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Abstract 
 

      This thesis investigates the fundamental aspects of the molecular-scale junctions 

and their electrical properties. Experimental and theoretical studies assessed the 

importance of finding ways to get consistent and reproducible improvements in 

electronics devices fabrications techniques. In this context, I will start this thesis by 

introducing a general discussion about using the density functional theory (DFT), and 

Green's function to study transport calculations at a molecular scale. Then, I will present 

the theoretical and experimental benzo-(bis)imiadzol molecular studies in chapter 4. 

This study focusses on changes in the conductance as a consequence of chemical 

stimuli. I will demonstrate that benzo-bis(imidazole) conductance switching upon 

protonation depends on the lateral functional groups. The protonated H-substituted 

molecule shows a higher conductance than the neutral one (Gpro>Gneu), while the 

opposite (Gneu>Gpro) is observed for a molecule functionalized by amino-phenyl groups. 

Based on theoretical calculations, I conclude that these opposite behaviours depend on 

the electronic coupling between molecules and electrodes. Furthermore, quantum 

interference properties have recently attracted excessive interest in electron transport 

studies at the single-molecule scale. Within this framework, myself and collaborators 

have aimed to improve the efficiency of pi-stacked molecules in controlling quantum 

interference by carefully designing them. Chapter 5 introduces a novel strategy for 

designing folded carbazoles with low conductance in different structures. This strategy 

highlights the presence or absence of destructive quantum interference in different 

configurations. This project is part of a collaborations with the experimental group at 

the University of Madrid, which is ongoing at present. 
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Chapter 1 
 
 

 Introduction 

1.1. Molecular electronics 

        In recent decades, designing and fabricating nano-scale electronic devices has 

attracted a wide range of scientific and industrial attention as exploring their unique 

properties can open up broad miniaturisation revolution prospects [1]. Historically, in 

1965, Gordon Moore noted that the number of transistors per unit area or (per chip ) in 

practical applications doubles every two years, that developed into what is known as 

'Moore's law' [2]. He expected this trend to continue for ten years, but it lasted a half-

century later due to the rapid development in miniaturization. As electronic components 

approach the sub-10nm length scale, the limit of Moore's law is being reached [2]. 

Therefore, scientists are keen to find an alternative to silicon-based devices by replacing 

the traditional semiconductor; one such option is a single molecule. Aviram and Ratner 

have been thought of as critical in the historical of development molecular  
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devices because they were the first to suggest using an individual molecule as a 

functional electronic component. In 1974, they proposed the first molecular rectifier 

where the rectifier is an electrical device that converts alternating current (AC) to direct 

current (DC), which flows in only one direction. They considered using a single 

molecule consisting of an electron donor  unit (TTF), which is electron rich,  and an 

acceptor unit (TCNE), which is electron poor, separated by tunneling 

bridge(methylene), and noted that this  molecular system functions as a rectifier (one-

way conductor) of electric current [3-4]. Later in the 1980s the invention of scanning 

tunneling microscope (STM) and atomic force microscope (AFM) led to further 

developments of this field. Another research motivated by Aviram direction was in 

1995, where Joachim and Gimzewski [4] published the first measurement of a single-

molecule conductance by using the STM technique. In 1997, Mark Reed and James 

Tour published a first transport experiment results in single-molecule junctions using a 

mechanically controlled break junction method (MCBJ) method.  They connected two 

gold electrodes to a sulphur-terminated molecular-wire, which realised a symmetric 

structure that could, in principle, be integrated into more complex circuits [6].  

     Nowadays, the field of molecular electronics has been advancing rapidly both 

experimentally and theoretically, using on single-molecule junctions based on metal-

molecule-metal designs. In order to study such systems experimentally, many 

techniques have been developed, such as Scanning Tunneling Microscopy Break 

Junctions (STM-BJ) [7,8], and Mechanically Controllable Break Junctions MCBJ 

[9,10]. The development of  theoretical approaches in line with experiment, provide 

reliable and excellent methods for calculating the electronic assembly of atomic 

structures. One of the most widely used approach is Density Functional Theory (DFT) 

based quantum transport calculations which is the method used for the calculations in 
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this thesis. One widely used DFT code is SIESTA [11], enabling the study of finite and 

periodic systems [12-13].  

Moreover, combining DFT with the Green's function formalism allows one to study 

molecular structures connected to bulk electrodes [14]. One implementation of this is 

the Gollum code[15], which will be used extensively within this thesis. Associating 

experimental data with a validated theoretical framework paved the way for 

understanding electron transport properties in these molecular junctions. This 

combination of theory and experiment enables the exploration of new devices, with the 

aim of optimizing both the electrical and thermal transport behaviour through chemical 

design. One area where this has proved successful has been the investigation of room-

temperature quantum interference [16]. 

 

1.2. Molecular Junctions 

      Molecular junctions are the ideal systems to get insight into the fundamental 

electron transport mechanism. In a two terminal system they consist of left and right 

electrodes, the linkers (or anchor groups) and the central molecule, as shown in Figure 

(1.1). The choice of anchor groups, which bind the molecule to the electrode surface is 

important as they are determined by the type of electron transport (ie HOMO or LUMO 

dominated). Furthermore, electrodes can be either metal or nonmetal, for example 

silicon has been used as an electrode [17] However, metallic materials are the most 

widely used with examples such as Au, Ag [18]and Pt [19] being reported. Gold is the 

most common material used, because it is inert to chemical reactions, has good 

chemical stability, high conductivity, and is easy to prepare in the form of clean surfaces 

and tips. However, gold electrodes also have several drawbacks, such as mobility of 
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surface atoms at room temperature, which cause thermal fluctuations and instabilities 

[6].  

 

 

Figure 1.1. Schematic illustration of molecular junction consists of (a)left and right 

gold electrodes (b) The linker which is here thiol as anchor groups and Benzene rings 

at the both sides of the central area.(c) central molecule as an example 

Benzo(bis)imidazole. 

 

  In this respect, it is essential that research of other materials, which will ultimately 

affect the implementation in molecular electronics devices.  In recent years, the 

possibility of making reliable single molecule electrical measurements with other non-

metallic electrodes such as carbon-based materials, and graphene has been 

investigated[20,21]. Their unique advantages make them promising molecules because 

of their electronic properties with high stability and chemical flexibility due to their π- 

conjugated structure. Many types of molecular junctions have been studied with gold 

electrodes, which has included different anchoring groups and linkers. The anchor 

assembly is a single point contacts chemically bind to metallic leads, for example, thiol 

(-SH), amine (-NH2) groups, where the linker is a reliable contact linked with anchor 

unit between the central molecule and the gold electrodes, such as a phenyl ring and 

porphyrin[16].  

a a 
b b c 
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    Another fundamental ingredient in the design of molecular junction devices is the 

molecule conformation, which is fascinating since there is an almost infinite variety of 

configurations to consider for molecular electronics. Using molecules as electronic 

circuits in nano-scale devices are highly desirable, because of their small sizes typically 

only a few nanometers, and the low cost of producing large numbers of identical 

molecules. Their ability to be self-assemble onto surfaces, allows the molecular units 

to naturally form themselves into ordered structures by non-covalent interactions. 

Moreover, a molecular wire could reduce the transit time (~10-14 S) needed for an 

operation[6]. Here, the focus is on Conjugated or 'Aromatic' Hydrocarbon compounds, 

which are generally compounds containing at least one ring consisting of six carbon 

atoms, such as Benzene and Anthracene, where each carbon atom is joined by 

alternating of double and single bonds, and the wave functions of the π system is 

delocalised over the whole molecule. However, it is not essential to have simply a 

benzene ring to be an aromatic molecule, as there are various molecules containing 

heteroatoms (O,N,S) that are also aromatic, for instance, pyridine[6]. Furthermore, 

molecules consisting of several benzene rings are called 'polycyclic aromatic 

Hydrocarbons', such as, Benzo-imidazole and carbazole, as are discussed in the next 

section. Notable applications of electronic devices using single molecules in various 

fields, include such as transistors[22], rectifiers[23, 24], sensors[25,26], and memories 

[27].  However, it is essential to have recognition of an individual molecule's properties 

to fabricate molecular devices, as the ability to use a specific intermolecular interaction 

to assemble these devices correctly and control the electron transport between the 

molecule and electrodes has remained challenging due to molecule size, and 

instabilities at high temperature[6] [28]. 
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a b 

1.2.1.Structure of Benzo-imidazole 

        In chapter 4 I study molecular junctions formed from Benzo-imidazole molecules, 

which are heterocyclic aromatic organic compounds, formed from the fusion of 

benzene and imidazole. When two imidazoles are fused on the side of the Benzene ring, 

the resulting molecule is called Benzo-bis(imidazole) and is shown in figure(1.2)(a, b) 

respectively.  The term 'heterocyclic' refers to multiple rings with one or more carbon 

atoms are substituted by another species of atom. 

 
 
 
 
 
Figure 1.2. General structure of(a) Benzo-imidazole, (b) 
Benzo-bis(imidazole). 
 
 

1.2.2.Structure of carbazole 

        In chapter 5 I investigate pi-stacking using carbazole molecules. Carbazole is an 

aromatic organic compound. It has a tricyclic structure, consisting of two six-membered 

benzene rings fused on either side of a five-membered nitrogen-containing ring, as 

shown in Figure( 1.3). Later  I will utilise the carbazole unit within molecular cores to 

investigate an alternative method to control quantum interference in the pi-stacked 

system. 

 

 

Figure 1.3. Carbazole chemical structure in(a) 2D, (b)3D. 

 

a b 
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1.3. Quantum interference  

     In recent years, studies of charge transport at the molecular- scale, have led to 

significant interest in quantum interference (QI) effects [29-32], which provide a novel 

opportunity to tune and control transport via the electron wave function within a 

junction. These effects can enhance or decrease conductance via. constructive or 

destructive quantum interference respectively. [33]. Since 1988, researchers have been 

utilising and exploring the quantum interference (QI) concept theoretically and 

experimentally, they used the simple structures to study the QI, which is a benzene ring 

with meta connectivity, and it has been suggested that different paths through molecule 

might be responsible for the low conductivity as it is assigned to destructive quantum 

interference (DQI).  Manipulating QI provides a potential opportunity to construct 

molecular electronic devices based on this feature by chemical modifications 

(explained in detail at chapter 4) or the use of more complex structures. Our focus in 

chapter five will be on one of these effects, namely destructive quantum interference 

(DQI) in pi-stacked molecules junctions. DQI describes a quantum process in which 

the electron waves propagate and then combine destructively at the source or drain 

electrode [31,34]. This phenomenon greatly influences the electron transmission, and 

therefore the molecular conductance, which reduces the transmission probability by 

orders of magnitude compared with junctions exhibiting constructive interference 

(CQI) [31,35]. Such effects can be used to design single-molecule electronic 

components, thermoelectric devices [36-37], and molecular switches[29]. Several 

studies have investigated forms of molecules that show DQI, such as conjugated 

molecules, and molecules with pendant groups. It is interesting to note that the DQI 

mostly depends on the molecule's electronic configurations and where the electrodes 
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contact the molecule [38-39]. One of the conjugated structures shows excellent 

potential in controlling quantum interference by stacking molecules [34,40 ] where the 

electrodes are attached to one anchor at the end of each dimer. Moreover, this will 

bridge the gap between the electrodes and the electron path between them via the 

overlap π -orbitals of the molecules. Understanding charge transfer through π-stacked 

assemblies and controlling DQI, plays an essential role in designing and developing 

high-performance molecular devices.  

 

1.4. Thesis Outline 

      This thesis begins with a review of the theoretical techniques used to study electron 

transport in molecular-scale junctions. The main theoretical approaches based on 

Density Functional Theory (DFT), and the non-equilibrium Greens function formalism 

of transport theory are explained in chapters 2 and 3 respectively. These chapters will 

provide the fundamental theoretical background for understanding and analysing the 

electrical conductance and its properties in the structures discussed in chapters 4 and 5. 

Chapter 4 describes a theoretical and experimental study aimed at demonstrating 

conductance switching in  benzo-bis(imidazole) molecule and its derivatives. In the 

fifth chapter, I will investigate how to control quantum interference in different π-

stacked Carbazole molecular junctions using SIESTA and GOLLUM.  Finally, the sixth 

chapter presents the suggestions for future works and conclusion. 
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Chapter 2 

 

Density Functional Theory 

 

2.1. Introduction 

      Understanding the electronic properties of an isolated molecular wire can help to 

explain and investigate the behaviour of molecular electronics devices, which is the 

focus of this thesis. In an attempt to solve the interacting many-body Schrödinger 

equation and determine the structural and electronic behaviour of organic molecules, a 

reliable methodology is necessary. Density function theory (DFT) is one of the essential 

theoretical tools used by physicists and chemist to achieve more understanding in the 

electronic structure[2][3][4][5][6][7][8]. This theory incorporates the Kohn-Sham 

formalism, which is the one-electron Schrödinger equation of a fictitious system (the 
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"Kohn–Sham system") of non-interacting particles (typically electrons) that generate 

the same density as any given system of interacting particles. [3][4]  

   In this chapter, I will present the main details of DFT and introduce the DFT code 

‘SIESTA’ (Spanish Initiative for Electronic Simulations with Thousands of Atoms) [1], 

which I have used widely during my PhD studies as a theoretical tool to study the 

configurations of molecules as well as calculating charge densities, band structures, and 

binding energies.  

    The first section will be an introduction to DFT, outlining the prominent formalism 

as a method of solving the many-particle time-independent Schrödinger equation. Then, 

presenting the physical theories that have significant development to turn DFT to a data 

processing code (SIESTA)[1] which are the Hohenberg-Kohn Theorem and the Kohn-

Sham Formulation. 

    The second section, emphasising the application of DFT, via SIESTA, and how I can 

employ these techniques to reduce the complexity of the problem and perform reliable, 

accurate calculations on molecular structures despite how large scale these systems.  

 

2.2.The Schrödinger Equation 

     Finding the solution of the Schrödinger equation is only possible for a few number 

of electrons. However, for larger systems, solving the many-body Schrödinger 

equations is challenging, insoluble and has been a goal for physicists and chemists to 

achieve. In general, the Hamiltonian of the many-body system consisting of N 

interacting electrons and M nucleons is divided into five parts and can be written as: 
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H ̂   = T̂e + T̂n + V̂n + V̂e + V̂en                                                           (2.1) 

Where, 

𝐻𝐻� = − ℏ2

2𝑚𝑚𝑒𝑒
∑ ∇𝑖𝑖2𝑁𝑁
𝑖𝑖=1

���������
𝑇𝑇𝑒𝑒�

− ℏ2

2𝑚𝑚𝑛𝑛
∑ ∇𝑛𝑛2𝑀𝑀
𝑛𝑛=1

���������
𝑇𝑇𝑛𝑛�

+ 1
4𝜋𝜋𝜀𝜀𝑜𝑜

1
2
∑ ∑ 1

�𝑅𝑅�⃗ 𝑛𝑛−𝑅𝑅�⃗ 𝑛𝑛′�
𝑍𝑍𝑛𝑛𝑍𝑍𝑛𝑛′𝑒𝑒2𝑀𝑀

𝑛𝑛≠𝑛𝑛′
𝑀𝑀
𝑛𝑛=1

�����������������������
𝑉𝑉𝑛𝑛�

+

1
4𝜋𝜋𝜀𝜀𝑜𝑜

1
2
∑ ∑ 𝑒𝑒2

�𝑟𝑟𝑖𝑖−𝑟𝑟𝚥𝚥���⃗ �
𝑁𝑁
𝑖𝑖≠𝑗𝑗

𝑁𝑁
𝑖𝑖=1

�����������
𝑉𝑉𝑒𝑒�

+ 1
4𝜋𝜋𝜀𝜀𝑜𝑜

1
2
∑ ∑ 1

�𝑟𝑟𝑖𝑖−𝑅𝑅�⃗ 𝑛𝑛 �
𝑍𝑍𝑛𝑛𝑒𝑒2𝑀𝑀

𝑛𝑛=1
𝑁𝑁
𝑖𝑖=1

�������������������
𝑉𝑉𝑒𝑒𝑒𝑒�

                                   (2.2) 

              

 where  𝑇𝑇𝑒𝑒�  is the kinetic energy of the electron, 𝑇𝑇𝑛𝑛� is the kinetic energy of nuclei,  𝑉𝑉𝑛𝑛�  is 

the nucleon-nucleon interaction, 𝑉𝑉𝑒𝑒�  is the electron-electron interaction , 𝑉𝑉𝑒𝑒𝑒𝑒�  is the 

electron  nucleon interaction, 𝑍𝑍 is the atomic number ,and 𝑒𝑒 is the electron charge 

Solving the Schrödinger equation for a simple system such as the Hydrogen atom is 

obtainable in order to get the wave function of this system. It is impossible to find the 

exact solution of the Schrödinger equation for the many-body system with more than a 

few electrons. An approximation has to be therefore applied to enable a separation of 

the nucleon and electron degrees of freedom to reduce the size of the problem. This is 

achieved through the Born-Oppenheimer approximation. [9 ]      

 

2.3.Born-Oppenheimer approximation 

      We can simplify the equation by using the Born-Oppenheimer approximation, 

which due to the fact that the mass of the nuclei  is much larger than the electron (at 

least three orders of magnitude larger) [9 ][10 ] allows the nuclei to be considered fixed 
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and therefore their kinetic energy is zero. [9]. Thus, the Hamiltonian reduces to the new 

electronic Hamiltonian 𝑯𝑯𝒆𝒆� , defined as follows. 

