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Abstract

Logan (2021) presented an impressive unification of serial order tasks including whole

report, typing, and serial recall in the form of the context retrieval and updating (CRU)

model. Despite the wide breadth of the model’s coverage, its reliance on encoding and

retrieving context representations that consist of the previous items may prevent it from

being able to address a number of critical benchmark findings in the serial order literature

that have shaped and constrained existing theories. In this commentary, we highlight three

major challenges that motivated the development of a rival class of models of serial order,

namely positional models. These challenges include the mixed-list phonological similarity

effect, the protrusion effect, and interposition errors in temporal grouping. Simulations

indicated that CRU can address the mixed list phonological similarity effect if phonological

confusions can occur during its output stage, suggesting that the serial position curves

from this paradigm do not rule out models that rely on inter-item associations, as has been

previously been suggested. The other two challenges are more consequential for the

model’s representations, and simulations indicated the model was not able to provide a

complete account of them. We highlight and discuss how revisions to CRU’s

representations or retrieval mechanisms can address these phenomena and emphasize that

a fruitful direction forward would be to either incorporate positional representations or

approximate them with its existing representations.

Keywords: serial order; serial recall; context; chaining; phonological similarity
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Do item-dependent context representations underlie serial order in cognition? Commentary

on Logan (2021)

Serial order is an important component of cognition. For decades, theorists have

observed commonalities in effects and error patterns across different psychological domains,

including speech production (Ellis, 1980; Page, Madge, Cumming, & Norris, 2007), typing

(Logan, 2018), reading (Hannagan & Grainger, 2012), spelling (Fischer-Baum, McCloskey,

& Rapp, 2010), and music performance (Palmer & Pfordresher, 2003; Pfordresher, Palmer,

& Jungers, 2007). The commonalities in empirical regularities and error patterns across

these different domains have led researchers to hypothesize that each may be served by

common representations and retrieval mechanisms of serial order (Fischer-Baum, 2018;

Hurlstone, Hitch, & Baddeley, 2014; Hurlstone, in press). However, to date relatively little

work has been done to bridge the commonalities across these different domains in a unified

model.

Logan (2021) presented what is possibly the most thorough and impressive attempt

at unifying serial order tasks to date in his account of whole report, typing, and serial

recall procedures using his context retrieval and updating (CRU) model. Each of the tasks

are addressed using a common representation and retrieval mechanism. Specifically, the

model relies on what we call item-dependent context representations, in which items are

associated to contexts that are composed of the previous items in the list. Retrieval is

determined by the similarity between the current context and the stored contexts in

memory. After each item is retrieved, its representation enters into the current context cue,

which changes its similarity to the stored context vectors. Specifically, the context vectors

belonging to items studied near the just-recalled item will exhibit the highest similarity to

the updated context, and will therefore be the most likely to be retrieved. The model is

heavily inspired by the temporal context model (TCM: Howard & Kahana, 2002), as CRU

even uses the same equations for updating context across item presentations and recalls,

although there are a couple of important distinctions from TCM that we highlight below.
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The parameters of CRU, which govern the relative weighting of the current item to the

preceding context (β) as well as the distinctiveness of letter encoding (g), vary plausibly

across tasks to capture the ways in which differences in procedures or task demands may

impact the ability to encode or retrieve information.

What is additionally impressive is that the experiments were all collected using the

same participants and the model was subsequently fit to the individual responses from the

participants. This is an important departure from previous models of serial order, which

have a tendency to focus on demonstrations of qualitative phenomena in isolation. While

such simulations demonstrate that it is in principle possible for a model to address a

phenomenon, it is far more impressive to be able to demonstrate that the model is able to

capture such phenomena while being simultaneousy able to explain variations in

performance across individuals. CRU’s success in capturing variation across individuals at

the level of individual responses in each of the aforementioned tasks suggests the model’s

ability to explain the data is a consequence of its core representations and retrieval

mechanisms.

An additional strength of the model is the racing diffusion architecture it employs to

decide on which item to encode and retrieve (Tillman, Van Zandt, & Logan, 2020). While

latencies were not modeled in the Logan (2021) article, this architecture will allow the

model to jointly address patterns of choice and distributions of response latency, producing

an integrated model of representation, retrieval, and decision-making (e.g., Cox & Shiffrin,

2017; Fox, Dennis, & Osth, 2020; Nosofsky, Little, Donkin, & Fific, 2011; Osth, Jansson,

Dennis, & Heathcote, 2018; Sederberg, Howard, & Kahana, 2008). Racing diffusion

processes have recently been found to be successful in accounting for complete RT

distributions in free recall (Osth & Farrell, 2019). Extension to latencies will likely be a

fruitful endeavor as there have been some important constraints from latencies in serial

recall and list reproduction that have yet to be comprehensively addressed in models of

serial order (Farrell & Lewandowsky, 2004; Hurlstone & Hitch, 2015, 2018; Thomas,
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Milner, & Haberlandt, 2003).

While we believe the field can greatly benefit from both the advances and direction of

the Logan (2021) article, the purpose of our commentary is to question the sufficiency of its

representations and retrieval mechanisms. In particular, there are a number of

consequential challenges from the serial order literature that are constraining for models

that principally rely on item-dependent context representations at both encoding and

retrieval. Through simuations with CRU, we explore three important challenges, namely

the mixed-list phonological similarity effect (Henson, Norris, Page, & Baddeley, 1996), the

finding that intrusions from prior lists preserve within-list position (protrusion errors:

Henson, 1999; Osth & Dennis, 2015a), along with the costs and benefits of temporal

grouping manipulations (Henson, 1999). While CRU was able to provide a satisfactory

account of the first phenomenon with a revision to its output stage, it was not able to

provide a complete account of the other two phenomena. While no model is able to

account for every phenomenon, we note that each of these phenomena have been

instrumental in motivating a very different class of models, namely models that rely on a

specific set of item-independent context representations, where the context is composed of

elements that are not shared with the items and instead reflect an item’s within-list

position. Furthermore, these phenomena have been sufficiently influential on the field to be

described as "benchmarks" of short-term and working memory in a recent review article

published in Psychological Bulletin (Oberauer et al., 2018).

Our commentary is organized as follows. We first provide a brief history of

item-dependent and item-independent context representations in the serial order literature

with a focus on the challenges that arose for theories that are reliant on item-dependent

context representations. We follow this with a brief description of the mathematics and

parameters of CRU and how these are critical to the model’s predictions. We follow this

with a comprehensive set of CRU simulations for each phenomenon where theoretically

relevant parameters are manipulated across a broad range. We close the commentary with
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a synthesis of other findings that are congruent with CRU’s representations, and provide

recommendations for how both CRU and the field at large can benefit from a broader

consideration of how item-dependent context representations can be utilized to represent

serial order.

Representations of Serial Order

The question of how the order of a to-be-learned sequence of items is represented in

memory is among the oldest questions in research on serial order memory, dating back to

the pioneering studies of Ebbinghaus (1885/1913). The field has generally converged on

two common representational schemes, as summarized in a review article by Young (1968):

"The serial list, following learning, is a highly organized group of items which are related to

one another through a chain of associations, through associations between ordinal positions

and items or through something else entirely." The first possibility – associations between

items – was originally proposed by Ebbinghaus (1885/1913) and is most similar to the

item-dependent context representations, of which CRU is reliant. While CRU’s

representations are referred to as "context" representations, its context representations are

composed of the previous items, and we will demonstrate later how the mathematics of the

model strongly resemble the mathematics of models that rely on inter-item associations.

The second representational scheme – associations between items and their position

of occurrence – was originally proposed by Ladd and Woodworth (1911). Such associations

have also been implemented as context representations in a range of models – these are

referred to as item-independent context representations because the context corresponds to

within-list position and not to the other items. While there are several models that employ

such representations to represent within-list position (e.g., Brown, Preece, & Hulme, 2000;

Farrell, 2006; Henson, 1998), throughout the remainder of the article our terminology will

focus on the terms "positional representations" or "associations to within-list position," as

the broader class of item-independent context representations do not necessarily
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correspond to within-list position. In the episodic memory literature, there are several

models that employ random context representations that are independent of the items but

do not correspond to within-list position (e.g., Davelaar, Goshen-Gottstein, Ashkenazi,

Haarmann, & Usher, 2005; Mensink & Raaijmakers, 1988; Murdock, 1997; Osth et al.,

2018). A critical difference, however, is that while context can vary across item or test

presentations in these models, they do not recur across items from different lists that share

the same within-list position, and the cues for each retrieval are not reinstated in the same

manner as positional models of serial order.

The relative strengths of a given representational scheme are strongly dependent on

the form of the representations at encoding and retrieval. In the case of inter-item

associations, it is important to note that there are a number of different ways in which

associations between items can be used at both encoding and retrieval to support serial

order memory, each of which carry important consequences. For instance, the simplest

possible method is that associations between adjacent items are formed at encoding, such

that a list of items ABCD is encoded as a set of pairwise associations between the items

(A−B, B − C, and C −D). At retrieval, the sequence is reconstructed by using each

retrieved item as the cue for the next retrieval – after A is retrieved, it is used as a cue and

should prompt retrieval of B, which then becomes the cue for C. Such models are often

referred to as simple chaining models, because the associations between items resemble links

in a chain. Perhaps the best known computational model of this class is the Lewandowsky

and Murdock (1989) theory of distributed associative memory (TODAM) model.

Nonetheless, error patterns in serial recall impose strong constraints on simple

chaining models. The most noteworthy historical problem is how chaining models recover

from errors. If an item is unable to be recalled, how does recall continue from that point?

TODAM partially solved the problem of recovery from errors because in the model, a

retrieved vector that was unable to produce a valid recall can still be used as a cue for

further retrievals, allowing the model to "get back" on the chain after a missing link.
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A more serious concern for simple pairwise chaining models is what Henson (1996)

referred to as the locality constraint - the finding that when an error is made in a given

output position, it tends to be an item that was studied near the intended item that was to

be output. That is, for a sequence ABCDE, when attempting to recall the third item, C is

the most likely response, and errors are more likely to occur from adjacent positions (B or

D) and much less likely to come from remote positions (A or E). This regularity in errors

is constraining for simple chaining models, which have no obvious mechanism for why,

when failing to recall an item, an item studied near that item should be recalled instead. In

the case above, when attempting to recall the third item, the cue (B) is only associated to

the correct item (C) and has no associations to itself or the other items in the sequence.

The theoretical coverage of inter-item associations can be greatly expanded through

the usage of remote associations between items at encoding. Consider if instead of merely

encoding associations between adjacent items, associations are formed between all of the

list items, with the strength of the association being proportional to how far apart they are

in the sequence. That is, for a list ABCDE, A− C, A−D, and A− E associations are

also formed, but are weaker than the adjacent A−B association. Remote associations

provide a principled account of the locality constraint – if B is used as a cue, while it has

the strongest association to the correct item C, it has a weaker association to its neighbors

(B and D) and even weaker associations to the remote items (A and E), making it such

that D is more likely to be recalled as an error than E.

In addition, while simple chaining models assume that only the previously retrieved

item is the functional cue for the next response, it is possible to instead employ multiple

retrieved items as a compound cue in a recency-weighted fashion, such that the most

recently retrieved item has the greatest emphasis. Usage of multiple retrieved items further

bolsters recovery from errors. If ABCDEF is studied and a participant recalls ABE, while

the E cue has the greatest weight, the cues corresponding to the previous retrieved items

(A and B) can enable retrieval of C. Remote associations can further strengthen this
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tendency, as the A− C association can further increase the retrieval probability of C.

These two assumptions in tandem – remote associations at encoding and compound

cuing at retrieval – can greatly facilitate recovery from errors and coverage of the locality

constraint. A prominent example of such a model is the power-set model of Murdock

(1995), which was explicitly built to overcome the limitations of the previous chaining

model of Lewandowsky and Murdock (1989). Both assumptions do not have to co-occur–

the model of Solway, Murdock, and Kahana (2012), for instance, employs remote

associations at encoding, but does not use compound cuing at retrieval. Instead, only the

most recently retrieved item is used as a cue. Both models have been demonstrated to be

able to capture the locality constraint.

A final relevant consideration for models that rely on inter-item associations concerns

what becomes the functional cue for the next response, whether it is the response itself,

which we term response cuing, or whether it is merely the retrieved content from memory,

which we term memorial cuing. This distinction has historically not been of interest as the

majority of models that employed inter-item associations employed response cuing as the

default. However, a number of computational models of serial order have been developed in

which output errors can occur independently of memory errors due to errors in the motor

or speech production system after memory retrieval has already occurred (e.g., Burgess &

Hitch, 1999; Henson, 1998; Page & Norris, 1998). Such an assumption has also been

adopted by CRU (Logan, 2018), in which output stage confusions can result in errors, but

such erroneous responses do not become the cues for the next retrieval. Instead, it is the

retrieved item from memory that enters the context and contributes to the cue for the next

response. Memorial cuing is also relevant to recovery from motor errors - if a sequence such

as ABCDE is studied, after correctly recalling A the participant might correctly recall the

representation of B, but mistakenly output the item as D. However, it is ultimately the

representation of B that becomes the cue for the next response, allowing recovery from the

error and enabling correct recall of C. As we will demonstrate later in the commentary,
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this assumption has important consequences for CRU’s ability to recover from errors when

mixed lists of phonologically similar and dissimilar items are studied.

Historically, the question of what representation underlies serial order remained

unresolved for some time despite decades of research. However, a dramatic change occurred

in the 1990’s when a number of findings were summarized in Henson’s (1996) seminal

dissertation that motivated the abandonment of models that rely on inter-item associations

and the acceptance of positional models. While models that rely on remote associations

can in principle recover from errors, reliance on remote associations still makes it such that

after an error, the next response should be located after the erroneously recalled item.

