Energy Theft in Smart Grids : A Survey on Data-Driven Attack Strategies and Detection Methods

Althobaiti, Ahlam and Jindal, Anish and Marnerides, Angelos and Roedig, Utz (2021) Energy Theft in Smart Grids : A Survey on Data-Driven Attack Strategies and Detection Methods. IEEE Access, 9. pp. 159291-159312. ISSN 2169-3536

[thumbnail of ACCESS3131220 (2)]
Text (ACCESS3131220 (2))
ACCESS3131220_2_.pdf - Accepted Version
Available under License Creative Commons Attribution.

Download (2MB)


The convergence of legacy power system components with advanced networking and communication facilities have led towards the development of smart grids. Smart grids are envisioned to be the next generation innovative power systems, guaranteeing resilience, reliability and sustainability and to facilitate energy production, distribution and management. Nonetheless, the development of such systems entails challenges covering a broad spectrum ranging from operational management up to data-driven power accounting and network security. Given the highly distributed properties of the modern grid, energy theft can now be observed at various transmission and distribution levels. Apart from the financial gain for a malicious actor, energy theft can also affect critical grid processes with a direct impact on its overall resilience and safety. This survey reviews recent energy theft strategies as well as detection methods from a data-driven perspective. By considering various operational and functional layers within modern smart grids we critically assess how energy theft can be formulated. Moreover, we provide an overview of the grid demand, supply and control chain with a focus on energy theft and associated security flaws that currently exist in the smart grid ecosystem. Different attack detection models for theft detection in the smart grid are categorized. Lastly, we discuss various open issues in the scope of data-driven energy theft detection methods and provide future directions to carry out research in this field.

Item Type:
Journal Article
Journal or Publication Title:
IEEE Access
Uncontrolled Keywords:
?? energy theftdata-driven methodssmart gridcybersecurityengineering(all)computer science(all)materials science(all) ??
ID Code:
Deposited By:
Deposited On:
06 Dec 2021 17:05
Last Modified:
16 Apr 2024 01:23