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Abstract—Spatio-temporal fusion is a technique applied to 

create images with both fine spatial and temporal resolutions by 

blending images with different spatial and temporal resolutions. 

Spatial unmixing is a widely used approach for spatio-temporal 

fusion, which requires only the minimum number of input images. 

However, ignorance of spatial variation in land cover between 

pixels is a common issue in existing spatial unmixing methods. For 

example, all coarse neighbors in a local window are treated equally 

in the unmixing model, which is inappropriate. Moreover, 

determination of the appropriate number of clusters in the known 

fine spatial resolution image remains a challenge. In this paper, a 

geographically weighted spatial unmixing (SU-GW) method was 

proposed to address the spatial variation in land cover and increase 

the accuracy of spatio-temporal fusion. SU-GW is a general model 

suitable for any spatial unmixing methods. Specifically, the existing 

regularized version and soft classification-based version were 

extended with the proposed geographically weighted scheme, 

producing 24 versions (i.e., 12 existing versions were extended to 12 

corresponding geographically weighted versions) for spatial 

unmixing. Furthermore, the cluster validity index of Xie and Beni 

(XB) was introduced to determine automatically the number of 

clusters. A systematic comparison between the experimental results 

of the 24 versions indicated that SU-GW was effective in increasing 

the prediction accuracy. Importantly, all 12 existing methods were 

enhanced by integrating the SU-GW scheme. Moreover, the 

identified most accurate SU-GW enhanced version was 

demonstrated to outperform two prevailing spatio-temporal fusion 

approaches in a benchmark comparison. Therefore, it can be 

concluded that SU-GW provides a general solution for enhancing 

spatio-temporal fusion, which can be used to update existing 

methods as well as future potential versions. 

 

Index Terms—Image fusion, spatio-temporal fusion, spatial 

unmixing, geographical weighting (GW). 
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NOMENCLATURE 

BR 
The blocks removed scheme for spatial 

unmixing 

FCM 
The fuzzy c-means scheme for spatial 

unmixing 

FSDAF 
The flexible spatio-temporal data fusion 

method 

GW 
The geographically weighted scheme for 

spatial unmixing 
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STARFM 
The spatial and temporal adaptive 

reflectance fusion model 

STDFA 
The spatial and temporal data fusion 

approach 

SU 
Spatial unmixing (i.e., one of the UBDF, 

STDFA and VIPSTF-SU choices) 

SU-BR Blocks-removed spatial unmixing 

SU-B-G 
Spatial unmixing integrating the BR and 

GW schemes 

SU-FCM FCM-based spatial unmixing 

SU-F-B 
Spatial unmixing integrating the FCM 

and BR schemes 

SU-F-B-G 
Spatial unmixing integrating the FCM, 

BR and GW schemes 

SU-F-G 
Spatial unmixing integrating the FCM 

and GW schemes 

SU-GW 
Geographically weighted spatial 

unmixing 

UBDF The unmixing-based data fusion method 

VIPSTF-SU 
Virtual image pair-based spatio-temporal 

fusion 

XB Cluster validity index of Xie and Beni 

I. INTRODUCTION 

Remote sensing satellites offer effective data sources for 

monitoring the Earth’s surface. Free access to the data provided 

by a number of satellites (e.g., MODerate resolution Imaging 

Spectroradiometer (MODIS) and Landsat data) facilitates 

greatly repeated observation at the global scale [1], [2]. With an 

increasing demand for real-time and precise terrestrial 

monitoring, such data with both fine spatial and temporal 

resolutions are in great demand. Due to technical and budget 

limitations, however, existing single satellite sensors can 

provide remotely sensed images with either fine temporal 

resolution (e.g., daily MODIS images) or fine spatial resolution 

(e.g., 30 m Landsat images), but not both. To cope with this issue, 

spatio-temporal fusion methods have been developed over the 

decades [3]-[9]. Spatio-temporal fusion aims to create 

time-series images with both fine spatial and temporal 

resolutions, by blending images with fine spatial resolution, but 

coarse temporal resolution (e.g., 16-day, 30 m Landsat images) 

and images with fine temporal resolution, but coarse spatial 

resolution (e.g., daily, 500 m MODIS images). In recent years, 

spatio-temporal fusion has been developed rapidly and applied 

widely in a variety of domains, such as the monitoring of  

phenology dynamics [10]-[13], land surface temperature 

[14]-[18], suspended particulate matter [19], leaf area index 

[20]-[22], flooding [23], [24] and evapotranspiration [25]. 

Generally, three main groups of spatio-temporal fusion 

approaches can be identified: spatial unmixing-based methods 
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[26]-[32], spatial weighting-based methods [33]-[36] and 

machine learning-based methods [37]-[42]. Based on these 

categories, some hybrid methods have also been proposed 

[43]-[45]. These types of methods will be introduced briefly in 

the following.  

A. Spatial unmixing-based methods 

The concept of spatial unmixing is substantially different 

from the well-known spectral unmixing. The latter aims to 

estimate the proportion of each class within the coarse pixel and 

the class reflectances (also termed endmembers) are known, 

while the former aims to estimate the class reflectances and the 

class proportions are known (by referring to the fine spatial 

resolution data at the adjacent time). Spatial unmixing-based 

spatio-temporal fusion methods have been popular for their clear 

physical meaning and the requirement of minimum number of 

input images. Gevaert and García-Haro [46] made a systematic 

comparison between the unmixing-based data fusion (UBDF) 

and the spatial and temporal adaptive reflectance fusion model 

(STARFM), which are typical exemplars of spatial unmixing- 

and spatial weighting-based models, respectively. The results 

indicate that spatial unmixing is more advantageous when very 

few fine spatial resolution images (fine images hereafter) are 

available. The multisensor multiresolution technique proposed 

by Zhukov et al. [47] is one of the earliest studies to present the 

spatial unmixing-based method, where the influence of selected 

parameters and sensitivity to sensor noise were discussed 

systematically. Zurita-Milla et al. [26] downscaled MEdium 

Resolution Imaging Spectrometer (MERIS) images to the 

Landsat-like spatial resolution using UBDF, with an analysis of 

the optimal number of clusters and window size. The spatial 

temporal data fusion approach (STDFA) proposed by Wu et al. 

[29] enhances the prediction by taking full advantage of the 

known fine image. The spatial unmixing-based virtual image 

pair-based spatio-temporal fusion (VIPSTF-SU) method 

proposed by Wang et al. [30] decreases the difference in feature 

space between images at the known and prediction times by 

introducing the concept of the virtual image pair. Zhou and 

Zhong [48] developed an image fusion model based on a 

Kalman Filter algorithm that can estimate the uncertainty in 

spatial unmixing. 

B. Spatial weighting-based methods 

Amongst the spatial weighting-based methods, STARFM [33] 

is one of the most widely applied methods, which employs 

spatial filtering to estimate the reflectance of the fine spatial 

resolution pixels based on the surrounding spectrally similar 

pixels. STARFM was adjusted to predict changes in vegetation 

by introducing a disturbance index to capture the changes [34]. 

The enhanced STARFM method proposed by Zhu et al. [35] 

further enhanced prediction in heterogeneous landscapes by 

using a conversion coefficient to model the differences in 

reflectance changes between the coarse and fine spatial 

resolutions. Fit-FC [36] was proposed to address the problem of 

strong temporal changes such as seasonal changes. 

C. Machine learning-based methods 

Machine learning-based methods have been developed for 

spatio-temporal fusion. Huang and Song [37] proposed to 

establish the relation between the fine and coarse data via sparse 

representation based on two fine and coarse image pairs. Song 

and Huang [38] further extended the sparse representation 

method for the case with only one fine and coarse image pair. 

Wu et al. [39] utilized semi-coupled dictionary learning to fit the 

relationship between images at different spatial resolutions 

images with an L1/L2 mixed regularization sparse coding 

scheme. In [40], a nonlinear mapping convolutional neural 

network was proposed to replace the sparse representation 

method for relating MODIS and Landsat images. Moosavi et al. 

