
Title: Kinetic Monte Carlo simulations applied to Li-ion and post Li-ion batteries: a key link in the 

multi-scale chain 

 

E. M. Gavilán-Arriazu1,2,*, M.P. Mercer3,4,5, D.E. Barraco2, H.E. Hoster3,4,5, E.P.M. Leiva1,* 

 
1Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad 

Nacional de Córdoba, INFIQC, Córdoba, Argentina 
2Facultad de Matemática, Astronomía y Física, IFEG-CONICET, Universidad Nacional de Córdoba, 

Córdoba, Argentina 
3Department of Chemistry, Lancaster University, Bailrigg, Lancaster, United Kingdom 
4ALISTORE European Research Institute CNRS FR 3104, Hub de l’Energie, 80039 Amiens, France  
5The Faraday Institution, Harwell Science and Innovation Campus, Didcot, United Kingdom 

 

maxigavilan@hotmail.com, eze_leiva@yahoo.com.ar  

Abstract: 

Since 1994, Kinetic Monte Carlo (kMC) has been applied to the study of Li-ion batteries and has 

demonstrated to be a remarkable simulation tool to properly describe the physicochemical 

processes involved, on the atomistic scale and over long time scales. With the growth of computing 

power and the widespread use of lithium-based storage systems, more contributions from 

theoretical studies have been requested. This has led to a remarkable growth of theoretical 

publications on Li-ion batteries; kMC has been one of the preferred techniques to study these 

systems. Despite the advantages it presents, kMC has not yet been fully exploited in the field of 

lithium-ion batteries and its impact in this field is increasing exponentially. In this review, we 

summarize the most important applications of kMC to the study of lithium-ion batteries and then 

comment on the state-of-the-art and prospects for the future of this technique, in the context of 

multi-scale modeling. We also briefly discuss the prospects for applying kMC to post lithium-ion 

chemistries such as lithium-sulfur and lithium-air.  

 

List of symbols 

𝐴     Electrode surface area 

𝑎    Size of one lattice site 

𝛼   Transfer coefficient (Symmetry factor) 

𝐵𝑖  Biot number 

𝐶  Concentration 

𝑐   Occupational parameter 

𝛩  Thermodynamic factor 

𝛩(𝛿𝑒)  Electron tunneling probability 

𝐷  Diffusion coefficient 

𝐷𝐿𝑖  Chemical or Fickian diffusion coefficient 

𝐷𝑗  Jump-diffusion coefficient 

𝐷∗  Tracer diffusion coefficient 

𝑑  System dimension 

𝛥   Activation energy 

𝛥∗  Transition state energy barrier 
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𝛥0  “Bare” energy barrier 

𝛥0
𝑑𝑖𝑓𝑓  Bare energy barrier for diffusion 

𝛥0
𝑖/𝑑  Bare energy barrier for charge transfer 

𝛿  Occupation ratio of cation sites available in electrolyte domain 

𝛿𝑒   Tunneling distance from cathode surface 

𝐸𝑠  Microstate energy 

𝐸   Potential applied to the working electrode measured with respect to 

the reference electrode 

𝐸0    Equilibrium potential 

𝐸𝑒𝑞  Initial equilibrium (steady-state) potential of the experiment 

�⃗�   Electric Field 

𝑒  Fundamental electronic charge 

𝐹   Faraday constant 

𝑓  Correlation factor 

𝛤   Rate constant 

𝛾  𝑡𝑂𝐹𝐹  /𝑡𝑂𝑁   

𝐻    Hamiltonian in the canonical ensemble 

𝐻′   Hamiltonian in the grand canonical ensemble 

ℎ  Height of the system 

𝑖   Current 

𝑖𝑝  Peak current  

𝐼𝑐𝑜𝑡𝑡   Cottrellian current 

𝑗  Current density 

𝑗0  Exchange current density 

𝑘𝐵  Boltzmann constant 

𝑘0  Heterogeneous rate constant   

𝐿  Distance between the electrode/electrolyte interface and the edge of 

the electrode 

𝛬   Dimensionless kinetic factor 

𝜆  Jump distance between diffusion sites 

𝑀  Number of lattice sites 

𝑀𝑛    Number of lithium ion neighbors 

𝑀𝑖𝑓   Number of sites located at the electrode / electrolyte interface 

𝜇  Chemical potential 

𝑁  Number of particles 

𝑁𝑎    Avogadro constant 

𝑁𝑠  Number of particles in the microstate 𝑠 

𝑁𝑑  Number of removal events 

𝑁𝑖   Number of insertion events 

𝑛  Number of electrons transferred in a redox reaction 

𝜂   Overpotential 

𝑃  Probability of occurrence of a kinetic Monte Carlo event 



𝑄    Charge corresponds to full material occupation 

𝛥𝑄  Total amount of charge transferred to the electrode when applying a 

potential step 

𝑅    Gas constant 

𝑟  Distance 

𝑅𝑑𝑖𝑓𝑓, 𝑅𝑐ℎ, 𝑅𝛺     Diffusional, charge transfer and ohmic drop resistances 

𝑅𝑐𝑒𝑙𝑙  Overall resistance of the electrochemical cell 

𝑅𝑆𝐸𝐼  Resistance of the solid electrolyte interphase  

𝜌   Viscosity of the solvent   

𝑠  Microstate 

𝑆   Number of microstates sampled in a Monte Carlo simulation 

𝜎  Conductivity 

𝜎′  Reduced conductivity 

𝑇  Temperature 

𝑡   Time 

𝑡𝑂𝑁   Time lapse for the applied galvanostatic current 

𝑡𝑂𝐹𝐹   Time during which galvanostatic control is lifted 

𝜏  Diffusion time constant 

𝑈  Potential energy 

𝑈𝐿𝑖−𝑚   Interaction energy of the lithium ion with the host material 

𝑣  Potential sweep rate 

𝑣0   pre-exponential factor 

𝑥    Lithium ion occupation fraction inside the electrode material 

Ξ  Grand canonical partition function 

𝜉   Random number 

𝑍  Canonical partition function 

 

 

1. Introduction: 

The history of commercial lithium-ion batteries (LIBs) turns thirty during the current year. In this 

relatively brief period, they have become the most important industrial technology to promote a 

change in the energy paradigm towards renewable sources and eco-friendly storage devices. They 

have become prolific in portable electronic devices, are driving a revolution in mobile transport and 

could play a role in stationary storage [1–8]. 

A Li-ion battery is a secondary or rechargeable battery that alternates between charge/discharge 

cycles. The main foundation of a LIB cell lies in the reversible storage reaction of Li+ between two 

materials. The electrodes in commercial LIBs are typically graphite (anode) and LiCoO2 or similar 

layered transition metal oxide (cathode), the cathode being the source of Li+ in the first charging 

cycle. Lithium manganese oxide (LMO) spinel and olivine lithium iron phosphate (LFP) are also viable 

cathode chemistries.  The migration of Li+ between the electrodes through the cell occurs in a non-

aqueous electrolyte. Typically, the electrolyte is composed of an organic solvent, as mixtures of 

ethylene carbonate (EC) and either dimethyl carbonate (DMC); and a lithium salt, as lithium 

hexafluorophosphate (LiPF6). A schematic view of a commercial LIB is shown in Figure 1. 



The world demand for lithium-based storage devices is increasing drastically, posing a scenario of 

lithium shortage in the future. This is why, in recent years, research has been intensely focused on 

the improvement of LIB and the development of new battery technologies. 

 

 

Figure 1:  Typical setup of a LIB cell used in commercial devices, involving a cathode, an anode, and 

an electrolyte. The drawing illustrates the charging phase. 

 

The advances in improving LIBs performance pushes the limits on designing materials at the micro- 

and nano-scale. Hence, it is crucial to understand how atomistic-detail events impact the 

electrochemical operation of storage devices. However, a detailed study on this scale exceeds the 

limits of experimental electrochemical techniques, as well as numerical models that study 

phenomena in the continuum. In parallel, theoretical methods that consider events in atomistic 

detail have a size limitation, since the more detailed the approximation, the larger the 

computational power required [9].   

Since the beginning of lithium-based rechargeable batteries, attempts have been made to use Li 

metal as an anode, since this metal combines the properties of being the lightest metal with the 

lowest standard voltage (-3.02 V vs NHE), thus leading to a material with a very high specific capacity. 

However, the formation of dendrites and drastic volume changes are two common limitations for 

this material as an anode [10]. In the last years, several strategies have been applied to surmount 

these technical challenges, such as polymer coating [11,12], use of carbon hosts, metal hosts, or 

polymer hosts [13]. For these reasons, graphite remains the predominant anode material in LIBs, 

with small amounts of silicon oxides increasingly being added to increase the gravimetric capacity 

of the material [14,15]. 

Metallic Li is the material generally used as the anode in Post-Li-ion cells, like those foreseen for Li-

air batteries (Li-O2), and Li-sulfur (Li-S) batteries. Li-O2 batteries use a cathode composed of an active 

surface material where oxygen is reduced, while Li-S cathodes contain sulfur embedded in a carbon 

matrix [16–18]. These two types of electrochemical cells present higher theoretical capacities than 

the commercial LIBs cells, so they have attracted attention because of the limitations of current LIBs 

for long-distance transportation. However, their practical application remains a challenge for 



researchers, because both cells present severe technical problems, like parasitic reactions in Li-O2 

and the “shuttle effect” in Li-S [19,20]. 

Kinetic Monte Carlo (kMC, or the alternative denomination “dynamic Monte Carlo”) is a powerful 

dynamic simulation technique that was developed by Gillespie [21] and refined by Fichthorn [22]. It 

allows simulating longer time scales, without losing configurational atomistic details, because unlike 

other methods like Molecular Dynamics it overlooks vibrational atomic motions. This approximation 

becomes particularly relevant for intercalation systems because these are characterized by being, 

in general, very slow processes. For example, a routine Li+/graphite cyclic voltammetry experiment 

involves potential sweep rates of the order of μV.s-1 [23]; this means several days of measurement.  

The history of kinetic Monte Carlo simulations applied to the study of LIBs starts shortly after the 

birth of Li-ion commercial batteries, with the work of Deppe et al. in 1994 [24]. However, the largest 

critical mass of publications and references to specialized publications on this subject, dates back to 

the last few years, reflecting the need for an increasingly thorough understanding of events in LIBs. 

In this respect, Figure 2 shows the results for two Scopus (https://www.scopus.com/) searches: 

“Lithium-ion battery “ + “kinetic Monte Carlo” (blue bars) and  “Lithium-ion battery + “dynamic 

Monte Carlo" (white bars), performed on October 2020. The exponential growth of the number of 

publications over the years illustrates what we have said above. 

 

 

Figure 2: Results from a Scopus search: “Lithium-ion battery” + “kinetic Monte Carlo” (blue bars) 

and “Lithium-ion battery + “dynamic Monte Carlo" (white bars) in Scopus on October 2020. 

 

The operation of a Li-ion cell presents a large and complex collection of different phenomena 

occurring simultaneously that determine the cell’s overall performance: electrochemical reactions, 

transport phenomena, material alteration, temperature and volume changes, etc. This is why 

theoretical researchers generally need to couple different simulation/calculation approaches at 

different length and time scales. Such strategies are needed to develop refined models, in order not 

to overlook the physicochemical details. This is precisely the goal sought by multiscale models. 



Multiscale modeling (MSM) is a type of modeling strategy that couples multiple lengths scale to 

provide a holistic description of a system. Generally speaking, it presents a hierarchy structure 

where the output of a finer resolution model serves as input to the next larger-scale model. In this 

way, the limitations of coarse-grained approximations are overcome by obtaining the results from 

more detailed models [9,25]. 

In the present review, we discuss the application of kMC to different aspects of lithium-ion batteries 

and closely related systems, like lithium-air (Li-air) and sulfur (Li-S) batteries (so-called post-Li 

batteries). Firstly, the kMC foundations are presented in an electrochemical framework, especially 

related to intercalation problems. Subsequently, the applications discussed are Li transport 

phenomena in electrodes, interfacial phenomena, mesoscale, ion transport in the electrolyte, and 

the formation of the so-called solid-electrolyte interphase (SEI). Finally, the state-of-the-art and 

perspectives of kMC within the multiscale modeling approach are considered. 

 

2. The kinetic Monte Carlo technique and electrochemistry 

Figure 3 presents a schematic view of different simulation techniques and their relative time and 

size domains. There, we can find that kMC is placed between Molecular dynamics (MD) and Meso-

scale (MS) models. Roughly speaking, this scale involves simulation times between ≈10-10 s and 

several seconds, and length scales between ≈10-9 m and ≈10-3 m, but these limitations depend on 

the computational power and simulation strategies. For example, there are several works focused 

on accelerating kMC simulations [26–32], but we will not discuss these strategies here. There are 

several publications focused on the foundations of kMC [22,27,33–35] and we will deal with this 

later on.  

 
Figure 3: Scheme of relative length scales and timescales for different strategies of computer 

simulations. Kinetic Monte Carlo is placed between Molecular dynamics and mesoscale modeling. 

The figure for engineering design is reproduced from reference [36] with permission. 

 



It is instructive to start comparing kinetic Monte Carlo with his predecessor, equilibrium Monte 

Carlo. Both simulation techniques can be used in a complementary way to study the impact of 

kinetics on the behavior of the system, in comparison with the thermodynamic equilibrium scheme. 

 

2.1. Thermodynamics and kinetics: Equilibrium Monte Carlo and kinetic Monte Carlo 

Within Statistical Mechanics, at a constant temperature, volume and particle number (𝑁𝑉𝑇), all 

thermodynamic properties of a physical system can be obtained from a single mathematical 

expression, the canonical partition function: 

 

𝑍 = ∑ exp (−
𝐸𝑠

𝑘𝐵𝑇
)𝑠            (1) 

 

where the sum is taken over all the microstates s of the system, and Es is the energy for those states. 

Similarly, for open systems a grand canonical partition function (Ξ) can be written by including the 

chemical potential of the particles involved: 

 

Ξ = ∑ ∑ exp (−
𝐸𝑠−𝑁𝑠𝜇

𝑘𝐵𝑇
)𝑠𝑁𝑠

                                         (2) 

 

where 𝑁𝑠 is the number of particles in microstate s and 𝜇 represents the chemical potential of the 

particles (in the present case Li-ions) of the system and the first sum runs over all possible particle 

numbers. In battery models, 𝜇 is an important term because it is related to the potential of the 

electrochemical cell. If metallic Li is the reference electrode, then the equilibrium potential of the 

cell is 𝐸(𝑉) = −𝜇 𝑒⁄ , where 𝑒 is the fundamental electronic charge. Moreover, it is pertinent to 

clarify that for bulky systems the results should not depend on the ensemble used, but some 

ensembles are more convenient to use in certain situations than other ones. For example, when 

simulating the electrode/electrolyte interphase where insertion/deinsertion of particles occurs, the 

natural choice is the Grand Canonical ensemble, where 𝜇 is the control parameter linearly related 

to the electrode potential [8,37,38]. On the other hand, in simplified lattice models [39–42],  the 

canonical ensemble is more simple to handle, and 𝜇 is an outcome of the modeling.   

In principle, 𝐸𝑠  contains translational and internal (rotational, vibrational, electronic, nuclear) 

degrees of freedom, that can be suitably separated [43]. In the case of intercalation compounds, we 

are often interested in calculating all the possible ways to distribute the ions (and vacancies) over 

the host, and we ignore the electronic and vibrational contributions to the energy, since both show 

a small change with the lithiation degree, as compared with the configurational contribution 

[39,42,44–50]. If the partition function, Equation (1) or (2) can be directly calculated, such as the 

case of a two level system in the mean field approximation, then all of the thermodynamic 

parameters emerging from the configurational contributions to the free energy can be obtained 

from analytical expressions. However, for a more complex interaction Hamiltonian, this approach is 

generally not computationally tractable due to there being too many states to count. In this case, 

Monte Carlo techniques, as described below, can be utilized. 

 



 
Figure 4: Lattice-gas setup for graphite with AA stacking (corresponding to fully lithiated graphite). 

A further approximation of the model is to keep this stacking for all Li occupations of the lattice. 

Empty sites are represented with white circles, sites occupied with Li+ are represented with a green 

circle. The graphite substrate is represented in grey (carbon atoms with circles and bonds with lines). 

(a) upper view of the lattice + graphite substrate, lattice sites are located in the center of the carbon 

hexagons. (b) lateral view of lattice + substrate, d is the middle of the distance between two adjacent 

sites located in different layers. (c) Upper view for a full lithiated graphite layer. (d) different stable 

configurations (stages) observed during graphite intercalation. 

