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Abstract—The role of electricity theft detection (ETD) is crit-
ical to maintain cost-efficiency in smart grids. However, existing
methods for theft detection can struggle to handle large electricity
consumption datasets because of missing values, data variance
and nonlinear data relationship problems, and there is a lack
of integrated infrastructure for coordinating electricity load data
analysis procedures. To help address these problems, a simple yet
effective ETD model is developed. Three modules are combined
into the proposed model. The first module deploys a combination
of data imputation, outlier handling, normalization and class
balancing algorithms, to enhance the time series characteristics
and generate better quality data for improved training and
learning by the classifiers. Three different machine learning (ML)
methods, which are uncorrelated and skillful on the problem in
different ways, are employed as the base learning model. Finally,
a recently developed deep learning approach, namely a temporal
convolutional network (TCN), is used to ensemble the outputs
of the ML algorithms for improved classification accuracy. Ex-
perimental results confirm that the proposed framework yields a
highly-accurate, robust classification performance, in comparison
to other well-established machine and deep learning models and
thus can be a practical tool for electricity theft detection in
industrial applications.

Index Terms—Electricity theft detection, Big data, Preprocess-
ing, Data classification, Smart grid.

I. INTRODUCTION
One of the main goals of a smart grid is to decrease power

system losses and to balance the gap between power supply
and demand [1]. The losses which a power network encounters
from generation to distribution are of two types: technical
losses (TL) and non-technical losses (NTL). TL are caused
during the transfer of energy in transformers, transmission
lines and cables and thus cannot be simply averted in a
distributed network. The NTL, in contrast, happens when
electricity is used fraudulently to reduce utility charges. Such
cases include meter bypassing and tampering, synchronously
switching power circuits and tapping on secondary voltages
[2]. The main reason for NTL in a power network is electricity
theft, which presents an estimated revenue loss of $89.3 billion
annually worldwide [3].

Generally, an electricity theft detection (ETD) mechanism
of some form is expected because of economic and industrial

requirements [4]. Also, customers have a predefined power
purchase threshold, and due to NTL, the burden on end-
users is ultimately increased. In recent years, the reduction
of NTL has become one of the leading drivers in smart
grid and the use of advanced methods, such as big data
analysis, is becoming standard for detecting anomalous power
consumption. By controlling electricity theft, utilities curtail
expenditure on energy and are able to better control the power
demand for a specific period. This yields financial benefits
in terms of generation cost and helps to control a broad
range of irregularities both at the planning and distribution
levels [5]. A precise and efficient theft detection method
reduces the supply-demand gap and helps ensure a stable and
efficient power management system. It addresses uncertain
power generation challenges and brings higher reliability to
the available energy sources. However, the ETD phenomenon
is dynamic and complex in nature, comprising diverse aspects
of energy consumption and the variation tendencies over time
are nonlinear. Electricity demand is influenced by numerous
features, such as inherent demand, fuel price, renewable en-
ergy supply and transmission, with hourly variations. Since
electricity demand alters recurrently and a large number of
smart meters monitor the associated factors, all in real-time,
the data volume produced by smart sensors and smart sub-
meters is enormous and difficult to analyse [6]–[8].

There are three major challenges in supervised NTL de-
tection methods, i.e., handling missing and outliers’ data
values during data preprocessing, data class unbalancing and
choosing an appropriate classifier.

In the first instance, feature pre-processing is fundamental
to the application of the classifier. In a study [9], the authors
utilized the conjunction of support vector machine (SVM)
and decision tree (DT) algorithms to detect electricity theft
with higher accuracy. The study yields very promising results;
however, the issue of recovering missing values from existing
data has remained unattended. Without addressing the missing
data issue, the scalability and robustness of the proposed
model cannot be guaranteed. The authors of [10] conducted
a detailed review of 34 supervised machine learning (ML)
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Fig. 1: Proposed framework for electricity theft detection

based research articles on ETD and found that only half of
the considered research articles addressed the issue of missing
data values. Maddilina et al. [11] used SVM and XGBoost
as a boosting classifier for anomalies detection in improving
the operational safety of a power network. Based on load
profiles and available auxiliary data information, the data were
analysed to learn key features and characteristics for con-
sumers ranking in accordance with their electricity usage pat-
terns. First, the training process of the SVM classifier started
by minimizing empirical risk minimization. Afterwards, the
boosting algorithm is employed to associate correct categories
to improve the final prediction accuracy. However, the data
preparation steps were not considered and the presence of
various outliers in primary data from the market can make
the classification accuracy volatile. Our paper has detailly
addressed the mentioned problem in subsequent sections.

Data class unbalancing is another critical problem in smart
meters’ labelled datasets for ETD applications. It causes a
biasness problem because the prediction model might learn
key features and concepts related to the majority class and
minority class samples (theft cases) would most often remain
unattended. To obtain an efficient and unbiased ML model

performance, an equal representation of both data samples is
essentially required. Paulo et al. [12] used the convolutional
neural network (CNN) for accurate identification of electricity
fraud. However, an important issue of model generalization
can occur in CNN when the final prediction result is obtained
from the fully connected layer. This issue is resolved by [13]
when the authors employ a random forest (RF) algorithm for
obtaining the classification task final output. In their work, a
well-known class balancing method, synthetic minority over-
sampling technique (SMOTE) is used to increase prediction
model’s capabilities to learn key features and characteristics of
theft cases. However, SMOTE generates synthetic samples for
minority class that may lead creation of an overfitting problem.
This means that the proposed model is performing better on
seen/training data but its performance degrades for unseen/test
data [1].

