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Abstract:

This paper presents a novel procedure to evaluate mechanical properties of random micro-fiber
reinforced composites with consideration of primary pores. To this end, micro-CT experiment is
conducted first to detect micro-scale morphology of the constituent materials, including size of
pores and arrangement of fibers, etc. On this basis, a two-step modeling strategy with consideration
of primary pores is proposed. In the first step, the equivalent mechanical properties of the pore
defects and the micro-fibers are determined by the 3D parametric finite volume directly averaging
micromechanics (FVDAM), by which an equivalent ellipsoidal reinforcing phase composed of
fibers and pores is constructed. In the second step, the equivalent pores and fibers are embedded
into matrix materials to build an RVE of the composite to calculate the elastic modulus of the
composite. In addition, the 3D parametric FVDAM is further extended to simulate plastic
deformation of PEEK matrix under quasi-static tensile loading. The results obtained from the
proposed two-step modeling strategy have a good agreement with the results from experiments.
Keywords: Short-fiber composites; Two-step modeling; Representative volume element (RVE); X-
ray computed tomography; Porosity.

1. Introduction

Compared with traditional homogeneous materials, random micro fiber-reinforced composites
exhibit excellent toughness, which have been widely used in both composite sheet molding and bulk
molding compounds [1-4]. One of the important influencing factors in evaluating mechanical
properties of composites is the existence of primary pore defects that are introduced inevitably
during material processing [5-7]. Pore defects not only have a significant effect on the mechanical
properties [8-9] of a composite, but also increase uncertainty of damage evolution in the composite
[10-12]. Therefore, how to evaluate mechanical properties of micro fiber-reinforced composites
with consideration of primary pore defects is worthy of further investigation.

Historical studies on pore defects can be divided into two main categories. The first category
focused on a range of pore sizes from meso-scale ( MM ) to micro-scale (pum ) that exist
synchronously in a composite. For instance, Huang et al. [13] investigated pore defects at different
scales and applied periodical boundary conditions to micro-scale RVEs of fiber tows, as well as
meso-scale RVEs of woven composites to determine their elastic modulus. The simulation results
indicated that mechanical properties of the composites were more sensitive to the pores in fiber
bundles. The second category of the studies focused on investigating mechanical properties of
composites at a single geometric scale, which paid more attention to morphology and location of
pore defects. With respective to pore distributed in matrix and fiber bundle, Mekonnen et al. [ 14]
developed a finite element model, which demonstrated that elastic modulus gradually decreased
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when more pore defects were considered. Wei et al. investigated the influence of pore defects
on thermal expansion coefficient of composites, and employed a finite element method to calculate
their thermal expansion coefficients. In addition, Yang et al. established a Voronoi-structure
model and evaluated equivalent shear modulus of composites with different pore shapes by finite
element software. The numerical results were in good agreement with the results from compression
tests. Cao et al. proposed a fast Fourier transform to obtain equivalent elastic modulus of rock
materials with pores and investigated the influence of pore orientation on the nonlinear mechanical
behaviors of the materials.

To develop a reliable numerical model, accurate microstructural parameters from experimental
tests are important prerequisites. Here, a brief comparison of some main test methods in determining
pore defects is introduced. The density measurement method was firstly proposed to estimate pore
volume. The method is easy to follow, as test standards, such as ASTM D2734 ,ASTM D3171

, ASTM D2584 , etc., are readily available. However, the accuracy of this method is
normally low [2]. Compared with the density measurement method, scanning electron microscope
(SEM) can be employed to directly characterize two dimensional pore structures. The porosity
statistically calculated from the scan images are limited to the selected surfaces of specimens
Ultrasonic test, as a typical non-destructive test method, can measure microstructure of pores by
scanning in different directions without causing damage to the specimens. It should be noted,
however, that ultrasonic tests are restricted to exploring micro-scale morphology of regular pores

. At present, micro computed tomography (micro-CT) is the most popular experimental method
to characterize 3D micro-scale morphology in composites, including pore defects, 3D fiber
arrangement, etc. Although it is more time consuming in obtaining scanning data, it is
compensated by offering high-precision microstructural parameters . Overall, CT scanning
technology provides an effective experimental measure in investigating 3D morphology of pores in
composites.

Previous studies, e.g., in concluded that pore defects resulted in a significant reduction in
stiffness of random micro-fiber reinforced composites. To effectively evaluate their mechanical
properties with a high accuracy, micro-CT is firstly used in this paper to explore 3D micro-scale
morphology of fiber distribution, pore ratio, etc. Furthermore, a two-step modeling scheme is
proposed to predict the effective moduli and nonlinear deformation of micro-fiber reinforced
composites. The outline of this paper is as follows: micro-CT test is employed to analyze distribution
and volume fraction of pore defects in . In , a new two-step modeling strategy
with consideration of primary pore defects is presented. Moreover, an effective elastic-plastic
constitutive model is proposed to describe nonlinear deformation of composites with consideration
of pore defects. A comparison between numerical results and experimental tests is shown in

. The conclusions can be found in

2 Micro-scale primary pore defects

2.1. Micro-CT system

To determine the geometric parameters of micro-scale pore structure in the micro-fiber reinforced
composites using Micro-CT, a 1cmx2.5mmx2.5mm specimen was prepared. is the
schematic diagram of the Micro-CT test, which has three stages, i.e., the scanning, the control and
the image mosaic stages. From the attenuation of the X-ray emitted from a tube of circular cross-

section, a series of two-dimensional micro-scale slices perpendicular to the X-ray direction are
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collected. To obtain an accurate three-dimensional structural topology, multi-group scanning
images are needed by rotating the object and reconstructing its 3D structure using computer. A post-
processing software is required to analyze the micro-structure and extract objective CT data
according to the determined threshold values of the constituent materials. Although the test
specimen is relatively small, sufficient scanning time should be allowed to obtain the required
microscopic parameters accurately. Herein Zeiss Xradia 510 versa is used and the scanning time of
each test is nearly 12 hours. During the tests, the recorded tube voltage and power are 70keV and
10W, respectively. To capture the information with a higher accuracy, the scanning accuracy is
maintained at 0.5mm/pixel during the experimental tests.
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Fig. 1. Micro-CT experiment schematic diagram

2.2. Threshold segmentation of the constituent materials

Fig. 2. Determination of the threshold value: (a) Sub-volume to be investigated (b) Original CT image with

pore defects (c) The corresponding pixel image

It has been observed that the effective mechanical property of the composite with consideration
of micro features (such as spatial orientation, length, pore size, sphericity, etc.) tends to be stable
and independent of location when the selected RVE is sufficiently large. It is also noted that a smaller
specimen provides more accurate image threshold of the constituent materials, which are
distinguished according to their boundary characteristics. Experimental tests have suggested that a
150pum x 150pm x 150um (Fig. 2) sub-volume extracted from the specimen offers a satisfactory
compromise between accuracy and computational efficiency. The micro-scale coordinate system in
Fig. 2(a) is identical to that used in the macroscopic tensile tests, which is convenient to analyze
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distribution and formation of pores. Fig. 2(b) is the segmented image using the threshold of air. It
can be seen from the zoom-in image that different size of the pore defects can be detected. To
evaluate the pore volume, the three-dimensional air medium is further converted into the pixel
format shown in Fig. 2(c). Although the surface of the 3D pixel image is slightly less smooth, the
data are more convenient for Boolean operation [26] to determine the specific geometric parameters
of the constituent materials. On this basis, Avizo software is used and the thresholds are calibrated
and determined in the range of 0~65535. It is worth mentioning that the threshold ranges are linked
to mass density in the X-ray CT images. The respective threshold ranges of the pore defects, matrix
and micro-fibers are shown in Table 1.
Table 1. Threshold ranges of constituent materials
Materials Pores PEEK E-glass fiber
Threshold range 0-15600 15600-23500 23500-65535

2.3. Validation of the determined threshold

The threshold value of the air medium in the CT images has been determined in Section 2.2.
Herein the pore defects in a Immx1mm 2D plane slice extracted from the 3D CT image are
calibrated as shown in Fig. 3(a). The pore defects are marked green in Fig.3(b) to highlight the
primary pore defects. From a detailed comparison, it can be concluded that the pore defects in Fig.
3(a) are practically covered by those green spots in Fig. 3(b) according to the determined threshold.
In other words, the pore distribution in the micro-fiber reinforced composite can be accurately
determined by the calibrated thresholds derived from the CT images.

i3

Fig. 3. Calibration of the threshold value: (a) Original two-dimensional CT slice (b) two-dimensional CT slice
with highlighted pore defects

Using the determined thresholds, the correlation law of pore distribution can be established by
investigating the selected 3D sub-image shown in Fig. 4(a). During the preparation process, the
micro-fibers mixed in the resin unidirectionally flows along the x-axis into the mold and the mold
compression is perpendicular to the resin flow. To study the distribution of the pores in the micro-
fiber reinforced composites, three plane slice images in the ¥-y;, the X-Z and the y-z planes are,
respectively, taken and shown in Figs. 4(b)-(d). It can be found from Fig. 4(b) that most of the pore
defects (in green color) are distributed around the fibers and of irregular morphology. From a
comparison of Figs. 4(b)-4(d), it can be found that the pore size in the X-y; plane is much greater,
and the distribution of the fibers is more random, resulting in more space between fibers. In other
words, the size of pores and the space between fibers in the Y-z plane, as shown in Fig. 4(c), are
relatively smaller. In addition, a few primary pores distributed in the upper and lower edges can be

found in Fig. 4(c)-(d). This may be attributed to a combined action of resin flow and mold
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compression.

