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Abstract Classical models for multivariate or spatial extremes are mainly
based upon the asymptotically justified max-stable or generalized Pareto pro-
cesses. These models are suitable when asymptotic dependence is present, i.e.,
the joint tail decays at the same rate as the marginal tail. However, recent en-
vironmental data applications suggest that asymptotic independence is equally
important and, unfortunately, existing spatial models in this setting that are
both flexible and can be fitted efficiently are scarce. Here, we propose a new
spatial copula model based on the generalized hyperbolic distribution, which
is a specific normal mean-variance mixture and is very popular in financial
modeling. The tail properties of this distribution have been studied in the lit-
erature, but with contradictory results. It turns out that the proofs from the
literature contain mistakes. We here give a corrected theoretical description
of its tail dependence structure and then exploit the model to analyze a sim-
ulated dataset from the inverted Brown–Resnick process, hindcast significant
wave height data in the North Sea, and wind gust data in the state of Okla-
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homa, USA. We demonstrate that our proposed model is flexible enough to
capture the dependence structure not only in the tail but also in the bulk.

Keywords Asymptotic independence · Copula model · Generalized hyper-
bolic distribution · Normal mean-variance mixtures · Spatial extremes

Mathematics Subject Classification (2020) 60G70 · 60E07 · 62H20

Declarations

Funding

This publication is based upon work supported by the King Abdullah Univer-
sity of Science and Technology (KAUST) Office of Sponsored Research (OSR)
under Awards No. OSR-CRG2017-3434 and OSR-CRG2020-4394.

Conflicts of interest/Competing interests

Not applicable.

Availability of data and material

The hindcast wave height data is kindly provided by Philip Jonathan from
Shell Research, and the wind gust data is freely available from mesonet.org.

Code availability

The code can be provided upon request and will be made publicly available
later.

Acknowledgement

This publication is based upon work supported by the King Abdullah Univer-
sity of Science and Technology (KAUST) Office of Sponsored Research (OSR)
under Awards No. OSR-CRG2017-3434 and OSR-CRG2020-4394. We grate-
fully acknowledge Philip Jonathan of Shell Research for providing the wave
height data analysed in Section 4.1.



Modeling Spatial Extremes Using Normal Mean-Variance Mixtures 3

1 Introduction

The statistical modeling of spatial extremes has gained significant interest in
recent decades due to the increasing occurrence and sizes of natural extreme
events, such as heat waves, heavy rainfall, and wildfires. When modeling spatial
extremes, accurate inference for the marginal distribution at each site and
a precise assessment of the dependence structure of extreme events among
different sites are both needed; see Davison et al. (2012); Davison and Huser
(2015) and Huser and Wadsworth (2020) for an overview. In this article we
focus on modeling the spatial dependence of extreme events.

Classical models for spatial extremes are mainly based upon the asymp-
totically justified max-stable processes (de Haan, 1984; de Haan and Pereira,
2006) or generalized Pareto processes (Rootzén and Tajvidi, 2006; Ferreira and
de Haan, 2014). The limiting dependence structures that arise in these mod-
els must be either asymptotically dependent (defined in Section 2.2), i.e., the
joint tail decays at the same rate as the marginal tail, or for maxima, exactly
independent. However, asymptotic independence appears to be equally impor-
tant, as suggested by recent environmental data applications (Wadsworth and
Tawn, 2012; Le et al., 2018). Unfortunately, existing models in this setting
that are both flexible and can be fitted efficiently are scarce.

Existing models from the literature that can capture asymptotic indepen-
dence include the Gaussian copula model (Bortot et al., 2000), inverted max-
stable models (Wadsworth and Tawn, 2012), the Huser–Wadsworth model
(Huser and Wadsworth, 2019), and the conditional extremes model (Heffer-
nan and Tawn, 2004; Wadsworth and Tawn, 2019). The Gaussian copula is the
simplest of these models and has a restrictive dependence structure, i.e., its
bivariate distribution can only be asymptotically independent or perfectly de-
pendent, and its tail dependence structure is regulated by a single parameter:
the correlation coefficient. Inverted max-stable models present the same dif-
ficulties for inference as max-stable models since often only likelihoods based
on lower-dimensional densities are available (Padoan et al., 2010; Castruccio
et al., 2016); the Huser–Wadsworth model, as well as its extension to model
dependence jointly in the lower and upper tails (Gong and Huser, 2021), can
capture both asymptotic dependence and independence but its distribution
and (potentially censored) density functions rely on unidimensional integrals
which have to be computed numerically, and this is computationally pro-
hibitive in high dimensions, especially when computation of the multivariate
normal distribution function is required; the conditional extremes model al-
lows the change of asymptotic dependence class with distance between sites
but it lacks a simple unconditional interpretation; see Huser and Wadsworth
(2020) for a more detailed discussion.

Here we propose a flexible model based on an extension of scale mixtures.
A random vector X ∈ Rd is called a scale mixture if it has the representation
X = RW , where R is a non-negative univariate random variable and W ∈ Rd
is a random vector. Scale mixtures provide a flexible family of distributions
that can capture both asymptotic dependence and independence depending
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on the specification of the tail of R and W ; see Huser et al. (2017), Huser
and Wadsworth (2019), Engelke et al. (2019). In practice W is often taken
as a Gaussian random vector and in this case X is termed a Gaussian scale
mixture. Natural alternatives and extensions of Gaussian scale mixtures in-
clude the Gaussian location mixtures (Krupskii et al., 2018; Castro Camilo
and Huser, 2020), and the skew-t model (Morris et al., 2017), which is a spe-
cific Gaussian location-scale mixture. Here we focus on a different form of
Gaussian location-scale mixtures, for which the term normal mean-variance
mixtures has been coined in the literature. Specifically, X is called a normal
mean-variance mixture if it can be represented as

X = µ+ γR+
√
RW , R ⊥⊥W , (1)

where µ ∈ Rd is a location parameter vector, γ ∈ Rd regulates the skewness,
R ∼ FR is a non-negative mixing random variable, and W ∼ Nd(0, Σ) is a
Gaussian random vector with correlation matrix Σ. This provides a very flexi-
ble family of distributions and by properly choosing the parameters and mixing
distribution, many well-known multivariate distributions can be obtained. An-
other benefit of normal mean-variance mixtures is the simple implementation
of their conditional simulation, using their property of closedness under con-
ditioning (Jamalizadeh and Balakrishnan, 2019), which is in clear contrast to
max-stable or inverted max-stable models.

