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ABSTRACT

We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies
than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic
models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We
simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered
to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey will be able
to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec−2, and the Euclid Deep Survey down
to 24.9 mag arcsec−2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50 % complete sample for stellar
masses above 1010.6 M� (resp. 109.6 M�) at a redshift z ∼ 0.5 for the wide (resp. deep) survey. The approach presented in this work can contribute to
improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.

Key words. Galaxies: structure – Galaxies: evolution – Cosmology: observations

1. Introduction

The Euclid Survey (Laureijs et al. 2011) will observe
15 000 deg2 (35 % of the visible sky) over six years, both in the

? e-mail: hubert.bretonniere@universite-paris-saclay.fr

near-infrared and in the optical at a spatial resolution approach-
ing that of the Hubble Space Telescope (HST). With a field of
view of 0.53 deg2, compared to that of the HST (0.003 deg2),
it will probe the sky at a rate around 175 times faster. It will
therefore only take around five hours to observe an area equiv-
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alent to the COSMOS field (Scoville et al. 2007), which is still
the largest contiguous area ever observed by HST and needed
around 40 days of observations. In addition to the wide survey
at an expected nominal depth of 24.5 mag at 10σ for extended
sources in the visible (Cropper et al. 2016), Euclid will also ob-
serve 40 deg2 about two magnitudes deeper (Euclid Deep Sur-
vey). The limiting surface brightness for the Euclid Wide Sur-
vey in the visible will be 29.8 mag arcsec−2. We refer the reader
to Scaramella et al. (in prep.) for precise information about the
Euclid surveys and their depths.

Euclid will produce an unprecedented amount of high spa-
tial resolution images that will have a lasting legacy value in a
variety of scientific areas, including cosmology and galaxy for-
mation. In order to ensure that the scientific objectives are met,
realistic simulations are needed for testing and calibrating al-
gorithms. A standard approach to simulating galaxy images is
through analytic Sérsic models (Sérsic 1963). It is well known
that galaxies can be modelled, to a first approximation, with two
Sérsic functions, one for the bulge component and the other for
the disk. Sérsic models have the advantage of being fully de-
scribed by three parameters: the Sérsic index, which controls the
steepness of the profile; the effective radius, which measures a
characteristic size for the galaxy; and the axis ratio, which re-
flects the overall shape of the galaxy. Many previous investiga-
tions have shown that Sérsic models reproduce fairly well the
average surface brightness distribution of galaxies (e.g. Peng
et al. 2002). However, because of their simplicity, they are not
well suited to describe complex galactic structure such as spiral
arms, bars, clumps, or more generally asymmetric features. This
is important for the Euclid mission, however, since the spatial
resolution of the visible detector will permit a significant num-
ber of galaxies to be resolved. Complex galaxy morphologies
can have an impact in the core science of the mission since they
can affect the measurement of shear for weak lensing analysis.
They are also central to a variety of scientific cases in the field of
galaxy formation. The Euclid data will be particularly important
to constrain the processes that shape the structures of galaxies
and quench star formation, and will allow us to study the rela-
tions between detailed morphology, environment, active galactic
nuclei activity, and stellar mass, among others (e.g. Lotz et al.
2008; van der Wel et al. 2014; Huertas-Company et al. 2013;
Chen et al. 2020; Kocevski et al. 2012; Ferreira et al. 2020; Con-
selice 2014). Therefore, in order to quantify the possible effects
of resolved structures on the image processing pipeline algo-
rithms and to best prepare the scientific analysis of the data, it
is important to produce simulations that include realistic galaxy
morphologies beyond Sérsic models.

In this work we investigate a novel approach based on gener-
ative models to simulate galaxies for the Euclid Survey. We first
show that our method can generate realistic Euclid galaxy fields
with a level of control of the global shapes that is similar to that
of analytic profiles, but with the addition of complex morpholo-
gies. We then use the generated images to forecast the number
of galaxies for which Euclid will resolve the internal structure.

The paper proceeds as follows. In Sect. 2 we introduce the
data sets used to analyse Euclid morphological capacities and for
training our models. In Sect. 3 we describe the deep generative
model used in this work and its training procedure. In Sect. 4
we present our results for the generation of realistic galaxies.
In Sect. 5 we use the simulated galaxies to forecast the Euclid
morphological limits. We discuss the results of the paper in Sect.
6, and conclude in Sect. 7.

2. Data

We use two data sets for this work: the Euclid Flagship galaxy
catalogue (Castander et al. in prep.), hereafter the Euclid Flag-
ship catalogue, and the COSMOS survey (Scoville et al. 2007).
We use the first to simulate best the expected Euclid data as the
goal of the paper is to forecast Euclid capacities. The second is
used to train our deep learning model so that we lean how to
simulate realistic galaxies.

2.1. Target set: Euclid Flagship catalogue

To quantify the performance of our model in Euclid-like condi-
tions and establish morphological forecasts for the mission, we
used the Euclid Flagship catalogue. We accessed the catalogue
through CosmoHub, a platform that allows the management and
exploration of very large catalogues, best described in Tallada
et al. (2020) and Carretero et al. (2017).

The Flagship catalogue was built using a semi-empirical halo
occupation distribution (HOD) model and was intended to re-
produce the global photometric and morphological properties of
galaxies as well as the clustering. We refer the reader to Merson
et al. (2013) for more details. In order to produce a catalogue
close to the real Universe, the morphological parameters, which
is what we mainly use in this work, are calibrated on the CAN-
DELS survey (Dimauro et al. 2018) and 3D model fitting on
the GOODS fields (Giavalisco et al. 2004) by Welikala et al. (in
prep.). Details about the catalogue production will be presented
in Castander et al. (in prep.). Each simulated galaxy in the cata-
logue is made of two components, a bulge and a disk. The bulge
component is modelled as a Sérsic profile with an index varying
from n = 0.3 to n = 6. The disk component is rendered using an
exponential profile (n = 1). The version of the Euclid Flagship
catalogue used in this work contains 710 million galaxies dis-
tributed over 1200 deg2, from which we took a random subsam-
ple of 44 million galaxies. The distributions of the main morpho-
logical parameters used in this work are presented in Fig. 1: the
half-light radius re, the axis ratio q, and the Sérsic index n. We
also show the apparent magnitudes of the galaxies as measured
by VIS, which is the visible imager of Euclid (Cropper et al. in
prep.), as well as the redshift and the stellar mass distributions,
which we use in Sect. 5 to perform our forecasts. Finally, we
show the bulge-to-disk component flux fraction (hereafter bulge
fraction).

We note here that the Euclid Flagship catalogue is a pure tab-
ular catalogue. The procedure currently used within the Euclid
Consortium to generate the galaxies is described in Sect. 4.1.1,
when we compare our galaxies to the current analytic ones. Our
work in this study is to use this catalogue of double Sérsic profile
parameters to generate the 2D images of the internally structured
galaxies.