[41] proposed a hybrid wavelet-artificial intelligence fusion 

approach to predict fine spatio-temporal resolution land surface 

temperature data. Liu et al. [42] developed a two-stream 

convolutional neural network to consider the temporal 

dependence between fine images and formulate a temporal 

constraint to fully exploit the temporal information in the 

time-series.  

D. Hybrid methods 

Several hybrid methods have also been developed by 

combining the strategies of spatial weighting and spatial 

unmixing. The Flexible Spatiotemporal DAta Fusion (FSDAF) 

method [43] utilizes spatial unmixing to predict the temporal 

changes of each land cover class and spatial weighting to ensure 

spatial continuity. In the improved FSDAF method proposed by 

Liu et al. [44], the time-dependent changes predicted by spatial 

unmixing and space-dependent changes predicted by the thin 

plate spline interpolation are integrated. To address changes in 

land cover class, Li et al. [45] introduced an enhanced FSDAF 

that incorporates sub-pixel class proportion change information 

by employing a linear spectral unmixing strategy. 

E. Extended versions of spatial unmixing 

1) Regularized spatial unmixing 

In spatial unmixing-based spatio-temporal fusion, prediction 

of reflectances may sometimes be challenging, due to the 

inherent uncertainty of the linear mixing model (mixtures of 

land cover in practice can be more complex than be represented 

by the model), collinearity between endmembers and complex 

spatial distribution of land cover classes [47], [49], [50]. Thus, a 

variety of extended versions have been developed to regularize 

the solution by adding different constraints to the spatial 

unmixing model. Zhukov et al. [47] and Amorós-López et al. 

[49] applied a preset class reflectance estimated from coarse 

images as a regularization term to reduce the uncertainty in the 

prediction of class reflectance. Xu et al. [32] incorporated the 

fine spatial resolution class spectral signature estimated using 

STARFM in advance. The constrained spatial unmixing model 

based on prior information, however, can be difficult to apply in 

practice since such information may be unavailable or imprecise. 

To address the common problem of the block effect which exists 

widely in spatial unmixing, Wang et al. [51] proposed the 

blocks-removed spatial unmixing (SU-BR) method. SU-BR 

constructs a spatial continuity term by assuming that the 

reflectances of the same class in spatially adjacent pixels are the 

same. The constraint is incorporated without the need of any 

ancillary information. It is regarded as a dynamic constraint and 

is updated iteratively to balance with the original data fidelity 

term, and to approach the optimal prediction gradually. SU-BR 

is, thus, a practical solution amongst the family of regularized 

versions. 
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2) Soft classification-based spatial unmixing 

The spatial unmixing-based methods normally require a 

known fine spatial resolution map (usually obtained by land 

cover classification of a multispectral image) to characterize the 

distribution of land cover classes at the prediction time, based on 

the assumption of no land cover changes between the two times. 

Conventional spatial unmixing methods are implemented using 

the hard classified land cover map at the known time, and the 

predictions fail to reproduce the intra-class spectral variation 

within each coarse pixel. Considering the existence of mixed 

pixels at the known fine image and the uncertainty in land cover 

mapping, Amorós-López et al. [49] performed soft classification 

of the known fine image to recover the intra-class spectral 

variation. Soft classification is also applied in [45] to extract 

sub-pixel scale land cover information. The unsupervised fuzzy 

c-means (FCM) method applied in [49] is a widely 

acknowledged soft classification approach in spatial unmixing 

(called SU-FCM hereafter). FCM characterizes the possibility of 

a pixel belonging to each class through a continua ranging from 

0 to 1. 

F. The proposed geographically weighted spatial unmixing 

Due to the existence of spatial heterogeneity, spatial variation 

in land cover is extremely common in remotely sensed images. 

In spatial unmixing, the neighboring coarse pixels are used to aid 

the prediction of the class reflectance in the center pixel, but all 

neighboring coarse pixels are treated equally (i.e., their weights 

are all a constant of one). Considering the heterogeneity of 

landscapes, however, different coarse neighbors should 

contribute differently to the center pixel [52]-[54]. This is a 

common problem for existing spatial unmixing methods, 

including the extended versions based on regularization (e.g., the 

representative SU-BR version) and soft classification (e.g., the 

commonly used SU-FCM version). According to the Tobler's 

First Law of Geography [55], the further the distance to the 

target pixel is, the less spatial association the neighboring pixel 

has with the target pixel. Mathematically, the weights assigned 

to the neighboring pixels should decrease as the distance 

increases. The law provides a direct solution to quantify the 

influence of each neighboring coarse pixel. Correspondingly, in 

this paper, a geographical weighting (GW)-based spatial 

unmixing scheme (called SU-GW hereafter) was proposed to 

account for the spatial variation and characterize the 

contributions of coarse neighbors more reliably. 

G. Determination of number of clusters in spatial unmixing 

The known fine spatial resolution land cover map plays an 

important role in spatial unmixing. Owing to the lack of training 

data which may require costly and laborious field investigation, 

especially for long time-series data covering a large area, 

unsupervised classification has been used widely in spatial 

unmixing as it is user-friendly and can be implemented 

automatically. In unsupervised classification, the number of 

clusters is a key parameter. Until now, however, estimation of 

the optimal number of clusters in spatial unmixing has relied on 

empirical or prior knowledge. Previous studies indicated that 

3-to-6 classes can be an appropriate choice [43], [44], but this 

may not be universal for all cases, especially for areas with great 

heterogeneity. Thus, a more practical method is needed urgently. 

In [56], a cluster validity index was proposed by Xie and Beni 

(XB hereafter) to determine the optimal number of clusters in 

unsupervised classification by quantifying the compactness and 

separation of partitions. The XB index has been validated to be 

applicable in subpixel mapping [57]. In this paper, the XB index 

was explored to demonstrate its potential in spatial 

unmixing-based spatio-temporal fusion. 

H. Contributions 

The main contributions of this paper are listed as follows. 

1) SU-GW was proposed to quantify adaptively the 

influences of coarse neighbors in the spatial unmixing 

model, and further, increase the accuracy of 

spatio-temporal fusion. 

2) SU-GW provides a general framework suitable for any 

spatial unmixing method. It can be integrated 

conveniently with the extended versions based on 

regularization and soft classification, as mentioned 

earlier. In this paper, 12 existing spatial unmixing 

methods (three typical original spatial unmixing 

methods (i.e., UBDF, STDFA and VIPSTF-SU) coupled 

with two representative extended versions (i.e., SU-BR 

and SU-FCM) or one of them or neither) were extended 

to their corresponding geographically weighted 

versions. 

3) A systematic comparison between the 12 existing 

versions and the 12 proposed geographically weighted 

versions was conducted to investigate the benefit of each 

scheme and identify the most accurate version. The 

accuracy of the most accurate version (i.e., SU-F-B-G) 

was compared with the prevailing spatio-temporal 

fusion methods (i.e., STARFM and FSDAF) to 

demonstrate the advantages of the former. 

4) The XB index was applied to determine automatically 

the optimal number of clusters in unsupervised 

classification of the known fine image in spatial 

unmixing. This is different from current strategies that 

determine the number of clusters empirically or based on 

prior knowledge. 

The remainder of this paper is organized as follows. In 

Section II, the principles of two enhanced version (i.e., SU-BR 

and SU-FCM) and the proposed SU-GW are illustrated. 

Furthermore, the integrated versions based on the three schemes 

are also presented. In Section III, experimental results on four 

datasets are provided to make a systematic comparison between 

the 24 methods and demonstrate the advantage of SU-GW and 

its integrated extensions. Section IV discusses the results, 

characteristics of SU-GW and the problems that remain open. A 

conclusion is made in Section V. 

