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Abstract: The human gut microbiome has been shown to be associated with a variety of human diseases,
including cancer, metabolic conditions and inflammatory bowel disease. Current approaches for detecting
microbiome associations are limited by relying on specific measures of ecological distance, or only allowing
for the detection of associations with individual bacterial species, rather than the whole microbiome. In
this work, we develop a novel hierarchical Bayesian model for detecting global microbiome associations.
Our method is not dependent on a choice of distance measure, and is able to incorporate phylogenetic
information about microbial species. We perform extensive simulation studies and show that our method
allows for consistent estimation of global microbiome effects.
Additionally, we investigate the performance of the model on two real-world microbiome studies: a study of
microbiome-metabolome associations in inflammatory bowel disease, and a study of associations between
diet and the gut microbiome in mice. We show that we can use the method to reliably detect associations
in real-world datasets with varying numbers of samples and covariates.
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1 Introduction
Recent years have seen an explosion in the amount of genomic sequencing data collected for a variety of
organisms. One area of particular interest is the nascent field of metagenomics. Metagenomics is concerned
with the study of genetic material that can be found in samples from diverse environments ranging from
soil and water to body cavities (Wooley et al., 2010). The collection of bacterial genetic material identified
in a sample is called the microbiome. For human health, the human gut microbiome has been shown to be
associated with a variety of conditions, including colorectal cancer (Ahn et al., 2013), metabolic diseases
(Le Chatelier et al., 2013) and inflammatory bowel disease (Halfvarson et al., 2017).

The recent glut of microbiome studies has led to increased interest in developing robust and efficient
methods for analysing this type of data. A typical microbiome study will first sequence the bacterial genetic
material contained in a sample, and will then use the genetic information to identify and quantify the
organisms that the material originated from. In the case of the microbiome, the latter is most commonly
done by using the 16S ribosomal RNA genes, which allow for the identification of bacterial species that
colonize the human gut. Each fragment of 16S genetic material in the sample can then be classified by
comparing it to known reference genomes, and species can be differentiated from each other by looking at
genetic similarity. The result will be a count matrix quantifying the number of times genetic material from
each species was detected.
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Previous approaches to analysing microbiome data can be classified in two main categories: distance-
based methods and regression-based methods. In distance-based methods we define a distance metric
between observed microbiome samples. Common measures include Jaccard (dis)similarity, Bray-Curtis
dissimilarity and the UniFrac distance (Lozupone and Knight, 2005). The latter has the advantage that it
takes into account the phylogeny, or genetic relatedness, of the species in the samples when calculating the
distance; loosely speaking, samples with related species will be closer than samples with unrelated species.
One can then use a statistical test such as the PERMANOVA to test whether the centroids and dispersion
of samples within two or more groups are identical (see e.g. Chen et al., 2012).

Regression-based methods tend to treat the count data as following either a negative binomial (Zhang
et al., 2017) or Dirichlet-multinomial distribution (Chen and Li, 2013). In the former, the effects of observed
covariates on species are usually treated as independent, although variance parameters may be shared across
species. In the latter, the covariance across species is defined by the Dirichlet-multinomial distribution, but
the regression will still define individual parameters representing the association between each species and
the observed covariate. Unlike distance-based methods, regression methods do not try to infer a global
effect of a covariate on the microbiome. However, they are better able to deal with multiple continuous
covariates, and are not sensitive to a choice of distance measure.

In our work, we combine the advantages of the regression and distance-based approaches. We developed
a Bayesian hierarchical log-ratio regression model, where we model multiple species as multiple outcomes.
Unlike most standard regression approaches for microbiome data, we do not model the species counts
directly, but rather treat the data as proportional and apply the log-ratio transform (Aitchison, 1982) to
obtain multivariate-Gaussian distributed pseudo-observations. This allows us to bring in the phylogenetic
information via the covariance matrix. Global associations between the microbiome and the covariates
are estimated using a shared hyper-prior on the species-specific effect estimates. Efficient gradient-based
estimation of the discrete parameters in the model is achieved via the Gumbel-Softmax (Jang et al., 2016;
Maddison et al., 2016). We demonstrate the robustness and efficiency of our method using an extensive
simulation study, and apply it to case studies in inflammatory bowel disease and mouse gut microbiome
analysis.
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2 Methods

2.1 Log Ratio Model

Let us assume that we are collecting microbiome data from 𝑁 subjects, and in each sample we are counting
the occurrence of 𝑆 species or taxons. We treat the microbiome data as compositional, i.e., even though we
are observing count data, we only consider the proportion of each species. If we observe an 𝑆-dimensional
count vector z𝑖 for sample 𝑖, then the proportion of species 𝑠 can be estimated as 𝜌𝑖,𝑠 = 𝑧𝑖,𝑠∑︀𝑆

