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ABSTRACT 

Introduction:  

Finite element analysis (FEA) is a numerical procedure utilised in the engineering analysis of structures and is 

one of the most common numerical methods utilised in many research activities in dentistry such as 

implantology, prosthodontics and restoration. FEA can be considered a useful tool in order to describe the 

deformation aspects of dental components that cannot be measured easily by in vivo models. The geometry, 

material properties, finite element model (mesh structure) and boundary conditions defined for a particular FEA 

setup are the factors affecting the accuracy of the results of a FEA. Most especially, material models employed 

in FEA play a critical role, however, the literature cannot provide standard material models and data in 

agreement to be defined in the FEA studies handled specifically for human teeth. The aim of this study is 

reviewing the most utilised data related to material properties (limited to linear homogeneous isotropic material 

model) of the tooth components, evaluate the sources and reasons for the different values defined in dental 

research and provide filtered material data which can be utilised in related FEA studies. 

Material and Methods:  

Electronic databases (PubMed and Web of Science) were reviewed for publications on FEA utilised in dentistry 

research. 155 research publications in total were considered in this paper. The search keywords of ―finite 

element analysis‖, ―finite element study‖, ―mechanical properties‖ and ―teeth‖ were combined through Boolean 

operators. The primary question under review was: ―How were the material properties of the tooth components 

and numerical ranges, which are assigned in a FEA utilised in dental research, obtained and verified?‖.  

Results:  

It was possible to determine sixteen different elastic modulus (EM) and seven Poisson‘ ratio (PR) values for 

enamel, eighteen EM and five PR values for dentin, sixteen EM and four PR values for periodontal ligament, 

eight EM and one PR values for pulp, ten EM and five PR values for cementum, twelve EM and four PR values 

for cortical bone, and eleven EM and four PR values for cancellous bone. As a result, it was seen that various 
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EM, PR, density and strength values were considered and these were obtained from a limited number of FEA 

studies. 

Conclusion:  

Average ranges for the core material properties such as EM, PR, density and strength values to be utilised in a 

FEA set up were presented. Further studies, specifically on determination of the mechanical properties of tooth 

components are still needed in order to successfully utilise them and confirm the accuracy of the FEA studies 

related to dental research. 

KEYWORDS:  

Finite Element Analysis, Finite Element Study, Mechanical Properties, Tooth, Teeth, Dental. 

INTRODUCTION  

Due to the complex biomechanical system of the oral cavity and its limited accessibility, most of the research of 

this type has been evaluated through in vitro models. Mostly, fracture resistance, deflection magnitude under 

respective load and mechanical properties of human tooth structures have been physically studied through 

destructive or non-destructive test methods in order to describe the deformation behaviour of the tooth 

components. In a structural context, it is commonly known that, if the stress magnitude under loading exceeds 

the elastic limit of the component‘s material, structural failure (plastic deformation) would initiate. However, 

physical and direct measurements of the structural stress distribution, determination of the location of the failure 

initialisation zones, threshold of the material strength and life of the components belonging to a complex oral 

system under loading would become a very difficult phenomenon to comprehend (1). 

In the scope of computer aided engineering (CAE), finite element method-based analysis (FEM/FEA) is a 

numerical procedure that aims to describe/simulate the physical phenomena in a dimensional (1, 2 or 3 

dimensions) virtual environment through a mathematical approach. This provides a solution by generating a 

finite element discretisation which enables simulation of the behaviour of a materials deformation, from an 

elementary level to full component level, under pre-defined loading conditions (2). Related literature indicates 

that FEA was first utilised in the aerospace industry for solving structural, heat transfer and fluid flow based 

engineering problems in the 1960s and then spread to other research and engineering fields (2). The first use of 

this method in dentistry was published by Weinstein et al. in the field of implantology in 1979 (3). Since then, 

FEA has been frequently utilised in many research branches in dentistry such as prosthodontics, restorative 

dentistry and especially implantology in order to evaluate the deformation behaviour and to map structural stress 

distributions across teeth. 