A prominent example of normal mean-variance mixtures is the general-
ized hyperbolic (GH) distribution, when the mixing distribution FR is taken
as generalized inverse Gaussian. The skew-t model (Morris et al., 2017) can
be represented as X = µ + γc1d

√
R|Z| +

√
RW , γc ∈ R, where 1d is a d-

dimensional vector of 1s, R has an inverse Gamma distribution, which is a
limiting case of the generalized inverse Gaussian distribution, Z is a standard
normal random variable, W remains a Gaussian random vector and R,Z,W
are mutually independent. Although the representations of this skew-t model
and the GH distribution look similar, a major difference between them is the
extra random variable Z in the representation of the skew-t model, and their
tail dependence structures are significantly different. That is, the skew-t model
is asymptotically dependent, and the GH distribution has more free parame-
ters and is asymptotically independent except in one limiting case; see Section
2.3 for more details.

The GH distribution is very popular in financial modeling (Barndorff-
Nielsen, 1997; Prause, 1999) thanks to its flexible univariate distribution and
infinite divisibility; more details of this distribution are given in Section 2.1.
Due to the popularity of this distribution in finance, its tail properties have
been studied in the literature (Nolde, 2014; von Hammerstein, 2016), but sur-
prisingly with contradictory results. In short, Nolde (2014) claims that the
GH distribution is asymptotically independent when the Gaussian correlation
parameter is smaller than 1, while von Hammerstein (2016) claims that it
can be asymptotically independent or asymptotically dependent, depending
on the choice of the other parameters. By examining their proofs in detail, we
have found that both of them contain subtle mistakes. Here, we point out the
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mistakes in their proofs, which lead to the contradiction, and give a corrected
description of the tail dependence of the GH distribution.

Based on this result, we propose to use the GH copula for spatial extremes,
which has been less investigated compared with its flexible univariate distri-
bution, and to our knowledge not yet exploited in environmental applications.
This model provides flexible dependence structures with many subclasses and
limiting models, such as the normal inverse Gaussian, hyperbolic, Gaussian
and student t copulas. We apply the model using a full likelihood approach
(thus, avoiding the computationally prohibitive censoring mechanism) to a
simulated dataset from the inverted Brown–Resnick process, the hindcast sig-
nificant wave height data considered in Wadsworth and Tawn (2012) and Huser
and Wadsworth (2019), and wind gust data in the state of Oklahoma, USA,
and demonstrate that our proposed model is flexible enough to capture the
dependence structure not only in the tail but also in the bulk.

This paper is structured as follows. In Section 2 we introduce the multi-
variate generalized hyperbolic distribution and measures of tail dependence,
and we then review existing results on the tail dependence properties of the
GH distribution and present a corrected description. Section 3 introduces the
copula-based likelihood inference, followed by two simulation studies, and Sec-
tion 4 consists of two data applications. Section 5 concludes with a discussion.

2 Modeling

2.1 The Generalized Hyperbolic (GH) Distribution

The GH distribution is a specific normal mean-variance mixture with repre-
sentation (1) and mixing distribution FR specified to be generalized inverse
Gaussian, denoted as GIG(λ, κ, ψ). The GIG(λ, κ, ψ) probability density func-
tion is

fGIG(x) =
(ψ
κ

)λ/2 xλ−1

2Kλ(
√
κψ)

exp
{
− 1

2

(κ
x

+ ψx
)}
, x > 0,

where Kλ is the modified Bessel function of the second kind with index λ, and,
for x ∈ Rd, the probability density function of a d-dimensional GH distribution
is

fGH(x) = ad·
Kλ−d/2

[√
{κ+ (x− µ)>Σ−1(x− µ)}(ψ + γ>Σ−1γ)

]
e(x−µ)

>Σ−1γ[√
{κ+ (x− µ)>Σ−1(x− µ)}(ψ + γ>Σ−1γ)

]d/2−λ ,

where

ad =
ψλ/2(ψ + γ>Σ−1γ)d/2−λ

(2π)d/2|Σ|1/2κλ/2Kλ(
√
κψ)

,

µ ∈ Rd is a location parameter vector, γ ∈ Rd regulates the skewness, Σ ∈
Rd×d is a positive definite dispersion matrix, and λ, κ, ψ ∈ R control the shape
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Table 1 Some special subclasses and limiting cases of the GH distribution

Parameter domain
Distribution λ κ ψ γ

Hyperbolic (d+ 1)/2 > 0 > 0 ∈ Rd
Normal inverse Gaussian (NIG) −1/2 > 0 > 0 ∈ Rd
Student-t with df degrees of freedom −df/2 < 0 df > 0 0 0
Cauchy −1/2 1 0 0

of the mixing GIG distribution. We denote this GH distribution by X ∼
GHd(λ, κ, ψ,γ,µ, Σ). Both in the GIG and GH distributions, the admissible
parameter values are λ < 0, κ > 0, ψ ≥ 0 or λ = 0, κ > 0, ψ > 0 or λ > 0, κ ≥
0, ψ > 0. Note that ψ = 0 and κ = 0 should be understood as two limiting
cases.

One important property of the GH distribution is that it is closed un-
der marginalization, conditioning and linear transformations. Specifically, if
X ∼ GHd(λ, κ, ψ,γ,µ, Σ) and Y = BX + b, where B ∈ Rk×d and b ∈ Rk,
then Y ∼ GHk(λ, κ, ψ,Bγ, Bµ+ b, BΣB>). This distribution is a rich family
with many special subclasses and limiting cases; see Table 1 for some examples
and the corresponding admissible parameter domains. Note that, for the GH,
hyperbolic, and NIG distributions the dispersion matrix Σ needs to be a corre-
lation matrix for identifiability reasons. This distribution was first introduced
in Barndorff-Nielsen (1977) to model sand sizes and has become very popular
in modeling turbulence and returns of financial assets; see Barndorff-Nielsen
(1997) and Prause (1999). It is also worthwhile to mention that the GH dis-
tribution is elliptical if and only if γ = 0; see Corollary 3 in von Hammerstein
(2016). More details on its properties can be found in Blaesild and Jensen
(1981), Prause (1999) and McNeil et al. (2005).