Once the process of data preprocessing is completed, the
next challenge is the selection of an appropriate classifier
to efficiently segregate the honest and theft consumers. In
more general terms, hardware and non-hardware solutions are
two main ways for electricity theft prediction. Non-hardware
solutions are classification algorithms, for which ML and deep



learning (DL) methods, such as SVM, DT, RF, artificial neural
networks (ANN) and generative adversarial networks (GAN)
are very popular [14]–[18]. However, a large body of literature
suggests that none of these approaches is perfect and each
method may exhibit its drawbacks during the classification
procedure. Big data characteristics such as high volume, high
velocity and high veracity are creating new challenges and
require new processing paradigms. For example, SVM is
computationally expensive because of the large number of
support vectors for large training datasets, and the associated
hyper-parameters can be problematic to tune. Similarly, DT
and RF usually face over-fitting problems. The ANN and
GAN convergences cannot be easily controlled, and these
methods have limited generalization capabilities. In the context
of electricity theft prediction, the challenging is to improve
robustness, scalability and accuracy in the face of widespread
nonlinear data.

In the present work, we investigate various ETD issues,
including binary classification tasks where the main objective
is to predict the normal and fraudulent patterns of customers.
ML methods provide the underpinning framework. During the
classification process, each ML method attempts to separate
different data points and explain a class value. Although SVM,
RF and DT are promising approaches, they may outperform
each other or have defects in different cases. Thus, the follow-
ing challenges must be addressed when making an accurate
prediction between the two patterns.

• Highly imbalanced theft data: One of the main problems
in the real-world dataset is imbalanced classes [14].
This is the scenario where non-fraudulent samples far
outweigh the fraudulent ones. The common methods to
deal with the imbalanced class distribution problem is
random oversampling and under-sampling. However, both
methods have known drawbacks that cause the supervised
ML models to become bias and overfit towards majority
class samples, thus leading to inaccurate prediction results
for theft cases.

• Difficulty in parameters tuning: In ML methods, nu-
merous hyperparameters control the learning process.
There is no analytical formula available to calculate
an appropriate value of these hyperparameters, which
affect the performance of models in the classification
task. Gradient descent and cross-validation [19] are two
common methods to adjust hyperparameters. However,
both methods increase the computational complexity and
make the converging process difficult.

• High computational overhead: According to [1], [19],
deep learning (DL) methods are weak to process un-
certain information and have high computational costs.
In electricity theft prediction process, the presence of
redundant and extraneous features increases computa-
tional complexity and makes the final classifier’s training
process hard and prevents it from being a good fit model,
which decreases the prediction accuracy.

To address the above, we propose a new integrated data prepa-
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Fig. 2: Schematic diagram of the proposed system

rations, first and second-order classification (PFSC) frame-
work, as summarised in Fig. 1. The three components of PFSC
are: data preparation based on interpolation, outliers detection,
normalization, and balancing (IONB) tasks; a first-order ML
classifier based on SVM, RF and gradient boosting decision
tree (GBDT) methods; and a second-order classification step
using a temporal convolutional network (TCN). Specifically,
the missing values in the data are filled by applying an
interpolation method to achieve data uniformity. Subsequently,
outlier handling and data normalization steps are used to set
the values between 0-1 and to ensure data consistency. In the
State Grid Corporation of China (SGCC) dataset, more honest
(91%) and less dishonest (9%) consumers exist. Thus, the final
task of IONB is to apply the sampling technique to get an
equal distribution of both classes. Once the data preparation
task is performed, the prepared data are used to train three
different classifiers to construct a first-order ML classification
model. It is natural to expect that multiple methods will lead
to superior performance [19]–[22]. Hence, the outputs of the
three ML classifiers are stacked and provided to the DL
method (a recently developed second-order classifier in our
case) to obtain the final classification. Our recent conference
article [23] also proposes an integrated data pre-processing and
resampling methods and present some preliminary results. The
present work builds on this concept but uses a new approach
to classifiers. In this manner, the main contributions of the
research are:
• Development of an integrated ETD framework to achieve

accurate theft detection using real data in a smart grid.
To our knowledge, this represents a first attempt to
integrate data preparation steps with first and second-
order classifiers into a single framework for the studied



problem. Due to cascading effects, real smart meter data
are efficiently handled and analyzed.

• An extensive IONB approach is proposed, involving
imputation, handling outliers, normalization and class
balancing algorithms for better training of classifiers. The
original dataset has a sample size of 42372 and each
sample has 1035 features, with issues like redundancy
and irrelevancy. These issues can be problematic for both
the ML and DL models. As suggested in the literature
[1], [5], [6], [19], ML models have lower computational
overheads when trained in the presence of such big data.
In our paper, the main aim is to achieve higher prediction
accuracy. However, there is always a trade off between
accuracy and computational complexity. Both higher ac-
curacy and computational efficiency are difficult to attain
simultaneously. The multi-model ensemble method trains
a second-order DL classifier on the limited predicted
features provided by the first-order ML classifiers. It is
important to note that the first-order classifier training
process is conducted in parallel and there is a negligible
execution time difference between them. The second-
stage classifier (ensembler) optimally combines the first-
order models’ predictions (only three features) to provide
final results, with higher accuracy and minimum compu-
tational complexity.

