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Abstract 13 

Anthropogenic eutrophication caused by excess loading of nutrients, especially phosphorus (P), from 14 

catchments is a major cause of lake water quality degradation. The release of P from bed sediments 15 

to the water column, termed internal loading, can exceed catchment P load in eutrophic lakes, 16 

especially those that stratify during warm summer periods. Managing internal P loading is 17 

challenging, and although a range of approaches have been implemented, long-term success is often 18 

limited, requiring lake-specific solutions. Here, we assess the manipulation of lake residence time to 19 

inhibit internal loading in Elterwater, a shallow stratifying lake in the English Lake District, UK. Since 20 

2016, additional inflowing water has been diverted into the inner basin of Elterwater to reduce its 21 

water residence time, with the intention of limiting the length of the stratified period and reducing 22 

internal loading. Combining eight years of field data in a Before-After-Control-Impact study with 23 

process-based hydrodynamic modelling enabled the quantification of the residence time 24 

intervention effects on stratification length, water column stability, and concentrations of 25 

chlorophyll a and P.  Annual water residence time was reduced during the study period by around 26 

40% (4.9 days). Despite this change, the lake continued to stratify and developed hypolimnetic 27 

anoxia. As a result, there was little significant change in phosphorus (as total or soluble reactive 28 

phosphorus) or chlorophyll a concentrations. Summer stratification length was 2 days shorter and 29 

7% less stable with the intervention. Our results suggest that the change to water residence time in 30 

Elterwater was insufficient to induce large enough physical changes to improve water quality. 31 

However, the minor physical changes suggest the management measure had some impact and that 32 

larger changes in water residence time may have the potential to induce reductions in internal 33 
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loading. Future assessments of management requirements should combine multi-year observations 1 

and physical lake modelling to provide improved understanding of the intervention effect size 2 

required to alter the physical structure of the lake, leading to increased hypolimnetic oxygen and 3 

reduced potential for internal loading.  4 

Keywords: Lake restoration, lake management, water quality, lake modelling, hypolimnetic 5 

anoxia, destratification 6 
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Introduction 1 

The degradation of fresh waters is a pervasive and persistent problem (Smith, 2003). In Europe 2 

alone, 60 % of surface waters failed ecological quality targets set by the European Water Framework 3 

Directive in 2018, with little to no improvement in the ecological quality of lakes being reported in 4 

over a decade (EEA, 2018). The principal cause of degradation for lakes remains eutrophication (Birk 5 

et al., 2020), caused by anthropogenic inputs of phosphorus (P) and nitrogen (N) from catchment 6 

sources that result in excess phytoplankton growth, a loss of biodiversity, and low oxygen conditions 7 

(Jeppesen et al., 2007; Søndergaard et al., 2005). In 2018, eutrophication impacts in the UK, in 8 

particular algal blooms, were estimated to cost £173 million annually, with the potential to rise to 9 

£481 million under a 4 °C warming climate (Jones et al., 2020).  10 

External nutrient load reductions are the primary measure to improve in-lake conditions (Lürling and 11 

Mucci, 2020; Van Liere and Gulati, 1992). However, problems can persist in lakes decades after 12 

reductions (McCrackin et al., 2017). Slow recovery can often be attributed to the release of nutrients 13 

accumulated in bed sediments, maintaining water column nutrient concentrations, a process known 14 

as internal loading (Does et al., 1992; Søndergaard et al., 2003; Van Liere and Gulati, 1992). In 15 

temperate zone stratifying lakes, internal loading principally occurs in the summer period. High 16 

biological oxygen demand in the isolated hypolimnion depletes oxygen that cannot be replenished 17 

as the water column density gradient inhibits mixing. Anoxia in the hypolimnion overlying lake bed 18 

sediments promotes redox conditions where Fe-P complexes are reduced and their dissolved 19 

components liberated across diffusive concentration gradients to the water column (Mortimer, 20 

1942; Nürnberg, 1984). In order to meet legislative water quality targets (e.g. the European Water 21 

Framework Directive and the US Clean Water Act), there is a growing need for in-lake measures to 22 

control internal loading (Lürling and Mucci, 2020; Zamparas and Zacharias, 2014).   23 

A range of in-lake measures have been proposed to control internal loading (Lürling et al., 2020). 24 

These include sediment dredging (Bormans et al., 2016; Does et al., 1992), chemical inactivation 25 

(Mackay et al., 2014; Spears et al., 2016), hypolimnetic aeration and oxygenation (Preece et al., 26 

2019; Toffolon et al., 2013), artificial mixing (Visser et al., 2016), and less frequently, hypolimnetic 27 

withdrawal (Nürnberg, 2019). These in-lake measures vary in their approach but generally target the 28 

manipulation of hypolimnetic anoxia or sediment-P binding to decrease the intensity of internal 29 

loading (Figure 1). Increasing inflow discharge has also been used to promote direct flushing of 30 

phytoplankton cells and/or to dilute nutrient concentrations, with moderate short-lived effects 31 

(Jagtman et al., 1992; Verspagen et al., 2006; Welch and Patmont, 1980; Zhang et al., 2016). While 32 

there has been some success using these existing in-lake methods, restoration outcomes have been 33 
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inconsistent (Huser et al., 2016), and can incur high capital and running costs (Mackay et al., 2014; 1 

Visser et al., 2016). With the pressure to achieve water quality targets, the threat of climate change, 2 

and the mixed success of existing measures, there is a need for innovative methods to tackle internal 3 

loading.  4 

 5 

Figure 1 Different aspects of the stratification → anoxia → internal P loading sequence are targeted 6 

by different in-lake restoration methods. 7 

In some cases, water residence time (WRT) reductions may present an effective method to inhibit 8 

stratification, suppressing internal loading and algal blooms in stratifying lakes. Lake inflows can 9 

impact the thermal structure of lakes, influencing lake water temperatures (Carmack et al., 1979; 10 