2.2. Training set: COSMOS

The training set is based on the COSMOS survey. COSMOS is
a survey of a 2 deg2 area with the Hubble Space Telescope Ad-
vanced Camera for Surveys (ACS) Wide Field Channel using
the F814W filter. The final drizzle pixel scale is of 0 .′′03 pixel−1

and the limiting point source depth at 5σ is 27.2 mag. The cen-
tral wavelength of the F814W filter roughly corresponds to that
of the VIS filter (550 − 900 nm) and the spatial resolution and
depth are better than those expected from the Euclid Survey.
Therefore, the data set is well suited and is expected to be close
enough to the Euclid data, allowing us to generate mock Euclid
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fields without being affected by the dependence of morphology
on wavelength and without introducing undesired effects owing
to extrapolations.

Our selected sample is based on the catalogue by Mandel-
baum et al. (2012), which has a magnitude limit of 25.2 and
contains 87 630 objects. The catalogue provides, for each galaxy,
the best-fit parameters of a one-component and a two-component
Sérsic fit by Leauthaud et al. (2007), updated in 2009. In this
work, we use only the one-component fitting information. In
Fig. 1 we show the distribution of the COSMOS morphologi-
cal parameters of galaxies compared to those in the Euclid Flag-
ship catalogue. Although the distributions are similar, there are
some noticeable differences which might cause a problem. The
most obvious one is the magnitude. Since COSMOS is magni-
tude limited, the sample does not contain as many faint galaxies
as the simulation. The half-light radii of the Euclid Flagship cat-
alogue bulge component also extend to smaller values than those
in the observations. They are also generally rounder than the ob-
served ones, but the values of axis-ratios span a similar range.
The Sérsic index distributions are also different because, as ex-
plained previously, the Euclid Flagship disk component always
has a Sérsic index of 1. In addition, in the COSMOS catalogue
the Sérsic indices of the bulge component are clipped at n = 6
to be compatible with GalSim , which creates a noticeable spike
at the edge of the distribution. The mass fraction and redshift
is derived by Laigle et al. (2016). As we show in the follow-
ing sections, these differences, although present, do not have a
significant effect on our methodology. The most important de-
sirable property is that simulated galaxies cover a similar range
to observations. That way, the neural network used in our model
is not compelled to extrapolate. This is essentially the case in
the distributions shown in Fig. 1, except for very small bulge
components and for very faint galaxies, both of which are not
expected to present significant features. We address these points
in the following sections.

In addition to the catalogue, the authors also provide 128 ×
128 pixel stamps centred on each galaxy where neighbouring
galaxies have been removed. This is important for training our
model on a unique galaxy per stamp. Therefore, the impact of
galaxy blending in the morphology forecasts will not be studied
in this work. In addition, the size of the stamps inherently limits
the size of galaxies that we will be able to generate. The radius of
the stamp being 64 pixels, every galaxy with a half-light radius
larger than ∼ 2′′ will be cut by the limits of the stamp. For this
reason, in this work we are limited to, and thus only consider,
galaxies smaller than 2′′. Nevertheless, galaxies with a radius
bigger than 2′′ represent only 0.6 % of the Euclid Flagship cata-
logue, and thus have no major impact on our results.

The COSMOS images are pre-processed before they are
used for training, as illustrated in Fig. 2. We first degrade the
spatial sampling from 0 .′′03 pixel−1 to 0 .′′1 pixel−1, which corre-
sponds to the pixel scale of VIS, and then pad the image with
the appropriate noise. We use the GalSim (Rowe et al. 2015)
method described in Sect. 5 of Mandelbaum et al. (2012). Since
the pixel scale increases, the final stamp needs to be padded with
noise to keep the size of 128 × 128 pixel. The method does this
automatically by adding a noise realisation with the same char-
acteristics as in the original stamps, which also takes into ac-
count the different correlations in the original noise. Doing so,
the resulting images are still at the size of the COSMOS stamps.
Since the pixel size is increased, we can crop up to a factor
of three without losing spatial covering. However, because our
model is more efficient with images that have a number of pixels
which is a power of two (for parity reasons between the compres-

sion and decompression steps of our deep learning network), we
crop our image by only a factor of two, resulting in images of
64 × 64 pixel. The purpose of this cropping is to accelerate the
training. We finally rotate the stamps so that the galaxy semi-
major axis is aligned with the x-axis of the image. With this con-
figuration we ensure that our model will learn to produce only
‘horizontal’ galaxies and therefore position angles can be man-
ually added in post-processing. This has the additional advan-
tage of reducing the complexity and hence allowing the neural
network to focus the attention on the more important physical
properties of the object. Figure 2 illustrates these pre-processing
steps used for the training of our model, and the final galaxy as it
would be seen by VIS. Because galaxies produced by our model
will be noise-free and not convolved by the PSF, we do not need
to change the noise level and the PSF for the training. Thus, the
inputs of our model have the noise characteristics and the PSF of
the HST images. These two transformations, to go from HST to
Euclid data will be added a posteriori. More information about
those transformations are described Sects. 4.1.1 and 4.2.2.

We use the COSMOS catalogue and images only for the
training of our model. To test the performance of our model
(Sect. 4) and the forecasts (Sect. 5), we only use the Euclid Flag-
ship catalogue described in the previous section.

3. Euclid emulator with generative models

In this section we describe the methodology for emulating Euclid
galaxies using the COSMOS sample described in the previous
section.

The generation of synthetic data (images, language, videos)
has significantly improved in recent years thanks to new deep
learning-based generative models. Generative models are a type
of unsupervised machine learning algorithms that are trained to
generate unseen data. There are several architectures; variational
autoencoders (VAE: Kingma & Welling 2013), generative adver-
sarial networks (GANs: Goodfellow et al. 2014; Arjovsky et al.
2017), and autoregressive models (van den Oord et al. 2016) are
the main ones. They all learn a probability distribution function
of the pixel distribution, which can be sampled to generate new
data. Generative models have already been used in astrophysics
for a variety of different purposes. For example, with VAEs ra-
dio galaxies can be simulated (Bastien et al. 2021) or images
of overlapping galaxies can be reconstructed separately (Arcelin
et al. 2021). Using GANs, Yi et al. (2020) have simulated miss-
ing data from the cosmological microwave background, while
Villaescusa-Navarro et al. (2020) have simulated gas density
maps. Storey-Fisher et al. (2020) and Margalef-Bentabol et al.
(2020) have used GANs to detect outliers in imaging surveys.
Autoregressive flows can be used to compare simulations and
observations (e.g. Zanisi et al. 2021).

In this work we use a VAE. Variational autoencoders esti-
mate an explicit latent space, which is an important advantage for
simulating galaxies with known parameters. The compression–
decompression architecture inherent to the VAEs along with the
Kullback–Leibler term in the loss (see Sect. 3.1.1 Eq. 3) force
the latent representation to be meaningful and regular. In addi-
tion, VAEs are known to be more stable during training, and less
subject to mode collapse (lack of diversity in the generation) than
GANs.

