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Learning-based Resource Allocation for
Backscatter-aided Vehicular Networks

Wali Ullah Khan, Tu N. Nguyen, Furqan Jameel, Muhammad Ali Jamshed,
Haris Pervaiz, Muhammad Awais Javed, Riku Jäntti

Abstract—Heterogeneous backscatter networks are emerging
as a promising solution to address the proliferating coverage
and capacity demands of next-generation vehicular networks.
However, despite its rapid evolution and significance, the opti-
mization aspect of such networks has been overlooked due to
their complexity and scale. Motivated by this discrepancy in
the literature, this work sheds light on a novel learning-based
optimization framework for heterogeneous backscatter vehicular
networks. More specifically, the article presents a resource allo-
cation and user association scheme for large-scale heterogeneous
backscatter vehicular networks by considering a collaboration
centric spectrum sharing mechanism. In the considered network
setup, multiple network service providers (NSPs) own the re-
sources to serve several legacy and backscatter vehicular users in
the network. For each NSP, the legacy vehicle user operates under
the macro cell, whereas, the backscatter vehicle user operates
under small private cells using leased spectrum resources. A joint
power allocation, user association, and spectrum sharing problem
has been formulated with an objective to maximize the utility of
NSPs. In order to overcome challenges of high dimensionality
and non-convexity, the problem is divided into two subproblems.
Subsequently, a reinforcement learning and a supervised deep
learning approach have been used to solve both subproblems
in an efficient and effective manner. To evaluate the benefits of
the proposed scheme, extensive simulation studies are conducted
and a comparison is provided with benchmark techniques. The
performance evaluation demonstrates the utility of the presented
system architecture and learning-based optimization framework.

Index Terms—Vehicular communications, Machine learning,
Spectrum interoperability, Backscatter communication, Resource
management

I. INTRODUCTION

The tremendous growth in the number of smart and con-
nected vehicles is going to consume the wireless spectrum and
network resources in the coming years [1]. With the emergence

Corresponding author: Tu N. Nguyen
Wali Ullah Khan is with the Interdisciplinary Centre for Security, Relia-

bility and Trust (SnT), University of Luxembourg, 1855 Luxembourg City,
Luxembourg (Emails: waliullah.khan@uni.lu, waliullahkhan30@gmail.com).

Tu N. Nguyen is with the Department of Computer Science, Kennesaw State
University, Marietta, GA 30060, USA (Email: tu.nguyen@kennesaw.edu).

Furqan Jameel and Riku Jäntti are with the Department of Communications
and Networking, Aalto University, 02150 Espoo, Finland (email: furqan-
jameel01@gmail.com and riku.jantti@aalto.fi).

Muhammad Ali Jamshed is with James Watt School of Engineering,
University of Glasgow, UK. (email: muhammadali.jamshed@glasgow.ac.uk).

Haris Pervaiz is with the School of Computing and Communications,
Lancaster University, UK (email: h.b.pervaiz@lancaster.ac.uk).

M. A. Javed is with the Department of Electrical and Computer Engi-
neering, COMSATS University Islamabad, Islamabad 45550, Pakistan (email:
awais.javed@comsats.edu.pk).

of novel Intelligent Transportation System (ITS) applications
such as autonomous driving, smart traffic management, and
infotainment, there will be a growing demand for efficient
use of spectrum and cost-effective network infrastructure [2].
To effectively meet the requirement of forthcoming vehicular
networks, different solutions such as non-orthogonal multi-
ple access, device-to-device (D2D) communications, machine
learning, blockchain, wireless social networking and fog com-
puting approaches have been proposed in the literature [3]–
[14]. However, with ubiquitous connectivity and ultimate func-
tionality, come several important challenges. Firstly, massive
amounts of data need to be collected by and transferred across
low-powered devices in ways that consume as little energy as
possible [15]. Secondly, the spectrum needs to be shared ap-
propriately, so as to ensure the user fairness in dense networks
[16]. Thirdly, the interference needs to be kept at a reasonable
level, in order to prevent random fluctuations in the throughput
[17]. These limitations of low rates, poor communications
reliability, and high interference have profound implications
on the design of dense communication platforms such as
vehicular networks [18].