𝑠′ 𝑧𝑖,𝑠′
. We

can now transform the species proportions for species 𝑠 ∈ {1, ..., 𝑆 − 1} by using the log-ratio transform
(Aitchison, 1982):

𝑦𝑖,𝑠 = log
(︂

𝜌𝑖,𝑠

𝜌𝑖,𝑆

)︂
(1)

We assume that the y𝑖 are approximately multivariate Gaussian distributed, and model them as:

y𝑖 ∼ MVN(𝜇𝑖, 𝑐Σ) (2)

In our application, Σ is informed by the phylogenetic tree inferred from the sequencing data. Briefly,
under the assumption of a Brownian motion evolutionary model, the covariance of two species is equivalent
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Fig. 1: Graphical representation of the hierarchical regression model for detecting microbiome associations. Shaded nodes
are observed values, unshaded nodes are parameters. Here, y𝑖 denotes the log-ratio transformed species abundances in
sample 𝑖, Σ is the covariance matrix informed by the phylogenetic relationships, x𝑖 denotes the observed covariates, and
𝑎𝑗 denotes the global effect of covariate 𝑗 on y𝑖. Please see the text for the remaining parameters, as well as the detailed
description of the model.

to the branch length from the root to the most recent common ancestor in the phyogenetic tree. If no
phylogenetic tree is available, then we set Σ = I, the (𝑆 − 1) × (𝑆 − 1) identity matrix. The hyperparameter
𝑐, 𝑐 > 0 is a scaling parameter controlling the desired fit to the data. For the data in this study we found
that 𝑐 = 1 led to satisfactory models that showed no evidence of over- or under-fitting.

2.2 Hierarchical regression model

Having established the log ratio model, we now want to formulate 𝜇𝑖 as a linear expression with information
sharing across the species (or response variables). Let:

𝜇𝑖 = (Γ ⊙ B)x𝑇
𝑖 (3)

where x𝑖 is a vector of 𝑝 observed covariates for subject 𝑖, B is an (𝑆 − 1) × 𝑝 matrix of positive linear
coefficients and Γ is an (𝑆 − 1) × 𝑝 matrix with entries in {−1, 1}. Estimation of global effects is achieved
via a prior on the elements of 𝛽𝑗 , the 𝑆 − 1-dimensional vectors corresponding to the columns in B:

𝛽𝑠,𝑗 ∼ 𝒩 +(𝑎𝑗 , 𝜎2) ∀𝑠 ∈ {1, ..., 𝑆 − 1} (4)

where 𝑎𝑗 denotes the global effect of covariate 𝑗 on all species. A graphical representation of the resulting
hierarchical model can be seen in Figure 1. In eq. (4), 𝒩 + denotes the positive part of the Gaussian
distribution truncated at zero. Note that the global effect only defines the prior for the strictly positive
magnitude 𝛽𝑠,𝑗 of the species-specific effects. Placing a prior on the signed effect size would not have the
desired effect; since the size of each biological sample is fixed, an increase in some species must lead to
a decrease in other species, and so the global effect size under such an alternative model would not be
reflective of the total change across species.

We also need to define a distribution for the elements 𝛾𝑠,𝑗 of Γ. The natural approach would be to treat
them as binary variables following a Bernoulli distribution. However, this requires us to perform inference
over discrete variables, which can be onerous, and does not lend itself well to gradient-based inference
techniques. Instead, we opt for a Gumbel-Softmax approximation to the Bernoulli distribution (Jang et al.,
2016; Maddison et al., 2016). The Gumbel-Softmax is a continuous relaxation of the categorical distribution.
In general, for a categorical random variable ℎ with class probabilities 𝜋1, 𝜋2, ..., 𝜋𝐾 , we can represent ℎ as:

h = one-hot(argmax𝑘[𝑔𝑘 + log 𝜋𝑘]) (5)

where one-hot denotes the one-hot encoding of a categorical variable as a 𝐾-dimensional vector (hence the
change from ℎ to h). The 𝑔𝑘 are sampled from a Gumbel(0,1) distribution. Note that this representation is
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exactly equivalent to a categorical distribution; to obtain the continuous relaxation we need to replace the
argmax by a softmax function, which gives:

𝛿𝑘 = exp ((log(𝜋𝑘) + 𝑔𝑘)/𝜏)∑︀𝐾
𝑘′=1 exp ((log(𝜋𝑘′) + 𝑔𝑘′)/𝜏)

(6)

for 𝑘 ∈ {1, ..., 𝐾}, where 𝛿 ∈ Δ𝐾−1, the (𝐾 − 1)-dimensional simplex. Here 𝜏 is a tuning parameter that
controls the smoothness, with 𝜏 = 0 reverting to the discrete case. In our case, 𝐾 = 2, which means that eq.
(6) simplifies to:

