site-specific material allocation. According to a recent study performed in the Oak Ridge
National Lab (ORNL), the fabrication of a sandwich plate with a gradient material core
would reduce the weight up to 5% and cut the expense by roughly 45% of the previous
cost [175]. In addition, multi-material structures remain in the demonstration stage with no
specific application scenario. Although there were some attempts to characterize material
transition using BAAM technology, its full capability in the fabrication of large-scale
components is still in its infancy. Accordingly, further research on this field is necessary.

7.4. New Extruder Designs for Better Material Mixing for ME Process

One of the limiting factors is the need for high precision and accuracy in the material
composition during fabrication process. This is especially needed for FFF techniques.
FFF is a low-cost technique that is gaining attention among designers, researchers, and
engineers. However, the material mixing capability of this technology limits its potential.
In this context, the design of a nozzle geometry and mixing chamber with an effective
mixing method could be investigated. Since the consistent and uniform mixing of two
materials is highly dependent on the nozzle geometry and design of the mixing chamber,
computational fluid dynamic methods could be applied for new nozzle design possibilities.
In addition, depositing FGMs using dynamic mixers could also be investigated, especially
for BAAM, to improve the uniformity of the material mixing.

8. Conclusions

In this review paper, the latest developments, challenges, and future potential of
MMAM are summarized for various types of materials and their potential applications
ranging from electronics, biomedical field, tissue engineering and soft robotics. The paper
also outlines the challenges and outlook based on the current applications of the MMAM
process. Future improvement of printing hardware, materials and the accurate prediction
of interface properties based on numerical and theoretical analysis will widen the use and
applications of MMAM. Despite the current challenges, it is evident that the field of AM
and, more specifically, AM applied to multi-material fabrication, offers immense potential.
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