                 Ĥ𝒆𝒆 =  ∑ −ℏ𝟐𝟐

𝟐𝟐𝒎𝒎𝒊𝒊
𝛁𝛁𝒊𝒊𝟐𝟐𝑵𝑵

𝒊𝒊=𝟏𝟏 +  𝟏𝟏
𝟒𝟒𝟒𝟒𝜺𝜺𝒐𝒐

𝟏𝟏
𝟐𝟐
∑ 𝒆𝒆𝟐𝟐

�𝒓𝒓𝒊𝒊−𝒓𝒓𝒋𝒋�
𝑵𝑵
𝒊𝒊≠𝒋𝒋   + 𝟏𝟏

𝟒𝟒𝟒𝟒𝜺𝜺𝒐𝒐

𝟏𝟏
𝟐𝟐
∑ 𝐙𝐙𝒏𝒏𝒆𝒆𝟐𝟐

|𝒓𝒓𝒊𝒊−𝑹𝑹𝒏𝒏|
𝑵𝑵𝐌𝐌
𝒊𝒊𝒊𝒊        (2.3) 

And the Nucleon Hamiltonian 𝑯𝑯𝑵𝑵� , 

              𝑯𝑯𝑵𝑵� = ∑ −ℏ𝟐𝟐𝛁𝛁𝒏𝒏𝟐𝟐

𝟐𝟐𝒎𝒎𝒏𝒏

𝐌𝐌
𝒏𝒏 − 𝟏𝟏

𝟐𝟐
∑ 𝒁𝒁𝒏𝒏𝒁𝒁𝒏𝒏′𝒆𝒆

𝟐𝟐

𝟒𝟒𝟒𝟒𝝐𝝐𝟎𝟎�𝑹𝑹𝒏𝒏−𝑹𝑹𝒏𝒏′�
𝐌𝐌
𝒏𝒏≠𝒏𝒏′                                            (2.4) 

Therefore, the Born-Oppenheimer approximation allows the electron and nucleon 

degrees of freedom to be separated. The general method in solving the system of 

electrons and nucleons is to first solve the effective electron Hamiltonian using DFT, 

Hartree, Hartree-Fock or other quantum mechanical methods, and then treat the nucleon 

equations as classical equations of motion. The majority of the chapter will be devoted 

to methods in solving the effective electron Hamiltonian  𝑯𝑯𝒆𝒆�  . 

 

2.4.The Hohenberg-Kohn theorems 

     The essential building blocks of Density Functional Theory, which mainly describe 

the method of solving the Schrödinger equation defined by  𝑯𝑯𝒆𝒆� ,  is based on two crucial 

theories in the pioneering work of Hohenberg and Kohn in 1964 [5]. These show that 

there is a unique ground state density of the system which corresponds to a minimum 

of the total energy functional. The electron density ρ (r) is used to calculate the ground 

state energy and can be applied to any system of electrons moving in an external 

potential. 



 

25 
 

The first theorem of this approximation states that the ground state electronic density is 

uniquely determined by only one external potential which means that there cannot be 

two external potentials where 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒2 (𝑟𝑟) ≠ 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒1 (𝑟𝑟) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 leading to same 

ground state density. If we assume that there are two Hamiltonian and different external 

potentials where 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒2 (𝑟𝑟) ≠ 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒1 (𝑟𝑟) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 cannot give rise to same ground 

state density 𝜌𝜌𝐺𝐺𝐺𝐺( 𝑟𝑟 ��⃗ )[5,7,8,12]. 

Proof (1): this theorem can be proven via a contradiction .  Let us consider two different 

external potentials 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 ��⃗ ) (1)and 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 ��⃗ ) (2) which differ by more than a constant 

and yield the same ground state density 𝜌𝜌𝐺𝐺𝐺𝐺( 𝑟𝑟 ��⃗ ). Clearly, these potentials correspond 

to distinct Hamiltonians which are 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒[( 𝑟𝑟 ��⃗ )] (1) and 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒[( 𝑟𝑟 ��⃗ )] (2), these 

Hamiltonians give rise to distinct wavefunctions which are 𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒[( 𝑟𝑟 ��⃗ )] (1) and 

𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒[( 𝑟𝑟 ��⃗ )] (2) .  

Since we have the same ground state and according to the variational principle which 

states that no wavefunction gives energy less than the energy of  𝛹𝛹𝑒𝑒𝑒𝑒𝑒𝑒[( 𝑟𝑟 ��⃗ )] (1) for 

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒[( 𝑟𝑟 ��⃗ )] (1), i.e., 

                       〈𝐸𝐸(1)〉 = ∫𝛹𝛹(1) 𝐻𝐻(1) 𝛹𝛹(1)
∗  𝑑𝑑𝑟𝑟 <  ∫𝛹𝛹(2) 𝐻𝐻(2) 𝛹𝛹(2)

∗  𝑑𝑑𝑟𝑟           (2.5) 

  

Because of the same ground state densities for two Hamiltonians, the equation (2.5) for 

non-degenerate ground state becomes: 
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�𝛹𝛹(2) 𝐻𝐻(1) 𝛹𝛹(2)
∗  𝑑𝑑𝑟𝑟

= �𝛹𝛹(2) 𝐻𝐻(2) 𝛹𝛹(2)
∗  𝑑𝑑𝑟𝑟

�������������
〈𝐸𝐸(2)〉

+  ��[𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 )](1) − [𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 )](2)� 𝜌𝜌𝐺𝐺𝐺𝐺( 𝑟𝑟 ��⃗ ) 𝑑𝑑𝑟𝑟 

 (2.6) 

 

By exchanging the labels in equation (2.6), we have: 

 

�𝛹𝛹(1) 𝐻𝐻(2) 𝛹𝛹(1)
∗ 𝑑𝑑𝑟𝑟 =

= �𝛹𝛹(1) 𝐻𝐻(1) 𝛹𝛹(1)
∗  𝑑𝑑𝑟𝑟

�������������
〈𝐸𝐸(1)〉

+ ��[𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 )](2) − [𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 )](1)� 𝜌𝜌𝐺𝐺𝐺𝐺( 𝑟𝑟 ��⃗ ) 𝑑𝑑𝑟𝑟 

 (2.7) 

Adding the equations (2.6) and (2.7) we obtain: 

                     〈𝐸𝐸(1)〉 + 〈𝐸𝐸(2)〉 <  〈𝐸𝐸(2)〉 + 〈𝐸𝐸(1)〉                                   (2.8) 

Equation (2.8) evidently shows a contradiction. Therefore we can conclude that the 

potential Vext(r), must be unique. 

Theorem (2) provides a variational ansatz for obtaining 𝜌𝜌( 𝑟𝑟 ��⃗ ), i.e., searching for 𝜌𝜌( 𝑟𝑟 ��⃗ ) 

which minimises the energy. In other words, it states that we can define a universal 

functional for the energy 𝐸𝐸[𝜌𝜌( 𝑟𝑟 ��⃗ )] in terms of the density,𝜌𝜌( 𝑟𝑟 ��⃗ ) . The exact ground 

state energy of the system in particular (𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 )) is the global minimum value of this 

functional and the density, 𝜌𝜌( 𝑟𝑟 ��⃗ ), which minimizes the functional and represents the 

exact ground state density,𝜌𝜌𝐺𝐺𝐺𝐺( 𝑟𝑟 ��⃗ ) [5,7,8,12]. 
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Proof (2), the first theorem tells us that the total energy of the system is a functional of 

the density,𝜌𝜌( 𝑟𝑟 ��⃗ ), and is given by 

 

       𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝜌𝜌( 𝑟𝑟 ��⃗ )]

= 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖[𝜌𝜌( 𝑟𝑟 )] + 𝑉𝑉𝑒𝑒[𝜌𝜌( 𝑟𝑟 )]�������
=𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧,   𝑓𝑓𝑓𝑓𝑓𝑓 

𝑛𝑛𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

������������������� 
𝐹𝐹𝐻𝐻−𝐾𝐾[𝜌𝜌( 𝑟𝑟 )]

+  �𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 )  𝜌𝜌( 𝑟𝑟 ) 𝑑𝑑𝑟𝑟     (2.9) 

 

The first two terms in equation (2.9) ( 𝐹𝐹𝐻𝐻−𝐾𝐾[𝜌𝜌( 𝑟𝑟 )]) are the kinetic energy for 

interaction system (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖), and the electron-electron interaction energy (𝑉𝑉𝑒𝑒), is treated as 

the same for the whole system. Thus 𝐹𝐹𝐻𝐻−𝐾𝐾[𝜌𝜌( 𝑟𝑟 )] is a universal functional. Assuming 

that the system is in the ground state, we can define the energy uniquely by the ground 

state density,  𝜌𝜌𝐺𝐺𝐺𝐺( 𝑟𝑟 ��⃗ ), as: 

 

                      〈𝐸𝐸𝐺𝐺𝐺𝐺〉 = 〈𝐸𝐸[𝜌𝜌𝐺𝐺𝐺𝐺( 𝑟𝑟 )]〉 = �𝛹𝛹𝐺𝐺𝐺𝐺 𝐻𝐻𝐺𝐺𝐺𝐺 𝛹𝛹𝐺𝐺𝐺𝐺∗  𝑑𝑑𝑟𝑟       (2.10) 

  

According to the variational principle, the ground state energy corresponds to the 

ground state density is the minimum energy, and any different density will necessarily 

provide higher energy 

         〈𝐸𝐸𝐺𝐺𝐺𝐺〉 = 〈𝐸𝐸[𝜌𝜌𝐺𝐺𝐺𝐺( 𝑟𝑟 )]〉 = �𝛹𝛹𝐺𝐺𝐺𝐺 𝐻𝐻𝐺𝐺𝐺𝐺 𝛹𝛹𝐺𝐺𝐺𝐺∗  𝑑𝑑𝑟𝑟 <  �𝛹𝛹 𝐻𝐻 𝛹𝛹∗  𝑑𝑑𝑟𝑟         

                                                  = 〈𝐸𝐸[𝜌𝜌( 𝑟𝑟 )]〉    = 〈𝐸𝐸〉 

      (2.11) 
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Once we know the functional,  𝐹𝐹𝐻𝐻−𝐾𝐾[𝜌𝜌( 𝑟𝑟 )], we can minimize the total energy with 

respect to variations in the density function as given in equation (2.9), that leads to 

determining the exact ground state properties of the system that we are looking for (we 

should take into account that for the most practical calculations, the direct minimization 

will not provide us the ground state energy, but by the simpler procedure of Kohn-

Sham). 

 

2.5.The Kohn-Sham Approach 

       The Kohn–Sham equation [4] is the Schrödinger equation of a fictitious system of 

non- interacting particles, which generate the same density as any given system of 

interacting particles (a self-consistent method) [2,4]. Kohn and Sham introduced a 

solution that it is possible to replace the original Hamiltonian of the system by an 

effective Hamiltonian (Heff) of the non-interacting system in an effective external 

potential Veff ( 𝑟𝑟 ) which gives rise to the same ground state density as the original 

system. Since there is no exact recipe for calculating this, the Kohn-Sham method is 

considered as an ansatz, but it is considerably easier to solve than the non-interacting 

problem The Kohn-Sham method is based on the Hohenberg-Kohn universal density: 

 

 𝐹𝐹𝐻𝐻−𝐾𝐾[𝜌𝜌( 𝑟𝑟 ��⃗ )] = 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖[𝜌𝜌( 𝑟𝑟 )] + 𝑉𝑉𝑒𝑒[𝜌𝜌( 𝑟𝑟 )]                               (2.12) 

 

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Electronic_density
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The Hohenberg-Kohn functional for non-interacting electrons have only the kinetic 

energy. The energy functional of the Kohn-Sham ansatz 𝐹𝐹𝐾𝐾𝐾𝐾[𝜌𝜌( 𝑟𝑟 ��⃗ )], in contrast to (2.9), 

is given by 

𝐹𝐹𝐾𝐾𝐾𝐾[𝜌𝜌( 𝑟𝑟 ��⃗ )] = 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛[𝜌𝜌( 𝑟𝑟 )] + 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻[𝑛𝑛𝑛𝑛( 𝑟𝑟 )] + �𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 )𝜌𝜌( 𝑟𝑟 ) 𝑑𝑑𝑟𝑟 

                                                     +𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌( 𝑟𝑟 )]             (2.13) 

 

where 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛  is the kinetic energy of the non-interacting system which is different from 

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  (for interaction system) in equation (2.9), while 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 which is called the Hartree 

energy is the classical electrostatic energy or classical self-interaction energy of the 

electron gas which is associated with density 𝜌𝜌( 𝑟𝑟 ). The fourth term, 𝐸𝐸𝑥𝑥𝑥𝑥, is the 

exchange-correlation energy functional which is the difference between the kinetic 

energy for the interacting and non-interacting systems and non-classical electrostatic 

interaction energy, and is given by 

 

      𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌( 𝑟𝑟 )] = 𝐹𝐹𝐻𝐻−𝐾𝐾[𝜌𝜌( 𝑟𝑟 ) −
1
2
�
𝜌𝜌( 𝑟𝑟1 )𝜌𝜌( 𝑟𝑟2 )

|𝑟𝑟1 − 𝑟𝑟2| 𝑑𝑑𝑟𝑟1𝑑𝑑𝑟𝑟2
�����������������

𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌( 𝑟𝑟 )]

−  𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛[𝜌𝜌( 𝑟𝑟 )] 
     (2.14) 

 

The first, second, and third terms in the equation (2.13) can be trivially cast into a 

functional form. In contrast, there is, in general, no exact functional form exist for 𝐸𝐸𝑥𝑥𝑥𝑥.  

In the last couple of decades, enormous efforts have gone into finding a better 

approximation to 𝐸𝐸𝑥𝑥𝑥𝑥. Currently, the functionals can be used to investigate and predict 

the physical properties of a wide range of solid state systems and molecules. For the 
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last three terms in the equation (2.13), we take the functional derivatives to construct 

the effective single particle potential, 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 ) 

 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 ) = 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒( 𝑟𝑟 ) +
𝜕𝜕𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌( 𝑟𝑟 )]

𝜕𝜕𝜌𝜌( 𝑟𝑟 )
+
𝜕𝜕𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌( 𝑟𝑟 )]
𝜕𝜕𝜌𝜌( 𝑟𝑟 )

           (2.15) 

 

Now, we can use this potential to give the Hamiltonian of the single particle 

 

𝐻𝐻𝐾𝐾𝐾𝐾 = 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒            (2.16) 

 

By using this Hamiltonian, the Schrödinger equation becomes 

 

[𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒]𝛹𝛹𝐾𝐾𝐾𝐾 = 𝐸𝐸𝛹𝛹𝐾𝐾𝐾𝐾                      (2.17) 

 

Equation (2.17) is known as Kohn-Sham equation. The Kohn-Sham approach shows 

that a complicated many-body system can be mapped onto a set of simple non-

interacting equations exactly if the exchange-correlation functional is known. However, 

the exchange-correlation functional is not known exactly, so approximations need to be 

made. 
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2.5.1 Exchange and correlation 

     Density functional theory reduces the quantum mechanical ground-state many-body 

problem to one single body problem, by the Kohn-Sham equations [8]. This method is 

formally precise, while for practical calculations, the exchange-correlation energy, 𝐸𝐸𝑥𝑥𝑐𝑐, 

as a function of the density has to be approximated. To do that, the local density 

approximation (LDA) has long been the standard choice [13]. Despite its simple nature, 

the predictions made using LDA gives realistic descriptions of the atomic structure, 

elastic, and vibrational characteristics for a wide range of systems. Yet, LDA is 

generally not accurate enough to describe the energetics of chemical reactions (heats of 

reaction and activation energy barriers), which lead to an overestimate of the binding 

energies of molecules and solids. As well, there are numerous examples where the LDA 

puts molecular conformations or crystal bulk phases in an even qualitatively wrong 

energetic order [14][15].  