3.1. Model

Our model for generating galaxies is based on the work by
Lanusse et al. (2020) (hereafter L2020) who describe in detail

Article number, page 3 of 23



A&A proofs: manuscript no. output

Fig. 1: Distributions of the main structural parameters in the data
sets used in this work, along with the redshift and the stellar
mass used for our forecasts. We also show the bulge to disk flux
fraction (bulge fraction) for the Flagship. The y axis is the nor-
malised density counts such that the area over the curve is equal
to one. For the magnitude, the COSMOS histogram shows the
F814W magnitude and the Flagship one corresponds to the Eu-
clid VIS magnitude. The range of the training set (COSMOS)
covers most of the Euclid data.

the architecture and specifics of the training procedure. We also
illustrate the architecture of the two components of our model in
Figs. B.1 and B.2.

The goal of our work is to simulate and test galaxies with
more realistic shapes than the classical analytic profiles while
keeping a control on the shape parameters, such as axis ratios,
effective radii, and fluxes. To this end, our model is made of
two distinct parts: a variational autoencoder (Kingma & Welling
2013), which learns how to simulate real galaxies from obser-

Fig. 2: Illustration of our pre-processing pipeline on a random
COSMOS image, and the difference between HST and Euclid.
The original image (leftmost) is rotated to be aligned with the
x-axis of the stamp in the second image from the left, then re-
scaled to the VIS resolution and cropped (third image from the
left). This is the data used to train our model. In the rightmost
image the galaxy was deconvolved by the HST PSF and re-
convolved with the Euclid PSF. This final step is shown for il-
lustrative purposes, but is not carried out in the pre-processing
of the training sample.

vations, and a normalising flow (Jimenez Rezende & Mohamed
2015) in charge of mapping catalogue parameters to the VAE
latent space. Both parts are merged together after training, re-
sulting in an architecture called a flow variational autoencoder
(FVAE). We describe in the following the global properties of
these two models.

3.1.1. Galaxy generation with a variational autoencoder

A VAE is a deep generative model which is trained to generate
new data (galaxies) by learning a probability distribution from
the training data. To this end, the VAE first compresses the input
image x into a low-dimensional space, also called latent space,
which contains a compact and meaningful representation of the
input data. Similar objects are compressed into neighbouring
vectors. This is achieved with a convolutional neural network
called the encoder, which can be represented as a non-linear
function EΘ, Θ being its trainable parameters. While a classi-
cal autoencoder compresses the input image only into a vector
z, a VAE replaces that low-dimensional vector with a probabil-
ity distribution function (PDF) pΘ(z | x). In our case, pΘ(z | x) is
set to be a multivariate Gaussian distribution. This is equivalent
to choosing the prior for the distribution of points in the latent
space to be Gaussian. Similar galaxies will be encoded into sim-
ilar regions of the distribution. Having a distribution instead of a
point estimate makes the latent space continuous, allowing one
to sample new regions from it and to produce new galaxies aris-
ing from the same probability density function as the data.

A sample z is then drawn from the distribution pΘ. This con-
stitutes the input of a second convolutional neural network called
the decoder DΘ′ , which typically has an architecture symmetric
to that of the encoder. The decoder decompresses the latent rep-
resentation z using transposed convolutions to produce a new im-
age x̂, DΘ′ (z) = x̂. The output of the decoder can be seen as the
probability that the input data x effectively come from the latent
space vector z (i.e. DΘ′ (z) = pΘ′ (x | z)). During training, the goal
is to reconstruct x with the best possible accuracy (i.e. x̂ = x) en-
suring that the distribution encoded within the latent space is a
good representation of the data. The amount of information loss
in the compression–decompression is the first term of the neu-
ral network loss function L, which is used to adapt Θ and Θ′
through a gradient descent minimisation. From a statistical point
of view, this accuracy is defined as the negative log-likelihood of
x given z, which can be written using the expectation value:

L = −E z∼pΘ(z | x)
[
log pΘ′ (x | z)

]
. (1)
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In practice, we can simply see the reconstruction accuracy as
the mean square error between the reconstructed image and the
input:

L = ‖x − x̂‖2. (2)

In addition, in order to regularise pΘ, a second term is added to
penalise the encoder when it produces distributions too far from
a normal Gaussian distribution N(0, 1). This difference between
pΘ(z | x) andN(0, 1) is estimated using the Kullback–Leibler di-
vergence (Kullback & Leibler 1951):

KL = E[log pΘ(z | x) − logN(0, 1)] . (3)

The final loss function for the VAE reads

L = −E z∼pΘ′ (z | x)
[
log pΘ′ (x | z)

]
+

βE[log pΘ(z | x) − logN(0, 1)] , (4)

where β allows us to vary the importance of the terms during
training.

Lanusse et al. also introduce two additional features in order
to produce images deconvolved by the PSF and without noise. To
learn noise-free galaxies, a different version of the log-likelihood
for the reconstruction term of the loss function is used. Instead
of applying it directly to the pixels, it is done in Fourier space
in order to weight the reconstruction error less on the high fre-
quencies (noisy regions). The Fourier transform of the input and
of the output is computed, and divided by the power spectrum
of the noise. By dividing the Fourier transform of the image by
the power spectrum of the noise, a smaller weight is given to the
pixels with a high frequency. It ensures that the decoder learns
that producing images without noise is not an error. In order to
produce deconvolved images, the last convolutional layer of the
decoder is not trainable and is set to be equal to the PSF. That
way, the model produces an image that looks like the input image
before being convolved by the PSF in the second last layer.

3.1.2. Sample of the shape parameters with the regressive
flow

The VAE described in the previous subsection can generate real-
istic galaxies by sampling from the encoded latent space. How-
ever, it cannot do so for a given size or ellipticity because it lacks
the information about the mapping between the structural param-
eter space of the galaxy and the latent space.

To learn that mapping, L2020 propose a conditional nor-
malising flow, based on autoregressive algorithms (MAF: Papa-
makarios et al. 2017, MADE: Germain et al. 2015). A normalis-
ing flow is a bijector gΘ, which transforms a distribution q into
another distribution p with an invertible transformation g. We
use it here to learn the mapping between a latent space with a
fixed distribution q, referred to as the flow latent space, and the
distribution p inside the VAE latent space. This mapping can be
made conditional to some input parameters y such as galaxy size
or ellipticity. In other words, gΘ is a function of both the latent
space vector z and the physical parameters of the galaxy y.

If the mapping is well learnt, when we sample a vector zflow
from the flow latent space distribution q and pass it through gΘ
along with a vector of physical parameter y, it will output a vec-
tor ẑ in the VAE latent space

ẑ = gΘ(zflow, y) , (5)

such that ẑ is very similar to the vector z, which would have been
encoded by the VAE’s encoder from a galaxy x with physical
parameters y

ẑ ≈ EΘ(xy) . (6)

With this mapping, we now know where to sample into the VAE
latent space in order to decode a galaxy with precise physical
parameters: to simulate a galaxy, we need to map zflow and y
to the VAE latent space, and then decode the vector with the
decoder to produce an image of a galaxy that has the physical
properties given by y.