While some evidence for this pattern has been found with longer lists using procedures

atypical of serial recall (Solway et al., 2012), many studies, including Logan’s (2021) own

data, have instead uncovered error patterns that are inconsistent with these predictions

(e.g., Farrell, Hurlstone, & Lewandowsky, 2013; Henson et al., 1996; Henson, 1999; Osth &

Dennis, 2015a, 2015b). This is commonly tested using conditional analyses that focus on

what occurs after a participant skips an item during the recall process, such as proceeding

from A to C when attempting to recall a list ABCDEF . While models that rely on

inter-item associations predict that it is more common to continue onward from the

erroneous response (producing ACD, referred to as "in-fill"), the data demonstrate that it

is much more common to instead proceed backward (producing ACB, referred to as

"fill-in"), as if participants are "filling in" the missing response (Farrell et al., 2013; Osth &

Dennis, 2015a; Page & Norris, 1998; Surprenant, Kelley, Farley, & Neath, 2005).1

1 While Solway et al. (2012) found evidence of an in-fill effect in their re-analyses of several serial recall
datasets, these results came from longer lists of items with much higher omission rates. Farrell et al. (2013)
responded with a re-analysis of 21 datasets using shorter lists and lower omission rates with the majority of
these datasets showing a fill-in pattern. Farrell et al. also conducted a re-analysis of the data from
Grenfell-Essam and Ward (2012), who manipulated list length and employed open sets of items, in which
the data showed a fill-in effect for lists as short as four items in length but an in-fill effect for list lengths of
six or larger. The authors suggested that the inability for participants to indicate omissions as responses
may have contributed to this pattern. In response, Osth and Dennis (2015a) conducted several large
experiments with six item lists under conditions that reduce omissions (a closed set of items along with a
reconstruction of order task), a condition which has high omission rates (an open set of items), and a
further experiment with open sets of items where participants can indicate their omission responses. Fill-in
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An additional phenomenon that was contrary to models that employ inter-item

associations is the finding that with mixed lists of similar and dissimilar items, errors in

recalling the similar items produce almost no impairment on the ability to recall the

dissimilar items (Henson et al., 1996). When response cuing is employed, like in the

TODAM models, the erroneously recalled similar items should serve as misleading cues for

further retrievals. While employing remote associations and compound cues at retrieval

can potentially mitigate this problem, a more conceptual problem is the fact that in the

mixed list half of the items are similar. If compound cues are employed at retrieval, around

half of the previously retrieved items should serve as misleading cues for the next response.

While such error patterns are contrary to representations that rely on inter-item

associations, other error patterns have been found that strongly suggest that items are

associated to the position of their occurrence. The first is the finding that intrusions from

prior lists tend to be recalled in the same output position as their within-list position from

the previous list (the protrusion effect: Conrad, 1960; Fischer-Baum & McCloskey, 2015;

Henson, 1999; Osth & Dennis, 2015b). The second concerns the finding that when

participants study a list of temporally grouped items, when participants recall an item

from the incorrect group, it tends to be recalled in the same within-group output position

as its position in its original group (interposition errors: Hartley, Hurlstone, & Hitch, 2016;

Henson, 1999; Liu & Caplan, 2020; Ng & Mayberry, 2002). Both findings follow naturally

from the assumption that items are associated to their position of occurrence and can be

captured by positional models (Henson, 1998; Liu & Caplan, 2020), but there isn’t an

obvious explanation of how such errors could be produced by associations between items.

For these reasons, the majority of current models of serial order have eschewed

representations of inter-item associations. Instead, the field has generally converged on

was found in conditions with low omission rates (reconstruction of order tasks and closed sets of items). In
the open set experiments, an ambiguous result was found (even fill-in and in-fill) when omission rates could
not be indicated, while a predominance of fill-in was found when omissions could be indicated.
Furthermore, re-analyses of both experiments with open sets found that trials with lower numbers of
omissions demonstrated a fill-in pattern.
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item-position associations as the primary representation. In positional models, when an

item is retrieved, it is not used as the cue for the next retrieval. Instead, the cue

corresponding to the next within-list position is employed. Consequently, if a participant is

attempting to recall the second item and erroneously recalls the seventh item, the

participant will subsequently employ the cue for the third position, making a correct

response the most likely response. Thus, in positional models, errors are far less

consequential than in models that are principally reliant on inter-item associations, as an

erroneously recalled item does not prevent the correct position cue from being used on the

next recall. Such models include the start-end model (SEM: Henson, 1998), ACT-R

(Anderson & Matessa, 1997), OSCAR (Brown et al., 2000), SIMPLE (Brown, Neath, &

Chater, 2007), the Burgess and Hitch (1992, 1999) model, variants of the SOB model

(Farrell, 2006; Lewandowsky & Farrell, 2008), the grouping model (Farrell, 2012), and the

BUMP model (Hartley et al., 2016). Collectively, such models have been applied to each of

the aforementioned phenomena that are challenging to models that rely on inter-item

associations. While several of these models have only provided demonstrations of these

phenomena in isolation via simulations, some of the models have been able to demonstrate

these phenomena after having been fit to either group-averaged data or from individual

participants, as we will discuss below.

Despite the field’s rejection of inter-item associations at the time, a number of

findings have since arisen that demonstrate evidence for inter-item associations. Such

findings include repetition advantages for permuted lists that preserve relative positions

over repetitions where each of the elements are scrambled (e.g., the spin list advantage

Kahana, Mollison, & Addis, 2010; Lindsey & Logan, 2019, 2021), advantages for items

being tested in the same relative order as they occur in natural language (Baddeley,

Conrad, & Hull, 1965; Botvinick & Bylsma, 2005), and advantages for ordered part-list

cues (Basden, Basden, & Stephens, 2002; Serra & Nairne, 2000). For these reasons, we are

not suggesting that CRU should abandon item-dependent context representations. Instead,
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our stance is that CRU should either broaden its representation to include within-list

position, or alternatively to consider how its representations can be employed to

approximate representations of within-list position. Some of this work has been undertaken

recently within the CRU architecture – in work that was published after the submission of

this commentary, Logan and Cox (2021) demonstrated various ways in which positional

representations could be derived from CRU’s context representations. We return to this

issue later in the section "Is there evidence for associations between items?" where we

provide a more comprehensive review of these phenomena and our recommendations for

both CRU and the field to move forward.

In the next section, we give a brief mathematical description of CRU to illustrate how

the model uses inter-item associations. We point out that when the current item dominates

the context representation (β = 1.0), the model resembles a pairwise chaining model,

whereas when there is a balance between the current item and the prior context (β < 1.0),

it utilizes remote associations at encoding and compound cuing at retrieval. We follow this

section with simulations of CRU with mixed lists of phonologically similar and dissimilar

items, intrusions from prior lists, and manipulations of temporal grouping.

CRU and Inter-item Associations

In this section, we give a brief mathematical description of CRU to illustrate its

reliance on remote associations and compound cuing, and how the model can mimic

pairwise chaining models under some parameterizations. Readers interested in a complete

description of CRU should consult the original articles (Logan, 2018, 2021).

In CRU, both items and contexts are represented using vectors, which we will

distinguish from other notation using boldface text. As mentioned previously, each item is

associated to its context of occurrence, which usually consists of the previous items. An

exception is the first item in each list, which is bound to a start-of-list context referred to

as a LIST vector. All study list items, along with the LIST representation, are
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represented as an orthonormal vector r.

Each context vector c is composed of a weighted combination of the previous item

and the previous context. The context vector for item N + 1 is defined as:

cN+1 = βrN + ρcN (1)

where the β parameter controls the relative weighting of the current item and the previous

context, and ρ is a normalization term to ensure that the length of each context vector is 1:

ρ =
√

1 + β2[(rN · cN)2 − 1]− β(rN · cN) (2)

although ρ =
√

1− β2 when there are no repetitions and the vectors are orthonormal.

Encoding results in the storage of a context vector associated with each studied item

as a separate trace in memory. What is somewhat counterintuitive about the model is that

while items are associated to their context vectors, there is not an explicit binding

operation between the item vector rN+1 and its respective context vector (cN+1). This is

one crucial distinction from the temporal context model (Howard & Kahana, 2002), where

learning consists of binding the current item vector to its context vector via an outer

product operation (an additional deviation from TCM is that item repetitions do not

produce reinstatement of their prior states of context). As we will demonstrate in

simulations, the assumption that an item is not part of its own representation has some

important consequences for when item vectors are similar to each other, as the content of

an item vector has the largest effect on its successors in the list, but does not affect its own

context vector. While TCM shares the assumption that items are not present in their own

context vectors, similarity among item vectors would have an additional influence on the

item vectors in the item by context binding.

Each context vector is composed of the previous items in the list in addition to the

LIST representation. Assuming no repetitions in the list, we can rewrite Equation 1 as:
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cN+1 = βrN +
∑
i≤N

(ρri)N−i (3)

where it can be seen more clearly that each context vector that is added to memory is

composed of the previous item vectors, where each item vector prior to item N is weighted

by ρ raised to the power of its recency. As Logan himself notes: "Items are associated with

contexts made of previous items, so in effect, items are associated with each other." (Logan,

2021, p.2). Thus, the association between an item and its context can be thought of as an

association between an item and its previous items in a recency-weighted fashion – a

remote association formed at encoding. However, one should note that when β = 1, ρ = 0,

which simplifies the expression to cN+1 = rN . In other words, when β = 1, each context

vector consists of only the previous item, meaning that only adjacent associations are

stored, like in pairwise chaining models.

Context evolution is also used to guide recall. That is, when retrieval begins, the

context representation is cleared and initiated with the LIST representation. The

similarity between the current context cue cc and the context vector for a given item i is

calculated via the dot product to produce a drift rate vmem:

vmem,i = cc · ci (4)

Drift rates are calculated for all of the letters that were on the list. These drift rates

drive a competitive race between each of the list items, which is implemented as a racing

diffusion process. Higher drift rates produce more rapid accumulation to the threshold θ,

which is conventionally fixed to 200.

Once an item wins the race, its item vector r enters the context, and context

evolution proceeds according to Equation 1, and the cycle repeats. In other words, context
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evolution at retrieval proceeds in the same manner as it does during learning the study list

items. Thus, context contains a recency-weighted combination of the recently retrieved

items as the cue for recall, meaning that the model can employ compound cuing at

retrieval. However, similar to its assumptions about encoding, this again depends on the

value of the β parameter. When β = 1, the last retrieved item dominates the context

vector. Conventionally (but not necessarily), the same value of β is used at both encoding

and retrieval, meaning that when β = 1, the model can be considered a pairwise chaining

model, where adjacent associations are formed at encoding and the cue consists of the last

retrieved item. It is for this reason that our simulations below vary the β parameter across

a wide range, and we will illustrate how the model can yield very different predictions when

β = 1.

In practice, the fits of CRU to data suggest that β < 1 (Logan, 2018, 2021), implying

the usage of remote associations at encoding and compound cuing at retrieval. As

mentioned previously, such assumptions enable the ability to capture the locality constraint

and the ability to recover from errors, both of which were well demonstrated in typing,

serial recall, and whole report. Nonetheless, one remaining limitation of the model noted

by Logan (2021) was that the model was not able to produce the fill-in effect. Fill-in to

in-fill ratios are typically around 2.0 (Page & Norris, 1998), whereas in Logan’s data they

were much higher, around 3.80. The ratios calculated from CRU were considerably lower,

around .5776, indicating the model performed in the opposite manner to how the

participants performed and tended to proceed in the forward, rather than backward,

direction after an error is made. This prediction is somewhat perplexing because as Logan

noted, the similarity between the encoded context vectors is symmetric, meaning that the

context of D is equally similar to both B and C. While that would suggest an error ratio

of around 1.0, the dynamics of context evolution during retrieval complicate the picture.

Using algebraics, Logan demonstrated that after an omission, CRU is actually guided

toward later positions: "CRU predicts an asymmetry in favor of later positions following an
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initial omission." (Logan, 2021, p.17).

One solution Logan attempted was to revise the context representation at retrieval to

use a weighted combination of the LIST vector and the current context. The LIST vector

is most strongly associated to the early items on the list, and therefore additional weight

on the LIST vector in the context vector at retrieval functions to "pull" retrieval in the

backward direction after an error. While Logan noted through simulations that this can in

principle produce the appropriate fill-in error ratios, unfortunately fits to data

demonstrated a trivially low weight of the list vector, such that the model still produced

error ratios that were in the opposite direction of what was found in the data. For a more

complete description of CRU’s ability to capture fill-in error ratios, we invite readers to

consult the Logan (2021) article. We summarize these results here because we argue that

CRU’s predicted in-fill pattern is exactly the type of consequence that emerges from

models that rely purely on inter-item associations.

As we mentioned previously, one important deviation that CRU makes from existing

models that rely on inter-item associations is its reliance on memorial cuing rather than

response cuing. That is, after an item is retrieved, there is an additional decision about

which item is to be output, where each item’s rate of accumulation in the race is

determined by the spatial distance between the retrieved item and all other items on the

keyboard. Critically, if an erroneous response is made (typing the letter "g" when "f" was

retrieved from memory), the erroneously recalled item is not added to the context vector.

Instead, it is the item that was retrieved from memory ("f"). While this component was not

present in the Logan (2021) article, it was a critical component of the initial CRU model of

typing (Logan, 2018). We will demonstrate in the next section that this enables the model

to capture the mixed list similarity effect when output-based errors are phonological in

nature instead of reflecting the proximity of the items on the keyboard.
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Serial Order Phenomena that Motivated Positional Models

Mixed-lists of Phonologically Confusable Items

Among the most historically constraining patterns of data came from mixed-lists of

phonologically confusable items. It has generally been well-established that lists composed

of phonologically confusable items, such as rhyming consonants (B, C, P, etc.), are recalled

more poorly than lists of nonconfusable items that do not share a rhyme (K, X, L, etc.)

due to the frequent order errors among confusable items (Conrad & Hull, 1964). Such an

impairment can be accounted for by most theories that posit some confusability or

similarity among the item representations for phonologically confusable items. However, a

more interesting and constraining test comes from mixed lists in which confusable and

non-confusable items are presented in an alternating pattern, such as CKPXGL (where

confusable items are underlined).