Fig. 4. Distribution of the pore defects: (a) three-dimensional topography of the extracted sub-volume
Imm < 1mmx1mm (b) two-dimensional CT slice in  X,-), plane (c) two-dimensional CT slice in X-Z plane
(d) two-dimensional CT slice in -z plane

2.4. Statistics of pore defects

Based on the preliminary research reported above, the 3D morphology of the primary pores can
be obtained, as shown in Fig. 5. Herein the pore defects are tinted with different colors for easy
identification. Obviously, it is impossible to implement this irregular 3D micro-scale morphology

of pores in any existing numerical models.

Fig. 5. Micro-scale geometrical morphology of pore defects extracted from the 1mm x 1lmm x lmm sub-

Fig. 6(a) shows the statistical distribution of the pore volume, which is obtained by the post-
processing software Avizo. It can be seen that the volumes of most of the pores are within the range

of 200um® to 1600um® . From the zoom-in image, it can be seen that the largest pore is
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approximately 6400um3 . Based on the assumption that pores in the composite can be equivalent
to a pore system composed of only spherical pores, the statistical distribution of pore volume can

be converted to statistical distribution of pore diameters, as shown in , by the following

Dzdevj (1)

where D and V' denote diameter and volume of a pore, respectively.

formula,

shows that the diameters of most of the pore defects are concentrated in the range of
8um to 12um, and the maximum and minimum diameters of the pores are 23.6um and 6.7um
respectively. Since the approximate length of the micro-fibers is about 14um  both the pore defects
and the fibers can be modelled at the same scale. According to the statistical analysis, the number

and the volume ratio of the pores in the Immx1lmmx1lmm sub-volume are 143975 and 17.32%,

respectively.
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Fig. 6. Statistical analysis of pore size (a)VVolume of the pore defects (b) Diameter of the pore defects

3 Numerical model

3.1. Elastoplastic constitutive equation

The Finite Volume Direct Averaging Micromechanics (FVDAM) proposed by Pindera is
capable of studying effective modulus and stress-strain relation of continuous fiber-reinforced
composites. Inspired by the high-fidelity generalized method of cells , the high-order terms in
the 2D FVDAM are ignored to improve its computational efficiency . In recent years, the
FVDAM has been extended to investigate effective properties of 3D particle-reinforced or short
fiber-reinforced composites, whose representative volume element is discretized by parametric
meshes , where the iso-parametric FVDAM is further extended to explore nonlinear
behaviors of random fiber-reinforced composites with consideration of primary pores. For a selected
RVE, as shown in ,itis divided firstinto N;, N, and Nj sub-cells along the VY;-, Y,
-and Y, -directions, respectively, in the local coordinate system. The sub-cell displacements u{*”)
can be split into a combination of macroscopic displacements and microscopic fluctuate

displacements U;‘“”" , that is,

WP (%, Y(&, E)) = BiX; + u/ PN (£ n, &) (2)
YNE ) =D N (& m )Y, 1=1,2,3 A3)
p=1

where x and y represent macroscopic and microscopic coordinates, respectively. The superscripts

@, B and y are sub-cell numbers. The symbols, p and i, indicate sub-cell vertices and
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micro-scale coordinate directions in the local coordinate system, respectively. Here, it is worth
mentioning that the parametric coordinates, ¢ , 77 and &, in the local coordinate system are
always between -1 and 1. The sub-cell vertex coordinates are linearly interpolated by employing
shape functions, N, to establish the relationship between the sub-cell vertices in the coordinate
system Y;-Y,-Y; (Fig. 7(b)) and the parametric coordinate system ¢-n-¢& (Fig. 7(c)). The
mapping between the two co-ordinate systems is determined by the Jacobian matrix J . The
expressions of the shape function, the Jacobian matrix and the homogenized Jacobian matrix J
are shown in Refs. [31-32]. nP“") are directional cosines that are the cosines of the angle between

the sub-cells surfaces and the planes Y;-Y,, VY;-Y; and Y,-Ys, respectively.
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Quadratic expansion of Legendre polynomials is used to express the microscopic displacement

in the parametric coordinates, as follows,
1.2
Ui/(aﬂy) (¢.1,8) =W, Egoﬂoy)) + CWiEff%) + 77Wi§8’1ﬂo7)) + §Wi23517)) + 5 (€7 —1)Wigoﬂoy))
4
1.2 1
+ @n° ~DWiG) + (35° ~DWiees)

where, W, are the micro-variables in the local coordinate system. By homogenizing the micro-
scale displacements in the ¢-n-¢ coordinate system, the linear relationship between the surface-

averaged displacements of an iso-parametric sub-cell and the micro-variables can be obtained,

11

360 _ % [ [0 L, £)d70E =W, ) F W) + Wi 5)
1 Ly

oY - . I j U'(¢,FLEMSAE =W, 000 F W, g10) + W0, (6)
L i1

Ges = : jl jl u'(¢, 7, FDAEdn =W, g0 FW, 00y +Wion) (7)

where superscripts 1,2,...,6 are sub-cell surface numbers, as shown in Fig. 7(c). According to Eqs.
(5)- (7), the first- and second-order micro-variables can be determined by the surface-averaged
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displacements and the zero-order micro-variables, the detailed expressions of which can be found
in Refs. [31-32]. Based on the strain-displacement relations, the sub-cell strains can be calculated
by Eq. (8).

’

1,0u ou; ,
5|J(X y) =g &jj +2(5 oy, —)= j+gij(§1U1§) 3)
Similarly, the sub-cell strains can be divided into macroscopic and microscopic strains. The
expressions of the microscopic strain in terms of the Jacobian matrix are presented in Appendix A.1.
According to the Cauchy’s stress theorem, the surface tractions can be determined by the sub-cell

stresses as follows

tPP) = Gl IPE) i, j=1,2,3; p=1,2...6) ©)
where
O_igaﬂy) _ Cigﬁrlﬂy) :( 5|£|aﬁy) _ 8:(?(“'6}/)) (10)

is the constitutive equation of the constituent materials. In Eqs. (9)- (10), &"(@”) and tP“")

denote sub-cell inelastic strains and surface tractions, respectively. The expressions of Eqs. (9)- (10)
can be found in Appendix A.2-A.3.
By introducing Appendix A.1-A.3 into Eq. (9), and averaging the sub-cell surface tractions, the

average surface tractions can be obtained as,

7 = j j (09 (71,7, £)dndé an
e = ”t“ (¢, FLEdede (12)
70 - j j t69 (¢, F)d ¢ dn (13)

By solving Eqs. (11)-(13), the three unknown zero-order sub-cell micro-variables can be obtained.

According to the Gauss Divergence Theorem [27], the sum of the average surface tractions of a sub-

cell is zero, that is,

6
IV . de :J.O- . ndS — Itl__(aﬂ}’)dS(aﬂV) — Zséaﬂ}/)ﬁp(aﬂ}/) =0 (14)
v S S p=1

where the detailed solutions can be found in Appendix A.4. Substituting Appendix A.1- A.3 into Eq.
(14), the three unknown zero-order micro-variables can be determined as,

(apy) =) =) oo gw gO® g© g®© g® T (afy)
i 3

=(1)
W1(000) U U, U, U U U U,
W, 000, =00+ + + + 4+ o+ o+ o+ 4 (15)
=) @) (@ @) @) @) 56 (6) (6
W3(000) ulr( ) Ué( ) u;( ) ulf( ) u;( ) Ué( ) ulr( ) u;( ) Ué( )

where the expressions of @ and ® can be found in Ref. [32]. According to Eqs. (5)-(14), the
relationship between the displacements and the average surface tractions of each sub-cell can be
determined. In addition, by employing Eq. (15) and Appendix A.1-A.3, the 21 sub-cell micro-
variables can be solved. Furthermore, the sub-cell average surface tractions can be expressed by the
micro-variables, that is,
T=NC(z-&" )+ AW (16)
By substituting Eq. (14) and Appendix A.1-A.3 into Eq. (16), the relationship between the

displacements and the average surface tractions of each sub-cell can be expressed as,
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i= NC(E-ﬁi”)+AI§u (17)
or t=Ku+NC(z-£") (18)
where the product of matrices A and B isreplacedby K .The details of matrices A, B, N
and C are shown in Appendix A.5-A.10. In addition, all of the sub-cell local stiffness matrices
can be found in Appendix A.11. To compute the global stiffness matrix, the following continuous
and periodic conditions of displacements and average surface tractions between adjacent sub-cells

are imposed, as shown in Fig. &,
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(19)
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Fig. 8. Continuous condition between the adjacent sub-cells

The global stiffness equation can be obtained by introducing Eqs. (19)-(20) into Eq. (18), that is,
KU =ACE-ACg™ -AC,g"? 1)

which is subjected to the continuous and periodic conditions in Egs. (19)-(20). Further details of Eq.