In practice, the training procedure is done the other way
around: we learn how to map a vector z = EΘ(x) into a vector
zflow of the flow latent space. Because gΘ is a bijector, learning
the mapping from the flow latent space to the VAE latent space
or the other way around is the same task, but doing it in this di-
rection is much easier because of the loss. The loss we use is
the negative log likelihood of z under the distribution of the flow
latent space q

Lflow = Ez∼p
[
− log p(z)

]
= Ez∼p

[
− log q

(
g−1(z)

)
+ log det Jg−1 (z)

]
, (7)

= Ezflow∼q

[
− log q (zflow) + log det Jg(zflow)

]
, (8)

where det Jg, the determinant Jacobian of g, comes from the
transformation between the two distributions.

Choosing a standard Gaussian distribution for q, we ensure
that this loss is tractable (i.e. easy to compute). By construction,
the Jacobian of g is also easy to compute (Kobyzev et al. 2019).
Thus, during training, every galaxy x is encoded by the previ-
ously trained encoder E into a vector z drawn from the encoded
distribution pΘ(z | x). This vector z is transformed by the flow’s
bijector g−1

Θ
into a vector zflow conditioned by the physical pa-

rameters of the galaxy y

zflow = g−1
Θ (z, y) , (9)

which is used to compute the loss and optimise the weights of g.
To implement the flow, we use the probabilistic library of

TensorFlow, TensorFlow probability. With this library it
becomes straightforward to implement the bijector g, with a
chain of masked autoregressive layers, described in Germain
et al. (2015). The transformations of the distribution made by
the successive layers (shifts of the mean and stretch of the dis-
persion) are conditioned to the physical parameters of the flow’s
input. Then, thanks to the Distribution object of the library,
with only one command it is possible to sample the transformed
distribution (e.g. to get zflow), but also to take the log likelihood
for the computation of the loss.

3.1.3. Final model

The final model (schematic representation in Fig. 3) combines
the decoder part of the VAE with the regressive flow described
in the previous subsection. Therefore, the input of the final model
is a galaxy catalogue. The flow samples a Gaussian noise vector,
which is concatenated with the catalogue parameters to produce
a vector in the latent space. The vector is then decoded by the
generator of the VAE, producing the image of a new galaxy with
the corresponding input parameters from the catalogue. The use
of a continuous distribution enables the generation of new galax-
ies that resemble real ones, but have never been observed before.
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Fig. 3: Schematic representation of the FVAE architecture used
to simulate a galaxy with structural parameters y. A random
noise G is passed through a regressive flow conditioned to the
input galaxy parameters y. The flow outputs a latent space vec-
tor ẑ, which is decoded by the VAE in order to produce a galaxy
corresponding to the input shape parameters.

3.2. Training procedure

The main goal of this work is to produce Euclid-like realistic
galaxies. We use pre-processed COSMOS galaxies (described in
Sect. 2) to train the VAE. We train it for 250 000 steps, which
means 3900 epochs (one epoch is when the whole training set
has been seen by the network) with a batch size of 64 (the
batch size is the number of images with which we perform each
gradient descent). The latent space has a dimensionality of 32.
The learning rate has a first phase where it linearly increases,
followed by a square root decay. We use a warm-up phase of
30 epochs where we train only the generative part (β = 0 in
Eq. 4), and then linearly increase it to have the same weight
between the generative term of the loss function and the KL
(β = 1). Training and validation losses converge long before the
end of training. However, even after the convergence, we still see
a significant improvement in the generated images. The model
first learns the global shape of the galaxies and a Gaussian pos-
terior in the latent space, making the objective function Eq. (4)
already very low. The learning of more complex structures inside
the galaxies does not have a great impact on the loss (most of the
galaxies do not present major structures and the pixels belonging
to the structures represent a small fraction of the image), which
can explain why we need to train longer than the convergence
to learn the complex distribution of the training set. We show in
the following sections that we chose an appropriate number of
epochs to produce complex galaxies without overfitting. We did
not try to optimise this number of epochs, the balance between
results and training time being sufficient for our study. Neverthe-
less, the large number of epochs is not unusual, and generative
models such as VAEs usually require a large number of epochs
to converge.

In a second step, we tackle the regressive flow. We condition
the model with three parameters: Sérsic index n, half-light radius
re, and axis ratio q. We trained it for 470 epochs, ensuring that
both our training and validation loss had converged. We use a
batch size of 128, and the same learning rate strategy as for the
VAE. By design, the dimensionality of the flow latent space is
the same as that of the VAE (i.e. 32 in this work).

4. Emulation of VIS images

In this section we analyse the properties of simulated galaxies
and assess the accuracy of the emulation. Our emulator is ex-
pected to fulfil two main goals: realistic galaxies and a control
on the global shape parameters.

4.1. Simulation of composite galaxies

4.1.1. Simulations with pure Sérsic profiles

The Euclid Consortium currently creates analytic galaxies with
the GalSim software (Rowe et al. 2015). Each galaxy is created
as the sum of two components, the bulge and the disk. The disk
component is created with an exponential profile (Sérsic profile
with n = 1). The bulge component is a 3D Sérsic profile, which is
projected to produce the expected ellipticity. The two profiles are
created with the expected bulge-to-disk flux fraction, and then
summed pixel-wise. The flux is then rescaled to match the total
galaxy magnitude. The image is finally convolved with the VIS
PSF, which has a full width at half maximum (FWHM) of 0 .′′17
at 800 nm (Laureijs 2017). This PSF takes into account all the
optical and instrumental effects, and thus goes beyond a simple
Gaussian. It is the result of the detailed analysis of the VIS in-
strument performed by the Euclid Consortium. If necessary, we
also rotate the galaxy to its corresponding position angle in the
sky. At this stage, the galaxies are noise-free. The method used
to add noise is explained in Sect. 4.2.2.

4.1.2. Simulations with the FVAE

Once trained, our model takes as input the three shape parame-
ters of each component of the galaxy from the Euclid Flagship
catalogue (half-light radius re, Sérsic index n, and axis ratio q)
and generates a galaxy with the expected structure and realistic
morphology. As explained above, galaxies in the Flagship cata-
logue are described by two components, a bulge and a disk. To
simulate exactly the same field and compare to the current Eu-
clid simulations, we also need to produce the two components
separately. This way, we can reproduce the same method as the
current Euclid procedure explained in the previous subsection.
Each component (bulge and disk) is simulated separately by our
model, and then added with the appropriate bulge-to-disk flux
ratio. We then use GalSim to scale the flux, to convolve by the
PSF, and to rotate the galaxy to the appropriate position angle.
Since the flux is calibrated in the post-processing step, we can
associate faint magnitudes with our emulation even if not prop-
erly covered by our training set, as shown in Sect. 2. For the
other parameters, as the distributions of the bulges and the disks
in the Flagship are covered by the training set, simulating the
two components separately should not be an issue.