As mentioned previously, when associations are formed among list items and the

responses associated with retrieved items are used as cues for the next retrieval, if an

erroneous item is recalled on a given output position i, there is a higher likelihood that the

next output position i+ 1 will contain an error than if output position i contained a

correct response. However, when errors are plotted by output position, such mixed lists

show elevated error rates for the confusable items, such as C, P, and G, whereas the error

rates for nonconfusable items are not higher than on pure lists of nonconfusable items

(Baddeley, 1968; Henson et al., 1996). Figure 1 illustrates this phenomenon with data from

Page et al. (2007) in which participants studied and recalled lists composed of purely

confusable items (PC), purely nonconfusable items (PN), and alternating lists of confusable

and nonconfusable items, with confusable items occurring either in odd (ANC) or even

(ACN) serial positions.

Furthermore, investigations have even found that nonconfusable items can benefit

from the presence of confusable items in mixed lists relative to pure lists of nonconfusable

items (Farrell & Lewandowsky, 2003; Farrell, 2006; Lewandowsky & Farrell, 2008) – this
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pattern is also evident in Figure 1, where the nonconfusable items in mixed lists are often

recalled better than their counterparts in pure nonconfusable lists. Furthermore, these

same phenomena can also be found in speech production errors (Page et al., 2007). Such

findings were highly instrumental in motivating a departure from the reliance on inter-item

associations in theories of serial order. Indeed, Henson et al. (1996) went as far as to claim

that the mixed-list findings "rule out" chaining models of serial recall. However, these

claims critically rest on the assumption that the responses are used as cues in retrieval

rather than the retrieved content from memory.
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Figure 1 . Accuracy serial position curves for verbal serial recall of lists composed of purely
confusable consonants (PC), purely nonconfusable consonants (PN), and alternating lists of
confusable and nonconfusable consonants, with confusable consonants occurring either in
odd (ACN) or even (ANC) serial positions. Data taken from Page et al. (2007).

As mentioned previously, CRU departs from other previous models that employ

inter-item associations in its treatment of item similarity. In CRU, item vectors are



ITEM-DEPENDENT CONTEXT SERIAL ORDER 20

orthonormal and completely dissimilar to each other – it is the similarity of the context

vectors that produces interference during the retrieval stage. Confusions between items can

occur in two other stages of the model. The first is during an encoding stage, where an

item can be erroneously perceived as a different item (e.g., reading the letter "e" as "f").

Like in the case of memory retrieval, this process is a competitive race between each of the

letters. The strength of each letter i is determined by an exponential transformation of the

distance d between it and the presented letter j:

vencode,i = exp(−gdij) (5)

where dij is the distance between the two letters in a multidimensional scaling solution

(MDS) based on visual confusions of the letters and g is a distinctiveness parameter.

Increases in g reduce vencode,i for letters that are not the target item, reducing the

probability of encoding errors.

The second mechanism for similarity effects is during an output stage that occurs

after the memory retrieval stage, where a retrieved item can be output as a different item

due to motor errors (Logan, 2018). This operates in the same manner as reading:

vout,i = exp(−gdij) (6)

with the crucial distinction being that the distance dij is derived from the distances

between keys on a keyboard, making it such that a letter may be accidentally output as an

adjacent letter on a QWERTY keyboard. While this mechanism was not used in the Logan

(2021) article, in the General Discussion, Logan notes that this mechanism could be

modified to produce confusions based on phonological similarity: "This idea could be

generalized to multidimensional representations of response alternatives, like phonological
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codes for spoken words or letter names." (Logan, 2021, p. 32)

What is critical for predictions of mixed list similarity effects is that output-based

confusions do not impact the input to the context layer – in other words, memorial cuing is

used instead of response cuing. For instance, if "r" was retrieved and "t" was erroneously

reported, the item vector for the retrieved letter "r" is what enters the context and serves

as the functional cue for the next response. In a mixed list of similar and dissimilar items,

such a mechanism implies that output-based confusions of phonologically confusable items

will not affect context updating, and thus will not disrupt performance on the subsequent

retrieval. It is important to note that several models of serial order, including positional

models, have adopted a similar approach where confusions of phonologically similar items

occur during an output stage and not at memory retrieval (e.g., Brown et al., 2000;

Henson, 1998; Page & Norris, 1998).

We adopted a similar approach as Logan (2018) used and allowed for output-stage

confusions to occur. However, we had to make an important departure from that approach

in order to address phonological similarity effects. Instead of using distances between

letters on a keyboard, we used a simulated distance matrix to make the output-based

errors phonological in nature. For each letter pair, we simulated the distance value d from

a truncated normal distribution. For pairs of confusable letters (B, D, G, P, T, and V), we

used µ = .2 and σ = .2. For pairs of nonconfusable letters, we used µ = 1.80 and σ = 1.0.

For the distance between confusable and nonconfusable letters, we used µ = 3.0 and

σ = 1.0. These values were chosen to roughly accord with the distances in an MDS solution

of a limited pool of confusable and nonconfusable letters performed by Farrell (2006). For

the sake of simplicity, we assumed that the g parameter in the output stage was fixed

across output positions.

We simulated this CRU variant’s predictions for the Page et al. (2007) experiment

using the same list structure and number of trials. The CRU variant was simulated with

four different values of β (1.0, .65, .45, and .25) crossed with four values of g for the output
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stage (.1, .3, .5, and 1.0). With higher values of g, output-stage confusions are less likely

for both confusable and non-confusable items. Additional simulation details can be found

in the Appendix.

Results of the CRU simulations with output-based confusions can be seen in Figure

2. The variation in parameter values primarily results in differences in performance –

higher values of β and lower values of g produce better performance overall. In terms of

the qualitative predictions for the mixed list similarity effect, the model does an impressive

job, with virtually all combinations of parameter values showing the qualitative sawtooth

pattern that resemble the data in Figure 1.

However, an analysis of the model’s errors found that there was a high incidence of

repetition errors and extralist intrusions. These error results are at variance with data

showing that both error types are rare (Henson et al., 1996).While space prohibits the

description of error types for each list type and parameter combination, the frequencies of

repetition and extralist intrusions collapsed across list types can be found for each

combination of parameter values in Table 1. While the repetition errors caused by

output-stage confusions could also be remedied by the introduction of response

suppression, this model also yields a high incidence of extralist intrusions. Under some

parameter values, the proportions of extralist intrusions reach almost 40% of responses,

implying around 3 intrusions per list.

Table 1
Proportions of repetition errors and extralist intrusion errors relative to all responses from
a given trial collapsed across list types from the CRU variant with output-stage confusions.
Extralist intrusion proportions are depicted in italics.

β = 1.0 β = 0.65 β = 0.45 β = 0.25

g = 0.1 0.105 0.379 0.106 0.381 0.115 0.379 0.125 0.369

g = 0.3 0.08 0.183 0.082 0.184 0.115 0.183 0.159 0.179
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g = 0.5 0.066 0.111 0.069 0.109 0.111 0.109 0.174 0.103

g = 1.0 0.042 0.056 0.045 0.056 0.102 0.053 0.183 0.051

Why is there such a high incidence of repetition errors and extralist intrusions, given

that such errors are rare in the data? The reason why is because confusable items are likely

to be confused with other confusable items in the output stage regardless of the contents of

memory. This means that when a confusable item is retrieved from memory, during the

output stage it can be confused with another confusable item that was already retrieved or

a confusable item that is outside of the study list.

What can be done to improve CRU’s predictions for this paradigm? Several models

of serial recall similarly rely on output stage confusions to capture similarity effects like we

have done here. However, response selection in the output stage is based on a product of

the similarity between the context cues and the item cues (e.g., Brown et al., 2000; Burgess

& Hitch, 1999; Henson, 1998). In other words, items that are both perceptually similar and

match the context cues are most likely to be output. Items not presented on the study list

do not match the context cues, and thus are unlikely to be output during this stage

according to the product rule.

We pursued a similar approach within CRU. In order to use the product rule, we

re-used the drift rates from the memory retrieval decision stage (vmem) for the output

stage. Specifically, the drift rates for the output stage vout are a weighted product of vmem

and drift rates that reflect phonological similarity, which we refer to as vphono, where vphono

is calculated according to Equation 6. The final drift rate for a given item i is:

vout,i = vwmem,iv
(1−w)
phono,i (7)
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Figure 2 . CRU simulations for the Page et al. (2007) paradigm using output-based
confusions. Notes: PC = pure confusable, PN = pure nonconfusable, ACN = alternating
confusable-nonconfusable, ANC = alternating nonconfusable-confusable.

where w is a weighting parameter between 0 and 1 that reflects the relative weighting of

context similarity and phonological similarity. We pursued a range of different values and

generally found the best correspondence with relatively low values of w. One should note

that so long as w is greater than zero, vout will be zero for all items where vmem is zero,

which reduces vout for all items that were not studied on the list. It also reduces vout to

zero for items that were present on the list, but were sufficiently distant from the target

item. This is especially the case when β is high, as increases in β reduce the similarity
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between non-adjacent context vectors. These assumptions place considerable constraint on

the phonological confusions that can occur during the output stage. We fixed w = .05 in all

simulations, reflecting close-to-exclusive reliance on phonological similarity, as we found

this bore the closest resemblance to the patterns found in empirical data. For balanced

values of w, such as when w = .50, little qualitative correspondence was found between

CRU’s predictions and the data.

CRU simulations with the output stage that combines contextual and phonological

similarity can be seen in Figure 3. In contrast to previous simulations, the patterns of data

depend heavily on the value of β. When β = 1, performance is close to perfect, as in the

base version of the model. This is because context vectors only show self-similarity when

β = 1.0 – all other context vectors are completely dissimilar, making their values of

vmem = 0 and v = 0 as a consequence. This eliminates the phonological similarity effect

because any confusable items that are more than one position apart from the previously

recalled item cannot be produced during the output stage. For the simulations where

β = .65, a potential shortcoming of the model is that performance for confusable items in

pure lists is considerably worse than in mixed lists. However, this problem was more

evident with lower values of g, suggesting that higher values of this parameter are more

appropriate. Analyses of errors found that this was due to a high incidence of repetition

errors. This problem could again be mitigated with the usage of response suppression.

When β = .45, in contrast, a very reasonable correspondence with the qualitative

patterns of data is achieved. The model even appears to achieve better performance for

both confusable and nonconfusable items in mixed lists than pure lists to a degree that

reasonably corresponds with the data. A much weaker correspondence is found when

β = .25, but memory is very poor in this condition and most fits to data in the Logan

(2021) article did not result in β values this low.

What is most encouraging about these simulations is that frequencies of extralist

intrusions were close to zero for all parameter combinations, as can be seen in Table 2.
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Figure 3 . CRU simulations for the Page et al. (2007) paradigm using output-based
confusions that combine contextual and phonological similarity. Notes: PC = pure
confusable, PN = pure nonconfusable, ACN = alternating confusable-nonconfusable, ANC
= alternating nonconfusable-confusable..

This is because the product rule ensures that only candidates that bear both non-zero

contextual and phonological similarity to the retrieved item can be output. Table 2 still

reveals that repetition errors can still be fairly frequent with some combinations of

parameter values. However, given that these errors clearly vary by combinations of

parameter values, it is possible that reasonable correspondence with the data could be

achieved if the model were fit to data. In addition, inclusion of response suppression could
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likely reduce the frequency of repetition errors. These simulations demonstrate that a CRU

extension with output-stage confusions along with a product rule can capture the mixed

list phonological similarity effect while reducing extralist intrusions to minimal numbers.

Table 2
Proportions of repetition errors and extralist intrusion errors relative to all responses from
a given trial collapsed across list types from the CRU variant with output-stage confusions
with a product rule. Extralist intrusion proportions are depicted in italics.

β = 1.0 β = 0.65 β = 0.45 β = 0.25

g = 0.1 0.0 0.0 0.176 0.0 0.215 0.0 0.24 0.0

g = 0.3 0.0 0.0 0.106 0.0 0.162 0.0 0.219 0.0

g = 0.5 0.0 0.0 0.076 0.0 0.137 0.0 0.212 0.0

g = 1.0 0.0 0.0 0.041 0.0 0.112 0.0 0.203 0.0

Other Methods of Accounting for Phonological Similarity Effects. In

addition to allowing for phonological output confusions, we also explored two other possible

loci of phonological similarity effects, the results of these simulations can be found in

Supplementary Materials A. While these methods were not endorsed by Logan (2021),

these simulations provide insight into other possible mechanisms, and the limitations of

these variants are illustrative and give further weight to the variant where output-stage

confusions are responsible for phonological similarity effects.

First, we explored a CRU variant where phonological similarity is between the item

vectors in the model and implemented this with a wide range of parameter values. We

created similar item vectors in two different ways – the first method consisted of each item

vector being a weighted combination of an orthonormal vector and a vector where all

confusable items have shared elements, while the second method was a weighted
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combination of an orthonormal vector and a common vector element to reflect the

consonant-vowel structure in the confusable items. Across the majority of

parameterizations, poorer performance was predicted for phonologically similar items, but

there was little evidence of a "sawtooth" pattern. Instead, errors in mixed lists continued to

result in poorer performance that did not increase afterward.

What was counter-intuitive about these simulations is that errors in mixed lists

occurred on the non-confusable items – the opposite of what is found in the data. This is

due to the assumption that each item vector is not contained within its own context vector.

Because context vectors contain the previously studied item as its strongest element, and

the mixed lists in this paradigm use an alternating structure, a confusable item contains its

preceding nonconfusable item as its strongest element, whereas a nonconfusable item

contains its preceding confusable item as its strongest element. Consequently, when there is

similarity between item vectors, the presence of a similar item in the context cue exhibits

its highest similarity to nonconfusable items. While these simulations explored only a

limited range of model parameters and methods of manipulating item vector similarity,

other parameter values and implementations will share this conceptual problem unless

additional assumptions are incorporated into CRU.