(21) are shown in Appendix B.1-B.9. The expressions of matrices K, AC, AC, and AC, are

shown in Appendix B.10.
3.2. A two-step modeling strategy

In reference [25], the authors focused on developing a simple model that can consider random
short fibers and testing the model against effective moduli without considering initial pores, as
significant experimental work on pore characteristics were required to assess the possibility of
including them in the model. Also, it is essential to find a way to incorporate pores into the model
without significantly increase the complexity of the modelling process. From the geometric
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characteristic and microscopic properties of pore defects, micro-fibers and matrix determined by the
Micro-CT images reported in the current work, a novel two-step modeling strategy with
consideration of pore defects is proposed in this Section, as illustrated in Fig. 9 and summarized
below.

3.2.1. First step- Equivalence of pores and random micro-fibers

The 3D iso-parametric FVDAM is employed to construct the micro-scale model capable of
considering pore defects and random micro-fibers. Firstly, the distribution of the micro-fibers, as
well as the geometric parameters of the pore defects are both defined from the CT images. It should
be noted that the detailed topological structure of the individual pores cannot be considered in the
numerical modeling due to the number of pore defects, which is prohibitively computational
expensive. To simplify this problem, the primary pores derived from the preparation process are
considered as an isotropic constituent material [35]. For the random fibers, they are equivalently
represented by the isotropic yellow ellipsoid shown in Fig. 9. It should be noted that the geometrical
parameters of the simple ellipsoidal model, including its principal axis direction and volume fraction
are determined by the test results derived from the CT images. More details can be found from the
authors’ previous study [25]. For the pore defects, the equivalent cubic element in blue, is
determined according to the volume fraction of the pores. The integration of the isotropic cubic pore
phase with the isotropic 3D elliptical fiber phase results in an orthotropic phase represented by the
purple sphere. The volume fraction of the orthotropic sphere is equal to the total volume fraction of
the pores and fibers. The three-dimensional parametric FVDAM is used to establish the micro-scale
model according to the micromechanical formula of composites [ 15]. The stress-strain relationship
of the equivalent model and the equivalent stiffness C, can be calculated as follows:

N
s-o [ a V=Y o) o) ~C @2)
Lv,=v 4V, n=1
N
C=Y (ICPI AL (Il Ao (23)
n=1

where the subscripts, p and f, denote pores and matrix, respectively. The calculated equivalent
stiffness C, is determined by the sub-cell volumeV, C and A, the expressions of which can
be found in [31]. In fact, the orthotropic mechanical properties of C, are mainly attributed to the
micro-fibers, while the existence of pores result in reduced stiffness and strength. The calculated

orthotropic mechanical parameters of the RVE are to be used in the following section.
3.2.2. Second step- Equivalent procedure of the matrix and inclusion phase

The 3D iso-parametric FVDAM is further employed to determine the mechanical properties of
the composites composed of the matrix and the equivalent fiber and pore volume obtained at the
end of step 1. In detail, the equivalent orthotropic spherical phase, resulting from the integration of
the pores and the micro-fibers in step 1, is introduced as the reinforcement to the matrix in the
second step. The 3D parametric FVDAM algorithm is again used to establish the secondary
equivalent microscale model, which integrates the purple spherical phase with the red matrix
materials, as shown in Fig. 9. The average stress ¢ of the equivalent model in yellow can be
computed as,

_ 1 N B
5= — J' O.(aﬁy)d\/:z (Vl(aﬂy) al(aﬁ” " Vr(naﬂy) ar(n“ﬁ”) =C,% (24)

2 v,=V, 4V, n=1

2 1

where
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szi (Vl(aﬁ}’)ciaﬁ}’)Aiaﬂ}’) n Vr(naﬂ}’)c(rgtﬂ}’)Aglﬁ}’)) (25)
n=1
where the subscripts, 1 and m, represent equivalent model in the first step and of the matrix,
respectively. The components, V;, C, and A, represent volume fraction, stiffness matrix and
Hill’s matrix [36] of the equivalent model, respectively. The subscript m denotes matrix.
Correspondingly, V,,,C_and A, represent volume fraction, stiffness matrix and Hill’s matrix of
the matrix materials, respectively. The symbol, C, denotes the equivalent stiffness matrix of the

micro-fiber reinforced composites with primary pores.
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Fig. 9. Schematic diagram of the proposed two-step modeling strategy

4 Experimental verification

4.1. Shape randomness of pore defects
Shape irregularity of pore defects is an important factor in an anisotropic model [37]. Based on
the spherical assumption, the spherical degree of an irregular pore is evaluated by the following
equation in terms of the ratio between the actual volume and surface area of the pore,
B 2 (6*V,, )2
Avig

where R is the spherical degree of a pore defect. V,,q and A,y are, respectively, the volume and

R (26)

the surface area of the irregular pore.

The volumes of the pores from the experiment tests have been shown in Fig. 6. Fig. 10 shows the
distribution of surface area of the primary pores, whose minimum and maximum values are
135.268um? and 5472.58um?, respectively. Most of the surface areas are within the range of
135um? and 1400pum?. It is interesting to mention that nearly half of the surface areas are
concentrated in the range of 200um? ~ 600um?*. Form the zoom-in image in Fig.10, the number
of pores decreases sharply with the increase of surface area. In addition, the pores having a surface

area over 1800um? are less than 1%.
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According to the spherical assumption, the spherical degree can be determined by Eq. (26). It is
worth noting that the equivalent sphere presents a certain directivity once the spherical degree is
less than 1. From the statistical results shown in Fig. 11, the pore defects account for 75% when the
spherical degree is greater than 0.9. This proportion increases to 90% when the spherical degree is
over 0.8. In addition, there is only very small amount of pore defects with a spherical degree in the
range of 1~1.02. Therefore, the shape of the primary pores has little effect on the anisotropy of the
micro-fiber reinforced composites. In other words, most of the primary pores are approximately
spherical. Based on the above analyses, it is concluded that the pores can be assumed to be isotropic
in numerical modeling.

4.2. A two-step validation

To verify the proposed two-step modeling scheme, local stress distribution is calculated in the
first step by the FVDAM. The influence of the number of the sub-cells on the elastic modulus of the
composite is studied first and shown in Table 2. It can be seen from the table that a RVE consisting
of 24x24x24 sub-cells is suffice to achieve a converged result. Thus, this meshing density is
used below to calculate the elastic modulus of the composite with or without considering the effect
of pores. The numerical predictions are compared with the experiment results from [25]. For the
two-step modelling, the material parameters of the PEEK resin and the micro glass fibers are shown
in Table 3. In the Step 1 shown in Fig.9, to construct the equivalent orthotropic hybrid inclusion of
pores and fibers for the Step 2 homogenization with the matrix, the total volume of the pores must
be considered and meshed in the FVDAM model, where the elastic modulus of the pores is assumed
to be 0.01 times of that of the resin matrix to facilitate the numerical calculations [38] without
sacrificing accuracy. This is because using zero for the modulus of pores may result in an ill-
conditioned global stiffness matrix (Eq. (21)) during the numerical analysis by the FVDAM.

Table 2. Mesh density analysis on elastic modulus of 0° off-axis angle

Number of meshes 8x8x8 16x16x16 24x24x24 28x28x 28

Elastic modulus/GPa 4,128 5.375 6.049 6.051

Table 3 presents the properties of the constituent materials used in the numerical calculations,
where the volume fractions of each constituent are obtained from CT scans. Fig. 12 shows a
comparison of the elastic modulus between the numerical results and the experimental data. The
results show that pore defects have significant impact on the effective modulus, and the proposed

two-step method improves the accuracy of the predictions by nearly 20% when compared with using
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the model without considering pore defects [25]. In detail, the maximum relative errors are equal to
1.72% and 1.12% when the off-axis angles are 45° and 0°, respectively. The calculation error of
the proposed two-step method may be attributed to the ignorance of pore direction during the first-
step modeling.