II. METHOD 

A. Original spatial unmixing (SU) 

Generally, a unified framework can be used to summarize the 

mechanisms of spatial unmixing-based spatio-temporal fusion 

as 
ˆ ( ) ( )p k p k kf f      L L M M L Q .             (1) 

In Eq. (1), ˆ
pL  is the fine image (e.g., Landsat image) predicted 

at the target time. The prediction is divided into two parts: the 

known fine image kL  weighted by a coefficient   and the 
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increment related to coarse difference image p k Q M M , 

where pM  and kM  are the coarse images (e.g., MODIS images) 

at the prediction and known times, respectively. f is a function 

to predict the fine spatial resolution increment (i.e., a 

downscaling process). For spatial unmixing, it is characterized 

by a linear unmixing model, which aims to estimate the 

reflectances of the land cover classes in each coarse pixel based 

on a local window. Its explicit mathematical expression can be 

written as 

1 11 1 1 1 1

1

1

c C

i i ic iC c i

N N Nc NC C N

Q p p p e
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where N is the number of coarse pixels in the local window and 

C is the number of land cover classes in the image. i  is the i-th 

element of the residual error term ε. iQ  is the observed 

reflectance (in difference image) of the coarse pixel at iX  

composing an N×1 vector Q. ce  is the reflectance for land cover 

class c constituting a C×1 vector E that needs to be solved. icp  

denotes the coarse proportion of class c in the coarse pixel at iX , 

which is derived by upscaling a known, temporally neighboring 

fine spatial resolution classified land cover map. All the 

proportions constitute an N×C matrix P. Generally, E can be 

solved by the least squares rule based on the objective function 
2 2

2 2
ˆ arg min = arg min 

E E

E ε PE Q .                 (3) 

The decomposed reflectances are assigned to the corresponding 

land cover classes of the fine pixels to construct the fused image. 

Different choices of   lead to different spatial 

unmixing-based methods. In this paper, three typical methods 

were considered, as illustrated briefly in the following. 

1) UBDF ( 0  ) 

For UBDF, the weight   in Eq. (1) equals zero, which means 

the original fine image kL  is not used. That is, the spatial 

unmixing process is operated directly on the observed coarse 

image pM .  

2) STDFA ( 1  ) 

To reproduce more intra-class spectral variation, STDFA was 

developed to incorporate the original fine image kL  and the 

weight   equals one. Specifically, the coarse difference image 

(i.e., p kM M ) is unmixed to obtain the reflectance change of 

each land cover class at the fine spatial resolution (i.e., the fine 

difference image), and the final prediction is the combination of 

the predicted fine difference image and the known fine image 

kL . 

3) VIPSTF-SU (  needs to be estimated) 

In VIPSTF-SU,   is a specific value calculated based on the 

defined concept of the virtual image pair. The created virtual 

image pair (i.e., kM  and kL ) is closer to the data at the 

prediction time than the observed image pair (i.e., kM  and kL ) 

in feature space to reduce the uncertainty in the unmixing-based 

downscaling process. The predicted virtual difference image at 

the fine spatial resolution will be combined with the virtual fine 

image kL  to obtain the final fused image. 

Hereafter, the set of three spatial unmixing-based methods 

(i.e., UBDF, STDFA and VIPSTF-SU) is uniformly denoted as 

SU. 

B. Blocks-removed spatial unmixing (SU-BR) 

In the family of regularized spatial unmixing models, SU-BR 

proposed by Wang et al. [51] is a practical method without the 

need for any ancillary information. It was developed to remove 

the commonly existing blocky artifacts in spatial unmixing. In 

SU-BR, the spatial continuity is used as a constraint in addition 

to the objective function in Eq. (3) (i.e., maximizing data fidelity) 

and an iterative scheme is employed to balance data fidelity and 

spatial continuity. The new objective function of SU-BR is 

written as 
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where 
, ,i j cI  is an indicator function defined as 

, ,

1, if pixels at and both contain class 

0, otherwise

i j

i j c

c
I


 


X X
.    (5) 

In Eq. (4),
 iR  and iD  are the measurements of data fidelity and 

spatial continuity, respectively. ,i cE  and ,j cE  are the 

reflectances of class c  for the center pixel at iX and its 

neighboring pixel at jX , respectively. 0N  denotes the number 

of the neighbors in the local window.   is a balancing 

parameter taking a value between 0 and 1, A is a predefined 

magnitude regularization parameter and t is the iteration number. 

SU-BR is an optimization process, as the class reflectances of 

the neighboring pixels are updated one-by-one in each iteration, 

changing the constraint dynamically.  

C. FCM-based spatial unmixing (SU-FCM) 

Conventionally, unsupervised classification algorithms such 

as K-Means are used commonly to obtain the fine spatial 

resolution land cover map, following the assumption that the 

fine spatial resolution pixels are pure. With defined hard class 

labels, the estimated class reflectance is assigned to the 

corresponding fine pixels within each coarse pixel directly. That 

is, fine pixels belonging to the same class share exactly the same 

reflectance. Thus, the intra-class spectral variation is ignored 

inside each coarse pixel. 

Generally, the signal of a pixel with a certain spatial scale in 

remotely sensed images can be a mixture of that for multiple 

classes, especially in highly heterogeneous regions, even if the 

spatial resolution is relatively fine [58]. To address the mixed 

pixel problem and characterize the intra-class spectral variation, 

fuzzy c-means (FCM), one of the representative soft 

classification methods, was developed alternatively for 



 5 

interpretation of the known fine images [49], producing the 

SU-FCM method.  

In SU-FCM, the degree to which a fine pixel belongs to one 

class is expressed not in terms of a binary 0 or 1, but 

alternatively by a continua that ranges between 0 and 1. The 

produced fine spatial resolution proportion map is degraded to 

the coarse spatial resolution to produce coarse proportions 

( )

1

1 M
i

ic jc

j

p f
M 

                                 (6) 

where ( )i

jcf  denotes the FCM-estimated proportion of class c in 

the j-th fine pixel falling within the coarse pixel at iX , and M  is 

the number of fine pixels within the coarse pixel. Following Eq. 

(2), the reflectance of each class can be estimated 

correspondingly. Afterwards, the reflectance of each fine pixel 

at the prediction time is the combination of the estimated class 

reflectances of all classes weighted by the corresponding 

proportions. The reflectance for the j-th fine pixel within iX , 

denoted as ( )i

jq , can be estimated as 

( ) ( )

1

C
i i

j jc c

c

q f e


  .                             (7) 

As seen in Eq. (7), although the class reflectance ce  is fixed 

for a class, the FCM-estimated fine spatial resolution proportion 
( )i

jcf  varies for each fine pixel, even for those belonging to the 

same class in the traditional non-FCM-based spatial unmixing. 

Thus, by SU-FCM, fine pixels of the same class in the non-FCM 

case normally present different reflectances, which is beneficial 

for reproducing intra-class spectral variation. It should be 

stressed that the FCM-based soft classification method is also 

applicable to SU-BR, leading to SU-F-B. 

D. The criterion for defining the number of clusters 

In spatial unmixing-based spatio-temporal fusion, the 

required fine spatial resolution land cover map is usually 

produced from the known fine images, following the basic 

assumption of a stable land cover distribution between the 

known and prediction times. Moreover, unsupervised 

classification is used widely, as it does not require training 

samples and is convenient to implement, especially for long 

time-series data. As one of the most crucial parameters in 

unsupervised classification, the number of clusters affects the 

proportion matrix P in Eq. (3) directly as well as the stability of 

spatial unmixing. An overestimated number of clusters may 

generate classes with small-sized patches covered fully by only a 

single coarse pixel. In this case, the proportions of these classes 

in the neighboring coarse pixels are very likely to be zero; that is, 

there is no support from the neighbors for spatial unmixing, 

which will result in an unstable solution for these classes. On the 

other hand, an underestimated number of clusters may fail to 

characterize the spatial heterogeneity, as pixels with obviously 

different spectra can be grouped into the same class. Until now, 

however, the number of clusters in spatial unmixing has always 

been determined empirically or based on prior knowledge, 

which is costly or may be unreliable.  

In this paper, the widely acknowledged cluster validity index 

of Xie and Beni (XB) [56], [57] was employed to choose the 

optimal number of clusters. It should be stressed that, the XB 

value can only be calculated based on the known fine images 

instead of the target fine images which are actually unknown. 

Based on the assumption of no land cover changes, the number 

of clusters determined using the known fine image is rational for 

the fine image at the prediction time. 