 

These configurational states can be easily modeled within a lattice-gas approach. This model 

provides fixed points for the inclusion of Li+ ions interacting with the host and with each other. Each 

site is marked with a Li+ occupation status: full or empty; considering that none may have double 

occupancy. The spatial arrangement of the lattice sites is constructed from the crystalline structure 

of the host. For example, graphite consists of a honeycomb-like structure, comprising a stack of 

sheets made up of hexagonal carbon rings (Figure 4).  The centers of the carbon hexagons in graphite 

with AA stacking are used to define the lattice for the Li-ion gas (Figure 4a). The sites of the lattice 

are located at a distance d from these centers (Figure 4b). This distance corresponds to half of the 

distance between the (0001) graphite basal planes. With this information, one can construct a 3D 

lattice-gas structure with a preexisting graphite substrate, composed of piles of 2D lattice 

intercalation sites with triangular geometry. 

The energy expression (interaction Hamiltonian) that rules the configuration of Li+ embedded in 

different systems (intercalation materials or electrolytes) can be modeled by considering the 

interaction energies among the particles (ions) of the system and the interaction of the ions with 

the host.  Two approximations can be made to simplify this problem. One of them is to divide the 

Hamiltonian into two separate contributions: one due to the interaction among inserted ions and 



another one between the inserted ions and the host. A further simplification is to assume pairwise 

interactions. With these two approximations, the Hamiltonian is: 

 

𝐻 =
1

2
∑ ∑ (𝑐𝑖𝑐𝑗𝑈𝑖,𝑗)

𝑀𝑛
𝑗≠𝑖

𝑀
𝑖 + ∑ (𝑐𝑖𝑈

𝐿𝑖−𝑚)𝑀
𝑖        (3) 

 

In this expression, the summations run over the total 𝑀 lattice intercalation (deposition) sites.  The 

symbol 𝑐 is an occupational parameter (𝑐 = 0, the site is empty, 𝑐 = 1, the site is occupied by an 

ion) The terms 𝑈𝑙,𝑘 and 𝑈𝐿𝑖−𝑚 are interaction energies. The first of these terms considers the 

pairwise interaction of each Li+ with the surrounding 𝑀𝑛 Li+ neighbors, the second is a constant value 

for the interaction energy of the ion with the host material.  

In intercalation phenomena, the exchange of Li+ between the electrode and the electrolyte is a key 

factor. Thus, it is suitable to set up a Li+ reservoir with a fixed chemical potential that exchanges ions 

with the material. The partition function in this situation is given by Equation (2). However, as we 

stated before, due to the huge number of possible configurations, it is usually not possible to obtain 

the partition function by a simple summation over those microstates to derive any thermodynamic 

property. Hence, an adequate strategy to avoid the computation of the partition funtion consists of 

performing a random sampling with the so-called Metropolis algorithm, using a computer 

simulation [51]. Within this method, it is possible to obtain the average value of a thermodynamic 

property (say 𝑌) over a finite (but large) number of sampled microstates sampled (𝑆), Equation (4). 

This is known as a Monte Carlo simulation or Equilibrium Monte Carlo simulation [52–56]. 

 

⟨𝑌⟩ =
∑ 𝑌𝑖𝑖

𝑆
           (4) 

 

Usually, Metropolis Monte Carlo is considered to be a stationary method, because it can only yield 

the thermodynamic properties of a system in equilibrium, without considering its physical time 

evolution. Conversely, kinetic Monte Carlo (that will be discussed shortly), follows the kinetic 

evolution over the free energy landscape of the system until reaching configurations around the 

global minimum. These differences between MC (light blue circle) and kMC (yellow arrow) are 

illustrated schematically in Figure 5a. So, these two simulation methods provide different 

approaches to the behavior of the system under consideration that may be contrasted: The 

thermodynamic equilibrium properties (MC) and the kinetic evolution (kMC). Consequently, to 

ensure that the algorithm reaches equilibrium in the fewest possible steps, MC allows the attempts 

of insertion/deletion of Li ions into/from any of the lattice sites (Figure 5b). On the contrary, the 

kMC algorithm must be adapted to consider events that occur close to a real (intercalation) 

situation; for example, the insertion/deletion attempts must be restricted to the exchange of Li+ 

only at the electrode/electrolyte interphase, as depicted in Figure 5c. In surface deposition 

phenomena, like it is the case of Li+ deposition on metallic Li, insertion and deletion events are more 

similar in both simulation techniques, because the interphase is closer to all the lattice sites. Another 

crucial event in the case of intercalation phenomena that must be included in a kMC algorithm is 

the diffusion of the ions inside the host or over the surface of the electrode (Figure 5c). 

 



 
Figure 5: (a) Schematic comparison between the time evolution of kMC (yellow arrows) over the 

energy landscape provided by the configurations of the system and the stationary MC method (light 

blue circle)., where the thermodynamic quantities are obtained close to thermodynamic 

equilibrium. Higher energy values are marked in blue while lower energies are marked in red. (b) 

Insertion/deinsertion events allowed in a typical equilibrium MC simulation. Grey circles denote 

empty sites, while green spheres denote sites occupied by Li-ions. The red arrows indicate the 

attempts to change the occupation status of the site. (c) Events allowed in a kMC simulation of Li-

ion (de)intercalation. The symbols used are the same as in Figure b), but the additional blue arrows 

indicate possible diffusion movements. Ions are also allowed to exchange at the 

electrode/electrolyte interphase, which is represented with a rectangle at one of the sides of the 

lattice.  

 

Several studies have focused on thermodynamic equilibrium using MC to study different issues in 

LIBs, such as the staging phenomena [37,57], the entropic contributions to the intercalation process 

[38,48,58], the stability and phase transitions of lithium intercalation compounds and their 

structures [59,60], the impact of host changes during Li+ intercalation [61–63], the construction of 

phase diagrams [64,65] and the solid electrolyte interface (SEI) [66].  

 

2.2. The foundations of kMC 

The basic principle of a kMC simulation is to generate a Poisson process of stochastic events with a 

hierarchy of rate constants 𝛤𝑗, in such a way that events with higher rates are more probable to 

occur than slower ones [22,67]. 

The workflow of a kMC algorithm is summarized in Figure 6. 



  
Figure 6: Flow diagram for kMC Rejection-free-algorithm. tf is a predefined cut-off time. 

 

Given a configuration of the system, the rate constants for all possible events, for each of the sites 

of the lattice, are generally expressed in an Arrhenius form, Equation (5) (other rate equations can 

be used as we will see in the next section), with a pre-exponential factor 𝑣0 (average value of the 

vibrational motion or mean frequency of jumps) and an activation energy 𝛥𝑗. Then, given the total 

rate 𝛤𝑇 as the sum of the rates of all possible events, Equation (6), the probability of occurrence of 

each event, 𝑃𝑖, is calculated with Equation (7). 

 

𝛤𝑗 = 𝑣0exp (−
𝛥𝑗

𝑘𝐵𝑇
)          (5) 

 

𝛤𝑇 = ∑ 𝛤𝑗𝑗            (6) 

 

𝑃𝑗 = 𝛤𝑗 𝛤𝑇⁄            (7) 

 



The rates obtained with Equation (7) are included in a list, where one of them is selected to occur 

using a random number 𝜉1, between 0 and 1.  Once the event has been identified from the list and 

performed, the time 𝑡 is incremented a quantity 𝛥𝑡, Equation (8), which is obtained with a second 

random number 𝜉2 between 0 and 1. Equation (8) calculates the time lapse from an exponential 

distribution.   

 

𝛥𝑡 = −
ln (𝜉2)

𝛤𝑇
           (8) 

 

For the next time step, the 𝛤𝑗s are recalculated for the new configuration generated in the previous 

step, and the list of probabilities is updated. This commonly used Rejection-free-algorithm, 

summarized in Figure 6, ensures that, at each time step, an event occurs, without refutations. 

Ordinary events assumed to simulate the phenomena occurring in the components of a LIB cell are 

insertion (or deposition), deinsertion (or dissolution), and diffusion. Migration can be simulated too, 

for the motion of Li+ through the electrolyte when applying an electric field. Other restrictions to 

the processes to be allowed may be introduced, depending on the physical nature of the 

phenomenon. For example, in graphite intercalation, Li+ cannot perform interlayer jumps, since the 

activation energy, in this case, is too high [68]. Hence, this kind of jump is not considered in kMC 

simulations for perfect graphite. 

A comment must be added about the calculation of the rate constants, that we stated in equation 

(5) in one of the most popular (Arrhenius) forms. In kMC simulations, usually, all possible events and 

corresponding rate constants must be foreseen before starting simulations. This is sometimes not 

easy and this may be a crucial weak point of this type of formulation. The form given in (5) is an 

outcome in several levels of theory, that we revisit shortly here. In the most basic approach, 𝑣0 is a 

constant factor that is considered to be the same for processes belonging to the same type of 

phenomenon (i.e. diffusion), and  𝛥𝑗   is an activation energy, which depends on the close 

environment where the process is occurring.  In the case of transition state theory [69,70], the 𝑣0  

term depends on the temperature; it contains the partition functions of the initial state and the 

activated complex, and a factor that accounts for barrier recrossing, denominated transmission 

coefficient.  In the more general formulation by Kramers [71], the preexponential factor accounts 

for the effect of solvent viscosity, 𝛾 ,on the transmission coefficient. In this case, 𝑣0 contains 𝛾  and 

information on the curvature of the potential energy surface in the vicinity of the reactants and the 

barrier. However, in principle,  𝛤𝑗 does not need to have the form given in (5) and may be obtained 

from any level of theory.  For instance, if 𝛤𝑗 were meant to represent ion transfer across an interface, 

it could be obtained from first-principles molecular dynamics, considering solvent motion and 

electron transfer. 

 

 

2.3. kMC in the electrochemical environment. 

In this section, we present how to adapt kMC to the electrochemical environment found in LIB cells. 

One of the most common expressions used to describe the rate of charge transfer (current 𝑖) at the 

interface between the electrode and solution is the Butler-Volmer (BV) equation [72]: 

 

𝑖 = 𝑛𝐹𝐴𝑘0 {𝑥 exp [−
𝛼𝐹(𝐸−𝐸0)

𝑅𝑇
] − (1 − 𝑥)exp [−

(1−𝛼)𝐹(𝐸−𝐸0)

𝑅𝑇
]}    (9) 

 



where 𝐹 is the Faraday constant, 𝐴  is the electrode surface, 𝑘0 is the heterogeneous rate constant 

(it determines the rate of the charge transfer), 𝑥 is the Li+ occupation fraction inside the electrode 

material, 𝛼 is the transfer coefficient (it determines the symmetry of the reaction barrier), 𝐸 is the 

potential applied to the working electrode measured with respect to the reference electrode, 𝐸0 is 

the equilibrium potential, 𝑅 is the gas constant, and 𝑇 the temperature. This equation is often 

written in terms of the overpotential 𝜂 = 𝐸 − 𝐸0.  

Equation (9) is suited to calculate the current at the average level, concerning the energetics of the 

surface sites involved in the charge-transfer reaction. Note that the factors  𝑥  and (1 − 𝑥) represent 

the probabilities of finding occupied and unoccupied sites respectively, while the constant 𝑘0 

contains no information about the close neighborhood where the charge transfer reaction is taking 

place, representing an averaged value over the different types of surface sites occurring. However, 

in a microstate occurring in kMC, the local charge transfer rate should be sensitive to the detailed 

information involved in the individual events, following Statistical Mechanics principles.  

Rickvold et al. [73,74] and other works [75] have provided a useful way to build a kMC scheme with 

an electrochemical background.  According to this approach, the barrier heights of Equation (5) for 

the rate constant of each event can be constructed, yielding an environment-sensitive version of 

the BV approximation [72], in the framework of the transition state theory. Within this method, the 

energy for the transition state is obtained from the initial and final configuration states of the lattice, 

as described in the following. 

At the electrode/electrolyte interface, two main factors modify the kinetic energy barriers for the 

events of Li+ insertion/deinsertion: the local interactions and the electrode potential. We have seen 

in section 2.1 that these energies are provided by a Hamiltonian, which in the case of statistical 

averaging was introduced in a suitable assembly. In this case, this Hamiltonian is used to obtain 

individual rates.  Sometimes it is convenient to express the Hamiltonian of Equation (3) as a grand-

canonical Hamiltonian, as In Reference [76]: 

 

𝐻′ = 𝐻 − 𝜇 ∑ 𝑐𝑙
𝑀𝑖𝑓

𝑙                                     (10) 

 

where 𝐻 is the Hamiltonian of Equation (3), while the second term on the right-hand side considers 

the chemical potential, 𝜇, and the influence on the 𝑀𝑖𝑓 sites located at the interface. As already 

seen, if the reference electrode is Li / Li+ the Li chemical potential is related with the electrode 

potential 𝜇 = −𝑒𝐸. 

The proposal of reference [77] is to calculate the transition state energy barrier, 𝛥∗
𝑖 𝑑⁄  , using the 

Hamiltonians of the initial and final configurations of the lattice (𝐻′
𝐼 and 𝐻′

𝐹), as follows: 

  

𝛥∗
𝑖 𝑑⁄ = 𝛥0

𝑖 𝑑⁄ +
(𝐻′

𝐼+𝐻′
𝐹)

2
                     (11) 

 

where 𝛥0
𝑖 𝑑⁄  is the “bare” energy barrier, i.e., the energy barrier when the energy sum of the initial 

𝐻′
𝐼 and final states 𝐻′

𝐹 is zero.  

This is shown in more detail in Figure 7, where the activation barrier, Equation (11), is represented 

as a function of the reaction coordinate. The horizontal segments correspond to the lattice 

configurations for the initial and final states and the activated complex. Black lines are the energies 

of each of these states in a “bare” energy situation, thus 𝛥∗
𝑖 𝑑⁄ = 𝛥0

𝑖 𝑑⁄ . The red lines show the 

impact on the transition state when the energy for the final state is lowered. 

 



 

 
Figure 7: Energy coordinate scheme for Equation (11). 

 

 

Hence, the activation barrier for going from the initial to the final state can be obtained from the 

energy difference between the transition state and the initial state, 𝛥𝑖 = 𝛥0
𝑖 𝑑⁄ − 𝐻′

𝐼.  Placing this 

expression into the equation of the rate constant, Equation (5), yields: 

 

 𝛤𝑗 = 𝑣0𝑒𝑥𝑝 [−
𝛥0

𝑖 𝑑⁄

𝑘𝐵𝑇
] exp [−

𝐻′
𝐹−𝐻′

𝐼

2𝑘𝐵𝑇
]                    (12) 

 

The current corresponding to each event is obtained by the product of 𝛤𝑗 with the elemental charge 

𝑒. 𝑣0 is considered the same for all rate constants.  

So, the total current is obtained by counting the insertion/removal events at the interface: 

 

𝑖 = 𝑒 (∑ 𝛤𝑗
𝑑𝑁𝑑

𝑗 − ∑ 𝛤𝑗
𝑖𝑁𝑖

𝑗 )                     (13) 

 

Where 𝛤𝑗
𝑑 accounts for the oxidative (deinsertion) rate, 𝛤𝑗

𝑖 for the reductive (insertion) rate, 𝑁𝑑 is 

the number of removal events and 𝑁𝑖  is the number of insertion events. 

Alternatively, the current can be calculated from the occupation of Li+ intercalated in the material: 

 

𝑖 = 𝑄 (
𝑑𝑥

𝑑𝑡
)                       (14) 

 

Where 𝑥 is the lattice occupation, ranging between 0 and 1, 𝑡 is the time and 𝑄 is the charge 

corresponds to the full material occupation (i.e. all of the sites being occupied). 

Diffusion is also an activated process, so that the rate constant for the hopping jumps is equivalent 

to that of Equation (12), except for the fact that the chemical potential is no longer present in 



transport phenomena within the material. In this situation 𝐻′ = 𝐻, and the insertion/deletion 

“bare” barrier 𝛥0
𝑖 𝑑⁄  must be replaced by the diffusional “bare” barrier 𝛥0

𝑑𝑖𝑓𝑓: 

 

 𝛤𝑗 = 𝑣0exp [−
𝛥0

𝑑𝑖𝑓𝑓

𝑘𝐵𝑇
] exp [−

𝐻′
𝐹−𝐻′

𝐼

2𝑘𝐵𝑇
]                    (15) 

 

Other events, like the side reactions to form the solid electrolyte interphase (SEI), may be addressed 

when necessary. 

