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Abstract:

This paper provides a simple, yet reliable, alternative to the (Bayesian) estimation of large

multivariate VARs with time variation in the conditional mean equations and/or in the co-

variance structure. The original multivariate, n-dimensional model is treated as a set of n

univariate estimation problems, and cross-dependence is handled through the use of a copula.

This makes it possible to run the estimation of each univariate equation in parallel. Thus, only

univariate distribution functions are needed when estimating the individual equations, which

are often available in closed form, and easy to handle with MCMC (or other techniques).

Thereafter, the individual posteriors are combined with the copula, so obtaining a joint poste-

rior which can be easily resampled. We illustrate our approach using various examples of large

time-varying parameter VARs with 129 and even 215 macroeconomic variables.
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1. Introduction

Following the seminal contributions by Sims (1980) and Litterman (1986), Vector AutoRegression

(VAR) models and their variants are now widely applied to multivariate time series, as a flexible

alternative to structural models. There is now a huge body of literature on both theory and appli-

cations: useful surveys are provided inter alia by Watson (1994) and Lütkepohl (2005). Although

in their standard form VARs already offer a relatively flexible modelling approach, extensions have

been considered to accommodate time variation. This may occur in the coefficients of the conditional

mean equations (see e.g. Doan et al., 1984; Canova, 1993; Sims, 1993; Stock and Watson, 1996; and

Cogley and Sargent, 2001), as a flexible alternative to models with abrupt breaks. These are termed

Time-Varying Parameter VAR (TVP-VAR) models. Time variation is also considered in the co-

variance matrix of the error term, thereby allowing for time-varying heteroskedasticity. Following

seminal papers by Uhlig (1997), Cogley and Sargent (2001) and Primiceri (2005), recent examples

where the assumption of homoskedasticity is relaxed include Koop and Korobilis (2013) and Koop

et al. (2019), who attempt to reduce the dimensionality issue by imposing a factor structure onto the

volatilities; see also Clark (2011), Carriero et al. (2015), Clark and Ravazzolo (2015) and Carriero

et al. (2016). In a recent landmark paper, Carriero et al. (2019) propose a less restrictive set-up,

which allows for inference in the presence of heteroskedasticity.

Across the extensive literature on multivariate models, virtually all studies have two issues in com-

mon: the dimensionality of the model and its computational burden. On the one hand, unless the

number of variables involved in the model is relatively large, omitted variable bias may impair the

forecasting ability of the model (see Giannone and Reichlin, 2006). Carriero et al. (2019) make a

compelling case for the superior performance of large dimensional VARs. On the other hand, com-

putational difficulties may arise when there are a large number of variables and, more substantially,

over-parameterisation can occur. Thus, the literature has focused on finding techniques that allow

for the estimation of large VARs: see Bańbura et al. (2010) for an excellent review of a variety of ap-

proaches. In the case of homoskedastic VARs, the dimensionality issue can be handled by the choice

of appropriate (conjugate) prior distributions, as shown by Bańbura et al. (2010) who apply their

technique to the estimation of a VAR with 130 variables. However, in the case of a heteroskedastic

VAR, the computational burden cannot be resolved through the choice of an appropriate prior. As

explained in Carriero et al. (2019), heteroskedasticity invalidates the so-called “symmetry”across
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equations that characterises homoskedastic VARs. By that property, a homoskedastic VAR can be

thought of as a SUR model with the same the regressors across all equations; this implies that

the covariance matrix of the VAR coefficients has a Kronecker structure, which makes estimation

simpler than having to deal with large matrices with no simplifying structure. Few contributions

consider estimation of a large VAR with time variation in the coefficients of both the conditional

mean equations and of the covariance matrix of the error term. Koop and Korobilis (2013) and

Koop et al. (2019) propose an estimation technique for large, possibly heteroskedastic TVP-VARs,

which essentially relies on the Kalman filter. However, their approach is not fully Bayesian, and it

is liable to mis-specification issues if the assumed model for coefficient variation is not correct (see

also recent contributions by Kapetanios et al., 2019 and Chan, 2020 which, through a nonparamet-

ric approach and a reduced-rank regression approach respectively, provide a solution). To address

this issue, Carriero et al. (2019) propose a new, equation-by-equation estimation algorithm which

performs very well in out-of-sample forecasting and also in structural analysis. However, their paper

does not consider the presence of time varying coefficients in the VAR specification.

Proposed methodology and main contribution of this paper

This paper proposes a copula-based Bayesian estimation methodology for large TVP-VARs with

heteroskedasticity, which is suitable for forecasting even with very large VARs (see Section 4). Full

details are in Section 2. Here, we give a heuristic preview of our methodology.

Given a multivariate model of (possibly) very large dimension n, we reduce it into n univariate mod-

els, which are then separately estimated. In order to recover the cross-dependence among equations,

we use a (mixture of normals) copula-like term. In consequence, the likelihood function in our system

factors into the likelihoods of the individual autoregressive models, plus the likelihood of the copula

term. By this design, there is a balance between two competing needs: (i) greater computational

speed (by treating each univariate estimation problem separately); and (ii) greater forecasting accu-

racy (by exploiting information contained in the cross-equation dependence, through the copula).

In allowing for time variation in the VAR equations, and in breaking down the multivariate estimation

problem into separate univariate problems, our approach builds on earlier contributions by: Koop

et al. (2009), Feldkircher et al. (2017) and Bitto and Frühwirth-Schnatter (2019) (especially for the

time-varying, non-standard VAR part); Chan (2020), Lopes et al. (2016) and Huber et al. (2019)
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(especially for the “divide and conquer”approach), inter alia; and Korobilis and Pettenuzzo (2019)

and Carriero et al. (2019) (who also exploit the equation-by-equation estimation approach). However,

in contrast to the last two papers, in our approach we allow for full time variation, in the conditional

mean and in the variance equations. Using copulas to model dependence in a Bayesian context has

been shown to be effective in several contributions (see especially Gruber and Czado, 2015, Gruber

and Czado, 2018, Kreuzer and Czado, 2019 and Kreuzer et al., 2019), including non-parametric

Bayesian analysis (see inter alia the contributions of Rodriguez and ter Horst (2008), Taddy (2010),

Nieto-Barajas et al. (2012), Di Lucca et al. (2013), Bassetti et al. (2014) and Nieto-Barajas and

Quintana (2016)).

Our approach also allows for greater flexibility in the specification of the univariate models, without

dramatically affecting the forecasting accuracy. For example, in the simplest application of our

methodology, each series is modelled as an AR(1) model. However, to allow more sophisticated model

selection, and inspired by the results in Koop et al. (2019), we also exploit Bayesian compression

methods in order to induce sparsity in the univariate equations (see Guhaniyogi and Dunson, 2015).

Other methods for dimensionality reduction could also be applied to the univariate equations - we

refer to Huber et al. (2020) for a thorough treatment of sparsity-inducing methods in the context of

TVP-VARs.

Summary of main findings

Our methodology delivers superior predictive ability and reduced computational costs compared to

existing approaches, and: (i) the information loss in using the copula is lower than that of equation-

by-equation computations; (ii) our dimensionality reduction approach addresses the increase in the

size of the parameter space due to the copula (Section 2.2.1); and (iii) the use of Bayesian compression

reduces the dimensionality of the univariate equations.

Our empirical results indicate that forecasting gains are attributable to use of the copula. Compared

to the use of an AR specification in the univariate equations, Bayesian compression (see Section A.2)

may yield better results, but those improvements are of second order when set against forecasting

gains with the copula. When compared to equation-by-equation estimation methods, such as Carriero

et al. (2019), the improved computational speed is jointly the result of our copula dimension reduction

strategies, and of the use of Bayesian compression in the univariate equations. Thus, dimension

reduction techniques seem a valid alternative to shrinkage priors.
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The remainder of the paper is organised as follows. Our methodology is spelt out in Section 2. The

main empirical applications are in Section 3 (further applications and analysis are also in Section

4 and in the appendix). Section 5 concludes. Further results and technical details are reported in

Appendix. 1

2. Methodology

We consider the TVP-VAR(p)

yt =

p∑
j=1

At,jyt−j + ut, p+ 1 ≤ t ≤ T, (2.1)

where yt is an n × 1 vector and ut is a zero mean, Gaussian process with possibly time varying

variance - we discuss the specification of the second moment later on. Model (2.1) could be extended

to consider e.g. exogenous regressors, latent regressors such as common factors, or deterministics such

as a constant, (linear or nonlinear) trends and seasonal dummies. Moreover, (2.1) could also have

an MA(q) structure, in the spirit of Chan and Eisenstat (2013); or it could have no autoregressive

structure at all, and only time varying heteroskedasticity as in the case of Creal and Tsay (2015). We

prefer to focus on a simpler specification, so that the discussion is not overshadowed by the algebra.

Similarly, the assumption that ut is Gaussian is made only for simplicity. Nevertheless, even with

this simple set-up, the number of parameters grows rapidly with p and n.

2.1. Theory: the univariate equations, the copula and the likelihood function

Univariate equations

In the context of (2.1), we consider two possible models.

As a benchmark, it is possible to employ the following univariate AR(p) specifications

yi,t =

p∑
j=1

βi,t,jyi,t−j + ui,t = β
(1)′
i,t z

(1)
i,t + ui,t, (2.2)

1All code and datasets are available from the authors.
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for 1 ≤ i ≤ n with ui,t = ehi,t/2u∗i,t, where u∗i,t ∼ i.i.d.N(0, 1) and

hi,t = αi + γihi,t−1 + ei,t, (2.3)

with ei,t ∼ i.i.d.N(0, δi). As noted above, (2.2) can be extended and/or modified to incorporate e.g. a

different number of lags pi for each unit, an MA(qi) component, exogenous regressors, deterministics,

(conditional or unconditional) heteroskedasticity, etc.. Similarly, (2.3) could be replaced e.g. by a

GARCH specification to allow for conditional heteroskedasticity (see also the discussion in Uhlig,

1997 on the relative merits of possible specifications for time heteroskedasticity).

In (2.2) yi,t is predicted using only its own past vales. As previously mentioned, this is meant to

be a benchmark, although results in Section A.2 show that predictive ability is preserved when

using simple AR(pi) specifications. An alternative approach is based on the Bayesian compression

algorithm developed in Guhaniyogi and Dunson (2015). We consider the specification

yi,t = β
(2)′
i,t z

(2)
i,t + ui,t, (2.4)

with ui,t still satisfying (2.3). As in (2.2), z
(2)
i,t is a subset of the regressors in each equation of the

unrestricted VAR (say z̃i,t). However, in the case of (2.4), the vector z
(2)
i,t can include lags of yi,t and

also lags of yj,t for j 6= i. In order to select the components of z
(2)
i,t , Guhaniyogi and Dunson (2015)

suggest the following technique. Let z
(2)
i,t = Φz̃i,t with Φ a p×np matrix whose entries are defined as

Φij =


−φ−1/2

0

φ−1/2

with probability

φ2

2φ (1− φ)

(1− φ)
2

,

and φ and p are drawn uniformly from (0.1, 1) and {1, ..., pmax}, with pmax chosen so that the

marginal likelihood has a global peak. The matrix Φ is then normalised via the Gram-Schmidt

orthonormalisation. 2 3

2We refer to Guhaniyogi and Dunson (2015) for details; in all our applications, the number of variables which is
selected in each equation, with this method, is around 10-20%. Heuristically, the low percentage of variables not set
to zero corresponds to making the dimensionality of each equation linear, as opposed to quadratic, in n.

3As we make clear in the following, the use of copulas is computationally practicable with the small numbers of RHS
variables produced by random compression. Conversely, using traditional Bayesian shrinkage priors as a substitute for
sparsification may, in large dimensions, result in loss of computational speed.
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Copula

We now introduce the copula term to model dependence among the univariate equations. Let X

denote a continuous k-dimensional random variable whose density is given by f (x). Define I = [0, 1],

and consider the function c∗ : Ik → I, with the following properties:

• c∗ (v1, ..., vk) = 0 if vj = 0 for at least one 1 ≤ j ≤ k, and c∗ (v1, ..., vk) = vi if vj = 1 for all

j 6= i;

• c∗ (v1, ..., vk) is non-decreasing.

Then it holds that

f (x) =

 k∏
j=1

fj (xj)

 c∗ (v1, ..., vk) , (2.5)

where fj (xj) is the density of the j-th coordinate ofX, vj = Fj (xj) =
∫ xj
−∞ fj (u) du, and c∗ (v1, ..., vk)

is the copula density. The result implied by (2.5) can be equivalently re-written as

c∗ (v1, ..., vk) = P
(
X1 ≤ F−11 (v1), ..., Xk ≤ F−1k (vk)

)
, (2.6)

This result is known as Sklar’s theorem (see Sklar, 1996). A comprehensive summary of the prop-

erties of copulas goes beyond the scope of this paper, but Nelsen (2007) offers a comprehensive

introduction. According to Sklar’s theorem, every valid distribution can be factorised as the product

of the individual, univariate marginals, and a copula - the copula itself is, mathematically, a density.