Although FEA may provide a good understanding of the physical phenomena of a situation, special care and 

scientific experience are needed during setup of the physical model in the digital environment in order to obtain 

accurate results and which is considered one of the most difficult aspects of the method (4,5). In principle, four 

parameters affect the solution and accuracy of a FEA. These are the geometric feature of the object to be 

modelled, the element type and count (mesh structure), the material properties and the boundary conditions 

applied (6). 
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Since the method became popular in academia and industry, many software platforms, which promise FEM 

based solutions, are now commercially available. In fact, the fundamental application steps of the method consist 

of the same application algorithm steps for all such types of analysis. These steps are pre-processing, solution 

and post-processing stages. Pre-processing is the main setup procedure and consists of modelling, defining the 

material model and its properties, a description of the boundary conditions (loads and constraints) and creating 

the finite element model (mesh structure) (Figure 1).  

(Figure 1. FEA application procedure) 

The material properties assigned in a FEA is one of the primary calculation parameters in the pre-processing 

procedure. Specific to the dental research domain, based on experimental evidence related to real-life 

applications, the structure of teeth show similarities with human bone which exhibit viscoelastic behaviour under 

deformation phenomenon as the material behaviour of the teeth is also highly nonlinear and viscoelastic (7). This 

type of nonlinear viscoelastic behaviour can be considered as a time-dependent plasticity phenomenon, which is 

called viscoplasticity (8). It is also known that the structures of the tooth components are anisotropic and 

non-homogeneous (9). As such, a description of nonlinear viscoelastic behaviour of the teeth structure in a FEA 

would become a very complex phenomenon. Therefore, in order to explain the viscoelastic behaviour of the 

teeth, researchers are mostly forced to make simplifying assumptions and apply the theories of linear 

viscoelasticity or Hookean elasticity in dental FEA studies. Initial damage occurrence is considered in this type 

of simplification operation, as the damage occurrence in a solid structure can be easily determined by 

considering the critical stress point (mostly yield stress points) defined for the FEA model as the damage 

behaviour of teeth corresponding to the generation of microcracks over the yield stress point, like bones (10). 

However, any real material shows deviation from the ideal material models and numerical method-based 

simulation tools still have some limitations in modelling real-life responses in this manner. In this context, the 

scientific literature supports that in the static loading cases, homogeneous isotropic material model assumptions 

provide acceptable results when compared to an inhomogeneous anisotropic material model (11). These findings 

indicate that assigning isotropic homogenous linear elastic material model definitions for the tooth components 

utilised in the FEA studies would satisfactorily serve the major aim of a deformation analysis. This approach is 

commonly seen in dental research, however, appropriate assumptions should be made with respect to the 

material properties and the purpose of the simulation study in dental applications.  

In describing an isotropic homogenous linear elastic material model in a FEA setup, the material properties of 

modulus of Elasticity (EM), Poisson‘s Ratio (PR) and material density have to be defined. Additionally, 

threshold deformation or critical stress magnitudes are given for damage evaluation, however, the difficulty is 

seen specifically for this point: there are a wide range of differences between the magnitudes of such specific 

material properties of EM, PR and the damage threshold points for the tooth components of enamel, dentin, 

periodontal ligament (PDL), pulp, cementum, cortical bone and cancellous bone (age factor has also been 

considered). In relation to medical applications, a detailed review on bone properties by Novitskaya et al. report 

a disagreement (changing values) on the material properties (most especially on EM) of human bone structures 

given in the literature (12–14). The components of a tooth would exhibit similar structural features with bone as 

a result of the nature of solid-like organic materials. It was also reported that different material testing methods 
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(such as tensile, compression and bending tests) might provide different ranges for the material properties of 

bone structures (15). As such, the literature search related to FEA of tooth components was carefully conducted 

and the material properties and associated data utilised for the tooth components were carefully evaluated. 