     Recently, generalised gradient approximations (GGA's) have overcome such 

deficiencies to a considerable extent [8][16], giving, for example, a more realistic 

description of energy barriers in the dissociative adsorption of hydrogen on metal and 

semiconductor surfaces [24]. Gradient corrected (GGA) functional depends on the local 

density and the spatial variation of the density. So, the two most common functionals 

used are LDA and GGA to describe the exchange and correlation energies in density 

functional theory. To give more information about the Local Density Approximation 

and the Generalised Gradient Approximation, the following section will briefly 

describe it. 
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2.5.1.1.Local Density Approximation 

     The LDA approximation assumes that the exchange-correlation functional depends 

only on the local density which was introduced by Kohn and Sham [3][4] and it, 

therefore, can be expected to give good predictions for systems where the density is 

varying slowly locally. The functional of the approximation is [4] 

 

                     𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿[𝜌𝜌(𝑟𝑟)] = ∫𝜌𝜌(𝑟𝑟)𝐸𝐸𝑥𝑥𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌(𝑟𝑟)]𝑑𝑑(𝑟𝑟)                                    (2.18) 

 

Where 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝑥𝑥𝑥𝑥   is the exchange-correlation energy of the homogeneous electron gas with 

a density of (𝑟𝑟). The exchange-correlation energy 𝐸𝐸𝑥𝑥𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻 can be split into two terms as 

the - sum of the exchange 𝐸𝐸𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌(𝑟𝑟)]and the correlation energies 𝐸𝐸𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌(𝑟𝑟)]which 

can be found separately as: 

  

               𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 = ∫𝑑𝑑(𝑟𝑟)𝜌𝜌(𝑟𝑟)𝐸𝐸𝑥𝑥𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌(𝑟𝑟)] + 𝐸𝐸𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻[𝜌𝜌(𝑟𝑟)]                           (2.19) 

 

However, in some sense, the simplest method one can imagine for the exchange and 

correlation energies is LDA, which can be accurate for the systems with S and P orbitals 

like graphene and carbon nanotubes or where the electron density is not rapidly 

changing.  

 

 

2.5. Generalized gradient approximation 

      The LDA approximation fails in situations where the density is changing rapidly, 

such as in molecules. Thus, the LDA method has been extended by involving the 
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derivatives of the density into the functional method of the exchange-correlation 

energies. The only way to do this is by including the gradient and the higher spatial 

derivatives of the total charge density (|∇ρ(𝑟𝑟)|, |∇^2 𝜌𝜌(𝑟𝑟)���⃗ |,…) into the approximation. 

Such a function is called the generalised gradient approximation (GGA). 

 

𝐸𝐸𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺[𝜌𝜌(𝑟𝑟)] = ∫𝜌𝜌(𝑟𝑟)𝜀𝜀𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺[𝜌𝜌(𝑟𝑟), |∇𝜌𝜌(𝑟𝑟)|]𝑑𝑑(𝑟𝑟)                                  (2.20) 

 

 

2.6 SIESTA 

       The implementation of DFT used to obtain the relaxed geometry of the discussed 

structures, and also to carry out the calculations to investigate their electronic 

properties.  SIESTA (derived from the Spanish Initiative for Electronic Simulations 

with Thousands of Atoms), is a self-consistent density functional theory technique that 

uses norm-conserving pseudopotentials, and an Linear Combination of Atomic Orbital 

Basis set, to perform efficient calculations [1].  

   To discover more theoretical details about SIESTA code, and what it provides, the 

next section will describe some of SIESTA's components and how they implemented 

within the code. [17]. 

 

2.5.1 The Pseudopotential Approximation 

       A pseudopotential or effective potential is another approximation created to solve 

the many-body Schrödinger equation by reducing the number of electrons involved in 
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the simulation. This approximation can be achieved by splitting the electrons into two 

types. The two forms consist of the core electrons in which the electrons occupy the 

filled shells of the atomic orbitals and the valence electrons which lie in the partially 

filled shells. By replacing the core electrons, so that they approximate the potential in 

such a way that the valence electrons felt the core electrons, then a pseudopotential is 

constructed. It is noted that the core electrons in most molecules do not contribute to 

the formation of the molecular orbitals. 

   This was first suggested in 1934 by Fermi, and a special kind of pseudopotential is 

used in our work. Only valence electrons play a vital role chemically, to determine most 

of the chemical properties when compared to the core electrons. To remove the core 

electrons due to the rapid interaction with the atomic nucleus, the approximation is 

allowed to take advantage of treating only the valence electrons. 

    Generally, it is necessary to include the valence electrons, for the reason that their 

states overlap with the other valence electron states from neighboring atoms in forming 

the molecular orbital.  

 

 

2.6.2 Calculating binding energies using the counterpoise 

method (CP) 

    

     The DFT method can be used to calculate the binding energy between different parts 

of a configuration This is achieved by calculating the ground state energy of the whole 

and then the energy of the individual components. However, these calculations are 

subject to errors using a DFT code such as SIESTA which uses localised basis sets that 
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are focused on the nuclei. When atoms are close to each other, their basis functions will 

overlap, which leads to the strengthening of atomic interactions, and this could affect 

the total energy of the system. Generally, the Basis Set Superposition Error correction 

(BSSE) [18] or the counterpoise correction [19] helps to solve this type of error.   

    Let us consider a two molecule system which are labelled as A and B; the binding 

energy of the interaction can be defined as: 

 

                                     ∆𝐸𝐸(𝐴𝐴𝐴𝐴) = 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐵𝐵𝐵𝐵                                                                  (2.21) 

 

Where 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the total energy for the dimer system A and B, and the 𝐸𝐸𝐴𝐴𝐴𝐴 ,𝐸𝐸𝐵𝐵𝐵𝐵 is the total 

energy of the total isolated components. Here the superscript denotes the basis set used 

in each calculation i.e. A is just the basis set of system A, B is the basis set of B and 

AB is the combined basis set of both A and B. 

   To remove the numerical errors, the energy calculations are performed in the same 

total basis set AB. This is achieved in SIESTA by using ‘ghost’ states; (basis set 

functions which have no electrons or protons); to evaluate the total energy of the 

systems A and B in the dimer basis. This is formulated by the following equation,  

                                          ∆𝐸𝐸(𝐴𝐴𝐴𝐴) = 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴                                                       (2.22) 

Here the 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 ,𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴, is both the energy of the system A and B evaluated based on the 

dimer. This method provides accurate and reliable results for different systems [20][21]. 
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2.7. Calculations in Practice 

       Many steps are performed to compute the transport calculations throughout this 

thesis, the first step is to construct the atomic configuration of the system and then 

choose the appropriate pseudopotentials for each element, which is distinctive for each 

exchange-correlation functional. Moreover, accurate calculations take a long time and 

use a larger memory, so it is vital to choose an appropriate basis set for every element 

to reduce the time and memory needed. Also, another input parameter, such as the grid 

fineness and density convergence tolerances, will help to ensure that the calculation is 

precise. One of the parameters to control the convergence is the Pulay parameter, which 

accelerates or maintains the stability of the convergence of the charge density in 

SIESTA. 

    The next step is to generate the initial charge density, assuming there is no interaction 

between atoms and the pseudopotentials are known. The self-consistent calculation 

begins by calculating the Hartree potential and exchange-correlation potential, as 

shown that in figure 2.7.1. After that, by solving the Kohn-Sham equations a new charge 

density is obtained, and the next iteration is started and repeated many times till the 

necessary convergence criteria is reached. Therefore, we get the ground state Kohn-

Sham orbitals as well as the ground state energy for a given atomic conformation. For 

the geometric optimisation, this operation is performed in another loop, which is 

controlled via conjugate gradient method [22][23] to obtain the minimum ground state 

energy and the corresponding atomic structure. Finally, when the self-consistency has 

been implemented, the Hamiltonian and the density matrices are achieved. The ability 

to generate Hamiltonians is important as they are the key ingredient for the quantum 

transport calculations in the next chapter. 
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Figure 2.1: Schematic of the self-consistency process within SIESTA. 
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Chapter 3 
 
 
 

 Theory of Quantum Transport 

 

3.1. Introduction 

       In the single-molecule electronics field, one important advantage is that transport 

properties at the molecular scale may be controlled chemically by the design and 

synthesis of new types of molecules. Furthermore, understanding the electrical and 

thermal behaviour of the molecular junctions is a long-sought goal with the aim of 

designing more efficient materials. To measure the conductance through the molecule 

precisely, there must be reliable connections between the surface of the metal electrodes 

and the anchor groups of the molecule. The coupling strength between the electrodes 
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and the molecule is usually small in comparison to the intra- electrode and inter 

molecular bond strengths, which introduces a scattering process within a 

lead|molecule|lead structure. Understanding the scattering process within these 

junctions and molecular bridges can be obtained through Green's function method.  

   In this chapter, I will begin with a brief overview of how to determine the behaviour 

of resonances in the transmission coefficient as a function of energy by using some of 

the important concepts like the Breit-Wigner formula. Next, I will discuss scattering 

theory and introduce the Landauer formula. Following this, I will present the Green's 

function approach for different transport systems, such as a one-dimensional structure 

with an arbitrary scattering region. Finally, I will describe the general methodology to 

calculate the transmission coefficient T(E) in a molecular junction for electrons with 

energy E passing from one electrode to another. 

 

3.2. The transmission curve features 

      Quantum interference is a fundamental quantum phenomena and the main 

characteristic of electron transport through single molecules. Some molecules have 

multiple paths for transporting electrons across the junction, and these paths may lead 

to resonances or anti-resonances. The aim of this section is to study the properties of 

these resonances in order to have an understanding of the transport properties that may 

arise in molecular junctions and devices. I will briefly demonstrate some examples of 

different kinds of resonances, namely Breit-Wigner resonances [1], anti-resonances 

[2][3] and Fano resonances[4][5]. 
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3.2.1 Breit-Wigner resonance 

        The Breit –Wigner formula is a significant concept that helps to understand the 

behaviour of resonance in the transmission coefficient T(E). When the energy of an 

incident electron resonates with an energy level of  the molecule in the scattering region 

the transmission probability is expressed by a Lorentzian function, via the Breit-Wigner 

formula: 

                              𝑇𝑇(𝐸𝐸) =  4Γ1Γ2
(𝐸𝐸−𝜀𝜀𝑛𝑛)2 +(Γ1+Γ2)2

                                                 (3.1) 

   Through this formula, the transmission coefficient can be described by three 

parameters: ( Γ1, Γ2) and (𝜀𝜀𝑛𝑛 ). Where Γ1 𝑎𝑎𝑎𝑎𝑎𝑎 Γ2 are the coupling strength of the 

molecular orbital to each of the electrodes, 𝐸𝐸 is the energy of an electron passing 

through the system, and ( Γ1 + Γ2) is the level broadening on resonance(resonance 

width). Also, (𝜀𝜀𝑛𝑛 = 𝜆𝜆 − 𝜎𝜎)  where 𝜆𝜆 describe the eigen-energy of the molecular orbital 

shifted slightly by the real part of the “self-energy 𝜎𝜎 ”(𝜎𝜎 = 𝜎𝜎𝐿𝐿 − 𝜎𝜎𝑅𝑅) due to the coupling 

of the orbitals to the electrodes. 

    Within this formula, there are many components that affect the transmission 

coefficient. For example, when the electron resonates with the molecular orbital (e.g. 

when (𝐸𝐸 = 𝜀𝜀𝑛𝑛), electron transmission is a maximum. Also, on resonance (𝐸𝐸 = 𝜀𝜀𝑛𝑛), the 

transmission coefficient can reach a maximum of T (E) = 1, if Γ1 = Γ2  (e.g. a symmetric 

molecule attached symmetrically to identical leads). Moreover, the width of the 

resonance depends on the sum Γ1 + Γ2, so when the coupling to the electrode is weak, 

the resonance is sharp and vice versa. This formula is valid in the case that the level 

spacing of the isolated molecule is larger than the width of the resonance (Γ1 + Γ2). 
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3.2.2 Anti-resonance 

     The transmission probability curve has one important feature, which is the anti-

resonance or (off-resonance) . This phenomenon can appear when the energy of the 

incoming electron E coincides with the eigenenergy En   of one of the two branches, as 

shown in figure (3.1). A destructive interference occurs when the amplitudes of 

propagating waves along the two branches sum to zero at the nodal points. 

 

 

 

Figure 3.1: Tight binding model of anti-resonance, when two semi-finite one-

dimensional chain coupled to the scattering region. 

 

3.2.3 Fano resonance 

      A Fano resonance is usually signaled by a resonance showing the typical Fano line 

shape, which is a resonance followed by an anti-resonance. This appearance is due to 

the interference between a discrete state (e.g. a pendant group) which is weakly coupled 

to the continuum state, and this gives an asymmetric line shape. We can observe this 

phenomenon for instance, when a pendant group is connected to a central backbone by 

the coupling of (α) which is considered to be more weakly coupled than the coupling 

to the open system Γ𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎Γ𝑅𝑅 as shown in figure (3.2). The width of a Fano resonance 

become narrow by varying the (α) coupling. To calculate the transmission coefficient, we 

can use the formula in equation (3.2): 
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                                    𝑇𝑇(𝐸𝐸) =  4Γ𝐿𝐿Γ𝑅𝑅
(𝐸𝐸−𝜀𝜀𝑛𝑛)2 +(Γ𝐿𝐿+Γ𝑅𝑅)2

                                  (3.2) 

where  𝜀𝜀𝑛𝑛 = 𝜀𝜀1 + 𝛼𝛼2

𝛦𝛦−𝜀𝜀2
 . For small 𝛼𝛼, the resonance condition when 𝐸𝐸 =  𝜀𝜀𝑛𝑛  can be 

satisfied when 𝐸𝐸 ≈ 𝜀𝜀1 and 𝐸𝐸 ≈  𝜀𝜀2 . On the other hand, when 𝐸𝐸 = 𝜖𝜖2 this generates a 

an anti-resonance, which is close to resonance at 𝐸𝐸 ≈  𝜀𝜀2. These two features combine 

to give the characteristic Fano line shape [5][6]. 

 

 

 

Figure 3.2: Tight binding model of Fano-resonance, when two semi-finite one-

dimensional chain coupled to the scattering region of site energy ε1 by hopping 

elementsΓ𝐿𝐿andΓ𝑅𝑅. An extra energy level ε 2 is coupled to the scattering area by hopping 

element –α. 

 

 

3.3 Scattering matrix 

      To provide an understanding of the transport properties in scattering theory, 

calculating the scattering-matrix is useful. We can obtain it by solving the time-

independent Schrödinger equation for an electron approaching from the left electrode 

                                        𝜓𝜓𝑗𝑗 = 𝐴𝐴
�𝜐𝜐𝑙𝑙

𝑒𝑒𝑖𝑖𝑘𝑘𝑙𝑙𝑗𝑗 + 𝐵𝐵
�𝜐𝜐𝑙𝑙

𝑒𝑒−𝑖𝑖𝑘𝑘𝑙𝑙𝑗𝑗                                       (3.3) 

where A and B are the amplitudes of the two ingoing and outgoing waves travelling to 

the left and right, respectively, here ν is the group velocity. 

∞ 

 
0ε 

-∞ 

 
0ε 

2ε 

0ε 0ε 0ε 

-α 
- 𝛾𝛾 - 𝛾𝛾 - 𝛾𝛾 - 𝛾𝛾 

0ε 1ε 
-Γ𝐿𝐿 -Γ𝑅𝑅 
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The current per unit energy that it carries is: 

                                            𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = |𝐴𝐴2| − |𝐵𝐵2|                                             (3.4) 

For the right electrode:  

                                      𝜓𝜓𝑗𝑗 = 𝐶𝐶

√𝜐𝜐𝑟𝑟
𝑒𝑒𝑖𝑖𝑘𝑘𝑟𝑟𝑗𝑗 + 𝐷𝐷

√𝜐𝜐𝑟𝑟
𝑒𝑒−𝑖𝑖𝑘𝑘𝑟𝑟𝑗𝑗                                      (3.5) 

                                       𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = |𝐶𝐶2| − |𝐷𝐷2|                                                (3.6) 

where C and D are the amplitudes of the two ingoing and outgoing waves travelling to 

the right and left, respectively. 