Table 3. Parameters of constituent materials at 23°C

Materials E-glass fiber PEEK Porous
Elastic modulus/GPa 724 3.6 0.036
Poisson’s ratio 0.20 0.39 0.0039
Density/(g/cm?) 2.60 1.32 -
Volume fraction 14.41% 68.43% 17.16%

M3 Experimental results
104 @ FVDAM

Tensile modulus/GPa

0 T T
0 45
. . The off-axis angle .

Fig. 12. The comparison between numerical results and the experimental data

4.3. Nonlinear mechanical behaviors

To take into account the properties of all the individual constituent materials, the micro-fibers and
the matrix materials are, respectively, assumed to be linear elastic and elastoplastic in the numerical
simulation. To describe the nonlinear deformations in the PEEK matrix, the modified Bodner-
Partom constitutive model [39-40] is employed. In this paper, the stress-strain behaviors of the
composites with 0°, 45° and 90° off-axis angles are obtained, respectively, and shown in Fig.
13. In detail, the curves labelled with circles and triangles are the results from numerical simulations
with pores and the experimental results from [25], respectively. In general, the numerical predictions
agree well with the test results. Similarly, the maximum error between the numerical and test results
occurs when 45° off-axis load is considered. This is understandable due to the fact that in the 0°
or 90° direction, which is the respective principal axis of the equivalent ellipsoid of fibers in Fig.
9, the profiles of pores and fibers are directly from the CT measurements. In the 45° direction,
however, the profiles of pores and fibers are determined numerically from the elliptical assumption,
which inevitably introduces additional errors. Nevertheless, it is evident that the comparisons have
shown good agreement between the numerical and the test results in all three directions. In Figs.
13(a)-(c), the FVDAM results without considering pores are also presented for comparisons.

Obviously the existence of pores reduces the stiffness of the composites significantly.
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4.4. The influence of pore ratio

Porosity represents a great influence on the mechanical properties of composites, which leads to
obvious anisotropy and reduction in stiffness. In Fig. 15, the effect of 5%, 10%, 15% and 20% pore
ratios on the tensile moduli E; and E,, and Poisson’s ratio v,, are evaluated using the two
steps strategy, where E; and E,, are the tensile moduli along the principle axis, i.e., in the 0°
and 90" directions, respectively. In addition, the numerical results for 17.16% pore ratio, which
are for the material in Table 3, are also shown in the figure. It is interesting to notice that from the
figure the tensile elastic modulus and Poisson’s ratio decrease nonlinearly with the increase of pore
ratio. In particular, for the materials in Table 3, E;, and E,, are, respectively, 5. 917GPa and
3.749GPa. The Poisson’s ration is 0.322.
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Fig. 14. Pore ratio influences on mechanical properties: (a) elastic modulus of (° direction (b) elastic modulus
of 9 direction (c) Poisson’s ratio V,,

5 Conclusions

In this study, a new two-step modeling strategy has been proposed to evaluate effective properties
of micro-fiber reinforced composites with consideration of primary pores that may be formed during
manufacturing. Micro-CT tests were conducted to obtain micro-scale geometrical morphology of
the pore defects. On this basis, a micro-scale model was established and validated. The numerical
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results showed a high consistency with the experimental data. The following conclusions are drawn

from the study:

1) The proposed two-step modeling strategy is effectively in evaluating elastic modulus and
nonlinear stress-strain relations of random micro-fiber reinforced composites with
consideration of primary pores, which overcome the difficulties in predicting orthotropic
mechanical properties of micro-fiber reinforced composites with pores.

2) Pore morphology and distribution are mainly related to matrix flow and molding pressure
direction during the preparation process. Only a few pores can be found in the upper and lower
surfaces of composites.

3) For the micro-fiber reinforced composites, the pore defects and the fibers can be considered at
the same geometrical scale in numerical modelling. In addition, primary pores can be
considered isotropic, which were demonstrated by the spherical analysis.

This study does not include the formation of pores in the process of manufacturing, such as the
effect of flow rate and pressure on pore ratio and distribution at microscopic scale, which is currently
under investigation. The additional information from further investigations will improve the
accuracy of the microscopic model developed in this paper.
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nf@ICi) (z,, + I [quo/) +3§W2(0§€8]+ J aﬂy)[Wz(%q + 3’7W2(([<1)€6g]+ J (aﬂy)[Wz((%g{) + 3§W3(%'g 1-e3)) +
£ e+ 3 (SOMET I M) < ST S5 < ST
2nfPICE (6 + {Jéfﬂ IWSGoE) +3EWSgon) 1+ I IWSEHE) + 3iMeze) 1+ I35 WG + W) ] +
NL [Ws(((foy) + 3§W3 Z'gg)] + 3357 [Ws((%{o) +3nW, 3((%%)]*' J (aﬂy)[W;(%gi)) + 35\'\/3(06'?)]} )
= I 5y + LTINS + WG+ TR + e+ TS I + 3wl +
3§ [Waé‘gé)) + 3§W3((%8] IEPWy %’%)) + 377W3((0(!)[z} 1+, aﬂy)[vvz((%g{) + 3§W3(%€5)]} e ) +
InPOICI 5+ LTGRO TE N + S+ TN - SN
(aﬁ/) [nggé)) + 3§W3(((§€8] (aﬂy) [W; %’%)) 3((%%))] (a’gy)[Wa((%g{) + 3§W3(%€§))]} & m(dﬁy)) +
N PICE @+ I INGGHE) +3EWaioe) 1+ I8 IWGGEG) + SiAGeeg) 1+ Ji5” IA(EE)) + 3ewiieey)1 - ety ) +
PG e + TSR + SCWSERT T+ T IR + R+ T INGEED + 301 - o) +

np(aﬂr)c(aﬂy) (g +7J aﬂy)[wéggé)) +3§W3(021€6§] + J (apy) [W3((06€8 +377W %%)] +J4 7 (aBy) [\Né&’ﬁ{)) +3§W3%€;)] gég(aﬁr))

(A.3)

[C 1(ilﬁ7)jl(ftﬁ7)2 +Cg jz(f/fr)Z +Cyy jéft/fy)Z](Ulrl(a/fr) + UﬂlZ(a/fr)) +(C 1(21/#) +C étgﬁr) )jl(ftﬁr)jz(f/fy) (Uél(aﬁy) + UéZ(aﬂr)) +

(C(aﬂy) +C(aﬂy))j(aﬂr)j(am)(U'l(aﬁn _HTZ(aﬂy))+[C(a/fr)j(aﬁ7)2 +C6(gﬂ7)j2(gﬁr)2 +Cégﬂ7)j3(gﬁ7)2](glr3(aﬂr) +U1’4(“ﬁ’))+

(C(aﬂV) + C(aﬂ/))J (aﬂr)J (apy) (U'3(tlﬂ7) + U/“»(tlﬂy)) + (C(aﬂy) + C(tlﬂy))‘]l(gﬂr)jégﬂr) (Uf3(aﬂ7) + Uf4(aﬂ7)) +

[C 1(11ﬁ7) J 1(3aﬂ7)2 +C égﬂr) J Z(gﬂr)z +C B(gﬂy) J égﬂy)Z](Ulﬁ(aﬁV) + Ulfﬁ(aﬂr)) +(C 1(;137) +C ég/ﬁ)) NI Jlahr) ] (aﬂy)( a(ehr) 4 Ulﬁ(aﬂ/) )+

(CEP + CLPPY TGP TG @) + TP = 2L TP 4 CLaPI T2 4 CLeP) TP 2 Sel) +

2(C(r1/37) + C(rl/fy))J (aﬁy)J (“ﬁ’)W(“ﬁﬁg + Z(C(aﬂy) + C(aﬁy))J (a/fr)J (rl/fy)W (nr/fy) +

z[c (aﬂV)J (afir)2 | C(aﬂ;/)J (afr)z | C(aﬂ}/)J (aBy)2 ]\Nl((ggg) + Z(Cl(gﬂ/) + C(aﬂr))J (aﬂ}/)J (aﬂ/)W (afy) |

2(000)

2(CYP + CEP)TEPNTEPINELL + ACEP T2 1 COPD TP 1 CPD TGP WG +

3(000)

Z(C(aﬁy) + C(aﬂy))J (afn) 3 (aﬂy)w(aﬁ/) + Z(C (afr) 4 C(a/fr))J (af) 7. (aﬁV)W (aﬂy)

2(000

[C égﬂy) jl(laﬂ7)2 +C égﬂr)jz(ilﬂyﬂ +C iztﬂr)js(izﬂyﬂ](gél(aﬂr) + UEZ(aﬂy)) + (Cg‘fﬂy) + Cétgﬂy))jl(laﬂr)jz(tfﬂy) (Ul'l(aﬂr) + TlZ(aﬁr)) +

(C(aﬂy) +C(vrﬁ"/))‘]*(a/fr)j(a/ﬁ)(U'l(otﬂﬂ +U'2(aﬂ7))+[C(a/57)j(aﬂ7)2 +C(ovﬂr)‘]*(aﬂm +C(aﬂ7)j(aﬁ7)2](gé3(aﬂy) +LT;l(aﬁr))Jr

(CLaPP) 4 CLaPD) TP TUabn) (oterr) { qra(ehr)y  (CLePr) 1 CLan) T{ahn) Tehn) alehn) 4 giern)y |