• Extensive simulations based on real-world data traces
from electric grid’s workload have been investigated
for performance assessment. The experimental results
confirm that the DL based multi-model ensemble method
makes efficient use of multi-variate time sequence data
and offers high accurate predictions than any single
machine and deep learning model trained in isolation.

The remainder of this paper is organised as follows. Section II
describes the proposed theft detection framework. Section III
presents the data preparation module. Section IV develops the
base and meta-classifier procedures. The experimental results
for several realistic case studies are explained in Section V.
Finally, conclusions are presented in Section VI.

II. SYSTEM FRAMEWORK OVERVIEW

The basic problem in ETD is to improve accuracy. Various
factors can impact the electricity consumption pattern of the
consumers, which makes classifier training challenging. To
improve the accuracy of the proposed PFSC framework, we
develop a sequential IONB, a first-order ML classifier and a
DL-based second-order classifier for the final prediction of
normal and fraudulent patterns.

The approach begins with raw data standardisation, the first
module in Fig. 1. Standardization is pivotal for the imple-
mentation of the whole framework. In the second module, the
standardized data are fed into the base classifiers to train SVM,
RF and GBDT in parallel. The schematic diagram shown
in Fig. 2 illustrates how base classifiers perform predictions.
Due to the decoupling design of the selection algorithm, the
process could execute in a distributive fashion. Finally, in the
third module of Fig. 1, the processed data are sent to build

the DL model, namely the TCN. We prefer TCN because of
advantages to learn essential laws and key features from a
large dataset. Also, it depicts stronger complex and nonlinear
function fitting and computing abilities than shallow ML
models, hence make it more suitable choice for classification
tasks [24]. The details of these modules are described in next
two sections.

III. IONB BASED SEQUENTIAL DATA
PREPARATIONS

Data preparation is often the first important step while
analyzing big data problems. It ensures accuracy in the data
which leads to accurate insights and better classifier training.
We propose a sequential IONB method on collected data to
ensure accurate quantifications, i.e. true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN)
found in a confusion matrix (CM). The sequential procedure
starts with imputation, handling outliers, data normalization
and finally handling the class imbalanced problem. We assume
a matrix,

X =



x11 x12 ... x1n
x21 x22 ... x2n

. . . .

. . . .

. . . .
xm1 xm2 ... xmn


=



−→
t1−→
t2
.
.
.
−→
tm

 , (1)

where,
−→
tk = [xk1, xk2, ...xkn] k ∈ [1,m]. (2)

to represent electricity consumption pattern. Time stamps and
the feature index of recorded data are represented by the rows
and columns, respectively. The index, i.e., xmn is the n− th
component of the m− th electricity usage values that need to
be classified.

A. Recovering missing data

The consumption record of electricity comprise numerous
missing values and incomplete information. The main reasons
behind the problem may be due to data corruption and
failure of hardware. In time-series data analysis, the missing
values cannot be simply neglected because these values can
significantly impact the performance and quality of the final
predictions. A better way is to impute the missing value by
calculating the mean/median of the neighboring non-missing
values. In the present work, missing values are retrieved
through the interpolation method in [3], as follows,

f(xi) =

{ (
xi−1+xi+1

2

)
, if xi ∈ NaN, xi±1 /∈ NaN,

xi, otherwise,
(3)

where xi are the missed (null) or recorded values contain
by the dataset. The null value is a non-numeric character,
expressed as NaN. If the value of xi is null, then Eq. (3)
is utilized to fill the corresponding value.
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Motivated by [25], we create an equal number of con-
sumption records for each user by removing from the original
dataset any clients with >600 null values. If a user contains
m <7 missing samples, the linear interpolation method is used
on existing data to fill missing values. Similarly, the missing
values are replaced with zero if m≥7.

B. Handling outliers
We have found numerous erroneous values in the SGCC

dataset alluded to above. The presence of outliers misleads
the training process, takes longer training times, resulting less
accurate models and, ultimately, mediocre results. The “three-
sigma rule of thumb” used in [3] is employed for mitigating
the outliers and restoring the data, as shown below,

f(xi) =

{
X, if xi > X,
xi, otherwise,

(4)

where X indicates Avg(xi) + 2σ(xi)) and σ represents the
standard deviation of x.

C. Data standardization
ML and DL methods are sensitive to diverse data. Hence,

we perform data normalization using the Min-Max method
calculated in following equation,

f(xi) =
Xi −min(X)

max(X)−min(X)
. (5)

D. Handling imbalanced class
One of the main problems found in the electricity theft

dataset is the majority class (honest consumers) domination
over the minority class (dishonest). The imbalanced data have
a non-uniform distribution of target variables and this causes
the classifier to become skewed towards the majority class
[26], [27]. As a result, the classifier becomes bias and exhibits
misleading performance towards the minority class samples
(theft cases). In the ETD problem, this problem is more critical
to handle because minority class samples identification is more
important than the majority class (honest customers).

Hence, in this work, we develop a new class balancing
method that strategically couple the characteristics of over-
sampling and under-sampling methods to minimise the mis-
classification cost. We name the proposed technique STLU
(SMOTE + Tomek link undersampling) and it is applied for

the first time in this framework to adjust for the unbalanced
class distribution problem.