Since the bond current satisfies the relation 𝐼𝐼𝑙𝑙 = 𝐼𝐼𝑟𝑟 

                                         |𝐴𝐴2| − |𝐵𝐵2| = |𝐶𝐶2| − |𝐷𝐷2|                                         (3.7) 

ie 

                                   |𝐴𝐴2| + |𝐷𝐷2| = |𝐵𝐵2| + |𝐶𝐶2|                                         (3.8) 

This states that the incoming current is equal to outgoing current, and the wave 

functions for the left electrode and right respectively are: 

                                           𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                                                      (3.9) 

                                           𝐶𝐶𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                                                      (3.10) 

To match the outgoing with incoming coefficients, we construct the s-matrix, which is 

also known as the scattering matrix: 

                                       �𝐵𝐵𝐶𝐶� = �𝑆𝑆11 𝑆𝑆12
𝑆𝑆21 𝑆𝑆22

� �𝐴𝐴𝐷𝐷�                                                (3.11) 
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Then 

                                            𝐵𝐵 = 𝑆𝑆11𝐴𝐴 + 𝑆𝑆12𝐷𝐷                                                (3.12) 

                                            𝐶𝐶 = 𝑆𝑆21𝐴𝐴 + 𝑆𝑆22𝐷𝐷                                                (3.13) 

If 𝐴𝐴 = 1 and 𝐷𝐷 = 0, then 𝐵𝐵 =  𝑟𝑟,𝐶𝐶 =  𝑡𝑡. Where 𝑟𝑟 is the amplitude of the reflected wave 

due to an incoming wave from the left and 𝑡𝑡 is the amplitude of the transmitted wave  

                                            �𝐵𝐵𝐶𝐶� = �𝑆𝑆11𝐴𝐴𝑆𝑆21𝐴𝐴
�                                                    (3.14) 

The physical meaning of 𝑆𝑆11is (r) and 𝑆𝑆21 is (t) which is the reflection and transmission, 

respectively. 

If 𝐷𝐷 = 1 and 𝐴𝐴 = 0 : 

                                               �𝐵𝐵𝐶𝐶� = �𝑆𝑆12𝐷𝐷𝑆𝑆22𝐷𝐷
�                                                 (3.15) 

Where 𝑆𝑆12 is (𝑡𝑡′) and 𝑆𝑆22 is (𝑟𝑟′) which is the reflection and transmission respectively. 

Then: 

                                    𝑆𝑆 = �𝑆𝑆11 𝑆𝑆12
𝑆𝑆21 𝑆𝑆22

� = �𝑟𝑟 𝑡𝑡′
𝑡𝑡 𝑟𝑟′�                                         (3.16) 

Since the bond current satisfies the relation 𝐼𝐼𝑙𝑙 = 𝐼𝐼𝑟𝑟 

                                          |𝐴𝐴2| − |𝐵𝐵2| = |𝐶𝐶2| − |𝐷𝐷2|                                         (3.17) 

And therefore as a consequence of charge conservation, 

                                    |𝐴𝐴2| + |𝐷𝐷2| = |𝐵𝐵2| + |𝐶𝐶2|                                           (3.18) 

where the incoming current from both leads is |𝐴𝐴2| + |𝐷𝐷2| and the outgoing current 

into both leads is |𝐵𝐵2| + |𝐶𝐶2|, therefore 
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                                  (𝐴𝐴∗ 𝐷𝐷∗)�𝐴𝐴𝐷𝐷� = (𝐵𝐵∗ 𝐶𝐶∗)�𝐵𝐵𝐶𝐶�                                      (3.19) 

Taking the Hermitian conjugate of the scattering matrix equation (3.11) yields 

(𝐵𝐵∗ 𝐶𝐶∗) = (𝐴𝐴∗ 𝐷𝐷∗)𝑆𝑆† and substituting these into equation (3.19) 

                                   (𝐴𝐴∗ 𝐷𝐷∗)𝑆𝑆†𝑆𝑆�𝐴𝐴𝐷𝐷� = (𝐵𝐵∗ 𝐶𝐶∗)�𝐵𝐵𝐶𝐶�                                    (3.20) 

This shows that 𝑆𝑆†𝑆𝑆 is the unit matrix a (I) and therefore 𝑆𝑆 is unitary: 

                              �𝑟𝑟
∗ 𝑡𝑡∗
𝑡𝑡∗ 𝑟𝑟∗� �

𝑟𝑟 𝑡𝑡′
𝑡𝑡 𝑟𝑟′� = �1 0

0 1�                                            (3.21) 

In terms of scattering theory: 

                             |𝑟𝑟2| + |𝑡𝑡2| = 1 ⇒ 𝑅𝑅 + 𝑇𝑇 = 1                                             (3.22) 

                            |𝑟𝑟′2| + |𝑡𝑡′2| = 1 ⇒ 𝑅𝑅2 + 𝑇𝑇2 = 1                                        (3.23) 

where T and R represent the transmission and reflection. 
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3.4 The Landauer formula  

        The Landauer formula [7][8] describes the transport of non-interacting electrons 

for a scattering region in terms of a transmission coefficient and a Fermi distribution of 

the connected electrodes. To illustrate this method, consider a scattering region 

connected to two electrodes (leads) as sketched in figure (3.3). The leads are assumed 

to be ballistic conductors, i.e. conductors with no scattering, and thus the transmission 

probability equals one. Each lead, in turn, is coupled to a reservoir where all inelastic 

processes take place. These electrodes supply the system with electrons, and these 

reservoirs have a slightly different chemical potential   (𝜇𝜇𝐿𝐿- 𝜇𝜇𝑅𝑅 = 𝐸𝐸 ˃ 0) which leads to 

the passing of electrons from left to the right, and let the temperature be equal to zero 

(Ʈ=0 K) [6].  

 

 
 

Figure 3.3: A scattering region connected to two electrodes. The electrodes are 

connected to a reservoir with chemical potential 𝜇𝜇𝐿𝐿and 𝜇𝜇𝑅𝑅 . 

 

To calculate the current for this system moving from left to right in a particular range 

and similarly from right to left, the current generated by the chemical potential 

difference is: 

                      𝛿𝛿𝛿𝛿 = 𝑒𝑒 𝜐𝜐𝑔𝑔
𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

𝛿𝛿𝛿𝛿 = 𝑒𝑒 𝜈𝜈𝑔𝑔
𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

 (𝜇𝜇𝐿𝐿 −  𝜇𝜇𝑅𝑅)                            (3.24) 
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where the electron charge is e, the group velocity is  𝜈𝜈𝑔𝑔 and 𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

 is the density of states 

per unit length and can be defined by the chemical potential of the contact. 

                             
𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

1 
  𝜈𝜈𝑔𝑔ℏ

                                                    (3.25) 

In one dimension, when having a spin dependency  
𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

= 1 
 2𝜋𝜋

 , substituting into 

Equation (3.25) gives: 

                                          
𝜕𝜕𝜕𝜕 
 𝜕𝜕𝜕𝜕

= 1 
  𝜈𝜈𝑔𝑔ℎ

                                                               (3.26) 

Equation (3.26) becomes: 

                                     𝛿𝛿𝛿𝛿 = 2𝑒𝑒 
 ℎ

 (𝜇𝜇𝐿𝐿 −  𝜇𝜇𝑅𝑅)                                          (3.27) 

                                 𝛿𝛿𝛿𝛿 = 2𝑒𝑒2 
 ℎ

 𝛿𝛿𝛿𝛿                                                            (3.28) 

where the voltage in the reservoir generated by the difference in the potential is 𝛿𝛿𝛿𝛿. 

When considering a scattering region, the current passing through the scatterer to the 

right lead is written as: 

                                  𝛿𝛿𝛿𝛿 = 2𝑒𝑒2 
 ℎ

 𝑇𝑇(𝐸𝐸)𝛿𝛿𝛿𝛿                                                   (3.29) 

                            𝐺𝐺 = 𝛿𝛿𝛿𝛿 
𝛿𝛿𝛿𝛿

= 2𝑒𝑒2 
 ℎ

 𝑇𝑇 (E)                                                        (3.30) 

In the absence of a scattering region: 

                           𝐺𝐺 = 2𝑒𝑒2 
 ℎ

                                                              (3.31) 

                          𝐺𝐺0 = 2𝑒𝑒2 
 ℎ

                                                                       (3.32) 
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where 𝐺𝐺0 is the quantum of conductance and it is𝐺𝐺0 = �2𝑒𝑒
2

ℎ
� = 77 𝜇𝜇𝜇𝜇. 

In the presence of the scattering region, the conductance will be: 

                              𝐺𝐺 = 2𝑒𝑒2 
 ℎ

 𝑇𝑇 (E)                                                                       (3.33) 

                            𝐺𝐺 = 𝐺𝐺0𝑇𝑇(𝐸𝐸)                                                                     (3.34) 

Equation (3.34) is called the Landauer formula for a one-dimensional system and the 

current is given by.  

                       𝐼𝐼 = 2𝑒𝑒
ℎ ∫ 𝑑𝑑𝑑𝑑 𝑇𝑇(𝐸𝐸)[𝑓𝑓𝐿𝐿(𝐸𝐸) − 𝑓𝑓𝑅𝑅(𝐸𝐸)]∞

−∞                                      (3.35) 

where 𝑒𝑒 = −|𝑒𝑒| , ℎ is Plank's constant, and T (E ) is the transmission coefficient for 

the electron passing from one lead to the other via the molecule, and 

                      𝑓𝑓𝐿𝐿(𝑅𝑅)(𝐸𝐸) = 1
𝐸𝐸−𝜇𝜇𝐿𝐿(𝑅𝑅)
𝑒𝑒𝑘𝑘𝐵𝐵Ʈ +1

                                                      (3.36) 

𝑓𝑓𝐿𝐿(𝑅𝑅) Is the Fermi-Dirac distribution function, 𝜇𝜇𝐿𝐿(𝑅𝑅) is the chemical potential of the 

left (right) reservoir respectively, Ʈ is the temperature, and kB is Boltzmann's constant. 

    If the voltage 𝑉𝑉 is applied on the left and right reservoirs symmetrically, then          

 𝜇𝜇𝐿𝐿 = 𝐸𝐸𝐹𝐹 +  𝑒𝑒𝑒𝑒
2

  and  𝜇𝜇𝑅𝑅 = 𝐸𝐸𝐹𝐹 + 𝑒𝑒𝑒𝑒
2

 , this means at zero temperature and finite voltage 

the current will be: 

                      𝐼𝐼 = (2𝑒𝑒
ℎ

)∫  𝑑𝑑𝑑𝑑 𝑇𝑇(𝐸𝐸)
𝐸𝐸𝐹𝐹+ 𝑒𝑒𝑒𝑒2
𝐸𝐸𝐹𝐹− 𝑒𝑒𝑒𝑒2

                                         (3.37) 

The electrical conductance at zero voltage and the finite temperature is: 
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            𝐺𝐺 = 𝐼𝐼
𝑉𝑉

= 𝐺𝐺0 ∫ 𝑑𝑑𝑑𝑑 𝑇𝑇(𝐸𝐸) �− 𝑑𝑑𝑑𝑑(𝐸𝐸)
𝑑𝑑𝑑𝑑

�
𝜇𝜇=𝐸𝐸𝐹𝐹

∞
−∞                                 (3.38) 

The above integral represents a thermal average of the transmission function T (E) 

over an energy window of width kBƮ where Ʈ is the temperature.  

 

3.5 Green's Function 

      This Green function is an essential tool for studying the transport properties of 

different nanoscale structures [9]. In the beginning, I will discuss how to construct the 

Green's function for different situations. Then I will briefly present how to connect the 

Green's functions of these separable lattices together to construct the Green's function 

of the whole system using the Dyson equation. 

 

3.5.1 Green's function of a doubly infinite chain 

      This section illustrates the Green's function of the doubly infinite chain for 

electrodes. In this case, these electrodes are described as a perfect crystalline structure 

that is periodic in the direction of transport, the z-direction, as shown in figure (3.4).  

 

 

 

Figure 3.4: Tight binding representation of one-dimensional infinite chain with on-site 

energies 𝜀𝜀0 and couplings – 𝛾𝛾 . 

0ε 
∞ 

 
0ε 

-∞ 

 
0ε 0ε 0ε 0ε 

- 𝛾𝛾 - 𝛾𝛾 - 𝛾𝛾 - 𝛾𝛾 
0ε 

  

𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

𝑗𝑗 = 𝑙𝑙 
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The time-independent Schrödinger equation is: 

                                           (𝐸𝐸 − 𝐻𝐻)|𝜓𝜓⟩ = 0                                                   (3.39) 

The Green's function of a system described by a Hamiltonian (H) can be defined as 

the solution of: 

                                       (𝐸𝐸 − 𝐻𝐻)𝐺𝐺 = 𝐼𝐼                                                         (3.40) 

The formal solution to this equation would be given by: 

                                       𝐺𝐺 = (𝐸𝐸 − 𝐻𝐻)−1                                                     (3.41) 

where G is the retarded Green's function (𝑔𝑔𝑗𝑗𝑗𝑗) describes the response of a system at a 

point 𝑗𝑗 due to a source at l 

                                       (𝐸𝐸 − 𝐻𝐻)𝑔𝑔𝑗𝑗𝑗𝑗 = 𝛿𝛿𝑗𝑗𝑗𝑗                                                   (3.42) 

where 𝛿𝛿𝑗𝑗𝑗𝑗 is Kronecker delta, which is equal to 1 if 𝑗𝑗 = 𝑙𝑙 and zero otherwise. 

The Green's function for an infinite system 

                                  𝜀𝜀0𝑔𝑔𝑗𝑗𝑗𝑗 − 𝛾𝛾𝑔𝑔𝑗𝑗+1,𝑙𝑙 − 𝛾𝛾𝑔𝑔𝑗𝑗−1,𝑙𝑙 + 𝛿𝛿𝑗𝑗𝑗𝑗 = 𝐸𝐸𝑔𝑔𝑗𝑗𝑗𝑗                            (3.43) 

If the solutions are: 

                          𝑔𝑔𝑗𝑗𝑗𝑗 = � 𝐴𝐴𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖                       𝑗𝑗 ≥ 𝑙𝑙

  𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                    𝑗𝑗 ≤ 𝑙𝑙   
                                     (3.44) 

where A and B represent the amplitudes of the two waves coming from the right and 

left respectively. Because a Green's function is continuous at 𝑗𝑗 = 𝑙𝑙; as a result, I can 

write that: 
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                       𝑔𝑔𝑗𝑗𝑗𝑗|𝑗𝑗=𝑙𝑙 = � 𝐴𝐴𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖                       𝑗𝑗 ≥ 𝑙𝑙

  𝐵𝐵𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                   𝑗𝑗 ≤ 𝑙𝑙   
                                  (3.45) 

Therefore: 𝑔𝑔𝑙𝑙𝑙𝑙 = 𝛼𝛼 . Applying these results to Eq (3.43) and considering the energy 

for the infinite system I obtain: 

                 (𝜀𝜀0 − 𝐸𝐸)𝛼𝛼 − 𝛾𝛾𝛾𝛾𝑒𝑒𝑖𝑖𝑖𝑖 − 𝛾𝛾𝛾𝛾𝑒𝑒𝑖𝑖𝑖𝑖 = −1                                            (3.46) 

                                  𝛾𝛾𝛾𝛾(2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 2𝑒𝑒𝑖𝑖𝑖𝑖) = −1                                            (3.47) 

                                    𝛼𝛼 = 1
2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

                                                             (3.48) 

                                    𝛼𝛼 = 1
𝑖𝑖ℏ𝜈𝜈

                                                                     (3.49) 

where 𝜈𝜈 is the group velocity and ℏ𝜈𝜈(𝐸𝐸) = 2𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾𝛾(𝐸𝐸). The result of equation (3.49) 

and (3.45) combines to get the Green's function for the double infinite chain [10][11]: 

                                 𝑔𝑔𝑗𝑗𝑗𝑗∞ = 𝑒𝑒𝑖𝑖𝑖𝑖|𝑙𝑙−𝑗𝑗|

𝑖𝑖ℏ𝜈𝜈
                                                                 (3.50) 

where 𝑔𝑔𝑗𝑗𝑗𝑗∞ represents the retarded Green's function, which describes the two outgoing 

waves from the source j= 𝑙𝑙 . 

 

3.5.2 Green's function of a semi-infinite one-dimensional 

chain 

       To derive the Green's function of a semi-infinite chain consider the problem of a 

doubly infinite chain, and introduce an appropriate boundary condition in order to 

obtain the Green's function for this system as shown in figure (3.5). 
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   This infinite chain must terminate at a given point P+1, so all points P+1 ≥P are 

missing which means the Green's function is eliminated at the site P+1. This can be 

accomplished by adding a wave function to a double infinite Green's function. 

 

 

 

 

 

Figure 3.5: tight-binding model of a semi-infinite one-dimensional chain with on-site 

energies𝜀𝜀0 , couplings – 𝛾𝛾 , and j denote the labels of the sites in the chain. 