Fenocchi et al., 2017). Previous reservoir modelling studies suggest that maintaining flow levels to 11 

reduce WRT can modify stratification (Li et al., 2018; Straškraba and Hocking, 2002). In addition, 12 

lakes with shorter WRTs or periods of reduced WRT can experience a shorter stratified period and 13 

periods of increased mixing (Andersen et al., 2020; Li et al., 2018; Straškraba and Hocking, 2002). 14 

Thus, artificial manipulations of water residence time may present another technique to suppress 15 

anoxia and internal loading through increased cooling of in-lake temperatures and reduction to 16 

stratification length and strength, but effectiveness has yet to be quantitatively assessed.  17 

It is important to assess efficacy of novel management measures using whole-lake case studies 18 

alongside robust statistical and process modelling approaches. The Before-After-Control-Impact 19 
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(BACI) statistical approach, in which a control system is used alongside an impacted system, has 1 

been shown to detect changes not possible using impact lake data only (Christie et al., 2019; 2 

Smokorowski and Randall, 2017). Multiple years of pre- and post- intervention data is also needed to 3 

allow inter-annual variability to be separated from intervention impacts (Smokorowski and Randall, 4 

2017; Underwood, 1994). High-resolution data can provide valuable insights and increased statistical 5 

power in detecting responses to management (Kerr et al., 2019). Moreover, lake modelling can be 6 

used to provide process understanding of restoration impacts and refine future applications (Janssen 7 

et al., 2015). Despite their synergistic potential, this combination of methods is uncommon in 8 

restoration assessments. Here, we combine these approaches to assess the efficacy of WRT 9 

management to control stratification and internal loading, in a small eutrophic lake, Elterwater, in 10 

the English Lake District, UK. 11 

Using eight years of pre- and post-intervention monitoring data (2012-2019), water quality profiles, 12 

and hydrodynamic modelling, we investigated the impact of decreasing the WRT, by means of a 13 

diversion of flow from a river through the lake initiated in 2016. We used the BACI approach to 14 

assess responses in (1) WRT, (2) the intensity and duration of stratification, (3) development of 15 

hypolimnetic anoxia, and (4) nutrient and chlorophyll a concentrations in the water column. We 16 

discuss indicators of effectiveness and outline approaches that may be used to refine the 17 

intervention in Elterwater, and potentially in other lakes. As one in four lakes globally have a short 18 

residence time (< 100 days, Messager et al., 2016), this study will provide context for future lake 19 

restoration efforts and will begin to explore how this novel method may be applied more widely as 20 

in-lake restorations grow in importance.  21 
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Methods and materials 1 

Impact site 2 

 3 

Figure 2 Map of Elterwater with its major inflow and outflows labelled. Approximate location of the 4 

flow diversion, implemented in 2016, is shown with a dashed line and sampling locations with yellow 5 

circles. 6 

Elterwater (impact site) is a small lake located in the English Lake District, UK. It has three distinct 7 

basins, inner, middle, and outer (Figure 2), with the main inflow, the Great Langdale Beck (GLB), and 8 

outflow, River Brathay, flowing into and out of the outer basin, respectively. Smaller inflows 9 

discharge into the inner and middle basins. Due to the system’s hydrology, the WRT varies 10 

significantly between the basins, with previous studies estimating WRTs of around 15-20 days in the 11 

inner and middle basins and as little as 0.5 days in the outer basin (APEM, 2012; Beattie et al., 1996). 12 

The inner basin of Elterwater (Elterwater-IB) was the main target of the restoration efforts and is the 13 

focus of this study. The inner basin is the smallest of the three basins and the most nutrient-enriched 14 

(Supplementary information 1).  Elterwater-IB was, historically, the primary discharge point for 15 

wastewater treatment effluent (Zinger-Gize et al., 1999) and in-lake concentrations of total 16 

phosphorus (as TP) and chlorophyll a regularly exceed eutrophic status (see Supplementary 17 
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information 1; Nürnberg, 1996). Sediment TP concentrations in the deep parts of the inner basin 1 

exceed 4500 μg g-1, suggesting there is a high potential for internal loading of nutrients from the 2 

sediments (Mackay et al., 2020).  Internal loading of nutrients under anoxic conditions, during the 3 

annual summer stratification period, is suspected to be the source of the persistent water quality 4 

problems (APEM, 2012) and we present evidence of persistent summer spikes in TP and chlorophyll 5 

a (Supplementary Figure S1.1) to support this (Søndergaard et al., 2002). 6 

Table 1 Hydromorphometric and physiochemical comparison of Impact and Control sites. Data from 7 

2015 Lakes Tour (Maberly et al., 2016) and Haworth et al. (2003).  8 

Attribute 
Elterwater inner 

basin (Impact) 

Blelham 

(Control) 

Location 
Lat: 54.4287 

Long: -3.0350 

Lat: 54.3959 

Long: -2.9780 

Elevation (m above ordinance datum) 53 47 

Surface area (km2) 0.031 0.1 

Mean depth (m) 3.3 6.8 

Maximum depth (m) 6.5 14.5 

Annual mean WRT (days) 20 50 

Catchment area (km2) 1.0 4.3 

Annual mean total phosphorus concentration (μg L-1) 18.3 24.5 

Annual mean chlorophyll a (μg L-1)  16 23 

Trophic state Meso-eutrophic Meso-eutrophic 

Annual mean alkalinity (m equiv m-3) 285 (low) 450 (medium) 

Control site  9 

Blelham Tarn (control site) is a small monomictic lake located approximately 5 km to the southeast 10 

of Elterwater (Table 1). Blelham Tarn was selected as the “control” site for the BACI analysis as the 11 

sites are close together, thermally stratify during the summer, develop hypolimnetic anoxia (Foley et 12 

al., 2012), exhibit internal loading (Gray, 2019), and share relatively similar physio-chemical 13 

characteristics pre-restoration (Table 1). While all lakes are unique, the similarities shared between 14 