 

Mesoscale kMC schemes 

As discussed below, SEI formation may be included in the modeling using a mesoscale approach 
[78]. Here, the KMC model involves three steps. First, Li-ions and solvent adsorb on the SEI film 
surface near the electrolyte. Then, Li-ion and solvent diffuse through the SEI layer and reach the 
electrode-SEI interface. Following electron transfer, Li-ions may be reduced and then intercalate 
into the electrode or react with the solvent to produce new SEI. Thus, two redox systems are 
considered: one for Li+ reduction and intercalation and another one for SEI formation.   
Within this modeling, charge transfer for the first redox system is described by a unique equation 

as: 

 

𝛤 =
𝑖𝑎2

𝐹
𝑁𝑎                       (16) 

 

Where 𝑖 is obtained with Equation (9), 𝑎 is the size of one lattice site and 𝑁𝑎 the Avogadro constant.  

       

 

2.4. Testing and validation of the kMC code 

Before starting the simulations for a given system, it is always healthy to test the code by making 

simulations for well-known systems. Thus, it is important to check if the answers of the different 

simulation methodologies give consistent results for the description of the same phenomenon. This 

will give us the confidence to later simulate the physics of more complex problems, whose analytical 

solutions are unknown.  

In the first place, if kMC is correctly replicating the microkinetic events of a system, the overall 

behavior of a collection of free-wandering particles must coincide with the analytical solutions of 

Fick’s laws at the continuum level.   

To check the connection of kMC with Fick’s law we can take a simple scenario: an infinite one-

dimensional slab of intercalation material, having an initial uniform occupation degree 𝑥0 occupying 

a portion of size 𝑙 in the center of the slab, Equation (18).  The diffusion equation for this system is: 

 
𝜕𝑥(𝑟,𝑡)

𝜕𝑡
= −𝐷 (

𝜕2𝑥(𝑟,𝑡)

𝜕𝑟2 )                                                                  (17) 

 

Where the occupation at 𝑡 = 0 is:                   

 

𝑥(𝑟, 0) = {
𝑥0  𝑖𝑓 |𝑟| ≤ 𝑙 2⁄

0    𝑖𝑓 |𝑟| > 𝑙 2⁄
                                (18) 

 

The analytical solution for this problem is well known [79]: 



 

𝑥(𝑟, 𝑡) =
𝜃0

2
[erf (

𝑙

2
+𝑟

2√𝐷𝑡
) − erf (

𝑙

2
−𝑟

2√𝐷𝑡
)]                   (19) 

 

Here erf (y) is the error function. Thus, fixing the initial occupation 𝑥0,  𝐷 and 𝑙, we can use equation 

(19) to calculate the evolution of lattice occupation,  𝑥(𝑟, 𝑡)  , with time. 

To connect this with kMC simulations, let us consider the diffusion of noninteracting particles, where 

we have the following relationships [80]: 

 

𝐷 = 𝛤(𝑥)𝜆2                        (20) 

 

𝛤(𝑥) = 𝛤(0)(1 − 𝑥)                      (21) 

 

𝛤(0) = 𝑣0𝑒−𝛥 𝑘𝐵⁄ 𝑇                      (22) 

 

Here, 𝛤(𝑥) is the coverage dependent diffusion rate,  𝜆 is the jump distance between diffusion sites, 

and 𝛤(0) is the diffusion at zero occupation, which is calculated from the prefactor 𝑣0 and 𝛥. With 

an arbitrary choice of some of these parameters,  𝑣0 = 1, 𝜆 = 1, 𝑘𝐵𝑇 = 1,  𝛥 = 2, we get using 

equations (20-22) a value of 𝐷 = 0.1218.  Thus, we can compare the results of a kMC simulation 

using 𝛤(0) as the transition rate, with the corresponding results from equation (19).  For the initial 

occupation and system size, we used 𝑥0 = 0.1 and 𝑙 = 14, respectively. 𝑁 = 28  diffusing particles 

were located at the center of the box at time, 𝑡 = 0, and multiple occupancies of the sites were not 

allowed. Periodic boundary conditions were applied in one dimension.  

To account for statistics, 250 different samples were used (less than 5 minutes of real simulation 

time in a single core, on a regular laptop with an Intel® Core™ i7-4710MQ processor (cache 6 MB, 

clock speed 2.50 GHz) with 8 GB RAM.  

Figure 8, shows the results for the normalized occupation profiles 𝑥 𝑥0⁄  at three different times, 

obtained with the continuum analytical solution, Equation (19), (red line), and the results from the 

atomistic kMC simulations (white dots). The changes of 𝑥 𝑥0⁄  with time are the same in both cases 

and the diffusion coefficient obtained with kMC from the mean-square displacements was 𝐷 =

0.1218. This shows the agreement of the simulations with the analytical solutions. The noise of kMC 

data can be smoothed with more statistics.  



 

Figure 8: Comparison between concentration profiles given by the Fickian prediction, equation (19), 

and a kMC simulation, for the diffusion of non-interacting particles. The initial profile (𝑡0) is made 

of a constant concentration of particles concentrated at the center of the simulation box. The other 

profiles correspond to different diffusion times (𝑡1 < 𝑡2 < 𝑡3) 

 

 

In the case of the electrochemical environment and in the particular case of intercalation systems, 

the overall behavior of electrodes depends not only on the diffusion of ions (i.e.  Li+) but also on 

their exchange at the electrode/solution interphase. These events are affected by kinetic-

thermodynamic factors, coupled with the operating conditions of the experiment. When trying to 

approximate a particular theoretical model to complex experimental scenarios, such as those of 

lithium-ion batteries, it is important to rely on solid foundations, which are usually formulated via a 

set of differential equations. This connection with the theory at the continuum level is a crucial point 

to validate the use of kinetic Monte Carlo. 

A simple and suitable scenario, considering the overall-electrode intercalation events, is that of the 

theory developed by Montella [81]. This author has derived theoretical expressions to explore ion 

diffusion, charge transfer, and the impact of the ohmic drop on the current, for the insertion of non-

interacting ions in electrode slabs when applying potentiostatic steps. In such work, he found that 

the current response vs time depends on a dimensionless kinetic factor 𝛬, Equation (23), related to 

the diffusional 𝑅𝑑𝑖𝑓𝑓, charge transfer 𝑅𝑐ℎ and ohmic drop 𝑅𝛺  resistances. 

 

𝛬 =
𝑅𝑑𝑖𝑓𝑓

𝑅𝑐ℎ+𝑅𝛺
                       (23) 

 

This equation relates the effect of charge transfer/ohmic drop relative to diffusion kinetics. A small 

𝛬 value means a small contribution of charge transfer/ohmic drop to overall kinetics as compared 

with diffusion, and vice versa. 



The theoretical framework also includes the Cottrellian current (𝐼𝑐𝑜𝑡𝑡) and the diffusion time 

constant (𝜏) in the dimension of the length 𝐿: 

 

𝐼𝑐𝑜𝑡𝑡 =
𝛥𝑄

√𝜋𝑡𝜏
                       (24) 

 

𝜏 =
𝐿2

𝐷
                        (25) 

 

where 𝛥𝑄 is the total amount of charge transferred to the electrode when applying the potential 

step, 𝐷 is the diffusion coefficient and 𝐿 the distance between the electrode/electrolyte interface 

and the edge of the electrode. 

Gavilán-Arriazu et al. [82], obtained 𝛬 by adapting Montella´s conditions to a lattice-gas kMC 

scheme for non-interacting particles, using the fundamental rate constant equations and neglecting 

the ohmic drop from Equation (23).  The result was: 

 

𝛬 =
|𝛤𝑖𝑑𝑠|

𝐷𝑦 𝐿𝑦⁄
                       (26) 

 

In this expression, 𝛤𝑖  is the rate of particle insertion, 𝑑𝑠 the (volume/surface) ratio of the unit cell 

where a particle is inserted, 𝐷𝑦 the diffusion coefficient along one of the axes (y) and 𝐿𝑦 is the 

distance in the y axis between the electrode/electrolyte interface and the edge of the electrode.  

Figure 9a shows I/Icott vs log(t/τ) plots obtained from kMC simulations for potential steps. This 

representation presents a maximum when changing 𝛬 from very high values (pure diffusional 

control without the maximum), to lower 𝛬 values, as highlighted by Montella in figure 7 from 

reference [81]. Figure 9b shows the current maxima from Figure 9a, max I/Icott as a function of 𝛬, 

compared with the results from reference [82] (white dots). An overlap between both 

approximations is satisfactorily observed, indicating agreement between kMC and the continuum 

simulation results of Montella. 

 

Figure 9: (a) I/Icott vs log(t/τ) plots for different 𝛬.(b) Comparison between kMC (stars) and 

continuum simulations (empty circles) for I/Icott maxima (obtained from I/Icott vs log(t/τ) plots). 

Continuum results points were extracted from reference [81]. Reproduced with permission from ref 

[82]. Copyright 2020 Elsevier Ltd.  



 

 

3. Ion transport in bulk electrodes 

3.1. Introduction 

Solid-state diffusion of Li+ is considered one of the most important kinetic phenomena occurring 

during intercalation processes in LIBs, since it regulates the loading rate of Li+ inside the electrode 

[83,84]. The chemical or Fickian diffusion coefficient (𝐷𝐿𝑖) is generally the parameter used to 

characterize the transport phenomena of the ionic species within the intercalation material. At small 

enough  𝐷𝐿𝑖 , ion transport may become relatively slow as compared with charge transfer at the 

electrolyte/electrode interface.  Under these conditions, ion diffusion will become the rate-

determining step, and mass transport will determine the charge/discharge rate of the cell. 

Diffusion coefficients in LIBs electrodes are between ≈ 10-5 and 10-18 cm2.s-1 [85], indicating that 

diffusion may have an important kinetic influence. So, understanding diffusion in depth is one of the 

keys to improving the performance of battery materials. 

The scenario may be even more complicated, since 𝐷𝐿𝑖 depends on the state of charge, varying by 

several orders of magnitude depending on the Li+ concentration. This behavior is characteristic of 

each intercalation material. This is so because crystal structure alterations of the substrate during 

intercalation and other local factors have a pronounced influence on transport kinetics. 

Determining 𝐷𝐿𝑖 experimentally presents several complications. It could be expected that different 
techniques [86], like cyclic voltammetry (CV) [87,88], potentiostatic intermittent titration technique 
(PITT) and galvanostatic intermittent titration technique (GITT) [84,89], electrochemical impedance 
spectroscopy (EIS) [84] and potential relaxation technique (PRT) [90] should give similar 𝐷𝐿𝑖 values. 
However, this is not the case, since different methods yield 𝐷𝐿𝑖s that differ by two orders of 
magnitude or more [83–85,91,92]. These discrepancies have been attributed to assumptions made 
for some of the parameters needed by the different methods to calculate 𝐷𝐿𝑖, and the difficulties in 
knowing the cross-sectional area of the particles,  or to the occurrence of other relaxation processes 
that are involved in addition to solid-state diffusion, like slow charge transfer, Li+ diffusion in pores, 
complex Li+ migration processes through surface films, etc. The occurrence of different phases at 
different loadings of the material is a further source of uncertainty, with common models assuming 
an ideal solid solution and neglecting ordering in the lattice.  Some new techniques have been 
proposed in the last years to study this phenomenon [85,93–95]. For these reasons, the support of 
computational simulations providing accurate calculations, without measurement uncertainties, 
may help and complement experimental techniques, revealing how diffusion mechanisms operate. 
This is important to know what are the factors that affect diffusion kinetics and thus what can be 
done to improve the characteristics of LIBs. In this regard, kMC may provide detailed information 
on Li+ diffusion phenomena. 
A relevant equation to study Fickian’s diffusion using computer simulations is the Kubo-Green 

formula [79]: 

 

𝐷𝐿𝑖 = 𝛩𝐷𝑗                       (27) 

 

that relates the chemical diffusion coefficient 𝐷𝐿𝑖 with the thermodynamic factor 𝛩.  The latter is 

defined in terms of the chemical potential 𝜇 and the lithium composition: 

 

 𝛩 = (
𝜕(𝜇 𝑘𝐵⁄ 𝑇)

𝜕𝑙𝑛𝑥
)
𝑇

                      (28) 

 



𝐷𝑗  in equation (27) is the jump-diffusion coefficient, related to the square of the displacement of 

the center of mass of 𝑁 Li+ particles 

 

𝐷𝑗 = 𝑙𝑖𝑚
𝑡→∞

[
1

2𝑑𝑡
⟨
1

𝑁
(∑ ∆𝑟𝑖

𝑁
𝑖=0 )

2
⟩]                      (29) 

 

In this expression ∆𝑟 is the displacement of a Li+ ion from an initial point, 𝑡 is time and 𝑑 is the system 

dimension. 

Alternatively, it is possible to obtain the tracer diffusion coefficient 𝐷∗ , associated with the mean-

square displacement of the individual Li+ 

 

𝐷∗ = 𝑙𝑖𝑚
𝑡→∞

[
1

2𝑑𝑡𝑁
∑ ⟨(∆𝑟𝑖)

2⟩𝑁
𝑖=0 ]                      (30) 

 

3.2. Cathodes LMO-LCO- LiFePO4 

An early model devoted to describing diffusion transport in bulk electrodes was developed in 1999 

by Darling and Newman [96]. These authors investigated Li+ diffusion in LiyMn2O4 cathodes with a 

fraction of pinned Li, ranging between 0 % and 40%. They implemented a lattice-gas model defined 

by the 8a sites of the LMO structure (Figure 10a), using a Hamiltonian with short-range interactions 

adapted from the original Bragg-Williams approximation developed by Gao et al. [97]. The kMC 

procedure used by these authors used energy barriers for diffusion obtained experimentally. With 

this work, they showed how the diffusion coefficient changes with Li+ concentration and how pinned 

lithium sites affect diffusion transport (Figure 10b). 

Later on, Kim and Pyun [46] also investigated Li+ thermodynamics and diffusivity in LiyMn2O4 

cathodes with kMC, using an interaction Hamiltonian similar to that of Darling  [96]. In this work, 

the authors found agreement between the model predictions for the variation of 𝐷𝐿𝑖 with Li+ 

composition and experimental GITT diffusion coefficients (Figures 10c and d). With these results, 

Kim and Pyum showed how the thermodynamic factor (W in Figure 10c and d) dominates the 

behavior of the chemical diffusion coefficient (Figure 10c and d), as compared with the jump-

diffusion coefficient (Figure 10c and d). Moreover, the authors also showed the coincidence 

between the partial molar entropy obtained with MC simulations and experiments. A year after the 

work of Darling et al., Van der Ven and Ceder [65] calculated 𝐷𝐿𝑖 for the LixCoO2 cathode (LCO) with 

kMC, using energy barriers obtained from DFT calculations for two different migration pathways 

(Figure 10e), instead of experimental data. These authors found agreement with experiments for Li+ 

concentrations lower than 95%. The differences for high concentration values were attributed to 

the use of two fixed activation energies, without considering Li-Li interactions to capture the 

atomistic-level details. Ionic configurations were then considered to calculate 𝐷𝐿𝑖 (Figure 10f) in 

LixCoO2 by Van der Ven et al. [98], implementing a local cluster expansion [99], combined with DFT, 

to obtain the energy barriers for diffusion in LixCoO2. This work demonstrated the strong influence 

of Li+ concentration on energy barriers, and so on kinetics. With a similar simulation strategy, the 

dependence of 𝐷𝐿𝑖  on Li+ concentration was investigated in LixTiS2 [100] and Li1+xTi2O4 [101]. 

Liu et al. [102] treated Li+ diffusion in LiFePO4 cathodes by considering Li-Fe antisite defects (in 

crystallography, an antisite defect is formed when atoms/ions exchange places [103]). This 

phenomenon is difficult to study experimentally, due to the low concentration of these defects. 

Comparison between solid-state NMR measurements and kMC simulations demonstrated the 

importance of considering antisite defects for Li+ diffusion transport in LiFePO4. 



 

 

 
Figure 10: (a) Unit cell for LiyMn2O4 showing intercalation sites. Sites 1-4 are from one of the fcc 

sublattices, while sites marked with 5-8 correspond to the other sublattice (the two sublattices 

together, representing all available Li sites, comprise a diamond lattice). (b) Fickian diffusion 

coefficients for pinned and unpinned LiyMn2O4 for different Li occupancy values calculated with 

kMC. Reproduced with permission from ref [96]. Copyright 1999 The Electrochemical Society. (c) 

kMC Diffusion coefficients 𝐷𝐿𝑖 and 𝐷𝑗, and thermodynamic factor for LMO considering blocking 

sites. (d) Experimental 𝐷𝐿𝑖, 𝐷𝑗  and thermodynamic factor. Reproduced with permission from ref 

[46]. Copyright 2001 Elsevier Ltd. (e) Two diffusion mechanisms in LiCoO2, Large circles are oxygen, 

black circles are Li+, squares are lithium vacancies and small empty circles are cobalt. (f) Chemical 

(𝐷𝐿𝑖), jump (𝐷𝑗) and tracer diffusion coefficients calculated for LiCoO2. Reproduced with permission 

from ref [98]. Copyright 2001 The American Physical Society.  