The expression of XB is written as 

2

1 1

2

( )

( )
min

S C
m

ci c i

i c

c k
c k

u

XB C
S

 



 


 

 v y

v v
                     (8) 

where
 iy  is the spectra (vector) of the i-th fine pixel and S is the 

total number of pixels in the image. The fuzziness exponent m 

denotes the degree of class overlap and a value of two is widely 

used. cv  or kv  denotes the vector of the center of class c or k, 

and ciu  is the proportion of class c for the i-th pixel. 

The number of clusters leading to the smallest XB value can 

be chosen as the optimal value. With the estimated number of 

clusters, the fine resolution classified map and the coarse 

proportion matrix P in Eq. (3) are determined. 

E. The proposed geographical weighting in spatial unmixing 

In Eq. (2), each coarse pixel in the local window contributes 

equally to the center pixel (i.e., the weights are a constant of one), 

implying the inappropriate assumption that the reflectances of 

each land cover class do not show any spatial variation in the 

local window. However, according to Tobler's First Law of 

Geography [55], neighboring pixels nearer to the target pixel 

should have more influence on the analysis than those further 

away. The neglect of spatial variation in land cover class 

hampers the performance of the spatial unmixing-based methods 

inevitably. Thus, it is necessary to take spatial dependence into 

consideration. Alternatively, a weighting scheme (i.e., a 

geographical weighting) is incorporated into spatial unmixing to 

measure the influence of each neighboring pixel adaptively. As 

this is a common problem not only for the original spatial 

unmixing models, but also the extended versions (such as 

SU-BR and SU-FCM), the corresponding GW-based integrated 

versions are also developed in this section. 

1) The proposed geographically weighted spatial unmixing 

(SU-GW) 

In SU-GW, a weighting matrix with components calculated 

using a bi-square function [59] is incorporated into spatial 

unmixing. The bi-square function is written as 

 
2

2

1 , if

0 , otherwise

ij ij
ij

d b d b
w

       



                  (9) 

where 
ijd  is the spatial distance between the target pixel at iX  

and the neighboring pixel at jX  and b is the bandwidth 

measuring the distance-decay. The weighting function provides 

a continuous, near-Gaussian distribution when the distance from 

the neighbor to the target pixel is less than b, and zero for any 

pixel beyond b. More precisely, the weight is the largest for the 

center pixel and decreases as the distance increases, as the 

spatial dependence decreases. When the distance is larger than b, 

the weight is zero, as the spatial dependence disappears. In this 

paper, b is set to half of the diagonal length of the local window 

in spatial unmixing, as the pixels beyond the local window are 
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not involved in the calculation for the center pixel. It is worth 

noting that the weighting function is not limited to Eq. (9), which 

is a practical choice. Other functions complying the Tobler's 

First Law of Geography are also encouraged, such as the 

Gaussian function. 

Based on the quantification of contributions of spatial 

neighbors in Eq. (9), the goal in Eq. (3) becomes the 

minimization of the weighted residual; that is, Eq. (3) is 

extended by 

 
2 2

1/2

2
=1
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where W is an N×N diagonal weighting matrix and the j-th 

diagonal element 
jw  is the weight assigned to the pixel at jX  

calculated based on Eq. (9). jP  is the j-th row of proportion 

matrix P, denoting the proportions of C land cover classes in the 

pixel at jX  and jQ  is the corresponding observed reflectance 

for that pixel. As seen from Eq. (10), for a more distant neighbor 

the weight is smaller suggesting a reduced influence in the 

unmixing process. Fig. 1 depicts the weighting matrix 

graphically. For each pixel, the weight varies according to its 

location relative to the target center pixel. 
 

 
Fig. 1. Schematic diagram describing the weights assigned to neighboring pixels 

(with one of them marked by the blue star for example) in a local 5×5 pixel 

window based on Eq. (8). Darker green means a larger weight and vice versa. 
The weight of the target center pixel (marked by the red star) is one and the four 

pixels at the four corners contribute zero to the target pixel. All the weights vary 

between 0 and 1. 
 

2) The proposed extended version of SU-B-G 

The geographical weighting scheme can also be applied to the 

enhanced version of SU-BR described in Section II-B, producing 

the further extended version of SU-B-G. SU-B-G is developed 

by replacing the first term in Eq. (4) with Eq. (10). Thus, the new 

objective function is  
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Likewise, the iterative process in [51] can be applied to optimize 

the objective function and predict the fine class reflectance. 

3) The proposed extended versions of SU-F-G and SU-F-B-G 

As mentioned in Section II-C, the BR and FCM schemes can 

also be integrated to produce an extended version SU-F-B. If we 

adopt the GW scheme for the SU-FCM-based versions, 

SU-FCM and SU-F-B can be further extended to SU-F-G and 

SU-F-B-G, respectively. In these two new methods, the 

construction of the proportion matrix P and the calculation of 

fine pixel reflectances are the same as for SU-FCM described in 

Section II-C. The SU-F-B-G version integrates all three schemes 

(i.e., BR, FCM and GW) into one model. 

Fig. 2 presents the construction of the eight schemes (BR or 

not, FCM or not, and GW or not) applied to the three original SU 

methods (UBDF, STDFA and VIPSTF-SU), resulting in a total 

number of 12 new versions based on 12 existing non-GW 

versions. The relation between the different versions can be 

observed clearly based on the structure in Fig. 2. 

Mathematically, the main difference between the 12 proposed 

GW-based versions and the 12 original versions is that the 

original fidelity term in Eq. (3) is extended by including a 

weighting function (i.e., Eq. (10)). The performances of all 24 

versions will be analyzed systematically in Section III. 

 

 
Fig. 2. The construction of SU-GW and its extended version coupled with FCM 

or BR or both (24 versions in all, including 12 existing versions and 12 

corresponding geographically weighted versions proposed in this paper). 

III. EXPERIMENTS 

A. Data and experimental setup 

Four datasets were used to examine the performances of 

SU-GW and its extended methods (i.e., the 24 versions in Fig. 2). 

The datasets cover two heterogeneous regions, one region with 

land cover changes and one homogeneous region. 

The first heterogeneous region and the region with land cover 

changes are located in northern New South Wales, Australia, 

while the second heterogeneous region and the homogeneous 

region are located in southern New South Wales. For each 

region, two Landsat-MODIS image pairs were used, with the 

Landsat images acquired by TM (for the first heterogeneous 

region and the region with land cover changes) or ETM+ (for the 

second heterogeneous region and the homogeneous region) and 

the MODIS images acquired by Terra MOD09GA Collection 5. 

The spatial resolutions of the Landsat and MODIS images are 25 

m and 300 m, respectively. The first heterogeneous region 

covers a spatial extent of 2 km by 2 km. The acquisition dates of 

the two image pairs are 14 February 2005 and 3 April 2005. The 

second heterogeneous region covers a 2 km by 2 km rice-based 

irrigation system. The two image pairs were acquired on 5 

January 2002 and 13 February 2002. This area experienced 

significant phenological changes during the period. For the 

region with land cover changes, the two image pairs were 

acquired on 25 October 2004 and 26 November 2004. The flood 

inundation caused abrupt changes in the distribution of the water 

class. The homogeneous region covers a 1.8 km by 1.8 km area 

and the image pairs were acquired on 4 December 2001 and 5 

January 2002. 
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The four pairs of Landsat-MODIS images are shown in Fig. 3. 

The task of spatio-temporal fusion for each region is to predict 

the latter Landsat image using the former Landsat-MODIS 

image pair and the latter MODIS image. The known latter 

Landsat image was used as a reference for accuracy assessment 

in each case. For quantitative assessment, five indices were used: 

the root mean square error (RMSE), relative global-dimensional 

synthesis error (ERGAS) [60], correlation coefficient (CC), 

universal image quality index (UIQI) [61] and spectral angle 

mapper (SAM). The prediction is more accurate when the 

RMSE, ERGAS and SAM values are smaller and CC and UIQI 

values are larger. They have been used widely for evaluation of 

image fusion methods, and have been introduced explicitly in a 

number of literature [62]. Thus, we did not introduce these 

indices again in this paper.  