 

The general Green's function is written as: 

                                 𝑔𝑔𝑗𝑗𝑗𝑗 = 𝑔𝑔𝑗𝑗𝑗𝑗∞ + 𝜓𝜓𝑗𝑗𝑗𝑗                                                              (3.51) 

The appropriate wave function is simply: 

                               𝜓𝜓𝑗𝑗𝑗𝑗 = 𝐴𝐴𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                                                       (3.52)   

                        𝐴𝐴 = −𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖ℏ𝜈𝜈
𝑒𝑒2𝑖𝑖𝑖𝑖(𝑃𝑃+1)                                      (3.53)  

The Green's function terminated at point (P) due to source at (𝑙𝑙 =j) is: 

           𝑔𝑔𝑃𝑃𝑃𝑃 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖−𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒2𝑖𝑖𝑖𝑖(𝑃𝑃+1)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖ℏ𝜈𝜈
                          (3.54)   

From the boundary condition where j= 𝑙𝑙 =P thereby: 

0ε 0ε 
-∞ 

 
0ε 0ε 0ε 0ε 

- 𝛾𝛾 - 𝛾𝛾 - 𝛾𝛾 - 𝛾𝛾 
0ε 

𝑗𝑗 
  

P-1 P+1 P 

𝑒𝑒−𝑖𝑖𝑖𝑖(𝑙𝑙−𝑗𝑗) 𝑒𝑒𝑖𝑖𝑖𝑖(𝑙𝑙−𝑗𝑗) 

- 𝛾𝛾 
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                              𝑔𝑔𝑃𝑃𝑃𝑃 = −𝑒𝑒𝑖𝑖𝑖𝑖

𝛾𝛾
𝑒𝑒𝑖𝑖𝑖𝑖(𝑃𝑃−𝐽𝐽)                                                (3.55)    

 

The Green's function for site j=P due to source on site 𝑙𝑙 = 𝑃𝑃 

                            𝑔𝑔𝑝𝑝,𝑝𝑝 = − 𝑒𝑒𝑖𝑖𝑖𝑖

𝛾𝛾
                                                                  (3.56) 

which is the surface Green's function. 

 

3.5.3 One dimensional scattering 

       To obtain the Green's function of the whole structure, we must connect the Green's 

functions of the separable system together. Let us consider the case where we have two 

semi-finite one -dimensional leads connected to each other by a coupling of (-𝛾𝛾) with 

site energy of (ε0) and coupled by hopping element – α, as presented in figure (3.6).  

Scattering problems could be reduced to this simple form of one-dimensional system, 

by deriving the transmission and reflection coefficient of an electron travelling from 

the left to the right lead through the scattering region. 

 

 

 

Figure 3.6: Tight binding model of a 1-D scattering region attached to a one-

dimensional lead. 
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The Hamiltonian takes the form of an infinite matrix, is given by: 

         

⎝

⎜
⎜
⎛

  

⋱  −𝛾𝛾    0
−𝛾𝛾   𝜀𝜀0 −𝛾𝛾
0  −𝛾𝛾  𝜀𝜀0

0   0  0
0   0  0
𝛼𝛼   0  0

  0      0    𝛼𝛼
  0      0    0
 0     0    0

  
  𝜀𝜀0 −𝛾𝛾 0   
−𝛾𝛾   𝜀𝜀0 −𝛾𝛾 
0 −𝛾𝛾 ⋱ ⎠

⎟
⎟
⎞

= �
𝐻𝐻𝐿𝐿 𝑉𝑉𝑐𝑐
𝑉𝑉𝑐𝑐
† 𝐻𝐻𝑅𝑅

�                       (3.57) 

where 𝐻𝐻𝐿𝐿 and 𝐻𝐻𝑅𝑅the Hamiltonians of the left lead and right lead, respectively, and the 

coupling to connect these leads is  𝑉𝑉𝑐𝑐. 

    In order to compute the scattering amplitudes, calculating the Green's function of this 

problem is necessary, which is written as: 

                                           𝐺𝐺 = (𝐸𝐸 − 𝐻𝐻)−1                                                    (3.58) 

   The retarded Green's function has been defined above as equation (3.50), and the 

semi-infinite Green's function is given by equation (3.55). In the case of decoupled 

leads where α=0 the total Green's function is written as: 

                        𝑔𝑔 = �

−𝑒𝑒𝑖𝑖𝑖𝑖

𝛾𝛾
0

0 −𝑒𝑒𝑖𝑖𝑖𝑖

𝛾𝛾

� = �
𝑔𝑔𝐿𝐿 0
0 𝑔𝑔𝐿𝐿𝐿𝐿

�                                          (3.59) 

The Green's function for the coupled system can be obtained using the Dyson 

equation, which is: 

                                        𝐺𝐺 = (𝑔𝑔−1 − 𝑉𝑉)−1                                                   (3.60) 

Clearly: 

                                �
0 𝑉𝑉𝑐𝑐
𝑉𝑉𝑐𝑐
† 0

� = � 0 −𝛼𝛼
−𝛼𝛼∗ 0 �                                              (3.61) 

By solving Dyson's equation leads to the Green's function of this system which is: 
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                        𝐺𝐺 = 1
𝛾𝛾2𝑒𝑒−2𝑖𝑖𝑖𝑖−𝛼𝛼2

�𝛾𝛾𝑒𝑒
−𝑖𝑖𝑖𝑖 −𝛼𝛼
−𝛼𝛼 𝛾𝛾𝑒𝑒−𝑖𝑖𝑖𝑖

�                                    (3.62) 

    After finding the Green's function for this system, the scattering coefficients can be 

obtained by using the Fisher-Lee relation, which relates the scattering amplitudes of a 

scattering problem to the Green's function of the same problem.  

The Fisher-Lee relation is: 

                               𝑟𝑟 = 𝑖𝑖ℏ𝜈𝜈𝐺𝐺0,0 − 1                                                        (3.63) 

                              𝑡𝑡 = 𝑖𝑖ℏ𝜈𝜈𝐺𝐺0,𝑁𝑁+1 𝑒𝑒𝑖𝑖𝑖𝑖                                                      (3.64) 

The coefficients correspond to a particle travelling from the left, and the same 

procedure could be done in order to compute these coefficients for a particle travelling 

from the right. 

                                         𝑇𝑇 = |𝑡𝑡|2                                                                 (3.65) 

                                        𝑅𝑅 = |𝑟𝑟|2                                                                  (3.66) 

So, after constructing the full scattering matrix and by using the Landauer formula, we 

can calculate the zero-bias conductance of the system. 

3.5.4 Transport through an arbitrary scattering region 

     In this section, I will derive the most general formula for the transmission probability 

for an arbitrarily shaped scattering structure. Consider a nanoscale system, as shown in 

figure (3.7), with a scattering region of sites (1) to (N) and Hamiltonian H connected to 

one-dimensional electrodes from both sides. Each atom in the leads has on-site energy 

(𝜀𝜀0) with a coupling of (-𝛾𝛾). 
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Figure 3.7: Tight binding model of arbitrary scattering region attached to the one-

dimensional lead. 

The wave functions for this system representing each of: 

First, the left side is: 

                                         𝜓𝜓𝑗𝑗 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                                                 (3.67) 

Secondly, the right side is  

                                               𝜙𝜙𝑗𝑗 = 𝑡𝑡𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖                                                      (3.68) 

Lastly, the scattering region is 

                                                      𝑓𝑓𝑗𝑗                                                             (3.69) 

The Schrödinger equation in these regions could be written as respectively: 

For j ≤ -1: 

                              𝜀𝜀0𝜓𝜓𝑗𝑗 − 𝛾𝛾𝜓𝜓𝑗𝑗−1 − 𝛾𝛾𝜓𝜓𝑗𝑗+1 = 𝐸𝐸𝜓𝜓𝑗𝑗                                       (3.70) 

When j=0 

                            𝜀𝜀0𝜓𝜓0 − 𝛾𝛾𝜓𝜓−1 − 𝛾𝛾𝑙𝑙𝑓𝑓1 = 𝐸𝐸𝜓𝜓0                                              (3.71) 

For scattering region: 

When j=1 
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                          ∑ 𝐻𝐻1𝑙𝑙𝑓𝑓𝑙𝑙 − 𝛾𝛾𝑙𝑙𝜓𝜓0𝑁𝑁
𝑙𝑙=1 = 𝐸𝐸𝑓𝑓1                                                   (3.72) 

For 2≤ j ≤ N-1 

                               ∑ 𝐻𝐻𝑗𝑗𝑗𝑗𝑓𝑓𝑙𝑙𝑁𝑁
𝑙𝑙=1 = 𝐸𝐸𝑓𝑓𝑗𝑗                                                           (3.73) 

For j=N 

                              ∑ 𝐻𝐻𝑁𝑁𝑁𝑁𝑓𝑓𝑙𝑙 − 𝛾𝛾𝑅𝑅𝜙𝜙𝑁𝑁+1𝑁𝑁
𝑙𝑙=1 = 𝐸𝐸𝑓𝑓𝑁𝑁                                        (3.74) 

For j=N+1 

                              𝜀𝜀0𝜙𝜙𝑁𝑁+1 − 𝛾𝛾𝜙𝜙𝑁𝑁+2 − 𝛾𝛾𝑅𝑅𝑓𝑓𝑁𝑁 = 𝐸𝐸𝜙𝜙𝑁𝑁+1                             (3.75) 

For j ≥ N+2 

                         𝜀𝜀0𝛾𝛾𝛾𝛾𝑗𝑗 − 𝛾𝛾𝜙𝜙𝑗𝑗−1 − 𝛾𝛾𝜙𝜙𝑗𝑗+1 = 𝐸𝐸𝜙𝜙𝑗𝑗                                         (3.76) 

When j=0 in equation (3.71) and (3.72): 

                                         𝛾𝛾𝐿𝐿𝑓𝑓1 = 𝛾𝛾𝜓𝜓1                                                         (3.77) 

When j=N+1 in equation (3.76) and (3.77): 

                                          𝛾𝛾𝑅𝑅𝑓𝑓𝑁𝑁 = 𝛾𝛾𝜙𝜙𝑁𝑁                                                     (3.78) 

Constructing  𝜓𝜓0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙𝑁𝑁+1 : 

                     𝜓𝜓0 = 𝛾𝛾𝐿𝐿
𝛾𝛾0
𝑒𝑒𝑖𝑖𝑖𝑖𝑓𝑓1 − (2𝑖𝑖)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑒𝑒𝑖𝑖𝑖𝑖                                    (3.79) 

                                         𝜙𝜙𝑁𝑁+1 = 𝛾𝛾𝑅𝑅
𝛾𝛾
𝑒𝑒𝑖𝑖𝑖𝑖𝑓𝑓𝑁𝑁                                              (3.80) 

Then:  |𝜓𝜓⟩ = Σ|𝑓𝑓⟩ + |𝑆𝑆⟩ 

             �
−𝛾𝛾𝐿𝐿𝜓𝜓0

−𝛾𝛾𝑅𝑅𝜙𝜙𝑁𝑁+1
� = �

Σ𝐿𝐿𝑓𝑓1

Σ𝑅𝑅𝑓𝑓𝑁𝑁
� + �

2𝛾𝛾𝐿𝐿𝑒𝑒𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0
�                      (3.81) 
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Where the self- energies to the left and right lead are Σ𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 Σ𝑅𝑅, respectively. By 

solving equation (3.81), we achieve: 

                               |𝜓𝜓⟩ = Σ𝑔𝑔|𝜓𝜓⟩ + |𝑆𝑆⟩                                                      (3.82) 

                             |𝜓𝜓⟩ = (I − Σ𝑔𝑔)−1|𝑆𝑆⟩                                                  (3.83) 

                  �
−𝛾𝛾𝐿𝐿𝜓𝜓0

−𝛾𝛾𝑅𝑅𝜙𝜙𝑁𝑁+1
� = 1

𝑑𝑑𝑑𝑑𝑑𝑑
�

1 − Σ𝑅𝑅𝑔𝑔𝑁𝑁𝑁𝑁 Σ𝐿𝐿𝑔𝑔1𝑁𝑁
−𝛾𝛾𝑅𝑅𝑔𝑔𝑁𝑁1 1 − Σ𝐿𝐿𝑔𝑔11

� �
𝑆𝑆𝐿𝐿

0
�             (3.84) 

Therefore, the transmission (t) could be obtained as: 

                           𝑡𝑡 = 𝛾𝛾𝐿𝐿𝛾𝛾𝑅𝑅
𝛾𝛾

 𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖(2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)(𝑔𝑔𝑁𝑁1
𝑑𝑑𝑑𝑑𝑑𝑑

)                             (3.85) 

Where the determinant is det=1 − Σ𝑅𝑅𝑔𝑔𝑁𝑁𝑁𝑁 − Σ𝐿𝐿𝑔𝑔11 + Σ𝐿𝐿Σ𝑅𝑅(𝑔𝑔11𝑔𝑔𝑁𝑁𝑁𝑁 − 𝑔𝑔1𝑁𝑁𝑔𝑔𝑁𝑁1) 

The transmission probability is 𝑇𝑇(𝐸𝐸) = |𝑡𝑡|2 which could be written as: 

                 𝑇𝑇(𝐸𝐸) = 4(𝛾𝛾𝑅𝑅
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝛾𝛾

)(𝛾𝛾𝐿𝐿
2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝛾𝛾

) �𝑔𝑔𝑁𝑁1
2

𝑑𝑑𝑑𝑑𝑑𝑑
�                               (3.86) 

                     𝑇𝑇(𝐸𝐸) = 4Γ𝑅𝑅Γ𝐿𝐿 �
𝑔𝑔𝑁𝑁12

𝑑𝑑𝑑𝑑𝑑𝑑
�                                                        (3.87) 

This is the most general solution to calculate the transmission probability for any 

scattering region connected with the same electrodes. 
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Chapter 4 
 
 

Electrical molecular switch 

addressed by chemical stimuli 
 

 

This work was carried out in collaboration with experimental groups in  Marseille and 

de Lille universities and demonstrates the conductance switching of benzo-

bis(imidazole) molecules upon protonation and shows how it depends on the lateral 

functional groups. The results presented in this chapter were published in “Electrical 

molecular switch addressed by chemical stimuli” Nanoscale, 2020, 12, 10127.        

 

4.1. Introduction     
        Molecular electronics exploits the rich variety of organic molecules to create 

custom-designed molecular devices for applications in future electronics. The desired 
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function should be encoded in the molecules, which are then connected to electrodes. 

Among the numerous functional molecules found in the literature, the most striking 

examples of molecular devices are arguably molecular switches, i.e. molecules which 

exist as at least two stable isomers, whose electronic properties can be controllably and 

reversibly modified by external stimuli[1]. These switches should be distinguished 

from molecules where a stochastic conductance switching is observed (e.g. for 

uncontrollable switching driven by the electric field, or electrode/molecule instabilities) 

[2-6]. For conformational switches, the 3D structure of the molecule is modified by the 

isomerization reaction (stereoisomerization). The cis-trans isomerization induced by 

light of the azobenzene molecule [7-12], photoisomerization of diarylethene [13-16] 

and hydrogen tautomerization reaction in phtalocyanine [17] are well-known examples 

of such switches. In redox switches, the electronic properties depend on the 

modification of the charge state of the molecules [18-22] through oxidation or reduction 

depending on the position of the electrochemical potential with respect to the HOMO-

LUMO gap of the molecule. It is also possible to control the conductance of molecular 

junctions by the photo-population of excited state [23-26]. In this case, upon resonant 

illumination, the electrons photo-injected in the LUMO increase the current through the 

molecular junctions. In contrast to conformational and redox switches, this effect is not 

persistent, vanishing rapidly when the excitation is turned off. 

     Several demonstrations of an alternative approach, the electronic conductance 

modulation by pH in molecular junctions, have been reported [27-31]. However, these 

results are puzzling about which state (protonated or deprotonated) leads to the higher 

conductance of the molecules. For example, the conductance value in the junction can 

be modified by the protonation or deprotonation of the anchor group of the molecule 

grafted on a metal surface (electrode). Single molecules of alkanes terminated with 
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diamine or dicarboxylic-acid groups measured by scanning tunnelling microscope 

break-junction (STM-BJ) in a pH controlled solution show higher conductance at pH = 

13 (deprotonated) than at pH = 1 (protonated) [28]. For these authors, the basic (pH = 

13) or acid (pH = 1) environment of the molecular junction modifies the chemical 

specie of the anchoring group: NH2 and COO- in basic environment and NH3+ and 

COOH in acidic medium. The NH2 and COO- species enhance the coupling strength 

between the molecule and the gold electrode, compared to the NH3+ and COOH species 

formed in acidic environment. In the specific case of dithiol terminated alkanes, no 

significant variation of the conductance was observed with the pH. The same 

behaviours were also observed for diacid oligo(phenylene ethylene) Langmuir Blodgett 

films characterized by scanning tunnelling microscope (STM)[30] with a higher 

conductance (ratio ≈ 7) for the deprotonated form (COO-Au bond at pH = 11.4) than 

for the protonated form (COOH-Au bond at pH = 5.9). This difference of conductance 

was interpreted by the chemical modification of the anchoring group with pH as in Ref 

[28], but also by the formation of lateral H bonds between neighbouring molecules in 

the films. For these systems, the higher conductance was obtained for the deprotonated 

form (Gdepro > Gpro). More recently, STM-BJ measurements of 4,4'-vinylenedipyridine 

connected between Ni electrodes showed a conductance switch attributed to change in 

the electrode/molecule coupling upon protonation, and moreover, the pH required to 

switch the conductance can also be tuned by the applied electrochemical potential[32]. 

