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Brief on Research

Research Collaborations

Tsinghua University, Beijing, China;

‘ Oil and Gas Industry ‘ «+  Xidian University, China;
Orcina, Ulverston, Cumbria;

\\ Onshore - Bluewater Netherlands;
. Dunlop Gil and Marine, Grimsby, UK;
Renewable - Airbome Oil and Gas Netherlands,
+  Magma UK

Siemens Ulverston, Cumbria;

[Flexible Risers |~ TP

Coventry University, Coventry, UK;
Rigid Risers

[ Composite Risers |

Hybrid Risers

University of Liverpool, Liverpool, UK

Newcastle University, Newcastle, UK.

Pipelines, etc.

Floating Hoses

ABSTRACT

Currently, there are approximately 3,400 deepwater wells in the Gulf of Mexico (GoM) having
depths greater than 150 meters, and a worldwide undiscovered deepwater reserves estimated
to exceed 200 billion barrels and 25% of the total US reserves (BOEM, 2016), while others are
in regions such as Angola, Brazil, Canada, Egypt, India, Morocco and the UK. The application
of composite risers in offshore engineering for ultra-deep applications has been facing a lot of
challenges, such as in West Africa and Gulf of Mexico. Presently, the steel catenary risers are
used for deepwater applications requiring large diameter pipes, while the flexible while top-
tensioned risers are used for shallow water applications, but composite riser technology used
mostly for deepwaters, as this is an exciting frontier in the offshore industry as it provides a
potential solution for future riser design challenges. This research involves hydrodynamic
loading using ANSYS AQWA and modelling composite riser using Orcaflex to investigate the
Riser Installation behaviour. The behaviour of composite risers is compared against the
behaviour of top-tensioned steel risers with the main research focus on the motion
characterization and the behaviour as regards the fatigue of composite materials, considering
that composite materials are light-weight, combustible but not corrosive. ANSYS APDL and
ANSYS ACP are used to model the composite materials and AS4/PEEK was first used
considering the mechanical properties make it a good composite material for composite
material. Some comparison is made with some research done on composite materials, and
further studies is done on the fatigue analysis of the composite risers which is ongoing and
specific attention is given on the applicability, and to present the design the local and global
analysis, in other to reduce installation and maintenance costs. Recommendations from this
will enable other industry specifications like ABS, DNV, API, EN and ISO on composite risers as
currently they are limited codes and specifications on composite risers.
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and Jerry are discussing about the
ect requirements
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History of Offshore Deepwaters
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Challenges with Oil and Gas Industry
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Importance of Composite Risers Issues with Composite Risers

* Composites are light — High specific  * Need more work due to more deep water needs
strength

* Can be formed into complex shapes

* Very good fatigue resistance claimed

* Very expensive (high cost of material)

* Limited track record in the offshore industry but it has

high applications in other industries

High corrosion resistance * Design codes, specifications and standards are limited

as regards direct applicability to composite risers

* Comparatively low axial and bending (recent ones by ABS and DNV have been introduced)
stiffness when compared to steel

* Maintenance cost is low

) . o * Hard to inspect sub-laminar damage
* Potential ease of installation (i.e.

Reeled pipe) * More design models on composite risers are needed

on hoth the composite materials and composite riser

* Can be designed into desired form
structure



Development of Composite %g}},%arg}te;
Risers / Pipes / Offshore Hoses

Types of Risers

Flexible Risers;

{ Qil and gas industry XS

< Rigid Risers;
3
3

Hybrid Risers;
Composite Risers

Transport of fluid
L sd  from oil field to

refinery / storage

Transport of fluid
to well

* Riser Classification:
a Drilling Risers;
d Production Risers.