Elterwater and Blelham Tarn allow comparison over the experimental period. Furthermore, the BACI 15 

method does not require that the sites to be the same but that the difference between the sites is 16 

consistent in the Before period with only the focal impact changing in the After period (Stewart-17 

Oaten et al., 1986). Blelham Tarn is also part of the UKCEH Cumbrian Lakes Monitoring Platform (see 18 

https://ukscape.ceh.ac.uk/our-science/projects/cumbrian-lakes-monitoring-platform), with both a 19 

fortnightly long-term monitoring programme and a monitoring buoy providing water quality and 20 

meteorological data for the study period (2012-2019).  21 
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Data collection 1 

Flow and water residence times 2 

The inflow to Elterwater-IB, before the restoration, had been estimated as 2% of lake outflow 3 

discharge (Environment Agency, 2000), measured at the River Brathay gauging station. Since the 4 

intervention in 2016, additional water flow has increased the discharge into the basin via a diversion 5 

from GLB. This diversion forms an underground pipeline (approximately 0.7 m diameter) running 350 6 

m from the GLB river channel to one of the small field drains that discharges into the inner basin (see 7 

Supplementary Information Figure S2.1). Flow through the pipe is not maintained at a consistent 8 

discharge but acts by passively diverting a small proportion of the GLB flow. The pipeline is 9 

monitored and maintained by the South Cumbria Rivers Trust, and they provided daily (January 10 

2016-July 2017) and hourly (July 2017-2019) discharge data for the pipeline. There were gaps in the 11 

data due to sensor error and maintenance. Small gaps (< 24 hours) were filled using linear 12 

interpolation. Larger gaps were filled based on a statistical relationship between flow measurements 13 

in the pipeline and the River Brathay gauged flow (Supplementary information 3). This relationship is 14 

bounded by legal abstraction limits (0.122 m3 s-1) and a minimum flow requirement in the source 15 

river (Q85, 0.383 m3 s-1). A hydro-brake system operates to shut off the pipeline when the flow is 16 

outside of these limits. The total flow into Elterwater-IB is the gauged pipeline discharge plus the 2% 17 

of the gauged outflow. 18 

Water residence time (WRT) was calculated as, 19 

WRT =        (1) 20 

Where V is the basin volume and Q is the outflow discharge. By assuming outflow is equal to inflow 21 

discharge and constant basin volume (from Haworth et al., 2003), inflow discharge, as determined 22 

above, can be used to calculate water residence times at each hourly time step. When calculating 23 

monthly, seasonal, or annual WRTs the mean inflow discharge for that period was calculated and 24 

used in Equation 1. WRTs were calculated for the post-intervention period, both with and without 25 

the additional intervention flow, to isolate the exact change in WRT caused by the intervention. 26 

Biological and chemical data 27 

Water sampling 28 

In Elterwater-IB, monthly water samples were collected for water chemistry analysis at the deepest 29 

point in the basin from 2012-2019 using a 5 m integrated sampling tube.  Additionally, in 2018-2019 30 

water samples were collected in Elterwater-IB at 0.5 m and 6 m from the surface, using a Ruttner 31 

sampler, and from the basin inflow and outflow (Figure 2). Dissolved oxygen profiles were taken 32 

using a Yellow Springs Instruments-Exo2 multi-parameter sonde (Xylem, OH, USA) weekly during 33 
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stratification and monthly during isothermal conditions between May 2018 and December 2019. 1 

Measurements were taken at 0.5 m intervals from 0.5 m to 6.5 m. Oxygen sensors were calibrated 2 

monthly according to the manufacturer’s specifications.  In Blelham Tarn, integrated water chemistry 3 

samples of the top 5 m of the water column were taken at the deepest point of the lake, fortnightly 4 

from 2012 to 2019.  5 

Laboratory methods 6 

Chlorophyll a was measured as a proxy for phytoplankton biomass. A measured volume of the water 7 

was filtered onto a Whatman GF/C filter paper from the integrated sample. Filter papers were 8 

frozen, and analysis completed within six months. Samples from Elterwater-IB were extracted using 9 

a cold acetone extraction. At Blelham, samples were extracted using heated methanol, according to 10 

Talling (1974). Although the extraction method differs between sites, consistent methods were used 11 

across the entire period, so any difference in values due to the extraction method will be 12 

maintained.  Total phosphorus (TP) concentrations, from both Elterwater-IB and Blelham, were 13 

determined using a potassium persulphate (K2SsO8) digestion and colourimetric analysis using the 14 

molybdenum blue method from 2014 -2019.  Due to methodological differences prior to 2014 only 15 

2014-2019 samples were used for TP data analysis. We determined gross summer internal load 16 

estimates using a mass balance approach (Nürnberg, 2009, 1984). Soluble reactive phosphorus (SRP) 17 

concentrations were determined from a 50 ml sub-sample filtered using a Sartorius cellulose acetate 18 

0.45 μm filter into an acid-washed polypropylene tube. All SRP concentrations were determined 19 

using a colorimetric method according to Stephens (1963) and carried out on the day of collection.  20 

Bioavailable phosphorus (BAP), that is, phosphorus which readily assimilates or is already assimilated 21 

by biomass, was calculated as the concentration of SRP plus chlorophyll a concentration, following 22 

Reynolds & Davies (2001).  23 

Preparing data for analysis 24 

Data were linearly interpolated to a daily timestep and then a monthly average calculated to give 25 

paired monthly values from 2012 to 2019. TP covered 2014 to 2019. Larger gaps (> 1 month) were 26 

not interpolated and left as missing values.   27 

Statistical modelling and impact assessment 28 

To assess the effects of the intervention on in-lake water chemistry (TP, SRP, chlorophyll a) we used 29 

Before-After (BA) and BACI analysis for the period before intervention (2012-2015) and after (2016-30 