Why does the model perform poorly with similar item representations, given that

compound cuing and remote associations (which occur when β < 1) should promote

recovery from errors? First, with high values of β, a confusable item dominates the context

cue and should mislead memory retrieval. Second, in a mixed list, around half of the

preceding retrieved items are likely to be confusable items, making it such that compound

cuing will provide relatively little benefit. While these were simulations performed with a

somewhat limited range of parameters and means of manipulating item vector similarity, it

is unclear how other parameter values or implementations of item vector similarity could

overcome this conceptual problem. Such a problem can be compounded in mixed lists

where there is only a single nonconfusable item and five confusable items (Farrell &
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Lewandowsky, 2003; Farrell, 2006).

While similarity among the item vectors is not the proposed explanation for the

consequences of phonological similarity, we have included these simulations as other

simulations in the article, specifically in simulating the effects of temporal grouping, have

encountered similar problems where errors do not occur during retrieval of the items that

contain similar vectors, but instead occur on the following retrieval. Does CRU’s troubles

with similar item representations imply that similarity among item vectors can never

capture the results of phonological similarity? Not necessarily – as we will discuss below,

the SOB model, which relies on associations between items and within-list positions, was

successful in capturing the effects of phonological similarity using similar item vectors

(Farrell, 2006; Lewandowsky & Farrell, 2008). In this model, similarity among the item

vectors is much less consequential because an error on a particular item does not update

the cue for the next response.

The second CRU variant we explored was a model where phonological similarity

resulted in confusions at encoding. To implement this model, we used the same simulated

distance matrix as our simulations with output-based confusions and implemented it with

the same range of parameter values. This variant was similarly able to reproduce the

sawtooth serial position curves which appear impressive. However, the model had two

shortcomings. First, similar to our first output-stage confusion variant with no contribution

of memory-based similarity, the model exhibited a high degree of extralist intrusions and

repetition errors. However, with encoding-based confusions, such errors are more

consequential. Unlike the output-stage, erroneously perceived items enter the context layer

and are learned, which have the potential to causer further errors at recall. Consequently,

the model predicted worse performance for both classes of items in mixed lists.

Discussion. In this section, we have pursued a number of different mechanisms for

implementing phonological similarity effects in CRU. We found the closest correspondence

was when item confusions occur during an output stage. While this can result in a high
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degree of extralist intrusions or repetition errors, this problem was mitigated by using a

product rule for the output stage, where each item’s drift rate is a product of its context

similarity and phonological similarity, with context similarity serving to restrict output

candidates to items that were studied on the list.

These CRU simulations demonstrate that phonological similarity effects in pure and

mixed lists are not nearly as constraining as previously stated. Henson et al. (1996) made

the strong claim that such patterns "rule out" models that rely on associations between

items. The simulations presented here demonstrate that this is not the case. CRU – which

essentially learns associations between an item and all items experienced prior to its

presentation – can reproduce the "sawtooth" serial position curves when it relies on

confusions during an output stage, if such confusions do not influence the next cue for

recall. If the next cue for recall is not changed, then an error during output has no

influence on the next retrieval, which enables the model to recover from a motor error.

While the usage of output-based confusions might seem ad hoc given that motor

errors were originally specified as confusions among locations on the keyboard (Logan,

2018), extension of the output stage to represent phonological confusions was suggested in

the Logan (2021) article. In addition, this mechanism is common to the majority of

existing models of serial recall (including positional models), where confusions between

phonologically confusable items occur during a second stage where responses are selected

for output (e.g., Brown et al., 2000; Burgess & Hitch, 1999; Henson, 1998; Page & Norris,

1998). Indeed, virtually all of these existing models simulated successful qualitative

reproductions of the Henson et al. (1996) data. Thus, the criticism that such a mechanism

is ad hoc can additionally be levelled against other models that rely on the same

mechanism. Furthermore, evidence for phonological confusions in the response stage comes

from the fact that the same error patterns can be found in speech production where no

memory retrieval is required (Page et al., 2007).

A caveat of all simulation work of this kind is that such simulations demonstrate
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what a model is capable of with a specific set of parameters. Simulation of a phenomenon

in isolation demonstrates a proof-of-concept that a model can account for a phenomenon

under that condition, but does not guarantee that this success will generalize to fits to real

data, where the constraints of fitting individual responses and variations across individual

participants may "steer" the model into a different parameterization where the phenomenon

is no longer predicted. Likewise, introducing a mechanism of this kind may also

compromise the model’s ability to capture some of the phenomena already demonstrated in

the original articles. Thus, it would be fruitful to evaluate the consequences of including

phonological confusions during output within CRU for other paradigms, including Logan

(2021)’s existing data that includes typing, serial recall, and whole report tasks. Given that

output stage confusions can introduce further errors into the model, it is possible that this

revision can dramatically change the predictions of the model for the data that the model

has already been applied to.

Nonetheless, we are somewhat optimistic about the inclusion of phonological

confusions during the output stage given that other models have generally been successful

in implementing such a stage even after the models have been fit to data. Models such as

SEM, SOB, and the primacy model (Page & Norris, 1998) have been successfully able to

capture phonological similarity effects while simultaneously capturing the primacy and

recency effects and the shapes of transposition gradients after having been fit to group-level

data (Farrell, 2006; Henson, 1998; Lewandowsky & Farrell, 2008). Nonetheless, fits to

individual participant data, especially at the level of individual responses as was done by

Logan (2021), remains an important direction for future work.

A particularly strong challenge for CRU may be the finding that when only a single

nonconfusable item is presented among a set of confusable items, performance is hugely

improved for the nonconfusable item relative to both mixed lists comprising 50%

confusable and nonconfusable items and pure nonconfusable lists (Farrell & Lewandowsky,

2003; Farrell, 2006), which is essentially a Von Restorff effect (von Restorff, 1933; Hunt,
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1995). This advantage for the isolated nonconfusable item is naturally captured by the

SOB model due to its reliance on similarity-sensitive encoding. In SOB, encoding strength

is inversely proportional to the similarity between an incoming item and the contents of

memory. Because a single nonconfusable item contrasts heavily with the preceding set of

confusable items, its encoding strength is much greater than when it is studied amongst

other nonconfusable items.

A mechanism such as similarity-sensitive encoding is orthogonal to the issue of

representation. With that being said, an architecture such as SOB that relies on positional

representations is robust to similarity among the item vectors – a necessary requirement for

similarity-sensitive encoding – because errors on confusable items do not influence the cue

for the next response. Our simulations demonstrating the highly deleterious effects of item

vector similarity on CRU’s predictions (which can be found in Supplementary Materials A)

show it may not be able to incorporate similarity-sensitive encoding in the same way.

While we acknowledge that we have explored CRU with similar item vectors under a

limited range of parameters and implementations of item vector similarity, it is not obvious

how other parameterizations and implementations could circumvent these problems. In

paradigms where only a single nonconfusable item is studied, the context vector that cues

the nonconfusable item will potentially be composed of a large number of similar vectors,

which can serve as misleading cues.

CRU may be able to account for isolation effects using higher values of the β

parameter for nonconfusable items when they are accompanied by confusable items, but

ultimately a mechanism is required to explain why this occurs. One possible mechanism

might be that items that are more similar to the current context produce less contextual

change. Siefke, Smith, and Sederberg (2019) presented a variant of the temporal context

model that uses exactly this principle and found it was able to produce isolation effects

similar to those of the Farrell and Lewandowsky (2003) paradigm. While CRU could

benefit from such a mechanism, it likely incurs the same costs as a similarity-sensitive
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encoding mechanism. That is, in order for confusable items to be more similar to the

current context than nonconfusable items, there has to be some similarity among the item

vectors, which is detrimental to performance. If all item vectors are orthonormal, then all

items that are not repetitions exhibit zero similarity to the current context during the

encoding stage, predicting no difference between confusable and non-confusable items.

The Protrusion Effect

The effects of phonological similarity in pure and mixed lists were not direct evidence

for positional models, as such models had to rely on confusions during an output stage to

capture such effects. Indeed, the primacy model of Page and Norris (1998) was able to

capture such effects using confusions during the output stage, while principally relying on

an ordinal representation of serial order. In ordinal models, items are not associated with

within-list positions or with other items. Instead, order is represented purely in a declining

strength gradient, with the first item being the strongest, the second item being weaker in

strength, etc. (e.g., Farrell & Lewandowsky, 2002; Grossberg & Pearson, 2008). We have

demonstrated in the previous section, CRU is similarly able to accommodate mixed-list

similarity effects using confusions during an output stage.

More direct evidence for positional representations comes from the correspondence

between within-list serial position of prior-list intrusions and output position when

recalling the current list. Specifically, participants are most likely to produce an intrusion

that matches the within-list serial position of the item they are attempting to recall

(Conrad, 1960; Fischer-Baum & McCloskey, 2015; Henson, 1999; Osth & Dennis, 2015b).

For instance, if a participant is attempting to recall the third item, they are most likely to

intrude the third item from the prior list. We depict this pattern in Figure 4 using data

from two different list length conditions (5 and 6 items) in Osth and Dennis (2015b). This

figure depicts the proportion of intrusions from each serial position in the immediately

prior list separately for each output position in the current list. Notably, each output
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position depicts a gradient that is centered on the same serial position on the prior list, a

pattern which is especially pronounced for the first and final item. This effect was dubbed

the protrusion effect because it is as if the items from the prior list protrude downward into

their same position in the current list. The most natural explanation of the protrusion

effect is in terms of positional representations. If participants are using a positional cue, it

will match the items that were studied in similar positions, regardless of the study list they

were originally studied in.
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Figure 4 . Proportions of prior-list intrusions from each serial position (indicated by the
digits) in the immediately prior list plotted as a function of output position from the
current list. Data are replotted from Osth and Dennis (2015b) for a dataset with a list
length of 5 items (top panel) and 6 items (bottom panel).

One possible explanation for protrusion effects is that there are circumstances that

induce participants to associate items to within-list positions instead of other items. In his

review of the serial learning literature, Young (1968) provided evidence that the relative

reliance on item-position and inter-item associations can depend considerably on a number
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of factors, including the instructions given to the participants, suggesting that participants

are flexibly adapting their representations to the demands of the task. Many serial recall

tasks often employ a small set of items that are repeatedly re-used across trials (e.g., closed

sets), and one possibility proposed by Kahana et al. (2010) is that these circumstances

induce participants to employ item-position associations to compensate for the massive

degree of proactive interference from prior trials.

While it is indeed the case that many demonstrations of the protrusion effect have

come from closed sets of items (Henson, 1999; Conrad, 1960; Fischer-Baum & McCloskey,

2015), the experiments of Osth and Dennis (2015b) used a very large set of items

(specifically words) such that stimuli were never re-used across trials (e.g., an open set).

This procedure was used to specifically test the proposal of Kahana et al. (2010) that

item-position associations are employed specifically to compensate for the demands of

closed sets. However, as indicated in Figure 4, these experiments also clearly demonstrated

a protrusion effect. While these results did not preclude the possibility that the relative

reliance of item-position and inter-item associations can vary depending on the size of the

experimental set, they do reject the possibility that item-position associations are

exclusively employed in experiments utilizing closed sets.

Can CRU produce protrusion effects despite the fact that the model lacks

representations of within-list position? In the Logan (2021) article, only a single list was

learned and present in memory at a given time. In this work, we extend the model to a two

list paradigm to evaluate whether the model is capable of producing the protrusion effect.

Specifically, we performed simulations where a study list of six items was studied followed

by a second study list of the same length. The second study list had a unique LIST

representation from the first list. This is undoubtedly an oversimplification, as a "true"

reflection of learning would involve either several lists in memory (Lohnas, Polyn, &

Kahana, 2015) or all of the lists over the learning episode (Fox et al., 2020). However, it is

a useful way to evaluate whether CRU can produce the protrusion pattern.
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However, one consequence of these simulations is that the orthonormal vectors within

CRU make it such that prior list intrusions almost never occur. This may seem

counter-intuitive given that elements of list 1 are present in the list 2 context vectors. For

instance, if list 1 is ABCDEF and list 2 is GHIJKL, the context vector for G is

LIST1 −A−B −C −D−E − F − SPACEBAR− LIST2, with the magnitude of the list

1 elements being proportional to the value of β. However, the reason why prior list

intrusions will still not occur is that none of the list 2 items are present in the context

vectors from the list 1 items.

In order for prior list intrusions to occur due to confusions between the two lists at

retrieval, the model requires generalization between the context vectors from the two lists.

We implemented this in two ways, namely similarity between the list context vectors

(LIST1 and LIST2) and similarity among the item vectors. While it is conventional for

CRU to instead employ orthonormal vectors for both types of representations, we found

the introduction of vector similarity to be a somewhat desirable reason to capture prior list

intrusions as this makes it such that confusions between the two lists are a consequence of

the similarity between the stored context vectors from each list. This is consistent with the

underlying logic behind CRU, namely that retrieval errors are due to the similarity among

the context vectors.

CRU Simulations with Similarity in List Contexts. To manipulate the

similarity among the list context vectors, we varied the similarity of the LIST

representations in a similar manner as to our simulations of item vector similarity in

Supplementary Materials A. Specifically, each LIST vector is a weighted combination of

two vectors, a unique orthonormal vector u as well as a common vector m:

LISTi = (
√

1− slist)ui +√slistm (8)
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where slist is a similarity parameter between 0 and 1 that governs the relative weight of the

common vector and m is an orthonormal vector. As slist approaches one, both LIST

vectors become identical. Higher values of slist make it such that the LIST2 cue will match

any of the context vectors stored within list 1 to a degree that is proportional to the

activation of the LIST1 element.