There are several equivalent parametrizations for the GH distribution. The
most common one is to parametrize it as GH(λ, α,µ, ∆, δ,β), where we let

∆ = |Σ|−1/dΣ, β = Σ−1γ, δ =
√
|Σ|1/dκ, and α =

√
|Σ|−1/d(ψ + γ>Σ−1γ).

This parametrization was used in Barndorff-Nielsen (1977), but it does not give
the nice property that the important parameters α and δ are invariant under
linear transformations. Therefore, we here instead adopt the parametrization
GHd(λ, κ, ψ,γ,µ, Σ).

2.2 Measures of Tail Dependence

Coles et al. (1999) proposed the tail dependence coefficient χ, providing it
exists, to measure the extremal dependence between random variables X1 and
X2. It may be defined through the limit

χu :=
Pr{F1(X1) > u,F2(X2) > u}

Pr{F1(X1) > u}
→ χ as u→ 1, (2)

where F1 and F2 are the marginal distribution functions of X1 and X2, re-
spectively, and are assumed to be continuous without loss of generality. The
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lower tail dependence coefficient can be obtained via reflection. Throughout
this work we focus on the upper tail dependence. The vector (X1, X2)> is
termed asymptotically independent if χ = 0 and asymptotically dependent if
χ > 0. . Notice that when χ > 0, (2) implies that the joint survival function
Pr{F1(X1) > u,F2(X2) > u} decays at the same rate as the marginal survival
function Pr{F1(X1) > u} = 1 − u, whereas when χ = 0, the joint survival
function decays at a faster rate than its marginal counterpart.

When asymptotic independence is present, one useful quantity to measure
the residual dependence at pre-asymptotic levels is the residual tail depen-
dence coefficient η (Ledford and Tawn, 1996), which is defined by the following
asymptotic expansion of the joint tail (providing it exists):

Pr{F1(X1) > u,F2(X2) > u} ∼ L{(1− u)−1}(1− u)1/η as u→ 1, (3)

where L is slowly varying at ∞, i.e., L(tx)/L(x)→ 1 as x→∞ for all t > 0,
and f(x) ∼ g(x) as x → x0 means that, for g non-zero in a neighbourhood
of x0, f(x)/g(x) → 1 as x → x0. The coefficient η ∈ (0, 1] determines the
joint tail decay rate. A reformulation of (3) implies that η can be alternatively
defined through the limit

ηu :=
log Pr{F1(X1) > u}

log Pr{F1(X1) > u,F2(X2) > u}
→ η as u→ 1, (4)

and this definition allows one to estimate η with ηu for u close to 1.
The relationship between these two above coefficients is η < 1 =⇒ χ = 0

and χ > 0 =⇒ η = 1. The converse of this relationship does not necessarily
hold; see Proposition 4 in Manner and Segers (2011), and an example with
η = 1, χ = 0 in Huser and Wadsworth (2019). We say that (X1, X2)> is (a)
positively associated if 1/2 < η ≤ 1; (b) near-independent if η = 1/2; (c) nega-
tively associated if 0 < η < 1/2. The bivariate measures χ and η can be easily
extended to dimension d > 2 by replacing Pr{F1(X1) > u,F2(X2) > u} in (2)
and (4) with Pr{F1(X1) > u, . . . , Fd(Xd) > u}. As a result, the pair of coeffi-
cients (χ, η) is able to measure the tail dependence strength across asymptotic
dependence and independence classes, and it is often used for assessing model
fit.

2.3 Tail Dependence of the GH Distribution

Recall that the GH distribution is elliptical if and only if γ = 0. Schlueter and
Fischer (2012) have proved that the elliptical GH distribution with dispersion
matrix Σ =

( 1 ρ
ρ 1

)
, 0 ≤ ρ < 1, excluding the limiting case ψ = 0, is asymptoti-

cally independent and has residual tail dependence coefficient η =
√

(1 + ρ)/2;
see also Huser et al. (2017). Nolde (2014) considered a more general class
and claimed that the whole GH distribution family with dispersion matrix
Σ =

( 1 ρ
ρ 1

)
, |ρ| 6= 1, has residual tail dependence coefficient

√
(1 + ρ)/2, which

implies that the skewness parameter γ has no influence on the residual tail
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dependence coefficient. However, von Hammerstein (2016) used a different ap-
proach and claimed that the GH distribution can be asymptotically dependent
or independent depending on the choice of the parameters, although without
giving the residual tail dependence coefficient when asymptotic independence
is present.

After carefully investigating where this contradiction comes from, we found
that both of their proofs have mistakes which lead to incorrect conclusions.
We detail their mistakes and a corrected version of von Hammerstein’s proof
in the Supplementary Material. We now give a corrected description of the
tail dependence property of the GH distribution, using a similar approach to
Nolde (2014). In contrast with the often complicated calculation of the residual
tail dependence coefficient by its definition, Nolde (2014) provided a geometric
interpretation of this coefficient, which leads to simple and intuitive compu-
tations of this coefficient for a variety of distributions. This is particularly
the case when joint densities are easier to compute than joint distribution or
survival functions. We first recall some definitions and theorems from Nolde
(2014) which will be used in our proof.

Consider a sequence of independent and identically distributed random
vectors Z1,Z2, . . . on R2. Let Nn := {Z1/rn, . . . ,Zn/rn} denote an n-point
sample cloud with scaling constants rn > 0, rn → ∞ as n → ∞ and let
Nn(A) be the number of points of Nn contained in the Borel set A ∈ Rd, i.e.
Nn(A) =

∑n
i=1 1A(Zi/rn). Let D be a compact set in R2. Then D is called

a limit set of the sample cloud Nn as n → ∞ if (i) Pr{Nn(U c) > 0} → 0
for open sets U containing D, and U c denotes the complement of U , and (ii)
Pr{Nn(p + εB) > m} → 1 for all m ≥ 1, ε > 0,p ∈ D, where B denotes the
Euclidean unit ball. If every ray from the origin intersects the boundary of a
given set D in a single point, then D can be characterized by a continuous
gauge function nD. That is, nD : R2 → [0,∞) is a homogeneous function of
degree one, i.e. nD(tx) = tnD(x) for all t > 0, and D = {x ∈ R2 : nD(x) < 1}.
A set D is called star-shaped if x ∈ D implies tx ∈ D for all t ∈ (0, 1).