[C égﬁy) J l(saﬂy)Z +C égﬁy) J 2(gtﬂ/)Z +C ‘gzﬁr) J égﬁy)Z](UES(aﬁr) + Uée(aﬁr)) +(C glzﬂn +C égﬁr)) J l(ézﬁy) J Z(gﬁy) (UlrS(aﬂy) + Ulr(i(aﬂy)) +

(C(aﬂ7) + C(aﬂr))j(aﬂ;') j(aﬁ7) (U'5(aﬂ7) + Ufe(aﬂy)) =2[cle (aﬂr)j(aﬂr)Z + C(aﬂy)j(aﬂy)Z + ngﬂn j3(izl>’7)2 ]Wz(g)légg +

Z(C(flﬁy) + C(flﬁ7))J (aﬂV)J (aﬂ}')w (aBr) | z(c(aﬂﬁ + C(“M))J (aﬂV)J (aﬁV)Ws(%/ég) +

1(000)

2[C (Utﬂy)J (apy)2 C(aﬁV)J (apy)2 C(aﬁ7)J (aﬂV)z]W (afy) | z(c(aﬂ/) + C(aﬁy))J (flﬁy)J (0!/37)W (aby)

2(000) 1(000)

3(000)

2(C(aﬁ7) + C(aﬁy))J (Dtﬂr)J (aﬁr)w(tlﬁy) + Z[C(aﬁV)J (apy)2 C(D!ﬂr)J (apr)2 C(aﬂ/)J (apy)2 ]Wz((%%g +

2(0(11/?’7) + C(aﬁy))J (ap1) 3 (aﬁy)w(aﬂﬁ + Z(C(aﬂr) + C(ﬂtﬂv))J (aﬁV)J (aﬂV)W (tlﬂ7)

1(000)
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[C s(gﬁr)jl({zﬁrﬂ +C gzﬁr)jz(;zﬁyﬂ +C égﬁr)js(ftﬂyﬂ](gél(aﬁr) + UéZ(aﬂy)) +(C éi’ﬁy) +C égﬂy))jl(lﬂtﬁy)jélﬂtﬁy) (Ulrl(aﬁr) + U{Z(aﬂy)) +
(C S(gﬁy) +C gzﬁy))jz(fﬁr)jéfﬂr) (Uél(aﬂr) + Uéz(“ﬂ’)) + [Cégﬁy)jl(zaﬁy)Z +C gzﬁy) jz(gﬁr)Z +C égﬁr) js(gﬁr)Z](U?(aﬂy) + Ué‘l(aﬁy)) +
(C 3(?/#) +C 5(grﬁy) )jl(gﬂr)jégﬂr) (171/3(043'7) + Ul/4(aﬁ7)) +(C 3(3/%) +C ‘(gﬁr) )jégﬁy)jéé’ﬁy) (U?(aﬂy) + U?(dﬁy)) +

[C égﬂr)jl(gﬂy)Z +C szﬁy) jz(élﬁr)Z +C égﬁr) j3(é1ﬁ7)2](g§(aﬂ7) + l736(0437)) + (Cégrﬂy) +C égﬂy))ﬂgﬂy)jégﬁy) (6115(0!/37) + lTlﬁ(aﬂV)) +
(C(aﬁr) + C(aﬂy))j(aﬂr)j(aﬂy) (U'5(aﬂ7) + U'G(aﬁr) )= Z[C(aﬂy)j(aﬂV)Z + C(aﬂy)j(aﬂy)Z +C égﬂy)j?ffﬂyﬂ ]Ws((%%)) +

2(C§ (ahy) 4 C(aﬂV))J (ﬂt/fV)‘] (aﬁ'/)W (ggg)) + 2(C§aﬁ}') + C(“ﬂ?))J (aﬂy)J (aﬂV)W (ﬂt/fV) +

2 2 2
Z[C(aﬂ/)J (afy) C(Dtﬂ7)J (0!/37) C(aﬂ/)J (0!/37) ]\N (llﬁy) + 2(C(ﬂt/3/) + C(aﬂy))J (ap) 7, (aﬁy)w(ggg) +

2(CEP + CLP) TP TEPWL + 2ACE) J(aﬂv)z +CEP TGP 1 CPITEP L) +

2(C (afy) 4 C(aﬁ/)) J (ahr) 3 (a/fy)Wl(gg[;)) + Z(C(a/fy) + Cg‘jﬁ’)) J z(g/fr) J ééz/fr)w 2((06/58

(A4)
t:[t—l(aﬁ’y) t2apy) §3(aby) tAepy) T5(aby) t—6(aﬁ’7)]T

£0(apy) _[£p@hy) £rlapy) o) Wapy) 2apy) (3apy) gMapy) pSaBy) n6hn) |
=% A A n n n n n n

nPefr) —| o n Zp(aﬁy) 0 n 3p(aﬂy) 0 nlp(aﬂy)
= [511 Tyy T33 93 13 512]1- eih = |:glif1‘(aﬂ7) 5i2ng(aﬁy) 'n(aﬂV) (0!,57) '”(aﬂV) 'n(aﬁ}’)j|

w =W Wi Wiy wiehy wieds wiets |

(A.5)

A =FEDC
E— [nl(aﬂy) i n2(aby) i n3(aﬂ7), n4(aﬁ7), n5(@hr) i n6(aﬁ7)]diag E= [C(aﬁy) , clebn) ) clabr) , clesn) , clabr) ,C(aﬂy)]diag

D= [J (Otﬁy)7 J (aﬂJ’)’J (Otﬂr)7 J ((Zli';’)"](flﬂr)7 J (aﬂy)]diag C= [Al(aﬂr)’ A2(aﬁ7)’ A3(0!ﬂ7)’ A4(0!ﬁ'7)’ A5(aﬂ7)’ Ae(aﬂy)]diag

(A.6)
where
_nli(aﬂr) 0 0 0 n;(aﬂy) niz(aﬂy)
ni@hr) — 0 niZ(aﬁy) 0 n;(aﬁr) 0 nli(a/fr)
0 0 n;(aﬁr) niz(aﬂy) nli(a/fr) 0
[C, C, C, 0 0 07" [3,3,3, 0 0 0 0 0 07"
c,C,C, 0 0 O 0 0 0J,,J,J, 0 0 O
clam _ c,;C,C, 0 0 O ) _ 0 0 0 0 0 0 Jy Iy Iy
0o 0o 0Cc, 0 O 0 0 0 J; Jy I3 Iy Iy g
0 0 0 0C, O Jy Jp Jis 0 0 0 J, J, I
L 0O 0 0 0 O Csﬁ_ _J21 Jy Jpy 3y I, Jis 0 0 O ]
(A7)
100 -300 ] 100300 ]
0100 00 010000
0010 00 001000
100 300 100300
AP — 010000 AP - 010000
001 0 00 001000
100 -300 100300
0100 00 010000
L 001 0 00| L 00100 0]

pagel 0



(A.8)
(A.9)
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Appendix B

K(aﬂy) glefr) | (K(aﬂy) +KS a+1ﬁ 7)) jllatlpy) 4 K(Ml’ﬂ") wl(a+2yﬂ,7) n K(aﬁy) wl(aﬂy) 4 (K;gﬂr) n Ké‘;’*l'ﬂ'}'))

lyzl(mlﬁ,y) K(a+1 By) Arl(a+2 B K(aﬂy) ~1 (afr) | (K(aﬂy) i K(a+lﬂ 7)) ad(a+1,8, 7) i Kégﬂ,ﬂ,y)ﬁél(wlﬁ,y) n

K({Zﬂy)ﬁvZ(aﬁy) i K(aﬂy)ﬂrZ(a,ﬂHJ) n K(q+l.ﬁ,7)l]'2(a+1,/3.7) i K(a+1,/3v7)l]12(a+l.ﬂ+1,7) 1K E(lﬁﬂy)ﬂ!ZZ(aﬂy) n Kgﬁﬂ”

~2(a B+Ly) K(a+l By (a+1ﬂ I K(a+lﬂ 7) ~2(a+1 BLy) (aﬁy) A'Z(aﬂy) n K(qﬂn AvZ(a,ﬂHJ) i K(a+1,ﬂ,7)

~r2(a+l/7 74 K(a+l/7 7) ~2(a+1 BLy) 4 K(aﬂy) «3(aﬂ7) i K(aﬂy) ~r3(a B, 7+1) i K(a+1 By) ~3(a+lﬂ N K(a+1ﬂ 7) B.1)

ly3(a+1,ﬁv7+1) i K(‘Z/j}’)ﬁ’ (apy) K(aﬂy) 3(a,fiy+) K(a+1,ﬁ,7)af3(a+1,ﬂv, )y K(a+1,ﬁ,7)ﬂr23(a+1yﬁ,7+1) K E(lgﬁy) .
(a/J’V) ¥ K(aﬁy) Safirl) | K(a+1/5 7) («Hlﬂ o K(a+1ﬂ 7) ~3(0r+1ﬁ‘ 74l _ 1(a+lyﬂ,7) [C(a+l,ﬂ,7) (1 -

g‘llil(aﬂ,ﬁ,y)) +C1(?+1’ﬁ" )(622 gln(a-#lﬂ 7) )+ C(a+1ﬂ 7) ( Ty - gln(a+1ﬂ 7) )] n 2n 1(a+1, B, v)C(a+1ﬂ 7) (g 13—

glig(aﬂ,ﬂw)) n Zn%(wlyﬁw)cé?lﬁv)(512 _Ellg(wlﬁ,y)) n nl(aﬂv [C(aﬂ7 (-2 In(aﬂy)) +clepn