First, we conducted some analyses on the similarity between the context cues for list

2 in each output position and the stored context vectors for both list 1 and list 2 with a

range of parameter values (slist = 0, .25, .5, and .75 and β = 1.0, .65, .45, and .25). That

is, for output position 1, we begin with a context vector that is the LIST2 vector and

calculate its similarity to all stored context vectors from both lists. For output position 2,

we use a context vector that contains LIST2 −G, for the third output position the context

vector contains LIST2 −G−H, and so forth.

The similarity gradients for the context vectors for each serial position (indicated by

the numbers over the lines) and output position (indicated beneath the x-axis) can be seen

in Figure 5 for both list 1 items (left column) and list 2 items (right column). The list 2

columns show the usual expected results for a single list simulation, as the similarity

gradients peak for the correct item and are more strongly peaked for higher values of β.

Higher similarity among the list contexts (s) does not disrupt this qualitative pattern,

although for lower values of β, higher values of s produce lower similarities to the list 2

context vectors.

The similarity gradients for the list 1 context vectors can give some insight into how

the model can produce protrusions. First, when slist = 0, there is no similarity of the list 2

context cues to any of the stored list 1 context vectors. When slist > 0, similarity becomes

more evident. However, what is noteworthy is that the shapes of the similarity gradients do

not qualitatively change with output position. Instead, they are strongly primacy focused,

favoring the first item from list 1 regardless of the output position.

Why do the similarity gradients show a correspondence for the first item, but not for
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Figure 5 . Dot products between the list 2 context cue for each output position (indicated
below the x-axis) and the stored list 1 context vectors (left column) and list 2 context
vectors (right column) when similarity among list context vectors is manipulated (as
indicated by the slist parameter). The serial positions for each context vector are indicated
by the numbers above the lines. Note that the context cue for each output position in list 2
assumes the previous items were correctly retrieved.

any of the other positions? The answer is because the LIST representation behaves in the

same manner as a start-of-list positional representation, which is most active for the first

item from each list. The similarity between the two list vectors makes it such that the first

output position’s context cue (LIST2) matches the first item’s stored context vector
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(which contains only LIST1). Because LIST1 is most active for the first item in list 1, it

shows the strongest match regardless of the output position. Furthermore, there are no

components in the model which would allow for in-position matches for the other output

positions, as the item vectors, which comprise the remainder of the elements in the context

vectors, are all orthogonal to each other. Other implementations of similarity of the list

elements would likely produce the same qualitative patterns in the similarity gradients

without additional assumptions. The fact that the LIST elements are most active at the

beginning of the list is a property of the context evolution within CRU, not our

implementation of list element similarity.

One should note that the similarity gradients in Figure 5 are idealized in that they

assume that all of the previous items from list 2 were perfectly recalled. In actuality, there

are likely to be errors from the encoding stage and the memory retrieval stage, both of

which can change the nature of the context cues employed in each output position. For this

reason, we performed simulations of retrieval from list 2 (e.g., recall initiation with LIST2)

and plotted the positional uncertainty functions at each output position for list 1 and list

2. The positional uncertainty functions from list 1 are plotted in the same manner as

Figure 4, demonstrating for each output position the proportion of recalls from each serial

position in the prior list. For each list, we used a random set of six letters. Letters were

not reused across each list. For each combination of parameter values, we simulated a total

of 250 lists, using 500 simulations for each list to achieve stable predictions. Additional

details on these simulations can be found in the Appendix.

Results of the simulations of the two list paradigm can be seen in Figure 6 for list 1

recalls (left column) and list 2 recalls (middle column), where recall is initiated with a

LIST2 context. The bar plots in the third column demonstrate the proportions of prior list

intrusions (list 1 recalls) that were preceded by (left bar) or followed by (right bar) another

recall from the same list. Figure 6 demonstrates the correct expected pattern for list 2

recalls – the positional uncertainty functions are peaked at the correct position for every
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output position. Nonetheless, the list 1 results depict very different gradients of prior list

intrusions than what one would expect from Figure 5. The most striking pattern is for the

high values of β (.65 and 1.0), a protrusion effect is observed under some conditions,

specifically when slist = .75 when β = .65, or for all values of slist > 0 when β = 1.0. That

is, the most probable response from the prior list is the item that matches the current

output position.

How can the model produce protrusion effects for each output position if there is only

a representation of the start-of-the-list? It’s important to recognize that under these

parameterizations it is possible for the model to retrieve the entire prior list in order, or at

the very least entire chains of items from the prior list. To understand how this can occur,

consider retrieval of the list 1 items (ABCDEF ) when both s and β are high. The high

value of s can lead to a high probability of initiating retrieval with the first item from list 1

(A), despite the list 2 context cue being employed. A high value of β leads to A dominating

the context cue, which will exhibit a strong similarity to the next item from list 1 (B),

which will produce a protrusion effect for the second output position. The proportions of

successive intrusions in the right column of Figure 6 indicate that this is indeed the case -

the parameterizations that produce protrusion effects show very high proportions of cases

where list 1 intrusions are preceded by or followed by other intrusions from list 1.

Unfortunately, analyses of prior list intrusions do not suggest that the protrusion

effect is due to retrieval of the entire prior list. Osth and Dennis (2015b) explicitly

considered this possibility in their analyses and found that prior list intrusions were

extremely unlikely to be followed or preceded by prior list intrusions. Specifically, for

intrusions from the immediately preceding list that were studied in nonterminal positions,

only 6% (list length = 5) and 6.8% (list length = 6) were followed by intrusions from the

same preceding list. For intrusions that were studied in positions after the first position,

only 2.6% (list length = 5) and 8% (list length = 6) were preceded by intrusions from the

same preceding list. Such results suggest that retrieval of the entire preceding list is not a
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Figure 6 . CRU simulations for a two list paradigm with attempted recall of the second list
when similarity among the list context vectors (slist) is manipulated. Depicted for each
output position (indicated below the x-axis) are the proportions of recalls from each serial
position in a given list (list 1 in the left column, list 2 in the middle column). The serial
positions of the recalled items are indicated by the numbers above the lines. The right
column shows the proportions of successive prior list intrusions (PLIs), with the left bar
showing the proportions of intrusions that were preceded by intrusions while the right bar
shows the proportions of intrusions that were followed by intrusions.

tenable explanation for the protrusion effect.

Several other parameterizations of CRU in Figure 6 do not produce a pattern that

resembles the data. In fact, many of the protrusion gradients appear relatively flat,
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showing no strong tendency for prior list intrusions to be recalled in the same output

position as their original list positions. While these analyses and simulations were

performed with a restricted range of parameters, it is not obvious how other combinations

of parameters could produce a protrusion effect that aligns with the data, especially

considering that the data do not suggest that retrieval of the entire prior list is likely.

CRU Simulations with Similarity Among the Item Vectors. We

additionally allowed for similarity among all of the item vectors corresponding to the

letters in the same manner as we explored similarity among the list context vectors.

Namely, each item vector r was a weighted combination of a unique orthonormal vector u

as well as a common orthonormal vector component m:

ri = (
√

1− sitem)ui +√sitemm (9)

As sitem approaches one, all of the item vectors become the common vector m.

Importantly, the common vector m is shared across items from both lists.

The similarity gradients for when list 2 context cues are employed in each output

position can be seen in Figure 7. Unlike the case when slist was manipulated, changes in

sitem produce substantial changes to the similarity gradients of the list 2 context vectors

(right column of Figure 7). Specifically, increases in sitem increase the similarities of the

context vectors for the incorrect items. This is because the common component m is

present in all context vectors that are not the first item, producing a baseline degree of

similarity between context vectors even if they are far apart on the list.

Inspection of the similarity gradients for the context vectors corresponding to the list

1 items (left column of Figure 7) reveals the opposite pattern of the effects of list context

similarity. Specifically, when sitem > 0, there is a recency-focused tendency, where the

similarity gradients peak at the final list 2 item for all output positions that are not the
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Figure 7 . Dot products between the list 2 context cue for each output position (indicated
below the x-axis) and the stored list 1 context vectors (left column) and list 2 context
vectors (right column) when similarity among item vectors is manipulated (as indicated by
the sitem parameter). The serial positions for each context vector are indicated by the
numbers above the lines. Note that the context cue for each output position in list 2
assumes the previous items were correctly retrieved.

first item.

Why does similarity among the item vectors produce a recency pattern? The answer

is due to the evolution of context vectors and the gradual decay of the LIST1 context,

which makes the common component of the item vectors m most active for the final list
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item. When the first item from list 2 is studied, LIST1 is maximally active (1.0) and is the

only component in its stored context vector. Since this element has no similarity to any

elements in the list 2 context vectors, the first item from list 1 always exhibits zero

similarity to the context cues from list 2. However, as each item is added into memory,

LIST1 decays while the common component m becomes more active in the context. This

makes it such that the common component has the greatest strength in the context vector

for the final item from list 1, producing the highest similarity to context cues from list 2.

Thus, in this way the common component approximates an end marker. This is interesting,

as a common criticism of end markers in models such as the start-end model (Henson,

1998) is that it is unclear how the model could "know" when the end-of-list is occurring

(although see Farrell & Lelièvre, 2009; Henson & Burgess, 1997), but such knowledge is not

required here.

CRU simulations with similarity among the item vectors can be seen in Figure 8.

When sitem > 0 and β ≥ .45, the model is able to produce protrusion effects for the final

item. Unfortunately, the model does not appear able to show protrusion effects that

generalize to other positions, with the final list 1 item showing the strongest tendency even

for output positions 4 and 5. It’s also noteworthy that increases in sitem come with a cost –

recall of list 2 items is compromised for the late list items in several parameterizations.

When β ≤ .45 and s ≥ .25, recall of the final item is compromised, as the positional

uncertainty function for output position 6 is no longer peaked on the sixth item. In

addition, the right column of Figure 8 indicates that increased item vector similarity also

comes at the cost of a very high proportion of successive prior list intrusions.

CRU Simulations with Similarity Among the Item and Context Vectors.

The fact that similarity among list context vectors produces a primacy bias in the prior list

intrusions while similarity among the item vectors produces a recency bias raises the

question – what happens if similarity among both types of vectors is included? After all,

the LIST element functions as a start-of-list marker, while the common component among
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Figure 8 . CRU simulations for a two list paradigm with attempted recall of the second list
when similarity among the item vectors (sitem) is manipulated. Depicted for each output
position (indicated below the x-axis) are the proportions of recalls from each serial position
in a given list (list 1 in the left column, list 2 in the middle column). The serial positions of
the recalled items are indicated by the numbers above the lines. The right column shows
the proportions of successive prior list intrusions (PLIs), with the left bar showing the
proportions of intrusions that were preceded by intrusions while the right bar shows the
proportions of intrusions that were followed by intrusions.

the items can approximate an end marker. One of the most popular positional models is

the start-end model of Henson (1998), which constructs a position code using the relative

weight of start and end markers. The evolution of context in CRU suggests that it could



ITEM-DEPENDENT CONTEXT SERIAL ORDER 46

mimic the start-end model under these conditions – the decay of the LIST element along

with the increase in strength of the common item component could approximate the

two-dimensional position code in the start-end model, where the relative weights of the

start and end markers give an indication of the relative position of an item within a study

list.

In order to simultaneously manipulate similarity among the list elements and item

vectors, we assumed separate common components for each of them to reflect the idea that

list elements can be similar to other list elements, and item vectors can be similar to other

item vectors, but the two classes do not exhibit any similarity to each other. A complete

manipulation of β, slist, and sitem results in a large number of figures. For this reason, the

complete exploration can be found in Supplementary Materials B. In this section, we would

like to highlight our explorations with slist = .75, which yielded similarity gradients that

most strongly resemble those from positional models.

The similarity gradients are depicted in Figure 9. What was quite interesting was

that when β < 1, the model was able to produce similarity gradients for the list 1 items

where the output positions peak on their respective serial positions, similar to what is

found for the list 2 items. What was impressive was that this was found not just for the

beginning and end items, but even for a portion of the midlist items (output positions 2

and 3). These results suggest that similarity among the list elements and item vectors may

be able to approximate a position code within CRU.

How does CRU perform with both types of similarity when the two list paradigm is

simulated? Simulation results can be seen in Figure 10. The model can indeed demonstrate

the protrusion effect, but shares the limitation of prior simulations, namely that the

parameterizations that produce protrusion effects also produce high levels of successive

prior list intrusions. Other combinations of parameters found in Supplementary Materials

B demonstrate a similar problem.

While the combinations of the two forms of similarity can approximate a position
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Figure 9 . Dot products between the list 2 context cue for each output position (indicated
below the x-axis) and the stored list 1 context vectors (left column) and list 2 context
vectors (right column) when similarity among item vectors is manipulated (as indicated by
the sitem parameter) and slist = .75. The serial positions for each context vector are
indicated by the numbers above the lines. Note that the context cue for each output
position in list 2 assumes the previous items were correctly retrieved.

code, a crucial difference from positional models is the assumption that retrieved items are

used as cues. When β > .5, the prior list intrusion has the largest weight in the context

vector and can lead to a high probability of the next response being an intrusion from the

same list. Thus, CRU differs from positional models because an erroneous retrieval from a
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Figure 10 . CRU simulations for a two list paradigm with attempted recall of the second
list when similarity among the item vectors (sitem) is manipulated and slist = .75. Depicted
for each output position (indicated below the x-axis) are the proportions of recalls from
each serial position in a given list (list 1 in the left column, list 2 in the middle column).
The serial positions of the recalled items are indicated by the numbers above the lines. The
right column shows the proportions of successive prior list intrusions (PLIs), with the left
bar showing the proportions of intrusions that were preceded by intrusions while the right
bar shows the proportions of intrusions that were followed by intrusions.

prior list can increase the probability of another intrusion from the same list occurring.