Further, Sklar’s theorem states that, whenever X is continuous, the copula function is unique. 4

Equation (2.5) can equivalently be written as

ln f (x) =

k∑
j=1

ln fj (xj) + ln c∗ (v1, ..., vk) . (2.7)

Equation (2.7) illustrates the source of the computational gains: the fact that the joint distribution

can be expressed as the product of the marginals and the copula entails that the log-likelihood

takes an additive form, where each set of parameters is separate from the others. This allows for

parallelisation, which in turn is the reason underpinning the improved computational speed.

Likelihood function

4We note that the uniqueness property is in general not true in the case of discrete random variables.
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Henceforth, we use zi,t as short-hand for both z
(1)
i,t and z

(2)
i,t ; βi,t for both β

(1)
i,t and β

(2)
i,t in (2.2) and

(2.4) respectively. We assume the following law of motion

βi,t = Aβ,iβi,t−1 + εi,t, (2.8)

with εi,t ∼ i.i.d.N (0,Σi), independent across i. In (2.8), we do not impose the typical random walk

model for the time-varying parameters (see e.g. Koop and Korobilis, 2013), which makes our set-up

more general. For simplicity, we do not allow for time variation in any other parameter (i.e., we do

not allow for time variation in the copula parameters, or the coefficients in (2.3)).

Let bi = (αi, γi, δi). Then, the marginal density of yi,t conditional on zi,t can be denoted as

fi (yi,t|zi,t;βi,t, bi) (we omit dependence on Aβ,i, Σi and βi,0 for short). Then, by (2.5), it holds

that

fi (yt|zt;βi,t, bi) =

(
n∏
i=1

fi (yi,t|zi,t;βi,t, bi)

)
c∗ (v1,t, ..., vn,t) , (2.9)

having defined vi,t =
∫ yi,t
−∞ fi (u|zi,t;βi,t, bi) du, with fi (u|zi,t;βi,t, bi) denoting the density of yi,t

conditional on zi,t.

The choice of the copula

Sklar’s theorem ensures that the copula density c∗ (v1,t, ..., vn,t) is unique, at least for continuous

random variables. Although (2.6) offers an implicit method to construct the copula function c∗, this

requires knowledge of the distributions of the marginals. From a practical point of view, this entails

that no explicit expression for the copula function is provided.

One possibility would be to consider a non-parametric copula, and we refer to Scaillet and Fermanian

(2003), Ibragimov (2005) and Chen and Huang (2007), and the references therein, for the relevant

theory in a time series context. In this paper, we consider a Gaussian mixture copula model (GMCM

henceforth; see Tewari et al., 2011) model, viz.

c∗ (v1,t, ..., vn,t) =

∑G
g=1 pgfN

(
Ψ−11 (v1,t) , ...,Ψ

−1
n (vn,t) |µg,Ωg

)
n∏
i=1

φi
(
Ψ−1i (vi,t)

) ≡ c (yt|α) , (2.10)



M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 9

where

φi = marginal pdf of

G∑
g=1

pgfN (yt|µg,Ωg) , 1 ≤ i ≤ n,

Ψi = marginal cdf of

G∑
g=1

pgfN (yt|µg,Ωg) , 1 ≤ i ≤ n,

and {pg}Gg=1 (such that
∑G
g=1 pg = 1 and p1 < ... < pG) is a set of weights and fN (·|µg,Ωg) is the

density of an n-variate Gaussian random variable with mean µg and covariance matrix Ωg. In (2.10),

we use the short-hand notation α =
(
(p1, ..., pG)

′
, µ′1, ..., µ

′
G, (vech (Ω1))

′
, ..., (vech (ΩG))

′)′
.

Finally, let βt =
(
β′1,t, ..., β

′
n,t

)′
, ω = (b′1, ..., b

′
n)
′
, Aβ = {Aβ,1, ..., Aβ,n}, Σ = {Σ1, ...,Σn}, and, for

short, θ =
(
vec (α)

′
, ω′, vec (Aβ)

′
, vech

(
Σ1/2

)′
, vec (β0)

′
)′
.

Putting everything together, the resulting likelihood function (conditional on the initial observations

{yt}pt=1) is given by

L
(
{yt}Tt=p+1 |α, ω,Aβ ,Σ, β0, {βt}

T
t=1

)
= L

(
{yt}Tt=p+1 |θ, {βt}

T
t=1

)
(2.11)

=

T∏
t=p+1

[
n∏
i=1

fi (yi,t|zi,t;βi,t, Aβ,i,Σi, βi,0, bi)

]
c (yt|α) ,

where we emphasize the dependence of the marginal densities on Aβ,i, Σi and βi,0. It follows that

lnL
(
{yt}Tt=p+1 |θ, {βt}

T
t=1

)
=

T∑
t=p+1

ln c (yt|α) +

n∑
i=1

T∑
t=p+1

ln fi (yi,t|zi,t;βi,t, Aβ,i,Σi, βi,0, bi) .

(2.12)

2.2. Dimension reduction and estimation

We choose the prior

p (θ) = p (α)

n∏
i=1

p (ωi,0) p (Aβ,i) p (Σi) p (βi,0) , (2.13)

where: p (α) and p (ωi,0) are flat priors (in the latter, coefficients are restricted to be non-negative);

p (Σi) ∝ |Σi|−(n+1)/2
is a standard non-informative prior; p (Aβ,i) and p (βi,0) are Gaussian priors.
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Hence, the posterior is given by

p
(
θ, {βt}Tt=1 | {yt}

T
t=1

)
∝ L

(
{yt}Tt=p+1 |θ, {βt}

T
t=1

)
p
(
{βt}Tt=1 |θ

)
p (θ) . (2.14)

Despite the presence of the copula term, the number of parameters in θ is proportional to n2,

which does not fully resolve the challenge represented by dimensionality in a large VAR. More

specifically, from (2.10), it is apparent that, when estimating µg, the number of parameters to be

estimated is Gn; conversely, the covariance matrices Ωg contain each n(n+1)
2 elements and this is

where the dimensionality issue arises from. To address this problem, in Section 2.2.1 we consider

two ways of restricting the Ωgs: both reduce the number of free parameters in the copula, making

this proportional to n instead of n2.

Univariate regressions estimation

Both (2.2) and (2.4) are regressions with time varying parameters and stochastic volatility. Thus,

we use the approach by Kim et al. (1998) to estimate βi,t and bi (and the other hyperparameters). 5

Copula density estimation

As is typical with copula models, we first obtain an estimate of the univariate densities

fi (yi,t|zi,t;Aβ,i,Σi, βi,0, bi, βi,t) .

We then obtain the probability integral transforms, vi,t, and use these as data to estimate α. 6

2.2.1. Copula dimension reduction strategies - α

The dimensionality issue can be further addressed by imposing some restrictions on α. We discuss

two possible approaches (denoted as S1 and S2 ), where the priors employed are flat.

5Further details are in Section A.1.2
6This procedure can be viewed as “two-stage”Bayesian, as opposed to a “full-information”Bayesian estimator (see

also Creal and Tsay, 2015). This could be carried out by modifying the MCMC algorithm; however, we have tried to
use it in some of our empirical applications, but results were - if anything - marginally worse than with the two-step
procedure proposed here.
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Dimension reduction: strategy S1

The first dimension reduction strategy is based on a recursive model for the Ωgs:

Ωg = hgΩg−1 + Vg, 2 ≤ g ≤ G, (2.15)

having initialised (2.15) by leaving Ω1 unrestricted (and thus setting V1 = 0). In (2.15), hg is a scalar

to be estimated, and the idiosyncratic shock Vg is restricted to Vg = diag {vg,1, ..., vg,n}.

Consequently, the number of parameters associated to the copula is (G− 1) (n+ 1), which grows

linearly (instead of quadratically) with n.

Dimension reduction: strategy S2

The second dimension reduction approach is closely related to Principal Components (see Humphreys

et al., 2015), and to the Bayesian compression literature (Guhaniyogi and Dunson, 2015). We again

leave Ω1 unrestricted, and model the Ωgs, for 2 ≤ g ≤ G, as

Ωg = Q0,gQ
′
0,g +Dg. (2.16)

In (2.16), Dg = diag {dg,1, ..., dg,n} and Q0,g is an n× k matrix.

We make no attempt to estimate Q0,g. Instead, we randomly generate the elements of Q0,g, say

{Q0,g}i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ k, as independent of each other with {Q0,g}i,j ∼ N
(
0, q2g

)
for a total of

1, 000, 000 iterations, choosing the specification which maximises the log marginal likelihood. Thus,

the only parameters that need to be estimated are qg and {dg,1, ..., dg,n}. Under these restrictions,

the number of parameters is (G− 1) (n+ 1), which is the same as in S1.

3. Empirical application: forecasting large VARs

We conduct a forecasting horserace to compare the performance of our methodology against several

alternative methodologies (Koop et al., 2019, and Carriero et al., 2019). 7

7While we were revising our paper, it was brought to our attention by two anonymous Referees that the algorithm
in Carriero et al. (2019) contains a (minor) error. Carriero et al. (2021) propose a (computationally marginally more
intense) correction; however, when applying the correct algorithm to their original data, the authors show that results
do not change much, indicating that the algorithm in Carriero et al. (2019) still provides - at least with our dataset
and model - a sufficiently good approximation.
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3.1. Forecasting performances

In order to ensure a fair comparison, we use the same datasets as in those studies: a set of macroeco-

nomic variables from the FRED-MD dataset from January 1960 to December 2014. We use the same

n = 129 and n = 125 variables as Koop et al. (2019) and Carriero et al. (2019), respectively. A full

description of the data is provided in McCracken and Ng (2016). We carry out the same forecasting

exercise as the authors, predicting seven variables of interest: total nonfarm employment (PAYEMS),

consumer price inflation (CPIAUCSL), the change in the Fed funds rate (FEDFUNDS), industrial

production growth (INDPRO), the unemployment rate (UNRATE), the finished good producer price

inflation (PPIFGS), and the change in the 10 year T-bill rate (GS10). We also undertake the same

exercise for a smaller VAR, using the same n = 19 variables as in the original study. To replicate

the exercises in Koop et al. (2019) and Carriero et al. (2019) as closely as possible, all variables are

transformed as recommended by the authors using their code (see the original paper for details).

All models considered have the same specification: we use 13 lags and no deterministics, except

for a constant. We consider three scenarios: the baseline case of a simple, homoskedastic and non

time-varying VAR; a TVP-VAR with heteroskedasticity; and, to allow for a direct comparison with

Carriero et al. (2019), a fixed coefficients, heteroskedastic VAR.

3.1.1. Forecasting with homoskedastic, fixed coefficient VARs

In Tables A and B, we evaluate the relative forecasting ability of a small (n = 19) and a medium-

sized (n = 129) VAR. As far as Koop et al. (2019) is concerned, we consider the best prediction for

each variable and for each forecasting horizon, so that the model employed may differ from variable

to variable and across different values of h. The MSFEs reported in both tables are the result of

using our methodology with Bayesian compression applied to the univariate equations, and strategy

S2 for dimension reduction in the GMCM copula. This model has been used for each variable and

each forecasting horizon h.

[Insert Tables A and B somewhere here]

The results show that our methodology always improves on the MSFE, for all variables and at all

forecasting horizons. All of our MSFE ratios are below 1, so indicating that the benchmark AR(1)
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model is always beaten, even for the finished good producer price inflation (PPIFGS), and the change

in the 10 year T-bill rate (GS10), for which the predictions obtained by Koop et al. (2019) almost

always underperformed the benchmark. We have also run the forecasting exercise using different

combinations of dimension reduction strategy for the univariate models (i.e., replacing the Bayesian

compression algorithm with univariate AR(pi) models), and of copula dimension reduction (i.e.

applying strategy S1 to the GMCM copula). Our core finding is that the MSFEs are very similar

to the ones in Tables A and B. Thus, the general conclusion is that our new approach, based on

approximating the VAR with n univariate models and linking these together through a copula,

delivers superior predictive ability. Further improvements may stem from alternative specifications

within our methodology.

In Table C, we report the average log predictive likelihood (ALPL) as a measure of out-of-sample

density forecast performance, as suggested by Geweke and Amisano (2010) - as far as Koop et al.

(2019) is concerned, once again we report the best results from their paper. 8 Finally, in Table D

we report results for multivariate forecasts for the cases n = 19 and n = 129. Results reinforce the

findings above: in all cases, our methodology offers superior forecasting ability with respect to the

best results in Koop et al. (2019) and Carriero et al. (2019). As with the findings in Tables A and B,

in Table C all ALPL differentials are always positive, again indicating that the benchmark is always

beaten even in terms of this measure of forecasting ability.