B. Validation of the estimated optimal number of clusters 

The XB index was applied to determine the number of clusters 

for the four regions. Setting the range of number of clusters C as 

[3, 7], the calculated XB values for the first heterogeneous 

region, the region with land cover changes and the homogeneous 

region are shown in Fig. 4(a)-(c), respectively. Meanwhile, the 

corresponding accuracies (in terms of CC) of SU-FCM (based 

on all three original SU versions) under enumerated number of 

clusters are also presented. As can be seen in Fig. 4, the CCs 

reach the peak while the XB value is the smallest in almost all 

cases. The predictions of the first heterogeneous region using 

STDFA-FCM with different number of clusters are listed in Fig. 

5, where the optimal number of clusters is determined as 4 

according to Fig. 4(a). Obvious spectral distortion (e.g., in the 

marked yellow circles in the sub-area) can be observed in Fig. 

5(a) with an underestimated number of clusters. On the other 

hand, some small artifacts appear in Fig. 5(c)- Fig. 5(e) with 

overestimated number of clusters. Thus, both visual and 

quantitative assessments demonstrate the effectiveness of XB. 

Accordingly, in the following experiments, the number of 

clusters of the first heterogeneous region, the second 

heterogeneous region, the region with land cover changes and 

the homogeneous region are determined as 4, 5, 5 and 3, 

respectively. 

 

    
(a)                            (b)      (c)               (d)         (e)      (f)       (g)      (h) 

Fig. 3. (first line) Landsat and (second line) MODIS images for the first heterogeneous region acquired on (a) 14 February 2005 and (b) 3 April 2005, for the second 

heterogeneous region acquired on (c) 5 January 2002 and (d) 13 February 2002, for the region with land cover changes acquired on (e) 25 October 2004 and (f) 26 

November 2004, and for the homogeneous region acquired on (g) 4 December 2001 and (h) 5 January 2002. All images use NIR-red-green as RGB. 
 

 

   
number of clusters number of clusters number of clusters 

 
(a)                                                                                   (b)                                                                                  (c) 

Fig. 4. (red line) XB and (blue lines) CC values under enumerated number of clusters. (a) The first heterogeneous region. (b) The region with land cover changes. (c) 

The homogeneous region. The number of clusters with the smallest XB was determined as the optimal one in the experiments. 
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(a)                                        (b)                                        (c)                                      (d)                                       (e)                                       (f) 

Fig. 5. The predictions of STDFA-FCM for the first heterogeneous region under different number of clusters. (a) 3. (b) 4. (c) 5. (d) 6. (e) 7. (f) Reference. The images 

in the second line are the corresponding zoomed predictions for the sub-area marked in yellow in the first line. 
 

C. Comparison between GW and non-GW versions 

1) SU and SU-GW 

Figs. 6-9 display the results of the SU-based methods, 

including original SU, SU-BR, SU-FCM, SU-F-B and their 

corresponding GW-based versions for three regions. In Fig. 6, 

the results of all 24 versions are shown for systematical 

comparison. For clearer visual comparison between the results, a 

sub-area covering 60 by 60 Landsat pixels is shown for each 

case. It is observed clearly that the proposed GW-based methods 

can restore spectral information more accurately than the 

non-GW versions. For example, comparing Fig. 8(a) with Fig. 

8(b), it is obvious that with the GW-based scheme, the color of 

the red patch is closer to the reference. Similar phenomenon can 

also be observed in many cases in Figs. 6-9. Another interesting 

observation is that the GW scheme can help to alleviate the 

block effect to some extent. This can be illustrated by comparing 

the zoomed parts in Fig. 6(a) and Fig. 6(b). 

Fig. 10 shows the quantitative evaluation results for all four 

regions in terms of CC and RMSE, where the results of all 24 

versions are included. Obviously, for all versions, larger CC and 

smaller RMSE are produced when the GW-based scheme is 

considered. Specifically, for the first heterogeneous region, the 

increases in CC are 0.0263, 0.0138 and 0.0147 from UBDF, 

STDFA and VIPSTF-SU to their corresponding GW versions, 

respectively. With respect to the region with land cover changes, 

the accuracies of the SU-GW are also considerably greater than 

SU, with remarkable gains in CC of 0.0469, 0.0331 and 0.0383 

for UBDF, STDFA and VIPSTF-SU, respectively. 

2) SU-BR and SU-B-G 

Comparing the SU-BR prediction in Fig. 6(c) or Fig. 8(c) with 

the SU-B-G prediction in Fig. 6(d) or Fig. 8(d), we can see that 

the GW proposed scheme can further increase the accuracy of 

the prediction, even though the employment of the BR scheme 

already enhanced the prediction. 

The quantitative assessment results in Fig. 10 show that the 

GW scheme is beneficial to almost all the SU-BR methods. For 

the first heterogeneous region, the application of GW enhances 

the predictions with an increase in CC of 0.0280 for UBDF-BR, 

0.0152 for STDFA-BR and 0.0160 for VIPSTF-SU-BR. 

Focusing on the region with land cover changes, the increases in 

CC are all above 0.0300 from SU-BR to SU-B-G.  

3) SU-FCM and SU-F-G 

With the GW scheme, the performances of the SU-FCM 

methods are also enhanced obviously. See, for example, the 

predictions in Fig. 7(e) and Fig. 7(f). From the quantitative 

assessment in Fig. 10, it is seen that for the first heterogeneous 

region, based on the choices of UBDF, STDFA and VIPSTF-SU, 

the CC values of SU-F-G are 0.0293, 0.0159 and 0.0181 larger 

than the corresponding non-GW versions. Regarding the region 

with land cover changes, the SU-F-G methods increase the CCs 

by 0.0392, 0.0189 and 0.0248 correspondingly. 

4) SU-F-B and SU-F-B-G 

Checking the results in Figs. 6 and 7, the color is restored 

more accurately by SU-F-B-G in comparison with SU-F-B. This 

can be observed clearly by comparing the VIPSTF-SU-F-B 

result in Fig. 7(g) to the VIPSTF-SU-F-B-G result in Fig. 7(h).  

As can be seen from the CC and RMSE results presented in 

Fig. 10, the increase in CC and decrease in RMSE is prominent 

from SU-F-B to SU-F-B-G, especially for the region with land 

cover changes. More precisely, for this region, the increases in 

CC values are 0.0392, 0.0221 and 0.0303 for the three choices of 

UBDF, STDFA and VIPSTF-SU. Similarly, for the second 

heterogeneous region, with the GW scheme, the values of CC 

are 0.0097, 0.0038 and 0.0067 larger than corresponding 

SU-F-B methods. 
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(a1)                      (b1)                       (c1)                      (d1)                      (e1)                       (f1)                       (g1)                       (h1)                      (i1) 

 

 
(a2)                      (b2)                       (c2)                      (d2)                      (e2)                       (f2)                       (g2)                       (h2)                      (i2) 

 

 
(a3)                      (b3)                       (c3)                      (d3)                      (e3)                       (f3)                       (g3)                       (h3)                      (i3) 

Fig. 6. Landsat predictions for the first heterogeneous region based on the 24 methods. The first line presents the predictions of UBDF-based versions and the images 
in the second line are the corresponding zoomed predictions for the sub-area marked in yellow. The third line presents the predictions of STDFA-based versions and 

the images in the fourth line are the corresponding zoomed predictions. The fifth line presents the predictions of VIPSTF-SU-based versions and the images in the 

sixth line are the corresponding zoomed predictions. (a) SU. (b) SU-GW. (c) SU-BR. (d) SU-B-G. (e) SU-FCM. (f) SU-F-G. (g) SU-F-B. (h) SU-F-B-G. (i) Reference. 
 