Lately, one of the most emerging technologies has been
backscatter communication. The novelty of this technique is
to design ultra-low-power devices for the communication by
using the existing nearby radio signals [19]. These devices
can benefit from a simple cost and energy effective design
as compared to the traditional communication systems. In
backscatter communication, the communicating node also acts
as an energy source, which raises some additional challenges
as compared to the traditional systems. Backscatter communi-
cation is a derivative of radio-frequency identification (RFID)-
based systems [20]. Although backscatter communication may
act as a key enabler of massive IoT and vehicular networks,
there is still room to make this technology more favorable in
large-scale setup. In this regard, machine learning techniques
have recently been proposed to incorporate much-needed intel-
ligence in the wireless networks [21]–[23]. Therefore, many
latest works from network optimization to hardware design
take into account the learning aspect to make the wireless
networks more fault-tolerant and smarter. The basic idea of
machine learning techniques is to get a computer program to
learn from experience and complete the task in the future with
these experiences. These learning techniques are generally
divided into three main categories, i.e., supervised learning,
unsupervised learning, and reinforcement learning [24].

Another important aspect from the network operator’s point-
of-view is an efficient spectrum sharing mechanism [25],
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Figure 1. Spectrum sharing landscape in 5G and beyond 5G era.

[26]. As shown in Fig. 1, the spectrum sharing landscape
is rapidly changing from a network service provider (NSP)
centric to a more diverse and distributed local operator centric
paradigm. Although all three approaches have proven their
feasibility under certain conditions, it is difficult to identify a
single best approach that meets all the requirements of future
networks [27]. Thus, we focus our attention on a more hybrid
spectrum sharing approach, i.e., collaboration centric spectrum
sharing. In this paradigm, there exists a harmony among NSPs
and local operators. More specifically, local operators (having
standalone and private networks) can lease the spectrum from
the NSPs resulting in a public-private sharing of spectrum.
Due to having a moderate cost and enabling interoperability
of bands, we anticipate that collaboration centric paradigm
would play a critical role in most of the future heterogeneous
wireless networks such as vehicular networks. With this intent,
our work aims to advocate the utility of a collaboration cen-
tric spectrum sharing paradigm and employs supervised and
reinforcement learning techniques to improve the performance
of such heterogeneous vehicular networks.

II. RELATED WORK AND MOTIVATION

Due to recent hype in machine learning, many studies use
one of the machine learning techniques to enhance different
metrics of the wireless networks. The concept of reinforcement
learning has also been implemented on cognitive radio (CR)
networks. In [28], authors proposed CR based networks for
video surveillance applications. The results showed that the
reinforcement learning-based approach is an effective way that
enables SUs (honest users) to evade PUs (malicious users)
so that the network performance is improved. The predic-
tive learning model in CR based reinforcement learning was
considered in [29] and the learning time, prediction accuracy

and prediction errors have been observed. The concept of
reinforcement learning has also been applied in 5G millimeter
wave (mmWave) communication in a massive multiple-input
multiple-output (MIMO) network in [30]. The joint optimiza-
tion of beamwidth and transmit power was considered by
taking the sensitivity of mmWave into account. Numerical
results showed an increase in data rate from 7.5 Gbps to 9
Gbps in comparison to baseline schemes. In [31], the author
studied the problem of providing buffer aware video stream-
ing to wireless channel users. A joint optimization problem
considering bandwidth allocation and buffer management for
maximizing effective video was considered. Simulation results
in the proposed deep reinforcement learning algorithm are
effective for buffer aware video streaming. Vu et al. in [32]
considered the optimal path selection and rate allocation in
mmWave network and found the best path by means of
the reinforcement learning algorithm. The proposed approach
achieves 99.999% reliability and reduced latency. In [33], the
authors considered the problem of rate allocation and optimal
path selection in the self-backhaul mmWave network. Hence, a
new scheme was proposed taking into consideration multiple
antenna diversity, mm-wave bandwidth, and traffic splitting.
The proposed solution ensures reliable communication and
guaranteed probability.

The reinforcement learning-based artificial intelligence al-
gorithms are applicable to wide areas of wireless commu-
nication such as D2D communication. The authors in [34]
used a reinforcement learning-based power control algorithm
in underlay D2D communication and compared a centralized
Q-learning based algorithm with distributed Q-learning. It
was shown that distributed Q-learning users are enabled to
self-organize by learning independently, thus, reducing the
overall complexity of the system. In [35], the problem of
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Table I
COMMONLY USED NOTATIONS AND THEIR DEFINITIONS.