A measurable function Ψ : R+ → R+ is regularly varying at infinity with
exponent a ∈ R if for x > 0, limt→∞ Ψ(tx)/Ψ(x) = xa. Roughly speaking,
regularly varying functions behave asymptotically like power functions. When
a = 0, the function Ψ is slowly varying.

Lemma 1 (Theorem 2.1 in Nolde (2014)) Let {(Xi, Yi)
>, i ≥ 1} be in-

dependent random vectors in R2 from a distribution G with marginal survival
functions 1−Gi(s) = e−Ψi(s), s > 0, where Ψ1 and Ψ2 are regularly varying at
infinity with the same exponent a > 0. Suppose there exists a scaling sequence
rn > 0 such that the n-point sample cloud

Nn = {(X1/rn, Y1/rn)>, . . . , (Xn/rn, Yn/rn)>}

converges onto set D whose interior is bounded, open, and star-shaped as
n→∞. Let q = (q1, q2)> = supD denote the coordinate-wise supremum of
D. Then D is a star-shaped subset of (−∞, q]. Define

rD = min{r ≥ 0 : D ∩ ((rq1,∞)× (rq2,∞)) = ∅}.
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If q /∈ D, then rD < 1, X1 and Y1 are asymptotically independent and the
residual dependence coefficient is η = raD.

The definition of rD implies that, if D is convex, rDq lies on the boundary
of D and thus nD(rDq) = 1. Using the homogeneity of nD and Lemma 1 one
can get η = nD(q)−a; see also Nolde and Wadsworth (2021) for further details.
In practice, a random vector is often described by its multivariate probability
density function. The relation between the density function and its limit set
is given in the following lemma and thereby a convenient way to calculate the
residual tail dependence coefficient η is given.

Lemma 2 (Proposition 3.1 in Nolde (2014)) Let Z1,Z2, . . . be inde-
pendent and identically distributed random vectors with a continuous positive
density g on Rd. Let γ := − log g. Suppose there exists a function ` on Rd
which is positive outside a bounded set, and a nonzero vector v such that

γ(rnun)

γ(rnv)
→ `(u), for some rn →∞, and any un → u ∈ Rd.

Then the sequence of sample clouds Nn = {Z1/rn, . . . ,Zn/rn} converges as
n→∞ onto a limit set D whose gauge function is given by nD = `θ for some
positive constant θ.

For details about the proof of Lemma 1 and Lemma 2 and further back-
ground knowledge, we refer to Nolde (2014) and references therein. We are
now ready to use these two results to show that the GH distribution, except in
the limiting case ψ = 0, is asymptotically independent and we give its residual
dependence coefficient.

Proposition 1 Let (X1, X2)> ∼ GH2(λ, κ, ψ,γ,µ, Σ) with γ = (γ1, γ2)>,
µ = (µ1, µ2)>, and Σ =

( 1 ρ
ρ 1

)
, |ρ| 6= 1. If ψ > 0, then X1, X2 are asymptoti-

cally independent and the residual dependence coefficient is

η =
{√

(ψ + γ>Σ−1γ)m>Σ−1m−m>Σ−1γ
}−1

,

where m = (m1,m2)> and

mi =
γi +

√
ψ + γ2i
ψ

, i = 1, 2.

Proof Note that both the tail dependence coefficient and the residual depen-
dence coefficient are copula properties, i.e., they are invariant under strictly
increasing marginal transformations. Hence, for simplicity we assume µ = 0
and study the tail dependence of (X1, X2)> ∼ GH2(λ, κ, ψ,γ,0, Σ). Let f be
the probability density function of (X1, X2)>. Using the asymptotic property
of the Bessel function (see formula (9.7.2) in Abramowitz and Stegun (1972)),
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we know that Kλ(x) =
√

π
2x exp(−x)+o(1/

√
x) as x→∞. Then, for u,v ∈ R2

and s→∞, we have

− log{f(su)}
− log{f(sv)}

∼
√

(ψ + γ>Σ−1γ)(κ+ s2u>Σ−1u)− su>Σ−1γ√
(ψ + γ>Σ−1γ)(κ+ s2v>Σ−1v)− sv>Σ−1γ

∼
√

(ψ + γ>Σ−1γ)u>Σ−1u− u>Σ−1γ√
(ψ + γ>Σ−1γ)v>Σ−1v − v>Σ−1γ

.

For fixed v 6= 0, let h :=
√

(ψ + γ>Σ−1γ)v>Σ−1v−v>Σ−1γ. Then, consider
the set D:

D = {u ∈ R2 :
(√

(ψ + γ>Σ−1γ)u>Σ−1u− u>Σ−1γ
)
/h ≤ 1}.

Note that
(√

(ψ + γ>Σ−1γ)u>Σ−1u− u>Σ−1γ
)
/h ≤ 1 is equivalent to

(ψ + γ>Σ−1γ)u>Σ−1u ≤ (h+ u>Σ−1γ)2,

which can be simplified to

(ψ + γ22)u21 + (ψ + γ21)u22 − 2(ρψ + γ1γ2)u1u2 − 2h{(γ1 − ργ2)u1 + (γ2 − ργ1)u2}
≤ h2(1− ρ2). (5)

Since ψ > 0, ρ 6= 1, we have

∆ = 4(ρψ + γ1γ2)2 − 4(ψ + γ22)(ψ + γ21)

= −4(1− ρ2)ψ2 − 4ψ(γ21 + γ22 − 2ργ1γ2)

< 0.

This implies that D is an ellipse, and thus convex. By Lemma 2, D is the limit
set and its associated gauge function is nD(u) = {

√
(ψ + γ>Σ−1γ)u>Σ−1u−

u>Σ−1γ}/h. Furthermore, note that nD(0) ≤ 1, which implies that 0 is con-
tained in D. Hence, D is bounded and star shaped. Now it remains to find the
coordinatewise supremum of D.