2019). All statistical analyses on field data were carried out on monthly observations, using R (R Core 31 

Team, 2020), with the mgcv (version 1.8; Wood, 2017) and emmeans (version 1.5.0; Lenth, 2020) 32 

packages. 33 
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Before-After-Control-Impact (BACI) 1 

This statistical design considers the relative change in the “impact” site compared to the “control” 2 

site using statistical analysis of the inter-lake differences. There were no known changes in land-use 3 

or catchment management during the study period at Blelham or Elterwater, except for the 4 

Elterwater flow diversion work, described above. It is assumed that any variation in the control site 5 

(Blelham) will be driven by inter-annual and seasonal variation in weather that would also drive 6 

similar variation within the nearby treatment site (Elterwater). Short-lived differences are likely to be 7 

masked by the noise contributed by other errors in the data and are unlikely to result in a long-term 8 

shift in conditions at the site (Lang et al., 2016). 9 

The difference between lakes was calculated as Elterwater-IB minus Blelham. In the case of 10 

chlorophyll a and SRP, data were log-transformed before the differences were calculated, to account 11 

for positive skew and non-additivity in the data. To account for autocorrelation in the time series 12 

data, monthly data were used (Stewart-Oaten et al., 1986), and a temporal component (Season) was 13 

included in the models. The BACI analysis used two-way ANOVAs, fitted with an interaction between 14 

Intervention, before or after, and Season (winter - Dec, Jan, Feb; spring - Mar, Apr, May; summer - 15 

Jun, Jul, Aug; or autumn - Sep, Oct, Nov) to account for expected differences in responses between 16 

seasons and to minimise non-additivity issues (Stewart-Oaten et al., 1986). The assumptions of the 17 

models were checked visually using diagnostic plots of residuals and lag plots of autocorrelation (See 18 

Supplementary Information 4).  19 

Statistical coherence of the control and impact sites before the intervention (2012-15) was 20 

confirmed using regression analysis of lake differences against date to ensure that the slope did not 21 

deviate significantly from zero (p > 0.05) (as per McGowan et al., 2005) (see Supplementary 22 

Information 5).  23 

Before-After (BA) 24 

Before-After analysis of Elterwater-IB data was used as a confirmatory method to strengthen the 25 

results of the BACI analysis. BA models were fitted using generalised linear models (GLMs) with a 26 

gamma distribution and log-link function. The assumptions of the model were checked visually using 27 

diagnostic plots of residuals and lag plots of autocorrelation. 28 

Seasonality changes 29 

Changes in the seasonal pattern of TP, SRP, and chlorophyll a following the intervention were 30 

assessed by fitting General Additive Models (GAM) using a Gamma distribution, with a log-link 31 

function and a lag-1 auto-correlation structure.  The GAM included intervention (Before or After) as 32 
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an ordered factor parametric term, plus an overall smoother for month, and a smoother for the 1 

difference between the Before and After periods as predictors of concentration.  2 

Hydrodynamic modelling 3 

Model description 4 

Water temperature profiles were not taken in Elterwater-IB before May 2015, so before-after 5 

timeseries were not available.  Therefore, a process-based physical lake model was used to derive 6 

hourly water temperatures at Elterwater-IB with and without the intervention. The lake version of 7 

the General Ocean Turbulence Model (GOTM), a one-dimension hydrodynamic model, uses 8 

measured meteorological data, specified bathymetry and inflow discharge and temperature to 9 

estimate in-lake water temperature profiles (Umlauf et al., 2005). GOTM uses a fixed layer structure 10 

and resolves turbulent kinetic energy production and diffusion between these layers to estimate 11 

vertical water temperature profiles. GOTM was run at an hourly timestep with 50 vertical layers 12 

from 2016-2019. Previous studies have successfully applied GOTM to a range of lake systems (Darko 13 

et al., 2019; Mesman et al., 2020; Moras et al., 2019). 14 

The nearby automatic water quality monitoring buoy at Blelham Tarn measures the required input 15 

meteorology (i.e. air temperature, wind speed, relative humidity, and short-wave radiation). Gap 16 

filling of meteorological data was conducted using linear interpolation for small gaps (< 24 hours or 6 17 

hours for short-wave radiation) and relationships with other local meteorological stations when 18 

there were larger gaps (Supplementary information 6).  Alongside inflow discharge, as above, inflow 19 

temperature was measured on the diversion pipeline since July 2017. Before July 2017, hourly water 20 

temperature estimates were made based on a relationship derived between observations of inflow 21 

temperature and the previous 12 hours’ average air temperature (Supplementary information 3).  22 

Model calibration and validation 23 

GOTM was calibrated for Elterwater-IB using observed water temperature profiles from 2018 and 24 

validated using 2019 profiles. GOTM was calibrated using an auto-calibration tool, ACPy (Bolding & 25 

Bruggeman, 2017), which uses a differential evolution method to estimate the best parameter set, 26 

based on a maximum-likelihood measure. The parameters estimated were three non-dimensional 27 

scaling factors relating to wind speed (wsf), short-wave radiation (swr) and outgoing surface heat 28 

flux (shf) plus minimum kinetic turbulence (k-min) and non-visible (g1) and visible light extinction 29 

(g2). Model fit was assessed against observations for water column temperatures using the metrics 30 

root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and mean absolute error (MAE), 31 

giving a good fit between the modelled and observed water temperatures in both the calibration 32 

and validation periods (Table 2).  For a full description of the model parameters, ranges used in 33 

calibration, and the validation process, see Supplementary information 7.  34 
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Table 2 The maximum, minimum and final parameters values, optimised during the auto-calibration 1 
route. Calibration parameters estimated: short-wave radiation (swr), outgoing surface heat flux (shf), 2 
wind speed (wsf), minimum kinetic turbulence (k-min), and visible light extinction (g2). Model 3 
performance statistics for the calibration (2018) and validation (2019) periods reported as root mean 4 
squared error (RMSE), Nash-Sutcliffe efficiency (NSE) and mean absolute error (MAE).  5 