Not. Definitions
M Number of NSPs
J Number of SBS
T1 1st Switch
T2 2nd Switch
Wm Spectrum of m-th NSP
β VUE association indicator
α Spectrum sharing factor
B Energy harvesting capacity of backscatter tag
Pt Transmit power
hu Channel gain between MBS and legacy VUE
hst Channel gain between SBS and backscatter transmitter
htr Channel gain between backscatter transmitter and receiver
hsr Channel gain between SBS and the backscatter receiver
µ Backscatter reflection coefficient
η Energy conversion efficiency
ζu Profit per VUE per rate unit
ψm,1 Cost unit of MBS
ψm,2 Cost unit of SBS
ωm Backhaul price per bit
φ Ratio of cost units of MBS and SBS
s State of environment
a Actions taken by the agent
r Reward of the agent
Ω Discount factor

vehicle-to-vehicle (V2V) transmission of the message was
considered. Platooning is a key technology in smart cities for
efficient V2V communication. The authors proposed a cooper-
ative reinforcement learning (CRL) using long-term evolution
(LTE) technology. The proposed scheme outperforms the other
schemes in terms of delay in cooperative awareness message
(CAM). Moreover, resource utilization was also efficient in the
proposed scheme. Qiu et al. in [36] explored the idea of joint
mode selection and power adaptation using D2D communi-
cation. The authors proposed a joint optimization of different
transmission modes and power levels using Q-learning. The
algorithm provides optimal energy efficiency, in comparison to
the state-of-art. In [37], the achieved sum rate is maximized
by using a more realistic channel formulation using finite-
state Markov channels (FSMC). The complexity of the stated
problem was high but has outperformed other schemes. Of
late, Jameel et al. have also exploited reinforcement learning to
investigate the problems of interference mitigation to improve
the system performance of backscatter communication [38],
[39].

There exist a few studies on backscatter communication
that employ machine learning techniques [40], [41]. For in-
stance, the authors of [42] used a supervised machine learning
technique (support vector machine) to detect the signal from
a backscatter tag by transforming the tag detection into a
classification task. The learning algorithm divides a signal into
two groups based on the energy features. It was shown that
the proposed scheme outperforms the conventional random
forest technique. In [43], the authors proposed to use machine
learning for channel estimation in backscatter systems. They
design a semi-blind channel estimator using a typical machine
learning technique called expectation maximization. They also
derived Cramer-Rao lower bounds of estimated parameters
to verify the utility of the proposed technique and validated

the results using simulations. In [44] the authors discussed
the ambient backscatter communication that enables wireless
devices to communicate without utilizing radio resources.
The system is modeled by the Markov decision process and
the optimal channel is obtained by the iterative algorithm.
If the channel distribution is unknown, Q- learning method
is implemented to find a suboptimal solution. The physical
layer security of backscatter tags is another important issue
[45]. To address this using machine learning techniques, the
authors of [46] used a multiobjective genetic algorithm. More
specifically, they reduced the antenna side lobes and obtained
optimal Pareto fronts. The simulation result indicates that
the proposed antenna design not only improves the physical
layer security but also provides improved energy efficiency.
In [47], Fan et al. provided a detailed summary of different
machine learning techniques used for activity identification of
backscatter tags while the authors of [48] proposed to use deep
learning for intelligent user association. Beside that, there also
exist several works on backscatter communication using non-
learning approaches [49]–[59].

As evident from the aforementioned review, the studies
incorporating the learning aspect in backscatter communica-
tions are very few in numbers. Moreover, the deployment of
backscatter tags along with legacy users in a heterogeneous
network has not been studied. In addition, it is important to
allocate spectrum resources (both licensed and unlicensed)
effectively to guarantee the quality of service (QoS) to all
the devices. To our best knowledge, such types of studies on
backscatter communications are still missing in the literature
and need the utmost attention prior to deploying a massive
number of backscatter devices. In simple terms, we make our
best effort to settle the following questions:
• Question 1: How to optimize the performance of a het-

erogeneous network having legacy users and backscatter
tags?

• Question 2: Compared to conventional greedy meth-
ods, can applying learning techniques in heterogeneous
backscatter networks bring more performance gains?

• Question 3: What are the associated costs (in terms of
overhead and computation) to train large-scale backscat-
ter networks with multiple NSPs.

III. CONTRIBUTION AND ORGANIZATION

In order to address the aforementioned questions both
from the perspective of the interoperability of backscatter and
legacy users and from the view-point of the evolution of
large-scale backscatter tags are nontrivial in nature. In this
regard, we provide a detailed architecture of heterogeneous
backscatter networks and the proposed learning-based opti-
mization framework for solving the resource allocation and
user association problem in detail. A list of commonly used
notations throughout this paper is outlined in Table I. The main
contribution of this work is summarized as follows:

1) A wireless heterogeneous backscatter network archi-
tecture is introduced that can be operated by multiple
NSPs. Each NSP can own a macro BS (MBS), whereby,
every MBS controls various small BSs (SBSs). The
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Figure 2. An illustration of system model having multiple MBS and SBS. The MBS and SBS are connected to the core network via backhaul links. Each
MBS has multiple SBS and a legacy UE. Whereas, each SBS has a backscatter transmitter-receiver pair that reuse the spectrum resources.

spectrum is divided among MBSs and SBSs. The SBSs
have energy harvesting backscatter tags and receivers
under their coverage area and the spectrum is reused
among different SBSs. These details on network setup
are provided in Section IV.