Protonation and deprotonation of a π-conjugated molecular system bridged in a 

molecular junction can also modify the conductance. Oligoaniline derivatives 

connected into gaps in single-walled carbon nanotubes exhibit conductance variations 

of around one decade between the protonated form (pH = 3) and deprotonated form (pH 

= 11) and this variation was reversible during 5 cycles[29]. The higher conductance 
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was obtained for the protonated form. In Another system, a multi-sensitive molecule 

(pH and light) based on a spyropiran derivative and characterized by STM-BJ shows 

an increase of the conductance by a factor about 2 after protonation of the spyropiran 

in the open form [31]. For these π-conjugated molecular systems, the higher 

conductance was obtained for the protonated form (Gpro > Gdepro).  

   It can also be mentioned that an inversion of the rectifying effect in diblock molecular 

diodes by protonation was observed by STM [27]. This inversion was explained by a 

modification of the dipolar moment of the molecule with the protonation that induces a 

diminution of the HOMO and LUMO energies. Consequently, the conduction occurs 

by resonant tunnelling through the HOMO before the protonation and through the 

LUMO after. This last result shows that the protonation or deprotonation of the 

molecule can modify the molecular orbital energy of the molecule addressed in a 

molecular junction. A similar influence of the protonation on the LUMO position was 

reported for SAMs, in which the protonation of the terminal carboxylic acid groups 

converts back and force the molecular junctions between a resistor and a rectifying 

diode [33]. Protonation has also been used, in combination, with light irradiation to 

block the spiropyran molecule in its merocyanine isomer and avoiding its spontaneous 

back switching to the sypopyran form [34]. Finally, protonation has been used to induce 

destructive-quantum-interference in diketopyrrolopyrrole derivative, leading to a 

reversible decrease of the conductance (1 order of magnitude) upon protonation [35]. 
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Figure 4.1.  Benzo-bis(imidazole) derivatives A and B, and protonation 

    Benzo-imidazole derivatives are known molecules which are sensitive to pH, 

exhibiting a different absorption and/or emission signatures depending on their 

protonation states [36]. Benzo-bis(imidazole) molecules, have been recently 

investigated as precursors of modular fluorescent probes polymers, [37-38] or Janus 

bis(carbene)s and transition metal complexes [39]. They are also very attractive 

acidochromic systems because of the presence of two localized π-subunits that can be 

tuned by reversible protonation to become delocalized [40]. Thus, protonation of these 

molecules led to a bathochromic effect (Δλ = 13 nm) that can be explained by the 

stabilization of the positive charges (colour change from yellow to orange) [41]. This 

prompted us to introduce the –SH anchoring group on the benzobis(imidazole) core for 

grafting such a molecule on gold surfaces in order to evaluate their pH-sensitive switch 

properties (Figure 4.1). Here, this work demonstrates that the pH effect on the molecule 

conductance can be controlled by side chain chemistry. A benzo-bis(imidazole) 

derivative molecule shows a higher conductance in the neutral case (Gneu>Gpro) when 

laterally functionalized by amino-phenyl groups (molecule A), while we observe the 

reverse case (Gpro>Gneu) for the H-substituted molecule (molecule B), figure (4.1). The 

molecular conductance was measured at 3 scale lengths: self-assembled monolayers 
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(SAM) on flat Au surface, about one hundred molecules grafted on Au nanodots (NMJ: 

nanodot molecule junction) and single molecule by mechanically controlled break 

junction (MCBJ). The conductances were measured by C-AFM in the two former cases. 

The 3 approaches give the same trends. These results are supported by theoretical 

calculations and we conclude that these opposite behaviours depend on the position of 

the HOMO resonances relative to the Fermi energy of the electrodes. 

 

4.2. Methods: 

4.2.1 Single-molecule in the gas phase : 

      “The first principles ab-initio calculations carried out using the Gaussian density 

functional code [41]. The geometries of molecules A and B were optimized using 

density functional theory in the framework of the B3LYP functional[42], the 6-311g 

basis set and the GDISS optimization algorithm[43]. The influence of pH through 

proton exchanges at the molecular level is not simple to simulate with the interplay of 

dielectric and solvation effects[44]. Another issue for the modelling is the presence of 

a counter ion (here Cl-) at a random position in order to equilibrate the total charge of 

the system[45]. To co pe with this issue,  a cluster model has been used as defined in 

Ref [46]. For each molecule (A and B) and their protonation states, the HOMO-LUMO 

gap, the electron affinity (EA) and the ionization potential (IP) has been calculated” . 

[Note, this calculation was done by C. Krzeminski] 

 

 



 

69 
 

4.2.2 Nanodot molecule junctions: 

Nanodot molecule junctions (NMJ) is an approach used with conducting atomic force 

microscopy (C-AFM) to measure the molecular junction conductance or the current–

voltage characteristics. This method used an array (<10 nm) made from hundreds of 

molecules fabricated by electronic lithography on single-crystal gold nanodots 

embedded in Si substrate. Each time the C-AFM tip scanning the array of NMJs, the 

current (at a given voltage) is recorded. After that, from these C-AFM images, the 

current or conductance histograms can be extracted and repeating this process at 

different bias allow the measurement of 2D histograms of the current-voltages (I-V) 

curves [50,51,52]. 

 

4.2.3 Metal/molecule/metal junction 

    To calculate the electron transport through these molecules when a 

metal/molecule/metal junction is formed, I attach the optimized geometry of the 

molecule to gold via the thiol anchor groups. In this case, I bind the terminal sulfur 

atom to a hollow site on a (111) gold surface and the optimum Au-S distance is 

calculated to be 2.3Å. The hydrogen atom contacted to the sulfur is removed. An 

extended molecule is then constructed to consist of 6 layers of (111) gold each 

containing 25 atoms. Using the DFT code SIESTA [47], a Hamiltonian describing the 

extended molecule is generated using the following parameterization. A double-ζ plus 

polarization orbitals basis set, energy cut off=150 Rydbergs, and the GGA exchange-

correlation functional [48]. To calculate the protonated form, we control the charge on 

the counter ions (Cl-) via the atomic basis set. The zero-bias transmission coefficient 
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T(E) is then calculated as a function of the electron energy (E) using this Hamiltonian, 

via the GOLLUM code [49]. This is then used to evaluate the conductance and electrical 

current via the Landauer formula. 

𝐺𝐺 =
2𝑒𝑒2

ℎ
� 𝑑𝑑𝑑𝑑 𝑇𝑇(𝐸𝐸) �

𝑑𝑑𝑑𝑑(𝐸𝐸)
𝑑𝑑𝑑𝑑 �

∞

−∞
 

Where, f(E) is the Fermi-Dirac distribution, e is the electronic charge and h is 

Planck’s constant. The electrical current is evaluated, 

𝐼𝐼 =
2𝑒𝑒
ℎ
� 𝑑𝑑𝑑𝑑𝑑𝑑(𝐸𝐸)[𝑓𝑓𝐿𝐿(𝐸𝐸)  −  𝑓𝑓𝑅𝑅(𝐸𝐸)] 
∞

−∞
 

Where fL and fR are the Fermi-Dirac distributions in the right and left lead 

respectively. 

 

4.3. Results and discussion 

4.3.1. Electrical characterization 

   The electrical current through molecules A and B was measured by my 

collaborators in Marseille and de Lille universities using three methods, the details 

of which can be found in ref[52]. As an example, I show the results for the current 

measured using the nanodot molecule junction. The current histograms at 200 mV for 

both the molecules and in both states (protonated and neutral) are presented in figure 

4.2. These histograms show a shift of the distribution between the protonated and 

neutral NMJs, with higher current for the neutral molecule A (Gneu(A)>Gpro(A)) and a 

decrease of the current for the neutral molecule B (Gpro(B)>Gneu(B)). 
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Figure 4.2 Histograms of the current at a fixed bias (200 mV) measured by C-AFM on 

(a) a molecule A after protonation in black and for neutral molecules in red; (b)  

molecule B after protonation in black and for neutral molecules in red.  

 

   A summary of all the measured current values is shown in table 1, and shows that the 

other methods follow the same trend as the NMJ measurement. However, molecule A 

could not be measured at the single molecule level using the MCBJ method. The values 

of the switching ratios are shown in table 2 and has values in the range 3-10, the 

theoretical predicted ratios are also in good agreement using the method defined later.  

 

Table 1. Current values for molecules A and B measured at 3 scale lengths by 3 

approaches (n.m: not measured) 

 

Table 2. Switching ratio for molecules A and B measured at 3 scale lengths by 3 
approaches and theoretical calculations. (n.m: not measured) 

 MCBJ NMJ SAM/AuTS Theory 

A (Gdeprot/Gprot) n.m. 3.4 9.3 6 

B (Gprot/Gdeprot) 4.5-6.5 2.5 6.3 15 

 

 Adep Apro Bdep Bpro 

MCBJ n.m n.m 1.4x10-10A 9.1 x10-10A 

NMJ 2.9x10-8A 8.5x10-9A 1.7x10-8A 4.2x10-8A 

SAM/AuTS 1.4x10-8A 1.5x10-9A 3.2x10-10A 2.0x10-9A 
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4.3.2 Modeling molecule in gas phase 

        The first step in modelling is to calculate the optimized geometries, the electron 

affinity (EA), the ionization potential (IP) and the HOMO-LUMO gap for molecules A 

and B in the neutral and protonated forms. Figure (4.3) shows the optimized geometries 

for molecules A and B, the centre of the molecule (imidazole) and the two phenyl 

groups remain planar. The length of both molecules A and B are 18.9Å which is the 

distance between the terminating sulfur atoms.  

    For the unprotonated state of molecule A, the dihedral angle between the alanine 

rings and imidazole is near 90°. For both molecules, the imidazole ring presents the 

most accessible protonation sites with the presence of two non-hydrogenated nitrogen 

atoms. The introduction of an HCl molecule leads to the formation of N-H bond 

characterized by a bond length of 1.0764 Å. For the molecules A and B up to two 

protonation degrees can be foreseen with the protonation of the nitrogen atoms as 

shown in Figure (4.3).  

 
Figure 4.3. Optimized geometries of (a) unprotonated molecule A, (b) unprotonated 
molecule B, (c) protonated molecule A with two protons and (d) protonated molecule 

B with two protons. [Note, this calculation was done by C. Krzeminski] 
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  4.3.2.1 Energy Levels : 

    Figure 4.4 shows the results for the electronic properties of molecules A and B, and 

these demonstrate that protonation tends to reduce the HOMO–LUMO gap of the 

molecules and increases the IP and EA. The Ionization Potential (IP) and the Electron 

Affinity (EA) can provide a more accurate calculation of the HOMO and LUMO energy 

levels. If  E(N) is the ground state energy of the neutral molecule, where N is the number 

of electrons, the energy associated with the addition of one electron E(N+1)  is called 

the electron affinity  (EA). Also, the energy associated with removing one electron E(N-

1) is called the ionization energy or potential (IP). Where IP=E(N-1)-E(N) and  

EA=E(N)-E(N+1). Furthermore, the energy gap or the HOMO-LUMO gap is Eg = IP-

EA , where IP= - 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 and EA= - 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 

When molecule A and B are protonated and the number of the HCL is increased from 

1 to 2, the HOMO-LUMO gap decreases and the HOMO and LUMO levels move to 

lower energy. This means that as the number of sites are protonated the energy levels 

shift. For molecule A, which has 4 protonation sites the energy gap is constant after 2 

sites have been protonated, as seen in Figure(4.4-a). Therefore the extra protonation on 

the amine sites does not change the electronic properties of the molecule. Therefore, in 

the following transport calculations I use two chlorine atoms. An important point here 

in the case of the neutral molecules is that while the HOMO-LUMO gap is similar for 

both (3.8eV), the ionization potential of B is 0.5eV lower than A. 
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Figure 4.4. Evolution of (a) the HOMO-LUMO gap, (b) electron affinity and (c) 

ionization potential of molecule A versus the protonation state. Evolution of (d) the 

HOMO-LUMO gap, (e) electron affinity and (f) ionization potential of molecule B 

versus the protonation state. [Note, this calculation was done by C. Krzeminski] 

 

 

  

A 

B 

(a) (b) (c) 

(d) (e) (f) 
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4.3.3. Modeling electron transport in metal/molecule/metal junctions 

        To explain the measured switching behaviour, electron transport calculations were 

performed through the two molecules when attached to gold electrodes. First, I examine 

the simple comparison between the deprotonated molecules A and B when they are 

attached to gold electrodes as described in the methods section.  Figure (4.5) shows the 

calculated conductance through molecules A and B for the geometry given in figure 

(4.8). Here, the HOMO resonances of the two molecules lie at similar positions relative 

to the SIESTA predicted Fermi Energy EF0=0eV and give comparable conductance 

values.    This disagrees with the calculated behaviour in the gas phase where the 

HOMO level of B lies at lower energy. This can be attributed to the thiol anchor groups  

pinning the HOMO close to the Fermi energy and explains why the results don’t match 

the measured conductance which shows molecule A has a higher conductance in the 

neutral forms (Table 1). 

 

 

 

 

 

 

 

 

Figure 4.5. Electrical conductance of the deprotonated molecules A and B. 
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4.3.4. Transport through NH2 anchor groups in Molecule A 

      Another thing to consider in the junction formation of these molecules is the fact 

that Molecule A contains NH2 groups which can also act as anchor groups and may 

lead to coupling to gold electrodes. I calculate T(E) for this geometry where the N-Au 

distance is 2.4 nm (figure 4.6). The resulting transmission shows that the off-resonance 

values in the HOMO-LUMO gap (i.e. 1E-6G0 at 0eV) are much lower than the 

equivalent molecule binding through the thiols (~1E-3G0). At the Fermi energy, the 

value is approximately 3 orders of magnitude lower. This is due to the phenyl ring 

rotation between the NH2 groups and the central core, which is approximately 90°, and 

suggest that these groups play a minimal role in the electron transport. 

 

Figure 4.6. (left) Geometry of molecule A contacted to gold electrodes through the 

NH2 groups and (right) the corresponding zero-bias transmission coefficient T(E). 
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Figure 4.7. zero-bias transmission coefficient T(E) for different rotation angle of  the 

phenyl ring between the NH2 groups and the central core of molecule A. 

 

    The modelling of protonation of the molecules is more complex than the neutral 

versions, as adding hydrogen atoms at the nitrogen sites, causes the molecule to become 

charged. Therefore, counter ions, (which here are chlorine ions) are needed to balance 

the charge i.e. making the added hydrogen atoms H+ and the chlorine atoms Cl-. To 

achieve this within SIESTA requires analysis of the electron distribution using a 

Mulliken population analysis.  To form a Cl- ion requires the number electrons on the 

chlorine atom to increase by one (Here I define N as the number of electrons added to 

the chlorine atom).   

    This calculation was performed by varying the distance between the counter ions and 

the hydrogen atom of the protonation site on both molecule A and B and evaluating the 

number of electrons N on the Cl atom. The results are shown in table 3, and the optimum 

distance for the maximum value of N (0.6 and 0.5 for A and B respectively) occurs at 
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a CL-H distance of 3Å, it also shows the sensitivity of the charge distributions in these 

calculations to the position of the counter ions. Even for the optimum case, the number 

of the electrons on the chlorine atom is still not equal to one. However, the chlorine 

atom plays no direct part in the electron transport through the junction, it is only 

responsible for the electrostatic control of charge, therefore the basis set of chlorine can 

be utilized to control the behaviour of the counter ions. The basis sets in SIESTA (which 

are pseudo atomic orbitals) are defined by the cut-off radius, this is the value beyond 

which the wavefunction is zero. Here I set the Cl-H distance to be 3Å and increase the 

values of the cutoff radii, the results show in table 4 that for longer basis sets the number 

of electrons N on the chlorine atom increases and reaches a value of one when the radius 

is > 8 Bohr.  I then compare the behaviour of the transmission coefficient for the 

protonated version of molecule B when the charge on the counter ion is controlled via 

this method. Figure (4.8) shows that when there are no counter ions the LUMO 

resonance lies directly at the Fermi energy (0eV) as is expected for a charged system 

(cyan line). The addition of the counter ions shifts the position of the Fermi energy into 

the middle of the HOMO-LUMO gap and the amount of shift is controlled by the value 

of N on the counter ions. Here N=0.7 (blue line) and N=1.0 (black line). 