𝛿𝑠,𝑗 = exp ((log(𝜋1) + 𝑔1)/𝜏)
exp ((log(𝜋1) + 𝑔1)/𝜏) + exp ((log(𝜋−1) + 𝑔−1)/𝜏) (7)

where 𝜋−1 = 1 − 𝜋1. We drop the subscript 𝑘 as one value of 𝛿 fully defines the two-dimensional vector on
the simplex, but introduce the subscript (𝑠, 𝑗) to denote the value of 𝛿 for species 𝑠 and covariate 𝑗. We
use the subscripts 1 and −1 to denote Gumbel draws for 𝛾𝑠,𝑗 = 1 and 𝛾𝑠,𝑗 = −1 respectively. Since 𝛿𝑠,𝑗 is
either 0 or 1, we set:

𝛾𝑠,𝑗 = 2𝛿𝑠,𝑗 − 1 (8)

This has the desired property that if 𝛿𝑠,𝑗 ≈ 1, 𝛾𝑠,𝑗 ≈ 1 and if 𝛿𝑠,𝑗 ≈ 0, 𝛾𝑠,𝑗 ≈ −1.
We specify truncated Gaussian 𝒩 +(0, 1) priors for the global effects 𝑎𝑗 , which also serves to regularize

the model when the sample size is smaller than the number of parameters, which is the case for almost all
the models studied here. We further place a Beta prior on the parameter 𝜋1, where the hyperparameters
can be used to encode any prior beliefs about the prevalence of positive or negative associations; for our
study we set both equal to 1.

(a) (b)
Fig. 2: Performance comparison between the models. (a) Comparison of the performance of the full, conditional and oracle
conditional log-ratio models on simulated data when varying the sample size (top row), noise variance of the species-
specific effects (middle row) and number of species or taxonomic units (bottom row). The linear simulation model consists
of the intercept term and two covariates with global effect sizes 1, 0.5 and 0 respectively. The dashed horizontal lines
show the size of the true effect, and the boxplots represent the posterior mean estimates obtained from 20 independent
simulated datasets. (b) Comparison of the performance of the full, conditional and oracle conditional log-ratio models on
simulated data when estimating the species-specific effect size (𝛽𝑠,𝑗). Each point corresponds to the estimated effect size
for one species in one model. The linear simulation model consists of the intercept term and two covariates with global
effect sizes 1, 0.5 and 0 respectively. The solid lines represent 𝑦 = 𝑥 (note that the x-axes are on different scales).
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2.3 Inference

We are interested in performing fully Bayesian posterior inference over the parameters of this model. A
convenient framework is Hamiltonian Monte Carlo (HMC), which allows us to take advantage of the
differentiability of the Gumbel-Softmax to estimate gradients and speed up the Bayesian inference. We
employ the Stan sampler to perform HMC sampling; for more details on the the Stan sampler and modelling
language see (Carpenter et al., 2017).

In microbiome research, it is common to encounter datasets consisting of large numbers of operational
taxonomic units (OTUs). Despite the efficiency of HMC sampling, sampling hundreds or thousands of
parameters 𝛽𝑠,𝑗 and 𝛾𝑠,𝑗 is not currently feasible on a personal computer. We therefore propose an
approximate estimation, as an alternative to the full log-ratio model, where we only estimate 𝛽𝑠,𝑗 as part of
the sampling, and the 𝛾𝑠,𝑗 parameters are estimated in a separate inference step. The approximate inference
procedure is as follows:
1. Fit independent linear models 𝑦𝑖,𝑠 = x𝑇

𝑖 𝛽*
𝑠 + 𝜖𝑖,𝑠, 𝜖𝑖,𝑠 ∼ 𝒩 (0, 𝜎2

𝑠) to the log-transformed microbiome
counts for all species 𝑠. Note that 𝛽*

𝑠 is distinct from the rows of B in the full model.
2. Set 𝛾𝑠,𝑗 = sign(𝛽*

𝑠,𝑗) where the sign() operation returns -1 if 𝛽*
𝑠,𝑗 is negative and 1 otherwise.

We refer to the model with Γ inferred from the data as the full log-ratio model, and to the model with Γ
fixed according to the two-step procedure above as the conditional model, since inference is conditional
on the estimate of Γ. We can think of the conditional model as an approximation to the full joint model
𝑃 (Γ, B, 𝜃|Y, X) = 𝑃 (B, 𝜃|Γ, Y, X)𝑃 (Γ|Y, X), where 𝜃 collects all parameters not in B or Γ, and 𝑋 and
𝑌 represent the log-ratio response and the design matrix with the observed covariates, respectively. Instead
of estimating 𝑃 (Γ|Y, X), which would require marginalising over all other parameters, we use Γ̂ = sign(𝛽

*
)

where 𝛽
*

= (𝛽
*
1, ..., 𝛽

*
𝑆) is the maximum likelihood estimate of the effect sizes in independent linear models

of 𝑃 (y𝑠|x𝑠, 𝛽*
𝑠) for each 𝑠. Inference is performed on the conditional model 𝑃 (B, 𝜃|Γ̂, Y, X), which is less

computationally expensive.