 
(a)                         (b)                         (c)                       (d)                         (e)                         (f)                         (g)                         (h)                      (i) 

Fig. 7. Landsat predictions for the second heterogeneous region based on different enhanced VIPSTF-SU methods. (a) VIPSTF-SU. (b) VIPSTF-SU-GW. (c) 

VIPSTF-SU-BR. (d) VIPSTF-SU-B-G. (e) VIPSTF-SU-FCM. (f) VIPSTF-SU-F-G. (g) VIPSTF-SU-F-B. (h) VIPSTF-SU-F-B-G. (i) Reference. The images in the 
second line are the corresponding zoomed predictions for the sub-area marked in yellow in the first line. 
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(a)                         (b)                         (c)                       (d)                         (e)                         (f)                         (g)                         (h)                      (i) 

Fig. 8. Landsat predictions for the region with land cover changes based on different enhanced STDFA methods. (a) STDFA. (b) STDFA-GW. (c) STDFA-BR. (d) 
STDFA-B-G. (e) STDFA-FCM. (f) STDFA-F-G. (g) STDFA-F-B. (h) STDFA-F-B-G. (i) Reference. The images in the second line are the corresponding zoomed 

predictions for the sub-area marked in yellow in the first line. 

 

 
(a)                         (b)                         (c)                       (d)                         (e)                         (f)                         (g)                         (h)                      (i) 

Fig. 9. Landsat predictions for the region with land cover changes based on different enhanced VIPSTF-SU methods. (a) VIPSTF-SU. (b) VIPSTF-SU-GW. (c) 

VIPSTF-SU-BR. (d) VIPSTF-SU-B-G. (e) VIPSTF-SU-FCM. (f) VIPSTF-SU-F-G. (g) VIPSTF-SU-F-B. (h) VIPSTF-SU-F-B-G. (i) Reference. The images in the 
second line are the corresponding zoomed predictions for the sub-area marked in yellow in the first line. 

 

D. Systematic comparison between 24 versions 

The strategies of FCM and BR are considered systematically 

in the proposed GW-based methods. In this section, we compare 

the performances between FCM and non-FCM, BR and non-BR, 

and F-B and non-F-B schemes.  

First, the results in predicted by the FCM scheme are all closer 

to the reference than the non-FCM-based results (e.g., see the 

red objects in the yellow circles in Fig. 7(e)-(h) and Fig. 7(a)-(d)). 

This is because FCM can restore the intra-class variation 

compared with the conventional K-Means-based spatial 

unmixing. Focusing again on the results in Fig. 10, for the 

second heterogeneous region, the increases in CC are larger than 

0.0125 from SU to SU-FCM. With respective to the region with 

land cover changes, the predictions applying FCM have 

remarkable increases in CC of 0.0450, 0.0582 and 0.0614 for 

UBDF-, STDFA- and VIPSTF-SU-based methods, respectively, 

and the decreases in RMSE are 0.0011, 0.0021 and 0.0017 

correspondingly. 

Second, the blocks in predictions are removed noticeably with 

the BR scheme. Checking the results in Fig. 6, the dark green 

blocks in the sub-area are removed noticeably and the color is 

restored more accurately by the SU-BR-based methods than the 

original SU methods. Comparing the VIPSTF-SU-FCM result in 

Fig. 9(e) to the VIPSTF-SU-F-B result in Fig. 9(g), we can see 

clearly the removal of blocky artifacts and more accurate 

restoration of spectral information when incorporating the BR 

scheme. In Fig. 10, the bars of the SU-BR-based methods are 

always larger in CC and smaller in RMSE compared with the 

corresponding non-BR-based methods. For the second 

heterogeneous region, the increases in CC values are over 

0.0477, 0.0133 and 0.0189 with the employment of the BR 

scheme for UBDF, STDFA and VIPSTF-SU, respectively. 

Similarly, for the region with land cover changes, with BR 

applied, the values of CC are 0.0391, 0.0245 and 0.0338 larger 

for the corresponding non-BR-based methods. 

Third, as seen from the results in Figs. 6-9, the performance of 

SU-F-B is more satisfactory than both SU-BR and SU-FCM. For 

example, when applying the FCM and BR schemes together, the 

VIPSTF-SU-F-B result in Fig. 9(g) restores the spectral 

information more accurately than Fig. 9(c) predicted by 

VIPSTF-SU-BR and Fig. 9(e) predicted by VIPSTF-SU-FCM. 

The same observation can be made when comparing Fig. 7(g) to 

Fig. 7(c) and Fig. 7(e). The CC and RMSE results in Fig. 10 also 

suggest that the combination of both the FCM and BR schemes 

lead to greater accuracy than the separate FCM or BR scheme. 
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Fig. 10. The accuracy (in terms of CC and RMSE) of the 12 proposed GW-based and 12 corresponding non-GW-based spatial unmixing methods for different regions. 

SU represents one of the original spatial unmixing methods (i.e., UBDF, STDFA and VIPSTF-SU). 
 

H
o

m
o
g

en
eo

u
s 

re
g
io

n
  
  
  

  
  
  

  
  

  
  

  
  
  
  
  

  
  
R

eg
io

n
 w

it
h

 l
an

d
 c

o
v
er

 c
h

an
g
es

  
  
  

  
  
  

  
  

  
  
  
  

  
  
  

S
ec

o
n
d

 h
et

er
o
g
en

eo
u
s 

re
g
io

n
  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
  
 F

ir
st

 h
et

er
o
g

en
eo

u
s 

re
g

io
n

 



 12 

 
(a)                                     (b)                                     (c)                                       (d)                                       (e)                                      (f) 

Fig. 11. Landsat predictions for the first heterogeneous region based on STARFM, FSDAF and SU-F-B-G. (a) STARFM. (b) FSDAF. (c) UBDF-F-B-G. (d) 
STDFA-F-B-G. (e) VIPSTF-SU-F-B-G. (f) Reference. The images in the second line are the corresponding zoomed predictions for the sub-area marked in yellow in 

the first line. 

 

 
(a)                                     (b)                                     (c)                                       (d)                                       (e)                                      (f) 

Fig. 12. Landsat predictions for the second heterogeneous region based on STARFM, FSDAF and SU-F-B-G. (a) STARFM. (b) FSDAF. (c) UBDF-F-B-G. (d) 

STDFA-F-B-G. (e) VIPSTF-SU-F-B-G. (f) Reference. The images in the second line are the corresponding zoomed predictions for the sub-area marked in yellow in 
the first line. 

 

 
(a)                                     (b)                                     (c)                                       (d)                                       (e)                                      (f) 

Fig. 13. Landsat predictions for the region with land cover changes based on STARFM, FSDAF and SU-F-B-G. (a) STARFM. (b) FSDAF. (c) UBDF-F-B-G. (d) 

STDFA-F-B-G. (e) VIPSTF-SU-F-B-G. (f) Reference. The images in the second line are the corresponding zoomed predictions for the sub-area marked in yellow in 

the first line. 
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(a)                                     (b)                                     (c)                                       (d)                                       (e)                                      (f) 

Fig. 14. Landsat predictions for the homogeneous region based on STARFM, FSDAF and SU-F-B-G. (a) STARFM. (b) FSDAF. (c) UBDF-F-B-G. (d) STDFA-F-B-G. 

(e) VIPSTF-SU-F-B-G. (f) Reference. The images in the second line are the corresponding zoomed predictions for the sub-area marked in yellow in the first line. 
 