Calibration 
factor 

Max allowable 

value 

Min allowable 
value 

Final parameter 
value 

swr 1.1 0.85 0.95 
shf 1.2 0.8 0.80 
wsf 1.1 0.9 1.08 
k-min 1.0 e-5 1.4 e-7 1.4 e-7 

g2 2.0 0.5 0.61 

    
 RMSE (°C) NSE  MAE (°C) 

Calibration 0.93 0.97 0.72 
Validation 0.97 0.92 0.75 

The resulting model was used in two scenarios: 1) a ‘with intervention scenario’ using observed 6 

input data to predict the actual water temperatures in Elterwater-IB from 2016-2019; 2) a ‘no 7 

intervention scenario’ using inflow discharge without the additional inflow from the intervention, to 8 

estimate water temperatures if no intervention had occurred (2016-2019), thus isolating the impact 9 

of the intervention on the lake’s thermal structure. The water temperature profiles were averaged 10 

on to a daily timestep.   11 

Stratification and stability metrics 12 

Metrics of stratification length and water column stability were calculated. A minimum density 13 

difference between the top and bottom of the water column of 0.1 kg m-3 was used to define 14 

stratification occurrence (Wilson et al., 2020). Based on this 0.1 kg m-3 threshold, the following 15 

stratification metrics were calculated: 16 

i. Total number of stratified hours (as day equivalents) 17 

ii. Length of the longest continuously stratified period 18 

iii. Onset and overturn dates of the longest stratified period 19 

Water column stability during the stratified period, measured as Schmidt stability (Idso, 1973), was 20 

calculated using the rLakeAnalyzer R package (version 1.11.4.1; Read et al., 2011). Mixed depth was 21 

calculated using a modified version of the rLakeAnalyzer meta.depths function, using a density 22 

difference threshold (0.1 kg m-3) between the top and bottom water layers and a minimum density 23 

gradient of 0.1 kg m-3 m-1 to define the mixed depth.   24 
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Results 1 

Changes to WRT 2 

Using measurements of the intervention flow and estimates of the natural flow, we compared WRTs 3 

with and without the additional piped water for the period after intervention (2016-2019). Summer 4 

average WRT was reduced by 8 ± 5 days (mean ± standard deviation) with the intervention in place. 5 

Spring and summer had larger reductions in WRT than winter and autumn. Overall, the mean annual 6 

WRT was around 5 ± 1 days shorter with the intervention than without. Within season variability was 7 

also large; daily WRTs varied by orders of magnitude within seasons, in summer ranging from almost 8 

700 days to < 2 days without the intervention. With the intervention the variability was reduced as 9 

the longest WRTs were suppressed, reducing the maximum daily WRTs from 700 to 462 days. 10 

Changes to stratification and lake water temperatures  11 

Comparing the two modelled temperature scenarios for 2016-2019, one with the intervention and 12 

the other without, shows predicted changes caused by additional flow from the diversion pipe. 13 

These changes depend on the season. Overall, with the intervention, average water column 14 

temperature was cooler in summer (difference in average temperature -0.7 ± 0.2°C) and in winter 15 

the lake was warmer (change in average +0.5 ± 0.1 °C) (Figure 3a). Spring and autumn changes in 16 

average temperatures were smaller than in summer and winter. The change in water temperatures 17 

with the intervention varied by depth, with surface water temperatures (SWT) generally showing 18 

larger differences than deeper water except in autumn when deeper water cooled more than 19 

surface water (Figure 3b).  20 

 21 
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Figure 3 a) change in volume averaged water column temperature in each season, b) water 1 

temperature changes at different depths with the intervention. Positive values indicate warming and 2 

negative values cooling, compared to water temperatures without the intervention. 3 

Overall, increased flow tended to increase stratification in the winter and reduce stratification in the 4 

summer. The modelling results show that stratification occurrence increased following the 5 

intervention, due to increases in transient stratification during the winter. Without the intervention 6 

the average number of stratified days per year would have been 177 days (min =168, max =183), 7 

compared to 179 days per year with the intervention (min = 171, max = 185). However, the 8 

intervention, on average, shortened the longest continuous period of stratification in the summer by 9 

2 days, from 156 (min = 145, max = 165) days to 154 (min = 145, max = 163). With the intervention, 10 

Elterwater-IB’s average stratification onset remained the 14th April (earliest = 28th March, latest = 1st 11 

May) but overturn was expedited by 2 days from 16th to 14th September (earliest = 7th September, 12 

latest = 29th September).  13 

Average Schmidt stability for the stratified period ranged from 11.1 J m-2 to 20.6 J m-2 without the 14 

intervention and 9.8 J m-2 to 20.0 J m-2 with the intervention. The mean value decreased from 15.4 to 15 

14.4 J m-2, a reduction of 7%.  16 

Natural inter-annual variability 17 

The “natural” inter-annual variability of annual and summer WRTs in Elterwater-IB for the 8 years of 18 

the study (4 years before plus 4 years after without intervention) was assessed (Table 3). Summer 19 

WRT varied by 23 days (maximum = 31 days, minimum = 8 days) and annual WRT by 6 days, across 20 

the 8 years. This inter-annual variability in summer WRTs was almost three times the reduction 21 

estimated to have been caused by the intervention (i.e. 8 days).  Modelled mean summer SWTs 22 

across the 8 years varied by 5 °C between years and maximum summer SWTs varied by 7 °C. This 23 

variability in mean summer SWT was an order of magnitude larger than the 0.7 °C cooling estimated 24 

to have been caused by the intervention. Inter-annual variability in mean winter SWTs was 1.6 °C 25 

and minimum winter SWTs was 1.9 °C, three to four times the estimated effect of the intervention 26 