2) To maximize the total utility of NSPs, resource allo-
cation, and user association optimization problem is
formulated. The proposed problem considers both the
cost paid for using the backhaul network resources and
revenue earned from the users. The formulated problem
addresses the power allocation, user association, and
spectrum sharing issues with explicit constraints on
resource utilization. The problem formulation steps are
presented in Section V.

3) The optimization problem is then divided into two
subproblems. The problem of spectrum sharing and user
association is addressed using a reinforcement learning
technique. Specifically, the Q-learning approach is used
where an agent learns the optimal policy for associating
users and allocating spectrum resources. On the other
hand, the power allocation problem is resolved by train-
ing and testing a deep neural network. The details of
both solutions can be found in Section VI.

4) The effectiveness of the learning-based optimization
framework is demonstrated by performing extensive
simulations. By providing a reliable solution to the
resource distribution and user association problem, it is
shown in Section VII that both users and NSPs can be
benefited. Some concluding remarks and future research
directions are detailed in Section VIII.

IV. SYSTEM MODEL

We consider a collaboration centric spectrum sharing
paradigm in a geographical area having multiple NSPs with

MBSs and SBSs operating at sub-6 GHz band, as illustrated in
Fig. 2. It is considered that there are M NSPs, whereby each
NSPs has one MBS and J SBSs. For each NSP, we consider an
OFDM-based network for which the spectrum is divided into
MBS and SBSs. Assuming the total spectrum bandwidth as W ,
the bandwidth of the m-th NSP then becomes Wm = W

|M | . The
set of BSs of m-th NSP is denoted by Sm and Sjm denotes
the j-th SBS of m-th NSP, such that Sjm ∈ Sm. In addition,
S0m refers to the MBS belonging to the m-th NSP such that
S0m ∪ Sjm = Sm. We also consider that the set of vehicle
user equipments (VUEs) connecting to m-th NSP and j-th
SBS are denoted as U jm, whereas, the VUEs connected to m-
th NSP belong to Um, such that U jm ∈ Um. Likewise, VUEs
connecting to m-th NSP and its MBS are denoted as U0

m such
that U0

m ∪ U jm = Um. Without loss of generality, we consider
that a VUE can connect to only one BS at a time and each
MBS and SBS serves only one VUE such that the total number
of VUEs are M(J + 1). Here, the VUEs are divided into two
categories (i.e., pair of backscatter VUEs and legacy or cellular
VUE) based on their connection to the BS. Specifically, the
pair of backscatter VUEs are assumed to be communicating
to SBS. On the other hand, the legacy VUEs are considered to
be communicating with the MBS. Thus, the VUE association
indicator for the u-th user connected to the j-th SBS of the
m-th NSP at any l-th time slot can be given as

βm,ju (l) =

{
1, if u-th VUE associates with j-th SBS

0, otherwise.
(1)

A. Backscatter Model

For backscatter communications in SBS, we consider that
the pair of backscatter UE consists of a transmitter and
a receiver that is equipped with a single antenna. Each
backscatter VUE is assumed to use a reflection amplifier that
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Figure 3. Block diagram of the backscatter transmitter. The backscatter
transmitter consists of an antenna, a microcontroller and a recharge-able
battery. Based on the configuration of the switches, the tag can either use
the received energy for harvesting or for data transmission.

is characterized by the negative load impedance [60]. The
channel coefficients between the SBS and backscatter trans-
mitter, between SBS and backscatter receiver, and between the
backscatter transmitter and receiver are denoted as hst, hsr,
and htr. During each time slot, the backscatter transmitter
has to decide whether to operate in energy harvesting mode
or backscatter mode. The circuit diagram is given in Fig.
3. As illustrated in the figure, each backscatter transmitter
is equipped with a rechargeable battery. By exploiting the
harvested energy from the SBS, the backscatter transmitter can
improve its life cycle while virtually operating in a battery-less
manner. The backscatter transmitter can switch the connection
point between T1 and T2. The switch T1 determines whether
the received RF signal needs to be used for energy harvesting
(i.e., T1 = c0) or for information decoding/ transfer (i.e.,
T1 = c1). In the case of information decoding/ transfer, the
second switch T2 determines whether the information needs to
be decoded (i.e., T2 = c2) or the data needs to be transferred
(i.e., T2 = c3).