Although some experimental studies did provide clear information related to material properties to be utilised in 

the numerical analysis, an agreement on specific material properties for tooth components could not be found 

(1). In addition, there was much replication reported in some publications for the selection of material properties 

which prove problematic in finding the main source of the data used. This was the main motivation for this 

paper. Consequently, it is acknowledged that although the application procedure for the FEA is the same, the 

data for the material properties of the same tooth components utilised in the dental FEA studies is highly 

variable. The literature has also indicated that a comprehensive and specific review work on material properties 

utilised in the FEA studies in dental research was limited. 

The aim of this study is to review the most utilised data related to the material properties of teeth components 

and to evaluate the sources and reasons for the different values assigned in dental research and provide filtered 

material data which can be trusted when utilised in related FEA studies in the dental research area. 

MATERIAL AND METHODS 

This literature review was conducted in accordance with the preferred reporting items for systematic reviews and 

meta-analyses (PRISMA) guidelines (Includes 155 suitable studies) (Figure 2). The research questions were 

described according to PICO (P: Population/Patient/Problem; I: Intervention; C: Comparison; O: Outcome) 

question: ‗Related material properties of the tooth and numerical ranges, which are assigned in FEA studies in 

dentistry: how were they all obtained and what are the variances?‘ (in consideration of the isotropic homogenous 

linear elastic material model). 

(Figure 2. The systematic flow chart of the study selection process) 

Literature Search Strategy 

An electronic search was limited to publications in the English language and performed in PubMed and Web of 

Science (WoS) databases using a series of search terms combined with the Boolean Operators ―AND‖ and ―OR‖, 

prior to 1st December 2020. The keywords used in the electronic search were ―finite element analysis‖, ‗finite 

element study‘, ‗mechanical properties‘ and ‗teeth‘. The following search string was developed with the 

combination of relevant keywords: (((finite element analysis) OR (finite element study)) AND (mechanical 

properties)) AND (teeth))). The core references of the material properties of teeth used in the studies obtained by 

an electronic search were also considered and these studies were also included in this review work. 

Inclusion and Exclusion Criteria 

Studies were included in this systematic review if they met the following inclusion criteria: (a) Finite element 

studies made in any field of dentistry such as implantology, prosthodontics, orthodontics and restorative 

dentistry related to the material properties of teeth; (b) The studies that include the value of EM and PR of at 

least two of the components of teeth (enamel, dentin, cementum, pulp, periodontal ligament, cortical, cancellous 
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and/or compact bone); (c) Studies in other languages, studies that have no information about both EM and PR of 

the components of teeth and studies that include information about material properties of teeth but use different 

terminology were not included. 

Evaluation of Selected Studies 

Related to the publication search during the review, both titles and abstracts were carefully assessed. Full-text 

evaluation of the relevant articles was performed and the articles which were not considered eligible to the 

inclusion criteria were excluded from the study. Disagreements concerning the inclusion of a study were 

discussed by the authors until a decision was obtained by consensus. The following information was specified 

for each study and recorded on a data extraction form: EM, PR, density and the strength properties of the 

components of teeth (enamel, dentin, cementum, pulp, periodontal ligament and cortical cancellous and/or 

compact bone). A sample tooth model (mandibular left central incisor) and its component cross section is 

illustrated in Figure 3. 

( Figure 3. A sample tooth model (mandibular left central incisor) and its component cross section) 

RESULTS 

Study Selection 

Using the present electronic search strategy, 871 records were collected from the PubMed and WoS databases. 

After removal of duplicates, 818 records remained for assessment of title and abstract and 316 of these studies 

were considered as eligible for full text analysis. 155 studies were considered as suitable for this review (Figure 

2). The data of the related material properties of teeth obtained from the studies included are shown in detail in 

Table 1. 

(Table 1. The data of the material properties of tooth components extracted from the studies included) 

Scoping Synthesis of Parameters 

There were sixteen different EM and seven PR values for enamel, eighteen EM and five PR values for dentin, 

sixteen EM and four PR values for periodontal ligament, eight EM and one PR values for pulp, ten EM and five 

PR values for cementum, twelve EM and four PR values for cortical bone, and eleven EM and four PR values 

for cancellous bone. 