4.2. Qualitative inspection

4.2.1. Individual noise-free galaxy simulation

We first qualitatively evaluate our simulations. Figure 4 shows
eight galaxies with large radius, prone to presenting interest-
ing morphologies. Compared to pure Sérsic profile simulations,
the generated galaxies are more complex and asymmetric (see
Fig. A.2 for some examples of pure Sérsic galaxies). We are able
to generate the commonly observed features such as rings, spiral
arms, irregularities, and clumps with different inclination angles.
This visual inspection is a first indication that we are able to gen-
erate complex behaviour and mimic surface brightness profiles
or features superior to those of Sérsic profile simulations.

The second key element of our emulator is the ability to
control the structural parameters. In order to illustrate this, we
show in Figs. 5 and 6 the impact of varying parameters on the
generated galaxies. Figure 5 shows a series of generated galax-
ies with a constant magnitude set to 24, a fixed Sérsic index of
1.5 and a varying axis-ratio q and half-light radius re. Figure 6
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Fig. 4: Example of galaxies simulated by the FVAE presenting
obvious complexity and features. The scale is linear.

Fig. 5: Galaxies simulated by our model from a catalogue with
increasing axis ratios (q) and effective radius (re). The magni-
tude and the Sérsic index are fixed to 24 and 1, respectively, for
all galaxies. The images are all 64 × 64 pixel, the natural out-
put of our model. Each row shows galaxies with constant re, and
linearly increasing q from 0.1 to 0.95. Each column shows galax-
ies with fixed q, and linearly increasing re from 0 .′′1 to 1′′. The
galaxies are clearly rounder and bigger from left to right and top
to bottom.

shows a grid of galaxies with fixed re and magnitude but varying
axis-ratio and Sérsic index. We can clearly observe the expected
trends. Galaxies become rounder as we move from left to right,
and bigger from top to bottom in Fig 5. In Fig. 6 galaxies be-
come more concentrated as the Sérsic index increases from left
to right. The images also show several examples presenting non-
trivial symmetric shapes. An important limitation to note is that
our model is fixed to produce images of size 64 × 64 pixel. Very
large galaxies might therefore be truncated.

Fig. 6: Galaxies simulated by our model from a catalogue with
increasing axis ratios (q) and Sérsic indices (n). The magnitude
and the effective radius are fixed to 24 and 0 .′′7, respectively, for
all galaxies. Each row shows galaxies with constant q, and lin-
early increasing n from 1 to 4. Each column shows galaxies with
fixed n, and linearly increasing q from 0.1 to 0.95. The galaxies
clearly show a steeper profile and are rounder from left to right
and top to bottom, respectively.

4.2.2. Large field simulation

In addition to individual stamps, we also generate two large
fields of 0.4 deg2 at the depth of the Euclid Wide and Deep Sur-
veys (see a portion of those fields in Fig. 7). We take a subsample
of the Euclid Flagship catalogue and generate every galaxy with-
out noise and deconvolved by the PSF. We then convolve the
stamp by a unique VIS PSF (no PSF variations are modelled).
All the stamps are then placed in the large field into their cor-
responding positions according to the catalogue. We finally add
the expected noise level of the Euclid Wide and Deep Surveys
in two different realisations of the same field. The background
noise (coming mostly from background sources and from the
zodiacal light) is simulated by Gaussian noise with the expected
standard deviation for the VIS camera (Cropper et al. in prep.;
Scaramella et al. in prep.; priv. comm.). The photon noise is sim-
ulated with a Poisson distribution added to every pixel, consid-
ering the cumulative exposure times presented by Laureijs et al.
(2011).

More information will be given about the noise realisations
in Merlin et al. (in prep.). We do not simulate any instrumental
effects such as cosmic rays, ghosts, charge transfer inefficiency,
or read-out noise, considering thus an ideal case of a VIS image
processing pipeline. In Fig. 7 we show a random region of the
large fields, and highlight some interesting galaxies.

4.3. Quantification of structural properties

This visual assessment of the previous subsection confirms that
our model behaves as expected both in generating complex
shapes and controlling structural parameters. However, in order
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Fig. 7: Illustration of a large field simulation produced by our FVAE. The top and bottom panels show the same field simulated at
the depths of the Euclid Deep and Wide Surveys, respectively. The stamps show zoomed-in regions where some galaxies present
morphological diversity. In the large field images, we use the IRAF ‘zscale’ that stretches and clips the low and high values to better
highlight the differences between the wide and deep fields. The stamps are in linear scale, which better emphasises the structures.
With the stretching induced by the zscale, all the structures disappear and only the global shape is still recognisable. Finally, the
apparent different level of background between the stamps and the global image is also due to the different brightness scale (different
maximum and minimum values in each of them).
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for the simulation to be useful to test algorithms, it is required
that the control on the structural parameters is comparable to
what is achieved with analytic profiles.

4.3.1. Surface brightness profiles

We compare the radial profiles of generated galaxies with the
profiles of analytic galaxies with the same global properties. Fig-
ure 8 compares and shows the radial profile for three bulge com-
ponents, disk components, and the combination of the two com-
ponents, simulated with our model and with GalSim . All the
images are convolved by the VIS PSF but are without noise. We
show both the profile along the major axis and the azimuthally
averaged profile. The former is useful to identify deviations from
a smooth profile, and thus highlights where the irregularities take
place. The latter, computed by averaging the luminosity at a
given radius r from the galaxy centre in all directions, allows
us to check if the average profile behaves as expected compared
to the Sérsic model. Overall, the figure shows the expected be-
haviour. Some profiles deviate significantly from a Sérsic profile
along the major axis. An example for this is the disk component
shown in the bottom row of Fig. 8, where we can see a spiral arm
feature that creates variation in the radial light profile. However,
the average profiles tend to follow the analytic expectations since
irregularities are averaged out. Therefore, the generated galax-
ies seem to present the desired behaviour (i.e. complex surface
brightness distributions), which on average match a Sérsic pro-
file. An additional interesting result seen in Fig. 8 is that the
combination of the two components also behaves very similarly
when compared to a double-component analytic galaxy (see the
composite galaxy column).

4.3.2. Surface brightness fitting

We now fit Sérsic models to quantify how accurately the shape
parameters are recovered in a statistical sense. For this pur-
pose we use the Galapagos package (Barden et al. 2012;
Häußler et al. 2013). Galapagos is a high-level wrapper for
SExtractor (Bertin & Arnouts 1996) and Galfit (Peng et al.
2002) to automatically fit large samples of galaxies. Because
two-component Sérsic fits are generally less stable than one-
component fits (e.g. Simard et al. 2011, Bernardi et al. 2014,
Dimauro et al. 2018) we decide to produce the two components
separately in two distinct realisation of the field. Thus, we have
two different fields, one with only the bulge component and one
with only the disk component. We then fit each field with the
one-component Sérsic model. This allows us to test the relia-
bility of the fits while reducing the degeneracies. Since our ob-
jective is to compare our simulation to an analytic one, a single
Sérsic fit is enough for our purpose.