[Insert Tables C and D somewhere here]

3.1.2. TVP-VARs with heteroskedasticity

In another set of exercises, we assess the (relative) forecasting performance - again in terms of MSFE

and ALPL - when using a TVP-VAR with heteroskedasticity. The other specifications remain the

same: we use 13 lags and no deterministics except for a constant; we employ a Bayesian compression

algorithm applied to both conditional mean and variance, and strategy S2 to reduce dimensionality

in the GMCM copula. To gauge the extent of sparsity induced by this approach, in each univariate

equation, around 10 − 20% of the variables are kept. As far as Koop et al. (2019) is concerned, we

draw a comparison with the forecasting performance of the Bayesian compressed VAR (denoted as

8These correspond to Table 4 in their paper
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BCVARtvp−sv).
9

[Insert Table E somewhere here]

Results in Table E contain the same message as the previous tables. Ceteris paribus (i.e., given time

variation, Bayesian compression, and the same specification), results are always better (indeed, with

one exception, the ALPL for CPIAUCSL at h = 3) when using our copula-based approach, both at

a univariate, single-variable prediction level and at a multivariate level. As in the previous exercises,

the relative MSFEs are always below 1, and the ALPL differentials always positive. Note also that

adding time variation may improve forecasting ability: when considering point forecasts, results are

qualitatively similar to those in Koop et al. (2019) and Carriero et al. (2019).

3.1.3. Heteroskedastic, fixed coefficients VARs

In order to elicit a direct comparison with Carriero et al. (2019), we consider time variation only in

the error covariance matrix. In Table F, we report the MSFE and the ALPL for the multivariate

forecasts when considering a VAR with heteroskedasticity and no other time variation otherwise -

the other specifications are the same as before (namely, we have used 13 lags and constant only).

As before, we compare against the best available results in the papers by Koop et al. (2019) and

Carriero et al. (2019), with such results being always improved upon.

[Insert Table F somewhere here]

3.2. Prior sensitivity and MCMC technical details

In this section, we discuss the performance of our methodology by considering the sensitivity to the

prior specification, and the convergence properties of the MCMC algorithm.

3.2.1. Prior sensitivity

We explore the sensitivity of our methodology to the choice of the (main) priors on Aβ,i and βi,0.

The main focus is the copula-based dimensionality reduction; thus, we propose flat priors in gen-

9These are taken from Table 6 in the original paper.
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eral, although some parameters undergo nonlinear transformations (see Jeffreys, 1998 for an early

treatment of the issue).

For each element in the vector
(
vec (Aβ,i)

′
, β′i,0

)′
, we use the prior N(b, s2b), independent across

elements. In the context of (2.10), we use both dimension reduction strategies S1 and S2, with:

pg =
e−r

2
g∑G

g=1 e
−r2

g

,

where

p (rg) = N(r, s2r), (3.1)

and

p (µg) = N(mg, s
2
m), (3.2)

again independent for 1 ≤ g ≤ G. Finally, in (2.16), we have used Ωg = CgC
′
g, with :

p (cg) = N(c, s2c), (3.3)

for 2 ≤ g ≤ G, where we have defined cg = vech (Cg). We have set the priors parameters as follows:

b = 0, s2b = 10,

r = 0, s2r = 100,

mg = 0, s2m = 10,

c = 0, s2c = 100.

(3.4)

In Figures 1-3, we assess the sensitivity to our choice of priors by comparing our methodology against

the best results in Koop et al. (2019) and Carriero et al. (2019). Our results have been obtained

using strategy S2 ; unreported results using S1 are very similar.

We have used the normal prior described above as a benchmark, and a prior based on using Cauchy

distributions, i.e. with tails considerably fatter than the normal distribution. We employ Bayes

factors (BF henceforth; see Kass and Raftery, 1995) as an indicator. We consider three scenarios:

a baseline, fixed coefficient, homoskedastic VAR (see Figure 1); a homoskedastic TVP-VAR (see

Figure 2); and a heteroskedastic TVP-VAR (see Figure 3). We have used 1, 000 different priors by

sampling randomly from (3.1)-(3.3), given the parameters defined in (3.4), and doing the same with
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Cauchy distributions. For each prior, we have used MCMC sampling, employing 10, 000 iterations

starting from the posterior moments delivered by the benchmark prior.

[Insert Figures 1-3 somewhere here]

Results indicate (in all cases) minimal discrepancies between the relative forecasting performance

obtained using either prior distribution. All BFs are very high (i.e. higher than the typically em-

ployed threshold of 100), which reinforces the conclusion that our methodology, irrespective of the

prior, offers superior forecasting ability. We have also carried out the same sensitivity analysis for

the empirical exercises discussed in Section A.3 - the results, available upon request, confirm the

robustness to the choice of the prior distribution.

3.2.2. MCMC convergence diagnostics and computational efficiency

We evaluate the numerical efficiency of our algorithm, described in Section A.1.2, in Figure 4. We

note that, in Figure 4, we have used only the n = 125 variables used in Carriero et al. (2019); using

the full n = 129 variables employed in Koop et al. (2019) does not result, as can be expected, in

virtually any changes.

[Insert Figure 4 somewhere here]

Results show that our MCMC algorithm is quite efficient. Specifically, in sub-panel (a)-(d) of each

panel of Figure 4 we use Relative Numerical Efficiency (RNE) to monitor convergence. The RNE

is clustered around 0.75, and never below 0.6 - this corresponds to an Inefficiency Factor which, in

the worst case scenario, is below 2, which indicates that the MCMC algorithm requires less than

twice the number of i.i.d. draws to produce the same information content. This indicates that the

chain mixes (very) well; sub-panels (b) and (e) show that autocorrelations between MCMC samples

decline quickly, and the convergence diagnostics reported in sub-panels (c) and (f) reinforce this

finding.
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In order to gauge the computational efficiency, we compare the CPU timings of our methodology

with the one developed in Carriero et al. (2019) as a function of the VAR dimension n. 10

[Insert Figure 5 somewhere here]

Figure 5 indicates that our procedure is faster for all values of n, with relative computational

speed growing with n. This result can be explained by the sparsification of the univariate equa-

tions (achieved e.g. through Bayesian compression), and the copula dimension reduction strategies

developed in Section 2.2.1.

4. Further evidence and applications

4.1. Extension to VARMA specifications

Chan et al. (2016) make a compelling case for the use of VARMAs, in light of their superior predictive

ability (see also the theory in Lütkepohl and Poskitt, 1996). Yet, VARMAs, as well as suffering from

well-known identification issues (see e.g. the recent contribution by Gouriéroux et al., 2019) are

liable to overparameterisation, and therefore dimensionality, in this context, is a very important

issue, which may explain their relative lack of popularity. 11

Prior to presenting the application, we note that, as far as the methodology is concerned, we use

exactly the same approach as described above; specifically, we use Bayesian compression and dimen-

sion reduction strategy S2. The only (minor) variation lies in the resampling scheme, described in

Section A.1.2.

We compare the forecasting ability of a heteroskedastic TVP-VARMA against competing approaches,

reporting BFs, and using a normal and a Cauchy prior as in Section 3.2.1.

[Insert Figure 6 somewhere here]

10In order to make the comparison fairer, in this case we used a single processor. Also, although our procedure is a
two-stage one, we tried using a full-information one, but it only marginally increased computational times, also with
marginally worse forecasts.

11In the Supplement, we consider another application, based on the paper byChan et al. (2016) applied to US
macro data.
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The TVP-VARMA yields superior forecasting ability, with all Bayes factors well above 100. This

result holds for both small and large n. The choice of the prior is essentially uninfluential on this,

similarly to what found for the case of a TVP-VAR in the Section 3.2.1.

We have also run a small scale exercise to explicitly compare the forecasting ability of a TVP-VARMA

against a TVP-VAR, both with heteroskedasticity, and both estimated using our methodology based

on Bayesian compression and strategy S2 to reduce the copula dimensionality. Results are in Figures

7-8.

[Insert Figures 7-8 somewhere here]

Finally, we consider a forecasting exercise under “unusual circumstances”, predicting 7 series during

the Covid-19 outbreak (see also a recent paper by Lenza and Primiceri, 2020) towards the end of

our sample. 12

[Insert Table G and Figure 9 somewhere here]

4.1.1. Impulse response analysis

As a complement to our forecasting exercise, we study the response of our system to exogenous (or

“non-systematic”) monetary policy shocks. We base our exercise on the seminal paper by Primiceri

(2005). Similarly to that paper, we investigate the responses of inflation and unemployment to a 1%

shock to the monetary policy interest rate (the FEDFUNDS series). We consider both a medium

and a large VAR (n = 19 and n = 125 respectively), and we use the dataset in Koop et al. (2019)

used above, until September 2001. 13 We use a TVP-VAR with heteroskedasticity, carrying out

estimation via Bayesian compression in the univariate equations and strategy S2 to reduce the copula

dimensionality. We generate the impulse using a simple (lower-triangular) Choleski factorisation,

12The are the same as in Section 3.1, namely: total nonfarm employment (PAYEMS), consumer price inflation
(CPIAUCSL), the change in the Fed funds rate (FEDFUNDS), industrial production growth (INDPRO), the unem-
ployment rate (UNRATE), the finished good producer price inflation (PPIFGS), and the change in the 10 year T-bill
rate (GS10).

13Primiceri (2005) uses quarterly series, with sample starting in 1953Q1 till 2001Q3.
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leaving the monetary policy variable last in our ordering; as in Primiceri (2005), we order inflation

before unemployment, although we note that changing the ordering leaves the responses virtually

unaffected. Similarly, we evaluate the impact of non-systematic monetary policy actions in three

different dates: January 1975, July 1981 and January 1996. Results are in Figures 10-13.

[Insert Figures 10-13 somewhere here]

With some exceptions, results are qualitatively similar to those found in Primiceri (2005), with

responses having the same shape (as expected on account of economic theory). With inflation, the

same ordering of responses holds in all three periods (namely, the inflation response is lower in

more recent periods, so reflecting faster response to monetary policy). In the case of the medium

VAR, responses are very close to each other (discrepancies are statistically insignificant) and similar

to the ones documented in Primiceri (2005); inflation is reined in, after a period of price puzzle,

at essentially the same time as found in Primiceri (2005). Conversely, when using a large VAR,

discrepancies become more evident, making the case for time variation. In particular, inflation in

the Greenspan era exhibits virtually no price puzzle, whereas the presence of this is more apparent

in the other two periods considered, confirming the findings in (inter alia) Balke et al. (1994), where

it is argued that the price puzzle became less evident over time. Considering unemployment, even

in this case the response when using a medium VAR looks similar to the one derived by Primiceri

(2005), with greater discrepancies arising when using a large VAR.

4.2. Application to large dimensional VARs

We complement the findings in the previous section by investigating the performance of our esti-

mation technique when applied to heteroskedastic TVP-VARs of very large dimension. We use the

dataset in Kastner and Huber (2020) (Section 4.2.1), and we complement the empirical analysis by

reporting some evidence from synthetic data and CPU times for various values of n (Section 4.2.2).

4.2.1. Forecasting large dimensional VARs

We follow Kastner and Huber (2020), and use the n = 215 quarterly series from the McCracken and

Ng (2016) dataset, with a sample spanning the period between 1959:Q1 and 2015:Q4. To ensure a fair
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comparison, data are transformed to be approximately stationary as suggested in McCracken and Ng

(2016); each series is standardised to have zero mean and unit variance. We focus on forecasting the

same eleven series as Kastner and Huber (2020): gross domestic product (GDPC96), industrial pro-

duction (INPRO), total non-farm payroll (PAYEMS), civilian unemployment rate (UNRATE), new

privately owned housing units started (HOUST), consumer price index inflation (CPIAUCSL), pro-

ducer price index for finished goods inflation (PPIFGS), effective federal funds rate (FEDFUNDS),

10-year treasury constant maturity rate (GS10), U.S./U.K. exchange rate (EXUSUK), and the S&P

500 (S.P.500).

We begin by reporting an overall evaluation of forecasting ability, based on the cumulative log-

predictive scores as in the original paper. Again in order to ensure a fair comparison, we have used

the same approach as Kastner and Huber (2020) - namely, we have carried out the initial estimation

using a sample ranging from 1959:Q3 to 1990:Q2; and we have then computed one-quarter-ahead

predictive densities for the first period in the remainder of the sample (i.e. 1990:Q3), expanding

the estimation sample after predicting each quarter ahead. The relative cumulated quarterly scores

obtained this way are reported in Figure 14.

[Insert Figure 14 somewhere here]

In our comparison, we have used both a VAR(1) with constant only, fixed coefficients and het-

eroskedasticity, and a VARMA(1,1) with the same specifications for time variation. In both cases,

we do not impose a factor structure on the covariance matrix, so that no choice/estimation of the

number of common factors is required.

Both models yield better results than the methodology proposed in Kastner and Huber (2020),

although the VARMA seems to perform better. The impact of the prior specification is, as found

in Section 3.2.1, minimal. Further, more specific comparisons (both in terms of overall performance,

and for individual series of interest), are in Tables H and I.