In STLU, SMOTE is an oversampling technique, which
generates new instances in the minority class synthetically
by interpolating between numerous minority class samples
that lie together. The creation of a synthetic data point starts
by choosing a random sample from s samples. In feature
space, the Euclidean distance between the random sample
and its k nearest neighbors is calculated. The new synthetic
sample is created when one of those neighbors’ point k
vector is multiplied with a random number a. The value of
a lies between 0 and 1. This procedure is repeated until the
distribution between both classes is balanced.

Although oversampling methods can help achieve balance
class distributions, some other problems present in the elec-
tricity theft datasets, such as skewed class distributions, are not
solved. More generally, some majority class samples might be
invading into minority class portions due to the undefined class
clusters. The opposite can also happen i.e., when interpolation
causes expansion of the minority class cluster and introduces
artificial minority class samples that are too deep in the
majority class area. To create well-established class clusters,
Tomek links [27] between examples are recognised and these
examples are then removed from the dataset.

Unlike SMOTE, the TLU method removes unwanted ma-
jority class samples from class boundaries to make an equal
proportion. The TLU defines a pair of data points (xi, xj) in
the majority class where xi belongs to the minority class and
xj denotes the majority class sample. The distance between
both samples is denoted as d(xi, xj). The pair (xi, xj) forms
a Tomek link when no sample xk satisfies the condition such
that d(xi, xk) < d(xi, xj) and d(xj , xk) < d(xi, xj). In this
way, the data samples in the majority class having the least
Euclidean distance with minority class samples are removed.

To combine oversampling and undersampling methods, we
use an imbalanced-learn Python library [26]. The library
provides a wide range of resampling methods, as well as
a pipeline class to allow transformation to be stacked in
sequence on a dataset. The STLU method with the help of
pipeline first applies SMOTE and then TLU to the output of
the oversampling transform before returning the final outcome.

Good results may be obtained when both the oversampling
and undersampling methods are combined. For illustration, a



moderate quantity of oversampling increases the bias towards
the minority class, whilst undersampling by a modest amount
can result in a decreased bias towards the majority class
samples. This adoption of a combined strategy helps improve
overall performance in contrast to applying one or the other
method in isolation. In this work, the SGCC dataset initially
consisted of 1 (minority):10 (majority) class data distribution.
We first use SMOTE, which increases the ratio to 3:10 by
synthetically generating minority class samples. Subsequently,
TLU is used to further adjust the ratio to 1:1 by removing
samples from the majority class.

The efficiency of first and second-order classifiers induced
from standalone SMOTE, TLU and STLU (SMOTE+Tomek)
as a pre-processing method for a highly imbalanced electricity
theft dataset is evaluated in Section V-B.

IV. CLASSIFIER ADJUSTMENT
Following the IONB steps, the data are clean, format-

ted and transformed to train the classifier. In terms of the
classifiers, we choose stacked generalization, arguably the
best approach among various state-of-the-art methods, recently
winning many Netflix and Kaggle competitions for classifica-
tion tasks [28], [29]. This is an efficient and robust method of
learning high-level classifiers (second-order) on top of the base
classifiers (first-order) to achieve greater predictive accuracy.
Specifically, first-order models involve three different ML
methods that are established on the classification problem in a
different way. A newly developed DL method is then employed
as a high-level model to ensemble the output of the first-order
models and achieve reliability in classification tasks.

A. Base classifiers
In SVM [9], training data are initially mapped into a feature

space of high dimensionality. With the help of a hyperplane,
the two categories of data are separated in such a way that the
gap between different data points is largest. Tested samples are
mapped implicitly to the same space and classified based on
which side of the class they belong to with greater certainty.

RF [10] is an ensemble ML algorithm and has recently
gained much attention on classification tasks due to out-of-the-
box learning algorithms and its relative simplicity, diversity
and computational capabilities. RF involves constructing a
large number of decorrelated decision trees, each of which
corresponds to a random vector value, sampled independently
but with a similar distribution. By adopting the wisdom of the
crowd, the output class is the one that receives majority votes
in the forest. In contrast to RF, GBDT [11] is an ensemble
technique that combines multiple DT models for building a
stronger prediction model. In GBDT, DT are added one at a
time in a gradual, additive and sequential fashion to reduce
the prediction error of prior DT models. The models are
trained using an arbitrary differential loss function and gradient
descent optimization algorithm.

As suggested by [1], SVM is a classical approach and can be
considered the most common and useful technique for binary
classification tasks. Nevertheless, it is challenging for SVM

to find an appropriate kernel to achieve higher accuracy and
efficiency in specific tasks. Specifically, for nonlinear cases,
there exists no general solution and prediction accuracy cannot
be guaranteed. The RF and GBDT methods are an ensemble
of DT algorithms and solve over-fitting problems to some
extent. However, due to ensembling, the algorithms suffer
interpretability and may indicate the classification results to
the class with additional samples.