When the switch is T1 = c0, the backscatter transmitter
of the u-th VUE connected to the j-th SBS of the m-th
NSP uses the RF signal to harvest energy and operates in so-
called energy harvesting mode. By converting the RF signal
into direct current, the energy harvesting circuit recharges the
battery. The collected energy can be used for charging the
battery or transferring the data to the backscatter receiver.
Thus, the harvested energy can be denoted as

Em,jh = η|hst|2Pm,jt , (2)

where the energy harvesting efficiency is represented as η and
Pt is the transmit power of the SBS. From the expression, we
can note that the harvested energy can be zero if the received
power is too low. Without loss of generality, the capacity of
the battery is quantized into B units such that B is an integer.
The backscatter transmitter is assumed to consume v units
of energy during energy harvesting mode, while it consumes
v

′
units of energy during the backscattering phase, where

1 ≤ v < v
′
< B. To incorporate a realistic communication

procedure, it is considered that before each time slot, the tag
can operate in backscattering mode when Em,jh ≥ v

′
. When

this condition is not satisfied, the backscatter transmitter must
harvest energy.

When the backscatter transmitter switches to backscattering
mode, the connection switches like T1 = c1 and T2 = c3.
From the circuit diagram, it can be seen that for this case,
the amount of harvested energy would be zero and the
received power would be used to transfer the data to the
receiver. Generally, the transmission distance from SBS to
the backscatter transmitter is much larger than the distance
between the backscatter transmitter and backscatter receiver.
Due to this high dynamic range, the backscatter receiver
can apply successive interference cancellation to obtain the
interference-free signal from its own SBS [61].

B. Transmission Setup

Each NSP leases a specific portion of the spectrum to the
SBSs and uses the remainder of the spectrum for its own MBS.
Note that in the considered network setup, the NSPs cannot
lease the network spectrum to each other. Thus, within a
particular NSP, the spectrum shared among MBS and SBSs is,
respectively, given as fm = αmWm and fsm = (1− αm)Wm.
Here, 0 < αm < 1 represents the spectrum allocation factor.
Let us define Rm,ju which denotes the throughput of the u-
th VUE connected to j-th SBS. The maximum achievable
throughput of the u-th VUE connected to the MBS of the
m-th NSP can be given as

Rm,0u (l) = fm log2

(
1 +

Pm,0t |hm,0u |2

N0

)
, (3)

where Pm,0t denotes the transmit power MBS of m-th NSP,
hm,0u is the channel gain from the MBS to the legacy VUE.
Moreover, N0 denotes the power of the additive white Gaus-
sian noise (AWGN).

Since the backscatter VUEs use reflection amplifiers, the
peak power constraint can be relaxed and the maximum
achievable throughput can be written as

Rm,ju (l) = fsm log2

(
1 +

µPm,jt |hm,jst |2|h
m,j
tr |2

N0 + I1 + I2

)
, (4)

where I1 =
∑J
k=1,k 6=j µP

m,k
t |hm,kst |2|h

m,k
tr |2 represents the

interference from other backscatter VUEs under the same
NSP’s SBSs, I2 =

∑J
k=1,k 6=j P

m,k
t |hm,ksr |2 denotes the in-

terference from other SBSs of the same NSP and Pm,jt is
the transmit power of j-th SBS of the m-th NSP. Moreover,
hm,jst denotes the channel gain from the SBS to the backscatter
transmitter and hm,jtr represents the channel gain between
backscatter transmitter and backscatter receiver. Furthermore,
µ represents the reflection coefficient which is kept constant
for all backscatter VUEs. Also note that Pm,kt represents
the interference power from other SBSs under the same
NSP’s MBS during the downlink transmission, whereas, the
interfering channel gains are given as hm,ktr and hm,ksr from
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other backscatter tags to desired receiver and from other SBSs
of same NSP to the desired receiver, respectively. The total
achievable throughput for the u-th VUE at l-th time slot can
be given as

Cmu (β, α, P ) = βm,0u (l)Rm,0u (l) +

J∑
j=1

βm,ju (l)Rm,ju (l)

=
∑
j∈Sm

βm,ju (l)Rm,ju (l), (5)

where β = {βm,ju (l)}, α = {αm(l)}, and P = {Pm,jt (l)}
represent the VUE association indicators, spectrum sharing
policy, and power allocation policy, respectively.

V. PROBLEM FORMULATION

This section provides the detailed information about the
definition of utility function and pinpoints the specific con-
straints for the problem formulation. We first develop a utility
function by taking into account the profit and loss for the NSP.
Later on, based on the utility function, we formulate a utility
maximization problem with specific set of constraints.