For enamel, the minimum value of EM was 41 GPa and the maximum was 100 GPa. The most frequently used 

value of EM was 84.1 GPa in 46 studies (56%). PR was set at 0.002, 0.4 and 0.23-0.30 in only one study, 0.2 in 

two studies, 0.3 in thirty-one studies, 0.33 in forty studies. The minimum value of tensile strength was 10 MPa 

and the maximum was 48 MPa. The minimum value of compressive strength was 95 MPa and the maximum was 

400 MPa. The data obtained for density of enamel ranged from 2.14 to 4 g cm-3. 

For dentin, the minimum value of EM was 10.2 GPa and the maximum was 21 GPa. The most frequently used 

value of EM was 18.6 GPa in 88 studies (70.4%). PR was set at -0.11-0.07 and 0.33 in only one study, 0.3 in 
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eleven studies, 0.31 in one hundred and three studies, 0.32 in eight studies. The minimum value of tensile 

strength was 10 MPa and the maximum was 234MPa. The minimum value of compressive strength was 232 

MPa and the maximum was 315 MPa. The data obtained for density of dentin ranged from 2 to 2.97 g cm-3. 

For PDL, the minimum value of EM was 0.01 MPa and the maximum was 175 MPa. The most frequently used 

value of EM was 68.9 MPa in 48 studies (55.1%). PR was set at 0.3 in four studies, 0.45 in fifty-six studies, 0.46 

in only one study, and 0.49 in eight studies. The data obtained for density of PDL ranged from 0.95 to 1.10 g cm-

3. There was no data found for tensile strength or compressive strength. 

For pulp tissue (pulp chamber), the minimum value of EM was 0.003 MPa and the maximum was 20 MPa. The 

most frequently used value of EM was 2 MPa in 18 studies (40%). PR was set at 0.45 in 46 studies. The data 

obtained for density of the pulp tissue ranged from 1 to 1.1 g cm-3. There was no data found about tensile 

strength or compressive strength. 

For cementum, ten different values were used in twelve studies for EM. The minimum value of EM was 2.7 GPa 

and the maximum was 22.4 GPa. PR was set at 0.27, 0.322 and 0.35 in only one study, 0.30 in three studies and 

0.31 in five studies. The value of density was 2.03 g cm-3, the tensile strength was 29 MPa and the compressive 

strength was 32.1 MPa in one study. 

For cortical bone, the minimum value of EM was 10 GPa and the maximum was 340 GPa. The most frequently 

used value of EM was 13.7 GPa in forty-nine studies (65.3%). PR was set at 0.26 in twelve studies, 0.3 in sixty-

one studies, 0.32 in two studies, and 0.33 in one study. The tensile strength was 133 MPa in one study. The data 

obtained for cortical bone ranged from 1.3 to 2 g cm-3. There was no data found about compressive strength. 

For cancellous bone, the minimum value of EM was 0.056 GPa and the maximum was 13.4 GPa. The most 

frequently used value of EM was 1.37 GPa in fifty-two studies (68.4%). PR was set at 0.22 in one study, 0.3 in 

sixty-seven studies, 0.31 in four studies, 0.38 in eight studies. The density data obtained for cancellous bone 

ranged from 0.7 to 1.87 g cm-3. The tensile strength was 75 MPa in one study. There was no data found 

compressive strength. 

Additionally, in consideration of the material data compiled above, the maximum, minimum and mean value of 

the material properties of teeth were calculated and are represented in Table 2. The average values were obtained 

by summing and averaging all the different values collated from the literature. 

DISCUSSION 

FEA enables the undertaking of repeatable experiments that do not require ethical approval and design studies 

can be altered with minimal effort in accordance with the specific requirements (16). However, there are some 

limitations because it is a computerised approximation of an in vitro study. Furthermore, stress analysis is 

generally executed under static loading scenarios, and the mechanical properties of teeth are set as isotropic, 

homogeneous and linearly elastic, even if it does not correspond to in vivo conditions. In addition, over-

simplification in geometry could affect the accuracy of the results (16,17).  
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It is well known that material properties, the functional loading, applied boundary conditions and the geometric 

detail of the object are the most important factors influencing the predicted accuracy of FEA (4). In this review, 

the importance of the assignment of proper material properties of teeth, which lay the foundation of the stress 

and strain measurement, was emphasised.  