 



 

3.3. Anodes. TiO2 – Graphene-Graphite-Silicon  

Yu et al. [104], used kMC to study Li+ diffusion in TiO2 of different grain sizes, coupling Li+ and 

electron-polaron (e-) diffusion to understand charge transport in nanosized systems. According to 

this work, conductivity is determined by Li+ diffusion, which is slower than electronic motion. They 

also investigated the role of the surface of the conductive contact material with the electrode, in 

this case, a carbon matrix, finding higher Li+ diffusion rates for small surface areas. Activation 

energies were obtained from references [105,106] and the pre-exponential factor was taken from 

reference [107].  

The kinetics and energetics of Li+ diffusion in crystalline (c-Si) and amorphous silicon (a-Si) anodic 

materials were studied by Moon et al. [108], with DFT and kMC atomistic simulations.  The formation 

energies of Li-Si in c-Si and a-Si were calculated using DFT, with the finding of a two-phase 

coexistence for lithiated c-Si and the occurrence of only one-phase for lithiated a-Si. DFT calculations 

of the diffusion energy barriers (Figure 11a) and the kMC kinetic study for different Li concentrations 

showed that diffusion coefficients are higher in a-Si as compared with c-Si. Similar conclusions were 

reached by Chang et al. [109] using Molecular dynamics to elucidate the diffusion pathways and 

kMC to obtain Li diffusivity for different Li concentrations, energy barriers were calculated using the 

climbing image nudged elastic band method (CI-NEB) [110] and the pre-exponential factor was 

taken from reference [111]. The results show that initially in a-Si the diffusivity increases with Li 

concentration, but above a limiting concentration, Li intercalation reduces D by blocking the 

diffusion pathways. Regarding Si anodes, Yan et al. [112] combined the Autonomous Basin Climbing 

(ABC) method, for sampling the potential energy surface of the material, together with the Nudged 

Elastic Band (NEB) method for calculating energy barriers from all the energy minima pairs obtained 

with ABC, and kMC to estimate Li+ diffusion pathways in amorphous Si. This technique allowed the 

authors to reproduce the mixture of diffusion coefficients observed experimentally. A similar 

activation-relaxation technique [113] coupled with the Reactive Force Field (ReaxFF) with 

parameters from [114] was used by Trochet et al. [115] to study Li+ diffusion in c-Si at low 

concentrations, showing the importance of Li interactions in favouring clustering, promoting the 

high concentration phase of Li. Kinetics and energetics in Li-Si binary compounds (LiSi, Li12Si7, Li13Si4, 

and Li15Si4) were then investigated by Moon et al. [116] using the climbing image nudged elastic 

band (NEB) to calculate the energy barriers. Lower migration barriers, of about two orders of 

magnitude, were obtained for all binary compounds as compared with crystalline Si. These results 

showed that the kinetic bottleneck is the initial lithiation of the Si anode. A previous multi-scale 

analysis using DFT, continuum calculations and kMC simulations for pre-lithiated Si nanowires 

delivered the same conclusions [117]. 

Turning to carbonaceous systems, Zhong et al. have studied the Li+ kinetics of diffusion on graphene 

[118]. Energy barriers were calculated within DFT for single and two Li atoms adsorbed on a 

graphene sheet (Figure 11b and c), to investigate the concentration and temperature dependence 

of diffusion coefficients using kMC. A similar simulation approach was developed by Zhong et al. 

[119] to determine the energetics of  Li+ diffusion in bilayer graphene. 

Persson et al. [64] have investigated the dependence of 𝐷𝐿𝑖  on Li+ concentration by kMC, obtaining 

energy barriers from first-principles calculations and using a mean frequency of jumps (𝑣0) 

calculated in reference [120]. They have constructed a theoretical phase diagram for lithium-

graphite intercalation compounds (LGIC) using first-principles / MC simulations. They also predicted 

the existence of new stages at elevated temperatures. A similar phase diagram was then found from 

the analysis of in situ X-ray diffraction patterns [121]. 



 

 

 
Figure 11: (a) DFT energy barriers for two Li+  ions separated by three different distances in Si. One 

of the Li+ ions migrates while the other remains fixed on the same point of the lattice. Reproduced 

with permission from ref [108]. Copyright 2014 Elsevier B.V. (b) Activation energy with DFT for the 

diffusion of one Li+ on a graphene sheet. (c) Different paths (B1-A1, B1-C1, B1-D1, A1-D1) for the 

migration of one Li+ while the other remained fixed. (i) Energy barriers for paths B1-A1, B1-C1, B1-

D1. (ii) Energy barriers for path A1-D1. Reproduced with permission from ref [118]. Copyright 2017 

MDPI. 

 

The thermodynamic factor 𝛩 is generally obtained from MC simulations, which reproduce 

equilibrium open-circuit voltage (OCV) conditions. However, in intercalation systems where a phase 

transition involves phase coexistence, the calculation of 𝛩 with grand canonical MC is complicated. 

This is so, because the change of 𝑥 with 𝜇 is infinitely steep in the case of a first order transition, and 

so the expression to determine 𝛩 is not properly defined. An example of this is Li+ (de)intercalation 

in graphite, where the equilibrium isotherm shows discontinuous jumps of 𝑥 for the transition 

between stages [37,48], which can be modelled with effective in-plane attractive interactions. For 

such reasons, an alternative calculation of 𝛩 was proposed by Gavilán-Arriazu et al. [82], to account 

for regions of phase coexistence. Instead of equilibrium MC simulations, they implemented kMC 

simulations in such a way as to reproduce experimental cyclic voltammetry (CV-kMC) conditions at 

very slow sweep rates.  This quasi-equilibrium situation was used for the calculation of 𝛩 from the 

simulated CV isotherms. Then, 𝐷𝐿𝑖 was obtained applying equation (28) and using 𝛩 and the 

ordinary calculation of 𝐷𝑗 within the NVT ensemble according to equation (29).  

These authors implemented this methodology for Li+/graphite. In such a model, the kinetic barrier 

𝛥0
𝑑𝑖𝑓𝑓 for diffusion was fitted to get the experimental 𝐷𝐿𝑖 in the dilute Li+ limit [84], where 

interactions can be neglected, as in a random walk scenario. Interactions were treated with a 

Hamiltonian fitted to yield a typical experimental isotherm [48]. The corresponding 𝛩 and the 

isotherm for a CV-kMC simulation are shown in Figure 12a. The chemical diffusion coefficients 𝐷𝐿𝑖 



(full red circles) and jump-diffusion coefficients 𝐷𝑗 (white squares) obtained are shown in Figure 

12b, for room temperature (𝑇 = 296 K). An overall good agreement with experimental 𝐷𝐿𝑖 results 

obtained with PITT experiments can be noted [84]. The coincidence between theory and experiment 

is satisfactory, especially taking into account the complexity of the experimental system.  

Previous work by Gavilán-Arriazu et al. [122] showed that metastable Daumas-Hérold structures 

(consisting of islands of Li+ present in all graphite planes) frustrate the Li+/graphite system from 

reaching thermodynamic equilibrium; the work of Mercer et al. [47], also shows the importance of 

metastable structures in Li+ intercalation hysteresis observed in graphite. Thus, even experimental 

measurements conducted under extremely slow GITT conditions with relaxation times on the order 

of several hours do not reach thermodynamic equilibrium, but should rather reflect the metastable 

dynamics inherently present in kMC simulations [47].  

With the same strategy, Gavillan-Arriazu et al. analyzed the influence of temperature on diffusion 

phenomena for the lithium/graphite system [123] (Figure 12c). They found that an increase in 

temperature increases diffusion coefficients for all lithium compositions. The same behavior has 

been observed experimentally [124,125]. Furthermore, the calculation from Arrhenius plots of 

energy barriers for diffusion (Figure 12d) at different states of charge demonstrates that the formal 

activation barrier changes with Li+ concentration. The activation energies for Li+ diffusion at different 

lithium occupations inside graphite (𝑥) are included in Figure 12e 

The effect of strain effect on Li+ diffusion in graphite during intercalation has been investigated by 

Ji et al. [126] using DFT and kMC. Their results show how tensile strain perpendicular to graphite 

planes and compressive strain parallel to these planes accelerate Li+ diffusion rates. 

 

 
Figure 12: Results from kMC simulations for Li+ intercalation in graphite. (a) the thermodynamic 

factor for intercalation and deintercalation obtained from kMC simulations of cyclic voltammograms 

at slow sweep rates at 296 K, the inset shows the corresponding isotherms. (b) 𝐷𝐿𝑖 and 𝐷𝑗 , as given 

by equations (26) and (28) for different Li+ occupations. Reproduced with permission from ref [82]. 

Copyright 2020 Elsevier Ltd.  (c)  𝐷𝐿𝑖 vs Li+ occupation for 296 K (blue circles), 313 K (black squares), 

and 333 K (red triangles). (d) Arrhenius plots for diffusion coefficients at different Li+ occupations, 



lines were drawn to guide the eye. (e) Activation energies for Li+ diffusion at different x. Reproduced 

with permission from ref [123]. Copyright 2020 The Electrochemical Society.    

 

 

3.4. Validation of KMC diffusion coefficients by step-isotope-exchange 

Very recently, experimental work has used the step-isotope-exchange method together with 

secondary ion mass spectrometry (SIMS) analysis and PITT to obtain 𝐷𝐿𝑖, 𝐷𝑗  𝐷∗ and 𝛩 for Li+ 

diffusion in LiMn2O4 [95] and LiCoO2 [127] thin films of different thicknesses. In particular, these 

techniques allowed the tracer diffusion coefficient 𝐷∗ to be calculated directly. 𝐷𝐿𝑖 was obtained 

from PITT measurements and 𝐷𝑗 was derived from it using the thermodynamic factor, according to 

Equation (27). The step-isotope exchange consists of the use of an electrolyte enriched with the 

isotope 6Li. This isotope is allowed to exchange with the most abundant Li+ isotope of the cathode, 

and the time evolution of the 6Li concentration inside the electrode is quantified. With stepwise 

dipping, different isotope concentrations are recovered for the different regions of the sample 

(Figure 13a). The results of this work supported outcomes from previous simulations [46]. For 

example, Figures 13b and c show experimental results that can be compared with the kMC results 

previously shown in Figure 10c, LiMn2O4. The authors arrived at remarkable conclusions, like the 

great contribution of the thermodynamic factor to 𝐷𝐿𝑖 (predicted by simulations) and the key role 

of Li-Li interactions in the diffusion mechanism. Results for LiCoO2 are also shown in (Figures 13d 

and e). Hence, this experimental methodology combined with kMC simulations presents an 

attractive and exhaustive tool to analyze in-depth Li+ diffusion in different materials. 



 
Figure 13: (a) Schematic view of the step-isotope-exchange method.  A thin film of intercalation 

material is immersed in a 6Li enriched electrolyte with different stepwise dippings; different 

immersion times produce regions with different isotope concentrations, as shown in colors. 

Reproduced with permission from ref [95]. Copyright 2020 American Chemical Society.   (b) Tracer 

diffusion coefficient obtained with the step-isotope-exchange method for LiMn2O4. The inset shows 

the different phases formed during intercalation. Full circles correspond to tracer diffusion 

coefficients for the α-phase, while open circles correspond to those for the β-phase. Reproduced 

with permission from ref [95]. Copyright 2020 American Chemical Society. (c) Chemical diffusion 

coefficients obtained with PITT for LiMn2O4 vs electrode potential, red circles correspond to a liquid 

electrolyte and black circles to a solid electrolyte. Reproduced with permission from ref [95]. 

Copyright 2020 American Chemical Society.  (d) Tracer diffusion coefficient obtained with the step-

isotope-exchange method for LiCoO2 (red open circles), the dashed line corresponds to the equation 

for the vacancy diffusion mechanism. The white-grey zones correspond to different phases and 

phase coexistence regions. Reproduced with permission from ref [127]. Copyright 2021 The Owner 

Societies. (e) Thermodynamic factor, chemical diffusion coefficient (here represented as �̃�) and 

jump-diffusion coefficient (here called conductivity diffusion coefficient, 𝐷𝜎) calculated for LiCoO2 

with the step-isotope-exchange method and PITT. Reproduced with permission from ref [127].  

Copyright 2021 The Owner Societies. 

 



 

4. Interfacial phenomena (IP) and its coupling with diffusion  

In the previous section, we discussed Li+ diffusion phenomena and the importance of considering 

this kind of mass transport to analyze the intercalation of Li+ in electrode materials and improve 

their performance. Another crucial phenomenon participating in electrode kinetics is charge 

transfer at the electrode/electrolyte interface, since it regulates the rate of Li+ exchange between 

the electrode and the solution. Like diffusion, charge transfer is a slow process in Li+ battery 

materials. For example, the heterogeneous rate constant in BV equation, 𝑘0, which regulates the 

charge transfer rate at the interface varies several orders of magnitude (≈ 10-5 cm.s-1 – 10-9 cm.s-1) 

depending on the experimental system [128–131]. This figure, together with the previous 

considerations regarding diffusion in section 3, indicates that the overall kinetics (charge transfer + 

diffusion) are slow in battery materials. 

In a voltammetric experiment, if the electrochemical charge transfer reaction follows the Nernst 

equation, the reaction is considered to be reversible. On the other hand, if charge transfer is very 

slow as compared with the potential sweep rate, the back and forth reactions do not have time to 

balance, and an irreversible condition is reached. A reaction occurring between the limits of these 

conditions is denominated quasi-reversible. Moreover, charge transfer is coupled with diffusion, 

since a concentration gradient is established due to the generation/consumption of Li+ at the 

electrode surface. This is why a complete model should consider both processes. 

Important parameters characterizing the kinetics of electrochemical interfaces are the charge 

transfer resistance (𝑅𝑐ℎ), the exchange current density (𝑗𝑜) and the activation energy (𝛥) [81]. These 

are obtained using different experimental techniques, like chronoamperometry, chronocoulometry, 

cyclic voltammetry, EIS, PITT, GITT, etc. [89,132,133]. 

The exchange current density is defined at steady-state conditions, when the net current density 𝑗, 

reaches zero. Under these conditions, the forward and backward current densities are equal, i.e.: 

 

𝑗 = 𝑗𝑎 − 𝑗𝑐 = 0                          (31) 

 

𝑗0 = 𝑗𝑎 = 𝑗𝑐                       (32) 

 

Within the Butler-Volmer description, Equation (9) leads to: 

 

𝑗0 = 𝑛𝐹𝑘0 {𝑥 exp [−
𝛼𝐹(𝐸−𝐸0)

𝑅𝑇
]} = 𝑛𝐹𝑘0 {(1 − 𝑥)exp [−

(1−𝛼)𝐹(𝐸−𝐸0)

𝑅𝑇
]}                                          (33)   

     

Assuming 𝛼 = 0.5 and rearranging we get: 

 

𝑗0 = 𝑛𝐹(𝑘0)0.5(1 − 𝑥)0.5𝑥0.5                     (34) 

 

In the kMC framework, equation (13) yields, counting 𝑁𝑖  intercalation events (i) and 𝑁𝑑 

deintercalation events (d): 

 

𝑗0 =
𝑒

𝐴
(∑ 𝛤𝑗

𝑑𝑁𝑑
𝑗 ) =

𝑒

𝐴
(∑ 𝛤𝑗

𝑖𝑁𝑖
𝑗 )                     (35) 

 

The difference between the continuum Equation (34) and the kMC Equation (35) descriptions is 

that, in the first case the exchange current density always has the same dependence on Li+ 



concentration, due to the averaged way in which free and occupied sites are considered (𝑥 and 

(1 − 𝑥) factors). Instead, the kMC scheme considers the summation over all the rates for the 

individual events, each of them dependent on the local microenvironment surrounding the sites 

considered, where each event may occur. Thus, in a kMC simulation 𝑗0 depends on the crystal 

structure, which in turn affects the energetics of the charge transfer reaction. 