A. Utility function

The aforementioned details in the previous section reveal
that each NSP can maximize its own profit by serving more
VUEs (while improving the throughput) and by reducing the
costs associated with the exchange of data within the network.
In this regard, metrics like VUE association, spectrum sharing
among MBS and SBSs, and power allocated to each BS come
into play. Overlooking the importance of any of these re-
sources may lead to inefficient network performance, thereby,
resulting in reduced profit for certain cost of resources. Thus,
the overall utility can be defined as a sum function of the profit
obtained and the cost of serving the VUEs. Mathematically,
we can define it as∑

Uti

(β, α, P ) =
∑
i∈I

∑
m∈M

∑
u∈Um

ζuU
m
u (β, α, P )

−
∑
i∈I

∑
m∈M

Υm
i (β, α, P )

−
∑
i∈I

∑
m∈M

Ψm
i (β, α, P ), (6)

where the first term in (6) indicate the benefit obtained by
serving the VUEs and ζu denotes the profit per VUE per rate
unit. The value of Umu (β, α, P ) can be given as

Umu (β, α, P ) = log(Cmu ). (7)

where the logarithmic function has been used as a common
choice of the utility function for maintaining user fairness.
Note that linear utility functions result in a trivial solution
for the case of throughput maximization, where providing
more resources to VUEs with low rates is desirable. Hence,
following the approach of [62], we opt to use logarithmic
utility function in the remainder of this paper which is more

close to the resource allocation philosophy of the practical
networks.

In (6), Υm
i shows the cost of the radio and power resources.

It can be written as

Υm
i (β, α, P ) = ψm,1

∑
u∈Um

βm,0u fmp
m,0 + ψm,2

×
∑
u∈Um

∑
j∈Sm

βm,ju fsmp
m,j , (8)

where the product of bandwidth and power is used for
quantifying the consumption of BS resources, whereas, the
coefficients ψm,1 and ψm,2 indicate the cost unit of MBS and
SBS, respectively. Note that due to increased cost of operating
MBS, it is intuitive that ψm,1 ≥ ψm,2.

Also, Ψm
i in (6) refers to the cost of using backhaul re-

sources during the communication. More specifically, this cost
depends on many factors ranging from the amount of backhaul
data and the type of backhaul technique. Mathematically, it is
given as

Ψm
i (β, α, P ) = ωm

∑
u∈Um

Cmu (β, α, P ), (9)

where the price per bit for every backhaul transmission is
represented as ωm.

B. Problem Formulation

The proposed work aims to jointly optimize the allocated
power P , VUE association β, and spectrum sharing α. In
light of the aforementioned analysis, the utility maximization
problem can be formulated as

P1 max
β,α,P

ΣUti(β, α, P ) (10)

s.t. C1 : βm,ju ∈ {0, 1}, (10a)

C2 : 0 ≤ Pm,jt ≤ P jmax, (10b)

C3 : 0 ≤ Em,0h ≤ B, (10c)
C4 : 0 ≤ αm ≤ 1. (10d)

where C1 is the constraint on the VUE association indicator
such that VUE can be connected to one BS at a time. The
second constraint C2 ensures that the maximum transmit
power limit is not exceeded. The third constraint C3 is for
limiting the total energy harvesting capacity of the tags due
to the limitations of the energy reservoir. The C4 ensures that
the spectrum resources are distributed accordingly in the MBS
and SBS.

By observing the problem formulated in P1, we can ob-
serve that this problem is a non-convex combinatorial inte-
ger programming problem which is NP-hard and cannot be
solved directly in a polynomial time [63]. Hence, the best
possible strategy for solving it can be through a brute-force
method which is capable of providing an optimal solution
with an expensive computational complexity, infeasible for
large-scale wireless systems. Moreover, the amount of real-
time information required for these brute-force methods can be
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overwhelming to collect due to the dynamic nature of wireless
systems. Thus, in order to provide a near-optimal solution, we
intend to utilize the learning-based optimization framework for
solving the problem formulated in P1.

Reward 

States 

A
ct

io
n

s 

Agent 

Environment 

Action 

Q-Table 

Figure 4. Illustration of general Q-learning technique. The technique consists
of an agent and an environment on the principle of exploration and exploita-
tion. The agent interacts with the environment based on a state-action table.
As a result of its actions, the agent receives a reward.