Insert Tables H and I somewhere here.
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4.2.2. Evidence from synthetic data

We report the outcome of a small set of Monte Carlo experiments, based on various combinations

of (n, T ), using a VAR(1) specification with no time variation in the conditional mean equation. 14

We allow for different levels of sparsity in the partial autocorrelation matrix A (we refer to Kastner

and Huber, 2020 for details). In the vast majority of the cases, forecasts are superior when using our

approach; this is especially true in settings where sparsity is not an adequate assumption.

[Insert Table J somewhere here]

Finally, in Figure 15, we report CPU time for a single draw from the posterior as a function of the

dimension of the model n. These results complement the ones in Figure 5 - as can be noted, these

increase with n, but in a sublinear way, staying below 1’ even when n = 300.

[Insert Figure 15 somewhere here]

5. Discussion and conclusions

Our paper develops an alternative methodology for the estimation of large TVP-VARs with possible

heteroskedasticity. The original multivariate model is decomposed into n simpler models, whose

interactions are modelled separately through a copula. Our applications show that our approach

is computationally more efficient than directly estimating multivariate models, yielding excellent

goodness of fit and predictive ability. 15

Our extensive empirical analysis leads to the following conclusions. The main gains in forecasting

ability come from the use of a copula to take into account the cross dependence among the univariate

equations. Our first conclusion is that the copula manages to capture features of the data that the

original, standard multivariate models are likely to miss. We use the GMCM copula, whose good

performance in our context is in line with the conclusions of other studies (see e.g. Geweke and Keane,

14We use the specification
yt = Ayt−1 + ut;

in our simulations, allowing for heteroskedasticity, and using the dimension reduction strategy S2.
15Further output is reported in the Supplement, reinforcing our conclusions.
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2007 and Villani et al., 2009); we also note, based also on further results in appendix, that using

a data-driven dimensionality reduction for the GMCM copula works particularly well. Although it

would be feasible, in principle, to use other copula specifications, this remains an area for future

research.

Second order improvements in forecasting ability also come from the methodology employed to reduce

the dimensionality of the individual equations. As our applications show (see especially Section A.3),

it is possible to use a pure AR(1) structure in which each series is predicted using solely its own

lags, with good forecasting ability: this indicates that the copula is very successful in exploiting the

information coming from cross-equation dependence. However, superior results are obtained using a

different model reduction strategy, based on Bayesian compression, which in this paper is proposed

as the main strategy. After using Bayesian compression, our results are shown to be robust to the

specification of the prior. This presents our contribution as complementing recent advances in the

Bayesian analysis of large VARs, such as those developed in Bańbura et al. (2010) and Giannone

et al. (2015), where - instead of sparsifying the univariate equations and subsequently using copulas

- new, more sophisticated priors are proposed as a way to deal with large VARs (see also the results

on prior sensitivity analysis in the appendix).

In addition to improvements in forecasting, our methodology has faster computational speed. These

gains arise from sparsification (using both Bayesian compression and our proposed copula dimension

reduction strategies) and from parallelisation.

Finally, our applications mainly focus on “reduced form” examples, as can be seen by the emphasis

on forecasting ability. We conjecture however that, in light of its superior performance, our technique

could also be employed in the context of more structural applications. This issue is currently under

examination by the authors.
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Table A
Relative MSFE at various horizons h - VAR with n = 19.

Variable h = 1 h = 2 h = 3 h = 6 h = 9 h = 12

PAYEMS
0.774

(0.830)
[0.810 ]

0.428
(0.554)
[0.950 ]

0.420
(0.522)
[0.471 ]

0.515
(0.686)
[0.612 ]

0.613
(0.824)
[0.803 ]

0.682
(0.931)
[0.782 ]

CPIAUCSL
0.912

(0.949)
[0.920 ]

0.893
(0.936)
[0.910 ]

0.911
(0.978)
[0.956 ]

0.922
(0.979)
[0.981 ]

0.924
(0.960)
[0.953 ]

0.930
(0.969)
[0.957 ]

FEDFUNDS
0.955

(0.962)
[0.960 ]

0.919
(0.945)
[0.932 ]

0.922
(1.001)
[0.986 ]

0.933
(0.986)
[0.975 ]

0.885
(0.921)
[0.915 ]

0.913
(0.975)
[0.945 ]

INDPRO
0.776

(0.810)
[0.801 ]

0.783
(0.825)
[0.802 ]

0.789
(0.928)
[0.902 ]

0.813
(0.957)
[0.903 ]

0.822
(0.958)
[0.913 ]

0.877
(0.974)
[0.925 ]

UNRATE
0.644

(0.783)
[0.714 ]

0.712
(0.805)
[0.785 ]

0.763
(0.850)
[0.804 ]

0.847
(0.939)
[0.910 ]

0.902
(0.951)
[0.923 ]

0.918
(0.968)
[0.957 ]

PPIFGS
0.886

(0.970)
[0.902 ]

0.916
(1.012)
[1.001 ]

0.925
(1.016)
[1.000 ]

0.944
(1.026)
[1.000 ]

0.962
(1.004)
[1.000 ]

0.977
(1.000)
[0.989 ]

GS10
0.876

(0.988)
[0.974 ]

0.944
(1.003)
[0.966 ]

0.952
(1.032)
[0.982 ]

0.961
(1.006)
[0.980 ]

0.973
(0.997)
[0.999 ]

0.980
(1.000)
[1.000 ]

All figures reported in the table are relative MSFEs, where the benchmark model is a univariate AR(1)
specification for each variable - see equation (19) in Koop et al. (2019) for the formula.
Similarly to Koop et al. (2019), we have used the first half of the sample (January 1960 till June 1987)
to obtain initial parameter estimates (and the initial predictions). All subsequent predictions are then
computed using recursive estimates of the model.
In each cell, results for this paper are the first number. Numbers in round brackets are taken from
Table 1 in Koop et al. (2019), and are the best MSFEs for each variable and each h. We point out that
the models used in Koop et al. (2019) are the DFM model (see equation (17) in the original paper for
details), the FAVAR model of Bernanke et al. (2005), the BVAR with the Minnesota prior suggested by
Bańbura et al. (2010), and the two VARs with bayesian compression in Koop et al. (2019). Numbers in
square brackets are the MSFEs obtained using the methodology proposed by Carriero et al. (2019).

Table B
Relative MSFE at various horizons h - VAR with n = 129.

Variable h = 1 h = 2 h = 3 h = 6 h = 9 h = 12

PAYEMS
0.688

(0.748)
[0.712 ]

0.317
(0.481)
[0.401 ]

0.302
(0.474)
[0.415 ]

0.513
(0.620)
[0.495 ]

0.584
(0.743)
[0.615 ]

0.655
(0.848)
[0.773 ]

CPIAUCSL
0.788

(0.860)
[0.812 ]

0.793
(0.887)
[0.871 ]

0.815
(0.904)
[0.876 ]

0.867
(0.916)
[0.910 ]

0.832
(0.885)
[0.865 ]

0.799
(0.872)
[0.855 ]

FEDFUNDS
0.882

(0.965)
[0.913 ]

0.830
(0.892)
[0.875 ]

0.887
(0.967)
[0.944 ]

0.866
(0.959)
[0.912 ]

0.873
(0.969)
[0.810 ]

0.910
(0.976)
[0.954 ]

INDPRO
0.655

(0.778)
[0.762 ]

0.714
(0.801)
[0.785 ]

0.748
(0.893)
[0.853 ]

0.840
(0.967)
[0.913 ]

0.872
(0.975)
[0.916 ]

0.903
(0.989)
[0.925 ]

UNRATE
0.688

(0.750)
[0.722 ]

0.673
(0.769)
[0.713 ]

0.710
(0.836)
[0.874 ]

0.747
(0.886)
[0.866 ]

0.855
(0.938)
[0.910 ]

0.899
(0.979)
[0.944 ]

PPIFGS
0.910

(0.938)
[0.915 ]

0.923
(1.013)
[1.000 ]

0.948
(1.034)
[1.020 ]

0.955
(1.041)
[1.030 ]

0.962
(1.011)
[0.981 ]

0.977
(1.032)
[0.980 ]

GS10
0.917

(1.009)
[0.985 ]

0.903
(1.005)
[1.000 ]

0.940
(1.049)
[0.980 ]

0.932
(1.022)
[0.981 ]

0.935
(1.000)
[0.977 ]

0.935
(1.003)
[0.969 ]

The figures in the table are the same as in Table A. The numbers in round brackets are taken from
Table 3 in Koop et al. (2019).
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Table C
Out-of-sample density forecast performance at various horizons h - VAR with

n = 129.

Variable h = 1 h = 2 h = 3 h = 6 h = 9 h = 12

PAYEMS
0.448

(0.302)
[0.352 ]

0.523
(0.471)
[0.489 ]

0.551
(0.447)
[0.461 ]

0.510
(0.296)
[0.315 ]

0.413
(0.129)
[0.256 ]

0.389
(0.110)
[0.210 ]

CPIAUCSL
0.232

(0.052)
[0.133 ]

0.244
(0.098)
[0.142 ]

0.257
(0.121)
[0.133 ]

0.288
(0.227)
[0.285 ]

0.271
(0.212)
[0.262 ]

0.244
(0.060)
[0.210 ]

FEDFUNDS
0.318

(0.291)
[0.301 ]

0.322
(0.247)
[0.296 ]

0.327
(0.228)
[0.282 ]

0.310
(0.186)
[0.197 ]

0.288
(0.275)
[0.236 ]

0.256
(0.211)
[0.224 ]

INDPRO
0.244

(0.092)
[0.107 ]

0.271
(0.238)
[0.241 ]

0.282
(0.065)
[0.187 ]

0.270
(0.082)
[0.190 ]

0.255
(0.110)
[0.186 ]

0.241
(0.062)
[0.181 ]

UNRATE
0.233

(0.157)
[0.173 ]

0.244
(0.163)
[0.182 ]

0.255
(0.106)
[0.180 ]

0.262
(0.084)
[0.175 ]

0.271
(0.045)
[0.179 ]

0.280
(0.034)
[0.162 ]

PPIFGS
0.122

(0.059)
[0.101 ]

0.137
(−0.015)
[0.122 ]

0.144
(0.086)
[0.132 ]

0.119
(0.003)
[0.100 ]

0.112
(0.099)
[0.105 ]

0.110
(−0.130)
[−0.001 ]

GS10
0.044

(0.006)
[0.100 ]

0.049
(0.012)
[0.013 ]

0.052
(0.032)
[0.017 ]

0.047
(0.012)
[0.022 ]

0.043
(0.039)
[0.030 ]

0.032
(0.034)
[0.036 ]

The figures in the table are the differentials between the Average Predictive Likelihood (ALPL) and the
benchmark, univariate AR(1) model. We refer to equation (21) in Koop et al. (2019) for details.
All density forecasts are generated as out-of-sample, using recursive estimates starting from July 1987 -
see also the comments below Table A.
In each cell, results for this paper are the first number. Numbers in round brackets are taken from Table 4
in Koop et al. (2019), and are the best ALPLs for each variable and each h. The models considered are the
same as in Table A. Numbers in square brackets have been obtained applying the methodology developed
in Carriero et al. (2019).

Table D
Out-of-sample forecasting performance at various

horizons h - multivariate results for VARs with n = 19
and n = 129.

n = 19 n = 129
WMSFE MVALPL WMSFE MVALPL

h = 1
0.832

(0.916)
[0.910 ]

1.042
(0.979)
[0.982 ]

0.892
(0.907)
[0.903 ]

1.055
(0.996)
[1.032 ]

h = 2
0.830

(0.926)
[0.903 ]

1.125
(1.068)
[1.074 ]

0.890
(0.908)
[0.901 ]

1.177
(1.139)
[1.125 ]

h = 3
0.932

(0.940)
[0.939 ]

1.133
(1.097)
[1.117 ]

0.898
(0.916)
[0.912 ]

1.213
(1.179)
[1.201 ]

h = 6
0.913

(0.954)
[0.942 ]

1.225
(1.030)
[1.010 ]

0.882
(0.933)
[0.944 ]

1.252
(1.131)
[1.102 ]

h = 9
0.914

(0.957)
[0.937 ]

1.221
(1.021)
[1.015 ]

0.910
(0.938)
[0.927 ]

1.246
(1.076)
[1.131 ]

h = 12
0.910

(0.988)
[0.975 ]

1.189
(0.927)
[0.963 ]

0.908
(0.968)
[0.975 ]

1.235
(1.009)
[1.104 ]

The figures in the table are the ratio between the weighted MSFEs
(WMSFE) and the benchmark univariate AR(1) specifications, and the
differential between the multivariate average predictive likelihood and
the corresponding indicator for the benchmark model (MVALPL) - we
refer to equations (20) and (22) in Koop et al. (2019) for details; in
those formulas, similarly to the authors, we have used n = 7 since the
predictive exercise focuses on 7 series only.
All density forecasts are generated as out-of-sample, using recursive es-
timates starting from July 1987 - see also the comments below Table A.
In each cell, results for this paper are the first number. Numbers in
round brackets are taken from Table 5 in Koop et al. (2019), and are the
best results for each variable and each h. The models considered are the
same as in Table A. As in the previous table, numbers in square brackets
refer to the methodology developed by Carriero et al. (2019).
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Table E
Out-of-sample forecasting performance at various horizons h - VARs with n = 19 and n = 129.