Note that the inequality (5) can be written as

(ψ + γ22)u21 − 2[(ρψ + γ1γ2)u2 + h(γ1 − ργ2)]u1 + (ψ + γ21)u22 − 2h(γ2 − ργ1)u2

≤ h2(1− ρ2).

Denote by q = (u∗1, u
∗
2)> the coordinatewise supremum of D, then we have

(ψ+ γ21)u∗22 − 2h(γ2− ργ1)u∗2 = h2(1− ρ2) +
{(ρψ + γ1γ2)u∗2 + h(γ1 − ργ2)}2

ψ + γ22
,

which can be simplified to

ψu∗22 − 2hγ2u
∗
2 − h2 = 0.
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Hence,

u∗2 = max
(2hγ2 +

√
4h2γ22 + 4h2ψ

2ψ
,

2hγ2 −
√

4h2γ22 + 4h2ψ

2ψ

)
=
h(γ2 +

√
h2γ22 + h2ψ)

ψ
.

Similarly, we get u∗1 = h(γ1 +
√
h2γ21 + h2ψ)/ψ. Since the GH distribution is

closed under linear transformation, we know thatXi ∼ GH2(λ, κ, ψ, γi, 0, 1), i =
1, 2. Denote the marginal density function and distribution function of Xi, i =
1, 2 as fXi

and FXi
, respectively, and write 1 − FXi

(x) = e−Ψi(x). Using the
asymptotic relation Kλ(x) ∼

√
π/(2x)e−x, x→∞ we get

fXi(x) ∼ cixλ−1 exp
{
−
(√

ψ + γ2i − γi
)
x
}

as x→∞,

where ci is a constant. As ψ > 0 we know that
√
ψ + γ2i − γi > 0. By Propo-

sition 2 in von Hammerstein (2016), we have

1− FXi
(x) ∼ cix

λ−1√
ψ + γ2i − γi

exp
{
−
(√

ψ + γ2i − γi
)
x
}

as x→∞.

Hence, the functions Ψi, i = 1, 2 are both regularly varying at infinity with the
same exponent a = 1.

As the supremum point q of an ellipse D satisfies q /∈ D, by Lemma 1
and Lemma 2, X1 and X2 are asymptotically independent and the residual
dependence coefficient is

η = nD(q)−a

=
[{√

(ψ + γ>Σ−1γ)q>Σ−1q − q>Σ−1γ
}
/h
]−1

=
{√

(ψ + γ>Σ−1γ)m>Σ−1m−m>Σ−1γ
}−1

,

where m = (m1,m2)> and

mi =
γi +

√
ψ + γ2i
ψ

, i = 1, 2.

When ρ = 0, which corresponds to independence between the components
of the Gaussian random vector W and implies that the dependence between
X1 and X2 is fully specified by the mixing variable R, we have η = {(ψ +
γ21 + γ22)1/2(m2

1 + m2
2)1/2 −m1γ1 −m2γ2}−1, where m1,m2 are the same as

above. One further observation is that when ψ →∞, which means the mixing
variable R has a very light tail, we have η =

√
(1 + ρ)/2. In this case, we

obtain the same η as the elliptical GH distribution, i.e., when γ = 0, and
it equals the square root of the residual dependence coefficient of a bivariate
Gaussian random vector with correlation ρ.
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Fig. 1 Bivariate χu, ηu for u = 0.9, 0.95, 0.99 and their limits as u → 1 of the GH dis-
tribution for λ = −0.5, κ = ψ = 1, γ = 0, and Σ being a correlation matrix determined
by a powered exponential correlation function ρ(s1, s2) = exp{−(‖s1− s2‖/0.6)3/2}, where
‖s1 − s2‖ is the Euclidean distance between sites s1 and s2. For u < 1, χu and ηu are cal-
culated numerically using their definition (2) and (4), and their limits are calculated using
the results in Proposition 1.

It is also important to note that when ψ = 0,γ 6= 0, the sample cloud
does not converge onto a bounded set and thus the method we used above
fails. When ψ = 0,γ = 0, the GH distribution reduces to the (asymptotically
dependent) Student-t distribution and the tail dependence coefficient is known
from the literature; see Embrechts et al. (2001).

Figure 1 illustrates the flexibility in extremal dependence structures of the
GH distribution, by plotting the bivariate χu, ηu and their limits as a function
of distance between the pairs, for a range of values of u ∈ [0.9, 1), and λ =
−0.5, κ = ψ = 1,γ = 0, Σ being a correlation matrix determined by a powered
exponential correlation function ρ(s1, s2) = exp{−(‖s1 − s2‖/0.6)3/2}, where
‖s1 − s2‖ is the Euclidean distance between sites s1 and s2. The results indi-
cate the slow convergence of χu and ηu to their limits, and at any observable
levels, including u = 0.99, nonnegligible dependence may exist (χu could be as
large as 0.4 or 0.5 for pairs at short distances), but the pairs are asymptotically
independent. This emphasizes again the need for asymptotically independent
models or models that can capture both asymptotic independence and depen-
dence.

3 Copula-Based Inference

3.1 Copula Model and Likelihood Inference

As here we focus on modeling the spatial dependence, we take a copula ap-
proach. A copula is a multivariate distribution function with standard uniform
margins. Thanks to Sklar’s theorem (Sklar, 1959), for any continuous multi-
dimensional distribution function there is a unique copula associated with it.
This is the case for the multivariate GH distribution and we call the asso-
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ciated copula the GH copula. Specifically, suppose (X1, . . . , Xd)
> follows a

d-dimensional GH distribution F , which implies that the marginal distribu-
tion functions F1, . . . , Fd are univariate GH distributions, then the GH copula
is defined by

C(u) = Pr{F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud} = F{F−11 (u1), . . . ,F−1d (ud)},
u ∈ [0, 1]d,

where F−1i , i = 1, . . . , d, is the inverse of Fi. Its density function thus can be
derived easily as

c(u) =
∂d

∂u1 · · · ∂ud
C(u) =

f{F−11 (u1), . . . , F−1d (ud)}
f1{F−11 (u1)} · · · fd{F−1d (ud)}

,

where f is the joint density function and f1, . . . , fd are the marginal GH density
functions of X1, . . . , Xd, respectively.