Discussion. In this section, we have explored three different ways to implement

prior list intrusions within CRU, namely similarity among the list context vectors,
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similarity among item vectors, and similarity among both types of vectors. Similarity

among the list contexts produces the strongest match between the first item from both lists

(item A in list 1 and item G in list 2). Similarity among the item vectors produces the

strongest match between the final item from both lists as the common item vector elements

are most active in the context at the end of the list, suggesting that this common

component can approximate an end-of-list marker. Simulations of the model indicated that

it can produce protrusion effects, but for the wrong reasons – the parameterizations that

demonstrated protrusion effects indicated a very high proportion of successive intrusions

from list 1, suggesting that the model may be retrieving sections of the previous list in

order. The data instead indicate that prior list intrusions are rarely preceded or followed

by other intrusions, making retrieval of the entire preceding list an extremely unlikely

explanation for the protrusion effect (Osth & Dennis, 2015b).

We would like to explicitly acknowledge, however, that our CRU simulations explored

only a limited range of model parameters. This is especially relevant given that similarity

among both the item vectors and the list elements in Figure 9 demonstrated similarity

gradients that qualitatively accord with the patterns predicted by positional models, where

the peak of the similarity gradient at a given output position occurred in the same serial

position on list 1. This occurred not just for the first and final item, but for some of the

midlist items as well. This is likely due to the fact that the list element is essentially a

start-of-list marker, while the common item component approximates an end-of-list

marker. This qualitatively corresponds with the start and end markers in the start-end

model (Henson, 1998), but avoids the problem of how to associate items to an end marker

if the participant does not know the length of the list a priori.

While we cannot rule out the possibility that other combinations of parameter values

might produce the protrusion effect, the model would likely be faced with a difficult

"balancing act" between the roles of each of the parameters. For instance, similarity among

the item vectors was found to be fairly detrimental to recalling the list 2 items due to the
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increased generalization across many of the context vectors. Another example is that high

performance is associated with high values of β, but values of β > .5 make it such that the

most recently retrieved item dominates the context cue at retrieval. If the previous

response was a prior list intrusion, the next response is likely to be a prior list intrusion as

well. Thus, it may be quite difficult for the model to produce the protrusion effect while

simultaneously keeping such intrusions relatively isolated during recall and capturing

performance on the correct list, at least with the current assumptions and architecture of

CRU.

Our argument is not that CRU is completely unable to capture this set of constraints,

but rather that it would be far less challenging to capture this pattern if it either

incorporated positional representations or approximated them to a greater extent. To date,

the most successful account of the protrusion effect comes from the usage of item-position

associations. Specifically, the start-end model of Henson (1998) was able to account for the

protrusion effect in fits to group-level data by assuming that items are associated to both a

general list context in addition to a representation of the item’s within-list position. The

general list context is distinct from CRU’s LIST nodes because it has the same strength

for all of the items from a given study list, but does change between different lists, similar

to the way list context behaves in the SAM model (Raaijmakers & Shiffrin, 1981). At

retrieval, a joint list context and within-list position cue is employed. The predicted

frequency of prior list intrusions from the model is rare due to only a minimal overlap

between the two list context representations. When prior list intrusions occur, they tend to

occur in-position due to the match of the position cues. SEM was able to achieve this after

having been fit to group-level data while achieving a number of other benchmarks,

including primacy and recency effects and the shapes of transposition gradients. While it

would undoubtedly be more persuasive if the model was fit to individual participants and

the responses from the individual trials, the protrusion effect follows so naturally from the

usage of positional representations that it would be surprising if the model was not able to
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capture this phenomenon after such an endeavor.

While our introduction of list element and item vector similarity to CRU demonstrate

that the model can indeed approximate position codes, a crucial difference is that in CRU

retrieved items are used as cues while such an assumption is not made within positional

models such as SEM. This makes it such that within CRU, a prior list intrusion is added

into the context cue for the next retrieval, which increases the likelihood of a prior list

intrusion on the next recall. One way to further approximate the construction of position

cues would be to only use relative activations of the LIST vector and the common

component of the item vectors in the context cue. That is, the cue for the beginning of the

list would be the LIST element alone, the cue for the final position could be the common

item component alone, and the cues for each of the midlist positions could involve relative

levels of both activations depending on the cued position in the list. Because retrieved

items would not change the nature of the cues, this would prevent prior list intrusions from

being accompanied by further prior list intrusions.

In his review of an earlier draft of this manuscript, Gordon Logan pointed out an

additional possibility for how CRU could recover from prior list intrusions if there is

detection of conflict between the given and intended response (Botvinick, Braver, Barch,

Carter, & Cohen, 2001). After the conflict is detected, the appropriate cues for the next

response in list 2 could be employed by the model, allowing the model to both recover from

errors and produce the protrusion pattern. However, to our knowledge there is very little

work on whether error detection in serial recall tasks occurs empirically or how it could be

implemented in a model such as CRU, so it is difficult for us to evaluate whether this is a

feasible explanation of the protrusion effect.

The Costs and Benefits of Temporal Grouping Manipulations

Similar evidence for positional representations can be found in the errors of temporal

grouping. Temporal grouping is when extended temporal pauses during list presentation
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are used to demarcate different groups of items, such as A.B.C...D.E.F , where . indicates a

temporal pause and ... indicates an extended temporal pause that segments the list into

two groups, ABC and DEF . Experiments on temporal grouping reveal that such

manipulations have both benefits and costs in performance. The benefits are enhanced

recall of items in grouped lists compared to ungrouped lists, in addition to scalloped serial

position curves, with primacy and recency effects found within individual groups as well as

the list overall (Farrell & Lelièvre, 2009; Hartley et al., 2016; Ryan, 1969a, 1969b; Ng &

Mayberry, 2002). The left panel of Figure 11 depicts this pattern using data from

Hurlstone (2019), where in addition to a recency effect for the final item, grouped lists

show elevated recall at positions 3 and 6.
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Figure 11 . Temporal grouping effects for verbal serial recall of 9-item lists of digits:
accuracy serial position curves (left panel) and transposition error gradients (right panel)
for ungrouped lists and lists grouped in a 3–3–3 pattern. The peaks in the transposition
gradients for grouped lists at distances 3 and 6 correspond to interposition errors. Data
taken from Hurlstone (2019).

The costs of temporal grouping are an increase in long-range transpositions between

different groups over ungrouped lists. Specifically, there is a tendency for participants to

recall an item from the incorrect group that matches the within-group position that is
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attempting to be recalled. For instance, when attempting to recall the third item from the

first group, an erroneous item from group 2 is most likely to be the third item from that

group, even though the first item from group 2 is more temporally adjacent to the

previously recalled item. These errors are referred to as interposition errors (Hartley et al.,

2016; Henson, 1999; Liu & Caplan, 2020; Ng & Mayberry, 2002) and suggest the usage of

positional representations. The transposition gradient in the right panel of Figure 11

depicts this pattern, where the peaks in transpositions at distances 3 and 6 from the correct

item reveal the interposition errors. Similar errors can be found in speech production, in

which phoneme migration errors between syllables often respect within-syllable position

without disrupting production of other phonemes in the syllable (Dell, 1986).

The interposition errors bear a strong resemblance to the protrusion effect described

in the previous section. In fact, when intrusions from prior lists occur between temporally

grouped lists, a similar interposition error can be observed (Ng & Mayberry, 2002). That

is, if the intruded item intrudes into a different group than it was presented on the previous

list, it is most likely that the intruded item will still share the same within-group serial

position that it occupied in the previous list. Just as the protrusion effect is not due to the

recall of the entire previous list, interposition errors are not due to the result of entire

groups swapping with each other (Lee & Estes, 1981).

In what follows, we pursue two different ways of implementing temporal grouping in

CRU to evaluate its ability to capture both the costs and benefits of temporal grouping in

Figure 11.

Context Segmentation at the Between-Group Boundaries. The first model

we pursued assumes that temporal grouping results in segmenting the contexts before and

after the group boundaries, which can be implemented by increasing the β parameter at

the group boundaries. This could be due to the fact that the temporal pause is poorly

predicted and indicates an upcoming new event, which effectively segments the list into

different contexts or episodes (e.g., DuBrow & Davachi, 2013; Polyn, Norman, & Kahana,
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2009).

For each item that takes place after a group boundary, we increased the value of β by

∆β, which is defined as:

∆β = βgroup(1.0− β) (10)

where βgroup controls the extent to which β increases at the group boundaries. Figure 12

presents simulations of the Hurlstone (2019) paradigm, where the first column shows the

serial position curves and columns 2-4 reveal the transposition gradients. These simulations

were performed with three different values of β (.65, .45, and .25) crossed with three values

of βgroup (.95, .55, and .2). Additional details of the simulations can be found in the

Appendix.

The serial position curves in the first panel reveal that this mechanism is capable of

producing the improvement in performance for grouped lists and even can produce

within-group recency effects for the first two groups (although not for the final group).

This improvement in performance is due to the fact that the increase in β between groups

decreases the similarity between the context vectors for the items from different groups.

Larger values of βgroup produce larger decreases in between-group similarity, which is why

the effects of temporal grouping are larger for larger values of βgroup.

While the model does an impressive job at capturing the benefits of temporal

grouping, a difficulty with this CRU variant is that it is unable to reproduce the pattern in

the transposition gradients seen in Figure 11. Inspection of columns 2-4 in Figure 12

reveals that the benefits to grouped lists come from a "tightening" of the transposition

gradient, increasing the relative frequency of one-apart transpositions, but decreasing all

others. There is no apparent increase in the frequency of three-apart or six-apart

transpositions for any combination of parameter values, which corresponds to transposing
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Figure 12 . CRU simulations for grouped and ungrouped lists in the Hurlstone (2019)
paradigm, where the βgroup parameter serves to increase the value of β between groups.
The first column shows the serial position curves (β = .25: solid lines, β = .45: dashed
lines, β = .65: dotted lines) while columns 2-4 show transposition gradients (separated for
each value of β.)

an item from another group into the correct within-group position (interposition errors).

This is because solely increasing the β parameter under conditions of temporal grouping

decreases the similarity between context vectors in different groups, which consequently

decreases all cross-group transpositions.

A clearer illustration of why context segmentation can produce the benefits but not

the costs of temporal grouping can be seen from an analysis of the similarities between the
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context vectors. Figure 13 shows the dot products between all possible context vectors for

grouped and ungrouped lists with three different values of β (.25, .45, and .65). For the

grouped lists, we used βgroup = .55. One can see that the context segmentation serves to

considerably decrease the similarities between contexts of different groups, which results in

considerably less competition in grouped lists than ungrouped lists. However, there is not

even a single hint of an increase in similarity between items from different groups that

share the same within-group position. Context segmentation on its own can only serve to

push contexts from different groups apart. Thus, while we admit that we have only

explored the predictions of this CRU variant with a limited range of model parameters, it

is not at all obvious how different parameterizations of this CRU variant could serve to

heighten the similarities for items from different groups that share the same within-group

position without additional assumptions being introduced into the model.

Usage of Group Markers. Positional models tend to account for the effects of

temporal grouping by using explicit group markers (e.g., Brown et al., 2000; Farrell, 2012;

Henson, 1998). That is, items are associated to their within-group positions, and groups

are associated to their within-list positions. Interposition errors occur due to the similarity

in within-group position representations from items of different groups, while overall

advantages of temporal grouping occur due to the decrease in between-group similarity for

items that do not share the same within-group positions.

We attempted a similar approach within CRU. Specifically, in grouped lists we

assumed that each group is preceded by a marker that indicates the particular group, such

that the list ABCDEFGHI is learned as

LIST −GROUP1 −A−B −C −GROUP2 −D −E − F −GROUP3 −G−H − I, where

GROUP1, GROUP2, and GROUP3 are treated as item vectors. At retrieval, the group

markers can be retrieved, but do not produce responses. Instead, the group markers enter

the context representation and can be used to further cue retrievals. A key distinction

between this model and previous approaches is that we did not employ within-group
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Figure 13 . Dot products between all context vectors for ungrouped (left column) and
grouped (right column) lists with three different values of β using context segmentation
between groups (βgroup = .55).

position markers.

The vectors for the group markers were orthogonal to all other vector representations

from the model, including the vectors corresponding to the letters, spacebar, and list

context. In these simulations, elements 1-26 corresponded to the letters, element 27 was

the spacebar, elements 28-30 corresponded to the group markers, and element 31 was the

list context. However, we did manipulate the similarity of the group marker vectors to each

other.

To explore the consequences of similarity, we adopted a similar approach as previous

simulations with vector similarity and employed overlapping elements between each group
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marker. However, we departed from that representation of similarity because with three

group markers, it is desirable to have adjacent group markers be more similar to each other

than distant group markers, as between-group transpositions are more frequent for

neighboring than distant groups. For each group marker, its own element took a value of 1

(group 1: element 28, group 2: element 29, group 3: element 30). For group 1, elements 29

and 30 represented group lags of 1 and 2. For group 2, elements 28 and 30 represented lags

of -1 and 1. For group 3, elements 28 and 29 represented lags of -2 and -1. Element l of

each lag was generated is an exponential transformation of the lag with decay rate δ:

l = exp(−δ|lag|) (11)

Subsequently, each group marker vector was normalized to be of length 1. This

formulation made it such that the dot products for adjacent group markers was higher than

for distant group markers, and the between-group similarity decreased with increases in the

δ parameter.

Simulations of the model with group markers with three different values of β (.65,

.45, and .25) and three different similarity values (δ = .25, δ = 1.25, and orthogonal group

marker vectors) can be seen in Figure 14. When δ = .25, the dot product between adjacent

group markers was .971 while the dot product between distant group markers was .921.

When δ = 1.25, the dot product between adjacent group markers was .529 while the dot

product between distant group markers was .226.

CRU’s predictions with group markers were much less consistent across parameter

combinations than in the previous simulations. First, the benefits of temporal grouping

were apparent when β = .25 but not for the higher values of β. Second, the costs of

temporal grouping, as reflected in a higher incidence of three-apart (but not six-apart)

transpositions, was found when group similarity was high (δ = .25) and when β was .65,
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but in no other parameter combinations.
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Figure 14 . CRU simulations for grouped and ungrouped lists in the Hurlstone (2019)
paradigm in which group markers are present in the context vectors. The first column
shows the serial position curves (β = .25: solid lines, β = .45: dashed lines, β = .65: dotted
lines) while columns 2-4 show transposition gradients (separated for each value of β.)