Table 3: The values of N by Varying the distance of the counter ions on both molecules 

A and B. 

Distance (Å) N (Molecule A) N (Molecule B) 

1 0.1 0.1 

2 0.5 0.4 

3 0.6 0.5 

4 0.5 0.4 

5 0.4 0.4 

 



 

79 
 

Table 4:  The increase in value of N determined by a Mulliken population analysis on 
the chlorine counter ions by varying the cut-off radius in the basis set for molecules A 
and B. 

Cutoff Radii (Bohr) N (Molecule A) N (Molecule B) 

n=3         0  2 
3.826      3.17 
n=3         l  2 

4.673      3.419 

0 0 

n=3         0  2 
5.826      5.172 
n=3         l  2 

5.673      5.419 

0 0.7 

n=3         0  2 
6.826      6.172 
n=3         l  2 

6.673      6.419 

0 0.7 

n=3         0  2 
7.826      7.172 
n=3         1   2 
7.673      7.419 

1 1 

n=3         0  2 
8.826      8.172 
n=3         1   2 
8.673      8.419 

1 1 

 

Figure 4.8 Transmission coefficient T(E) for the protonated molecule B when the are 
no Cl- counter ions (cyan), when the number of electron N on the Cl atom =0.7 (blue) 

and when N=1 (black). 

 

Having established the methods, I now compare the transport behaviour of molecules 

A and B in their protonated and deprotonated forms to explain the switching effect seen 
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in the experimental measurements.  I calculate the transport properties for identical 

contacting geometries as shown in figure (4.9). The resulting transmission curves T(E) 

in figure (4.9) show the gap between the HOMO and LUMO resonances is 

approximately 2 eV. Molecule A in the neutral (deprotonated) form shows that the DFT 

predicted Fermi energy (EF0=0eV) lies close to the HOMO resonance and gives a 

conductance value of 0.06G0. Upon protonation, the HOMO-LUMO gap is decreased 

and the position of the Fermi energy lies in the middle of the gap. The value of 

conductance decreases to 0.01G0 in agreement with the trend shown in the NMJ 

measurement of figure 4.2.  

 

Figure 4.9. Zero bias transmission coefficient T(E) for molecule A (a) and molecule 

B (b)  in a linear geometry for the protonated and deprotonated forms. 
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    For molecule B, I find that the DFT calculation positions the Fermi energy close to 

the HOMO, leading to a similar transmission for Molecule A figure 4.5. However, the 

calculated IP of molecule B is larger than A (meaning the HOMO is at lower energy).  

Figure 4.4 shows this difference to be ~0.5eV, and therefore I shift the Fermi energy by 

this amount and define EF1 = EF0+0.5eV. The value of the conductance for the 

deprotonated case at EF1 is 0.002G0. Protonation again decreases the HOMO-LUMO 

gap, but now the transmission is higher at E-EF1 = 0eV and the conductance increases 

to a value of 0.03G0, again in agreement with the measured trend of figure (4.2). The 

conductance ratio for molecule A Gdeprot/Gprot = 6 and  Gprot/Gdeprot = 15 for molecule 

B are in excellent agreement with our measured ratios in Table 2. Thus, the changing 

behaviour on protonation between molecule A and B can be attributed to the difference 

in the relative position of the HOMO resonance with respect to the Fermi energy. 

 

 4.3.5. Tilt angle 

         One final thing to consider is the geometry of the molecule in the junction. The 

measured thickness [52] of these molecules when they form SAMs shows that Molecule 

A has a smaller thickness (1.3nm) than B (1.9nm) which suggests the molecule A is 

tilted while B stands upright. Figure 4.10 calculates T(E) for a tilt angle of 60° away 

from the normal (the gold-gold separation is now 1.4nm). The result shows the same 

trend to the upright geometry in figure 4.9, with the transmission decreasing when the 

molecule is protonated. Suggesting that the geometry is not important.  
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Figure 4.10. Zero bias transmission coefficient T(E) for molecule A tilted at an angle 
of 60° away from the normal. 

 

 

  

 

 

 

 

 

 

 

Figure 4.11. Zero bias transmission coefficient T(E) for molecule A(protonated) in 
different tilted angles. 
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4.4. Conclusion 

       A multi-scale characterization of the electron transport through molecular junction 

upon protonation/deprotonation demonstrates that the conductance switching depends 

on the lateral functional groups. The molecular conductances were measured at 3 scale 

lengths: self-assembled monolayers on flat Au surfaces, about hundred molecules 

grafted on Au nanodots (measured by C-AFM in these two cases) and single-molecule 

by mechanically controlled break junction, and. The 3 approaches demonstrate that the 

pH effect on the molecule conductance can be controlled by side chain chemistry. A 

benzo-bis(imidazole) molecule shows a higher conductance in the neutral state 

(Gneu>Gpro) when laterally functionalized by amino-phenyl groups, while the reverse 

case (Gpro>Gneu) for the H-substituted molecule is observed. These results are 

understood with the help of theoretical calculations and I conclude that these opposite 

behaviours depend on the electronic coupling between molecules and electrodes and 

the relative alignment of the Fermi energy with the molecular orbitals.  
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This study is a collaborative work between (Lancaster, Durham and Madrid 

Universities ).  The experiments are still in progress. 

5.1. Introduction 
 

       In recent years, one topic of interest in the field of charge transport at the molecular- 

scale has been quantum interference (QI) effects [1,2,3,4,5]. This is because it provides 

a novel approach to tuning transport behaviour, by enhancing or decreasing the 

conductance (i.e. constructive or destructive quantum interference) in molecular 

systems [6]. Such effects can be utilized in the design of single-molecule electronic or 

thermoelectric [7-8] components to achieve the quantum effects that occur at the 

nanoscale level. Typically, such behaviour is built into the structure of the molecule, for 

example through the connectivity of the anchor groups to a central core [9,10,11], 

however the ideal case would be to control the interference features through an external 

mechanism. One typical approach to this is through mechanical control, where the 

structure of the molecule can be changed to alter the interference pattern [12]. Other 

types of  molecular structures that have shown excellent potential in controlling quantum 

interference is the stacking of individual molecules[7,13,14]. Here the electrodes 

attached to one anchor at the end of two molecules, which stack to form a dimer. 

Moreover, this will bridge the gap between the electrodes and the electron path between 

them will be via the overlap π -orbitals of the molecules overlap. Here controlling the 

nature of the overlap has shown conductance oscillations as destructive interference 

features are sensitive to the stacking geometry. Understanding the charge transfer 

through π-stacked assemblies plays an important role in designing and development the 

electronic devices.  
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   The present research aims to explore experimentally and theoretically, the correlation 

between pi-stacking and controlling the quantum interference in a series of pi-stacked 

Carbazole molecules FC1, FC2 and FC3 as shown figure 5.1.  Typically to create pi-

stacked junctions, molecules with a single anchor group are used, as they should only 

bind to one electrode and therefore to create a molecular bridge across the junction two 

molecules will have to stack as shown in Figure 5.2. However, the junction formation 

probability is an unknown quantity using this approach, therefore to create a stacked 

geometry, it is useful to join the two molecules together via a tether to their central core, 

as shown in figure 5.1. FC1 is a para connected monomer with a single thiol anchor 

group, formed of a carbazole core unit with an alkane chain attached to the central 

nitrogen atom. FC2 is the dimer consisting of two FC1 molecules now connected 

(tethered) via the connecting alkane chain. FC3 consists of a different tether unit, which 

is now a more rigid phenyl ring with tertiary butyl group. The aim is to control the 

stacking geometry via the tether unit, which in the case of FC3 should increase the 

distance between the carbazole units. The choice of the thiol anchoring groups ensures 

a strong chemical bonding to the leads with the current flow mainly controlled by the 

molecular HOMO level[15-17].   

Figure 5.1: The molecular structures used in this study : (FC1) a single carbazole with 
one thiol anchor group, (FC2) two carbazole with thiol anchor groups tethered by 
alkane chain, and (FC3) have two carbazoles with thiol anchor groups tethered by a 
longer tether with a phenyl ring in it. 

FC1 FC2 FC3 
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      The conductance of these molecules was measured in Madrid using a scanning 

tunneling microscope - break junction (STM-BJ) technique[6,13]. In this technique, a 

metallic contact between a gold STM tip and a gold coated substrate is created with the 

use of a piezoelectric actuator. The conductance across this junction is measured 

continuously as the metal contact is ruptured by retracting the tip. This process is 

repeated thousands of times generating conductance versus displacement traces each of 

which is an independent measurement (Magyarkuti, A., Adak, O., Halbritter, A., & 

Venkataraman, L)[18]. Table 1  shows the experimental conductance and each 

molecule has three different conductance values. This suggest that there are multiple 

junction geometries are being formed, and surprisingly the same behaviour is seen in 

the monomer (FC1) as for the dimer systems (FC2 and FC3). The value of the high, 

middle and low conductance values is also similar in each case and follow the same 

trend. To aid the attribution of the conductance values, I will investigate different 

possible geometries binding in different places for these three molecules. Thus, using 

DFT and transport calculations will provide insight into what may be happening in the 

experimental data and how these molecules behave in the junction.  

Table 1. The experimental conductance measurements for the all three molecules FC1, 

FC2 and FC3. Each molecule shows three conductance values determined from their 

conductance histograms. (Unpublished data, provided by Juan Hurtado, Universidad 

Autónoma de Madrid) 

 Log Gh (G0) Log Gm (G0) Log Gl (G0) 

FC1 -2.8 -4 -5.2 

FC2 -2.85 -4.7 -5.2 

FC3 -3.1 -3.95 -4.9 
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5.2. Theoretical Methods 

 
5.2.1 Molecules in the gas phase  

        The first step in modelling the electronic properties is to calculate optimum 

geometry of the three molecules. Examining the structure of the tethered molecules FC2 

and 3, I identify 3 possible geometries that they could form. These are shown in Figure 

5.2  and consist of the non-stacked or ‘open’ configuration (a), a ‘half-stacked’ 

geometry where the thiol anchor groups lie at opposite ends and only the core carbazole 

unit is stacked (b), and the fully stacked or ‘hairpin’ geometry where the anchor groups 

lie on the same side (c). I then relax the FC1 molecule and the FC2 and FC3 for the 

three different configurations using the DFT method employed to calculate the 

optimum configurations. This was done using the density functional SIESTA code [19], 

by relaxing them to force tolerance less than 0.02eV/Å using a double-zeta basis set, 

and a real- space grid defined with an energy cutoff of 150 Rydberg. The exchange-

correlation functional was the Van der Waals functional [20] which more accurately 

describes the longer-range interactions in the stacked junctions. I also repeat the 

calculations using the Local Density Approximation (LDA) [21] to compare the 

accuracy of different functionals.  

 

Figure 5.2 Three possible configurations of the FC2 molecule: (a) the ‘open’ non 

folded geometry, (b) ‘half-stacked’ where the anchor groups lie at opposite ends and 

(c) ‘hairpin’ where the anchor groups are at the same end. 
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    Table 2  shows the minimum ground state energy for each of the three configurations 

using a VdW functional. In the case of FC1, the open case is for the dimer structure in 

a non-stacked configuration. In each case the highest energy occurs for the ‘open’ (non-

stacked) geometry and I set this value to 0eV. The energy of the other configurations is 

then given relative to this value. The energy of the ‘hairpin configuration is the lowest 

in all configurations, i.e. for FC1 it is -2.5eV compared to -1.8 eV for the ‘half-stacked’ 

and FC3 is -1.4eV (hairpin) compared to -0.8eV (half-stacked).  

    The same behaviour is found using the LDA functional (Table 3). These results 

demonstrate which conformations are the most favorable to be measured or formed in 

the junction, as I compare the number difference with Boltzmann factor where 𝑘𝑘𝐵𝐵𝑇𝑇 = 

0.0259 eV at room temperature T. The energy differences between the structures are 

much greater than 𝑘𝑘𝐵𝐵𝑇𝑇  and suggest that the most likely structure for the tethered 

molecule FC2 and FC3 to be present in the junction is the hairpin configuration. As a 

first step to evaluating the experimental behaviour, this may explain why all three 

molecules produce similar conductance groups, as they all have anchor groups on one 

side of the molecule in the lowest energy geometry. 
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Table 2 Ground state energy for the optimum geometry of molecules FC1 (dimer), FC2 

and FC3  calculated using VdW. 

   open    Hairpin Half-stacked 

FC1 
 

0 eV -2.5 eV -1.8 eV 

FC2 0 eV -1.34 eV - 0.78 eV 

FC3 0 eV -1.4 eV -0.8 eV 

  

Table 3 Ground state energy for the optimum geometry of molecules FC1 (dimer), FC2 
and FC3  calculated using LDA. 

 

 

 

 

 

 

 

 

 

 

    Each of the molecules has a lower energy in the stacked geometry compared to the 

open configuration, which suggests that the binding energy between the carbazoles is 

large. I evaluate the strength of the binding energy for FC1 by calculating it as a 

function of the stacking parameters defined in Figure 5.4 ( X is the overlap length of 

the molecules and d is separation between them). Figure 5.3Shows the binding energy 

   Open Hairpin Half stacked 

FC1 
 

0 eV 
 

-2.2 eV 

 

-1.5 eV 

FC2 0 eV 
 

-1.01 eV 

 

-0.5 eV 

FC3 
 

0 eV 

 

-0.8 eV 

 

-0.7 eV 
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has a minimum value of -0.5eV (X=6 Å and d=3.6Å) for the half-stack and -0.33eV 

(X=6.2 Å and d=3.4 Å)where X is the overlap length of the molecules and d is 

separation between them. This energy is large and is comparable to the typical binding 

energies between anchor groups and gold electrodes.   

 

Figure 5.3 Binding energy between two FC1 molecules in the half-stack geometry 

(Figure 5.4) as a function of overlap length X for two different molecule separations d. 

 

5.2.2 Binding energy to gold electrodes 
       

     The next step is to understand how the molecules FC1, FC2 and FC3 attach to the 

surface of the gold electrodes and in this case as I am modelling STM-Break junction 

measurements, I assume that the gold surface consists of a pyramid of gold atoms. I 

then calculate the optimum binding geometry of each molecule. For these molecules, 

the expected binding is through the tip of the gold coupling to the terminal sulfur atom 

in each molecule. The binding distance 𝑑𝑑b defined as the distance between the gold - 

sulfur.  The ground state energy of the total structure (𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) calculated using SIESTA, 
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with the parameters defined as those in section (5.2.1). In SIESTA, I calculate the 

energy of each monomer in a fixed basis. Thus, the energy of the individual molecule 

in the presence of the fixed basis well-defined as 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴and for the electrode is 𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴. To 

calculate the binding energy, I will use the following equation: 

∆𝐸𝐸(𝐴𝐴𝐴𝐴) = 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐴𝐴𝐴𝐴𝐵𝐵 − 𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴 

    The optimum binding distance 𝑑𝑑b between Au-S is 2.3 Å, and the binding energy is 

approximately -1.9 eV.  In the case of FC1, with one anchor group, it would be expected 

that the only possible geometry to bridge the junction is in the half-stacked 

configuration. However, the measured values in Table 4  show three groups, suggesting 

that the molecule may be binding to the gold through other parts of the molecule rather 

that the sulfur atom of the thiol anchor. Therefore, I consider the binding energy for the 

three molecules FC1, FC2 and FC3 in three different positions which are: (i) connecting 

through the terminal hydrogen, (ii) connecting through the Nitrogen in the central core 

of the Carbazole and (iii) the cofacial arrangement binding to the terminal phenyl group. 