Using the Euclid Flagship catalogue, we generate with our
model a galaxy field of 0.4 deg2 (i.e. around 2500 galaxies with
magnitude lower than 25), following the same procedure as in
Sect. 4.2.2. We then use the same procedure and subsample to
produce the same field with the pure Sérsic profiles. The two
fields are therefore identical in terms of number of galaxies and
positions, and contain galaxies with the same structural proper-
ties.

Figures 9 and 10 show the fitting results concerning bulge
and disk components, respectively, for five parameters: half-light
radius re, axis ratio q, Sérsic index n, centroid position X, and to-
tal magnitude. We recall that the goal of this comparison is not
to quantify the absolute accuracy of the fits, but to compare the

relative behaviour of our simulations with a baseline. A future
publication in preparation will quantify in detail the accuracy of
structural parameters in both the Euclid Wide and Deep Surveys.
Overall, the structural parameters are recovered with similar dis-
persion for the FVAE and the analytic simulation. This is a first
quantitative confirmation of the visual inspection of the previous
sections. Our model is able to produce realistic galaxy images
while preserving information on the parametric structure. The
global distributions of the predicted parameters are also very
similar, which confirms that our model has correctly learnt the
entire distribution of the training set, and is thus able to span the
entire parameter space of the Euclid Flagship catalogue.

Looking in more detail, the FVAE results present a slightly
larger dispersion in all recovered parameters. This is expected
since the analytic simulations represent a perfect match for the
model that is fitted. This is not the case for the FVAE simula-
tions, which present more complex profiles. We give the statis-
tical details of the fitting distribution errors (median, first, and
third quartile) in Table 1, corresponding to the distributions in
the insets in each panel of Figs. 9 and 10.

The systematic offsets might be more problematic. The fig-
ure shows that the systematic shifts for the bulge components are
very similar for the analytic and the FVAE fields which means
that using a FVAE does not introduce any noticeable system-
atic effects. The only parameter that presents a small bias to-
wards larger values is the axis ratio q. This might be because of
a lack of very elongated bulges in the training data set. The disk
components present a slightly higher systematic bias though, as
shown in Fig. 10. Indeed, FVAE galaxies tend to be systemat-
ically larger and rounder than their analytical counterparts and
show an almost constant offset of 0.15 on the Sérsic index. It
is not obvious whether these offsets are a consequence of the
simulation or whether it is related to the fitting procedure itself.
A possible explanation for the larger offsets is that disk compo-
nents are generally more extended and with flatter profiles than
bulge components, thus they also present more complexity and
structure. Alternatively, it can also be related to the simulation
itself. Our training set is based on a single-component fit with
a continuous distribution of the Sérsic index. However, the Sér-
sic index of the disk component in the Euclid Flagship catalogue
is fixed to n = 1. This means that there is only a small number
of examples in the training set with exactly n = 1, which can af-
fect the quality of the generation. Finally, we can see that for the
magnitude, the fit of our galaxies also differs very little from the
Sérsic fits, even if the flux is not something that is parametrised
in our model, but re-scaled afterwards with Galsim. This occurs
because the recovering of the flux in a large field, with blended
galaxies for example, is not completely trivial.

5. Forecasts for galaxy morphology with Euclid

The previous sections have shown that our proposed framework
successfully generates galaxies with realistic and resolved struc-
ture. Our simulations can therefore be used to establish some
forecasts on the number of galaxies for which Euclid will be
able to resolve the internal structure beyond a Sérsic profile.

5.1. Identifying galaxies with resolved structure

Our goal is to quantify the fraction of galaxies that present sig-
nificant structures that deviate from a pure analytic profile. For
that purpose we have designed a method to distinguish galaxies
with internal structure from smooth objects. We assume that any
type of complexity in the galaxy surface brightness distribution,
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Fig. 8: Examples of three radial profiles of galaxies generated with GalSim and our model. Each group of two columns represents
the different components of the galaxy: bulge, disk, and composite (bulge plus disk) from left to right. Within each group the top
row shows the images by our model (left) and by the Sérsic model (right). The bottom line represents the light radial profiles, along
the major axis (left) and the average profile (right). The orange lines correspond to our model, and blue to the Sérsic profile. The
dashed grey line represents the Euclid Wide Survey noise level. Our simulations show more diverse profiles, but the average closely
matches the analytic expectations. The irregularities at very low S/N on the FVAE profiles are a sign that the model does not produce
perfectly noise-free galaxies.

hereafter called structure, will result in a deviation from an an-
alytical profile. This is particularly clear in the disk component
shown in Fig. 8. We therefore establish a criterion to characterise
the smoothness of a galaxy by computing the derivatives of the
semi-major axis profile. For illustration purposes, we show in
Fig. 11 three toy profiles. A pure analytical profile, a profile pre-
senting a strong structure, and a slightly perturbed one. When
the profile is smooth the first derivative is also smooth, chang-
ing its sign only at the centre of the galaxy. If we consider only
a one-sided profile, the derivative never goes to zero (i.e. it has
no roots). Its second derivative is also smooth, and has only one
root that we call a ‘natural zero’. When the galaxy is strongly
perturbed, the profile will significantly differ from a pure analyt-
ical profile. For a Sérsic profile the light curve decreases from
the centre to the edge of the galaxy; instead, for example in a

galaxy presenting a spiral arm, the major axis profile increases
in the location of the arm. This increase (change of slope) will
cause a sign change in the first derivative, and thus two changes
in sign in the second derivative, as can be seen in the second
column of Fig. 11. However, the roots of the first derivative are
not always enough to detect a variation from a smooth profile,
as illustrated in the third column of the figure; the profile can be
slightly perturbed, with a change of slope in the profile, but this
does not make the profile rise as in the second column of the fig-
ure, but significantly changes the rate of decrease. Thus, the first
derivative will not change in sign (the profile does not increase),
but the second derivative will (the rate of the decrease changes).

Therefore, we conclude that the presence of a zero on the
second derivative of the light profile (without counting the nat-
ural zero) is a reasonable indicator of a galaxy with complex
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Table 1: Accuracy of fitting results. For each parameter shown in Figs. 9 (bulges) and 10 (disks), we present the first quartile (q1),
the median (µ1/2), and the third quartile (q3) of the fitting error distributions.