Why did group markers hurt performance, and why were interposition errors found

with high values of β? To address this question, we adopted Logan (2021)’s approach of

plotting the pairwise similarities between all context vectors. Figure 15 depicts these

similarities for grouped and ungrouped lists with high values of β, but restricted to the

case where there is high group similarity (δ = .25). What is initially counterintuitive about

the similarities between the context vectors is that each group marker’s context vectors are
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relatively dissimilar to each other, despite the high similarity between their respective item

vectors. However, our simulations of item vector similarity in Supplementary Materials A

demonstrate that increases in item vector similarity increase the context vector similarity

for items that follow the similar items. This is again a consequence of the assumption that

an item vector is not present in a given item’s own stored context representation. For

instance, group 1’s context vector just comprises LIST , whereas group 2’s context vector

comprises LIST −GROUP1−A−B −C. While we have manipulated vector similarity in

a different fashion than the implementations of phonological similarity, it is ultimately the

core assumptions of CRU that produce these consequences.
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Figure 15 . Dot products between all context vectors for ungrouped (left column) and
grouped (right column) lists with three different values of β using group markers with high
similarity (δ = .25).
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Consequently, the high similarity among the group markers does not increase the

similarity of their context vectors. However, it does increase the similarity of the context

vectors corresponding to the first item within each group, which are all preceded by the

highly similar group markers. This is most evident in Figure 15 when β = .65 – there is a

visibly elevated similarity between the first item’s context vector and the similarity of both

the fourth and seventh item’s context vectors. The reason why this is most evident when

β = .65 is because higher values of β place considerably heavier emphasis on the most

recent entry in the context vector, which happens to be the group marker for the first item

in each group.

However, the elevated similarity for items that share the first within-group position

appears to be restricted to the first member of each group, implying that interposition

errors should be the most dominant in the first within-group position. Aside from an

investigation by Henson (1999) who found high rates of interposition errors in the final

within-group positions, we are not aware of any other analyses that have evaluated whether

interposition errors vary by within-group serial position. For this reason, we re-analyzed

the data from Hurlstone (2019) and Hartley et al. (2016) – interposition errors for grouped

and ungrouped lists can be found in the left and right panels of Figure 16, respectively.

These results reveal that interposition errors are not restricted to the first position, nor do

they occur most frequently in the first position, but are instead common to virtually all

within-group positions, as would be predicted by positional models.

The similarities depicted in Figure 15 also clarify why grouping can hurt memory.

When β is high, one can see that the similarity between items in different groups is

considerably higher than within grouped lists, even if they do not share the same

within-group serial positions. This considerably harms the discriminability between items

in different positions.

One concern with the present simulations is that our results may be due to the

particular ways in which we implemented similarity among the group markers. In
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Figure 16 . Interposition errors in ungrouped and grouped lists for the data from Hurlstone
(2019, left panel) and Experiment 1 of Hartley et al. (2016, right panel). The data for
grouped lists in the right panel are taken from the predictable grouping condition of the
latter study. Error bars represent the standard error of the mean.

Supplementary Materials C, we explore additional simulations using vectors comprised of

weighted orthogonal and common components. These simulations showed very similar

patterns to what we depicted here – elevated similarity could be found between the first

members of each group, but were not evident otherwise. This pattern is likely the product

of CRU’s architecture, as the similar group markers, which increase the similarity between

different groups, are most active for the first presentation of each group. We suspect that

additional assumptions would be required to capture the interposition errors for each

within-group position and also capture the benefits of temporal grouping.

Discussion. Using two different mechanisms for capturing the effects of temporal

grouping, we were unable to simultaneously reproduce the two qualitative phenomena of

interest. Increases in the β parameter between groups does an impressive job of improving

performance for grouped lists, including the primacy and recency effects within each group,

but this mechanism does not capture the interposition pattern because it decreases

between-group similarity for all within-group serial positions. Including group markers in

the context representations can increase the similarity between members of the first
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within-group position in some circumstances, but it additionally can hurt performance in

grouped lists due to higher overall between-group similarities.

An important caveat is that we have performed these simulations with a limited

range of parameters. However, it is unclear how exactly other parameterizations of the

model could address these concerns. For the first CRU variant where β is increased at the

group boundaries, there is no obvious mechanism within CRU for producing high similarity

between context vectors across group boundaries that share the same within-list position,

as increases in β only serve to decrease the similarity between context vectors.

For the CRU variant that uses group markers, it is not obvious how other

parameterizations could produce interposition errors at all output positions, as group

markers are most strongly associated with the first item from each group and only produce

an apparent similarity increase for the first items from remote groups. It is unclear to us

how other parameterizations or implementations of the vectors corresponding to the group

markers could produce elevated cross-group similarity for the same within-group positions

for the second and third positions without additional assumptions.

Our argument here is similar to our argument about the challenges CRU faces with

the protrusion effect – that it would be far easier to address the constraints from temporal

grouping manipulations if the model incorporated positional representations or

approximated them in some fashion. Henson’s SEM addresses temporal grouping by

assuming hierarchical positional representations, where items are associated to their

within-group positions, and groups are associated to their respective list positions. At

retrieval, both the group and position cues are used – items are most likely to be retrieved

if they match those cues. The benefits of temporal grouping occur because the group cue

serves to isolate retrieval to the items located within the group, producing less competition

from items from other groups. However, the costs of temporal grouping occur due to the

re-usage of within-group position markers across different groups, making it such that

long-range transpositions from items in other groups that share the same within-group
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position become more likely. Ungrouped lists, in contrast, instead use separate within-list

position representations for each item on the list.

Positional models such as SEM have even been successful after having been fit to

data from grouped and ungrouped lists. While Henson (1998) fit the model to group-level

data, later fits of the model have been successful even after having been applied to

individual participant data (Farrell & Lelièvre, 2009; Hurlstone, 2019), producing both the

costs (interposition errors) and benefits of temporal grouping (enhanced primacy and

recency within groups), while simultaneously being able to address other aspects of the

data, including the general primacy and recency effects from ungrouped lists and the

shapes of transposition gradients. Likewise, Liu and Caplan (2020) demonstrated

successful fits to individual participant data from grouped and ungrouped lists using the

SIMPLE model (Brown et al., 2007), which similarly incorporates positional

representations to capture the effects of temporal grouping. These fits demonstrated a

successful account of both the benefits and costs of temporal grouping in addition to

capturing the other trends in the data.

However, one limitation of SEM, and other positional models adopting similar

solutions to hierarchical representations (e.g., Brown et al., 2007; Burgess & Hitch, 1999;

Farrell, 2012), is they do not specify how the grouping structure is detected and the

multilevel positional representations are generated. Instead, hierarchical representations

are specified by hand a priori by the modeller. Models such as CRU avoid this problem

because the necessary structure (the list items) is specified by the experimental design.

Thus, if CRU were to adopt the same solution as SEM and adopt hierarchical positional

representations, it may fall into the same trap as SEM in that it assumes a hierarchical

organization but may not be able to explain where it arises from.

While some positional models have required ad hoc specifications of hierarchical

structure, there is a noteworthy exception that is able to achieve a self-organizing

hierarchical structure – the BUMP model (Hartley et al., 2016). In BUMP, hierarchical
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representations are generated “on-the-fly” by a bottom-up driven timing signal based on a

large population of oscillators with frequency tunings spanning the range of presentation

rates encountered in a serial recall task. When a grouped list is presented, oscillators with

tunings close to the group presentation rate will be recruited that parse the list into groups

and track their positions within the list, whereas oscillators with tunings close to the item

presentation rate will be recruited that track the positions of items within groups. We note

BUMP bears a family resemblance to the OSCAR model (Brown et al., 2000) mentioned

earlier, except OSCAR uses a top-down driven timing signal, rather like an internal clock.

The oscillators are therefore ballistic and insensitive to the rhythm and timing of the

stimulus input.

Hartley et al. (2016) report experiments showing a bottom-up mechanism is needed

to accommodate data showing gross variation in recall performance as a function of

different types of grouping patterns. In addition, a major advantage of the BUMP model is

that it can accommodate data showing effects of temporal grouping even when the

temporal grouping pattern is unpredictable. A challenge for CRU would be to accomplish a

self-organizing hierarchical structure in the same manner as BUMP to accommodate the

effects of temporal grouping.

Is There Evidence for Associations Between Items?

We have discussed three challenges to CRU’s principal reliance on item-dependent

context representations. The first hurdle, phonological similarity effects in pure and mixed

lists, has been considered to be so challenging for chaining models that they have

effectively been "ruled out" by the error patterns (Henson et al., 1996). However, this claim

has been overstated, and may only be restricted to models that rely on response cuing,

where the responses from the model become the cue for the next response. CRU instead

relies on memorial cuing - what is retrieved, and not what is responded with, enters the cue

for the next response. Likewise, we found that the "sawtooth" error pattern in the serial
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position curves in mixed lists could be captured when phonological confusions occur in the

output stage. Under these circumstances, a retrieved phonologically confusable item may

result in the erroneous output of a different confusable item. Critically, it is the retrieved

item that enters the context cue and influences the next response, which prevents the

erroneously output item from influencing the next retrieval. These simulations indicate

that the "sawtooth" error pattern is not a problem for CRU, and likely wouldn’t challenge

other models that rely on inter-item associations that utilize a similar output stage. An

important contribution of our simulations, therefore, has been to show that the mixed-list

phonological similarity effect offers far less theoretical leverage than was hitherto thought

to be the case.

However, the protrusion effect as well as the costs and benefits of temporal grouping

are much more challenging for the CRU model as it has been defined in the Logan (2021)

article. Both phenomena suggest the existence of positional representations. Our

simulations of the protrusion effect indicated that under some parameterizations, the CRU

model could capture the protrusion effect, but the high proportion of successive prior list

intrusions suggest that the model accommodated this pattern by retrieving the entire prior

list in order, or sections of the entire prior list. The data instead suggest that is an

extremely unlikely explanation for the protrusion effect due to prior list intrusions being

unlikely to be followed or preceded by other intrusions from the same list (Osth & Dennis,

2015b).

Our simulations of the effects of temporal grouping found that we were not able to

reproduce both the benefits and costs of temporal grouping seen in the data. Specifically,

we implemented two variants – one in which temporal grouping has the effect of separating

the contexts between the group boundaries, as well as another where explicit group

markers are learned. The first variant was successful in capturing the benefits of temporal

grouping, but was unsuccessful in capturing the costs. The second mechanism had some

success in capturing the interposition errors, but for the first position only and not for the
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second and third within-group positions. This variant also struggled with its ability to

capture the benefits of temporal grouping.

We want to explicitly acknowledge that these explorations were derived from

simulations with a limited range of model parameters and implementations of vector

similarity. These are much weaker tests of model mechanisms than the fits to individual

responses performed in the original Logan (2021) article, which is ultimately the direction

the field should be headed in. While we cannot rule out the possibility that other

parameters and implementations could produce the correct pattern of results, in several

cases it is not obvious how the model could reproduce these phenomena while

simultaneously capturing other benchmarks and qualitative patterns of interest. In several

of these cases there are core assumptions of the CRU architecture that would likely cause

similar problems for other parameterizations or implementations of vector similarity.

We do not mean to suggest that CRU cannot be revised to address these challenges.

Rather, we argue that these challenges point to an insufficiency of its complete reliance on

item-dependent context representations and the manner in which they are encoded and

retrieved within its architecture. Specifically, we argue that overcoming these challenges

will be far easier if the model either includes representations of within-list position, or

alternatively approximates positional representations using its existing representations.

While these solutions may encounter challenges when the model is fit to data, they show a

more principled relationship to the problems at hand than the mechanisms within the

current architecture.

As mentioned previously, the error patterns we have described have led many

theorists to completely eschew associations between items as a viable representation for

serial order. Does this imply that there is no positive evidence for associations between

items, and that CRU should abandon them entirely? Not exactly.

Strong evidence for associations between items has been found using the spin-list

paradigm (Kahana et al., 2010; Lindsey & Logan, 2019, 2021). In this paradigm,
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participants initially study a list of items such as ABCDEFG. In the spin-list condition,

on subsequent trials participants study a rotated, or "spun" list of the same items, such as

DEFGABC, whereas in the control-list condition participants study the same list without

variation in its starting position. Results show that participants are able to learn both spin

and control lists, with the rate of learning of spin lists being only slightly slower than for

control lists. Such spin-list learning can be most plausibly attributed to the usage of

inter-item associations. This is because the relationships between items are mostly

preserved from trial-to-trial in the spin list condition, whereas the item-position

associations are completely confounded. Positional models do not possess a natural

explanation of these findings – in order for such models to yield improvements in spin list

conditions, they require some mechanism for recognizing the permutation of the list and

correctly assigning position representations to the items. Spin-list improvements have also

been found in typing tasks (Lindsey & Logan, 2019).

Additional evidence comes from consideration of the sequential history of the studied

items. Botvinick and Bylsma (2005) trained participants on an artificial grammar before

performing serial recall. Performance was not only better for lists of items that conformed

to the structure of the grammar, but participants often biased their recalled responses in

favor of the artificial grammar. That is, if participants were trained on a pair of items such

as AB, a pair of items on a study list such as AC is likely to be erroneously recalled as

AB. These findings resemble other findings in the literature showing performance

improvements when lists contain high-frequency bigrams in serial recall (Baddeley et al.,

1965) and in typing (Behmer & Crump, 2017). While such findings can be explained by

positional models by appealing to processes such as redintegration (e.g., Lewandowsky &

Farrell, 2000), such an explanation does not fall naturally from positional representations.