However, the modelling of interfaces is particularly challenging since it requires assumptions on the 

atomic structures of the phases involved. Thus, surface properties such as chemical composition, 

crystalline structure and crystal orientation, may have a strong influence on interface kinetics. 

Furthermore, even in coarse-grained models, different properties of the system like dielectric 

constant, charge density, electric field, etc, may vary along the interface. This is not a minor issue, 

since these details are usually unknown, but are expected to impact the values of pre-exponential 

factors and activation energies. A good example of how to calculate activation energies at 

equilibrium potential for a complex system has been given by Haruyama et al. [134]. These authors 

have performed a detailed study of the reaction of Li+ at the graphite/electrolyte interface, using 

DFT calculations with an implicit solvation theory. Different paths for Li-ion insertion into graphite 

with two tilt angles were considered, finding an activation barrier next to 0.6 eV in all cases. This 

value was consistent with experimental measurements [135,136]. 

Assuming linear conditions (small potential perturbations), the overall resistance of the 

electrochemical cell (𝑅𝑐𝑒𝑙𝑙) is related to the electrode potential following Ohm’s Law, as follows 

[137]: 

 

𝑖 =
|𝐸−𝐸𝑒𝑞|

𝑅𝑐𝑒𝑙𝑙
=

∆𝐸

𝑅𝑐𝑒𝑙𝑙
 ,                     (36) 

 

where 𝐸𝑒𝑞 is the initial equilibrium (steady-state) potential of the experiment and 𝐸 is the applied 

potential. The charge transfer resistance 𝑅𝑐ℎ is one of the components of 𝑅𝑐𝑒𝑙𝑙. In the case of EIS 

experiments, the electrochemical system is often described in terms of an equivalent circuit, so that 

physicochemical phenomena are interpreted in terms of the behavior of the electronic components 

of a circuit. For example, Figure 14a shows a typical equivalent circuit proposed for cells using 

cathodes made of transition metal oxides. The fitting of Nyquist plots (output of EIS experiments) 

using an equivalent circuit gives the values of the different components assumed for the system. 

In the kMC scheme developed by Kim et al. [137] 𝑅𝑐ℎ is inversely proportional to the conductivity 

given by the thermally activated motion of ions, and is obtained from: 

 

𝑅𝑐ℎ = 𝑤𝑇exp(𝛥 𝑘𝐵⁄ 𝑇)                     (37) 

 

where 𝛥 is the activation energy and 𝑤 is a pre-exponential factor. This parameter can be obtained 

from Equation (12) or taken from the literature [123,137], for oxidation (removal) and reduction 

(insertion) events: 

 

𝛥 = 𝛥0
𝑖 𝑑⁄ + 𝛼(𝐻′

𝐹 − 𝐻′
𝐼)                     (38) 

 

𝛥 = 𝛥0
𝑖 𝑑⁄ + (1 − 𝛼)(𝐻′

𝐹 − 𝐻′
𝐼)                    (39) 

 



An averaged 𝛥 for insertion/deinsertion of Li+ can be obtained from kMC, when the simulation 

reaches the steady-state after applying a potentiostatic step. This parameter can also be calculated 

with experimental and/or kMC Arrhenius plots:  ln(𝑅𝑐ℎ 𝑇⁄ ) vs 𝑇−1 or  ln(𝑗0) vs 𝑇−1. 

A further important phenomenon at the electrode/electrolyte interface is the formation of the solid 

electrolyte interface (SEI) on the surfaces of different electrodes. This issue and others will be 

treated in the next section; in the present section we will focus only on Li+ charge transfer and charge 

transfer coupled with diffusion. 

The first kMC model devoted to lithium batteries was that of Deppe et al. [24] in 1994. It was applied 

to analyze the diffusion of Li+ through the interface between an InSe cathode and a separator made 

of Li-doped borate glass. Simulations allowed the authors to show the influence of interactions and 

energy barriers on interfacial diffusion. However, no experimental measurements were reported to 

support the results. 

Eight years later, Kim and Pyun [137] used kMC to study the cell impedance of LiMn2O4 using PITT 

and EIS measurements. They showed, using the equivalent circuit of Figure 14a to fit the Nyquist 

plot, that the major contribution to the resistance at intermediate frequencies (𝑅𝑐ℎ) is due to the 

insertion of Li+ in LiMn2O4.  So, the good agreement  between the  experimental activation energies 

obtained from Arrhenius plots of 𝑅𝑐ℎ (Figure 14c) and the theoretical activation energies (Figure 

13e) used to generate 𝑅𝑐ℎ profiles (Figure 14d) point out the importance of the 

absorption/desorption kinetics on the intercalation of Li+ in LiMn2O4 and the role of short-range 

interactions. They also concluded that 𝑅𝑐ℎ is larger than the diffusion resistance. For these 

simulations they used 𝑣0 = 5x105 cm. s−1 and 𝛥0
𝑖 𝑑⁄ = 0.7 eV, fitted to experiments. 

The same year, Kim and Pyun performed experimental and kMC simulated potential steps and linear 

sweep voltammograms for LiMn2O4 [75]. The flux of Li+ through the interface was calculated from 

the master equation that describes the evolution of lattice configuration with time [138]. The jump 

probability through the interface (𝑊) was approximated according to 𝑊 = 𝜅|𝐸 − 𝐸𝑒𝑞|, where 𝜅 is 

a conversion factor taken arbitrarily below unity. In this work, the authors showed how interactions 

between inserted ions affect the current transients and voltammetric profiles compared to the case 

without interactions. They also found that the transition from the disordered phase to the ordered 

phase is controlled by the flux of ions at the interface. The best correspondence with experiments 

was found for kMC simulations including these interactions. For example, deviations from a pure 

diffusional behavior were found in voltammetric and potentiostatic transients. 

Later on, Jung et al. [139] analyzed with kMC the current transients for Li+ intercalation in the region 

of coexistence of a Li-poor with a Li-rich phase in  Li[Ti5 3⁄ Li1 3⁄ ]O4. They proposed that the wide 

potential plateau observed experimentally for the coexistence of these phases is due to repulsive 

interactions between Li ions, using a Hamiltonian with three Li-Li interaction terms. 

The conductivity at different Li+ concentrations for LiMn2O4 was calculated by Ouyang et al. [140] 

introducing the electric field (�⃗� ) in the probability equation. The latter was given by Metropolis 

algorithm, with  𝑃 = exp[−(𝐻′
𝐹 − 𝐻′

𝐼 ± �⃗� )/𝑘𝐵𝑇]. No pre-exponential factors were implemented. 

They highlighted the similarities between the behavior of this parameter and the trends observed 

in diffusion coefficients. 

 

 

 



 
Figure 14: (a) equivalent circuit used for cathodes prepared with transition metal oxides. Ru is the 

uncompensated ohmic resistance of the electrolyte; R1 the high-frequency resistance, CPE1 a 

constant phase element; Rch the intermediate frequency resistance and CPE2 a constant phase 

element; and ZW represents the Warburg impedance. (b) Experimental resistances of LiMn2O4 for 

different potentials and temperatures. (c) Activation energies calculated from experimental 

Arrhenius plots for LiMn2O4. (d) kMC simulations of the charge transfer resistance in LiMn2O4. (c) 

Activation energies used in the kMC simulations for LiMn2O4. Reproduced with permission from ref 

[137]. Copyright 2002 Elsevier Science B.V.  

 

In 2011, Hin [141] simulated galvanostatic transients for a LixFePO4 olivine cathode made of 

nanocrystals. They coupled continuum simulations for Li+ diffusion in the electrolyte with kMC 

simulations for the events occurring in the electrode. The value of the Li+ insertion/removal 

frequency  was fitted to the data of reference [142]. Saddle-point binding energies and attempt 



frequencies for diffusional jumps, were fitted to the Li+ interstitial diffusivity tensor from reference  

[143].The author found an anisotropy for Li+ insertion in particles with different orientations with 

respect to the flux direction of Li+ in the electrolyte. The kMC galvanostatic curves for discharge 

reproduced the features observed in experiments (Figure 15a). A DFT-based kMC model was also 

applied to study the kinetics of phase evolution in charge/discharge processes of Li+ in a LixFePO4 

cathode, as reported by Xiao and Henkelman [144]. 

Lithiation of crystalline silicon exhibiting {110} and {111} surfaces was studied by first-principles and 

kMC simulations by Cubuk et al. [145]. A pre-exponential factor of 1x1013 s-1 was assumed and the 

energy barriers for the kMC simulations were obtained from DFT calculations. The kMC simulations 

showed that the rates of the process are faster for {110} surfaces than for {111} ones (Figure 15b). 

These results and the features observed for the Li concentration depth profile inside the material, 

coincide with the trends observed experimentally [146].  

 

 
Figure 15: (a) Comparison between experimental galvanostatic curves for LixFePO4 and kMC 

simulations. The current density was 0.5 A m−2, under room temperature conditions. Grey points 

correspond to sites occupied by Li+. Reproduced with permission from ref [141]. Copyright 2011 

Wiley VCH. (b) Li concentration changes with depth for {110} and {111} surfaces of Silicon. The inset 

shows the time evolution of the depth reached by Li+ for the two orientations. Reproduced with 

permission from ref [145]. Copyright 2013 American Chemical Society. 

 

Based on ab initio and kMC simulations for the stage III-stage II transition, Krishnan et al. [147] 

highlighted the importance of kinetics and interactions for the intercalation of Li+ in graphite, 

analysing the thermodynamics and kinetics of the staging phenomena leading to Daumas-Hérold 

structures. They used an energy barrier of 0.24 eV for hopping to second nearest-neighbour sites, 

based on the results of [64] and a pre-exponential factor taken from [120]. 

The subsequent work of Gavilán-Arriazu et al. [122] with  kMC allowed to shed more light onto the 

origin of the Daumas-Hérold structures observed in graphite stages. In this work, energy barriers for 

charge transfer (𝛥0
𝑖 𝑑⁄ = 655 meV) and diffusion (𝛥0

𝑑𝑖𝑓𝑓 = 370 meV) were obtained from the 

fitting of the experimental exchange current density [130] and diffusion coefficients [84], 

respectively. The pre-exponential factors were taken from reference [120]. The model, applied to a 

lattice-gas graphite slab of nanometric size, showed that DH structures are formed in a 

chronoamperometric kMC simulation. These structures are due to kinetic limitations arising from 

the slow rate of insertion/deletions of ions at the electrode/electrolyte interface as compared with 

diffusion. A scheme of this model is shown in Figure 16a. In the thermodynamic counterpart, 



Rüddorf-Hoffman (RH) structures (where Li ions occupy each alternate graphite interlayer, leaving 

others nearly empty) were found with equilibrium MC simulations [37,48,82]. This shows that DH 

arrangements are metastable structures with higher energies than the perfectly ordered Stage II 

configurations obtained via equilibrium MC simulations.   

The kinetic charge-transfer limitations become evident through the performance of simulations 

with an artificially reduced value of the charge transfer barrier,  𝛥0
𝑖 𝑑⁄ . Figure 16b shows the 

variation of the  energy per Li+  ion as a function of time,  when 𝛥0
𝑖 𝑑⁄ = 380 meV (a value only 10 

meV different from the diffusion barrier)  A steep decrease of this energy can be observed at 40 ms 

(red dashed line) corresponding to the rearrangement of a DH structure to a RH one, closer to the 

thermodynamic equilibrium (a RH Stage II with some interlayer Li disorder). Thus, the enforced fast 

exchange rate of Li+ at the interphase leads to the more stable RH structures. 

Within the same model, Gavilán-Arriazu et al. [82] then extended the kinetic studies of LI+ 

intercalation in graphite to analyse other techniques and properties. First, cyclic voltammetry kMC 

studies revealed that the hysteresis between the direct and inverse sweeps observed in 

experimental CV measurements, has an intrinsic kinetic origin (Figure 17a). The kinetic source of 

this hysteresis was then further understood with chronoamperometric simulations, as explained 

below  

 

 
Figure 16: (a) Scheme of the model used by Gavilán-Arriazu et al. to explain the formation of DH 

domains in the case of Li+ intercalation in graphite. Li+ ions are represented with blue spheres, 

electrolyte with red balloons, and graphite is shown in grey. The energy barrier for particle exchange 

is shown in orange, the energy barrier for diffusion in green. The heights of the barriers are only 

illustrative, to show that the barrier for particle exchange is higher than that for diffusion transport. 

(b) Energy per Li+ ion calculated with kMC simulations using a charge transfer barrier comparable to 

that of diffusion, to enforce equilibrium within simulation times. The dashed red line shows the time 



at which a steep energy decrease reveals the transition from a DH structure to RH one. Reproduced 

with permission from ref [122]. Copyright 2018 Elsevier B.V. 

 

Cyclic voltammograms (CVs) obtained with kMC show the impact of size on the overall processes 

observed in experimental CVs. The relationship, log (𝑖𝑝) = 𝑎 + 𝑏[log(𝑣)], defines the overall kinetic 

control of the process: 𝑏 = 1 means pure charge transfer control, while 𝑏 = 0.5 indicates a pure 

diffusional one. Intermediate values indicate mixed control.  Experimentally, a change from a mixed 

control, at slow sweep rates, to diffusional control at higher sweep has been observed in thin 

graphite slabs [23] (Figure 17b). For thick graphite slabs, a pure diffusional control has been 

observed for all sweep rates [148]. The CVs simulated with kMC using nanosized slabs (ultra-thin 

slabs) found a mixed control for all sweep rates (Figure 17c). These results support experimental 

measurements: in nanosized systems, a concentration gradient cannot be formed, so pure 

diffusional control is not observed. As size increases, the system reaches conditions of finite 

diffusion, with kinetic control  obtained at high sweep rates. Semi-infinite diffusion behavior is found 

for sufficiently thick electrodes. 

 

 



Figure 17: Results for Li+ intercalation in graphite, except where otherwise indicated. (a) Isotherms 

obtained with kMC simulations of CVs for different sweep rates. A hysteresis loop is always present, 

becoming smaller at low sweep rates. Reproduced with permission from ref [123]. Copyright 2020 

The Electrochemical Society.  (b) experimental log-log plot for the reductive current peaks for the 

stage I-stage II transition vs the sweep rate, data extracted from [23]. The vertical dashed black line 

marks a change in slope. The red dashed line and the red solid line correspond to linear fits for high 

and low scan rates, respectively.  (c) log-log plot for kMC simulated peak currents vs sweep rate for 

oxidation (black) and reduction (red). A coincidence is observed between simulated and 

experimental slopes at low sweep rates. (d) Current transients obtained with kMC for a potential 

step where a single phase is observed (left) and a potential step where phase coexistence occurs 

(right, green points). The experimental plots reproduced with permission from ref [133]. Copyright 

2005 American Chemical Society. The simulation frame shows that the minimum between the two 

peaks (marked with a red circle) is due to the formation of a Li clog next to the interface (also marked 

with a red circle). In this inset, lithium ions are represented with green circles, and graphite substrate 

is omitted for easy viewing.  Reproduced with permission from ref [82]. Copyright 2020 Elsevier Ltd. 

 

The same work of Gavilán-Arriazu et al. simulated potential steps to get a deeper insight into the 

intercalation mechanism. Simulated current transients were compared with the experimental 

counterparts of reference [133]. The same trends were observed in experiments and simulations: 

on one hand, current transients present a single peak in the |𝑖|𝑡1 2⁄  vs log (𝑡) representation (Figure 

17d) when the initial and final potentials remain in the same lithiation stage.  On the other hand, 

this representation of the current transient becomes divided into two peaks when the applied 

potential leads to a new lithiation stage. In this case, peaks p1 and p2, shown in the bottom right of 

Figure 17d, occur due to the coexistence of two phases (stages I and  II) as the process evolves with 

time.  

kMC simulations provide strong support to the experimental interpretations, yielding 

configurational information about the events taking place at different times of the potentiostatic 

transients. The snapshot of Figure 17d shows that the minimum between the pair of peaks in the  

|𝑖|𝑡1 2⁄  vs log (𝑡) plot occurs when the new phase (stage I) is formed next to the interphase of the 

graphite slab, clogging the entry to the insertion of more Li+ ions.  

Moreover, the detailed atomistic information shows that the first peak, at shorter times, depends 

on charge transfer; while the second peak, at longer times, is under  mixed control and is related to 

the growth of the new phase formed at the edge of the slab. 