B. Hyperparameter tuning of base classifiers
The simulated annealing (SA) algorithm method for op-

timizing ML model parameters is preferred for hard com-
putational and practical optimization problems where exact
algorithms such as gradient descent have failed [30]. SA is
inspired by annealing in metallurgy, which involves the heating
and gradual cooling process of the metal to produce defectless
crystals. In essence, there are three main steps: initialization,
the states transition mechanism and the cooling schedule
formulated by an objective function of many variables. Every
vector consisting of values of the hyper-parameters can be
an element in the population size. The four main steps are
executed repeatedly until the optimal values of the parameters
given in Table I are obtained:
i. The algorithm starts by randomly initializing the population.
ii. At each iteration, the target is to obtain a better solution in
terms of the fitness function.
iii. The probability-based decision decides whether the new
solution is preferred or discarded.
iv. At each step, the temperature is progressively decreased
from an initial positive value towards zero. A better solution
gets a positive moving probability while an inferior solution
is assigned zero moving probability.

For parameter tuning, a hyperparameter API is used to
automatically configure hyperparameter optimization toolkit
[31]. It is highly versatile in model optimization and provides a
unified view of possible preprocessing modules and classifiers.
Instead of conventional tedious search, it is used to automat-
ically search the best combination of hyperparameters very
quickly and can therefore surpass human experts in algorithm
configuration.

C. Meta classifier
In practice, multiple classification models are used for

electricity theft detection but none is fully accurate. The
stacking of ML methods may improve the performance due
to well-performing base models that are skillful on a problem
but in a different way [26], [28], [32]. In the multi-model
ensemble technique, diverse basic classifiers are trained inde-
pendently on a given dataset to ensure high parallelism and
the predictions of the collection of models at the first stage are
provided to the second stage learning (meta classifier) model
as an input. The methodology of PFSC is demonstrated in
Algorithm 1. The algorithm starts with the data preparation
step based on IONB. Three base classifiers (b(1−3)) are fitted
to the resampled dataset xi and provide predictions. Each base
classifier bi would give a vector of features which form a new



TABLE I: Hyperparameters of the ML models

Classifier Hyperparameters Range of values Optimal values

SVM
Cost penalty (C),
Intensive loss function (σ),
kernel function (k).

C = 0.01, 0.11, 1, 10, 100.
σ = 0.0001, 0.001, 0.01, 0.1, 1.
k = linear, ploly, rbf, sigmoid.

C = 1, σ = 0.1,
k = rbf.

RF
DT,
Sample leaves (SL),
Sample splits (SS), Criterion.

DT = 10, 15, 20, 25, 30.
SL = 1, 5, 10, 15, 20.
SS = 3, 4, 5, 6, 7.
Criterion = gini, entropy

DT = 15, SL = 5
SS = 7,
Criterion = gini.

GBDT
Number of estimators (NE),
Maximum depth (MD),
Learning rate (LR).

NE = 60, 90, 120, 150, 180.
MD = 1, 3, 6, 9, 12.
LR = 0.0001, 0.001, 0.01, 1, 10.

NE = 180,
MD = 9,
LR = 0.001.

dataset x′i = b1(xi), b2(xi) and b3(xi). Once the second level
classifier is trained, its performance is tested on unseen data.

The main aim of DL based meta classifier development
is to detect malicious behaviour by targeting the integrity of
the readings on consumed energy. For this purpose, different
structures of the deep neural network, feedforward, recurrent
and convolutional-recurrent neural networks, are investigated
to capture complex data representative patterns of energy con-
sumption. Finally, TCN is preferred because of stronger func-
tion fitting and better nonlinear computing abilities to learn
key features and essential laws from mass data. Also, in time-
series data analysis tasks, TCN outperforms well-established
recurrent networks such as recurrent neural network (RNN)
and long short-term memory (LSTM) in terms of accuracy
and efficiency [33]. In the following section, we formulate the
classification problem and propose its optimization.

D. Problem formulation
We model the classification problem so as to compute the

loss between actual class and predicted class as follows,

L = − 1

N

[
N∑
i=1

yi − log(hθ(xi)) + (1− yi) log(1− hθ(xi))

]
(6)

Eq. 6 represents the binary cross entropy loss for N training
samples, whilst yi is the actual class value for the input-
output pair (xi, yi). To cover the input sequence, the values
of hyperparameters c∞i (i = 1, 2, ...) such as kernel size
k, dilation factor d and receptive field size r need to be
determined. The term hθ(x) represents nonlinear hypothesis
of convolutional network and can be defined as follows,

hθ(x) = f(wTx+ b), (7)

where b represents bias and f(.) : R → R is the activation
function. TCN relates to a 1D CNN to encode sequence
information [34]. A vanila 1D convolution layer is written as,

F (xt) = (t)(x ∗d f) =

k−1∑
i=0

f(i).Xs−d.t, t > k (8)

where x is the input sequence, ∗d is dialated convolutional
operator, f ∈ Rk×d is a convolutional filter with size k, d is
dilation coefficient and the term s−d.t represents direction into
the past. By stacking several vanila 1D convolutional layers, a
1D CNN is constructed. However, in sequence modeling, 1D

Algorithm 1 PFSC working for electricity theft detection
Input: Training data N = {xi, yi}ni=1 (xi, yi ∈ Rn)
Output: Obtained results from second-order classifier M
1: Module 1: Data preparation based on IONB
2: Module 2: Learn first-order classifiers
3: for t ← 1 to T do
4: First-order (base) classifier Ft training on N
5: end for
6: Construct a new dataset from D
7: for i ← 1 to m do
8: Construct a new dataset that comprises xi′ = {b1(xi), b2(xi)
and b3(xi)} from N
9: end for
10: Module 3: Learn a second-order classifier
11: Second-order (meta) classifier M training on the newly
constructed dataset
12: return M(x)= m(b1(x)), (m2(x)) and (m3(x)).