Table 1 Quantitative assessment of STARFM, FSDAF and SU-F-B-G 

  CC RMSE ERGAS SAM UIQI 
Ideal 1 0 0 0 1 

First Heterogeneous 

region 

STARFM 0.8037 0.0293 0.9608 0.1294 0.7943 

FSDAF 0.8155 0.0276 0.9088 0.1089 0.8025 
UBDF-F-B-G 0.7717 0.0337 1.1917 0.1217 0.7010 

STDFA-F-B-G 0.8066 0.0283 0.9312 0.1129 0.7965 

VIPSTF-SU-F-B-G 0.8352 0.0276 0.9454 0.0858 0.8025 

Second 

Heterogeneous 
region 

STARFM 0.8043 0.0411 1.6696 0.1758 0.7753 
FSDAF 0.8314 0.0357 1.4137 0.1522 0.8169 

UBDF-F-B-G 0.8005 0.0390 1.5070 0.2062 0.6659 
STDFA-F-B-G 0.8303 0.0360 1.4484 0.1533 0.8118 

VIPSTF-SU-F-B-G 0.8566 0.0314 1.1964 0.1450 0.8198 

Region with land 
cover changes 

STARFM 0.7329 0.0274 0.7920 0.1256 0.7136 
FSDAF 0.7213 0.0275 0.8025 0.1258 0.6937 

UBDF-F-B-G 0.6524 0.0311 0.9070 0.1536 0.5761 

STDFA-F-B-G 0.7098 0.0279 0.8154 0.1211 0.6883 
VIPSTF-SU-F-B-G 0.7330 0.0278 0.7927 0.1315 0.6667 

Homogeneous  

region 

STARFM 0.8897 0.0180 0.4228 0.0676 0.8876 

FSDAF 0.8940 0.0172 0.4144 0.0575 0.8852 
UBDF-F-B-G 0.7799 0.0270 0.6400 0.0882 0.6829 

STDFA-F-B-G 0.8955 0.0169 0.4113 0.0510 0.8913 

VIPSTF-SU-F-B-G 0.9002 0.0166 0.4054 0.0502 0.8852 

 

E. Comparison with other spatio-temporal fusion methods 

As concluded above, SU-F-B-G is the most accurate version 

for spatial unmixing. To confirm this advantage, it is necessary 

to compare this version with other prevailing methods. In this 

paper, the well-known STARFM and FSDAF methods were 

used as benchmark methods. For visual comparison, the 

predictions of all four regions are provided, as shown in Figs. 

11-14, with one zoomed sub-area in each case to facilitate the 

comparison. In Fig. 11, the results predicted by STARFM and 

FSDAF present obvious speckle noise and the light pink object 

in the left part of the sub-area is inappropriately predicted as 

dark orange. With respect to UBDF-F-B-G, the predicted light 

pink object is the closest to the reference, but the blue object in 

the right part of the sub-area in the reference is predicted 

incorrectly. Amongst all five methods, VIPSTF-SU-F-B-G 

performs most satisfactorily in restoring the Landsat image. For 

predictions of the second heterogeneous region shown in Fig. 12, 

the hue is darker in the STARFM and FSDAF results compared 

to the reference as a whole, which can also be observed clearly 

from the green objects in the center of the zoomed sub-area. The 

prediction in Fig. 12(c) fails to reproduce the spatial variation. 

Fig. 12(d) presents more spatial variation but, simultaneously, 

obvious spectral deviation. Fig. 12(e) shows the most accurate 

result. For the region with land cover changes shown in Fig. 13, 

the color and spatial texture of the flood in Fig. 13(e) are closer 

to the reference in Fig. 13(f) than the results of the other four 

methods. With respect to the predictions of the homogeneous 

region, UBDF-F-B-G produces less accurate prediction than the 

other four methods. Both STDFA-F-B-G and 

VPSTF-SU-F-B-G reproduce the green object more 

satisfactorily, as shown in the results of the sub-area. 

Quantitative assessment of the five methods is shown in 

Table 1. Overall, VIPSTF-SU-F-B-G is always the most 

accurate version amongst all three SU-F-B-G versions. 

Moreover, its accuracy is greater than STARFM and FSDAF, 

especially for the two heterogeneous regions. In the first 

heterogeneous region, the CC value of VIPSTF-SU-F-B-G is 

0.0315 larger than STARFM and 0.0197 larger than FSDAF. 

Compared with STDFA-F-B-G, the increase in CC is 0.0286. 

With respect to the second heterogeneous region, for 

VIPSTF-SU-F-B-G, its CC value is 0.0523 and 0.0252 larger 

than STARFM and FSDAF, respectively. Meanwhile, the 

corresponding RMSE value is 0.0097 and 0.0043 smaller. For 
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the region with land cover changes, VIPSTF-SU-F-B-G and 

STARFM produce comparable results with greater accuracy 

than the other three methods. This is because spatial 

unmixing-based methods assume the stable changes in land 

cover and becomes more challenging when the land cover in the 

region changes temporally. However, the large increase in 

accuracy over the original SU versions in this case suggests that 

VIPSTF-SU-F-B-G overcomes the limitation of spatial 

unmixing in predicting land cover changes and reflects its 

potential in broader applications. In the homogeneous region, 

except UBDF-F-B-G, the accuracy of all methods is very close 

and VIPSTF-SU-F-B-G is slightly more accurate than the other 

methods. This is because spatio-temporal fusion involves less 

uncertainty for homogeneous regions, and the accuracies of 

most existing methods are great. 

F. The computational cost of the methods 

Table 2 lists the computational costs of all the methods for the 

first heterogeneous region and the region with land cover 

changes. All experiments were carried out using MATLAB 

(R2019a) based on a laptop with an Intel(R) Core (TM) 

i7-8750H CPU at 2.20 GHz. It is seen that with the use of the 

proposed GW scheme, the increase in computational costs 

ranges from 20% to 50%. 

 
Table 2 Computational costs of all the methods for the first heterogeneous region and region with land cover changes (in units of seconds) 

 First heterogeneous region Region with land cover changes 

 UBDF-based STDFA-based VIPSTF-SU-based UBDF-based STDFA-based VIPSTF-SU-based 

SU 81.1 67.6 74.2 134.4 97.1 92.3 

SU-GW 113.7 115.6 137.7 178.5 160.7 130.1 

SU-BR 4127.7 2471.4 2494.0 7298.3 5943.7 5548.3 

SU-B-G 5319.3 2511.7 2494.5 7264.9 3531.3 3889.6 
SU-FCM 107.0 122.8 96.2 113.7 124.4 122.1 

SU-F-G 125.1 106.6 105.5 143.4 110.9 124.9 

SU-F-B 840.2 567.8 465.4 1273.7 496.2 1272.1 
SU-F-B-G 735.9 478.9 428.1 1824.8 1187.4 1435.3 

IV. DISCUSSION 

A. Applicability of the GW scheme 

The ability of the GW scheme to restore more reliable 

spectral information and alleviate the block effect was 

demonstrated in the experiments, as reported in Section III-C. In 

this section, we explain the mechanism behind this result further. 

When solving Eq. (2), a local window is used for estimation of 

the class reflectance, based on the assumption that the 

reflectance of the same class is also the same. This can be 

challenging for neighbors further away from the target center 

pixel (e.g., pixels at the border of the local window) for two 

reasons. First, the spatial association between them and the 

center pixel is weaker as the reflectance of the same class can 

differ. Second, some of the pixels at the border of the current 

local window are excluded in the local window for the next 

target center pixel. The difference between the two local 

windows for the two adjacent target center pixels can lead to 

obvious deviations in reflectance, that is, the block effect [51]. 

Using the GW scheme proposed in this paper, smaller weights 

are assigned to these spatially distant neighbors to weaken their 

influence in spatial unmixing. Meanwhile, the weights of 

neighbors closer to the center pixel (e.g., common pixels of the 

two local windows for the two adjacent target pixels) are larger, 

emphasizing the relationship of the two adjacent target pixels. 

This is beneficial for alleviating the block effect, and further, 

reproducing more reliable spectral information for spatial 

unmixing-based spatio-temporal fusion. It should be stressed, 

however, this GW-based blocks-removed scheme is totally 

different from SU-BR introduced in Section II-B. In SU-BR, a 

new term is included to account for the spatial continuity 

explicitly. The two schemes are not in conflict, and can be 

integrated for more reliable spatial unmixing, as is done by the 

SU-B-G version. 

The framework provided by the GW scheme is applicable to 

and can be integrated with the FCM and BR schemes. Generally, 

it can also be applied to any regularized spatial unmixing model 

without the need for any prior information, as the GW scheme 

modifies only the date fidelity term and is compatible with any 

additional constraint terms. Thus, GW can be regarded as a 

general solution to enhance the regularized spatial unmixing 

models. The integration of GW and the potential new constraints 

would be an interesting avenue for future research. 