Risers, Hoses,
» Offshore Hose Classification: Mooring lines, etc.
(] Floating Hoses;
Risers Application

] Submarine Hoses.
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Industry Application: CALM Buoy-Chinese Lantern ourtes sewm)

Loads on composite risers & Stack-up
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Figure s Eigenvalue
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For Composite Riser Design

< N R RS AN'SESI
* Metal Composite Interface (MCl) Riser Load Categories (DNV, 2010) e - o
. *  Functional loads,
* End-Fitting,
* Liners, * Environmental loads,
¢ Resins

¢ Accidental loads, and
¢ Composite Riser Pipe

*  Pressure loads.

Design load cases for composite riser Parametric Composite Riser lay-up
Load Case Name Deseription
Load Case | Burst Case with end load effect An internal pressure of 155.25 MPa is applicd
Load Case 2 Collapse Case An external presssire of 60 MPa is applied
Load Case 3 Pure Tension Case The koad factor of 2.25 with maximum tension
Load Case 4 Internal Pressure and Tension Case An Internal prossure of 155,25 MPa is appliod o the tension
Load Case 5 Fxtemnal Prossure and Tension Case The kad factor of 2.25 is applied on 19.5MPs external pressure
Losd Case 6 Buckling Case An extemal pressure of 60 MPa is applicd
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Parameters for composite riser

Parameter Value

Length of Riser (m) 3

Outer Diameter (m) 0.3048

Surface Area (m?) 7.6005

Number of Layers 18

Water Depth (m) 2000 \

(a) Global Coordinate Svstem (b) Material Coordinate System

Material Density (kg/m’) By (GPa) B~ s (GPa) Gz ~ Gis (GPa) Gas (GPa) al(GPa) o(GPa) ol(Gpa) 0f(GPa) t12(GP) V2= 01 vy
ASA/PEEK (APC2) 1561 131 87 50 218 1648 864 624 1568 1256 028 048
IM7/PEEK (APC2) 1320 172 83 55 28 200 1300 483 152 68 027 048
P75/PEEK (AP2) 1773 280 6.7 343 1.87 668 364 A8 136 68 030 0.69
AS4/Epoxy (938) 1530 1354 937 4% 32 1732 125% 494 1672 712 0.32 046
P75/Epoxy (938) 1776 310 6.6 41 212 720 328 24 552 176 029 070
Glass fibre/Epoxy (5-2) 2464 879 160 920 281 4800 1586 550 148 70 0.26 0.28
Carbon fibre/Epoxy (T700) 1580 20 209 276 27 40 M40 6 146 8 02 027




Local design cases
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Figure 4 Factor of Safety profiles for the layers of the composite riser using AS4/Epoxy and titanium liner with [0.,(£53.5).,90.]
configuration under: |) burst load case In (a) Fibre Direction, {b) Transverse Direction, (c) In-plane Shear Direction; i) collapse
load case in (2) Fibre Direction, (b) Transverse Direction, (c) In-plane Shear Direction; and i) pure tension load case in (a) Fibre

Figure S Factor of Safety profiles for the layers of the composite rher configured with AS4/Epoxy end [0.,(+53.5),.90.]
configuration under: I) tension with internal pressure load case using titanium liner in (a) Fibre Direction, (b) Transverse
Direction, (<) In-plane Shear Direction; i) tension with external pressure load case using titanium liner in (d) Fibre Direction,
(€) Transverse Direction, (f) In-plane Shear Direction; and i) burst load case with end Ioad effect using aluminium liner to
Investigate the effect of tension force during installation in (g) Fibre Direction, (h} Transverse Direction, (i) In-plane Shear
Direction.
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Optimisation Summary

load casze. The axial fibres have 3n increase in the stresses in the in-plane shear component.

There is noticesble reduction in the tensile stresses in fibre direction. The hoog fibres have an
increase in the stresses in the in-plane shear companent.

There is redistribution of stress. The equivalent stress in the liner decreases. Maximum stress

in the fibre direction in both the hoop and =xial layers siightly change in non-critical ofi-axis X .

faminae. (x, v, ): Material principal Coordinate
System

PPSISEEETRRST S Roduction in the squivalent stress in the liner. Reduction in the maximum stress in the fibre
dirsction of the hoop layers. Maximum stress in the transverse direction of the axial layers
decrease.