Due to the closed-form density of the multivariate GH distribution, infer-
ence based on the full likelihood is feasible. Here both in the simulation study
and data applications, we fit the GH copula model to the whole dataset, rather
than using a censored likelihood approach as Wadsworth and Tawn (2012). By
doing so, we gain two major benefits: (i) we can avoid the computational is-
sues associated with the censored likelihood, which requires calculations of
potentially high-dimensional distribution functions and that often have to be
evaluated numerically; (ii) we can model dependence both in the bulk and
in the tail. However, we also point out that an obvious disadvantage of tak-
ing such a full likelihood approach is that the extremal dependence structure
would not be as well captured as using a censored likelihood approach. Here
we choose the full likelihood approach because the GH copula model is highly
flexible, more so than most other spatial models. This means that it could be
a reasonable approach, and our simulation study in Section 3.2 supports this.

We leverage the R (R Core Team, 2020) package Rcpp to evaluate the
GH density function with low-level C++ language and the package ghyp to
compute the quantiles of the GH distribution, which uses splines to interpolate
the univariate GH distribution function and then finds the root efficiently with
the uniroot function in R. These “tricks” have improved the efficiency of the
algorithm and, as an illustration, the computational time for fitting the GH
copula to a dataset with 100 sites and 2000 observations at each site is less
than three hours on a laptop with 8 GB memory and 2.3 GHz Intel Core i5
processor.

3.2 Simulation Study

Simulation from the multivariate GH distribution is straightforward due to
its stochastic representation (1). Specifically, independently sampling R ∼
GIG(λ, κ, ψ) and W ∼ Nd(0, Σ) and plugging them into formula (1) yields
exact samples from the distribution GHd(λ, κ, ψ,γ,µ, Σ). Sampling from a
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Fig. 2 Boxplots of relative estimation errors of all the parameters for different scenarios
in the first simulation study. Left panel: scenario ζ = 0.7, ν = 0.5, n = 500; right panel:
scenario ζ = 0.2, ν = 1.5, n = 500.

multivariate normal distribution is easy and sampling from a generalized in-
verse Gaussian distribution is feasible using the algorithm in Dagpunar (1989),
which is implemented in the R package ghyp. Once a sample is generated from
the multivariate GH distribution, one can obtain a sample for the GH copula
by transforming the marginals to the standard uniform distribution, using the
probability integral transform.

To reduce the number of parameters in the GH copula model, in both the
simulation study and data application, we here assume that γ = γc1d, γc ∈ R,
and Σ is a correlation matrix determined by a powered exponential correlation
function ρ(s1, s2) = exp{−(‖s1 − s2‖/ζ)ν}, where ‖s1 − s2‖ is the Euclidean
distance between sites s1 and s2, ζ > 0 is the range parameter, and ν ∈ (0, 2]
controls the smoothness of the realized random fields.

In the first simulation study we consider 25 sites on the uniform grid
{0, 0.25, 0.5, 0.75, 1}2, and set λ = κ = ψ = γc = 1, ζ = 0.2 or 0.7 (short or
long range dependence), ν = 0.5 or 1.5 (rough or smooth random field). Then
we generate n = 250, 500 or 1000 replicates from the GH copula at these sites
and fit the GH copula to the simulated dataset of each scenario. We run the
experiment for 300 times and Figure 2 depicts boxplots of relative estimation
errors (i.e., differences between parameter estimates and the true parameter
values, divided by the true parameter values) for all of the six parameters
when ζ = 0.7, ν = 0.5, n = 500 and ζ = 0.2, ν = 1.5, n = 500. The results indi-
cate that the spatial range parameter ζ, the smoothness parameter ν, and the
skewness parameter γc are relatively easier to estimate than the parameters
λ, κ, ψ, which determine the shape of the mixing GIG distribution. We also
observe that changing the values of ζ and ν does not affect the estimation of
other parameters, but the larger value of ζ, which corresponds to stronger spa-
tial dependence between two sites, leads to smaller variability of the estimate
of ν, and larger value of ν also yields smaller variability of the estimate of ζ.
One further observation is that when we increase the number of replicates n,
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Fig. 3 Boxplots of estimation errors of all the parameters for the scenario ζ = 0.7, ν = 1.5
with different number of replicates n in the first simulation study.

the variability of the estimates of all parameters decreases, roughly at a rate
of
√
n as expected, as in shown in Figure 3.

In the second simulation study we illustrate the flexibility of the GH
distribution in a misspecified setting. We consider 100 randomly sampled
irregularly-spaced locations by randomly jittering gridded locations, in order
to keep a relatively even spatial coverage. Specifically, for each location of the
regular grid {0.1, 0.2, . . . , 1}2, we randomly generate two numbers from the
uniform distribution on (0, 0.05), and then subtract these two numbers from
each coordinate of the location. The new locations are shown in the left panel
of Figure 4. We then simulate n = 1000 replicates from the inverted Brown–
Resnick process (Kabluchko et al., 2009; Wadsworth and Tawn, 2012) using
the extremal functions approach of Dombry et al. (2016), with the variogram
of the Brown–Resnick process defined as γ(h) = 2‖h‖/ζ, where ζ = 0.3. This
model is known to be asymptotically independent with bivariate residual tail
dependence coefficient function η(h) = 1/[2Φ{

√
γ(h)/2}], where Φ(·) is the

standard normal distribution function. We now fit the GH copula and the
normal inverse Gaussian (NIG) copula, which is a subclass of the GH copula
when λ = −1/2, to the whole simulated dataset. The right panel of Figure 4
displays the true residual tail dependence coefficient of the inverted Brown–
Resnick process, its counterpart from the fitted GH copula and NIG copula
model, and empirical estimates of ηu with u = 0.95, as defined in (4), based
on the simulated dataset and on the fitted GH model. The results show that,
despite fitting the GH copula to the entire dataset without censoring low non-
extreme values, the GH copula captures the residual tail dependence quite well
for the simulated dataset. Furthermore, the shape of the fitted residual tail
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Fig. 4 Left panel: randomly generated sites in the second simulation study. Middle panel:
empirical estimate of χu with u = 0.95 (black points) and its counterpart from the fitted
GH copula model (blue line), plotted as a function of distance. Right panel: true η of
the inverted Brown–Resnick process (black line), theoretical η of the fitted normal inverse
Gaussian copula (green line), theoretical η of the fitted GH copula (red line), empirical
estimate of ηu with u = 0.95 (grey points) and its counterpart from the fitted GH copula
model (blue line), plotted as a function of distance.

dependence coefficient function, with respect to distance, resembles its true
function very closely, although a slight bias exists as expected. The middle
panel of Figure 4 displays the empirical bivariate tail dependence coefficient
χu with u = 0.95 of the simulated data from the inverted Brown-Resnick
process and its counterpart based on 106 replicates simulated from the fit-
ted GH copula model, plotted as a function of distance. This confirms that
the extremal dependence can be captured well by the GH copula, even in a
misspecified setting.