The reported material property index values vary between different research groups. The EM value for enamel 

ranged from 41 to 100 GPa in these studies. Zhang et al. explained this variability with possible influence of 

external factors such as the measuring system used, applied load, nature of samples and direction of enamel rod 

(18). In another study, it was indicated that EM and hardness of enamel in younger individuals are lower than 

those of older teeth (19). 

Dentin has a more complex structure than enamel. The direction of the dentinal tubules and the collagen fibres 

and the average density of the mineral phase are the internal factors that affect the mechanical properties of 

dentin (18). Moreover, it was shown that the mechanical properties of dentin are affected by external factors 

such as hydration of the environment, as well as internal factors (20). However, no standard technique and 

measuring environment were discussed. 

Measuring the distribution of stress and strain occurring within teeth and PDL is very difficult phenomenon to 

understand with in vivo experiments. Because of this reason, there are various methods in use, for example laser 

holography, optoelectronic set-ups, and photoelastic models. It would be true to say that the most commonly 

utilised and effective method in order to evaluate the stress and strain distribution during active movements is 

FEA. The different measuring methods, the type of human teeth, the length and shape of the root which 

influences the formation of PDL, and the humidity of test specimens could lead to obtaining different values for 

the material properties of a tooth component (21). Additionally, in a FEA setup for a tooth deformation, all of the 

tooth components should be considered, for instance, the exclusion of PDL in a 3D model (because of its 

relatively lower elasticity properties), where it may not be the main research focus and may seem to complicate 

the model, it could cause inaccurate results in deformation behaviour and stress distribution of the full model 

(16,21). 

The development of FEA models needs sufficient knowledge of the material properties of the human oral 

system, most especially the jawbone (mandible). However, determination of appropriate biomechanical 

properties of living tissues, especially bone tissue in FEA, is still challenging (22). As shown in this study, the 

wide range of values in the literature for EM also proves this situation. There are many factors that affect the 

measurement of the mechanical properties of human bony structures including teeth. The structure and scale of 

human bones are some of these factors, and this can make sampling cubic shape of bone from trabecular regions 

larger than 5 mm for compression tests difficult (23). The size and shape of the sample, the storage and loading 

conditions, the mechanical tests used, the age, sex and systemic disease of the donor, porosity density and 

mineral content of the sample could also affect the measurements (22,23). In addition, it was shown that 

mechanical properties of cortical bone changes in an edentulous human mandible (24). 
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In light of all this information, the most appropriate values for the purpose and methods of the study should be 

preferred when evaluating the material properties of dental tissues in order to obtain the accurate results that 

reflect the clinical situation in the FEA to be conducted. 

CONCLUSION 

Average ranges for the core material properties for a linear material model to be utilised in a FEA setup such as 

EM, PR, density and strength values were reviewed and presented. This review revealed that the values of the 

material parameters varied. The reason for this may be explained with different testing methods, age factor and 

experience based untested assumptions which are considered by some researchers. Additionally, a specific value 

for a specific tooth component may not be obtained due to the organic structure of human teeth components. It 

was also shown that the material properties of dental tissues in some of the research papers related to FEA 

studies were usually quoted from previous FEA studies, and there were very few studies in which in vitro 

evaluation of the mechanical properties of dental tissues was performed. The data reviewed in this paper related 

to linear material models to be utilised in a FEA would provide an understanding of the range in magnitudes of 

the specific material properties of the tooth components which should be carefully evaluated and adopted by 

researchers in dentistry. The average ranges were calculated in this paper in order to frame a general perspective 

for the values for specific tooth components. The literature search also indicated that experience in FEA setup in 

order to simulate real-life responses in deformation analysis is essential. Finally, it was specifically concluded 

that comprehensive and up-to-date physical material testing studies are required in order to obtain reliable 

material data for realisation of accurate finite element studies in dentistry. 
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Figure Captions 

Figure 1. FEA application procedure. 