[Trerrer e mr gt Reduction in the equivalent stress in the liner. Maximum stress in the fibra direction of the
hoop layers dacreass. Maximum stress in the transverse direction of the axizl layers dacrease.

TR e P The equivalent stress in the liner increzses to a value slightly below the sllowable stress of the
hoop laminae thickness aluminium liner. There is an increase in the maximum stresses in bath the fibre direction and
transverse direction to within 97% and 93% of the corresponding sllowable stresses,
respectively.
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JONSWAP Spectrum for the 3 Environmental Project Cases
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Current Load Coefficient for CALM buoy

Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy, Ocean Engineering,

Volume 171, 20189, Pages 429-442, |S5N 0029-8018, https://doi.org/10.1016/].0ceaneng.2018.11.010.

Wind Load Coefficient for CALM buoy
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Typical floats attached to submarine hoses

Diameter of float, y » b > . g
Pitch of foats centre-to-ceztre, P, Length of float, L, Float Submarine Hoses
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Effect of RAOs on curvature
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Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy, Ocean Engineering,

Volume 171, 2019, Pages 429-442, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2018.11.010.
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Effect of RAOs on effective tensions
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Strength of submarine hoses in Chi lantern configuration from hydrody ic loads on CALM buoy, Ocean Engineering,

Volume 171, 2019, Pages 429-442, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2018.11.010.
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Effect of RAOs on bending moments

—+—0° —e - 30° -60° — x— 90° —+—0° —e - 30° -60° — x- 90°
— = —120° —~+--150° M- 180° $3o% — 120° ——+ -~ 150° - 180°
250 5
=
- =
3 200 = 200
z 150 g 150
2 =
gmo §|m
&
2 so 2 so
% &
= o4 o
o 10 20 30 o 10 20 30
Arc Length /m Arc Length /m
(2) Bending moment for Hosel 1with hose (b) Bending moment for Hosel without hose
hydrodynamic load hydrodynamic load
—+—0°  —w - 30° —x -60° — x— 90° 0° " —e - 30° —x -60° 90°
— = 120° «~®--150° ---4m ... 180° - - 120° —~&~-150° ---m--- 180°
2350
2
2 200
E 150
ilw
50
=
& o |
0 10 20 30 P 20 3 0.
Arc Length / m ArcLength /m

(c) Bending moment for Hose2 with hose hydrodynamic
load

Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy, Ocean Engineering,

Volume 171, 2019, Pages 429-442, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2018.11.010.

DAF of hose bending moment & eff. tensio

—+—0° —e - 30° —x— 60° x— 90°
— & —120° ——%—-150° ---4--- 180°
2.00
1.50
]
t=1
':Fs 1.00
&
0.50
0.00
o 10 20 30
Arc Length /m
(e) Hose 1 bending moment D45 e
—+—0° —we -30° —x—60° x— 90°
— & —120° ——&—-150° ---m--- 180°
2.00
'g 1.50
=
“3 1.00
E 0.50
0.00 —+
0 10 20 30
Arc Length /m

(e) Hose ] Effective Tension RAF e

Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy, Ocean Engineering, Vol. 171, 2019, Pages 429-442, https://doi.org/10.1016/j.oceaneng.2018.11.0;
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Local Coordinate System for Buoy in Chinese-lantern configuration on }
flat seabed with Mooring Lines in (a) buoy top view (b) buoy plan view

Submarine Hose 1 Submarine Hose 2

(s) BuoyTop View (b) BuoyPlan View

Strength of submarine hoses in Chinese-lantern configuration from hydrodynamic loads on CALM buoy, Ocean Engineering,

Volume 171, 2019, Pages 429-442, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2018.11.010.
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Experimental work on submarine hose using CALM
buoy model on Lancaster University Wave Tank

(images taken using Underwater camera, from different views)
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Wave Angles & Flow Angles
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Orcaflex Line Model (Reproduced, courtesy: Orcina, 2014)
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Fatigue Analysis of Flexible Riser System

Total ife

Lite (years,
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Wave Forces on Offshore Structures

Offshore structures are subject to various loads. These loads include the wave forces,
currents forces, tension forces, etc.