These geometries are shown in Tables:  4 (FC1),  5 for (FC2) and  (FC3). What I find 

is that all of them give binding energies much larger than room temperature, but the 

values (typically ~0.15 eV) are slightly less than the Au-S bond and the stacking 

binding energy. Also, the binding energy is the largest when it is connecting through 

the terminal hydrogen as presented in Table 4(b, e) and Table 5 (b). The binding to the 

terminal hydrogen could be due to interaction with the pi-system of the molecule, which 

may be stronger at the ends of the molecule where there is less chance of repulsion due 

to alkane chains near the central region. Therefore, it could be possible that the 

molecules bridge the junctions in these geometries. 
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Table 4.Binding energy and binding distance for FC1 connected to the electrode 

(a)through H (b)  in cofacial through H (c) in co-facial through N, and binding energy 

for pi-stacked carbazole in HAIRPIN structures connected to the electrode (d)through 

H (e)  in cofacial through H (f) in cofacial through N. 
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Table 5. The binding energy and binding distance for the molecules FC2 and FC3 in 

hairpin structures connected to the gold (a)through H (b) in cofacial through H (c) in 

cofacial through N. 
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5.2.3 Metal/Molecule/Metal junction: 

 
      I now explore the electron transport properties of the carbazole molecules shown 

for all the possible geometries that were previously considered, and the different 

electrode binding locations. In each case, an extended molecule is constructed, with the 

electrodes consisting of 5 layers of (111) gold each containing 25 atoms terminated by 

a pyramid of 11 gold atoms. SIESTA is then used to generate a Hamiltonian using the 

parameters described previously (here an LDA functional is used to minimize 

computational expense as the transport properties are not strongly dependent on the 

functional). The zero-bias transmission coefficient 𝑇𝑇(𝐸𝐸) is calculated using this 

Hamiltonian, via the GOLLUM code [22,23]. The room temperature conductance can 

then evaluate from the Landauer formula, 

𝐺𝐺 =
2𝑒𝑒2

ℎ
� 𝑑𝑑𝑑𝑑 𝑇𝑇(𝐸𝐸) �

𝑑𝑑𝑑𝑑(𝐸𝐸)
𝑑𝑑𝑑𝑑 �

∞

−∞
 

where 𝑓𝑓(𝐸𝐸) is the Fermi-Dirac distribution, e is the electronic charge and ℎ is Planck's 

constant. 

 

5.3. Results and discussion 
 

       In the following sections, I will present different binding locations on the gold 

electrode for the folded carbazoles FC1, FC2 and FC3 with the corresponding 

conductance values. Also, I will investigate which molecules show quantum 
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interference effects, namely a DQI (destructive quantum interference) feature and how 

it is controlled by the stacking geometry.  

5.3.1 Transmission coefficients 
 

5.3.1.1. FC1: 

 

 

 

Figure. 5.4 Geometry of FC1 in a pi-stacking geometry. X is the overlap length of the 
two molecules and d is the separation. 

 

 

 

    As a first step, I examine the transport behaviour of FC1 when it forms a half-stacked 

geometry to compare it to previous work [7,13,14] on these types of structures. The 

molecule bridges the junction by forming the structure shown in Figure 5.4 with the 

parameters d and X defining the geometry, d is the separation between the stacked 

layers and X is the overlap length of the molecules. In the case of the two molecules 

being perfectly aligned on top of one another the value of X would equal the length of 

the molecule. The optimum binding distance was found to be db=3.6Å and I calculate 
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the transmission coefficient 𝑇𝑇(𝐸𝐸) for different overlap length ranging from X=3.9 to 

7.9Å (Figure 5.5). The results show how the transport is sensitive to the overlap length, 

with DQI features appearing at values of X=4.9 and 6.9Å. I then evaluate the 

conductance at a Fermi energy EF1=EF0+0.5eV (where EF0 is the DFT predicted Fermi 

energy), which avoids the pinning to the HOMO resonance caused by the thiol anchor 

groups [15-17]. Here, the conductance oscillates with X, varying by over 2 orders of 

magnitude. This shows that carbazoles behave in a similar way to previously studied 

systems and quantum interference features can be controlled over a small change of 

geometry (approx. 1Å).  

 

Figure 5.5 (Left) Zero-bias transmission coefficient T(E)  and conductance G (right) 

of molecule FC1 half-stacked geometry defined in  Figure 5.4 For different values of 

X at a separation d=3.6Å. 

 

    As shown in the optimum geometry calculations, the half-stacked dimer 

configuration for FC1 isn’t the most favourable, therefore I explore all possible bridging 

geometries for both the monomer and dimer using the binding locations calculation in 

section (5.2.2).   Figure 5.6 (A) shows the transmission through the single carbazole 
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unit FC1 for three different binding geometries, where the DFT predicted fermi energy 

corresponding to (EF -EFDFT =0 eV) lies close to the HOMO resonance. The first 

configuration (1 blue), for one thiol anchor group attached to the gold on one side, and 

the terminal hydrogen atom on the carbazole attached to the gold as another anchor 

group shows the lowest transmission value. The second geometry (2 red) considers the 

co-facial binding connecting to the central core of the carbazole molecule to one 

electrode, as the thiol is connected to the second. This geometry has the highest 

transmission value 𝑇𝑇(𝐸𝐸) in the HOMO-LUMO gap. The last geometry (3 gold) for the 

co-facial binding through the terminal phenyl ring gives a value of T between the two 

previous geometries. Therefore, for the single molecule junction, where the second 

electrode is weakly coupled, the value of the transmission is controlled by the coupling 

strength between electrode and the pi-system of the molecule. 

 

 

 

 

 

 

 

 

 

Figure5.6: The transmission coefficient T(E) of different bridging geometries for the 
FC1 monomer (A) and the FC1 stacked dimer (B). 

 

      Next, I investigate the bridging geometry of FC1 for the dimer stacked 

configurations and the results are shown in Figure 5.6 (B). The first structure is the fully 
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stacked or hairpin, where the two sulfurs are at the same end (1 blue) and the two 

terminal hydrogens bind to the second electrode. The second case is the half stacked, 

where the sulfur atoms are at the opposite end (2 red) as was the case calculated in 

Figure 5.5. For the optimum configuration there is no DQI feature in the gap. The 

hairpin geometry binding through the pi-system (cofacial) of the terminal phenyl ring 

(3 gold) and central core (4 blue) are also shown. I observe that the hairpin configuration 

has the higher conductance values, and the half stacked is the lowest. In all the stacked 

geometries there are no destructive interference resonances (DQI) in the gap between 

the HOMO and LUMO resonances. All three hairpin configurations give similar 

conductance value as in this case the terminal hydrogens now couple twice to the gold 

increasing the coupling strength. 

The experimental measurements of FC1 show three conductance values, and I have 

identified different bridging geometries FC1 could form. Theoretically, the high 

conductance value occurs when a single molecule binds with a strong co-facial 

coupling, the middle value occurs for the hairpin geometry and the low conductance is 

given by the half-stacked configuration. 

 

5.3.1.2. FC2 & FC3: 

 

        Having studied FC1, I will now move on to discuss the different binding locations 

of the folded carbazoles FC2 and FC3 and their electrical transports curves. The results 

for FC2 are shown in Figure 5.7, the first geometry (1 blue) is the hairpin configuration 

where one of the electrodes contacts the terminal hydrogen atoms, and the other is 

coupled to the terminals sulfur. The second structure is the Half-stacked, where the gold 

binds to the sulfur atom at the opposite ends (2 red). Also, I investigate the hairpin 
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model when the gold electrode is connecting in co-facial form through two different 

sites, which are the terminal phenyl ring (3 gold) and the core of the carbazole molecule 

(4 purple). The last structure is the open system for the unfolded carbazole, where the 

electrode connected to the terminal sulfur at both ends, but the central core is not 

stacked (5 green). 

 

    

Figure 5.7: The transmission coefficient T(E) for different bridging geometries of the 

FC2 molecule. 

 

     In Figures 5.7 there is a clear trend in the transmission curves; the gold, purple and 

blue lines have the highest transmission values in the gap and all show similar 

behaviour. They correspond to the three different bridging geometries of the hairpin 

configuration. In this case the binding through two terminal hydrogen atoms now gives 

a coupling strength similar to the co-facial geometries. The half-stacked geometry (red) 

1 

2 

3 

4 

5 
open 

Lo
g 

T(
E

)
 



 

107 
 

shows a lower transmission and a DQI feature which is well away from the Fermi 

energy (0eV), in this case the tether of FC2 fixes the stacking overlap at a position 

where the DQI occurs in the gap. Finally, the lowest transmission occurs for the open 

geometry which also shows destructive interference in the gap.  Therefore, for FC2, the 

results show three clear conductance values, a high conductance for the hairpin, middle 

value for the half-stacked and low for the open. 

 
 

Figure 5.8.The transmission coefficient of FC3 for different bridging geometries. 

 

   The equivalent bridging geometries are then calculated for the FC3 molecule and the 

results are shown in Figure 5.8 The results follow the same pattern as FC2, with the 

hairpin geometry having the highest transmission value in the HOMO-LUMO gap, 
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followed by the half-stacked and the lowest is given by the open. The main difference 

is the different binding geometries of the hairpin gives a wider range of conductance 

values. The half stacked geometry again shows a DQI feature at a similar position close 

to the LUMO resonance, which suggests that the nature of the tether doesn’t affect the 

quantum interference and only the stacking geometry which it controls is important.  

 

   In summary, these two tethered molecules have three stacking configurations, which 

could explain the conductance groups. However, the gas phase calculations suggest that 

the hairpin geometry is the most energetically favourable. While it is possible that the 

invasive break junction approach could lead to the higher energy configurations 

occurring, it seems likely that the hairpin geometry is responsible and, in this case, 

follows the behaviour of the FC1 monomer. One clear difference between the hairpin 

and the other two (half-stacked and open) is that it doesn’t show destructive quantum 

interference, therefore mechanical manipulation of the junction (i.e. by extending and 

closing the junction), shouldn’t show large conductance oscillations as predicted in 

Figure 5.4.  
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5.3.2 Sliding contacts along the gold electrodes for FC2 and 
FC3 

 
   Control of the stacking geometry through the separation between the gold-electrodes 

only occurs when the molecular junction is fully extended. I now investigate the 

behaviour of the molecules for smaller lead separations, i.e. when the molecules slide 

along the surface of the electrodes. I investigate two situations comparing the behaviour 

of the half-stacked FC2 molecule with the open FC3 molecule. These are chosen for 

simplicity as they have thiol anchors on opposite sides, so it is easier to control the 

sliding geometry and one (FC2) shows destructive quantum interference while the other 

(FC3) does not. 

    Figure 5.9 shows the different positions (1-4) of the FC2 molecule as it slides across 

the tip of the gold electrodes. The transmission shows that for different contact 

separations the resonances shift as well as the DQI feature. Figure (5.9a) shows the 

evaluated conductance at the Fermi energy as a function of the electrode separation X 

and shows that it oscillates. Also, it shows a counterintuitive behaviour, in that the 

conductance is highest for the largest contact distance X. There are multiple positions 

that the molecule could take as it slides along the surface, Figure (5.9 b and c) repeat 

the calculation for different sliding geometries and show similar behaviour to a, only 

the nature of the oscillations change. 
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Figure 5.9 (top) Transmission coefficient T(E) of molecule FC2 (half-stacked) for four 
different geometries (1-4) controlled by the contact separation X between the electrode. 
(bottom a-c) Conductance as a function of X for three different starting configurations. 

 

I then repeat the calculation for the open FC3 molecule (Figure 5.10). Here the molecule 

has no DQI feature and the transmission in the gap simply decreases as the contact 

separation is increased. This leads to the case (a and c) where the conductance is lowest 

for the largest separation X. 
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Figure 5.10. (top) Transmission coefficient T(E) of molecule FC3 (open) for four 
different geometries (1-4) controlled by the contact separation X between the electrode. 
(bottom a-c) Conductance as a function of X for three different starting configurations. 

 

 

5.4. Conclusion 

 
      Folded carbazoles where designed to control the formation of pi-stacking bridges 

in molecular junctions. Experimental measurements of the conductances of these 

molecules show three conductance groups for both the monomer and folded forms. I 

have carried out a theoretical study based on DFT calculations to explain these results 

and have explored the possible conformations that the FC1, FC2, and FC3 molecules 

can form in a junction. Using a highly accurate VdW functional to describe the 
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interactions between stacked molecules, I find that the binding energy between 

carbazoles is quite large (~0.5eV) and the most favourable configuration is the hairpin 

geometry. I have computed the transmission coefficients and the conductance in 

different bridging geometries for the three molecules, which are the monomer form, 

unfolded (open) system, and the stacked molecule (i.e. hairpin and half-stacked). The 

DFT results show the conductance is highest for the hairpin configuration, which does 

not show any destructive quantum interference, the middle value is the half-stacked 

which does show DQI and the low conductance occurs in the non-folded open 

geometry. I have also investigated multiple binding locations to show that the monomer 

or hairpin form can contact to the second electrode via the terminating hydrogens or 

through the pi-system in a co-facial binding geometry. 

To explore the role of quantum interference in folded carbazoles molecules, I have 

investigated changing the electrode separation which can control the overlap length of 

the molecule, in FC1 this leads to conductance oscillations as the DQI feature moves in 

and out of the HOMO-LUMO gap. At shorter electrode separations, varying the 

separation can cause the molecule to ‘slide’ along the electrode. This behaviour also 

shows oscillations in the conductance, but in the case where a DQI feature occurs the 

conductance tends to increase with separation while in systems with constructive 

interference the conductance decreases. 
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Chapter 6 
 
 

Conclusions and Future works 
 

 

 
        This thesis I investigated theoretically a transport properties at the nano-scale 

using DFT to obtain insight into electronic structures various molecular devices. I 

employed a combination of the Landauer method and Green's function theory to study 

electron transport through molecular junctions, as discussed in chapters 2 and 3, 

respectively. In the fourth chapter, I introduced a design technique to switch the 

conductance in a single molecule. This method shows that chemical modification of 

benzo-imidazole derivatives by substituting the protonated H atom can enhance the 

electronic conductance or yeld the opposite effect by adding the appropriate side 

branches like amino-phenyl groups. This effect was also measured experimentally in a 

self-assembled monolayer (SAM). Therefore, in the future I could expand the 

theoretical calculations used in this strategy to model a SAM of molecules placed 
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between gold electrodes. I could also perform more calculations using DFT and 

compare the conductance of SAM devices made of benzo-(bis)imidazole with various 

degrees of constructive quantum interference by changing the  lateral configurations 

functional groups. As the single-molecule can significantly describe the self-assembled 

monolayers' efficiency, I hope that the theoretical model of SAM can capture the 

generic features of the single-molecule arising from switching the conductance by 

protonation and get a closer agreement with the experimental results. The main result 

of the theoretical model was that the alignment of the Fermi level with the HOMO 

resonance explained the behavior upon protonation. This could be tested by using 

anchor groups which lead to a different alignment of the Fermi energy, i.e., replacing 

the thiol groups with pyridine or SME anchors which are more LUMO dominated. This 

could have important consequences for thermoelectric properties, because the sign of 

the Seebeck coefficient could be controlled through protonation. It would also be 

interesting to explore the effect of using alternative electrode materials for molecular 

electronics, such as graphene [1] or superconducting electrodes [2][3] and provides a 

great experimental and theoretical platform for future.  

     Chapter 5 examined the pi-stacked electron transport through folded carbazoles  and 

showed how this model can control the electronic conductance's and quantum 

interference. The multiple bridging geometries that these structures can take opens up 

a degree of complexity, which makes it difficult to attribute different bridging 

geometries to the measured conductance values. This project has thrown up many 

questions in need of further investigation, such as the thermoelectric properties of π -

stacked molecules, which can be achieved by calculating the Seebeck coefficient(S). 

Enhancing the Seebeck coefficient plays an essential role in developing molecular 

materials with high thermoelectric efficiency[4-5]. It would be interesting to see how 
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these systems utilize the DQI in changing both the magnitude and sign of the Seebeck 

coefficient. For example, in the case of half-stacked of FC2 molecule, the coupling 

between two molecules results in the appearance of destructive interference features, 

which results in lower transmission. The decreasing of the conductance may suggest an 

increase in the thermopower(S). However, other configurations for the folded 

carbazoles have higher transmission and the interference effects disappear. 

    Further research could help to study phonon properties through the Folded 

carbazoles' molecular junctions and explore the thermal phonon conductance[6]. 

Furthermore, Quantum interference can also be controlled by charge transfer 

complexes [7].  This stacking framework can be expanded by investigating the 

electronic and phonon properties (i.e. designing materials with high thermal efficiency) 

of the folded carbazoles molecules with adding electron donor or acceptor such as 

TCNE or TTF. It would be interesting to examine how the electrical conductance will 

differ in the folded carbazoles with a ridged tether, controlling the space between the 

molecules thus allowing an acceptor or donor to bind between them. Also, many other 

aspects in this project deserve further attention, including Fano resonances and the 

examined effect of different connectivity (e.g. para and meta) in the presence of electron 

donor or acceptor, which may be a useful method of controlling electrical conductance 

and thermoelectricity. This project provides a great experimental and theoretical 

platform to design various molecules with specific separations, allowing other types of 

molecules to be part of the stacked system devices. 
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