57 (82 - 2y 1) +

Cl(grﬁy) (E33- g;g(aﬂy))] i 2n32(aﬁ7)cégrﬂ7) (E3- glig(aﬁ’y)) 4 an(aﬁy)cétgﬂy) (12 - glz(aﬂy))

K égﬂy)ﬂil(aﬁy) +(K{ (aﬂy) ¥ K(a+1ﬁ 7)) glatlBy) |k e(gﬂ,ﬂ,y)ljil(wlﬁv) +K égﬂy)ﬁél(aﬂy) +(K étgﬂy) +K égﬁlyﬁ,y))
l]vl(a+1,ﬁv7) +K a+1,ﬂ,7)0!1(a+2,ﬁ,7) + K(aﬂy)arl(aﬂy) + (K(aﬂr) + K(a+1,ﬂ,7’))l]'1(0!+1ﬁv7) + K(a+1ﬁ,7)l]r1(a+2ﬁ,y) +
K(aﬂy) AIZ(aﬂy) 4 K(aﬁn ~2(a BLy) K(a+lﬂ 7) ~2(a+1 By 4 K(a+lﬁ’ oK r2(a+l BLy) K(aﬁ7) ~2(a,57) n K(aﬂ;/)
G'Z(aﬁﬂw) K(a+1ﬂ 7) ~2(¢1+1/3 o K(a+1/3 7) A/Z(a+1,ﬂ+1y7) n K(aﬂy)ﬁ'Z(aﬂy) K(aﬂy) fZ(a B+Ly) K(MLﬂJ)
~2(a+1ﬂ I K(a+1ﬂ 7) ~2(a+1 BLy) K(aﬂy) ~3(aﬂy) i K(aﬂr) BB | g @B (a+1ﬁ LK gLh)

(a+1ﬂ ) K(aﬂy) ~3(aﬂ;/) + K(aﬂy) Ar3(a B 7+1 + K(a+l Bl (a+1,6' O K(a+1ﬂ Mg 13(a+1 B+l K(aﬂy) B2)
A 3(apy) K(aﬂy) '3(11 P L g last Ay, (a+1/3 M K(a+1ﬁ 7)0/3(%1[3 ) =y Yatlpy) [C(a+l BN (g, -
gli?(mlﬁw)) i C(a+1ﬁyy) (Ep - fln(a+1,ﬂ,7 )+ C%Hl,ﬂ,, )(533 _ 633(a+1ﬁvy))] n an(a+1,ﬁ,y)c(a+1ﬁvy) (Ep3-
gég(wrlﬁ,y)) +2n1(a+1/3 7 a+1ﬂ 7)(* glig(wlyﬂ,y)) +n§("ﬁ7)[C§‘fﬂy)(g gllri(aﬂy ) +C( 91 (z5y - g;r;(aﬂy))
+C égﬁy) (F33- gég(aﬂy) )+ an(aﬂy)c [(&tﬂy)(gzs - gizré(aﬁy)) n anZ(aﬂy)Cégﬂy (81 - 51"21(0!,37))

(aﬂy) '1(aﬂ7 +(K@P 4 K(a+1ﬂ y)) AatLpy) | K(a+1ﬁ g rl(0r+2 By 4 K(aﬂy) rl(aﬂ;') +(K@P) 4 K(Mlyﬂw))
uﬁrz(aﬂﬁ,y) K(a+1ﬂ 7) Arl(a+2 B 4 K(aﬂy) fl(aﬂy) (K(aﬁy) K(a+1ﬁ’ 7)) AatLpr) | K(a+l By ~1(0!+2 By 4
K(aﬂy) AvZ(aM + K(aﬂy) (@fly) 4 K(a+1 Biy) Ar2(a+1 By 4 K(a+1ﬂ 7) ~2(a+1 BLy) 4 K(aﬁ;/) Ar2(aﬂ7) i K(“ﬂ]’)
a; 2(a,p+17) | K(_a+1,ﬁ',7)ly2(a+l,ﬂ,y) + K(q+lyﬁ,7)ﬂv2(a+lyﬁ+1,7) n K(aﬂy)u 2(efy) 4 K(aﬂV)GIZ(a,ﬁ+1,7) i K(ffﬁlvﬂm)
aéZ(wl,ﬁ,y) K(a+1ﬂ V)lj'2(a+1 B+Ly) | K@ (aﬁy) +KE@g; (a Bir+)) K(a+1ﬂ 7) w3(a+1,/317) n K%ﬂ/fv) (B3)
l]/?:(wl,ﬂwl) + K(aﬂy)gﬁ(aﬂy) i K(aﬂy)ﬁﬁ(aﬁwl) + K(a+1,ﬂ,7)l]f3(a+lﬁv7) + K(a+1,/3,7)gf3(a+1ﬁ,7+1) +K@
~3(aﬂy) + K(aﬁy) Bapirl) | K(a+1ﬂ 7) ~3(a+1ﬂ . K(a+1ﬂ g (a+1 B+l _ nl(a+1ﬂ 7) [c{ (a+Lp.7) (-

gllg(wl,ﬂ,y)) i C§tzx+lvﬂ,7) (Ep - 8I2r12(a+1,/717)) i ng”l'ﬁ 7) (s -3 (a+l P+ an(a+1ﬂ 7)C(a+1 By (Ep3-

gizr%(mlyﬁyy)) i 2n%(“+1'ﬂ'7)(:ég+l’ﬂ’7) (3 - glig(wlyﬂ,y)) i ng(aﬁ}' [Cétfm (@ - glri(aﬂr)) n C(aﬂy) (&3 - 60 aﬂr))

+CLP (533 - £MPY] 4 202CPIC D) (5, - gD 1 202D (7, - gAY

K(aﬁy)ﬁ'l(aﬂy) K(aﬂy) rl(a+1 B 4 K("‘ BLy) Arl(a BLy) K(a B+Ly) wl(a+1 By Lk gétﬂy)uvzl(aﬂy) +K étgﬂy)
LA K(a pengle e o K(a PeLy)giaslhly) | K(aﬁy)ﬁ'l(aﬂy) +K aﬂy)ﬁd(aﬂ,ﬂw) + K(_aﬁ+1,7)
wl(a B+Ly) 4 K(a A7) /1(a+1 AHLy) | K(aﬂy) 'Z(aﬁ’y) n (K(aﬂy) n K(a BHL y))g/Z(a PHLy) | K(a B+Lr)

~2(a B+27) K(aﬂy) A/Z(aﬂy) (K (@fy) K(a B+L 7)) q2apeLy) | K(a B+L1)g /2(a B+27) 4 K(aﬁy) /Z(aﬂy)
(K(aﬂy) + K(_a,ﬂ+1,7))ﬁr2(aﬁ+1v7) + K(- PN g2y K(aﬂy)aﬁ(aﬂﬂ n K(aﬁy)uﬁ afyl) K( a,f+Ly)

A;S(a S+1y) n K(a L+1, y) 13(0: L+Ly+1) " K(aﬂy) w3(aﬂ;/) " K(aﬂy) r3(0! L.y+1) i K(oc L+, v) !3(0: L+L7y) n K(a L+17)
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013(avﬂ+1v7+1) 1K é?ﬂy)uf(aﬂy) 1K é‘éﬂ;’)ﬁf(avﬁ:J"*'l) n Kgglﬂﬂyy)ﬁf(aﬁﬂw) n Kgg,ﬁﬂ,r)ﬁf(aﬁﬂywl) - nf(“'ﬂ”'y)
[Cl(f"ﬂ”'y) (& - glig(a,ﬁﬂ#)) n Cl(g,ﬁﬂ,r) (Epp - gzig(avﬂﬂvy)) i Cl(g'ﬁ”"’) (Eg3- ggg(aﬁﬂvr))] n 2n§("’"5+1’7) B.4)
Cé‘g’ﬁ””’) (B3 - u;lig(aﬁﬂv;')) i an(aﬁﬂvy)cégﬁﬂv) (- u;in(a,ﬂﬂ,y)) n n4(aﬁ7)[c(aﬂ7) (- gin(aﬂ;/)) + ’