Another interesting result of these simulations is that deintercalation takes shorter times than 

intercalation, considering the same potential interval. This fact has also been observed 

experimentally [133,149]. The origin of this feature is again easy to unveil with kMC in the region of 

phase-coexistence: Figure 18a shows that when the potential step is in the direction of intercalation, 

it leads to the formation of a denser stage, which is initially formed next to the interface. On the 

contrary, for deintercalation potential steps, the stage formed next to the interface is less dense 

(Figure 18b). So, the denser stage formed during intercalation acts as a “clog” for Li+ insertion, 

making particle insertion difficult. This is not the situation during deintercalation, because the less 

dense stage formed generates holes at the interface, which are rapidly filled by diffusing ions. This 

is one reason why hysteresis is always observed in CV experiments and simulations: the paths for 

Li+ intercalation and deintercalation are different. These features were anticipated by Levi et al. 

[133,149]. However, simulations confirm their hypothesis, further providing atomistic information.  



The cited works also shed light on changes of the exchange current density with Li+ occupation 

observed in graphite, especially the maximum observed at the composition 𝑥 = 0.5 (stage II) (Figure 

18c). The predictions made using two Frumkin isotherms, one for stage II and another one for stage 

I, (dotted lines in Figure 18c), would lead to the conclusion that at 𝑥 = 0.5 a minimum in 𝑗0 should 

be observed. However, this is not the situation, neither for experiments nor for kMC simulations. 

The explanation was obtained from kMC runs initialized from a nearly perfect stage II configuration, 

which was obtained from equilibrium MC simulations (RH structure): a lower 𝑗0 was obtained for a 

perfect RH structure, as compared with the defective DH structures. This result strongly suggests 

that the relatively high 𝑗0 found at 𝑥 = 0.5 is due to the formation of DH structures, in a scenario 

controlled by kinetics. 

Gavillán-Arriazu et al. [123] investigated the effect of temperature on the kinetics of Li+ intercalation 

in graphite via kMC. These simulations predicted the behavior of the chronoamperometric current 

transients for different input temperatures (Figure 19a). The configurations of the ions from the 

simulations were used to interpret the outstanding features occurring (events (i) to (v) in Figures 

19b and c).   𝑗𝑜 was calculated for different temperatures and lithium-ion concentrations (Figure 

19d). Arrhenius plots of  𝑗𝑜  were used to calculate the energy barriers for different stages (Table 

shown in Figure 19e), finding different energy barriers for the charge transfer at different stages, 

showing the impact of concentration and interactions on charge transfer kinetics. 

 

 
Figure 18: (a) Configuration of Li+ inserted in graphite generated by a reductive potentiostatic jump. 

Green spheres are Li+ ions; the graphite substrate was omitted. (b) Configuration of Li+ ions in 

graphite obtained with an oxidative potentiostatic step. (c) exchange current densities obtained at 

different occupations at room temperature. kMC results are shown with full circles and dashed lines, 

a single-Frumkin isotherm prediction is shown in the red dashed line, and two-Frumkin isotherms 

are shown in a dotted line. The exchange current density values obtained from simulations for a DH 

type structure and RH arrangements at 𝑥 = 0.5  are indicated with red circles. Reproduced with 

permission from ref [82]. Copyright 2020 Elsevier Ltd.  

 

 

 



 
Figure 19: (a) Li+ occupation vs time, (b) current vs time and (c) |𝑖|𝑡1 2⁄ 𝑣𝑠𝑙𝑜𝑔𝑡 obtained with kMC 

simulations for the different temperatures indicated in the figures. The main features observed with 

the simulation frames are detailed in Figures (b) and (c). (d) Arrhenius plot for exchange current 

density at three different lithiation stages, leading to the calculation of activation barriers (shown in 

table (e)). Reproduced with permission from ref [123]. Copyright 2020 The Electrochemical Society. 

 

 

5. Electrolyte: solid electrolyte interphase and Li+ transport  

Besides ion transfer at the electrode/solution interface and ion transport within the electrodes, 

other phenomena occurring in the electrolyte and at the electrolyte/electrode interface are further 

sources of rate limitation in the operation of LIBs. These have to do with the formation and growth 

of the so-called solid electrolyte interphase (SEI) on anodes and with Li+ transport between the 

electrodes. 

 

5.1. The Solid electrolyte interphase (SEI): 

The SEI forms when the potential applied to the electrode exceeds the limits at which the electrolyte 

is stable. So, the electrolyte starts to degrade via a reduction reaction on the anode surface. The SEI 

is mainly formed at the first charging cycle and then acts as a barrier to prevent further electrolyte 

reaction in successive cycles, allowing Li+ transport. The properties of the SEI (composition, 

thickness, morphology, etc.) depend on the operating conditions, and its generation is often 

accompanied by the formation of byproducts, capacity fade, and higher charge transfer resistances. 

These changes impact charge transfer and so the performance of LIBs. Thus, identification of these 

alterations and analysis of optimal conditions for its generation is crucial to optimize battery 

operation [2,150,151]. 

Methekar et al. [152] have simulated SEI formation and growth along charging cycles at constant 
potential (100 cycles) with kMC. This model simulated passive SEI layer formation, reduction, and 
growth, including in the perpendicular direction of lithium-ion intercalation. For such a model the 



authors considered the formation of undesirable products (P) at the anode surface (S), according to 
Equation (40): 
 

𝑆 + 2𝑒− + 2𝐿𝑖+ → 𝑃                      (40) 

 

These products promote an increasing layer thickness and blocking of the pores, so leading to an 

increasing charge transfer resistance.  The events considered at the electrode/electrolyte interface 

within this model are: adsorption, desorption, surface diffusion, and formation of product P. The 

simulation parameters were obtained from continuum models and experiments. The side reaction for 

SEI formation and growth is described with a Butler-Volmer equation. Figure 20a shows the active 

surface coverage corresponding to the last configuration of a cycle vs the number of cycles. It is 

observed that the active surface coverage begins to decrease after cycle n° 10, as observed 

experimentally [153]. Figures 20b and c show configurations for the first and last cycles, respectively, 

where it can be observed that the number of passive sites (red squares) increases with the number 

of cycles. This work also discussed the impact of temperature and exchange current density on the 

charging cycles, showing that higher temperatures (20 degrees above room temperature) and low 

exchange current densities improve the performance of the overall process. 

   

 



Figure 20: (a) Coverage of active SEI sites, considering the last coverage for each cycle, vs the number 

of charging cycles, at room temperature (298 K) and j0= 1.5x10-10 A/m2. (b) first cycle and (c) last 

charging cycle configurations. Magenta squares are virgin sites, while red squares are passive sites. 

Green squares are adsorbed Li+ ions. Reproduced with permission from ref [152]. Copyright 2011 

The Electrochemical Society.  (d) Scheme of the multi-scale coupling between the continuum scale 

and the single-particle events of kMC. The anode/surface film (∆𝛷𝑎,𝑠) and adsorption 

site/electrolyte (∆𝛷𝑠∗,𝑒) potential drops are also shown (e) electrode potential vs dimensionless 

capacity for a charging rate of 0.1 C and two-particle radii, 𝑅1 = 3 μm and 𝑅2 = 10 μm. (f) kMC 

configurations for SEI growth on the particles observed at different potentials, the LEDC, LC, and 

anode surface colors are indicated in the Figure. (g) Average SEI thickness is reported for the same 

conditions as Figure (b). Reproduced with permission from ref [154]. Copyright 2017 The 

Electrochemical Society. 

 

 

Röder et al. [154,155] implemented a multi-scale model to simulate SEI formation and growth.  They 

used a continuum model coupled with a kMC scheme, which considered the rates for surface 

diffusion, adsorption on top of surface sites, desorption, and side reactions for SEI growth. The 

model is shown in Figure 20d.  Macroscopic calculations are made at the single-particle level, where 

the particle is surrounded by a dense inner film (orange) and byproducts that reduce porosity (light 

brown clouds). The microscopic zoom view inside the red square corresponds to the kMC simulation 

level. Potential drops are shown at the anode/surface film interface (∆𝛷𝑎,𝑠) and at the 

film/electrolyte interface (∆𝛷𝑠∗,𝑒). The activation energies for diffusion and desorption were a 

function  of the interactions at the local environment, while adsorption rates depended on the 

electrolyte species activities. The kMC equations for electrochemical reactions also considered the 

modification of the activation energy with the microscopic distance between the surface site of the 

film and the anode surface. Pre-exponential factors for diffusion were calculated from the surface 

diffusion coefficient. After a time interval, continuum and kMC models exchange information: 

microscopic configurations are updated with continuum data, while kMC outputs are introduced as 

inputs in the continuum model to set parameters. The authors used ethylene carbonate (EC) with 

LiPF6 salt as the electrolyte,  graphite as the anode, and assumed solid lithium carbonate (LC) and 

lithium ethylene dicarbonate (LEDC) as reaction products. Figure 20e shows the results for the 

electrode potential (∆𝛷𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒) vs dimensionless capacity for a charge rate of 0.1 C and two-

particle radii, 𝑅1 = 3 μm and 𝑅2 = 10 μm. The corresponding microscopic kMC configurations for 

the SEI growth at different potentials, for both radii, are shown in Figure 20f.  The grey dashed lines 

in Figure 20e correspond to 0.55 V, 0.525 V, and 0.5 V, whose configurations are shown in Figure 

20f. Finally, the average layer thickness is plotted vs the capacity in Figure 20g, illustrating the 

evolution of the SEI. These results show that particle size has more impact on SEI growth rate than 

on the final average film thickness and that the model provides a suitable tool for future theoretical 

works. 

Another multi-scale approximation to simulate the SEI growth is the model of Shinagawa et al. [156]. 

This approach was similar to the previous multi-scale model, consisting of a single particle 

continuum model coupled with kMC simulations for SEI growth. The results presented included the 

capacity fade and SEI growth for hundreds of charging cycles, demonstrating the long times that this 

approach can simulate (Figure 21a). 

A different approach for SEI growth was that developed by Hao et al. [78], including the three steps 

introduced above. The calculation of the kMC rates were those of mesoscale, given by Equation (16) 



for Li-ion intercalation. The reaction of Li-ions with the solvent was treated in a way analogous to 

that of intercalation. The overpotential for both rate calculations, Li-ion intercalation, and side 

reactions, considered the electrolyte potential and the SEI ohmic drop as follows: 

 

𝜂 = 𝐸 − 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 − 𝐸0 − 𝑖𝑡𝑅𝑆𝐸𝐼                              (41) 

 

where 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 is the potential in the electrolyte, 𝑅𝑆𝐸𝐼 is the SEI resistance and 𝑖𝑡 is the total 

current for intercalation (𝑖𝐿𝑖+) and solvent reaction (𝑖𝑆𝐸𝐼): 

 

𝑖𝑡 = 𝑖𝐿𝑖+ + 𝑖𝑆𝐸𝐼                       (42) 

 

Each current was calculated with BV expression, Equation (9). The activation energies for Li+ 

diffusion in SEI, 38.4-76.8 KJ.mol-1, were taken from the theoretical-experimental work in references 

[157,158], the pre-exponential factor was in the range  1012  1013 s-1. Exchange current densities of 

1 mA.cm-2 and 0.1 mA.cm-2 were used to calculate the rate constants for Li+ reduction and SEI 

growth, respectively. 

This model showed how activation energies for Li+ diffusion affect charging times. Higher activation 

energies decrease Li+ content at the electrode surface (Figure 21b), increasing the mass transfer 

dependence of the overall process. It was also shown how the solvent activation energy for diffusion 

affects SEI growth (Figure 21c). 

Future modelling approaches should take into account that SEI growth continues even at open-

circuit conditions (𝑖𝑡 = 0). Loss of Li into ongoing SEI growth during ‘calendar ageing’ is governed by 

the anode potential and its interplay with shuttle-type side reactions [159] that have their 

counterparts at the cathode.  

 

 
Figure 21: (a) Capacity and SEI thickness as a function of charging cycles. Reproduced with 

permission from ref [156]. Copyright 2017 The Electrochemical Society. (b) Concentration profiles 

for different activation energies for Li+ diffusion. (c) SEI thickness and charging time for different 

activation energies for solvent diffusion. Reproduced with permission from ref [78]. Copyright 2017 

American Chemical Society. 

 

 

5.2. Li+ transport in electrolyte: 

Regarding Li+ transport in a solid electrolyte, kMC models consider Li+ hopping in a lattice of fixed 

geometry. An optimum electrolyte consists of a material with high ionic conductivity. The latter 

depends on the geometry of the hopping sites, the chemical composition, and the concentration of 



ions [160]. So, understanding these factors is crucial to design better electrolyte materials. 

Conductivity is related to the diffusion coefficient according to: 

 

𝜎 =
𝐶𝑞2

𝑘𝐵𝑇
𝐷∗                       (43) 

 

where 𝐶 is the concentration, 𝑞 the charge of the ion and 𝐷∗ is the tracer diffusion coefficient 

defined in Equation (30) 

The work of Scarle et al. [161] designed a kMC model to study Li+ motion in polyethylene (PE). The 

energy was calculated within a self-consistent polarization field method (SCPF). It consists of the 

calculation of the polarization energy in a spherical region centered on a Li+ ion interacting with the 

induced surrounding dipoles in the electrolyte, ignoring Li+ polarization. A complete description of 

the method is detailed in reference [161]. The rate of Li+ mobility was calculated with the typical 

kMC equation for activated processes, Equation (5), obtaining the activation energy for the hopping 

jump from a site i to a site j , 𝛥𝑖𝑗, from: 

 

𝛥𝑖𝑗 = 𝑈𝑆𝐶𝑃𝐹,𝑗 − 𝑈𝑆𝐶𝑃𝐹,𝑖                      (44) 

 

where 𝑈𝑆𝐶𝑃𝐹,𝑗 and 𝑈𝑆𝐶𝑃𝐹,𝑖 are the SCPF energies for the sites i and j, respectively. The polymer 

structures consisting of 200 methylene groups were constructed using a polymer builder and an 

energy minimizer, and the polarization energies for a Li+ were calculated. The results showed 

deviations of the Li+ ion mean-square displacement (MSD) from the random walk behavior as a 

consequence of the environment. Unfortunately, no comparison with experimental cases was 

made, but this work set a precedent for future work. 

First-principles studies of solid inorganic electrolytes with (AlxMg1-2xLix)Al2O4 spinel structure with 

different stoichiometry were carried by Mees et al. [162]. In this work, the diffusion of a Li- vacancy, 

introduced in the (AlxMg1-2xLix)Al2O4 structure for a given 𝑥, was simulated with kMC. After a Li- 

vacancy was introduced, the diffusion paths for Li- exchange with successive adjacent cations were 

evaluated with the NEB algorithm. One of these paths was chosen statistically within the kMC 

algorithm, to exchange occupations with one of the nearest neighbors. The diffusion coefficient 𝐷 

was then obtained with the classical relationships shown above in Section 3 for a single vacancy. An 

Arrhenius plot with the diffusion coefficients at different temperatures (Figure 22a) allowed the 

calculation of the activation energies for different 𝑥 (Figure 22b). A decrease of the activation energy 

was found for increasing Li+ fraction in the electrolyte structure; indicating a better conductivity. 

 



 
Figure 22: (a) Arrhenius plot for the diffusion of a single vacancy in (AlxMg1-2xLix)Al2O4 at different x, 

obtained from kMC simulations. (b) Activation energies obtained from Arrhenius the plots of Figure 

(a). Reproduced with permission from ref [162]. Copyright 2014 the Owner Societies. (c) Scheme of 

a liquid electrolyte model within an electrochemical cell, considering three moving species: anions, 

cations, and solvent. The size of the simulation box is L and a is the unit cell parameter. (d) kMC 

results for the ionic conductivity (σ) vs the concentration number (CN) for the model shown in Figure 

(c), considering interacting (full circles) and non-interacting particles (empty circles). (e) 

Experimental σ vs  CN. Reproduced with permission from ref [163]. Copyright 2016 The 

Electrochemical Society. 

 

Later on, Ozaki et al. [163] developed a kMC approach to study Li+ self-diffusion and ionic conduction 

in electrolyte solutions at high concentrations. The model consisted of a “pseudo”-lattice, with a 

single lattice constant, where ions and solvent may move (Figure 22c). Each of the sites was 

considered to be occupied by one of the species: anions (charge -1), cations (charge +1), or solvent 

molecules (neutral). Interactions among the different species were considered and exchange or 

“swap” of species placed in nearest neighbor sites was evaluated. The authors also considered the 

role of the heat of dissolution of the crystal in the solvent, to calculate the energetics of the system. 

The ionic conductivity was calculated from: 

 

𝜎 =
𝑗

�⃗� 
                        (45)

  



where 𝑗 is the current density calculated from the flux of anions and cations through a unit area and 

�⃗�  is the electric field. The results showed that repulsion between ions with the same charge 

determines the bell-shaped form of the conductivity as a function of the concentration number CN 

(Figure 22d), as observed in the experiment (Figure 22e).   