Figure 2. The systematic flow chart of the study selection process. 

Figure 3. A sample tooth model (mandibular left central incisor) and its component cross section 

Table Captions 

Table 1. The data of the material properties of tooth components extracted from the studies included 

Table 2. The maximum, minimum and mean value of the mechanical properties of teeth. 
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Figure 2. The systematic flow chart of the study selection process 

 

Figure 3. A sample tooth model (mandibular left central incisor) and its component cross section 
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Table 1. The data of the material properties of tooth components extracted from the studies included 

Ma

teri

al 

Elastic Module Poisson's Ratio De

nsi

ty  

Tensil

e 

Stren

gth 

Compre

ssive 

Strength 

Ena

mel 

41.0  GPa (25–35),  

41.4  GPa (36,37),  

46.8  GPa (38), 

48.0  GPa (39),  

50.0  GPa (40), 

60.0  GPa (41),  

72.7  GPa (42–44) 

75-100 GPa (45),  

77.9  GPa (46–48),  

80.0  GPa (49–56), 

82.0  GPa (41),  

82.5  GPa (57),  

83.0  GPa (58) 

84.0  GPa (59–64), 

84.1  GPa (5,46,61,65–106), 

85.0  GPa (107), 

0.002 (77) 

0.2 (75,76,78,85,86,96,97,102), 

0.23-0.30 (108), 

0.30 (25–27,29,30,32,34–38,40,49–

51,53,56,61,62,73,74,79,87,88,93,95,98,99,1

03,109,110), 

0.31 (28,52,89,111,112), 

0.33  (5,33,39,42–44,46,48,54,55,57–60,63–

68,70–72,80–84,90–92,94,100,101,104–

107,113,114), 

0.4 (45), 

2.1 g cm-3 (110), 

2.5 g cm-3 (18),  

2.8 g cm-3 (81,84,103), 

3 g cm-3 (46,48), 

4 g cm-3 (29) 

10 MPa (37) 

10.3 MPa (50,74,103) , 

11.5 MPa (90,105),  

30-35  MPa (51)(108),  

48 MPa (39), 

 

95-386

 

M

P

a

 

(

5

1

,

1

0

8

)
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384

 

M

P

a

 

(
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0
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7

4

,

9

0
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0
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 0

5

)

, 

288-400

 

M

P

a

 

(

3

7

) 

 

Den

tin 

10.2-15.6 GPa (108),  

11.7  GPa (109),  

12  GPa (40),  

13  GPa (39),  

13.8  GPa (36),  

14.7  GPa (115,116), 

15  GPa (52), 

16  GPa (46),  

16.6  GPa (47,48),  

16.7  GPa (117),  

18  GPa (5,26,55,59,63,113,118–122),  

18.3  GPa (65,94,103),  

18.5  GPa (93), 

18.6  GPa (25,29–35,37,38,42–

44,49,51,54,56–58,60–62,66–68,71–

88,90–92,96–98,100–102,104–

106,111,112,122–152),  

19  GPa (27,41,153),  

20  GPa(50,64,95,99,154) 

20.7  GPa (155),  

21  GPa (107),  

 

−0.11–0.07 (108),  

0.30 (29,36,42,73,109,110,127,153–156), 

0.31 (5,25–27,30–35,38,39,43,44,46,48–52,54–

68,71,74–78,80,81,83–88,90–100,102–

107,111–113,115,116,118,119,121–

123,125–129,131,132,134–136,138–

152,157,158) 

0.32 (37,72,79,82,101,104,130,137), 

0.33 (120) 

 

2 g cm-3 (81,84,103), 

2.2

0

g

 

c

m
-

3

(

4

6

–

4

8

)

,

  

2.9 g cm-3 (108), 

2.9

7

g

 

c

m
-

3

(

1

1

0

) 

10  MPa (39), 

40-

2

7

6

 

M

P

a

 

(

5

1

,

1

0

8

)

, 

48  MPa (37) 

51.7  MPa (103), 

98.7  MPa (50,74,124), 

105.5  MPa (90,105), 

234  MPa (117), 

 