VI. PROPOSED SOLUTION

In this section, we first reformulate the problem P1 to
make it solvable by dividing the original problem into two
subproblems. Firstly, the subproblem of VUE association and
spectrum sharing is solved by keeping the transmission power
fixed. Thus, the problem formulated in P1 is converted into
a first subproblem defined in P2. After utilizing the time-
sharing relaxation, the reformulated problem P2 is still non-
convex in nature. The problem P2 is then changed into
P3 by further transforming the constraint C4 into a linear
constrained by utilizing an auxiliary continuous variable. The
newly transformed problem P3 is solved using Q-learning to
find the user association metrics (β) and spectrum sharing
partition (α) among the MBS and SBS within an NSP. After
solving the problem defined in P3, we will replace the near-
optimal user association metrics (β) and spectrum sharing
partition (α) into the original problem defined in P1 to solve
the second subproblem. For the given near-optimal values of α
and β obtained from the solution of P3, the original problem
formulated in P1 is rewritten as P4 and will be solved to
find the near-optimal power allocation vector P by training a
deep neural network. In the following subsections, we provide
solutions for both subproblems.

A. Proposed Q-learning Solution for VUE Association and
Spectrum Sharing

Here, we first transform the subproblem to have a feasible
solution. The problem P1 can be written as

P2 max
β,α

ΣUti(β, α) (11)

s.t. C1, C4. (11a)

From (11), we can observe that P2 has a binary variable
βm,ju , due to which the problem is still non-convex. Following
the detailed approach of [64], we can relax βm,ju of C1 to have
real values from 0 to 1. This means that 0 ≤ βm,ju ≤ 1 can
be viewed as a factor for sharing time such that u remains
associated with a BS for that duration. Despite relaxing the
problem, it is still non-convex due to the variables involved in
the objective function. To address this situation, we introduce

another auxiliary continuous variable α̂m,ju = αm,ju βm,ju . It is
obvious that BS would not allocate spectrum resources to the u
which is not associated with it. Correspondingly, the problem
P2 can be transformed into P3 with the constraints given as

P3 max
β,α̂

ΣUti(β, α̂) (12)

s.t. C1 : 0 ≤ βm,ju ≤ 1 (12a)

Ĉ4 : 0 ≤ α̂m,ju ≤ βm,ju . (12b)

From (12), one can observe that our objective function is the
maximizing sum of concave functions, where, the constraints
are linear. Therefore, the convexity of the objective function
can be proved by showing the continuity of function and with
the help of perspective operation of log [65], [66]. To provide
a solution to P3, we use Q-learning to find the optimal policy
for the given set of constraints.

Q-learning is one of the most popular reinforcement learn-
ing techniques. The reinforcement learning problem consists
of an environment and either single or multiple agents. As
shown in Fig. 4, an agent observes a current state and takes
action according to a stochastic policy π. Generally, there
are three elements of a Q-learning model, i.e., states, actions,
rewards. During each time slot l, the agent selects an action
by observing the state of the model and gets a reward (or no
reward) in response to that action. After several interactions,
the scheme aims to maximize the overall reward of the network
and converges. The details of states, actions and rewards for
our case are provided below:

• State: It is considered that the agent is centrally con-
trolled and has the information regarding the transmit
power, channel gains and energy harvesting capacity.
Then, at any time slot l, we define state as

sl = [P 1
t , h

1
uE

1
h, . . . , P

l
t , h

l
uE

l
h . . . , P

N
t , h

N
u E

N
h ]. (13)

Note that N is the total number of BS in a geographic
area from all the NSPs. More specifically, N can be
defined as N = M(J + 1).

• Action: During each episode, the agent tries to optimally
allocate the resources by performing VUE association and
spectrum sharing for all VUEs and BSs.

al = [β1
u, α̂

1
u, . . . β

l
u, α̂

l
u, . . . , β

N
u , α̂

N
u ]. (14)

• Reward: After performing some action during each
epoch, the agent is going to receive a reward. In general
the reward is associated to the objective function. For
the case of our network setup, the main objective is
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to maximize the payoff of the NSPs1. Therefore, the
reward of agent is positively related to the amount of
data exchanged between the VUEs in the network. We
define the immediate reward rl+1 ∈ R as the amount of
information successfully transferred to the VUEs.

R(sl, al) =

{
+1, if Θ > Ξ
0,Otherwise, (15)

where Ξ = Υm
i (β, α̂) + Ψm

i (β, α̂) and Θ =∑
u∈Um ζuU

m
u (β, α̂).