CNN is restricted due to limited receptive fields and shrinking
output size [34]. By contrast, TCN is featured with causal and
dilated convolutional techniques to address these problems.
Causal convolutions. The Module 3 in Fig. 1 shows how a
vanila 1D convolutional layer takes n sequences as input and
returns n − k + 1 sequences as output. With more stacked
layers, the output sequence shrinkage would increase further.
In time-series data analysis, models are expected to predict
for each time step with updates in real-time. This problem
is well addressed when a causal convolutional layer allows
concatenation of zero paddings of length k−1 at the beginning
of the input sequence to ensure that the output has the desired
length. Due to zero padding, the output tensor makes sure to
have the same length as the input tensor. The required number
of zero-padding entries p is computed as follows [35],

p = bi.(k − 1) (9)

where b is the dilation base and i is the number of layers below
the current layer. For a convolutional layer to be causal, the
prediction p(xt+1|x1, ..., xt) only depends on the elements that
come before it in the input sequence {xt, xt−1, . . . , x−∞} but
not on the future indices,

F (xt) = (t)(x ∗d f) =

k−1∑
i=0

f(i).xs−d.t, x60 := 0 (10)



The causal convolution splits the convolution operation in half
so that it can only convolute the information of past time steps.
The prediction result of the current state t is only related
to historical information, thus avoiding information leakage.
Dilated convolutions. Another disadvantage that pertains to
the vanila 1D CNN is its linear receptive nature, which means
that the receptive field grows linearly with every additional
layer. In long-term dependency modeling such as ETD, the
historic data is sufficiently large and the narrow receptive field
would cause problems. To circumvent this, dilated convolution
enables an exponentially larger receptive field. In the context
of a conventional convolutional layer, dilation refers to the
gap within the elements of the input sequence that are utilized
to calculate one entry of the output sequence. Therefore, a
conventional convolutional layer could be regarded as a 1-
dilated layer because 1 output value depends on adjacent
input elements. Fig. 3 shows the differences between standard,
causal, dilated convolutions and zero padding to obtain long-
term information. More specifically, receptive field size r of
a 1D convolutional network with a kernel size k nad n layers
can be calculated as,

r = 1 + n ∗ (k − 1) (11)

whereas for a fixed kernel size k and keeping the receptive
field size equal to input length, the required number of layers
for full history coverage is calculated as,

n =

[
(l − 1)

(k − 1)

]
(12)

Eq. 12 states that with a fixed kernel size, the network depth
has a direct relationship with the length of the input tensor.
For full history coverage, the involvement of a large number
of parameters would be required to train the model. Hence, the
model would become very deep very quickly and may lead to
the degradation of the loss function. One way to increase the
receptive field with a relatively small number of layers is to
introduce dilation to the convolutional network, as shown in
Fig. 3 (c). Fig. 1 (Module 3) also suggests that for full history
coverage, the value of the dilation factor d exponentially
increases for a specific layer as we move up through the layers.
The formulas for exponentially growing the receptive field and
dilation are (k − 1)r−1 and d = bi respectively. Hence, the
width of the receptive field w is computed using Eq. 13 [35],

w = 1 +

n−1∑
i=0

(k − 1) . b1 = 1 + (k − 1) .
bn − 1

b− 1
> l (13)

Without sacrificing receptive field coverage, the dilation factor
brings significant improvement in terms of the required num-
ber of layers. As opposed to Eq. 12, the minimum number of
required layers n for full history coverage are now based on
the logarithmic length of the input tensor and dilation base b,

n =

[
logb

(
(l − 1) . (b− 1)

(k − 1)
+ 1

)]
(14)

Fig. 1 (Module 3) shows that a residual block comprises
two 1D causal convolutional layers with the same d and k

values. The outputs of both layers are added and given to
the next residual block as an input. The addition of residual
blocks affects the overall requirement of the number of layers
and adds twice as much receptive field width for full history
coverage. Similarly, regularization techniques such as batch
normalization and dropout are introduced after every convolu-
tional layer to prevent overfitting. Finally, the output u of all
the temporal convolutional layers is defined as follows,

u = (F (x1), F (x2), ..., F (xn)) (15)

The PFSC performance is more sensitive to the hyperparame-
ters values of TCN, such as kernel size, dilation factor and
receptive field size. To determine optimal network config-
urations, a series of repeated models were generated with
different parameter settings and the final prediction accuracy
was gauged using the error metrics stated previously. Finally,
the tunable parameters of the prediction model using TCN are
set as follows: convolution kernel size is 2; number of filters is
64; the dilation factor is set as 2; the learning rate is 0.05; the
number of TCN layers is 3; residual connections are adopted
between TCN layers; the optimization function of the model is
Adam; and the loss function is chosen as binary cross entropy
loss.

Based on the integration of IONB, first and second-order
classifier adjustment, our framework for ETD can identify the
honest and dishonest consumption pattern accurately.