4 Environmental Applications

4.1 Wave Height Example

We first consider the hindcast dataset of significant wave heights analyzed by
Wadsworth and Tawn (2012) and Huser and Wadsworth (2019). This dataset
contains eight observations per day over a period of 31 years, at 50 spatial
locations in the North Sea. Similarly to Huser and Wadsworth (2019), only
the first observation on each day in the winter months (December, January,
and February) at a subset of 20 sites is used to reduce temporal dependence
and ease the computational burden. The locations of the 20 sites are shown
in the left panel of Figure 5. Note that here distance is measured in units of
latitude (one unit ≈ 111 km).

The margins at each site are transformed to standard uniform following
the semiparametric approach of Coles and Tawn (1991). Then, three different
models are fitted to the standardized dataset, namely the Huser–Wadsworth
model, the Gaussian copula model and the GH copula model. To illustrate the
flexibility of our proposed GH model to capture the upper tail dependence in a
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Fig. 5 Left panel: locations of the 20 sites which are randomly selected in the hindcast
wave height data application. Middle and right panels: estimates of 20-variate χu (middle
panel) and ηu (right panel) for the hindcast wave height data, as a function of the threshold
u. Central black dots: empirical estimates of χu and ηu; dashed line: approximate pointwise
95% confidence intervals based on a stationary bootstrap procedure; thick solid red line: fit
from the GH copula; thin solid blue line: fit from the Huser–Wadsworth model; thin solid
green line: fit from the Gaussian model.

disadvantageous situation, we first use a censored likelihood scheme to fit the
Huser–Wadsworth model and the Gaussian copula model, which helps them
better capture the extremal dependence structure; see equation (18) in Huser
and Wadsworth (2019) for the censoring scheme. Then we fit the GH copula
to the data without censoring low observations.

The middle and right panels of Figure 5 display the fitted values of 20-
variate χu and ηu, as defined in Section 2.2, for the three models. The uncer-
tainty measures are based on the same stationary bootstrap procedure as in
Huser and Wadsworth (2019), i.e., 200 bootstrap samples are generated using
the stationary bootstrap which sample blocks of geometric length. Strikingly,
the results show that the GH copula can capture the extremal dependence
better than the Gaussian copula, even though a censored likelihood has been
used for the Gaussian copula. The performance of the GH copula is slightly
worse than the Huser–Wadsworth copula, but the differences are fairly minor
overall and the GH model still provides a very good fit in the upper tail despite
its full uncensored likelihood estimation approach. We stress again that the
Huser–Wadsworth copula is specially designed to model the upper tail and
a censored likelihood has been used for this purpose, while our proposed GH
model is here used to model the entire distribution, from low to high quantiles.

To further investigate the fitted model, we plot the estimated bivariate
survival probability isolines for two pairs of locations at different distances
in Figure 6. More precisely, we consider 2500 points (u1, u2)> on the grid
{0.01, 0.03, . . . , 0.99}2 and estimate the survival probabilities Pr{F1(X1) >
u1, F2(X2) > u2} based on the fitted GH copula evaluated at these points by
Monte Carlo. Then an estimate of the survival probabilities at other points in
the unit square is obtained by interpolation. Note that here we only considered
isolines with survival probabilities 0.2, 0.1 and 0.05 since obtaining accurate
estimates of lower survival probabilities may require far more Monte Carlo
simulations and this is computationally too demanding. Note that, in prac-
tice, such survival probability estimates are commonly used as risk measures
(Di Bernardino et al., 2015; Zscheischler et al., 2017). Figure 6 also shows
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Fig. 6 Plot of the wave height data at two pairs of locations with different distances and
estimated survival function isolines, after standardization to the uniform scale. In each panel,
isolines produced using the fitted GH copula model are dark-colored thin solid lines, while
isolines produced using the empirical survival copula are light-colored thick dashed lines. The
distance between site A and B (left panel) is around 98 km and the one between site C and
site D (right panel) is around 217 km. Estimated isolines correspond to survival probabilities
Pr{F1(X1) > u1, F2(X2) > u2} = 0.2, 0.1, 0.05 (red, green, blue lines, respectively).

the estimated bivariate survival probability isolines for the same pairs of lo-
cations produced using the empirical survival copula. One can see that the
isolines obtained using these two different (parametric and non-parametric)
methods almost coincide with each other, and this confirms that the GH cop-
ula fits quite well, especially in the joint upper tail. If one wishes to further
assess the accuracy of the estimated isolines, the diagnostic tools in Murphy-
Barltrop et al. (2021); Cooley et al. (2019) might be useful. We also fit the
Huser–Wadsworth model and the Gaussian model without censoring the low
observations. The log-likelihood of GH copula is around 2000 units larger than
that of the Huser–Wadsworth model and 6000 units larger than that of the
Gaussian copula model, which indicates that the GH copula is clearly more
flexible than the other two if all observations are considered.

4.2 Wind Gust Example

To illustrate the computational benefits of our proposed model, we now con-
sider a higher-dimensional dataset of daily maximum wind gusts from the
state of Oklahoma, USA, which can be freely downloaded from mesonet.org.
This dataset contains daily measurements of highest 3-second wind speed from
January 1, 1995 to December 31, 2020, at 120 observational stations across
the state of Oklahoma. To induce approximate stationarity, we only consider
the summer observations, i.e., observations in July, August and September,
which are often the highest in a year. As some observational stations have
many missing values, we delete the ones with more than 100 missing values,
resulting in 95 sites with 2392 observations at each site. The locations of these
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Fig. 7 Locations of the 95 observational sites in the state of Oklahoma, USA, in the wind
gust data application.