Cl(gﬁn(gzz _ glirll(aﬂy)) + Cl(éﬁt/i’y)(g33 _ gég(aﬂy))] + 2ng(aﬁy)cégﬂ7 (13- gm(aﬂy)) + 2n4(a/37)c(aﬂ7) (Ep - gm(aﬂy))

K I(]Ztﬁy)ﬂil(orﬂy) K(aﬁy) ~1(a+1/)’ My K(a B+Ly) wl(a B+Ly) K(a B+Ly) wl(a+1 B+Ly) L k I(]t(ijt/f;/)l]rzl(aﬂy) 1K r(étﬂy)
ﬁrzl(aJrlﬁJ) 1K lsg'ﬁ”’y)u'zl(a'ﬁ*l’” 1K lEgtﬁﬂ#)ﬁr21(0t+1,ﬂ+1,;') n r(]?rﬁy)ﬁvzl(ﬂtﬂy) 1K r(gﬂy)arzl(ml,ﬂ,y) 1K l%g,ﬁﬂyy)
ﬁle(aﬁ+1,7) 1K Igg'ﬂ”"’)u”zl(“”'ﬂ*l'” +K r(]trﬂlt,ﬁ’y)ﬁf(()tﬂ;/) +(K r(]arﬁy) +K éﬁyﬁﬂﬂ))af(aﬁﬂw) 1K &g,ﬂ%y)
GiZ(a,ﬂﬂ,y) n K({W)av?(aﬂy) n (K(qﬁy) n K({zvﬁ'+1,7))lj'2(aﬁ+1,7) 1K &?,ﬁ+1y7)0r22(a,ﬂ+2,7) 1K r(ﬂaﬂy)ﬂéZ(wﬁy) n
(K r(&tﬁﬂ K(a B+, y)) gr2(afly) K(”‘ B+Ly) ~2(a B+2y) Lk r(]?]‘ﬂ}’)lji\?’(aﬂ}/) +K r(]téﬁy)ljf(ﬂuﬂwl) +K ﬁf{'ﬂﬂ'” (B.5)
ﬁf(mlﬂlyﬂ K(a B+Ly) Ar3(a Byl |k égﬂy)usz(aﬂy) 1K r(}gﬂy)uf(a,ﬂwl) 1K égy/ﬂly)ﬁrg(aﬁﬂi) 1K iEg,ﬂﬂy}')
0!23(aﬁ+1y7+1) + Klg‘;‘ﬂ}’)ﬁ'33(aﬁ7) + Kr(]gﬂy)ﬁg(mﬁwl) +K &fvﬂ”’”uf(“ﬁ*l'” +K Iggvﬁ'+1,7)0133(a,ﬁ+1,y+l) = ng(a,ﬂﬂvﬂ
[Céf'ﬂ+1’y)(éi1 _ glig(avﬂﬂ,;f)) n Cétgvlﬂlm(gzz _ gli?(aﬁﬂ,y)) n Cégvﬂﬂ,y) (Eg3- gli?(a,/f'ﬂw))] n 2n§(a,ﬂ+1vy)

C(a,ﬂ+1v7) (Eps - 5in(a,ﬁ+1w)) i 2n13(a,ﬁ+lvy)cégvﬂ+1,7) (Ep - glig(aﬁﬂ,y)) n ng(aﬁy) [C(a/f'7) @ - gin(aﬁy)) i

C( 91 (5 — gm(aﬂy )+ ngﬂy)(gsg _ gsi.g(aﬁy) )+ 2n§(“ﬂ7)0§2’ﬁ7) (Ep3- gzig(aﬂy)) +2n Hapy) C(aﬂy)(g 10— & ln(aﬁy))

Ki(t;zﬂy)uil(aﬂ;/) n Ki(:ﬂr)ﬂil(a+lﬁ,7) n Kl(t;xvﬂ*'lx}/)ﬂil(avﬂﬂ:}/) n Klg‘vﬂ+1:7)ﬂil(a+lvﬂ+1:7) n Ki(daﬂy)ﬂvzl(aﬂy) n Ki(caﬁy)
ljrzl(wrlﬁ,y) +K I(;cﬁﬂv)ljrzl(a,ﬂﬂyy) +K I(Caﬁﬂ,?)arzl(wl,ﬂﬂ,y) +K i(faﬂy)aél(aﬁy) + Ki(eaﬂy)aél(wl,ﬂ 7) g Kl(fa,ﬂJrl,y)
ﬁfl(aylﬁlvy) i K(aﬁﬂ,y)ﬁrl(mlﬁﬂv) ¥ K_(aﬂy)ﬁrZ(aﬂy) i (K_(aﬂy) n Kl(r?’ﬂﬂ'”)ljiz(“’ﬂ*l'}’) i Kl(gﬁﬂv)
Ar2(a B+27) | K(aﬁy)ﬁrZ(aﬂy) n (K(aﬂy) " K(a B+, 7))~2(a LYY | Kﬁ“’ﬂ”’”d’z(“’ﬁ*z” n K_(aﬂy)aéZ(aﬁy) i
(K(aﬂ7) n K a,f+1, 7))0'2(0! B+L7) K(a B+L7) ~2(a B+2.7) | klapr)gr3aby) K(aﬂy) ~3(a Byl 4 k(@.p+ly)

in 2 In (B6)
5 3(afly) | K|(rﬁ’ﬁ+1’7)u'23(a'ﬂ+l’7+l) n Ki(paﬁ'y)ly;(aﬂy) n Ki(grﬂy)ljr;(a,ﬁ,ﬂl) n Kl(g,ﬁ+1,7)uv23(aﬁ+1w) 1K |(é1’ﬂ+1'y)
0’23(“vﬁ+117+1) n Ki(raﬂ7)ué3(aﬁ7) n Ki(qaﬂr)ﬁ?(a,ﬂvﬂl) 1K I(g,ﬂ+lv7)ﬁé3(avﬂ+1,7) n Kl(qa'ﬂ“’;’)uf(“'ﬂ+1'7+1) - ng(aﬁﬂw)
[Cé‘f‘ﬂ“’y) (- gliil(a,ﬁﬂyy)) n Cég,ﬂﬂv) (Epp - gzirzl(aﬁﬂv}')) n Cégﬁﬂv) (533 - 5in(aﬁ+1,7) )+ 2n3(a,ﬂ+1,7)

C(a,ﬁ+1.7)(g _fin(avﬁ+1,7)) 2n3(a,ﬁ+1.7)c(ayﬁ+1v7)(g _fin(a.ﬁ+1,y))+n4(aﬁy)[c(aﬂ7)( aﬂ}/))+c(aﬁ7)

a1-8
(Epp - gm(aﬂy ) +C(aﬂy)(533 5313(0!/5’7 )l +2n; aeﬁ’y)c(aﬁ'y)(gz3 gln(aﬂy)) +2n{1(aﬂ7 C(aﬂy (B 1Lm(aﬁy))
K(aﬂy)afl(aﬂy) + K(aﬂy)nrl(wlﬂ T K(a Biy+l) wl(a Byl | K(a Br+l) Arl(a+1ﬂ r) L K(aﬂy)ﬁle(aﬂy) +K @
~1(a+1ﬂ o K(a By '1(0! Br+1) | K(a B 7+l)u'1(a+1ﬂ ) | K(aﬂy)lyl(aﬂy) + K@y wl(a+1ﬁ 7) 4 Kg;r,ﬂwl)
Oél(aﬁ%l) T K(a,ﬂ,;’+1)uvl(a+1,ﬂ,7+l) + K(aﬂ7)ﬁr2(aﬂ7) + K(aﬁy)urZ(aﬁH,y) + K(a,ﬂ,7+1)lj'2(aﬁ,7+l) + K(tsﬁwl)
l]iZ(Ot,/)’+1,7+1) K(aﬂy)ﬁﬂ(aﬂy) " K(aﬁy)n'Z(a B+Ly) K(a B, 7+1)l]r2(a B+l K(a B+ ~2(a B+l | g r(noltﬂy)
L]v32(0tﬂ7) 1K r(Tﬁt(ﬂy)nrgZ(a,ﬂJrLy) + Kgf’ﬂ ,7+1)0é2(a,ﬂ,7+1) + Kgﬁ'ﬁ'”l)uéz(“'ﬂ”'y*l) +K r(nOF]ﬂ;/)ljifi(aﬁﬂ +(K r(nortf;/) +
K%,ﬂ,ﬁl))af(a,ﬁ,ﬁl) n K%ﬂwl)uf(aﬁwﬂ) " Kr(nvlt]ﬂy)ljrg(aﬁy) +(K@P 4 K%,ﬂ,ﬁl))lj?(aﬁ,ﬁl) n K%,ﬂ,ﬂl)
0'3(“"3'7*2) + K(aﬁy)ﬁﬁ(aﬁy) + (K(aﬁy) + Kg?ﬁ,wl))ljf(aﬁ,ﬁl) + K%ﬁ,ﬁl)u';(a,ﬂvﬂ?) = n15(a,/i7+1) [Cl(f”ﬁ'7+l)
-5, (e fr 1)y 4 C(“ B 7+1)(522 "21(%/3%1)) i Cl(g"ﬂ’“l) (533 - ggi)g(a,ﬂy;ﬂrl))] n an(a,ﬂwl)cég,ﬂwl) (13
—51'2(“"3’7”’) i 2ng(a'ﬂ'7+l)0ég'ﬂ’7+l)(512 - 5{2“’"/5'7*1)) n nf(aﬂy)[cl(fﬂy)(gll - 51“11(06/37)) + Cl(gﬂ;/)(gzz _
gzig(a/)’y) )+C 1(é1ﬂ7) (F33 - ggg(aﬂy))] n 2ng(aﬁy)cégﬁ7) (B3 - glig(aﬂﬁ) " ZnS(aﬁy)Cégﬁy) (&1 - glig(aﬂy))