Bulges Disks

Analytic

FVAE q1 µ1/2 q3 q1 µ1/2 q3

X
−0.37

−0.36

−0.04

0.01

0.26

0.40

−0.36

−0.90

−0.05

−0.01

0.25

1.00

mag
−0.25

−0.33

−0.04

−0.06

0.03

0.03

−0.11

−0.09

0.01

0.04

0.04

0.10

re
−0.04

−0.23

0.24

0.25

1.25

1.77

−0.07

0.27

0.11

0.65

0.55

1.27

q
−0.10

−0.10

−0.03

0.00

0.00

0.07

−0.05

−0.04

−0.01

0.03

0.01

0.09

n
−0.01

−0.64

0.23

−0.06

1.26

0.52

−0.06

−0.29

0.06

−0.15

0.20

0.04

structures. We note that there will be additional zeros at the edge
of the profile when it becomes flat. However, these roots will
be all consecutive, giving us a way to distinguish zeros coming
from a structure from ones coming from the end of the profile.
Thus, we can consider a galaxy being structured if its second
derivative has two roots (without considering the first natural
one), which are far enough from each other. This also prevents
the high-frequency perturbations in the profile that we do not
want to consider as a structure. We find that, at the VIS reso-
lution, a minimum distance of 1 pixel (approximately one PSF
FWHM) between roots is a reasonable choice. To make sure that
we do not miss structures that are not along the semi-major axis,
we also search for structures with the same method along the
semi-minor axis of the galaxy.

We show in Appendix A two random selections of galax-
ies which have been classified with and without structure. Our
method successfully isolates galaxies with perturbed or asym-
metric profiles.

5.2. Resolved complex morphologies in Euclid

We use this technique to infer the fraction of galaxies for which
Euclid will be able to resolve internal morphological structure
beyond Sérsic profiles. We simulate galaxies without noise and
compute the semi-major axis profile and consider only pixels
2σ above the noise level. We then plot in the left plot of Fig. 12
the fraction of galaxies presenting structures as a function of the
surface brightness S b of the galaxy, defined as

S b = m + 2.5 log10(π qtot r2
tot) , (10)

where rtot (in arcsecond) and qtot are the global (disk and bulge
components) half-light radius and axis ratio of the galaxy. Thus,
π qtot r2

tot represents the area of the galaxy.
We can see that the fraction of galaxies with resolved struc-

tures decreases with increasing surface brightness, as expected.
The behaviour of the Euclid Wide and Deep Surveys is self-
similar, but the deep is shifted towards fainter surface bright-
ness. The difference is of the order of 2 magnitudes: less than
10 % of galaxies present detailed structures above 2σ, beyond a
surface brightness of 22.5 mag arcsec−2 for the wide survey and

24.9 mag arcsec−2 for the deep. The statistical fluctuations on the
curve are similar for the wide and deep surveys because we com-
pute our structure indicator on the same realisations of galaxies
with only the S/N changing.

We also provide the total number of galaxies per bin in the
right panel of Fig. 12. We simply multiply the fraction of objects
with structure by the total number of galaxies in the 15 000 deg2

of the wide survey and in the 40 deg2 of the deep survey. We
conclude that Euclid will observe around 250 million galaxies
that are significantly more complex than the analytical profiles
during the six years of the mission.

Figure 13 shows a 2D representation of the fraction of galax-
ies with resolved structures above 1σ and 2σ of the noise as
a function of magnitude and half-light radius. We observe the
same behaviour, namely that the deep survey goes around two
magnitudes deeper to probe morphologies. The fraction of galax-
ies decreases in the limit of the distributions when we increase
the level of acceptance from 1σ to 2σ. The figure summarises
the following expected behaviour: (1) the brighter the galaxy, the
larger the number of resolved structures (top to bottom gradient)
and (2) the fraction becomes smaller for extremes (very small
and very large galaxies) at constant magnitude. The decrease at
small sizes is a consequence of resolution. At large sizes it is re-
lated to S/N. We recall that we did not plot galaxies bigger than
2 ′′ because of the built-in size limitation of our model, but we
expect the decreasing trend to continue at larger radii.

Finally, in Fig. 14 we forecast the fraction and the total num-
ber of galaxies with resolved structures as a function of physi-
cal properties of galaxies, namely stellar mass and redshift. We
conclude that the wide survey will be able to reach a 50 % com-
pleteness regarding the detection of internal structures of galax-
ies down to ∼ 1010.6 M� at z ∼ 0.5. The deep survey reaches
down to a stellar mass of 109.6 M� up to z ∼ 0.5.

We note here that we are probing the internal structures of
the galaxies, and not assessing whether the galaxy is resolved or
not. We thus consider, in our forecasts, that intrinsically smooth
galaxies such as spheroids have no structures, even if they are
resolved by Euclid. Since our model is trained on real data, it is
reasonable to assume that the fraction of different morphologies
is well reproduced. The numbers we provide are therefore an es-
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Fig. 9: Results of 2D Sérsic fits to the surface brightness distri-
butions of bulge components. In every panel, the orange points
and histograms represent the results for the FVAE galaxies and
the blue for the analytic galaxies. Each panel represents a differ-
ent parameter, as labelled. For each parameter the true value of
the parameter is plotted as a function of the inferred one from
the best-fit model. A perfect fit corresponds to the diagonal. In
addition, above and to the right of each plot are the projected
distributions of the scatter plot. Finally, the inset plot shows the
distribution of the error (fitted value minus true value). To make
the scatter plot less crowded, only half the galaxies are plotted,
but the error histograms and the projected distributions are com-
puted on the entire field (for more details of the error distribu-
tions, see Table 1).

timate of the fraction of galaxies with complex internal structure,
beyond a Sérsic model.

6. Discussion: A framework to simulate future
surveys

This work presents a novel framework to generate galaxies
with realistic morphologies, while keeping control on the global
structural properties. It can be used to calibrate algorithms for
future experiments such as Euclid in which the impact of com-
plex galaxy shapes might become significant. This is the case
for example for galaxy deblending or even shear estimations. We

Fig. 10: Same as Fig. 9, but for the results and description of the
disk component.

discuss in this section possible limitations of a large-scale use of
generative models for galaxy generation.

One possible bottleneck is execution time. We therefore
quantify the execution speed of our framework compared to that
of a classical analytic generation. We use two different environ-
ments: with and without GPUs. We used a 16 CPU Intel Xeon
Bronze 3106, and an NVIDIA Tesla P40 GPU. We then tested
our method with increasing batch sizes, going from one galaxy
at a time to 64. The results of the different experiments are sum-
marised in Fig. 15. Each measurement refers to the execution
time of a standard analytic simulation. The training time is not
discussed here as it has to be done only once, and does not enter
execution time discussions.

The figure confirms that a GPU is around four times faster
than a CPU environment in all configurations. We also see that
the batch size has a dramatic impact on the execution speed. For
a batch size of one, our method is more than a 100 times slower
than a traditional approach. However, the difference is reduced
to a factor of around 5 if larger batches are used. It is interesting
to note, however, that the execution time does not depend lin-
early on the batch size. This is a well-known behaviour (Wilper
et al. 2020). We note that for this figure, as in all this work, we
simulate galaxies by a sum of two components. As explained be-
fore, we did that to match the current Euclid simulation strategy.
Nevertheless, we highlight here that we are capable of creating
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Fig. 11: Three toy profiles that illustrate our structure detection method. The left panel shows a smooth galaxy without structure, the
middle panel a strongly perturbed galaxy, and the right panel a slightly perturbed object. For each profile, its luminosity is plotted as
a function of the distance to the galaxy centre in arbitrary units (blue solid lines). Their corresponding first and second derivatives
are also plotted (orange and green solid lines, respectively). We can see that the number of roots in the second derivative is a good
indicator of perturbed galaxies.