Geometry effects on Li+ transport in “lithium-garnet” electrolytes [164] explored by Morgan [160]. 

Garnet electrolytes are solid materials with the formula LixM3M’2O12, M and M’ being two different 

metals. The geometry of the lattice is considered as “unusual” (Figure 23a) and in this work, it was 

used to define a lattice gas. In the stoichiometry of the material,  𝑥𝐿𝑖 = 9 corresponds to the fully 

occupied lithium-site lattice. Morgan used  𝑣0 = 1x1013 s−1 and a Metropolis algorithm [51] to 

calculate the hopping probabilities. 
The cases of non-interacting particles and nearest-neighbor interactions were considered. 

Correlation factors were defined to account for deviations of some parameters from the random 

walk behavior: a factor 𝑓 for 𝐷∗ and 𝑓𝐼 for 𝜎. Different correlation factors for 𝐷∗ and 𝜎  mean that 

correlations effects modify the relationship given Equation (43). The reduced conductivity shows 

the effect of the concentration on conductivity and is expressed as 

 

𝜎′ = 𝑥𝐷𝑗                       (46) 

 

where 𝑥 is the occupation degree of the lattice, 𝑥 = 1 is equivalent to 𝑥𝐿𝑖 = 9, and 𝐷𝑗 is the jump-

diffusion coefficient. 

The kMC results showed that this kind of solid present deviations of the tracer diffusion coefficient 

from the random walk behavior, for the non-interacting case, when Li+ content is high (Figure 23b). 

Predictions were also made considering the repulsive energy between first neighbors (Figure 23c, d 

and e).  These predictions may be useful for designing Garnet electrolytes with optimal conductivity 

properties. 

 



Figure 23: (a) Ring structure of a diffusion network in a garnet electrolyte. Alternating octahedral 

(orange) and tetrahedral (green) sites. The arrows show links with other rings. (b) Tracer and jump-

diffusion coefficient for non-interacting particles. (c) correlation factor 𝑓 (d) correlation factor 𝑓𝐼 and 

(e) reduced conductivity 𝜎′  vs lithium content 𝑥𝐿𝑖 for different repulsive energies between first 

neighbors Enn. Reproduced with permission from ref [160]. Copyright 2017 The Royal Society. 

 

 

Regarding Li3PO4 electrolyte, Li et al. [165], have studied Li+ diffusion using kMC and a machine-

learning-based interatomic potential called a neuronal network (NN) potential to study Li+ diffusion. 

The attractiveness of Machine-learning to study diffusion in amorphous materials is due to the fact 

that, compared with DFT, it has a much lower computational cost. One of the reasons is that the 

characterization of diffusion pathway in these types of material is complicated. The basic idea is that 

a NN potential “learns” from DFT calculations and then can predict structural energies that were not 

contained in the training set. Li et al. calculated with DFT the energies of 38592 structures. From 

these, 30874 were used for a training set, while the remaining were used as independent testing 

data. The diffusion coefficients obtained with the NN potential at different temperatures, calculated 

with kMC and MD, were found in agreement with those obtained with DFT-kMC and ab-initio MD, 

with DFT-kMC demanding a smaller computational effort. Li et al. used a 𝑣0 = 1x1013 s−1 and 

energy barriers calculated with NEB method. 

 

 

6. Post-Li-ion cells 

In the quest for storage systems with higher energy density, new systems are being designed that 

involve metallic lithium as an anode. Two attractive cells that present outstanding theoretical 

characteristics are Lithium-air (Li-O2) with a gravimetric energy density of 11680 Wh.kg-1 [19] and 

Lithium-Sulfur (Li-S) with a gravimetric energy density of 600 Wh.kg−1 [16–18,166].  

The most common Li-O2 battery is that with non-aqueous electrolytes, although configurations with 

aqueous and hybrid aqueous electrolytes have been proposed. The cell consists of a non-aqueous 

Li metal anode and an air cathode made of an active surface (typically carbon) where oxygen is 

reduced in the first step to superoxide, which further reacts yielding finally 𝐿𝑖2𝑂2  (Figure 24). The 

reactions involved in the cell during a discharge cycle are the following: 

Anode: 

 

1) 𝐿𝑖 → 𝐿𝑖+ + 𝑒−                      (47) 

 

Cathode: 

 

1) 𝑂2 + 𝑒− → 𝑂2
−                      (48) 

 

2a) 𝐿𝑖𝑂2 → 𝐿𝑖2𝑂2 + 𝑂2                      (49) 

 

2b) 𝐿𝑖𝑂2 + 2𝐿𝑖+ + 2𝑒− → 𝐿𝑖2𝑂2                    (50) 

 

The overall reaction results in: 

 

𝑂2 + 2𝐿𝑖+ + 2𝑒− → 𝐿𝑖2𝑂2  𝐸0 = 2.96 𝑉 𝑣𝑠 𝐿𝑖 / 𝐿𝑖+                 (51) 



 

 
Figure 24: Schematic representation of Li-O2 cell.  

 

Turning to consider another post-lithium system, a Li-S electrochemical cell consists of a Li anode, a 

sulfur/carbon+binder cathode, an aqueous organic electrolyte, and a separator [167]. The anode 

reaction during discharge is the same as in Equation (47). The overall reaction of the cell for the 

discharge reaction is: 

 

𝑆8 + 16𝐿𝑖 → 8𝐿𝑖2𝑆                      (52) 

 

This reaction occurs in two steps, as discussed in reference [167], where several reactions occur. 

The cell reactions and sulfur compounds arising at different stages are shown in Figure 25. 

 



 
Figure 25: Schematic representation of a Li-S electrochemical cell and the different polysulfide 

species arising during the discharge reaction. The shuttle effect produced by polysulfides is 

illustrated schematically. 

 

Despite their promising theoretical capacities, both kinds of post-lithium cells present different 

handicaps. In addition to the problems discussed in the introduction for metallic Li anodes, like 

dendrite formation and drastic volume changes, it turns out that Li2S and Li2S2 present low 

conductivities, and that a phenomenon denominated the “shuttle effect” arises. The latter is caused 

by the migration of polysulfides from the cathode to the anode, where they are reduced. The 

problems with the lithium-air battery concern its unsatisfactory discharge capacity, its high 

overpotential, and severe parasitic reactions. Many of these deficiencies are due to the high 

reactivity of peroxidic species and to the insoluble and insulating nature of Li2O2 that forms during 

discharge. Thus, it is crucial the development of adequate theoretical models to bring answers to 

these critical issues [16,166–168]. 

In the following sections, kMC studies applied to metallic Li anodes (6.1), Li-air battery cathodes 

(6.2) and Li-S battery cathodes (6.3) will be presented. 

 

 

6.1. Electrodeposition and growth on a metallic Li anode: 

Most cell prototypes for Li-S and Li-air use Li-metal as the anode, and dendrite growth is one of the 
main failure mechanisms of LiBs. So, understanding dendrite formation and growth in metallic Li 
anodes is a key element to the development and understanding of these three types of cell, as 
described in detail below.   
Dendrite growth and metal deposition on a metallic Li anode were analyzed by Aryanfar et al. [169], 
with coarse-grained kMC and experiments. They considered random diffusion and electromigration 

of Li+ in an electrolyte formed by 1 M LiClO4 dissolved in propylene carbonate. The electric field was 

position- and time-dependent. The authors applied to the experimental working electrode current 



pulses (-2 mA.cm−2) of variable duration (𝑡𝑂𝑁),  from 1 ms to 20 ms with ratios of 𝛾 = 𝑡𝑂𝐹𝐹/𝑡𝑂𝑁 =
0, 1, 2, 3, where 𝑡𝑂𝐹𝐹 represents a time during which galvanostatic control was lifted. These pulses 
were applied to deposit variable amounts of lithium. Since the galvanostatic experiment showed a 
stable voltage regime, the kMC simulations assumed an equivalent potentiostatic condition.  Figure 
26a shows the experimental and simulation results. The average dendrite length varies depending 
on the frequencies of the charging pulses. Short pulse durations  𝑡𝑂𝑁 = 1 ms with longer 𝑡𝑂𝑁 (𝛾 =
3) reduces dendrite length, as compared with long pulse durations (20 ms), which do not show a 
change in dendrite length when increasing 𝑡𝑂𝐹𝐹. kMC simulation details, in Figure 26b, show the 
impact of the electric field on deposition growth (blue vectors), comparing 𝑡𝑂𝑁 = 1 ms with 𝑡𝑂𝑁 =
20 ms for 𝛾 = 3. The same model was then used to generate surface morphologies and perform 
MD simulations with a reactive potential (ReaxFF) [170]. This work highlighted the importance of Li 
self-diffusion for thermal relaxation of Li anodes. 
 

 

 

 



Figure 26: (a) Normalized average dendrite length for different 𝛾 = 𝑡𝑂𝐹𝐹/𝑡𝑂𝑁 ratios, as defined in 

the text.  Two 𝑡𝑂𝑁 were considered. The results shown are from both experiments (blue bars) and 

modeling (red bars). (b) Representation of two configurations at different 𝑡𝑂𝑁, for 𝛾 = 3, obtained 

with kMC simulations. Reproduced with permission from ref [169]. Copyright 2014 American 

Chemical Society. (c) Phase map of different morphologies obtained with kMC simulations, 

assuming a uniform thermal field. The diagram is constructed in the Bi-parameter (see 

text)/temperature plane. (d) Phase map of different morphologies obtained with kMC simulations 

and a non-uniform thermal field. Reproduced with permission from ref [171]. Copyright 2020 

American Chemical Society. 

 

 

Mesoscale kMC modeling has been developed by Vishnugopi et al. [171], to study electrodeposition 

on a metallic Li anode. Reaction at the metal/electrolyte interface, surface diffusion of Li atoms, and 

diffusion of Li+ in the electrolyte were considered. The rate constant for the reaction at the electrode 

surface (𝛤𝑐ℎ) was calculated according to Equation (16). The diffusion rates of the atoms deposited on 

the surface of the electrode were calculated assuming 𝑣0 = 1012 − 1013 s−1 and two activation 

barriers, depending on the type of surface diffusion. These were terrace diffusion (𝛥 = 0.14 eV) and 

interlayer diffusion (𝛥 = 0.4 eV) [172].The diffusion rate constant in the electrolyte was calculated as 

𝛤𝑒𝑙𝑒𝑐 = 𝐷/(2𝑎)2.  

 

A dimensionless quantity denominated Biot number, 𝐵𝑖, was defined as: 

 

𝐵𝑖 =
ℎ

𝑎𝛿

𝛤𝑐ℎ

𝛤𝑒𝑙𝑒
                       (53) 

 

where ℎ is the height of the system and 𝛿  is the occupation ratio of cation sites available in the 

electrolyte domain.  Simulations were performed for different 𝐵𝑖  and temperatures, and the 

structures of the deposit morphologies were classified into fractal, mossy and stable, depending on 

the degree of porosity, formation of rounded tips, and dendrite height. Phase diagrams were 

constructed in the 𝐵𝑖 − 𝑇 plane Figure 26c and Figure 26d for uniform and non-uniform thermal 

fields. The latter denomination indicates that the thermal field was only applied to the surface of 

the electrode, in contrast with the uniform one, where the thermal field was uniform throughout 

the cell. From fractal to stable phases, the porosity is reduced, the tips are more rounded and the 

dendrite height is lowered. The phase maps show that, in the case of the non-uniform thermal field, 

the morphology changes occur over a wider temperature range than with a uniform thermal field. 

Later on, Ghalami Choobar et al. [173] studied the electrodeposition of Li onto metallic Li with a 

kMC-embedded atom method, considering (100), (110), and (111) single crystal faces.  The reaction 

influenced by the electrochemical double layer was described using the Frumkin-Butler-Volmer 

equation [174]. Four types of mechanism were allowed for adatom diffusion, each of them with a 

different activation energy and pre-exponential factor, obtained from references [175–179]. These 

results showed the morphology evolution with time and considered how to reduce dendrite growth 

in terms of the LIB operating conditions and modification of its anode surface chemistry. 

An aspect not considered in the previous works is the passivation layer formed on the Li metal 

surface. This topic was treated by Sitapure et al. [180] with kMC and MD simulations, considering 

the impact of the SEI on dendrite growth. MD was used to simulate SEI formation in different 

electrolytes: LiPF6 + Dioxolane (DOL) + Fluoroethylene carbonate (FEC), and LiPF6 + Ethylene 



carbonate (EC). For this purpose, a reactive force field (ReaxFF) was implemented. kMC was 

employed to simulate the following events in the system: Li+ incorporation into the SEI, Li+ diffusion 

through the SEI, and Li+ reduction on the anode surface. The pre-exponential factor was 2 × 1012 s-1. 

The activation energy for desolvation was 0.43 eV [181].The activation energies for diffusion in the 

SEI depended on the type of electrolyte considered, and were taken from [182,183]. The rate for 

the reaction on the surface was calculated from the Faradaic current, following Equation (16). It was 

found that lower diffusion energy barriers in the SEI enhance dendrite formation. 

 

6.2. Li-air battery cathode 

A mesoscale model was developed by Blanquer et al. [184] to study O2 and Li+ transport,  and 

reaction in a 3D cathode pore. The model considered a single pore with spherical geometry of 

different sizes and conducting cylindrical channels for Li+ and O2 transport with different radii and 

lengths. The model assumed that when Li+ and O2 react inside the pore, they form LiO2 pairs in the 

first reaction step. These species can either move to the electrolyte and form Li2O2 and O2 or can 

remain inside the pore and react on the surface to form a passivation layer. Simulations showed 

that the reaction to form LiO2 mainly occurs next to the oxygen input channel, and depends on the 

size of the system, as shown in the snapshots on the right-hand side of Figure 27a.  Changes in 

diffusion coefficients in the simulations lead to an increase of reaction rate and cell capacity. These 

conclusions are in agreement with previous experimental results [185]. 

Li2O2 thin film formation on a carbon nanofiber in contact with an electrolyte (dimethyl sulfoxide 

with 1 M Li+) was modelled with mesoscale kMC by Yin et al. [186]. The model also considered 

catalyst nanoparticles randomly distributed on the surface of the nanofiber. Five different species 

and two-step mechanisms for Li2O2 formation were considered, as illustrated in Figure 27b. All 

species were allowed to translate or rotate on the surface, except Li2O2, which was assumed to form 

a film. Rate constants for reactions were calculated with a Butler-Volmer approach, considering on 

the surface slower kinetics due to passivation when the Li2O2 film is formed. A pre-exponential factor 

of 1x1010 s-1 was considered for the reaction on the carbon surface, while it was assumed to be two 

orders of magnitude higher for the catalysed reaction. Figure 27c shows Li2O2 film growth in the 

absence and presence of the catalyst. The colours of the species are the same as those shown in 

Figure 27b. In the case of the catalyst-loaded system (right of Figure 27c), Li2O2 growth on the 

catalyst species forms a thick film (depicted in green) on top of a thin film (depicted in orange), the 

thin film being in direct contact with carbon. 

Due to the poor electron conductivity of Li2O2, Li-O2 cells achieve higher discharge capacities when 

the Li2O2 deposit grows in a 3D mode rather than forming homogeneous films. Whilst this behaviour 

has been modelled on mean-field level [187], kMC simulations would be ideal to quantitatively 

explore the underlying EC-mechanism and its response to changes of electrolyte and electrode 

materials. 

 



 
Figure 27: (a) Evolution of the number of Li2O2 species in pores and channels of different sizes. 

Simulation snapshots are also shown on the right Reproduced with permission from ref [184]. 

Copyright 2016 The Electrochemical Society. (b) Events allowed for Li2O2 electrodeposition on a 

carbon nanofiber, the color that represents each species is indicated in the Figure. (c) Final 

configurations for discharge process on a catalyst-free surface (left) and catalyst-loaded surface 

(right). The colors are the same as in Figure (b). Reproduced with permission from ref [186]. 

Copyright 2017 American Chemical Society. 

 

 

6.3. Li-S battery cathode 

A mesoscale kMC model to simulate LiS2 film growth on a carbon surface was developed by Liu et 

al. [188]. Li2S adsorption, desorption, and diffusion on the surface were the events considered in the 

model. The morphological evolution of the simulated film, Figure 28a,  presented the same features 

as those observed in experimental SEM images [189] at a surface coverage of about 30%,  Li2S 

molecules form isolated islands;  then these islands start to coalescence at a coverage of 

approximately 50%, and at coverages of 90% a continuous film is observed on the carbon substrate.   