3 Simulation Study

3.1 Setup

We perform a simulation study under different scenarios to test the performance of the full and conditional
log-ratio models. In particular, we study how well the full model can predict the global effect (𝑎𝑗) and
species-specific effect (𝛽𝑠,𝑗) parameters under scenarios with different sample size 𝑛, variance parameter
𝜎2, and number of species (or taxonomic units) 𝑆 and compare the performance to that of the conditional
model. In each experiment the variables that are not changing are set to 𝑛 = 100, 𝜎2 = 0.1 and 𝑆 = 10.
The global effect sizes in the simulation model are set fixed with 𝑎𝑗 ∈ {0, 0.5, 1}.

For each unique setting of the simulation parameters, we generate 20 random datasets according to the
following procedure. First, a random phylogenetic tree is generated using the ape R package (Paradis and
Schliep, 2018). Based on this tree, the covariance matrix Σ under the Brownian motion evolutionary model
is calculated. Next, we generate an 𝑁 × 𝑝 matrix of covariates X with 𝑥𝑖,𝑗 ∼ 𝒩 (0, 1). For each covariate
𝑗 and species 𝑠, 𝛾𝑠,𝑗 are generated from a binomial distribution with 𝑝 = 0.5. Species-specific coefficients
𝛽𝑠,𝑗 are generated according to eq. (4). Then we simply calculate 𝜇𝑖 according to eq. (3), and sample 𝑦𝑖

according to eq. (2). The 𝜌𝑖,𝑠 must sum to 1, and, for 𝑠 ∈ {1, ..., 𝑆 − 1}, must be equal to 𝜌𝑖,𝑆 exp(𝑦𝑖,𝑠) by
eq. (1). To achieve this we set 𝜌𝑖,𝑆 = 1/

∑︀𝑆−1
𝑠 exp(𝑦𝑖,𝑠). We can then calculate the 𝜌𝑖,𝑠 and simulate count

data z𝑖 from a multinomial distribution with parameters 𝜌𝑖, and number of trials equal to 100 * 𝑆.
The bench-marking platform used for this study ran R-3.6.1 to generate datasets and invoke rstan.

Models were fitted using the Stan software (Carpenter et al., 2017) version 2.19.1. A comparison between
popular methods such as the PERMANOVA (generalized uniFrac method using the GUniFrac R package,
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Chen and Chen, 2018), ANOSIM (non-parametric multivariate analysis using the vegan R package, Clarke,
1993) and MiRKAT (microbiome regression-based kernel association test using the MiRKAT R package, Zhao
et al., 2015) has been done. The sampling was executed in parallel using 4 different chains each with 8000
iteration with a stopping criteria at convergence on 4 Intel Ivy Bridge cores each running at 1.15GHz speed
and 12GB of RAM memory in total.

3.2 Results

In this section we investigate and compare the performance of:
– the full log-ratio model,
– the conditional log-ratio model which uses a linear marginal model for each species to determine the

species-specific effect signs 𝛾𝑠,𝑗 and then infers the size of the species-specific effects 𝛽𝑠,𝑗 and the global
effect 𝑎𝑗 conditional on the 𝛾𝑠,𝑗 ,

– the "oracle conditional model", where the 𝛾𝑠,𝑗 parameters are set to the true values used for simulating
the data.

Figure 2 shows the performance of the models for estimating the global effect size in three different
experiments: changing the sample size, noise variance on the 𝛽𝑠,𝑗 parameters, and number of species.
Dashed lines represent the true values of the global effect (𝑎𝑗) in the simulation model. It can be seen that
increasing the number of samples 𝑛 improves the accuracy of prediction and reduces the variance. On the
other hand, increasing the variance parameter for the effect values and increasing the number of species (or
taxonomic units) both make estimation of the global effect parameters harder. We see that there is not
much difference between the performance of the full model and that of the oracle conditional model, but
as could be expected, the full log-ratio model produces less biased estimates compared to the conditional
log-ratio model, with the oracle log-ratio model outperforming both. The bias in the conditional log-ratio
model effect size estimates can be explained by the inherent model misspecification due to the estimation of
𝛾𝑠,𝑗 via independent linear regressions.

Figure 2 also reveals that even for large sample sizes, a small bias remains when estimating the
global effect size for covariate 1, whose simulated value was set to zero. We observe that the simulated
species-specific effect sizes tend to be small but non-zero. In the absence of a strong regularizing prior on
the global effect, this leads to a small non-zero global effect. We chose not to impose such a prior to avoid
over-regularising.