(0.5 °C).  The change in dates of stratification onset and overturn were minor compared to the 27 

variation in onset and overturn dates that were estimated to occur naturally in Elterwater-IB. The 28 

onset date varied by 49 days and overturn by 25 days.  29 

Table 3 Summary of the water residence time, water temperatures and stratification metrics for the 30 
two modelled scenarios (2016-2019 with and without intervention) compared with the natural 31 
variability in parameters (2012-2019 without intervention). Values show the mean and the range 32 
(minimum – maximum).  33 

 
With  

(2016-2019) 
Without  

(2016-2019) 
Natural variability  

(2012-2019) 
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Mean Range Mean Range Mean range 

Annual WRT 

(days) 
8 7 - 9 13 11-15 12 9 - 15 

Summer WRT 

(days) 
10 7-15 18 13-31 19 8 - 31 

Mean summer 

SWT (°C) 
17.9 16.2 - 20.2 18.5 17.0 - 20.7 16.1 14.1 - 19.2 

Max summer 

SWT (°C) 
23.8 22.5 - 26.6 24.5 23.4 - 26.7 24.0 20.0 - 27.0 

Mean winter 

SWT (°C) 
5.1 4.7-5.4 4.6 4.0 - 5.1 4.9 4.2 - 5.8 

Minimum 

winter SWT (°C) 
2.5 2.4 - 2.7 2.4 2.1 - 2.7 2.4 1.5 - 3.4 

Days stratified 179 171 - 185 177 168 - 183 177 166 - 192 

Longest period 

of stratification 

(days) 

154 145 - 163 156 145 - 165 155 121 - 186 

Day of onset 14th Apr 
29th Mar -  

1st May 
14th Apr 

29th Mar -  

1st May 
17th Apr 

29th Mar - 

17th May 

Day of overturn 14th Sep 
7th Sep -  

29th Sep 
16th Sep 

7th Sep -  

29th Sep 
18th Sep 

7th Sep - 

2nd Oct 

Stratification 

stability (J m-2) 
14.4 9.8-20.0 15.4 11.1-20.6 14.2 10.0 - 20.6 

Changes in lake water quality 1 

Annual mean TP concentrations in Elterwater-IB showed a slight change in the “After” period 2 

compared to the “Before”, relative to the control site, although this was not significant (p = 0.538). 3 

There was a significant interaction of season and period (p = 0.025) in the BACI ANOVA, which 4 

indicates the response of TP concentration in each period differed depending on the season.  In 5 

winter and autumn, the TP concentration increased relative to control, but in spring and summer 6 

there was a relative decrease (Figure 4a). However, post-hoc analysis indicated that only the spring 7 

intervention effect was significant (p = 0.017) with an average reduction in Elterwater-IB relative to 8 

the control (Table 4). The BA analysis confirmed these responses (Supplementary information 8), 9 

with no significant overall effect of the intervention or an effect in individual seasons (p > 0.05).  10 

There was also no significant change in the seasonality of TP concentrations (Supplementary Figure 11 

9.1a), confirmed by the fitted GAM curve for After being no different to Before (p = 0.721). 12 
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1 
Figure 4 a) Total phosphorus, b) soluble reactive phosphorus and c) chlorophyll a concentrations in 2 

Elterwater-IB (impact) and Blelham (control) sites before and after intervention, annually and 3 

grouped by season. 4 

BACI analysis indicated that the annual mean SRP concentration at Elterwater-IB was unchanged 5 

following the onset of the intervention (Table 4) and no significant difference in the response 6 

between seasons (Figure 4b). The BA analysis confirmed these responses (Supplementary 8). There 7 

was also no significant change in the seasonality of SRP concentration (Supplementary figure 9.1b), 8 

confirmed by the fitted GAM curve for After being no different to Before (p = 0.164).  9 
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  1 
Figure 5 a) average annual chlorophyll a dynamics (shading shows +/- 1 SE) and b) cumulative 2 

chlorophyll accumulation for each year before and after restoration at the control (Blelham) and 3 

impact (Elterwater-inner basin) lakes. 4 

Annual mean chlorophyll a concentration in Elterwater-IB increased slightly following the 5 

intervention, relative to the control (Table 4). However, this increase was not significant (p = 0.702) 6 

and there was no significant interaction between season and period (p= 0.093). Post-hoc analysis 7 

indicated no significant change in any individual seasons (Figure 4c; p > 0.05).  There was also no 8 

significant change in the seasonality of the chlorophyll a concentration (Figure 5), confirmed by the 9 

GAM modelling approach (p = 0.364). However, there was large inter-annual variability in the 10 

seasonality of chlorophyll a dynamics (Figure 5), including elevated summer chlorophyll 11 

concentrations in both the Before and After periods. 12 

Table 4 Before-After-Control-Impact (BACI) analysis results using a two-way Analysis of Variance 13 
including the effect of the interaction of Period (Before and After) and season on mean difference 14 
between lakes (Elterwater – Blelham). Where a significant interaction was found, post-hoc analysis 15 
of contrasts was done to look at Period effect in individual seasons.  Bold face and asterisks denote 16 
significant results at the 0.05 (*) level. 17 

 Mean difference ± SD  P-value 
 Before After Period × Season Period 
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TP (annual) -2.5 ± 11.0 -3.9 ± 9.3 0.025 * 0.538 

Winter -12.9 ± 5.4 -5.9 ± 4.2  0.117 

Spring  0.0 ± 5.5 -10.4 ± 12.1  0.017 * 

Summer 5.6 ± 7.6 -0.1 ± 7.36  0.191 

Autumn -2.7 ± 16.9 0.8 ± 7.0  0.484 

SRP (annual) 1.1 ± 2.0 1.3 ± 2.8 0.748 0.588 

Winter -1.5 ± 2.2 -1.8 ± 1.5  - 

Spring 1.4 ± 1.5 1.1 ± 1.1  - 

Summer 2.2 ± 1.0 3.2 ± 1.8  - 

Autumn 1.8 ± 1.0 2.7 ± 3.8  - 

Chlorophyll a (non-
transformed data) 