Fig. 12: Forecast of the number of galaxies with internal struc-
tures for the Euclid Wide and Deep Surveys, regarding surface
brightness. Left panel: Fraction of galaxies with resolved struc-
ture as a function of surface brightness. Right panel: Total num-
ber of galaxies with resolved structure as a function of surface
brightness. The red squares are for structures discernible for the
wide survey at 2σ around the noise level. The blue stars repre-
sent the same information, but for the deep survey.

complex galaxies with only one component, and therefore all the
times of the figure could possibly be divided by two if we were
simulating only one component.

Another possible limitation of our proposed framework is the
fact that it is trained on observations which therefore contain bi-
ases that can propagate the simulation. In particular, we used
here the COSMOS Galfit fitting as a ground truth to condition
the autoregressive flow. The impact of this could be assessed by
using different independent fitting codes on the same data sets
and comparing the results. This is an ongoing effort as part of
the Euclid Morphology Challenge, which will be presented in a
forthcoming publication. The diversity of generated galaxies is
also limited by the quality of the observations used for training,
in this case HST observations. This restricts the range of param-
eters that our model can probe without extrapolation. This could
be mitigated with additional data sets, but we have not explored
that in this work. For this reason, we do not recommend using

Fig. 13: Fraction of galaxies with resolved structures in bins of
magnitude and half-light radius. The first line represents Euclid
capacities for the wide survey, and the second for the deep sur-
vey. The first column is the percentage of galaxies presenting
structures above 1σ of the noise level, and the second column
above 2σ. The colour-coding is the same as in Fig. 12 and 14.
The blue number in each column (row) indicate the mean per-
centage of the corresponding column (row).

our framework to simulate images without noise as features be-
low the HST noise level are not constrained. We also note that
our model is limited regarding the size of the galaxies it can gen-
erate because of the fixed size of the training stamps. Simulating
galaxies with half-light radii bigger than 2′′ is not recommended.
Some galaxies larger than 1 .′′5 and with a small Sérsic index (flux
above the half-light radius not negligible) can also produce some
flux artefacts at the border of the stamp, being at the limit of the
training distribution, and because the faint end of the galaxy will
be cut. We used this large limit of 2′′ to do our morphological
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Fig. 14: Fraction of galaxies with resolved structures in bins of
stellar mass and redshift. The top (bottom) row corresponds to
the Euclid Wide (Deep) Surveys. The left column indicates frac-
tions, while the right column are absolute numbers for the six-
year survey. The numbers in blue indicate the average values per
row and column.

forecasts because those artefacts do not cause problems in our
structure detection algorithm. In addition, to produce galaxies
fainter than the limiting magnitude of the training set (25.2 mag),
we assumed that the galaxy morphology is not correlated with
the magnitude, which is of course an approximation. Finally, to
establish morphology forecasts, we assume that the amount of
structures produced by our model is the same as in real galax-
ies. Our model may tend to produce galaxies that are smoother
than in real galaxies. Therefore our forecast may have underes-
timated the number of objects with complex morphologies. On
the contrary, our choice to use fields without any instrumental
effects but the PSF could decrease the effective number of de-
tected galaxies. Finally, the number of low-magnitude galaxies
in the Euclid Flagship catalogue could be underestimated, for
example compared to the catalogue (Connolly et al. 2014) used
for the Legacy Survey of Space and Time (LSST) at the Vera C.
Rubin Observatory (Ivezić et al. 2019). This lack of faint galax-
ies could increase the numbers presented here, especially for the
deep survey.

7. Summary and conclusion

We have presented a data-driven method for simulating decon-
volved and noise-free galaxies with morphologies more realistic
and complex than pure analytic Sérsic profiles. The proposed ap-
proach is based on a combination of deep generative neural net-
works trained on observations, which allows one to generate re-
alistic galaxies while preserving a control of the global shape of
the surface brightness profiles. We have shown that the structural
parameters of the generated galaxies are recovered with similar
accuracy compared to that derived for analytic profiles. Our pro-
posed approach, although around five times slower than an ana-
lytic simulation can be used to generate realistic simulations for
future missions and experiments, and therefore calibrate algo-
rithms under more realistic conditions.

Fig. 15: Comparison of the execution time between our model
and the current Euclid simulations, for different hardware config-
urations. The y-axis indicates the ratio of the execution time us-
ing our model to the time from the official Euclid pipeline.The x-
axis corresponds to the number of galaxies simulated. The stars
represent GPU runs and squares are CPU runs. The colour bar
indicates the batch size.

We have used this new framework to establish the first fore-
casts on the number of galaxies for which Euclid will be able
to provide resolved morphological structure beyond Sérsic pro-
files. We find that Euclid will resolve the internal structure of
around 250 million galaxies. This corresponds to a 50 % stellar
mass complete sample above 1010.6 (109.6) at a redshift z = 0.5
for the wide (deep) survey. This is a first estimation of the capa-
bilities of Euclid for estimating galaxy morphologies, which are
a key ingredient for a variety of galaxy evolution-related science
cases.

Looking ahead, there is an ongoing effort of the authors to
adapt the VAE to work in a multi-band mode, which will enable
the generation of galaxies in the two infrared bands of the Euclid
near-infrared imager. We also plan to train a flow on different
sets of parameters. Our method can, for example, be conditioned
on the orientation and the environment of galaxies to take into
account gravitational shear effects. We could also condition our
flow on the redshift and initial mass function in order to find their
impact on the evolution of structures.
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Appendix A: More illustrations of the capabilities of
our model.

Fig. A.1: Simulation by our model of bulge components with ra-
dius smaller than 0 .′′1 (i.e. smaller than one pixel). These bulge
components are at the end of the Euclid Flagship radii distribu-
tion (Fig. 1) outside the COSMOS training domain. As can be
seen, our model is able to extrapolate from those cases. Because
the object is not resolved, it is almost purely the VIS PSF.

Fig. A.2: Double-Sérsic component galaxies currently used in
the Euclid Consortium.

Appendix B: Detailed architectures of the FVAE.
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Fig. A.3: Random examples of galaxies considered as having structure. The stamps are cut at twice the effective radius.
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Fig. A.4: Random examples of galaxies considered as having no structure. The stamps are cut at twice the effective radius.
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physical
parameters

Masked Dense Layer

Permutation 3

MADE Block :

SAMPLE

Shift and scale

( )

MADE Block MADE Block 6 more MADE Blocks

...
+

Batch norm
+

Batch norm
+

Batch norm

Fig. B.2: Schematic architecture of the regressive flow. Each dense layer is followed by a ReLU activation.
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