Figure 2b shows a comparison between the performance of the three models when predicting the
species-specific effect size 𝛽𝑠,𝑗 . We note that species-specific effects for covariate 1 and the intercept are
predicted well across all three models. For covariate 2, we again see a significant bias in the estimation for
the conditional log-ratio model. Looking at both Figure 2a and Figure 2b we can see that in most cases
the full log-ratio model outperforms the conditional model.

We have also checked the sensitivity of our model to differences in the variance parameters for the
species-specific effect sizes 𝛽𝑠,𝑗 (see supplementary), and note that despite the assumption of a common
variance parameter, our model is robust to varying noise levels across species. Furthermore, in figure 6c
(see supplementary), we can see the distribution of the estimated spices-specific effects when changing the
number of spices. It can be seen that both models converge to a small non-zero value, however, in the full
model sampler converged in a few iterations but the conditional model took longer to explore.

Figure 3b shows the 𝑝-values obtained using the PERMANOVA (generalized UniFrac), ANOSIM and
MiRKAT methods applied to simulated data with 𝑛 = 100 samples, 𝜎2 = 0.1 and 𝑆 = 10. The number of
covariates increases from 𝑝 = 10 to 𝑝 = 60. We note that empirically, for a large number of covariates (in
this case, when the number of covariates exceeds 30), the statistical power becomes insufficient to reject the
null hypothesis of no global effect.

The PERMANOVA, ANOSIM and MiRKAT models quantify the effect of a covariate via the variability
in microbial compositions, and do not try to estimate a global effect size. Hence we cannot directly compare



F. Hatami et al., 7

(a) (b) (c)

Fig. 3: (a) Efficiency and estimation performance of the proposed models. Comparison of the computational time to con-
vergence of the full and conditional log-ratio models, on the simulated data when increasing sample size 𝑛 and number of
species (or taxonomic units) 𝑆. The error bars show the 95% confidence interval calculated over 20 independent simulated
dataset. (b) Comparison of the performance of the ANOSIM, MiRKAT and PERMANOVA models on simulated data when
increasing the number of covariates. (c) Comparison of the performance of the full and conditional models on simulated
data when increasing the number of covariates. The y axis represents the estimated global effects with the dashed line
representing the mean value.

with our log-ratio models. Figure 3c shows the performance of the full and conditional log-ratio models
when increasing the number of covariates. We see that increasing the number of covariates results in a
slight negative bias in the estimated effect size. However, even for the maximum of 𝑝 = 60 covariates, the
estimated global effect size remains far from zero under our models, indicating a lower false negative rate
compared to the methods in Figure 3b.

We also investigate the computational efficacy of the full and conditional log-ratio models. Figure 3a
shows the run time to convergence under each of the models. We see that the sampler for the conditional
model takes longer for large 𝑆; this is a consequence of setting the 𝛾𝑠,𝑗 parameters fixed which results in
less efficient exploration of the sample space and longer convergence times. The sudden drop in time for
𝑆 ≥ 100 is explained by the fast convergence of the chains in the HMC sampler to a small non-zero value
(when the true global effect value is set to zero). A comparison is shown in figure 7, where we can see the
estimated spices-specific effects when changing the number of spices, across all different chains of HCM. It
can be seen that when 𝑆 ≥ 100 the sampler in the full model converged in a few number of iterations but
the conditional model took longer to explore.

Taken together, Figures 2, 2b and 3a indicate that for small sample sizes (𝑛 < 100) one could use
either the full or conditional log-ratio models, as long as the number of covariates is not too large. For large
sample sizes the conditional model could be deployed to improve computational efficiency, but there is a
trade-off in terms of estimation accuracy. For large number of species 𝑆 (𝑆 > 50), the full log-ratio model
seems more efficient than the conditional model, perhaps because it can take advantage of Hamiltonian
paths in the posterior landscape that are closed off when conditioning on Γ. In general, we would recommend
to use the full log-ratio model where possible, and only resort to the conditional log-ratio model when
resource constraints and large sample sizes make use of the full model impractical.

4 Real-World Applications

4.1 Detecting Associations

Using metabolomics as a measure of health, or to predict response to pharmacologics is a very attractive
prospect, as measuring metabolites in urine, for example, may provide a non-invasive and potentially
inexpensive screening method that has potential for application to a plethora of pathologies.
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(a)

(b)

Fig. 4: Application of the log-ratio model to a microbiome-metabolome association study (Beamish, 2017). (a) Density
plots showing the posterior distribution of the global effect size associating each metabolite to changes in the microbiome.
(b) Posterior mean estimates of the phylum-specific effect size for each metabolite across the different bacterial phyla.