MSFE ALPL
h = 1 h = 2 h = 3 h = 6 h = 9 h = 12 h = 1 h = 2 h = 3 h = 6 h = 9 h = 12

n = 19 n = 19

PAYEMS
0.614

(0.700)
[0.685 ]

0.413
(0.565)
[0.520 ]

0.410
(0.565)
[0.537 ]

0.429
(0.651)
[0.581 ]

0.452
(0.769)
[0.703 ]

0.510
(0.872)
[0.860 ]

0.449
(0.338)
[0.342 ]

0.416
(0.391)
[0.395 ]

0.422
(0.352)
[0.366 ]

0.420
(0.078)
[0.105 ]

0.386
(−0.422)
[0.202 ]

0.377
(−0.533)
[−0.100 ]

CPIAUCSL
0.878

(0.924)
[0.913 ]

0.865
(0.872)
[0.865 ]

0.867
(0.884)
[0.872 ]

0.832
(0.869)
[0.855 ]

0.820
(0.841)
[0.830 ]

0.822
(0.845)
[0.810 ]

0.416
(0.284)
[0.287 ]

0.445
(0.211)
[0.225 ]

0.440
(0.461)
[0.460 ]

0.432
(0.191)
[0.203 ]

0.417
(0.280)
[0.207 ]

0.403
(0.292)
[0.301 ]

FEDFUNDS
0.810

(0.879)
[0.861 ]

0.803
(0.892)
[0.887 ]

0.800
(0.924)
[0.910 ]

0.894
(0.995)
[0.976 ]

0.912
(0.967)
[0.953 ]

0.933
(1.061)
[1.012 ]

0.893
(0.760)
[0.792 ]

0.890
(0.594)
[0.610 ]

0.785
(0.423)
[0.515 ]

0.723
(0.382)
[0.402 ]

0.615
(0.303)
[0.212 ]

0.514
(0.365)
[0.297 ]

INDPRO
0.872

(0.899)
[0.885 ]

0.870
(0.925)
[0.914 ]

0.865
(0.940)
[0.935 ]

0.910
(0.978)
[0.966 ]

0.915
(0.980)
[0.974 ]

0.922
(0.989)
[0.982 ]

0.317
(−0.030)
[0.103 ]

0.320
(−0.224)
[0.117 ]

0.320
(−0.128)
[0.204 ]

0.315
(−0.509)
[0.221 ]

0.287
(−0.414)
[0.227 ]

0.280
(−0.225)
[0.229 ]

UNRATE
0.811

(0.846)
[0.837 ]

0.803
(0.847)
[0.833 ]

0.800
(0.876)
[0.857 ]

0.855
(0.939)
[0.921 ]

0.872
(0.971)
[0.954 ]

0.913
(1.011)
[1.000 ]

0.310
(0.123)
[0.175 ]

0.321
(0.104)
[0.192 ]

0.287
(0.095)
[0.103 ]

0.217
(0.059)
[0.116 ]

0.188
(0.036)
[0.072 ]

0.180
(−0.009)
[0.089 ]

PPIFGS
0.911

(0.968)
[0.973 ]

0.913
(0.991)
[0.985 ]

0.922
(1.001)
[1.000 ]

0.923
(0.998)
[0.984 ]

0.930
(0.992)
[0.982 ]

0.944
(1.010)
[1.000 ]

0.322
(0.270)
[0.276 ]

0.445
(0.349)
[0.352 ]

0.313
(0.401)
[0.417 ]

0.310
(0.283)
[0.402 ]

0.312
(0.407)
[0.287 ]

0.317
(0.354)
[0.395 ]

GS10
0.977

(1.018)
[1.000 ]

0.970
(1.017)
[0.993 ]

0.965
(1.039)
[1.020 ]

0.977
(1.030)
[1.010 ]

0.981
(0.995)
[0.984 ]

0.987
(1.030)
[1.020 ]

0.282
(0.025)
[0.106 ]

0.293
(−0.016)
[0.107 ]

0.215
(−0.053)
[0.119 ]

0.210
(−0.057)
[0.185 ]

0.180
(−0.004)
[0.144 ]

0.171
(0.030)
[0.151 ]

Multivariate
0.855

(0.905)
[0.902 ]

0.813
(0.884)
[0.878 ]

0.811
(0.892)
[0.882 ]

0.822
(0.916)
[0.901 ]

0.845
(0.924)
[0.897 ]

0.882
(0.967)
[0.895 ]

1.913
(1.653)
[1.720 ]

1.982
(1.701)
[1.717 ]

1.820
(1.573)
[1.602 ]

1.778
(1.224)
[1.610 ]

1.633
(1.049)
[1.355 ]

1.515
(0.851)
[1.121 ]

n = 129 n = 129

PAYEMS
0.617

(0.685)
[0.673 ]

0.515
(0.566)
[0.582 ]

0.504
(0.548)
[0.557 ]

0.561
(0.656)
[0.662 ]

0.674
(0.762)
[0.741 ]

0.775
(0.879)
[0.885 ]

0.582
(0.338)
[0.340 ]

0.611
(0.405)
[0.416 ]

0.600
(0.374)
[0.385 ]

0.455
(0.083)
[0.120 ]

0.422
(−0.447)
[0.103 ]

0.310
(−0.530)
[−0.134 ]

CPIAUCSL
0.893

(0.904)
[0.901 ]

0.820
(0.846)
[0.835 ]

0.815
(0.844)
[0.832 ]

0.807
(0.848)
[0.835 ]

0.782
(0.800)
[0.791 ]

0.727
(0.796)
[0.790 ]

0.352
(0.241)
[0.322 ]

0.487
(0.364)
[0.357 ]

0.489
(0.361)
[0.351 ]

0.510
(0.354)
[0.345 ]

0.610
(0.539)
[0.510 ]

0.482
(0.074)
[0.106 ]

FEDFUNDS
0.789

(0.885)
[0.865 ]

0.780
(0.911)
[0.873 ]

0.814
(0.920)
[0.915 ]

0.855
(1.022)
[0.987 ]

0.933
(1.034)
[0.985 ]

0.955
(1.075)
[0.980 ]

0.887
(0.715)
[0.726 ]

0.893
(0.577)
[0.612 ]

0.744
(0.489)
[0.513 ]

0.615
(0.445)
[0.562 ]

0.522
(0.100)
[0.570 ]

0.447
(0.269)
[0.092 ]

INDPRO
0.813

(0.896)
[0.881 ]

0.820
(0.928)
[0.900 ]

0.884
(0.957)
[0.942 ]

0.895
(0.996)
[0.955 ]

0.904
(1.002)
[0.942 ]

0.922
(1.020)
[0.987 ]

0.332
(0.116)
[0.125 ]

0.330
(0.036)
[0.067 ]

0.280
(−0.184)
[0.132 ]

0.275
(−0.320)
[0.102 ]

0.261
(−0.205)
[0.100 ]

0.230
(−0.210)
[0.247 ]

UNRATE
0.813

(0.836)
[0.830 ]

0.821
(0.851)
[0.846 ]

0.835
(0.880)
[0.873 ]

0.922
(0.949)
[0.938 ]

0.944
(0.981)
[0.976 ]

0.986
(1.026)
[0.980 ]

0.225
(0.122)
[0.107 ]

0.220
(0.102)
[0.115 ]

0.197
(0.078)
[0.086 ]

0.144
(0.050)
[0.079 ]

0.132
(0.034)
[0.116 ]

0.130
(0.010)
[0.087 ]

PPIFGS
0.915

(0.983)
[0.962 ]

0.910
(0.985)
[0.973 ]

0.922
(1.005)
[0.986 ]

0.935
(1.008)
[0.980 ]

0.965
(0.995)
[0.982 ]

0.970
(1.012)
[0.981 ]

0.387
(0.254)
[0.262 ]

0.415
(0.363)
[0.108 ]

0.419
(0.371)
[0.109 ]

0.422
(0.346)
[0.352 ]

0.439
(0.385)
[0.392 ]

0.420
(0.213)
[0.310 ]

GS10
0.927

(1.021)
[1.010 ]

0.920
(1.021)
[1.012 ]

0.933
(1.034)
[0.986 ]

0.942
(1.024)
[0.984 ]

0.952
(1.013)
[0.982 ]

0.981
(1.021)
[0.980 ]

0.210
(0.008)
[0.103 ]

0.206
(0.037)
[0.047 ]

0.200
(0.017)
[0.025 ]

0.186
(0.008)
[0.017 ]

0.177
(0.029)
[0.042 ]

0.163
(−0.033)
[0.111 ]

Multivariate
0.872

(0.902)
[0.900 ]

0.865
(0.883)
[0.872 ]

0.860
(0.885)
[0.865 ]

0.893
(0.922)
[0.910 ]

0.904
(0.932)
[0.898 ]

0.933
(0.967)
[0.890 ]

1.844
(1.667)
[1.710 ]

1.912
(1.666)
[1.716 ]

1.910
(1.593)
[1.689 ]

1.895
(1.216)
[1.352 ]

1.417
(1.002)
[1.289 ]

1.218
(0.713)
[0.973 ]

The figures in the table are the relative MSFEs and the differentials between the Average Predictive Likelihood (ALPL) and the benchmark, univariate AR(1) model. The last figures in each panel of the
table represent the overall forecasting ability, measured using WMSFE and MVALPL, defined as in the previous tables.
All forecasts are generated as out-of-sample, using recursive estimates starting from July 1987 - see also the comments below Table A.
In each cell, results for this paper are the first number. Numbers in round brackets are taken from Table 6 in Koop et al. (2019), and correspond to the BCVAR-TVP-SV. Numbers in square brackets are
based on applying the methodology developed by Carriero et al. (2019).
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Table F
Out-of-sample forecasting performance at various horizons h - multivariate results,

VARs with n = 7, n = 19 and n = 129.

n = 7 n = 19 n = 129
WMSFE MVALPL WMSFE MVALPL WMSFE MVALPL

h = 1
0.881

(0.917)
[0.910 ]

2.454
(2.047)
[2.103 ]

0.844
(0.905)
[0.901 ]

2.410
(1.653)
[1.722 ]

0.840
(0.902)
[0.900 ]

2.225
(1.667)
[1.734 ]

h = 2
0.845

(0.895)
[0.891 ]

2.450
(1.907)
[1.920 ]

0.841
(0.884)
[0.870 ]

2.433
(1.701)
[1.835 ]

0.832
(0.883)
[0.875 ]

2.215
(1.666)
[1.712 ]

h = 3
0.857

(0.901)
[0.900 ]

2.310
(1.845)
[1.971 ]

0.822
(0.892)
[0.885 ]

2.210
(1.573)
[1.617 ]

0.831
(0.885)
[0.847 ]

2.188
(1.593)
[1.650 ]

h = 6
0.872

(0.912)
[0.910 ]

2.287
(1.608)
[1.735 ]

0.885
(0.916)
[0.905 ]

2.280
(1.224)
[1.476 ]

0.890
(0.922)
[0.913 ]

2.261
(1.216)
[1.457 ]

h = 9
0.893

(0.936)
[0.925 ]

2.100
(1.385)
[1.410 ]

0.905
(0.924)
[0.911 ]

2.101
(1.078)
[1.082 ]

0.913
(0.932)
[0.927 ]

2.090
(1.002)
[1.000 ]

h = 12
0.914

(0.960)
[0.973 ]

1.776
(0.931)
[0.961 ]

0.922
(0.967)
[0.975 ]

1.872
(1.039)
[1.210 ]

0.930
(0.950)
[0.942 ]

1.914
(0.713)
[0.955 ]

As in Koop et al. (2019), we have considered one extra VAR model with n = 7 (containing only the seven
variables of interest), alongside the ones with n = 19 and n = 129 variables.
The figures in the table are the weighted MSFEs (WMSFE) relative to the AR(1) benchmark, and the dif-
ferentials between the multivariate Average Predictive Likelihood (WMALPL) and the benchmark, univariate
AR(1) models. As in the previous tables, forecasts are generated as out-of-sample, using recursive estimates
starting from July 1987. Similarly, results for this paper are the first number in each cell. Numbers in round
brackets are taken from Table 7 in Koop et al. (2019), and are the best results for each variable and each h out
of three specifications: a Bayesian compressed VAR with heteroskedasticity (denoted as BCVARsv in Koop
et al., 2019); a Bayesian compressed TVP-VAR with heteroskedasticity (denoted as BCVARtvp−sv); and,

finally, the Bayesian VAR estimated with the methodology by Carriero et al. (2019) (denoted as BVARccm).
Numbers in square brackets are based on Carriero et al. (2019).
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Fig 1: Predictive Bayes factors - fixed coefficients, homoskedastic VAR
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(a) Predictive BF against simple VAR

Koop et al. data, 2019, n=19
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(b) Predictive BF against simple VAR

Koop et al. data, 2019, n=129
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(c) Predictive BF against simple VAR

Carriero et al. data, 2019, n=125
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(d) Predictive BF against simple VAR

Carriero et al. data, 2019, n=19
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Fig 2: Predictive Bayes factors - homoskedastic TVP-VAR
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(a) Predictive BF in favor of TVP-VAR

against best model in Koop et al., 2019, n=19

Normal prior

Cauchy prior

1 2 3 4 5 6 7 8 9 10 11 12

horizon, h

0

500

1000

1500

2000

2500

3000

3500

4000

P
re

d
ic

ti
v
e
 B

F

(b) Predictive BF in favor of TVP-VAR

against best model in Koop et al., 2019, n=129
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(c) Predictive BF in favor of TVP-VAR

against best model in Carriero et al., 2019, n=125
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(d) Predictive BF in favor of TVP-VAR

against best model in Carriero et al., 2019, n=19
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Fig 3: Predictive Bayes factors - heteroskedastic TVP-VAR
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(a) Predictive BF in favor of TVP-VAR

against best model in Koop et al., 2019, n=19
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(b) Predictive BF in favor of TVP-VAR

against best model in Koop et al., 2019, n=129
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(c) Predictive BF in favor of TVP-VAR

against best model in Carriero et al., 2019, n=125
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(d) Predictive BF in favor of TVP-VAR

against best model in Carriero et al., 2019, n=19
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against best model in Carriero et al., 2019, n=129

Normal prior

Cauchy prior

.