E. Evaluation metrics

The performance is determined from the CM, i.e. the matrix
that is used to explain distinct outcomes in classification
problems, as alluded to earlier and shown in Fig. 4. In binary
classification tasks, the 0 class label is dedicated for honest
consumers and that for dishonest consumers, the class label
1 is assigned [36]. Here, TP (1,1) and TN (0,0) scores mean
that normal and abnormal consumption patterns are identified
accurately. Similarly, FP (0,1) and FN (1,0) scores mean
that the number of customers having normal and abnormal
consumption patterns are misclassified. More specifically, FP
accounts for those observations in the CM that were honest
but predicted dishonest, whilst FN observations contain dis-
honest consumption patterns that were predicted honest. CM
is utilized for the validation of the model’s performance in
terms of different metrics such as Accuracy, Precision, Recall
and the F1 score.

Accuracy = TP+TN
TP+TN+FP+FN , (16)

Precision = TP
TP+FP , (17)

Recall = TP
TP+FN , (18)

F1 Score = 2× Precision×Recall
Precision+Recall (19)

The area under the curve (AUC) represents the degree of
separability and provides a more reliable assessment between
classes when data distribution has an unequal proportion. It is
the probability that a randomly chosen positive sample ranks



TABLE II: Metadata information

Description Value
Electricity consumption time window 01-01-2014 to 31-10-2016
Class of customers Residential
Power source (conventional, RES) Utility
Data resolution Daily data
Total consumers 42372
Honest consumers 38757
Dishonest consumers 3615

higher than a randomly chosen negative sample. For AUC
calculations, the formula is as follows [3],

AUC =
Σi∈PCRanki − M(1+M)

2

M ×N
(20)

where PC is Positive Class, Ranki is the rank value of
sample i in ascending order, M and N represent the number of
positive and negative samples. The AUC of receiver operator
characteristic (ROC) curve is a graphical demonstration of the
false positive rate (FPR) and true positive rate (TPR) plotted on
the x-axis and y-axis, respectively. The FPR FP

FP+TN measures
the fraction of negative class misclassified as dishonest and
TPR, also known as Recall Sensitivity, TP

TP+FN calculates the
fraction of positive class labeled correctly. It is pertinent to
mention that the range of the ROC lies between 0 and 1.
When AUC goes straight up the y axis to approximate 1 and
then along the x, it authenticates that the classifier perfectly
discriminates both classes. By contrast, if an AUC follows the
diagonal line or falls below 0.5, this means that the classifier
is randomly guessing and has no power for the classification
task.

V. EXPERIMENTS AND RESULTS
A. Case study setup:

To investigates the capabilities of our proposal, the cases
are developed in Google Colaboratory [37] according to the
system framework illustrated in Section II. The realistic load
profile data is obtained from SGCC [38]. The data contains
the electricity consumption record of 42372 users from 2014
to 2016 with a tracked record of 38757 users as fair and the
remaining 3615 as fraudster users as shown in Table II.

B. Performance results:
1) Impact of handling imbalanced class: In an extreme

class imbalanced problem, one class predominates the other
due to the unequal distribution of classes and thus creates a
problem when identifying positive classes. Figs. 5a and 5b
show the difference between minority and majority classes
before and after handling the class imbalance. Clearly, the
majority class customers (green circles) are in a much higher
ratio and may cause high bias in the model during the training
process. Without dealing with the imbalanced class distribution
problem, the CM in Fig. 4a shows severe performance loss and
identifies only 0.69%, wherein the reality 9% consumers are
fraudulent. The value of FN is 7.95% which means the model
has corresponded to the majority class well and considers
minority class features as noise to be ignored. The model
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Fig. 4: Confusion matrix before and after resampling

obtained 0.5850 for the AUC score, and 0.7021 and 0.4453
for Precision and Recall performance metrics, respectively.
We then apply STLU for balancing the minority and majority
classes and the resampled dataset has equal distribution of
both classes i.e., 50 % of honest and dishonest customers.
After obtaining a balanced distribution for both samples, both
model training and model’s generalization capabilities are
much improved. When the model is applied to the test dataset,
the CM in Fig. 5b exhibits that most of the positives and
negative cases are correctly identified. The numerical results
of each classifier are based on resampled data and achieved
the performance metrics shown in Table III.

2) Base classifiers performance comparison with benc-
mark methods: In this case study, five different ML models
have been used and, among them, the three best performing
models are preferred as first-order classifiers. Fig. 6 shows
AUC curves for DT, LR, RF, GBDT and SVM. From the
performance curves, it is seen that the RF, GBDT and SVM
results are comparable; however DT and LR tend to be weak
classifiers for distinguishing honest and dishonest electricity
consumptions patterns because of the overfitting problem (and
possibly other reasons as discussed in Section IV-A). It is
worth noting that the performance of the meta classifier solely
depends upon the performance of the base classifiers. Thus,
we select RF, GBDT and SVM as base classifiers to guarantee
higher accuracy and robustness of final classification and drop
DT and LR to avoid overfitting and time complexity problems.