We apply the full log-ratio model to a dataset collected as part of a pilot study into inflammatory bowel
disease (IBD) (Beamish, 2017). IBD is an umbrella term used to describe two conditions (Crohn’s disease
and ulcerative colitis) that are characterized by chronic inflammation of the gastrointestinal tract. 42 gut
bacteria samples were obtained from patients undergoing colonoscopy at Lancashire Teaching Hospitals
Trust (LTHTR) and University Hospitals of Morecambe Bay Trust (UHMBT), and metagenomic profiling
was performed to obtain the bacterial species counts. The patients were additionally asked to provide a
urine sample, and metabolite concentrations found in those samples were recorded. One objective of the
study was to investigate associations between the gut microbiome and the urinary metabolite profiles.

After quality control, our cohort consists of 𝑛 = 40 people (IBD cases and controls), for which we have
measured a set of 3 clinical covariates: age, sex, and the hospital where the sample was collected. Note that
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we do not investigate any associations with IBD status, as number of cases was too small to make any
reasonable inferences. Instead, we focus on detecting associations between the microbiome and individual
metabolites. We consider the set of the 𝑆 = 21 most abundant operational taxonomic units (OTUs or
species) at the phylum level. As a result, our design matrix X is a 40 × 5 matrix consisting of the intercept,
the metabolite level, age, sex and sample collection location. As the data is limited, we do not try to infer
the variance parameter 𝜎2, but keep it constant and equal to 0.1. Finally, we have a total of 261 metabolites.

Figure 4a shows the posterior distribution of estimated global effect size 𝑎𝑗 for the metabolites
with the largest posterior mean effect estimate. We see that out of these 21 metabolites, saccharopine,
allantoin, vanillate and ornithine have the strongest association with the microbiome. Some metabolites
show interesting bimodal patterns in their posterior effect distribution; this is particularly obvious for
glycine. Such patterns could potentially be indicative of more than one mechanism that links the microbiome
to metabolite levels.

Figure 4b shows the posterior mean estimate of the species-specific effect sizes 𝛽𝑠,𝑗 , specifically the
association of each phylum with each metabolite. We note that for the metabolites with the largest posterior
effects, the majority of species-specific effects are strongly negative, indicating that these metabolites are
associated with a decrease in most phylum counts, compensated by an increase in just a couple of phyla.

We note that our analysis identified several phyla-associated metabolites that have previously been
shown to be linked to markers of intestinal health or nutrition, demonstrating potential impacts on health
that are reflective of microbiota changes. First, our study suggests that adipate is strongly associated with
changes in the microbiome. Adipate, the salts and esters of adipic acid, are increased in the urine of breast-fed
vs. formula-fed neonates (Dessì et al., 2016), a now well-known essential factor in the establishment of a
diverse, healthy microbiome. We observe effect sizes that are indicative of an association between adipate
and an increase in Firmicutes, Proteobacteria and Bacteroidetes, the major components of a healthy adult
intestinal flora. Therefore, clinical measurement of adipate may have potential as biomarkers for intestinal
health.

Epicatechin is a polyphenolic flavonoid abundantly present in plants, cocoa and that offers protection
against diabetes by its ability to mimic the effects of insulin and has strong antioxidant properties (Kane-
hisa and Goto, 2000; Samarghandian et al., 2017). The association we observed between epicatechin and
proteobacteria abundance may prove useful in the prediction of pathologies associated with proteobacteria
expansion, such as IBD or nonalcoholic fatty liver disease (Rizzatti et al., 2017). Of course, any potential
mechanisms that underpin these associations will require further investigation but collectively this demon-
strates the broad and significant potential for clinical application of our model. Several metabolites, including
isoleucine, thymidine, ornithine and vanillate, were associated with an increase in cyanobacteria (Figure
4b). Cyanobacteria are unusual intestinal microflora (Ley et al., 2005), in that they perform oxygenetic
photosynthesis and cyanobacteria-based supplements, such as Spirulina, regarded as functional foods, have
been shown to support immunological function (Finamore et al., 2017). These associations may allow us
to get a clearer picture of the functionality of the gut microbiome, by assessing the functions of these
metabolites.

4.2 Estimating the Global Effect of Diet on the Gut Microbiome

It is well-known that diet has a profound effect on the composition of the gut microbiome (David et al.,
2014; Singh et al., 2017). However it is difficult to quantify this effect using traditional microbiome analysis
methods, as we either need to look at individual species, or rely on a pre-specified distance metric. In
(Turnbaugh et al., 2009), the authors took the latter approach to characterise the differences in microbiota
in mice whose gut tracts were colonised by donor bacteria of human or mouse origin, and who received
either a Western or low-fat plant-based (LF/PP) diet. The dataset is described in Table 1. Donor bacteria
either originated from human microbiome samples (fresh or frozen), or from mice who had previously been
implanted with (fresh) human samples (HMouse) and had received either the LF/PP or Western diet. The
dataset consists of 𝑛 = 444 fecal samples, obtained at various time points from 15 mice, and we use the
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Tab. 1: Dataset Description for The Gut Microbiome Study in (Turnbaugh et al., 2009).