M
.

T
sio

n
a

s,
M

.
Izzeld

in
a

n
d

L
.

T
ra

pa
n

i/
L

a
rge

B
a

y
esia

n
T

V
P

-V
A

R
s

3
5

Fig 4: MCMC convergence diagnostics and computational efficiency.
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The RNE reported in sub-panels (a)-(d) is the relative numerical efficiency (Geweke, 1992) which is equal to 1 for i.i.d. draws from the
posterior (with skipping every other 5 draws). In sub-panels (b)-(e), we show ACFs for 50 randomly selected parameters (with skipping
every other 5 draws). In sub-panels (c)-(f), we show Geweke (1992) convergence diagnostic (a z-statistic) to test whether a MCMC chain
has converged. This is for 50 randomly selected parameters (with skipping every other 5 draws).
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Fig 5: Timing (seconds) relative to Carriero et al. (2019)
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Timings are for the High End Cluster of Lancaster University. The combined facility offers 9,900
cores, 50TB of aggregate memory, 6 Tesla V100 GPUs, 230TB of high performance filestore for
general use and 4PB of medium performance filestore for GridPP data. The cluster operating system
is CentOS Linux, with job submission handled by Son of Grid Engine (SGE). The service supports
Fortran compilers. We use Fortran 77 making extensive of BLAS and LAPACK from NETLIB.



M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 37

Fig 6: Predictive Bayes factors - TVP-VARMA
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(a) Predictive BF in favor of TVP-VARMA

against best model in Koop et al., 2019, n=19
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(b) Predictive BF in favor of TVP-VARMA

against best model in Koop et al., 2019, n=129
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(d) Predictive BF in favor of TVP-VARMA

against best model in Carrieo et al., 2019, n=19
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(c) Predictive BF in favor of TVP-VARMA

against best model in Carrieo et al., 2019, n=125
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Fig 7: MSFE of TVP-VARMA relative to TVP-VAR, Carriero et al. (2019) data.
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Circles represent MSFEs for h=1, 3, 6, 9, 12; the red dotted line represents the 45 degrees line.
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Fig 8: Bayes factors for TVP-VARMA against TVP-VAR with Carriero et al. (2019), all 20 series
and 12 horizons

.

Table G
Out-of-sample forecasting performance from TVP-VARMA with n = 129 at various

horizons.

Date INDPRO UNRATE PAYEMS FEDFUNDS GS10 PPIFGS CPIAUSL

March 2019 0.017 0.089 0.077 0.021 0.077 0.035 0.022
May 0.021 0.091 0.081 0.019 0.055 0.032 0.020
August 0.017 0.085 0.085 0.017 0.047 0.027 0.032
October 0.013 0.087 0.075 0.012 0.043 0.021 0.021
December 0.015 0.082 0.070 0.0091 0.040 0.019 0.017
January 2020 0.011 0.080 0.067 0.0085 0.040 0.015 0.015
March 0.010 0.079 0.061 0.0082 0.038 0.010 0.012
August 0.009 0.080 0.060 0.0077 0.037 0.009 0.009
December 0.007 0.077 0.058 0.0065 0.030 0.009 0.008

We use the same data as in Koop et al. (2019), extended until 2020:Q4. The figures in the table are the RMSEs
for each series.
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Fig 9: Predictive Bayes in favour of TVP-VARMA and against TVP-VAR during the Covid-19
outbreak.
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Table H
Average log predictive scores for the number of factors q = 0, 1, 2, 3, 4, 5
across various specifications - comparison with Table 2 in Kastner and

Huber (2020).

q → 0 1 2 3 4 5

VAR(1)-FSV NG(0.1)(a) −10.55 −9.95 −9.31 −9.26 −9.47 −9.46

VAR(2)-FSV DL(1/k)(b) −10.50 −9.88 −9.22 −9.38 −9.28 −9.43
TVP-VAR S1 −9.44 −9.37 −9.21 −9.10 −9.01 −8.77
TVP-VAR S2 −9.44 −9.36 −9.20 −9.11 −9.00 −8.76
TVP-VARMA S1 −9.32 −9.12 −8.82 −8.77 −8.36 −8.13
TVP-VARMA S2 −9.32 −9.12 −8.82 −8.76 −8.35 −8.12

Results denoted as (a) and (b) are taken from Table 2 in Kastner and Huber (2020), and they
correspond to their models with the best out-of-sample forecasting performance. Results are
reported for various values of q.
Estimation and prediction is conducted on all m = 215 component series; the predictive
density is then evaluated on the set of 11 variables of interest. Larger numbers indicate better
joint predictive density performance.

Table I
Average univariate log predictive scores for inflation (CPIAUCSL), short-term interest rates (FEDFUNDS),
and output growth (GDPC96) with q = 0.1.2 factors. Comparison with Table 3 in Kastner and Huber (2020).

CPIAUSCL FEDFUNDS GDPC96

q → 0 1 2 0 1 2 0 1 2

VAR(2)-FSV DL(1/k)(b) −1.030 −1.110 −1.130 −1.260 −1.260 −1.240 0.080 0.050 0.030
TVP-VAR S1 −0.970 −0.930 −0.090 −1.150 −1.200 −1.150 0.060 0.070 0.090
TVP-VAR S2 −0.970 −0.930 −0.090 −1.150 −1.200 −1.150 0.060 0.070 0.090
TVP-VARMA S1 −0.910 −0.893 −0.071 −1.100 −1.050 −1.050 0.070 0.090 0.090
TVP-VARMA S2 −0.910 −0.893 −0.071 −1.100 −1.050 −1.050 0.070 0.090 0.090

(a) is taken from Table 3 in Kastner and Huber (2020).
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Fig 10: Impulse responses of inflation to monetary policy shocks - medium VAR (n = 19)
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Fig 11: Impulse responses of inflation to monetary policy shocks - large VAR (n = 129)
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Fig 12: Impulse responses of unemployment to monetary shocks - medium VAR (n = 19)
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Fig 13: Impulse responses of unemployment to monetary shocks - large VAR (n = 129)
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Fig 14: Relative Cumulative LPS (1990:Q1 - 2015.:Q4)
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Cumulative log predictive scores, relative to a zero-mean model with independent stochastic volatility
components for all component series; see also Figure 4 in Kastner and Huber (2020). Higher values
correspond to better one-quarter-ahead density predictions up to the corresponding point in time.
To assess the forecasting performance of our model, we conduct a pseudo out-of-sample forecasting
exercise with initial estimation sample ranging from 1959:Q3 to 1990:Q2. Based on this estimation
period, we compute one-quarter-ahead predictive densities for the first period in the hold-out (i.e.
1990:Q3). After obtaining the corresponding predictive densities and evaluating the corresponding
log predictive likelihoods, we expand the estimation period and re-estimate the model. This procedure
is repeated 100 times until the final point of the full sample is reached. The quarterly scores obtained
this way are then accumulated.
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Table J
Simulation study - comparison with Table 1 in Kastner and Huber (2020).

sparse intermediate dense

n 10 20 50 100 10 20 50 100 10 20 50 100

T

50 0.038∗ 0.019∗ 0.022∗ 0.025 0.049∗ 0.044 0.039∗ 0.033∗ 0.037∗ 0.030∗ 0.027∗ 0.025∗

100 0.036∗ 0.017∗ 0.021∗ 0.023 0.047∗ 0.040∗ 0.035∗ 0.028∗ 0.033∗ 0.028∗ 0.024∗ 0.020∗

150 0.033 0.017∗ 0.020∗ 0.024 0.043 0.038∗ 0.032∗ 0.026∗ 0.029∗ 0.026∗ 0.021∗ 0.018∗

200 0.029∗ 0.015∗ 0.018∗ 0.020 0.041 0.031∗ 0.024∗ 0.020∗ 0.026∗ 0.022∗ 0.019∗ 0.017∗

250 0.021∗ 0.012∗ 0.018† 0.020 0.038 0.026∗ 0.020∗ 0.016∗ 0.023∗ 0.020∗ 0.018∗ 0.016∗

The numbers in the table are median values of the RMSE stemming from 10 simulations per setting, and can be contrasted with the results in Table
1 in Kastner and Huber (2020).

The symbol “∗” denotes lower RMSE compared to all other results in Table 1 in Kastner and Huber (2020); “†” indicates the same forecasting
ability as the best result in Kastner and Huber (2020). No symbol denotes that there is at least one result in Table 1 in Kastner and Huber (2020)
which dominates our results.

Fig 15: CPU timings
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Timings are in CPU seconds for a single draw from the posterior depending on the number of
variables in the VAR, n. Timings are for a standard desktop i9 running fortran77 using the Lahey
compiler. In all experiments, we have used T = 224 observations.



M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 47

Appendix A: Further empirical evidence

In this Appendix, we report the full blown resampling algorithm, and also further output which

complements Section 3.

A.1. Technical details

A.1.1. Univariate equations estimation: further details

Note that (2.3) entails that

lnu2i,t = hi,t + lnu∗2i,t. (A.1)

Conditional on βi,ts, we have

ln

yi,t − p∑
j=1

βi,tyi,t−j

2

= hi,t + lnu∗2i,t. (A.2)

The model is linear in hi,t. It is well known (see Kim et al., 1998) that using a Quasi-Maximum

Likelihood estimator under the assumption that lnu∗2i,t is Gaussian results in poor small-sample

properties. Thus, we follow the approach suggested by Kim et al. (1998), and we approximate the

distribution of lnu∗2i,t using a mixture of normals with seven components. Thence, for each i, hi,ts

is sampled at once using the Kalman filter. In turn, conditionally on hi,t, the model for yi,t has a

linear state space representation in terms of βi,ts. Therefore, for each i, we draw the entire vector

βi,t at once, using again the Kalman filter. 16

A.1.2. Sampling from the posterior: the MALA algorithm

Sampling from (2.14) can be done along similar lines as in the case of a fixed coefficient VARs,

but with the complications arising from βt being time-varying. We use the Metropolis Adjusted

Langevin (MALA) algorithm by Roberts and Rosenthal (1998) (see also Girolami and Calderhead,

2011), which is likely to be more efficient than an ordinary Random Walk Metropolis algorithm in

light of the large dimensionality of θ; we refer to Section 4 for an evaluation of CPU time. Further,

16We point out that an alternative approach is to use the Gibbs sampler to draw from the conditional posterior
distribution p

(
βi,t|{hi,τ , τ 6= t}, {hi,t}, {y}Tt=1

)
but this approach, although simpler, results in slower convergence

and higher autocorrelation in MCMC draws.
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evidence on relative numerical efficiency reported in Section 4.1 shows that the resampling approach

is quite efficient.

In order to illustrate the algorithm, we begin by defining the matrix

G
(
θ̃
)

= − ∂2

∂θ∂θ′
lnL

(
{yt}Tt=p+1 |θ, {βt}

T
t=1

)∣∣∣∣
θ=θ̃

(A.3)

computed at a generic value θ̃. The likelihood L
(
{yt}Tt=p+1 |θ

)
is differentiable up to any order,

within the whole parameter space, due to the normality assumption; thus, by the Schwarz Lemma,

G
(
θ̃
)

is symmetric for any θ̃ within the parameter space.