A 3D kMC model with a Variable Step Size Method (VSSM) algorithm was applied by Thangavel et 

al. [190] to study a sulfur/carbon composite cathode. Four reaction events were contemplated. 

Sulfur solvation: 

 

𝑆8 (𝑠) → 𝑆8(𝑙)                       (53) 

 

Reduction reactions: 



 

𝑆8 (𝑙) + 4𝑒− → 2𝑆4 (𝑙)
2−                                     (54) 

 

𝑆4 (𝑙)
2− + 2𝑒− → 2𝑆2 (𝑙)

2−                       (55) 

 

Electrodeposition: 

 

2𝑆2 (𝑙)
2− + 4𝐿𝑖+ + 2𝑒− → 2𝐿𝑖2𝑆(𝑠)                    (56) 

 

Rate constants for Equations (54-56) were written in terms of the discharge current. 

 

𝛤𝑟𝑒𝑑 =
𝑖

𝑛𝑒
𝛩(𝛿𝑒)                      (57) 

 

where 𝑖 is the current from the discharge, 𝑛 is the number of electrons transferred, and 𝑒 the 

fundamental charge. 𝛩(𝛿𝑒) is the electron tunneling probability, which depends on the tunneling 

distance 𝛿𝑒  from cathode surface. 

Each solvated species was allowed to diffuse in 6 directions with the Stokes Einstein’s equation: 

 

𝛤𝑑𝑖𝑓𝑓 =
𝑘𝐵𝑇

6𝜋𝜌𝑟𝑖𝑧
2          (58) 

   

where 𝜌 is the viscosity of the solvent, 𝑟𝑖 is the radius of gyration of the solvated I particle and 𝑧 is a 

distance for particle motion. 

Figure 28b shows results obtained by Thangavel et al. work for two discharge C-rates: C/2 (solid 

lines) and 2C (dashed line). Figure 28c shows snapshots of the Li2S evolution for the data of Figure 

28b. 

 



 
Figure 28: (a) Morphology of Li2S (in red) at different precipitation stages. Reproduced with 

permission from ref [188]. Copyright 2017 American Chemical Society. (b) Total number of S8(s) 

particles, porosity and Li2S(s) evolution for the two C-rates, indicated in the Figure. (c) Li2S(s) (red 

particles) evolution on the mesoporous cathode material. Reproduced with permission from ref 

[190]. Copyright 2019 Elsevier B.V. 

 

 

 

7. State-of-the-art and perspectives within the multiscale approach 

As we have seen throughout this review, it becomes clear that the coupling between first-principles 

and atomistic kMC scales has been one of the most widely used multiscale tools over the years. The 

most popular strategy has been the use of DFT to calculate the activation energies of the different 

events, which are then used to implement kMC simulations. However, in recent years, new 



multiscale schemes have been developed and implemented to deepen the study of rechargeable 

batteries. This evolution has two possibly dissimilar but equally demanding sources: the growing 

energy industry related to LIBs and the strong influence of different length and time scales in the 

performance of these devices. 

Thorough reviews on multiscale modeling focused on LIBs have been recently given by Franco et al. 

[9,25] and Shi et al. [191]. In this section, we will briefly summarize the state-of-the-art of multiscale 

modeling involving kMC, with applications to Li-ion and Post-Li-ion batteries. We will focus on giving 

some details about the environment in which kMC may be embedded. 

Li-based cells have the particularity of being devices presenting phenomena at different length and 

time scales. Their analysis requires different considerations that range from atomistic details, where 

detailed knowledge of the interaction between the particles is necessary, up to macroscopic 

features that characterize the electrode, separator, and electrolyte materials, like porosity, 

tortuosity, conductivity, viscosity, etc. This is so because in the electrochemical environment, the 

world of solid-state physics meets with the chemistry of solutions, and although in principle it could 

be thought that only bulky Li storage is important, interfaces are ubiquitous in batteries. Different 

kinetic processes at different lengths and timescales, occurring in Li-ion batteries, are shown 

schematically in Figure 29. 

 

 
Figure 29: Different kinetic processes at different timescales. Reproduced with permission from ref 

[192]. Copyright 2018 The Electrochemical Society.  

 

Different approaches individually cover a part of the wide range of length and time scales involved 

in the battery phenomenon. When put together, they may provide a unified and complete 

interpretation and overlap between them is necessary to ensure the accuracy of their predictions 

when going up in the time and length scales. Some of the simulation tools for this purpose are first-

principles calculations at the quantum mechanical level; molecular dynamics, mean-field, Monte 

Carlo and kinetic Monte Carlo at the many-atoms scale; phase field, mesoscale kinetic Monte Carlo, 

coarse-grained molecular dynamics, and discrete element method for the mesoscale; and numerical 

resolution of partial differential equations at the largest scales.  

The most important task when designing multiscale models is to reproduce, with the lowest 

computational cost and the highest fidelity, the phenomena that dictate the evolution of the system 

under consideration. A recent feature article by Leiva [193] briefly summarizes the most popular 

techniques implemented for lithium-ion battery modeling. 

 

As discussed in section 4, Hin [141] devised a scheme to couple kMC with numerical continuum 

simulations. The model described Li+ mobility in the electrolyte with a finite differences method, 

and charge transfer and evolution of Li+ phases inside the electrode with kMC.  Numerical resolution 

of differential equations and kMC were coupled at the electrode/electrolyte interface when 



calculating the galvanostatic current.  The local concentration of Li+ was obtained using finite 

differences and rate constants for charge transfer were calculated with kMC. Similarly, in several 

articles a mesoscale implementation of kMC uses continuum equations connected with kMC events, 

as already seen in previous sections, for example, references [78,171]. Also, the works of Blanquer 

et al. [184], Thangavel et al. [190], and Yin et al. [186] provide interesting mesoscale kMC 

approaches for MSM of post-Li-ion cells. 

Within the use of refined multiscale coupling algorithms, the works of Röder et al. [154,155] 

proposed a strategy to couple kMC with numerical simulations for battery applications. As 

mentioned in Section 5.1, SEI formation was studied with a multiscale algorithm that feeds kMC 

with continuum information (for example, potential values, surface fractions), while kMC output 

provides input data for continuum models (reaction rates, average SEI thickness). The steps 

performed in the multiscale procedure are shown in Figure 30. 1) The continuum model performs a 

time-step ∆𝑡, 2) the output of this simulation is then used as kMC input. kMC ends when ∆𝑡 is 

reached. 3) Filters are used for smoothing kMC data. 4) The algorithm ends when some criteria are 

fulfilled, otherwise, smoothed kMC data is used to 5) predict the input for the continuum 

simulations in the next multiscale iteration. This procedure is also explained in reference [194]. 

General MSM strategies for coupling kMC with continuum equations for battery applications have 

been also proposed in the work of Röder et al. [195]. This work systematically compares different 

algorithms that are variations of the general idea presented previously  [154,155].  

 
Figure 30: Scheme of the multiscale algorithm implemented by [154]. Reproduced with permission 

from ref [154]. Copyright 2017 The Electrochemical Society. 

 

In a different approach, Shukla et al. [196] studied Si/C suspensions in electrolytes for slurry battery 

design, during the discharge cycle under galvanostatic conditions. The mesoscale model is shown in 

Figure 31. First, C and Si particles suspended in an electrolyte, located in a lattice next to a current 

collector, are randomly distributed Figure 31a. Silicon lithiation increases the particle volume, while 

carbon particles are considered to be conductive and connect Si isolated particles to make them 

electroactive. When Si is fully lithiated, the particle is considered inactive. The model only considers 

Brownian motion, using kMC to describe mass transport in the suspension Figure 31b.  Electroactive 

Si particles must be identified, as well as the short conductive path for electrons Figure 31c (i). The 

amount of charge transferred is estimated for each time step. The charge is accumulated and the 

potential is calculated. If the accumulated charge is enough, Si particles expand in volume. Brownian 

motion and discharge steps are alternated until a cut-off potential is reached. 

 



 
Figure 31: Multiscale Modelling (MSM) for Si lithiation during discharge in a suspension electrode 

composed of C particles (pink cubes), Si particles (blue cubes), electrolyte (white cubes), and a 

current collector (yellow). (a) initialization of the simulation box and setup of parameters, placing 

particles randomly. (b) Brownian motion simulated with kMC, steps (i-iv) are summarized in the 

figure. (c) electrochemical step and volume expansion of Si atoms; steps (i-v) are summarized in the 

figure. Reproduced with permission from ref [196]. Copyright 2017 American Chemical Society. 

 

Mace et al. [197] have developed a MSM algorithm for Li-ion battery applications. In this work, 

diffusion coefficients were calculated in nanoporous materials. Starting from the structure of the 

storage material (Figure 32a), a 3D potential energy landscape was constructed (Figure 32b). In the 

case of Li-ion batteries, a solid electrolyte energy landscape can be obtained with a “pinball” model 

[198], using molecular dynamics. This denomination, due to the popular game, is used there to 

describe Li-ions moving in a “frozen” host. Then, using this energy grid, the energy basins, and 

transition states are identified with the TuTraSt algorithm presented in the work by Mace et al, 



(Figure 32c). From these energy basins, a kMC lattice was constructed (Figure 32d) and the rate 

constants were calculated using both the energy basins and the transition state energies. Finally, 

kMC simulations were performed to calculate the diffusion coefficients. 

 

 
Figure 32: Schematic view of the lattice constructed with the TuTraSt algorithm from the energy 

landscape of a material. Reproduced with permission from ref  [197]. Copyright 2019 American 

Chemical Society. 

 

Sitapure et al. [180] combined kMC and MD simulations to study SEI formation and growth on 

metallic Li in different electrolytes. The electrolytes were simulated with MD using a reactive force 

field, and the events for diffusion and reactions to form the SEI were simulated with kMC. The results 

for this work were discussed in Section 6.1. 

 

In recent years, machine learning (ML) strategies for solving complex physics problems have 

experienced an important growth, and the implementation of MSM coupled with ML will very 

probably constitute the goal for future theoretical and experimental researchers.  

Machine-learning is a branch of Artificial Intelligence in computer science that is aimed to solve 

complex problems automatically. With this purpose, the algorithm learns patterns from a data set 

of information from both experimental and/or simulated sources, as crystal structures, energies, 

compositions, etc. The review made by Chen et al. [199] has summarized several technical issues 

and ML applications to energy materials. 

A very interesting implementation of ML for battery applications is the construction of interatomic 

potentials from molecular structures. The idea is that the ML algorithm literally learns from the 

energy values provided by a reference, like first-principles calculations results, and then can predict 

energies from structures that were not included in the “training” step. The implementation of ML 

interatomic potentials presents the advantage of requiring less computational efforts than 

traditional DFT calculations and, thus, can be applied to simulate complex structures, like 

amorphous materials.  

Inspired in the work of reference [200], Li et al. [165] implemented an ML potential to study an 

amorphous Li3PO4 electrolyte. The ML potential was used in kMC and MD simulations to study 

diffusion, finding an excellent agreement with DFT calculations. Recently, Panosetti et al. [201] have 

constructed a ML potential, using Density Functional Tight Binding (DFTB) as energy reference, to 

study Li+ intercalation in graphite. The work used this potential to obtain diffusion energy barriers, 

showing the effectiveness of the proposed methodology to couple with atomistic simulations, like 

kMC. A DFT-based ML potential was used to predict the phase diagram of amorphous LixSi [202]. 

Bártok et al. have designed an ML-based potential for Si [203]. Other works have also focused on 

the design of ML interatomic potentials [204,205]. 



An interesting application of ML for MSM applied to the battery field, is the design of cluster 

expansion potentials, as discussed in the work of Cao et al. [206]. This work also discussed the kMC 

implementation of the cluster expansion algorithm.  

The work of Bhowmik et al. [207], has recently discussed the need for strategies for coupling MSM, 

ML, and experimental data as a whole, to understand complex phenomena at battery interfaces. 

Figure 33, extracted from this work, shows a “big map” of the modelling and experimental 

techniques available to analyse LIB and post-Li-ion materials and interfaces, and the flow of 

information between them. This interconnection involves interpretation of the experimental 

information, input data for the models from these experiments, validation of the models based on 

their ability to predict the experiments, and input for the synthesis. In this map, it can be seen that 

kMC plays a central role (marked with a dashed light blue circle), being the bridge between different 

simulation scales and filling the gap between simulations and several experimental techniques. The 

authors of this work proposed the use of ML to couple and utilize simultaneously the data from 

experimental techniques and simulation methods, for the “inverse design” of battery interfaces. 

Inverse design aims to create new materials with the desired properties, from the mapping of the 

properties of known materials from their compositions, structures, etc.  

 

 
Figure 33: Different simulation scales and experimental techniques generally used to study battery 

materials and interfaces. The flux of information, like data input, validation of models and 

interpretation of the results, are represented with arrows. The central role of KMC (highlighted with 

a dashed light blue circle) in this complex scheme is evident. Reproduced with permission from ref 

[207]. Copyright 2019 Elsevier B.V. 

 

 

8. Outlook and perspectives 



The aim of the present review has been twofold: on one hand, it has been to provide to a wide 

electrochemical readership with the general foundations of kinetic Monte Carlo (kMC) (Section 2) 

and show that it is a simple methodology that can be used to bridge the gap between the atomistic 

scale and the world of partial differential equations (PDE) applied to the continuum scale. We have 

also provided starters in the field, such as advanced students, with some simple comprehensive 

criteria to test their early developments, comparing the atomistic description with results from its 

continuum counterpart (Section 2.3.)  

On the other hand, considering a more specialized (but still broad) audience, we took a tour visiting 

several aspects of Li-ion and post-lithium cells to show the power that kMC has to describe many 

features of these systems. We started discussing simulations of Li+ ion transport in bulk cathodes 

and anodes (Section 3.2 and 3.3, with a subsequent analysis of the validation of kMC by the 

experimental technique of step-isotope exchange). Then we turned to consider interfacial 

phenomena (Section 4), showing that kMC may be used to emulate the response of experimental 

systems to several techniques: potential and current steps, voltammetry, and electrochemical 

impedance spectroscopy. It was shown that other important parameters that can be used in PDE 

modeling like occupation-dependent diffusion coefficients and exchange current densities can be 

easily extracted from kMC simulations. The application of kMC to the solid electrolyte interphase 

(SEI) formation (Section 5.1) and Li+ transport in an electrolyte (Section 5.2) was also discussed. 

Simulations of post lithium systems were analyzed in Section 6, and the connection with the 

problem of Li deposition on metallic Li anodes was addressed. A final discussion was given on the 

role of kMC in the context of multiscale modeling (MSM). To support our statement at the beginning 

of this outlook, we showed how kMC may play a central role to link continuum and atomistic 

modelling, and experimental results. We think that because of its comprehensive approach, the 

present review provides a suitable complement to recent MSM cited here. 

Concerning future work in the area, we can identify some interesting aims: 

• The complicated heterogeneous microkinetics of interfacial (electrode/electrolyte) and 

interphasial (SEI / electrode) phenomena during charge/discharge can be captured with kMC. 

Simulations considering these microscopic details are needed to validate the use of the ordinary 

Butler-Volmer approach to model exchange (or eventually develop more sophisticated and accurate 

transfer functions).   

• Several uncertainties about diffusion kinetics during intercalation can be elucidated with 

kMC, allowing new models for the calculation of diffusion coefficients to be proposed. Kinetic Monte 

Carlo describes the entire complex scenario present in LIBs, naturally including details such as phase 

coexistence, finite-diffusion and different types of interactions, which are different or sometimes 

impossible to properly describe in simpler models.  

• Related to the previous point, the implementation of kMC to emulate experimental 

electrochemical techniques may provide useful information for the interpretation of these results 

and the validation of simplified models. It can indicate important physical details that may be 

missing from simpler models. Insight into nanoscale and size-dependent behavior is also 

straightforward from kMC.  

• On the experimental side, recent innovations in techniques showing the electrochemical 

behavior at the nanoscale (like computed tomography) will provide interesting feedback to the kMC 

results. 

• The first steps have been taken to couple kMC with continuum models and mesoscale 

approaches. More work in this area is needed to take advantage of kMC in MSM.   



• Many more applications of kMC to the emerging area of post-Li-ion cells are foreseen. As 

highlighted here, there are still very few applications of kMC to these systems.  

• Machine Learning and MSM strongly emerge as multidisciplinary tools that will be applied 

to LIBs and post-Li systems. kMC will play the role of a central link within this simulation chain.    
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