Instead, these findings can be most easily explained by assuming that inter-item

associations formed from the training influence recall of the current list. Other evidence for

inter-item associations comes from the finding that adjacent items on a serial list show
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improved performance in paired-associate recall relative to distant pairs (Crowder, 1968) as

well as the finding that participants show improved performance in reconstruction of order

and serial recall when presented with a partial set of cues in their correct order (Basden et

al., 2002; Serra & Nairne, 2000).

The fact that there is evidence supporting both inter-item and position-item

associations might suggest that a fruitful direction would be to incorporate positional

associations into CRU. While positional representations and associations between items are

often portrayed in the literature as polar opposites, this is a false dichotomy. There is

nothing in CRU’s architecture that prevents the incorporation of position markers into its

context representations. Indeed, the original version of the Burgess and Hitch (1992) model

contained both item-position and inter-item associations (albeit adjacent and not remote

associations), but fits to data suggested such a small reliance on pairwise associations that

subsequent versions of the model discarded the inter-item associations entirely (Burgess &

Hitch, 1999, 2006).

It would be interesting to see a similar parameter estimation of the relative weighting

of position and item associations within CRU, as CRU’s item-dependent context

representations would likely fare much better than the pairwise associations in the Burgess

and Hitch (1992) model due to CRU’s formation of remote associations between items at

study along with its reliance on compound cues at retrieval. As mentioned previously,

pairwise associations often fare quite poorly in models of serial order, as the production of

an error is often extremely damaging for retrieval of the rest of the list, while the remote

associations allow the cues prior to the error to influence the next retrieval. In addition,

several of Logan (2021)’s methods, including fitting to each response at the individual

participant level, are also likely to yield different conclusions than those of Burgess and

Hitch (1992). Such a model may also be useful for evaluating Young (1968)’s proposal that

the relative weight of item-position and inter-item associations may depend on certain

experimental conditions, as fits of such a model may yield different relative weights for
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different experimental paradigms.

However, a long-standing theoretical challenge for positional models is that it is

unclear how positional representations are generated and reinstated at retrieval, which

would likewise be shared by a variant of CRU that incorporates position markers. Despite

decades of work employing positional models, and some progress on this issue (Brown et

al., 2000; Hartley et al., 2016), there still has not been a satisfying solution. An attractive

feature of item-dependent context models such as CRU is that the key requirement to

explaining remote associations is the maintenance of previously experienced items in order

to bind them to the current item, a property which can be attained via recurrent

connections between an item layer and a context layer (Elman, 1990; Howard & Kahana,

2002).

An ideal direction for both CRU and the field may be to consider how associations

between items can be used to build or approximate positional representations. Such an

approach may be able to account for evidence of both representations without inheriting

the theoretical limitation of positional models. In our simulations of the protrusion effect,

we found that incorporation of both list element and item vector similarity can partially

approximate a position code similar to that of the start-end model. CRU’s LIST elements

already function as a start-of-list marker. If similarity between item vectors is introduced,

the similar elements of the item vectors will be most active in the context layer when the

LIST element has decayed, which will tend to be the end-of-the-list.

Thus, similar item elements can approximate end markers without inheriting their

limitations. For instance, in the start-end model, participants bind items to an end-of-list

marker, and the activation of this marker grows as the list progresses. However, it has

never been clear how participants generate such an expectation if they do not know the

length of the study list (but see Henson & Burgess, 1997). Within CRU, the activation of

the similar item elements grow naturally as a consequence of its context evolution and the

normalization of the context vectors as the LIST element declines in strength as the list
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progresses. Nonetheless, a crucial distinction of CRU from SEM is that in CRU, retrieved

items are used as cues, and our simulations of the protrusion effect demonstrated that the

model struggled with recovering from prior list intrusions. A more natural analog of

position cuing would be to use the relative weights of the LIST element and the common

item elements as cues without updating them with retrieved items. These common item

elements could simply reflect what is common to each of the experimental items, such as

their stimulus type (e.g., letters or words). Future work would likely be required to

evaluate such a mechanism.

There is recent work by Logan and Cox (2021) that fits exactly with our suggestions

of approximating position codes using other means. In their Theoretical Note, they found

three different ways in which position codes could be derived from CRU’s context vectors,

including summing over the elements from each context vector, calculating similarities

between the start and end contexts and each context vector on the list, along with

updating CRU’s context vectors with "generic" contexts. Interestingly, each of these

methods produced position codes that were mathematically equivalent to the position

codes within SEM. While these are impressive demonstrations, they did not specify how

such position codes could be associated to the items and retrieved during the later test,

both of which are necessary to develop a complete model of serial recall. It will be both

interesting and fruitful to evaluate whether such a model would be capable of producing

the protrusion effect along with the costs and benefits of temporal grouping.

Other models and architectures have similarly exhibited some success with

approximation of position cues with item representations within a fully specified serial

recall model. Botvinick and Plaut (2006) achieved this using the recurrent neural network

model of Elman (1990). The recurrent neural network architecture is very similar to that of

the temporal context model (Howard & Kahana, 2002), in that there are connections

between an item layer and a context layer that contains the previous items. However, the

Botvinick and Plaut model critically differs from many item-dependent context models in
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that it used a backpropagation learning algorithm instead of Hebbian learning. After

extensive training with an experimental set of items, the recurrent model was able to

perform serial recall without any learning occurring during the study phase. Instead, it is

the maintenance of the activations in the context layer and the learned connections

between that layer and the output layer that allow the model to perform serial recall.

Critically, the Botvinick and Plaut model was sensitive to the regularities in the

training set, enabling it to perform better on more frequently experienced lists of items, a

result which is challenging for purely positional models. At the same time, the model was

capable of addressing a number of the same benchmarks that have suggested the existence

of positional representations, including the phonological similarity effect and the

"sawtooth" error pattern in mixed lists of phonologically confusable and non-confusable

items. Analyses of the hidden unit representations uncovered that the model learned

conjunctive representations of items in positions, despite the fact that within-list position

was never explicitly represented in the network during the training phase. However, a

downside of the Botvinick and Plaut (2006) model is the extensive training required. While

such training may seem plausible for serial recall of short lists of consonants, it is unlikely

to generalize to combinations of novel stimuli, such as random word lists.

Another possibility comes from the model of Dennis (2009). Dennis’s model stores

forward asymmetric long-range associations between items in a Hebbian outer product

matrix. However, unlike many item-dependent context models, which retrieve one item at

a time and update the cues for the next retrieval, the entire list of items is retrieved

simultaneously – it is only the output of items which is sequential. Retrieval probabilities

for candidate lists are proportional to the difference between an outer product matrix of

the candidate and the stored matrix from the learning episode.

Many phenomena emerge "for free" when such a retrieval mechanism is employed.

Primacy effects naturally emerge without any reinstatement of the start of the list because

the first item is heavily represented in the association matrix, such that any candidate lists
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for production that lack the first item are unlikely to be produced. List length effects

emerge without any competition at retrieval between items because as the length of the

study list is increased, there are higher numbers of similar candidate lists for retrieval.

Interestingly, similar to our demonstrations with similar item vectors in our

simulations of the protrusion effect, Dennis’s model was similarly able to approximate

position representations with similarity among items. Specifically, if all items share a

common feature, the asymmetric nature of learning will make it such that each item on the

list has differing degrees of association to this common feature. That is, in a six item list,

just as the first item is associated to all five succeeding items, the first item is likewise

associated to the common feature five times. Since the last item is not associated to any

other items on the list, it contains no associations to the common feature. Because

common features are reused across lists, candidate lists that include intrusions are more

likely if they contain protrusions, because the similar strength of association to the

common feature makes such a candidate list more similar to the list that was just studied.

While this model was not applied to the effects of temporal grouping, it is possible that the

same similarity-based mechanism may be able to produce interposition errors. Osth and

Dennis (2015c) also discussed how the architecture of the Dennis (2009) model could be

extended to recognition memory and free recall, producing an integrated account of three

critical memory tasks.

We illustrate these examples to highlight the fact that item-dependent context

representations may be able to account for some of the same phenomena that suggest the

existence of positional representations. However, accounting for such phenomena may

require rethinking how such representations are employed, either via the learning rule

(backpropagation learning) or the retrieval mechanism (simultaneous retrieval of the entire

list instead of single items). There may similarly be other means of re-thinking how

item-dependent context representations can be employed to behave in a manner similar to

positional associations, and we believe the field could greatly benefit from such
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considerations.

Concluding Remarks

Logan’s CRU model is an impressive and comprehensive account of serial order tasks.

It represents an important step forward for the field, as decades of research have uncovered

important commonalities between tasks that to date have yet to be unified in a

comprehensive framework. The purpose of our commentary and the simulations contained

within was to highlight some of the important challenges moving forward for CRU. We

acknowledge that no model is able to capture all of the patterns of data in a given task or

domain. However, the phenomena we discussed in this commentary, in conjunction with

the fill-in effect, have been sufficiently influential to be considered important benchmarks

for models of serial order. Furthermore, the phenomena have led theorists of serial order to

almost unanimously agree upon the importance of positional representations, which CRU

lacks. While we believe that one benchmark finding, namely the mixed-list phonological

similarity effect of Henson et al. (1996) is addressable by CRU with modification to the

output stage of the model, the other benchmarks will likely require non-trivial revisions to

its architecture. Our suggestion is not necessarily that CRU requires positional

representations – although this would be one possible route forward – but rather that

modification to how its item-dependent context representations are either learned or

retrieved may be necessary to account for these challenges. The test for CRU will be to

establish whether it can be augmented in such a way as to accommodate these challenges,

whilst still retaining its core representations and retrieval mechanisms that are such an

attractive feature of the model.
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Appendix: Details of CRU Simulations

Our CRU simulations differed depending on the respective phenomenon. When

standard assumptions were used about orthonormal vectors, we used 28 element vectors,

where elements 1-26 corresponded to each of the letters of the alphabet, element 27

corresponded to the spacebar, and element 28 corresponded to the extbflist representation.

Each of these vectors contained a "1" in their respective element and a "0" for all other

elements. There were cases where other dimensions were added to reflect common vector

components, which we detail below.

Each of our simulations used uppercase letters, as both the experiments of Hurlstone

(2019) and Page et al. (2007) used uppercase letters as their experimental stimuli. While

the experiments of Osth and Dennis (2015b) used words as stimuli, there to date has not

been an extension of CRU to words. We nonetheless used the same encoding process as in

the core version of the model to allow for the possibility that words could be encoded as

other words. We used the same distance matrix as Logan (2021) to represent confusions

between uppercase letters, which was based on a multidimensional scaling solution to a set

of response time confusion measures between letters (Courrieu, Farioli, & Grainger, 2004).
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Similar to Logan (2021), output-based confusions were not employed except for the

simulation of phonological similarity effects in the main text, where the details of the

construction of the distance matrix can be found. Across all simulations of the encoding

process we used gmax = .3612 and gdecrease = .8896, which were the best fitting

group-averaged parameters for serial recall in Experiment 1 (these can be found in Table 4

of Logan, 2021). An exception to these parameters is the simulation of encoding stage

confusions in Supplementary Materials A where the g parameter was explicitly

manipulated and a different distance matrix was employed.

Similar to Logan (2021), we fixed the threshold θ of all racing diffusion processes to

200. The β parameter was manipulated across all simulations and these values can be

found in their respective sections in the main text. We did not allow β to vary across list

positions (βdecrease = 1.0). All model code can be found at https://osf.io/gnrwz/ (Osth &

Hurlstone, 2021).

Phonological Similarity Effects

As mentioned in the main text, all simulations here used the same stimuli and

number of trials as the original Page et al. (2007) experiment - 64 trials for each list type,

performing 100 simulations for each trial. The confusable letters were B, C, D, G, P, T, and

V. The non-confusable letters were H, J, L, Q, R, Y, and Z (Z is pronounced as "zed" in this

study due to the usage of British English). The g parameter for output-stage confusions

can be found in the main text. Details of simulation with other methods (item vector

similarity and encoding-stage confusions) can be found in Supplementary Materials A.

The Protrusion Effect

As mentioned in the main text, a two list paradigm was simulated with distinct

extbflist elements for each list (LIST1 and LIST2). Only recall of the second list was

simulated. When the second list was learned, the context vector was not "cleared." Instead,
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the LIST2 marker entered the context and proceeded with evolution (e.g. Lohnas et al.,

2015).

When similarity among either the list elements or item vectors was introduced, we

employed 30 element vectors. The first 27 elements were used in the same fashion as other

simulations. The important differences are that the common component m was element 28,

LIST1 was element 29, and LIST2 was element 29. When similarity was introduced to

both the list elements and the item vectors, we used 31 element vectors, where the common

component mitem was element 28, the common list element component mlist was element

29, and LIST1 and LIST2 were elements 30 and 31, respectively. The orthogonal

components of the item vectors were always their original elements (1-26).

In the simulations of the two list paradigm, we randomly sampled a set of 12 letters

and divided these between list 1 and list 2. No items were shared between each of the lists.

Because prior list intrusions could be rare with some combinations of parameters, we

performed many more simulations than in the other demonstrations. For each combination

of parameters, we generated 250 pairs of lists. For each trial, we performed 500 simulations

of the model.

The relevant model parameters that we varied (β, slist, and sitem) are detailed in the

main text as well as in Supplementary Materials B, where additional simulations are

reported where slist and sitem were jointly manipulated.

Temporal Grouping

The model simulations incorporated the same letters (F, H, J, L, N, Q, R, S, Y) and

experimental parameters (20 trials for each list type) as in the original experiment by

Hurlstone (2019). For each list type, 100 simulations were performed. Manipulations of β,

the increase in β at group boundaries, as well as the similarity among the group markers is

all detailed in the main text.

Our simulations of group markers in the main text changed the nature of the vector
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representations. In these simulations, we employed 31 element vectors: elements 1-26

corresponded to the letters, element 27 was the spacebar, elements 28-30 corresponded to

the group markers, and element 31 was the list context. An additional scheme using

orthogonal and common components is described in Supplementary Materials C.