Number of observations Variable

394 Sex - Male
50 Sex - Female

137 Donor - Fresh
92 Donor - Frozen

175 Donor - HMouse (LF/PP Diet)
40 Donor - HMouse (Western Diet)

300 Diet - LF/PP
144 Diet - Western

bacterial abundance data for 𝑆 = 160 taxonomic units at the genus level. Note that we did not have access
to the information on sample times or sample source, and so were unable to take this aspect into account in
our model.

Using the UniFrac distance measure, (Turnbaugh et al., 2009) found that recipient mice consuming a
Western diet showed a similar microbiome composition that was distinct from mice on the LF/PP diet,
regardless of donor. We applied the full log-ratio model to the dataset to determine whether this was reflected
in the global microbiome effect of diet on the microbiome, and to study the individual (genus-specific)
effects. We include sex, donor type and diet as covariates. The reference taxonomic unit for the log-ratio
transform was the Dorea genus, although investigation of alternative reference taxonomic units showed little
change in the results (see supplementary information).

(a) (b)

Fig. 5: Application of the log-ratio model to a gut microbiome study (Turnbaugh et al., 2009). The reference taxonomic
unit for the log-ratio transformation is Dorea. (a) Density plots showing the posterior distribution of the global effect size
associating each covariate to changes in the microbiome. Note that the reference category for diet is LF/PP, meaning
that the global effect is the change with respect to that diet. Similarly the reference category for bacterial donor is fresh
(human), and the reference category for sex is female. (b) Posterior mean estimates of the genus-specific effect size for
each metabolite across the different bacterial genera. We display here the 10 OTUs with the highest effect size for the
association with diet.

The results of our study are shown in Figure 5. We observe that overall there is a significant (non-zero)
effect of diet, and a strong effect of using the frozen samples. This is concordant with the findings in
(Turnbaugh et al., 2009). We also note that receiving a bacterial implant from a donor mouse on the
LF/PP diet seems to have a stronger effect than receiving an implant from a donor mouse on the Western
diet, compared to having a human donor. Ruminococcaceae Incerta Sedis is strongly associated with the
change in diet, a finding which is backed up by the literature (Clarke et al., 2013). Similarly, Eubacteria
colonization of the gut has been shown to be affected by diet (Simmering et al., 2002). Finally, we see that
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Enterobacteria is associated with the change in diet; previous studies in rats have shown that a high-fat
diet results in considerably more propionate and acetate producing species, including Enterobacteria (Singh
et al., 2017). Interestingly, this bacterial genus also shows a strong association with implantation by frozen
donor bacterial samples.

5 Conclusion
We have developed a hierarchical Bayesian regression model for detecting global microbiome associations,
and have shown that the model produces consistent estimates in a simulation study. We then applied the
model to investigate microbiome-metabolome associations in a pilot study of inflammatory bowel disease
patients and global associations with diet in a study of mouse gut microbiomes. The model is superior to
existing approaches in that it allows for integrating phylogenetic information, it estimates global as well as
species-specific effects, and it does not rely on a specific choice of ecological distance measure.

There are some limitations to our study. The IBD dataset used in this paper only consists of a small
number of samples, which reduced our ability to extend the inference to a larger number of species. For
a larger sample size, the full log-ratio model could also be applied to taxonomic units at the ’order’
or ’genus’ level, as our simulation study showed that inference for up to 150 species is feasible without
major modifications. However, we have seen that for large number of samples (𝑛 ≥ 500), the conditional
log-ratio model can be deployed as it showed comparable prediction accuracy to the full model at greater
computational efficiency.

In our model, information about the phylogenetic relationships between species is incorporated via
a simple Brownian motion model of evolution (Felsenstein, 1973). This model was originally developed
for the evolution of traits, and assumes a priori that closely related species have traits that are positively
correlated, which is a reasonable assumption. Here we are using it to model species abundances, where this
assumption is likely an oversimplification, as it does not incorporate negative correlation due to inter-species
competition. Further modelling work is needed to derive more realistic models of the impact of phylogenetic
relatedness on abundance.

We note that our method does not currently explicitly model the common problem of zero-inflation.
Zeros in the count data are dealt with by adding a small constant before applying the log-ratio transform.
Despite the simplicity of this approach, we have not observed significantly biased estimates as a result in
any of our simulations.