K égﬁy)nil(aﬁ;/) +K rg(;ﬂy)uil(wl,ﬁ,y) +K c(lobr,ﬂ,7+1)ﬁil(a,ﬂ,7+1) K(a B+ wl(a+lﬂ 7+ L K égﬁr)ﬁvzl(aﬁy) + K@)

szl(aJrl,ﬂ,y) + Kégﬁ'y+l)lj’21(aﬁ’y+l) + Kézér,ﬂ,wl)%l(mlﬁ,wl) + Kr(]?‘ﬂy)ﬁél(“ﬂ” +K rggﬁy)nél(mlﬁ,;/) + Kc(ltfl,ﬁ,ﬁl)
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uél(aﬁwl) K("‘ Byl rl(a+1 B.y+1) K(ﬁﬂy)uf(aﬁy) K(aﬁy) r2(a BLy) K(ﬁ,ﬂvﬁl)af(aﬁlwl) +K égﬁwl)
n a

uiZ(ay/lel) n K(aﬁy)ﬁ!Z(aﬂV) n K((lﬂ}')ﬂd(a,ﬂﬂ,y) + K(qvﬁ'v7+1)ﬁr2(a,ﬂ,7+1) i K(avﬂ17+l)ljr2(a,ﬂ+l,7+l) n K(aﬂy)

lij(Otli'r) K(aﬁy) r2(a B+Ly) K(a Byl '2(«1 Byl | K(a By rZ(a ALy, g (@b r3(aﬂ7) +(K@PN 4
(a B+ )G a3@pr+l) K(a By '3(0t Br+2) K(dﬂ?) '3(aﬂ7) +(K@ (afy) | K 4 Bir+1) )5 G3@pr+l) K¢ (a Br+D)

(B.8)

0 (a’ﬂ’}’*Z n K(aﬁ7)0'3(aﬂ7 +(K(Ofﬂ7’ n K(a'ﬁ'ﬁl))lj's afir+l) K(a,ﬁv7+1)lj'3(a,ﬂv7+2) =n 5(a.f.y+1) [C(avﬂ,ﬁl)

(gll gln(a B y+l)) n C(a L.y+1) (6‘22 _ In(a B y+l)) n C(a L.y+1) (833 gln(a L.r+1) )+ 2n5(a B, ;/+1)C(a £.y+1) (g 23—

In(a By 4 2n] S(e.f, 7+1)C ahrd) (g, - gln(a Biriy 4 nG(aﬂy)[C(aﬂ;f E1- gllg(aﬂy )+C(aﬁy)(822 _glzg @)y 4

Cgaﬁ}’)(g% _gég @By + 2n36(aﬂ7)C‘(ﬁtﬁ7)(523 _Slzg(aﬂr)) + 2n16(aﬁ'7 Cégﬂ}' & _gllg(aﬂr))

K(aﬂy) rl(aﬂ}') + K@)y rl(a+1ﬂ 7) K(a B+l rl(a Br+l) K@ Ar+g rl(a+l/3 7+1) K(aﬁV) vl(wﬁr) + K@
Arl(a+l ﬂ 7y K(a Bir+)) Arl(a Prd) k(@ Pr g vl(a+1 B+l K(aﬁy) Arl(aﬁ;/) +K@Pg '1(a+1 B 7) i K(a Bir+D
L]rsl(ayﬂwl) + KSgﬁ,}’Jrl)n'sl(aJrlﬁ,Yﬂ) + Kéﬁﬂ7)012(“ﬁ7) + K(()gﬁ?)ljf(a,ﬂﬂyy) + Kﬁ‘f'ﬂ’y*l)ﬁiz(a’ﬂ’”l) + Kﬁg,ﬂ,wl)
ﬁf(a,ﬂﬂwl) " Kéjaﬁ;/)ﬁvZZ(aﬂy) n Ké?ﬂ;’)ﬁ'zz(a’ﬂ””’) " Kﬁja,ﬁ,ﬂl)ur;(aﬁ,ﬁl) n Kgft,ﬁ,7+l)0r22(a,ﬁ+1,y+1) 4 K((Jlaﬂy)
ﬁrZ(aﬂy) n K(aﬂy)nvZ(aﬁﬂv;’) 4 K(a,ﬁ,ﬁl)n@(aﬁ%l) + K(a,ﬁ,7+l)ljr2(a,ﬂ+l,7+l) 4 K(aﬂy)lj@(aﬂy) + (K@ 4 B.9)
K (@h. y+1)) B@prl) g (@b 7+1)0f3(a B, 7+2)K(aﬂ7) v3(a/)’7) + (K@) 4 K(a B, 7+l)) S@prl) | g (@hr+)
0123(a,ﬁ,7+2)Ké?ﬂy)ag(aﬂy) + (Kégﬂy) n K#g,ﬁ,ﬁl))lj?(a,ﬁ,ﬂl) n Kﬁg,ﬂ,wl)urg?’(a,ﬁ,yﬂ) - ng(a,ﬂwl) [Cg(?ﬂwl)

(Fy - glig(aﬁwl)) n ngg,ﬁ,y+1)(§22 _ gizg(aﬁwl)) i C(aﬁwl) (Bas— Ein(a,ﬂwl))] n 2n5(avﬂv7+1)cl(&fﬁy7+l) (Ers
_g;ré(a,ﬁ,ﬁl)) n 2n15(aﬁ17+1)c5(151ﬁ17+1) (13- In(a B4y 4 nﬁ(aﬂy)[c(aﬁﬂ ch _gln(aﬂy)) 4 Cégﬁy)(gzz _
gizg(aﬁy) )+C s(gﬂy)(gs - g;g(aﬂy))] + 2ng(aﬂ7)c é(ﬁtﬂy) (Ers— glzg(aﬂy)) i an(“ﬂ”)cé‘s"ﬂ”(él - g{g(aﬂy))

[2] [ack? AcE? ack? o ack? ach?]

LK K 0 (A ack skt aci o acid)
Ky Kp Kg Ki Kg K Ky Kg Ky || U5 |ACH? ACH? ACH? ACED Ack) o | ™
K Ko Ki Ko K K Ko Kg K ||T2] [ACE? ACE? AcG® 0 AcE Acg) 222
K Ks Kg Kgy K Ky Ky Ky Kgg Ulz2 = AC(23i4) AC(232'4) AC(233;4) Cﬁg) 0 Cgé;) 2223
Ko Ke Kg Ko Kg Kg Ko Kgg Kgg U’32 AC(331'4) AC(332'4) AC(333'4) cﬁ;" C(535§) 0 2512
Kin K K Ky K Ky Ky Kyg Ky U'13 ACﬁ'@ AC%G) AC%G) 0 C(55éf) C(aséf) 2%,
o K K o e K o o ] %] [ ACED ackt ackt o ack

: lup] [acg? acg? ach® ack? acg® o |
[Ac) Ac) Acl 0 AC® ACE] [ac® ac® ac® o Ac® acd ]

ACS) ACY) ACH ACH, 0  ACH, |- _..- |ACR ACH AC® ACf, 0 ACE | i,

ACY ACY Ac® acl ac® o | | |ac® Ac® ac® ac@ acd o |

Ac® Ac® ac® 0 Ac® AC@ | P | |ac® ac® acl) 0 ac® ach | %

AC§) AC§) ACH ACE, 0 ACE ffm -[AC) AC®) AC® ACl, 0  ACE, 2;2

AC§) AC§ ACE ACE; ACE, 0 | % | |ACY ACY ACH ACH; ACE o | %

AR aci? AC® 0 ach, acfh| %) |ach ach ach 0 ach ach) |

ACH Acg AC® ACE, 0 AcR | |ac® ac® ac® acf, 0 acl, |t

[ACS) AC§) AC§) ACR; ACl 0 | |AC) AC) ACP ACP; ACE, 0

(B.10)
where
Loy gt g N gt MNNDY with g0 S @A) g NP =1,2,3
=[0!2@1),...,o;Z(NaD,...,032‘1’“,... 0P NNY with e —parer) | @ eNn]21,2,3

B[0P, 03N o NNy with o) < g, @My 21,2,3
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