-0.1 ± 19.5 7.3 ± 30.7 0.093 0.702 

Winter -0.3 ± 2.3 0.7 ± 2.4  - 

Spring -0.8 ± 6.9 -2.9 ± 5.0  - 

Summer -6.7 ± 10.7 18.3 ± 52.9  - 

Autumn 9.7 ± 38.7 12.6 ± 26.2  - 

Profiles from 2018-2019 showed that following the intervention anoxia occurred in up to 20% of the 1 

lake volume during the summer (Figure 6). In addition, accumulation of BAP persisted in the deepest 2 

part of the lake, indicating persistent internal loading (Figure 6). Concentrations of BAP at 6 m were 3 

> 5 times that at 0.5 m during the summer stratified period (Figure 6). Furthermore, the mass-4 

balance results suggest that internal loading contributed three times more to the TP budget than 5 

external loads during summer following the intervention (Supplementary Information 10). 6 

 7 
Figure 6 Approximate volume of Elterwater-IB that is anoxic (< 2 mg L-1, solid line) and concentration 8 

of biological available phosphorus (dashed lines) in the surface (0.5 m) and hypolimnion (6 m) based 9 

on profiles collected from May 2018 - December 2019. 10 
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Discussion 1 

Changes to Elterwater-IB WRT 2 

This study aimed to assess the success of the WRT manipulations in affecting lake physical structure 3 

and water quality, based on four elements: 1) WRTs, 2) thermal structure, 3) development of 4 

hypolimnetic anoxia, and 4) nutrient and chlorophyll a concentrations. Although there was some 5 

change in WRTs in response to the intervention, it was not sufficient to have a large effect on the 6 

thermal structure, with anoxia persisting. No evidence for significant reductions to internal loading 7 

or water column nutrient and chlorophyll a concentrations were reported. The intervention reduced 8 

annual WRT by 40% and seasonal WRTs by 29 – 45%, equivalent to an 8 day reduction in summer, a 9 

smaller change than the natural variability in WRT between years. The intervention change in WRT 10 

was less than the dilution efforts at Moses Lake, Lake Veluwe and Lake Taihu, which reduced annual 11 

WRTs by 63% (Welch et al., 1992), 75% (Cooke et al., 2005; Hosper and Meyer, 1986) and 51% (Hu et 12 

al., 2010), respectively. In the years when flushing and dilution occurred in Moses and Veluwe Lakes, 13 

both non-stratifying lakes, more than 50% reductions in TP concentrations were reported and 14 

chlorophyll a concentrations reduced (Cooke et al., 2005; Hosper and Meyer, 1986; Welch et al., 15 

1992). The greater success of these schemes could relate to the larger overall reductions in WRT, the 16 

initial WRT, and the rate of flushing being maintained through pumping rather than via the passive 17 

flow diversion used in Elterwater. Water quality conditions prior to intervention were also worse 18 

than at Elterwater, leaving the potential for greater improvements.   19 

Changes to thermal structure and stratification 20 

The change in WRT had a small but quantifiable impact on Elterwater-IB’s physical structure, 21 

partially satisfying element two of the assessment. The summer stratified period was shortened by 2 22 

days and was 7% less stable, and average summer surface water temperatures were 0.7 °C cooler 23 

with the intervention, demonstrating the cooling effect of the inflow in summer (Carmack et al., 24 

1979; Richards et al., 2012).  However, the cooling effect was not sufficient to break down 25 

stratification and considerably larger changes in WRT would be required to modify the heat budget 26 

sufficiently to induce the desired changes to thermal structure.  27 

In the summer, lake surface heat fluxes are likely to be considerably larger than the heat flux exerted 28 

by the inflows (Livingstone and Imboden, 1989) and are therefore difficult to overcome, despite a 29 

45% decrease in WRT. Previous modelling studies in two reservoirs, considering a range of WRTs, 30 

showed that maintained flow rates can affect stratification (Li et al., 2018; Straškraba and Hocking, 31 

2002). Halving reservoir WRT, using a constant inflow rate, resulted in a 30 day shorter stratified 32 

period, with both later onset and earlier overturn (Li et al., 2018). However, Straškraba & Hocking 33 
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(2002) suggest that below a WRT of 200 days, WRT changes have an effect on stratification stability, 1 

but not on stratification length.   Field evidence linking shorter WRTs with shorter stratified periods 2 

is often gathered at times of concurrent meteorological change (Andersen et al., 2020; Woolway et 3 

al., 2018), which  both highlights the importance of transient weather effects for stratification, but 4 

also partially confounds our ability to discern the specific effects of WRT change. The minor changes 5 

in stratification length, following the intervention, suggests larger WRT reductions or WRT 6 

reductions targeted at specific times of year may be needed in Elterwater-IB to effect a larger 7 

change in the thermal structure of the lake and consequent water quality.  8 

Prevention of hypolimnetic anoxia and internal loading as a means to reduce nutrient 9 

and phytoplankton concentrations 10 

Our results showed evidence of continued hypolimnetic anoxia, and the accumulation of BAP in 11 

deep water, suggesting that internal loading continued in Elterwater-IB following the intervention. 12 

Previous water diversion interventions provide limited evidence of their effect on internal loading, as 13 

the target action was dilution and flushing of nutrients and phytoplankton biomass. However, 14 

evidence from Moses Lake suggests internal loading may have increased following increased flushing 15 

rate due to greater sediment resuspension (Welch and Patmont, 1980).  Our results also indicate 16 

that internal loading remains a dominant source of P to the water column. For our study site, the 17 

water source of the intervention is lower in nutrients than the lake (APEM, 2012) and, where 18 

internal loads exceed external loads, the additional flow may act to dilute nutrient concentration 19 