Based on the definitions above, the resampling scheme is as follows:

GC-Step 1 Initialise by drawing θ0 from p (θ), and set k = 0.

GC-Step 2 Randomly generate θ̃ from the proposal density

q
(
θ̃|θk

)
∼ N

[
m (θk) , λ2Id

]
. (A.4)

GC-Step 3 Compute the Metropolis acceptance probability

A
(
θ̃, θk

)
= min

1,
p
(
θ̃| {yt}Tt=1

)
p
(
θk| {yt}Tt=1

) q
(
θk|θ̃

)
q
(
θ̃|θk

)
 , (A.5)

where the marginal posterior is obtained by integrating out {βt}Tt=1 from the joint posterior

in (2.14) with respect to the posterior of {βt}Tt=1.

GC-Step 4 Draw u from a uniform distribution in [0, 1], defining the acceptance rule

if u ≤ A
(
θ̃, θk

)
=⇒ θk+1 = θ̃

if u > A
(
θ̃, θk

)
=⇒ θk+1 = θk

GC-Step 5 Set k = k + 1 and return to Step 2.

We now present the proposal density. In (A.4), the scale parameter λ is discussed later on, and the

mean m (θk) is given by

m (θk) = θk +
1

2
λ2∇ ln p

(
θk| {yt}Tt=1

)
, (A.6)
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where “∇” refers to the gradient, which is computed with respect to θ and then specialised in the

value θk (we use the same notation as Nemeth et al., 2016). In (A.6), the main difficulty is the

computation of

∇ ln p
(
θk| {yt}Tt=1

)
= ∇ lnL

(
{yt}Tt=1 |θk

)
+∇ ln p (θk) . (A.7)

Assuming - as is typical, see Nemeth et al. (2016) - that ∇ ln p (θk) is known, this amounts to

estimating ∇ lnL
(
{yt}Tt=1 |θk

)
. Note that by Fisher’s identity (Cappé et al., 2009), it holds that

∇ lnL
(
{yt}Tt=1 |θk

)
= E{βt}Tt=1

[
∇ ln p

(
{yt}Tt=1 ; {βt}Tt=1 |θk

)]
, (A.8)

where E{βt}Tt=1
denotes expectation taken with respect to p

(
{βt}Tt=1 | {yt}

T
t=1

)
, with

∇ ln p
(
{yt}Tt=1 ; {βt}Tt=1 |θk

)
=

T∑
t=1

∇ ln p
(
yT | {yt}T−1t=1 ; {βt}T−1t=1 ; θk

)
+∇ ln p

(
βT | {βt}T−1t=1 ; θk

)
.

(A.9)

Estimation of ∇ lnL
(
{yt}Tt=1 |θk

)
uses the Rao-Blackwellised estimator proposed in Nemeth et al.

(2016), as described below.

RB-Step 1 Initialise by sampling the particles β
(j)
1 , 1 ≤ j ≤M , from p (β1), and set

w
(j)
1 =

p
(
y1|β(j)

1

)
∑M
j=1 p

(
y1|β(j)

1

) ,
computing also the estimate

∇ ln L̂ (y1|θk) = ∇ ln p
(
y1|β(j)

1 ; θk

)
+∇ ln p (β1) .

RB-Step 2 For t = 2, ..., T , assume a set of weights
{
ξ
(j)
t

}M
j=1

and a proposal density q
(
βt|β(j)

t−1;yt; θk

)
,

and

(i) sample a set of indices {kj}Mj=1 from 1 ≤ j ≤M , with probabilities
{
ξ
(j)
t

}M
j=1

;

(ii) define the updated weights

w
(j)
t =

w̃
(j)
t∑M

j=1 w̃
(j)
t

,
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where

w̃
(j)
t =

w̃
(kj)
t−1 p

(
yt|β(j)

t ; θk

)
p
(
β
(j)
t |β

(kj)
t−1 ; θk

)
ξ
(kj)
t q

(
β
(j)
t |β

(kj)
t−1 ;yt; θk

) ;

(iii) compute

m
(j)
t = ζm

(kj)
t−1 +(1− ζ)

M∑
j=1

w
(j)
t−1m

(j)
t−1+ln p

(
yt|β(j)

t ; θk

)
+∇ ln p

(
β
(j)
t |β

(kj)
t−1 ; θk

)
. (A.10)

RB-Step 3 Compute

∇ ln L̂
(
{ys}ts=1 |θk

)
=

M∑
j=1

w
(j)
t m

(j)
t .

The output of the algorithm is the estimate ∇ ln L̂
(
{yt}Tt=1 |θk

)
, which can then be plugged in

(A.7). As indicated by Nemeth et al. (2016), the algorithm also readily affords the computation of

other important quantities such as the predictive likelihood, etc.

Finally, we note that when estimating VARMA models as in Section 4.1, we use essentially the same

algorithm as above. The only difference is the proposal density employed in GC-Step 2, which in the

case of a fixed parameter VARMA is defined as

q
(
θ̃|θk

)
∼ N

(
θk, ε

2G−1 (θk)
)
, (A.11)

where ε is chosen so as to pre-determine, roughly, the acceptance ratio in GC-Step 4 of the algorithm,

setting it to around 25− 30. 17

A.2. Further results on predictive ability

In this section, we compare our methodology against the results in Koop and Korobilis (2013), also

drawing a systematic analysis of the relative performance of several variants of our methodology. We

use the same data as Koop and Korobilis (2013), namely n = 25 US macroeconomic variables (see

Table A.7) running from 1959:Q1 to 2010:Q2. The focus of our exercise is the prediction of three

series: inflation, GDP and interest rate. Given that all series are transformed into first differences in

order to ensure stationarity, our model predicts the percentage change in inflation (the second log

17In order to carry out this step, we use 600, 000 replications, with a burn-in period of 100, 000 replications.
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difference of CPI), GDP growth (the log difference of real GDP) and the change in the interest rate

(the difference of the Fed funds rate). To ensure a fair comparison with Koop and Korobilis (2013),

we have also demeaned all variables and then standardised them (we use the standard deviation

calculated from 1959Q1 through 1969Q4). The forecasting horizon is 1970:Q1 till 2010:Q2.

Results are in Tables A.1-A.3, where we report the relative Mean Squared Forecast Errors (MSFE)

when using the various VAR specifications to predict GDP, inflation and interest rate (respectively).

The numbers in the tables are the MSFE relative to the TVP-VAR-DMA model in Koop and

Korobilis (2013), which is therefore our baseline model.

Broadly speaking, results show that our methodology affords good forecasting ability especially for

shorter horizons; a notable exception is the poor performance of the TVP-VAR for GDP, although

using strategies S1 and S2 yields a marked improvement. Indeed, there is no clearly superior model,

although the results seem to make a case for heteroskedastic VARs (nonetheless, homoskedastic

VARs with GMCM show very good results). In general, using GMCM (and determining the G) works

better than restricting G to 1 (as could be expected). Similarly, reducing the dimensionality of the

copula model with either strategy S1 or S2 generally improves forecasting ability. Although Bayesian

compression works well, it does not seem to yield a uniformly superior predictive performance than

the univariate models proposed in equation (2.2). As a final point, a distinctive feature of Koop and

Korobilis (2013) is that the authors propose to use “forgetting factors”(a procedure not dissimilar

to an exponentially weighted moving average); thus, they avoid estimating the covariance matrix of

the VAR and the covariance matrix of the time-varying coefficients. In our case, we are dealing with

univariate models, and therefore we do not have to estimate covariance matrices.

A.3. Further evidence on VARMA models

In order to complement the findings in Section 4.1, we consider the estimation and the predictive

ability of a VARMA model, applied to US macro data; our exercise is based on the one in Chan

et al. (2016).

In this application, we do not consider time variation in the coefficients or in the volatilities: the

purpose of our analysis is only to show the computational advantages of our procedure. We follow

Chan et al. (2016), using the same dataset. The data are quarterly US macroeconomic variables,

ranging from 1959:Q1 to 2013:Q4. All data are first-differenced to obtain stationarity, as is custom-

arily recommended in this type of analysis (see Carriero et al., 2015) - see Table A.4 for a list of
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variables employed. In order to ensure a meaningful comparison with Chan et al. (2016), we con-

sider three models of increasing dimension, with n = 3, 7 and 12. In particular, for the model with

n = 3 variables, we have used: Real GDP, CPI (All Items) and Effective Federal Funds Rate. For

the case n = 7, the variables are the ones in the previous model, plus: Average Hourly Earnings:

Manufacturing, M2 Money Stock, Spot Oil Price (WTI), and S&P 500 Index. Finally, for the model

with n = 12, the additional variables are Real Personal Consumption, Housing Starts (total), Real

GPDI, ISM PMI Composite Index and All Employees (Total nonfarm). 18

In Table A.5, we compare models using the sum of the log predictive likelihood as a model selection

criterion based on forecasting accuracy (see also an insightful contribution by Geweke and Amisano,

2014). 19 As can be noted, our methodology yields results which, broadly speaking, are as good as

the ones in Chan et al. (2016); a distinctive advantage is that our procedure is simpler and quicker to

implement (CPU time is always below 1 second using mainframe). Similarly to Chan et al. (2016),

we note that VARMA models seem to offer better predictive power; yet, remarkably, our VAR(4)

based on using the dimension reduction strategy denoted as S2 is at least as good (in fact, marginally

better) than both our VARMA(4, 4), and the one in Chan et al. (2016). Interestingly, it can be noted

that model averaging yields an even better result. This can be viewed as an indication that none of

the models under consideration is correctly specified, which makes the case for model averaging.

We have also run a complementary exercise, in which we estimate the three models (with n = 3, 7

and 12 variables), and then consider the predictive likelihood for the variables that are common

to the three specifications - that is, Real GDP, CPI (All Items) and Effective Federal Funds Rate.

The results are presented in Table A.6, where it can be noted that the forecasting ability (slightly)

improves as n increases, reinforcing the case for large VARs. Especially when n = 12 is considered,

our approach to the estimation of VARMA(4, 4) delivers the best predictive ability - again, this

result should be read in conjunction with the decidedly lower CPU time of our approach.

Finally, we have also carried out impulse response analysis; whilst we do not report results (which

are available upon request), we found that impulse response functions behave in a very similar way

to those in Figures 1 and 2 in Chan et al. (2016).

18A complete description of the dataset is available from the authors.
19Details and formulas (also for other indicators) are available upon request.
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A.4. Impulse responses from a large VAR - comparison with Giannone et al. (2015)

We compare our methodology with the results from Giannone et al. (2015), who estimate a large

Bayesian VAR with n = 23 variables (see Table A.8 in the Supplement for a list of the variables),

focusing primarily on the selection of an appropriate prior. We carry out a forecasting exercise,

based on the same specifications as in Giannone et al. (2015); results - and a brief description of the

exercise - are reported in Table A.9.

According to Table A.9, our approach affords very good predictive ability; as a general comment,

forecasting ability seems to improve decidedly as the dimension of the VAR increases, which again

makes the case for large VARs.

As well as comparing predictive ability, we have computed the Impulse Response Functions (IRFs)

for all the variables in the large version of the VAR. Our results are in Figures A.3-A.5, which

correspond exactly to IRFs reported in Figures 2-4 in Giannone et al. (2015). The pattern of the

impulse responses is very similar, although there seem to be important differences in uncertainty

(compare the 95% Bayes probability intervals for impulse responses). Note that we have followed

exactly the same identification scheme as in Giannone et al. (2015), and therefore our findings

are the same as in that paper. In particular, an increase in the Federal Funds rate results in a

contraction of all variables related to economic activity (see e.g. the GDP and employment), in

monetary aggregates, stock prices and prices (with a delay); thus, even in our case, there is no “price

puzzle” contrary to small VARs.

Finally, Giannone et al. (2015) also compare the impulse response functions of their model against

a “real” counterpart. To this end, they simulate data using a medium-sized Dynamic Stochastic

General Equilibrium (DSGE) model, and compare the IRFs from the theoretical model with those

from their hierarchical prior BVAR and a flat prior VAR. More specifically, Giannone et al. (2015) run

a Monte Carlo exercise with 500 replications, generating time series of length T = 200 (quarters)

for seven variables: output (Y), consumption (C), investment (I), hours worked (H), wages (W),

prices (P) and the short-term interest rate (R). 20 We have carried out the same exercise, using

exactly the same specification and parameterisation for the DSGE; likewise, for each variable, we

have computed the IRFs at different horizons, and the MSE across replications. In particular, in

Figure A.6, we report the ratio of the MSEs obtained using a flat prior VAR and our approach -

20The DSGE model is the same as in Justiniano et al. (2010), with the exception that the private sector conditions
on monetary policy is set as in Christiano et al. (1996).
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this can be directly compared with Figure 6 in Giannone et al. (2015), where, broadly speaking,

similar outcomes are found. Even in our case such ratio is never lower than 1 in any of the cases

considered, being in fact substantially higher in most cases. Indeed, depending on the horizon, all

IRFs (except for the case of the short-term interest rate, R) can be at least three times as accurate.