The behaviour of an offshore structure is subject to diffraction forces. This leads to
hydrodynamics study. The principle of this originates from Morison’s Equation.

Waves can either be Regular or Irregular. An example of Regular waves is Dean Stream
Wave; For Irregular wave is JONSWAP.

Different wave theories can be applied, depending on the ocean condition. They have
different properties too.

assumes that pressure field is undisturbed and is applied for diffraction analysis of
offshore structures.
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Mooring Design of PC SemiSub

- I
Hydrodynamic Domain of arrangement of Moorings Hydrodynamic Model - Wind, Wave & Curra
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Hydrodynamic Model & Kinematics of Paired Column Semisub
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Pressures & Motions Profile of PC SemiSub
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Results from Experiment on Wave Tank

Validation Results

10 5
—— Hlkd\lern 100y Wave 0.0 deg. Locn( 0.0, 00,1000) ~ et 1 Accin wGeaw 100yVWovs 0.0 dag, Loca ( 00, 00, 100.0)
) e WGiav 100y Wave 22 5 dog, Locn( 00, 0.0,1000) g V1 Aciin WG 100yr4Vave 226 deg, Loen [ 00, 00, 1000)
E | —e— N:kmﬂﬁfa 100yrWave 45 0 deg, Locn( 00. 00, 100.0) g | —— wm».w:oo,-mueq Loen( 00, 00
T K
& sk & ik
§7 §
T
£ o 3l
" 7]
5
g g
1 -
g §°
§ ° F
%2 gL
§ p
BN 8
8
+ 0 > aq
. . L | 1 1 1 1 L
°'°'2v'f,v,'§m;:(s:2)2“x”!° O™t 0 1z 14 16 16 B 2 N BB D

Wave Period (sec)

Horizontal Acceleration Response Vertical Acceleration Response l




sty 9
Brief on composite risers project
Current trend in oil and gas led to more technologies
Need for lighter materials led to the need for composites

Composites have high strength and light weight properties that
can be harnessed in the offshore industry;

Composite materials can be modeled using softwares and
codes -ANSYS ACP;

Composite Materials have advantages which could be utilised in
the offshore riser application to improve riser technology;

Research on Composite Risers have been on for about 27 years;

Companies like Airborne and Magma have successful
applications of composite pipes and composite risers;

More collaboration needed- industry, academia, stakeholders
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KeyPoints of Composite Risers

First time composite risers were successfully deployed was in
1995 on Heidrun Platform;

Composites have high strength and light weight properties that
can be harnessed in the offshore industry;

Composite materials can be modeled using softwares and
codes -ANSYS ACP;

Composite Materials offer a range of benefits which could be

utilised in the offshore riser application to improve riser
technology;

Research on Composite Risers have been on for about 27 years;
Companies like Airborne and Magma have successful

applications of composite pipes and composite risers; ‘
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* Stage 1: A reeling analysis will be developed in
OrcaFlex to determine the directional
connection forces and bending moments
(maximums) on each riser section.

¢ Stage 2: CAD model of the riser in its curved
shaped taken as drum curvature; i.e., the riser it
assumed to be completely supported by the
drum. CAD model should identify fittingand | l“
rubber interface, as well as different layers of o
the composite riser.

* Stage 3: FEA model using Ansys Structural.
(Material properties of each layer will be
provided, including the geometric parameters
each riser section
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Global Design on SPAR in Orcaflex

ANSYS

R19.0
Academic
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Sketch of risers on SPAR design
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