(Elliott et al., 2009; Jones et al., 2011). No significant change in P concentration following the 20 

intervention, suggests that there is either no dilution effect or the effect is being compensated for by 21 

additional internal loading. 22 

WRT changes can affect phytoplankton concentrations in several ways, including through changes to 23 

thermal structure, nutrient loading, and direct flushing. In our study, in-lake chlorophyll a 24 

concentrations did not change after the intervention, suggesting the change in WRT was insufficient 25 

to reduce phytoplankton growth by reducing internal loading or by increasing losses through 26 

increased flushing. Reducing WRT has been shown to reduce phytoplankton biomass through 27 

flushing in other studies (Hosper and Meyer, 1986; Welch et al., 1992), although drawing direct 28 

conclusions on cause-effect in case studies is often complicated as a result of the co-implementation 29 

of multiple restoration measures including external load reduction.  A modelling study with a 50% 30 

increase in discharge only reduced chlorophyll a by 12% (Zhang et al., 2016), failing to reduce 31 

nutrient concentrations or impact growth rate sufficiently. Although not assessed here, decreases in 32 

WRT can also impact losses of zooplankton to a greater extent than phytoplankton where the 33 
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flushing rates exceeds the growth of the former but not the latter (Obertegger et al., 2007; Rennella 1 

and Quirós, 2006). In our study, the lack of response in chlorophyll a concentration is not surprising 2 

given that nutrient concentrations also did not change, a result that is commonly reported in similar 3 

hydrological interventions across other case studies (Hu et al., 2010; McGowan et al., 2005; Zhang et 4 

al., 2016).   No significant change in chlorophyll a concentration with the intervention indicates that 5 

either none of the flow-related mechanisms had much obvious effect, were cancelling each other 6 

out, or the system was resilient to WRT changes within hydrological and physical conditions naturally 7 

occurring in Elterwater.  The modest change in WRT might alter species composition, by selecting for 8 

taxa with different growth rates (Reynolds et al., 2012) potentially occurring before any noticeable 9 

change in total biomass.  10 

Implications for future restoration in Elterwater and other lakes 11 

The success of lake restoration measures, particularly over the long term, is often limited (Jilbert et 12 

al., 2020; Søndergaard et al., 2007). One common reason for failure is insufficient understanding of 13 

site-specific aspects of lake functioning, water residence times, and nutrient sources before 14 

restoration measures are implemented (Hamilton et al., 2018; Lürling et al., 2016). 15 

Using a hydrodynamic model, we demonstrated that a decrease in WRT in Elterwater-IB had a 16 

measurable but minor effect on stratification and water temperature compared to the natural 17 

variability of these physical variables. Other research has shown that inter-annual variability can far 18 

exceed restoration or management impacts (e.g. Fink et al., 2014), a consequence being that longer 19 

time series are needed to confirm, statistically, treatment effects. For example, in this study the 20 

large inter-annual variability in chlorophyll a concentrations may have masked smaller but genuine 21 

impacts that could only be identified statistically with a much longer timeseries of data. Therefore, 22 

understanding the inter-annual variability over significant time periods is crucial to design effective 23 

schemes and detect “real” and relevant changes. This highlights the need for multi-year studies to 24 

fully determine intervention effects (Smokorowski and Randall, 2017), also allowing for adaptive 25 

management of protected sites (Tanner-McAllister et al., 2017), crucial for long-term management 26 

success.  27 

In addition, single site BA studies can fail to capture changes caused by external factors, co-occurring 28 

with management (Stewart-Oaten et al., 1986), and including a “control” site in BACI analysis, 29 

partially alleviates this (Smokorowski and Randall, 2017; Stewart-Oaten et al., 1986). Had we not 30 

employed the BACI approach, utilising long-term data, we may, for example, have incorrectly 31 

concluded that the apparent decrease in spring TP and chlorophyll a concentrations in Elterwater-IB 32 

(Figure 4) were direct effects of the intervention, whereas, similar changes were observed in our 33 
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control lake. However, “control” systems at the ecosystem scale may not be considered perfect 1 

controls (Kerr et al., 2019), but do provide comparisons to identify variations in response to local 2 

climate effects (Schwartz, 2015). 3 

For the hydrological interventions at Elterwater, a simple 1-D hydrodynamic model allowed us to 4 

isolate the intervention effects, however small, of modifying inflow rates on lake stratification. This 5 

modelling approach is transferable to other sites and could be applied to conduct site-specific 6 

assessments to inform the suitability of this approach given specific lake characteristics, heat 7 

budgets, and local weather variability. A pre-intervention modelling study of this kind, for example, 8 

may have been useful in setting intervention targets, with respect to indicators presented in this 9 

paper. We recommend that additional modelling be conducted in this respect to aid the 10 

implementation of future WRT management interventions. 11 

Conclusions 12 

Water residence time was reduced in all seasons in Elterwater-IB and this had quantifiable, if small, 13 

effects on lake temperatures. The extent of the change in the lake’s thermal structure was 14 

insufficient to induce significant changes in water quality, with summer stratification, seasonal 15 

anoxia, and internal loading persisting after the intervention. Greater changes, or WRT 16 

manipulations that target particular times of year, would be needed to modify lake physical 17 

structure sufficiently to inhibit stratification in this lake, whilst also considering undesirable effects 18 

on ecosystem function. Hydrodynamic modelling and a systems approach to lake restoration, 19 

including knowledge of nutrient sources and inter-annual variability, would be crucial to determine 20 

the magnitude of change required to produce a measurable effect on lake water quality. This study 21 

suggests that WRT manipulations can impact lake thermal structure in short-residence time lakes, 22 

although the extent of the change is lake dependent, requiring in depth investigations to determine 23 

likely effectiveness prior to any intervention as well as long-term targeted monitoring before and 24 

after intervention. 25 
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