232-297

 

M

P

a

 

(

3

7

) 

249-315
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(
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,

1

0

3

,

1

0

5

,

1

2

4

)

, 

 

Per

iod

ont

al 

Lig

am

ent 

(PD

L) 

0.01-100 MPa (159), 

0.15 MPa (160), 

0.5 MPa (133), 

0.75-1.5 MPa (96), 

11.76 MPa (116), 

12 MPa (75,76), 

20 MPa (154,161), 

50 MPa (32,33,36,46–

48,74,85,95,99,110,122,124,140), 

50-100 MPa (65), 

66.7 MPa (162), 

68 MPa (86,87), 

68.9 MPa 

(2,25,28,30,34,35,42,49,51,54,60,66,6

8,71,77,82,88,91,92,94,106,111,112,1

14,115,119,121,123,125–

128,131,132,136,141–143,145–

147,151,155,157,163–166), 

69 MPa 

(59,84,104,113,118,120,138,139,144,

152), 

70 MPa (78,97), 

170 MPa (153), 

175 MPa (107), 

 

0.30 (36,154,161,167), 

0.45 

(2,5,25,28,30,34,35,42,46,48,49,51,54,59,6

0,65,66,68,71,74–

78,82,85,87,88,91,92,94,96,97,104,106,107,

110,111,113,115,118–128,131–

133,136,138–143,145–147,151–

153,155,157,159,160,163,165,166,168), 

0.46 (114), 

0.49 (32,33,86,95,99,116,162,164) 

0.9

5

g

 

c

m
-

3

 

(

1

1

0

) 

1.1

0

g

 

c

m
-

3

 

(

4

6

–

4

8

)

, 

 

X X 

Pul

p 

Ch

am

ber 

3x10-3  MPa (36,37), 

2 MPa 

(5,25,30,35,44,56,61,62,76,77,81,86,8

8,93,96,97,102,119), 

0.45 (5,25,28,30–33,35–38,44,46,48–51,54–

56,61,62,64,65,67,68,76,77,81,84,86–

88,92–

94,96,97,102,106,111,112,119,120,144,153

), 

1 g cm-3 (46–48), 

1.1 g cm-3 (84) 

X X 
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2.03 MPa (65,67), 

2.07 MPa (27,33,50,55,64,92,94,106), 

2.1 MPa (49,51,54), 

3.0 MPa (28,31,32,38,111,120), 

6.89 MPa (46–48,68,87), 

20 MPa (153), 

 

Ce

me

ntu

m 

2.7 GPa (26), 

3.58 GPa (169), 

6 GPa (91), 

7 GPa (134), 

7.18 GPa (114), 

8.2 GPa (170), 

15 GPa (67), 

18 GPa (59,113), 

18.6 GPa (128,136), 

22.4 GPa (129), 

 

0.27 (91) 

0.30 (26,134,170), 

0.31 (59,67,113,128,136), 

0.322 (114), 

0.35 (129), 

 

2.0

3

 

g 

cm
-3 

(17

1) 

29 MPa (129), 32.1

 

M

P

a

 

(

1

6

9

)

, 

Cor

tica

l 

Bon

e 

10 GPa (46,48,59,94,113,118,160), 

10.7 GPa (70), 

13 GPa (133,172), 

13.7 GPa (25,30,32–

35,42,43,60,66,72,77,80–

84,89,91,92,104,110–

112,114,115,119–

121,124,125,128,131,136,138,141,14

3,145–148,150,151,155,156,166,173–

175), 

13.8 GPa (85,86,96), 

14 GPa (142), 

14.5 GPa (49,54), 

17 GPa (159), 

15 GPa (62,75,76,97,149,152), 

21.4 GPa (176) 

34 GPa (162), 

0.26 (46,48,65,85,86,96,115,138,139,156,162,173), 

0.3 (25,30,32–35,42,43,59,60,62,66,70,72,75–

77,80–84,89,91,92,94,97,104,111–114,118–

121,124,125,128,131,133,136,141–

143,145–

153,155,159,160,166,172,175,176), 

0.323 (49,54), 

0.33 (110) 