3) Meta classifier performance comparison with bench-
mark methods: In this section, we compare the performance
of TCN with other state-of-the-art classifiers such as MLP,
LSTM, GRU and CNN. The experimental results for AUC
are shown in Fig. 7. Although LSTM and GRU models can
achieve improved prediction results, they are still worse than
the TCN model, as can be seen from Table III. A notable
drawback of LSTM and RNNs is that the sequential structure
makes them hard to parallelize since the output for a certain
time step depends on the output of previous time steps. The
predicted value of the TCN model is nearest to the actual
value, which can accurately indicate the dynamic trend of
structural deformation. The TCN model effectively increases
the receptive field size by stacking the convolutional layer,
extending the dilation factor, enlarging the convolution kernel
size, and thus better controlling the model’s memory length.
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This evades the gradient explosion problem that often appears
in RNNs due to the difference in the back propagation path
and sequence time direction [32]. Speed is important and
faster networks shorten the feedback cycle. From Table III,
it is notable that the computational complexity of the TCN is
less than the others for this classification task. This is because
massive parallelism shortens both the training and evaluation
cycles of TCN. In the meantime, the residual connection can
effectively improve the model accuracy. It is also notable
that base classifiers require more time for predictions when
compared to the meta classifiers. This is because the base
classifiers are trained on the original dataset that contains
1035 features with issues like redundancy and irrelevancy.
The meta classifiers on the other hand are trained only on
the three informative features provided by the base classifiers,
hence the conventional problem of computational complexity
in DL models has been addressed. The proposed detection
architecture achieves an AUC score of 98.5% and an FP of
only 1.03%.

4) PFSC performance on theft detection: In this case
study, we investigate the capabilities of PFSC and a com-
parison among different benchmarks is conducted. These
benchmarks are given in Table IV. Fig. 8 shows a line plot of
accuracy and loss (how good or bad the model’s prediction is
on a single example) over each epoch. The lower plot shows
that the loss is smooth and the training process converges well
between the probability distributions. The uneven upper plot
for accuracy in Fig. 8 shows that the training and testing sets
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have binary prediction outcomes with a less granular feedback
on performance. The bar plot in Fig. 9 shows that the proposed
PFSC framework achieves higher accuracy in ETD than all
the benchmarks. The comparison among frameworks A–E
suggests that, for these simulation experiments, every module
in our proposal can improve the accuracy of the classifier.
With the IONB module, the first-order ML classifier gives
better results and, finally, the multi-model ensemble method
achieves better performance.

5) PFSC robustness comparison with benchmark algo-
rithms: In a practical setting, ML and DL models are sensitive
to various outliers and training data size. In PFSC, we choose
stacking, compared to the bagging and boosting methods, since
it is more robust to the various outliers for the following
two reasons [39]. First, stacking considers heterogeneous weak
learners and learns to combine the base models using a meta-
model. In contrast, bagging and boosting methods consider ho-
mogeneous weak learners following deterministic algorithms.

This case study also intends to affirm whether PFSC main-
tains its superiority when small, medium and high sizes of
training samples (60%, 70% and 80%), compared to the size
of all samples, are available for classifier’s training. As can be
seen from the experimental results provided in Table V, the
PFSC outperforms the other algorithms under consideration
for all sizes of the training dataset. Results from the conven-
tional schemes show an expanding trend with increased data
available. It is observed that PFSC achieves a maximum AUC
value of 0.985 and outperforms other algorithms in terms of



TABLE III: Performance comparison of individual base and meta classifiers

Classifiers Accuracy Precision Recall F1-Score AUC Time (s)
Base classifier

LR 0.838 0.838 0.838 0.838 0.912 111
DT 0.899 0.899 0.899 0.899 0.894 58
RF 0.874 0.877 0.874 0.874 0.944 37

GBDT 0.884 0.886 0.884 0.884 0.944 85
SVM 0.858 0.868 0.859 0.857 0.924 88

Meta classifiers
MLP 0.746 0.829 0.749 0.731 0.933 21

LSTM 0.914 0.917 0.914 0.914 0.956 11
GRU 0.944 0.947 0.945 0.944 0.958 15
CNN 0.917 0.918 0.917 0.917 0.978 18
TCN 0.946 0.948 0.946 0.946 0.985 9

TABLE IV: Benchmark frameworks

Benchmark Description
Proposed IONB + Stacked generalization

E IONB + DL methods only
D IONB + ML methods only
C SMOTE [13]
B TLU [27]
A Without sampling
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performance metrics for these data.

VI. CONCLUSIONS
This paper has proposed a DL-based multi-model ensemble

approach, PFSC, to capture abnormal electricity consumption
patterns in smart grids. This methodology has been evaluated
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Fig. 9: Comparison of accuracy among PFSC and
benchmark frameworks

using realistic electricity consumption data issued by SGCC,
the largest power utility in China. The obtained results have
shown that with the proposed ensemble method, the complex
relationships among the classifiers are determined automat-
ically and efficiently, thus allowing the ensemble approach
to improve the performance of the prediction model. The
method has attained an AUC score of 0.985 on the real dataset.
The DL-based multi-model ensemble approach minimizes the
generation error and captures valuable information by employ-
ing the first-stage predictions as input features. These results
show that the proposed IONB and stacked generalization
method outperform both base ML and meta DL approaches.
Moreover, the comparison with other state-of-the-art classifiers
has proved that the proposed ensemble model can exceed the
performance of those established classifiers such as SVM, RF,
GBDT, ANN, CNN, LSTM and GRU in terms of accuracy and
robustness, and thus can effectually be utilized in industrial
applications.

In the future, the PFSC performance may be improved
with two further investigations. First, knowledge from grid
sources, network distribution topology, class of customers,
seasonalities and geographic information, will be exploited
for monitoring abnormalities in energy consumption patterns.
Second, the robustness of the proposed method will be
demonstrated with synthetically generated theft attacks and
adding random noise (error) in selected data to observe the
average accuracy of base and meta classifiers.
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