B. Influence of heterogeneity on the GW scheme 

The experimental results reflect the sensitivity of the GW 

scheme to regions with different heterogeneity. This is 

especially obvious for the homogeneous region, where increase 

in accuracy of the GW scheme is limited. Moreover, the increase 

in accuracy for the second heterogeneous region (Region 2 

hereafter) is obviously smaller than for the first heterogeneous 

region (Region 1 hereafter). To reveal the influence of 

heterogeneity quantitatively, an index is developed and the two 

heterogeneous regions are considered here.  

As spatial unmixing is performed for coarse pixels, we need 

to quantify the heterogeneity at the corresponding spatial 

resolution. Here, we introduce the heterogeneity index, denoted 

as H, which was proposed by Wang et al. [51] to evaluate the 

deviation in class reflectances between the target coarse pixel 

and the neighboring pixels. It is calculated with the aid of the 

reference fine image. The size of the neighborhood is set to the 

same as the local window size in the unmixing model in Eq. (2). 

The heterogeneity index is calculated for each coarse pixel as 

2

, , , ,

1 1

, ,

1 1

( )
C N

i j c i c j c

c j

i C N

i j c

c j

I E E

H

I

 

 

  





                    (12) 

where 

,

( )

, , ,

1

i cM

i

i c m c i c

m

E e M


 .                            (13) 



 

 

15 

In Eqs. (12) and (13), ,i cM  is the number of fine pixels 

belonging to class c in the coarse pixel at iX  and ( )

,

i

m ce  denotes 

the reflectance of the m-th fine pixel for class c in the coarse 

pixel. 
,i cE  and 

,j cE are the simulated reflectances of class c for 

the center coarse pixel at iX  and neighboring coarse pixel at 

jX , which are generated by averaging all ( )

,

i

m ce  or ( )

,

j

m ce within 

the corresponding coarse pixels. The meaning of the other 

variables is the same as in Eq. (4). For each band, the values for 

all coarse pixels calculated based on Eq. (12) are averaged to 

produce the statistical index H. A larger H indicates greater 

heterogeneity and vice versa. The H values and corresponding 

increases in CC from VIPSTF-SU to VIPSTF-SU-GW for the 

two heterogeneous regions are listed in Table 3. 

 
Table 3 The values of the heterogeneity index H and corresponding increases in 

CC from VIPSTF-SU to VIPSTF-SU-GW for each band 

 Region 1 Region 2 

Band H(×
- 410 ) Increase in CC H(×

- 410 ) Increase in CC 

Blue 1.13 0.0191 0.87 0.0019 
Green 1.84 0.0179 1.75 0.0043 

Red 2.66 0.0208 2.67 0.0009 

NIR 10 0.0067 21 0.0157 
SWIR1 7.34 0.0133 8.08 -0.0015 

SWIR2 8.93 0.0106 5.21 -0.0038 

 

For the blue, green and SWIR2 bands, the H values of Region 

1 are larger than those of Region 2. Correspondingly, the 

increases in CC are larger than those for Region 2. In addition, 

focusing on the NIR band, the H value of Region 1 is 

considerably smaller than for Region 2 and the increase in CC is 

smaller accordingly. Overall, Region 1 presents greater 

heterogeneity and the increase in accuracy is larger. Thus, it can 

be concluded that the proposed GW scheme is more beneficial 

for regions with greater heterogeneity. 

C. Difference between GW and GWR 

The concept of GW is originated from the well-known 

geographical weighting regression (GWR) in spatial statistics. 

SU-GW and GWR both aim to identify a fitting model between 

dependent and independent variables at the same geographical 

locations based on the available observations. Moreover, they 

both use a weighting function to quantify the influence of 

independent variables in a local window. However, the GW 

scheme in this paper is a specific case of GWR and differs from 

GWR mainly in two aspects. First, GWR is a typical 

fitting-then-prediction process. The parameters estimated in the 

fitting process are used to predict dependent variables at other 

locations based on the corresponding observed independent 

variables. In SU-GW, however, the estimated reflectance is our 

final goal in spatial unmixing. Second, SU-GW aims to estimate 

the parameters in terms of reflectance in this paper, whose value 

is constrained to be within (0, 1) to guarantee the physical 

meaning. The estimation in GWR is generally not constrained. 

D. Comparison between the FCM and BR schemes 

The advantage of the FCM scheme to recover intra-class 

variation was validated consistently in the experiments. In the 

FCM-based spatial unmixing methods, the prediction of each 

fine pixel is composed of the class reflectance of more than one 

class with corresponding membership. This scheme is more 

flexible in relation to handling the error propagated from 

classification than the non-FCM scheme that relates each fine 

pixel strictly to only one class. The basic assumption of SU-BR 

is that neighboring coarse pixels share similar reflectances for 

the same class. The spatial unmixing results are also enhanced 

noticeably. In most cases in the experiments, the enhancement 

by FCM tends to be more obvious than for BR. This can be seen 

clearly from the visual inspection in Figs. 6-8. The accuracy 

increase for FCM is generally larger, as shown in Fig. 10. 

However, we can also observe clearly that both FCM and BR 

can compensate for each other, and the accuracy is further 

increased by integrating both aspects (i.e., the SU-F-B version). 

E. Uncertainty introduced by abrupt changes in defining the 

optimal number of clusters 

We proposed to apply the XB index to define the optimal 

number of clusters. As there is normally very limited fine spatial 

resolution information for the prediction time, the XB index was 

calculated based on the known fine images following the 

conventional assumption in spatial unmixing (i.e., there is no 

land cover change between the known and prediction times). For 

the case with abrupt changes, such as the flood inundation in the 

region with land cover changes, uncertainty exists inevitably in 

the number of clusters determination, as new classes are 

involved relative to the known fine image. On the other hand, 

the coarse proportion synthesized from the classified land cover 

map is not reliable, no matter how many clusters are defined. 

That is, the uncertainty caused by land cover changes cannot be 

eliminated. Nevertheless, it should be pointed out that abrupt 

changes occur only for a small-sized area in the entire study 

region. In spatial unmixing, each coarse pixel is decomposed 

separately based on a local proportion matrix and the errors for 

the pixels in the small-sized changed sub-area do not propagate 

to the others. That is, the prediction for the remaining unchanged 

area is not affected. Therefore, the XB method for defining the 

number of clusters directly from the known fine images is an 

acceptable choice in most cases, especially when the abrupt 

changes are sufficiently limited. 

V. CONCLUSION 

In this paper, a geographically weighted spatial unmixing 

model (SU-GW) was proposed to quantify the influence of 

coarse neighbors in spatial unmixing more accurately. Moreover, 

the XB index was applied to determine automatically the 

optimal number of clusters for classification of the known fine 

spatial resolution image. SU-GW can be integrated conveniently 

with existing spatial unmixing models, and the extended 

versions based on SU-BR and SU-FCM were considered in the 

paper. By integrating one or more schemes in SU-GW, SU-BR 

and SU-FCM with three typical spatial unmixing methods (i.e., 

UBDF, STFDA, and VIPSTF-SU), a total number of 24 

schemes (12 existing non-GW versions and 12 proposed 

GW-based versions) were generated. Experiments on two 

heterogeneous regions, one region with land cover changes and 

one homogeneous region were performed and the 24 versions 

were compared systematically. The key findings are 

summarized as follows. 
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1) SU-GW is an effective spatial unmixing method to 

increase the accuracy of spatio-temporal fusion, and the 

increase in accuracy is influenced by the heterogeneity 

of the landscape. 

2) The SU-GW scheme is complementary with the other 

two schemes (i.e., SU-FCM and SU-BR). The accuracy 

of the latter can be increased by integrating SU-GW. 

3) All 12 existing non-GW-based versions can be enhanced 

by integrating the SU-GW scheme. 

4) The accuracy of VIPSTF-SU-F-B-G is the greatest 

amongst all 24 methods, and it is also comparable to or 

even greater than the prevailing STARFM and FSDAF 

methods, especially for the heterogeneous regions. 

5) The XB index is effective in determining the number of 

clusters. 
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