Fig. 8 Exploratory data analysis of the wind gust data. Left panel: time series at site Acme;
middle and right panels: scatter plots of observations at site Blackwell and Breckinridge
(distance 55 km), and at site Bessie and Ringling (distance 190 km).

95 sites are shown in Figure 7. The minimum distance between two sites is
around 12 km and the maximum distance is around 800 km. The time series
at each site appears approximately stationary (see the time series at a ran-
domly selected site in the left panel of Figure 8), hence we work directly with
this dataset and transform all the marginals to standard uniform using the
nonparametric approach based on ranks. Alternatively, we could use the semi-
parametric approach of Coles and Tawn (1991) as in the wave height example.
On the middle and right panels, we show the scatter plots of observations at
the Blackwell and Breckinridge sites (distance 55 km), and at the Bessie and
Ringling sites (distance 190 km), on the uniform scale. One can observe that
as the distance between the pair of sites increases, the dependence decreases,
but it is hard to tell by the naked eye whether the pairs are asymptotically
independent or dependent.
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Table 2 Number of parameters and AIC values for the different models fitted in our wind
gust data application

Model # of parameters AIC

Gaussian copula 2 −298898
t copula 3 −324069

Hyperbolic copula 5 −316636
NIG copula 5 −327035
GH copula 6 −328141

We then fit the GH copula model to the standardized dataset, as well as
four of its subclasses and limiting models, namely the Gaussian copula, the t
copula model, the hyperbolic copula and the NIG copula model, based on a
full likelihood approach. The computational time for fitting the GH copula is
less than three hours on a laptop, which is a significant speed-up compared to
the censored Huser–Wadsworth model in such high dimensions. It takes less
than ten minutes to fit the Gaussian copula and t copula due to the efficient
computation of their quantile functions in R. Table 2 shows the number of
parameters in each model and the Akaike information criterion (AIC) of the
fitted models. The results indicate that the general GH copula has the best
performance as expected, and the NIG submodel has the second best perfor-
mance. The large difference between the AIC values of the GH copula model
and its limiting cases, the widely used Gaussian copula model and the t copula
model, implies that there is a clear advantage of using the GH copula model
for this dataset despite its higher model complexity.

To assess how well our model captures the dependence both in the bulk
and the tail of the data, we consider Spearman’s rank correlation Sρ and the
bivariate extremal dependence measures χu and ηu described in Section 2.2.
We first calculate the empirical estimates of Sρ, χu and ηu with u = 0.95
from the data, and their model-based counterparts from the estimated model.
Then we compute the bivariate kernel density estimators for pairs of observed
empirical Sρ and fitted Sρ, pairs of observed empirical χu and fitted χu, and
pairs of observed empirical ηu and fitted ηu, using the R package ks. Figure
9 depicts the contours at level 25%, 50% and 75% of these kernel density es-
timators. The results show that our model can capture strong dependencies
(at short and moderate distances) both in the bulk and the tail very well,
but it overestimates weak dependencies (at large distances). This is not very
surprising as there are fewer pairs of sites that are weakly dependent (at long
distances), so that strongly dependent pairs influence model estimation to a
higher degree. In particular, the spatially-constant mixing variable R is con-
strained to provide a good fit at short distances, which simultaneously induces
stronger dependencies across the entire spatial domain. This can also be seen
from the discussion on the values of η for special cases of the GH distribution
in Section 2.3. When the mixing variable R has very light tails (ψ → ∞), as
the distance between two sites tends to infinity and their correlation ρ → 0,
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the residual dependence coefficient η converges to 1/
√

2, which is much larger
than 1/2 and indicates that a strong dependence is still present in this case.

5 Discussion

The GH distribution has a long history, and found popularity in financial
modeling. In this work we have re-investigated its tail dependence properties,
pointed out the mistakes in its derivations in the literature, and gave a cor-
rected description. Based on this result, we propose to use the GH copula for
spatial extremes when asymptotic independence is present, which contributes
to the spatial extremes literature, as existing models in this setting that are
both flexible and can be fitted efficiently are scarce. We demonstrate the flex-
ibility of this model both by a simulation study and two environmental data
applications.

Unlike the asymptotic dependence case, where the scientific community
broadly agrees that max-stable models should be fitted to block maxima, and
generalized Pareto models should be fitted to threshold exceedances, there is
no such consensus in the asymptotic independence case yet. Wadsworth and
Tawn (2012) argue that it is often more natural, especially in the presence
of asymptotic independence, to model the extremes of original events rather
than site-wise maxima, and they suggest using a censored likelihood approach
to better capture the extremal dependence. Here, we did not censor the low
observations when using the GH copula, because, as shown in the wave height
data application, the non-censored GH copula can capture the tail dependence
even better than the censored Gaussian copula and the high flexibility of the
GH copula allows this full likelihood approach. Moreover, in this case we can
gain significant computational efficiency and also capture dependence in the
bulk, as shown in the wind gust data application.

One interesting research direction is to investigate the tail properties in
the limiting case of the GH distribution when ψ = 0, which is an interesting
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distribution in its own as its marginal distribution has asymmetric tails, i.e.,
one has a power decay and the other has an exponential decay, and it reduces to
the t distribution when the skewness parameter γ tends to zero. Unfortunately,
the two different methods that we used in this work to derive the tail properties
both fail in the limiting case when ψ = 0 and the skewness parameter is not
zero. Hence, this remains an open problem. Another future research direction
is to investigate the tail dependence properties of more general normal mean-
variance mixtures when the mixing distribution is specified only through its tail
behavior. Finally, as discussed in the wind gust data application, a weakness
of the GH copula model is that independence cannot be captured as distance
tends to infinity. This is a typical weakness for all random scale (and location)
models. Hence, another future research direction is to try and overcome this
issue and improve the performance of the GH copula model to better capture
long-range weak dependence structures. One possibility could be to use the
random partitioning approach of Morris et al. (2017).
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