In this paper, we focused on comparisons with methods for detecting global effects on the microbial
community. Numerous other methods exist that are limited to detecting species-specific effects. Methods
such as FZINBMM (Zhang and Yi, 2020) and ALDEx2 (Gloor, 2015), as well as more general count
models like edgeR (Robinson et al., 2010) and DESeq2 (Anders and Huber, 2010) do not allow for the
estimation of global effects. Additionally, the latter two do not properly model the compositional nature of
metagenomic data. As a consequence, comparisons with these methods would have been of limited value.
We did investigate the potential of these methods for initialising the 𝛾𝑠,𝑗 parameters in the conditional
log-ratio model, but found the performance not significantly better than the method described in our paper.

An interesting avenue for future research is whether our model can scale to larger numbers of species 𝑆

and sample sizes 𝑛. We note that time to convergence seems to increase polynomially with n; we would
therefore not expect to be able to scale to tens of thousands of samples, and a different inference method
would need to be employed. One option is variational inference, which has been successfully used as an
alternative to full Bayesian inference in other settings (Hensman et al., 2013).

More crucially, we would like the method to scale to larger numbers of species. Currently, our results
indicate that HMC inference in the full model converges faster as 𝑆 increases. Our hypothesis is that for
small 𝑆, the gradient estimate for 𝑎𝑗 is unreliable as it depends on the estimates of 𝛽𝑠,𝑗 . For large 𝑆,
we have more information to estimate the gradients, and thus experience fewer rejections during HMC
sampling. However, estimation of the parameters will be poor unless 𝑛 also increases. In future work, we
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will investigate regularization approaches to estimate sparse 𝛽𝑠,𝑗 parameters in situations with small sample
sizes.

Funding: This work has been supported by the University Hospitals of Morecambe Bay Trust SIFT funding
and the Academy of Medical Sciences.

Appendix A - Sensitivity Analysis
We have performed a sensitivity analysis using simulated data to test the impact of our modelling assumption
that the microbial species share a common noise parameter. The simulation model is the same as described
in Section 3 in the main manuscript, but instead of drawing the 𝛽𝑠,𝑗 from a truncated Gaussian with
common parameter 𝜎2, we instead sample 𝜎2

𝑗 from a truncated Gaussian with standard deviation 0.1. The
results are shown in supplementary Figure 6. We can compare this to Figure 2 to see that the estimated
species-specific effects and the global effects stay consistent when using different values 𝜎2

𝑗 for each species
𝑗 at the simulation stage.

Appendix B - Hamiltonian Monte Carlo Traces
Figure 3a indicates that for larger number of species 𝑆, the convergence time of the Hamiltonian Monte
Carlo algorithm decreases. In Supplementary Figure 7, we show additional example trace plots for the
species-specific effect parameters 𝑏𝑒𝑡𝑎𝑠,𝑗 under the default simulation setup described in the main paper.
We observe that for 𝑆 ≥ 100, convergence under the full log-ratio model is reached earlier, but the posterior
distribution is wider than for 𝑆 < 100. The conditional log-ratio model reaches a similar equilibrium state,
but the width of the distribution of samples parameters reduces more gradually, possibly as a result of the
restrictions imposed by the two-stage approach. It is reasonable to assume that increasing 𝑆 also increases
the information available to estimate the gradients of the log likelihood function with respect to the global
effect size parameters, and thus the chains experience fewer rejections during HMC sampling. However,
as the number of samples does not increase, and the number of species-specific parameters increases, the
estimate overall becomes more uncertain, resulting in a wider posterior distribution. This can also be
observed in Figure 2a.
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(a) (b)

(c)

Fig. 6: Model performance when simulating data under species-specific variance in the effect sizes. (a) Comparison of the
performance of the full, conditional and oracle conditional log-ratio models on simulated data when varying the sample
size (top row), noise variance of the species-specific effects (middle row) and number of species or taxonomic units (bot-
tom row). Notice that 𝑥 axis is now the mean value of 𝑝 randomly drawn values centered on the relevant noise and with
standard deviation 0.1. This is to have different noise parameters for different species when simulating the data. The linear
simulation model consists of the intercept term and two covariates with global effect sizes 1, 0.5 and 0 respectively. The
dashed horizontal lines show the size of the true effect, and the boxplots represent the posterior mean estimates obtained
from 20 independent simulated datasets. (b) Comparison of the performance of the full, conditional and oracle conditional
log-ratio models on simulated data when estimating the species-specific effect size (𝛽𝑠,𝑗). Each point corresponds to the
estimated effect size for one species in one model. The linear simulation model consists of the intercept term and two
covariates with global effect sizes 1, 0.5 and 0 respectively. The solid lines represent 𝑦 = 𝑥 (note that the x-axes are on
different scales). (c) Comparison of the distribution of the estimated species-specific effect size resulted from the full and
conditional models for a relatively large number of species 𝑆 = 100. The dashed vertical line shows the true global effect.
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