1.3

 

g 

cm
-3 

(81

,84

), 

1.4

 

g 

cm
-3 

(46

,48

), 

1.9

9

 

g 

cm
-3 

(17

6), 

2

 

g 

133

 

MPa 

(176), 

 

X 
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340 GPa (65), 

 

cm
-3 

(11

0) 

Ca

ncel

lous 

Bon

e 

0.056 GPa (159) 

0.25 GPa (59,94,113,118) 

0.345 GPa (85,86,96) 

0.5 GPa (46,48,160) 

0.508 -11.2 GPa (155) 

0.91 GPa (70,177) 

1 GPa (133,172) 

1.37 GPa (25,30,32–

35,42,43,49,54,60,65,66,72,77,81,82,84,89,91,

92,104,106,111,114,115,119–

122,124,125,128,131,136,138–

140,142,143,145–

148,150,151,153,156,166,173,175,176), 

1.4 GPa (110) 

1.5 GPa (62,75,76,97,149,152) 

13.4 GPa (162), 

0.22 (177) 

0.3 (30,32–35,42,43,49,54,59,60,62,66,70,72,74–

77,81,82,84,85,89,91,92,94,96,97,104,106,1

11–115,118–122,124,125,128,133,136,140–

143,145–

153,155,159,160,166,172,175,176), 

0.31 (25,86,110,131), 

0.38 (46,48,65,138,139,156,162,173), 

 

0.7

0

 

g 

cm
-3 

(11

0) 

1.3

 

g 

cm
-3 

(81

,84

), 

1.4

 

g 

cm
-3 

(46

,48

), 

1.8

7

 

g 

cm
-3 

(17

6), 

 

75

 

MPa 

(176) 

X 

 

Table 2. The maximum, minimum and mean value of the mechanical properties of teeth. 

Material* Elastic Modulus Poisson's Ratio 

( - ) 

Density 

(g cm-3) 

Tensile Strength 

(MPa) 

Compressive 

Strength 

(MPa) 

Enamel  Min : 40 GPa 

Max : 100 GPa 

Average :70 GPa 

Min :0.002 

Max :0.4 

Average :0.2 

Min :2.5 

Max :4 

Average :2.8 

Min :10 

Max :48 

Average :24 

Min :95 

Max :400 

Average :310 

Dentin Min : 12 GPa 

Max :21 GPa 

Min :0 

Max :0.3 

Min:2 

Max:2.9 

Min :10 

Max :276 

Min :232 

Max :315 
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Average :17 GPa Average :0,2 Average:2.5 Average :108 Average :279 

Periodontal 

Ligament (PDL) 

Min :0.5 MPa 

Max :175 MPa 

Average :50.8 MPa 

Min :0.3 

Max : 0.5 

Average :0.4 

Min : 1.1 

Max : - 

Average : - 

- - 

Pulp Chamber Min : 0.003 MPa 

Max : 7 MPa 

Average : 4.75 MPa 

Min :0.45 

Max : - 

Average : - 

Min :1 

Max :1 

Average :1 

- - 

Cementum Min :2.7 GPa 

Max :22.4 GPa 

Average :10.6 GPa 

Min : 0.2 

Max : 0.3 

Average : 0.2 

Min :2.03 

Max : - 

Average : - 

Min :29 

Max : - 

Average : - 

Min :32 

Max : - 

Average : - 

Cortical Bone Min :10 GPa 

Max :34 GPa 

Average :16 GPa 

Min :0.2 

Max : 0.3 

Average :0.3 

Min :1.3 

Max :2 

Average :1.6 

Min :133 

Max : - 

Average : - 

- 

Cancellous Bone Min :0.05 GPa 

Max :13.4 GPa 

Average :2.65 GPa 

Min : 0.2 

Max : 0.3 

Average : 0.3 

Min :0.7 

Max :1.8 

Average :1.3 

Min : 75 

Max : - 

Average : - 

- 
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