Note also that our IRFs for the short-term interest rate R are not as accurate as the others. This is

found also in Giannone et al. (2015), who ascribe their results, in this case, to the need for a more

sophisticated prior. We note however that, in our case, the MSE ratio is always greater than one

even for R, possibly because our methodology does not rely mainly on the choice of a prior, but

hinges around the usage of univariate models plus a copula. Based on Figure A.6, it is possible to

conclude that the approach proposed in this paper works very well in practice.

Table A.1
Relative MSFE at various horizons h - predictions for GDP.

GDP Forecast horizon

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

TVP-VAR(a), λ = 0.99, βT+h ∼ RW 1.17 1.17 1.10 1.12 1.12 1.10 1.13 1.12

TVP-VAR(a), λ = 0.99, κ = 0.96, α = 0.99 1.04 1.05 1.01 1.02 1.01 1.00 1.02 1.01

VAR, Heteroskedastic(a) 1.10 1.10 1.03 1.04 1.05 1.01 1.06 1.04

VAR, Homoskedastic(a) 1.13 1.03 1.03 1.05 1.08 1.06 1.10 1.08

TVP-VAR, this paper 1.12 1.14 1.15 1.17 1.20 1.20 1.22 1.25

TVP-VAR, using S1 0.90 0.92 0.94 0.94 0.96 0.98 1.00 1.02

TVP-VAR, using S2 0.89 0.91 0.92 0.92 0.90 0.94 0.92 0.97

VAR - Heteroskedastic, this paper (G = 1) 1.01 0.99 0.99 0.97 0.98 0.98 1.01 1.03

VAR - Heteroskedastic, GMCM 0.91 0.93 0.95 0.99 1.02 1.04 1.07 1.09

VAR - Heteroskedastic, Bayes compression 0.84 0.87 0.87 0.90 0.90 0.92 0.92 0.93

VAR - Homoskedastic, this paper (G = 1) 0.94 0.96 0.99 1.01 1.05 1.07 1.09 1.14

VAR - Homoskedastic, GMCM 0.89 0.91 0.91 0.92 0.94 0.95 0.97 0.97

VAR - Homoskedastic, Bayes compression 0.90 0.91 0.93 0.93 0.95 0.98 1.09 1.14

In each column, h denotes the horizon for which the prediction has been computed.
The first panel of the table contains the results for several models proposed in Koop and Korobilis (2013); specifically, the

superscript “(a)”refers to the models considered in Table 1 in Koop and Korobilis (2013). In the first row, “RW”denotes
a random walk law of motion for the time-varying parameters; the parameters in the second row are defined in Koop and
Korobilis (2013).
In the second panel of the table, we use the models proposed in this paper. In particular, in the model denoted as “GMCM”,
we use the mixed Gaussian copula model defined in (2.10); G has been selected equal to 4 based on the values of the marginal
likelihood. In the row above, we have used G = 1, with no model selection. In the row denoted as “Bayes compression”, we
have used the methodology proposed by Guhaniyogi and Dunson (2015), averaging across 10, 000 sets of weights, derived from
marginal likelihoods converted into posterior probabilities.
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Table A.2
Relative MSFE at various horizons h - predictions for inflation.

Inflation Forecast horizon

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

TVP-VAR(a), λ = 0.99, βT+h ∼ RW 1.03 1.02 1.00 1.01 1.00 1.00 1.00 1.02

TVP-VAR(a), λ = 0.99, κ = 0.96, α = 0.99 1.03 1.02 1.03 1.04 1.00 1.00 1.02 1.00

VAR, Heteroskedastic(a) 1.03 1.02 1.01 1.02 1.01 1.00 1.01 1.02

VAR, Homoskedastic(a) 1.04 1.06 1.03 1.02 1.00 1.03 1.01 1.01

TVP-VAR, this paper 0.85 0.92 0.97 1.00 1.00 1.02 1.02 1.04

TVP-VAR, using S1 0.95 0.96 0.97 0.98 1.00 1.00 1.01 1.03

TVP-VAR, using S2 0.93 0.95 0.95 0.97 0.97 0.98 1.00 1.00

VAR - Heteroskedastic, this paper (G = 1) 0.81 0.83 0.83 0.85 0.87 0.87 0.89 0.92

VAR - Heteroskedastic, GMCM 0.74 0.74 0.75 0.75 0.77 0.77 0.82 0.84

VAR - Heteroskedastic, Bayes compression 0.97 0.99 1.00 1.00 1.02 1.04 1.07 1.09

VAR - Homoskedastic, this paper (G = 1) 1.01 1.03 1.03 1.05 1.07 1.07 1.09 1.13

VAR - Homoskedastic, GMCM 0.82 0.82 0.80 0.82 0.94 0.97 1.00 1.03

VAR - Homoskedastic, Bayes compression 1.05 1.05 1.07 1.09 1.10 1.10 1.12 1.15

The models considered in the table are the same as in Table A.1.

Table A.3
Relative MSFE at various horizons h - predictions for interest rates.

Interest Rate Forecast horizon

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

TVP-VAR(a), λ = 0.99, βT+h ∼ RW 1.11 1.03 1.02 1.02 1.02 1.02 1.01 0.99

TVP-VAR(a), λ = 0.99, κ = 0.96, α = 0.99 1.10 1.09 1.05 1.08 1.02 1.01 1.03 1.02

VAR, Heteroskedastic(a) 1.10 1.01 1.01 1.02 1.01 1.01 1.03 1.03

VAR, Homoskedastic(a) 1.11 1.07 1.11 1.11 1.03 1.03 1.09 1.08

TVP-VAR, this paper 0.93 0.95 0.95 0.97 1.00 1.00 1.01 1.03

TVP-VAR, using S1 0.90 0.92 0.93 0.94 0.95 0.99 1.02 1.03

TVP-VAR, using S2 0.91 0.93 0.93 0.95 0.97 0.97 0.97 1.03

VAR - Heteroskedastic, this paper (G = 1) 0.90 0.92 0.92 0.94 0.94 0.96 0.98 0.99

VAR - Heteroskedastic, GMCM 0.83 0.85 0.86 0.86 0.86 0.88 0.91 0.93

VAR - Heteroskedastic, Bayes compression 0.80 0.80 0.81 0.83 0.83 0.85 0.87 0.90

VAR - Homoskedastic, this paper (G = 1) 0.94 0.95 0.97 0.97 1.03 1.05 1.07 1.08

VAR - Homoskedastic, GMCM 0.87 0.91 0.91 0.93 0.96 0.99 1.01 1.04

VAR - Homoskedastic, Bayes compression 0.97 0.97 1.00 1.02 1.02 1.03 1.05 1.07

The models considered in the table are the same as in Table A.1.
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Table A.4
List of variables employed in Chan et al. (2016)

GDP GDP GDP

CPI (All Items) CPI (All Items) CPI (All Items)

Effective Fed Fund Rate Effective Fed Fund Rate Effective Fed Fund Rate

Average Hourly Earnings (Manifacturing) Average Hourly Earnings (Manifacturing)

M2 M2

Spot Oil Price (WTI) Spot Oil Price (WTI)

S&P500 Index S&P500 Index

Real Personal Consumption

Housing Starts (total)

Real GDPI

ISM PMI Composite Index

All Employees (total nonfarm)
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Table A.5
Sum of log predictive likelihoods for various

specifications

n = 3 n = 7 n = 12 RNE

Chan et al. (2016)

VARMA(4, 4)(a) −182.5 −401.9 −492.3

VARMA(4, 4)(b) −188.1 −406.0 −504.2

VAR(4) −187.1 −406.7 −496.9

This paper

VAR(4) −187.1 −406.8 −496.9 0.423

VARMA(4, 4) −182.5 −401.9 −492.1 0.363

VAR(4) with S1 −187.0 −406.7 −496.7 0.457

VAR(4) with S2 −182.3 −401.7 −492.0 0.405

Model average −179.4 −401.1 −490.0 0.443

The table contains the sums of the log predictive likelihood for
various specifications - in panel “Chan et al. (2016)”, we consider
various VARMA specifications using the methodology proposed in

Chan et al. (2016) - the superscripts “(a)”and “(b)”refer to two
different prior specifications; in panel “This paper”, we have con-
sidered various specifications based on our methodology.
When using the two strategies S1 and S2 described in Section 2.2.1,
G has been selected by maximising the integrated likelihood as a
selection criterion; in all cases, we this has led to the choice G = 3.
In the “Model average”row, we use a standard Bayesian model av-
eraging, based on weights computed from the posterior model prob-
abilities (details are available upon request); we have used 10, 000
sets of weights.
The column denoted as RNE contains the Relative Numerical Ef-
ficiency as defined in Geweke (1989).

Table A.6
Sum of log predictive likelihoods - predictions

of GDP, CPI and interest rates

n = 3 n = 7 n = 12

Chan et al. (2016)

VARMA(4, 4)(a) −182.5 −182.2 −181.1

VARMA(4, 4)(b) −188.1 −185.4 −187.4

VAR(4) −187.1 −187.2 −191.0

This paper

VAR(4) −183.1 −184.2 −189.0

VARMA(4, 4) −180.5 −180.2 −180.0

The table contains the sum of the log predictive likeli-
hoods based on the predictive densities of the first three
variables (Real GDP, CPI and Interest rate). All other
specifications are the same as in Table A.5.
Note that we do not report the weighted average, since
the posterior model probabilities favour only one model.
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Table A.7
List of variables employed in Koop and Korobilis (2013)

GDP Industrial production US/UK exchange rate

CPI Capacity utilisation Real personal consumption expenditures

Fed Funds rate Unemployment rate Total nonfarm payroll

NAPM CPI Housing starts ISM Manifacturing (PMI composite)

Borrowing from Fed Producer price index ISM Manifacturing (New orders)

S&P500 Average hourly earnings Output per hour

M2 money stock M1 money stock

Personal income Spot oil price

Real GDPI 10-year T-bill
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Fig A.1: Sampling distributions of the relative MSFEs (forecasting horizon: h = 1 periods) - the
benchmark is the TVP-VAR-DMA model in Koop and Korobilis (2013)
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Fig A.2: Sampling distributions of the relative MSFEs (forecasting horizon: h = 4 periods) - the
benchmark is the TVP-VAR-DMA model in Koop and Korobilis (2013)
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Table A.8
List of variables employed in Giannone et al. (2015)

Small BVAR Medium BVAR Large BVAR

Real GDP Real GDP Real GDP

GDP deflator GDP deflator GDP deflator

Federal Funds rate Federal Funds rate Federal Funds rate

Real consumption Real consumption

Real investment Real investment

Residential investment Residential investment

Hours worked Hours worked

Real compensation per hour Real compensation per hour

Commodity Price

Industrial Production

Employment

Unemployment

CPI

Non residential investment

Personal consumption expenditures

Gross private domestic investment

Capacity utilisation

Consumer expectations

One year bond rate

Five year bond rate

SP500

Effective exchange rate

M2
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Table A.9
Comparison with Giannone et al. (2015): Mean Squared Forecast Errors

Small Medium Large Factor Augmented Model

Horizons Variables BVAR this paper BVAR this paper BVAR this paper BVAR this paper

one quarter Real GDP 9.61 4.71 7.97 5.13 8.18 4.14 7.29 3.75

GDP Deflator 1.32 0.82 1.35 0.74 1.10 0.53 1.14 1.06

Fed Funds Rate 1.04 0.45 1.03 0.83 1.00 0.44 1.25 1.10

one year Real GDP 3.85 3.17 3.42 1.81 3.97 0.81 3.52 0.81

GDP Deflator 1.45 0.77 1.58 0.72 0.96 0.58 1.01 0.88

Fed Funds Rate 0.32 0.28 0.31 0.15 0.36 0.10 0.32 0.20

The table reports the Mean Squared Forecast Errors (MSFE) for each variable and each horizon. We compare the BVARs proposed in Giannone
et al. (2015) against our methodology for three specifications (a small, medium and large VAR), and for the factor augmented model in Giannone
et al. (2015) - see Table A.8 in the Supplement for a list of variables in each model.
The MSFE for the BVAR are the same as in Table 2 in Giannone et al. (2015); we refer to that paper for a description of models and
methodologies. Under the heading “this paper” we have used our methodology based on a flat-prior VAR where each equation is reduced to an
AR(1) model.
As in Giannone et al. (2015), the evaluation sample is 1975Q1 - 2008Q4 for the one quarter ahead forecasts and 1975Q4 - 2008Q4 for the one
year ahead forecasts.



M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 63

Fig A.3: Impulse responses for the VAR in Section A.4
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Fig A.4: Impulse responses for the VAR in Section A.4
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Fig A.5: Impulse responses for the VAR in Section A.4
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Fig A.6: Ratios of MSFEs for IRFs at various horizons
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