For any l-th time slot, the Q-learning uses the value function
Q(sl, al) for each state-action pair. This value is stored in a
table called Q-table, which is regarded as the long-term reward
of the agent. Given a certain policy π, it can be written as

Q(s, a) = E
{ G∑
g=0

Ωgrl+g+1|sl = s, al = a, π

}
, (16)

where G represents the length of one episode and 0 ≤ Ω ≤
1 is discount factor. In this regard, it is worth mentioning
that the agent has to make a tradeoff between exploration and
exploitation. Thus, the agent would have to decide whether
it needs to focus on the current immediate reward or further
explore the environment for future rewards. This is done by the
discount factor in the learning setup. If Ω tends toward 1 then
it means that the agent focuses on the exploration, whereas,
when Ω approaches 0 then it considers the immediate reward.
As a result of this, the optimal Q-function which satisfies the
Bellman optimality equation can be given as

Q∗(s, a) = max
π

Qπ(s, a). (17)

One of the simplest ways to choosing the appropriate action
by the agent is using the greedy method. This policy selects
the largest Q-value in each state, such that

π(s) = argmax
a

Qπ(s, a). (18)

This is called Q-learning process which is an iterative
process having following procedure

Ql+1(sl, al) = Ql(sl, al) + κl

{
rl+1 + Ω max

a
Ql(sl+1, a)

−Ql(sl, al)
}
, (19)

where κl represents the learning rate at l-th time step. The
main operations of the proposed Q-learning approach are
provided in Algorithm 1. The algorithm begins by defining
various environmental variables such as discount factor, decay
rate, states (13) and actions (14). The environment simulation
begins by deploying BSs and VUEs in the network and for
each BS, there is a table that consists of all possible states as
its rows and actions as its columns. For each time slot, the
algorithm selects a rate of exploration and chooses a reward

1Our network setup does not take into account the competition among
different NSPs. Such game theoretic communication competitive network
architecture of NSPs would be considered in the future works.

as per uniform distribution while comparing it with the explo-
ration rate. If the value of r is greater than the exploration rate,
then the Q-value maximizing action is selected. The action is
performed and the reward is calculated (as per (15)) while
updating the table entries according to (19). In the end, the
state is updated and the loop continues. This process outputs
the optimized sequence of VUE association and spectrum
sharing factor for different actions on the network.

Algorithm 1 Q-learning for UE Association and Spectrum
Sharing.

1: procedure Q-Learning Process
2: Input: Transmit power, channel gains and energy harvesting

capacity.
3: Start:

Define states and actions as per (13) and (14)
Define the discount factor Ω.
Define the threshold for minimum exploration Ωmin

Define decay rate λ
Initialize states, actions, and overall utility.

4: for each episode do
Start a heterogeneous network simulator.

5: while each time slot do
Select the rate of exploration Ω := max(Ω.λ, ωmin)
Randomly select r using uniform distribution.

6: if r ≤ Ω then
7: Randomly select an action a.
8: else
9: Choose the action for maximizing the reward,

i.e., a := arg maxaQ(s, a).
10: end if

Calculate the reward rl as per (15) for action al.
Evaluate the impact of al on sl+1.
Update the table entry as per (19).
Switch to the next state, i.e., sl+1.

11: end while
12: end for
13: Output: Optimized sequence of VUE association and spectrum

sharing for different action on network.
14: end procedure

B. Proposed Deep Learning Solution for Power Allocation

In this section, we provide a solution for optimal power
allocation by fixing the values of α and β. Thus, P1 can now
be written as

P4 max
∑
i∈I

∑
m∈M

∑
u∈Um

ζuU
m
u (P )−

∑
i∈I

∑
m∈M

Υm
i (P )

−
∑
i∈I

∑
m∈M

Ψm
i (P ) (20)

s.t. C2 : 0 ≤ Pm,jt ≤ P jmax (20a)

C3 : 0 ≤ Em,0h ≤ B. (20b)

Due to the reformulated problem, the solution to P4 can
be obtained by using classical approaches such as weighted
minimum mean square error [67] or steepest descent method
[68]. However, such approaches are non-scalable due to the
high computational cost incurred by these algorithms. More-
over, due to the involvement of complex matrix inversion and
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Figure 5. Deep learning solution for power allocation (a) Training setup (b) Testing setup.

bisection during each iteration, the real-time implementation
of these algorithms is a challenging task.

In order to maintain realistic resource management in wire-
less networks (due to the effect of fast fading and dynamic
conditions), we treat the algorithms for power allocation as a
’black box’ and aim to learn the complex interplay of system
variables. Thus, we build a deep neural network for optimizing
the allocation of power by approximating a weighted minimum
mean square error algorithm. By obtaining the optimal power
factors for the particular set of inputs from the said algorithm,
the deep neural network can be trained to learn the relationship
between inputs and outputs, as shown in Fig. 5 (a). Since the
validation/ testing requires only simple operations like matrix
multiplication, such a neural network can not only reduce
the computation complexity but also help in minimizing the
processing time. Moreover, with the recent developments in
cloud computing, training these networks is fairly convenient.
It is because of such a neural network can be trained offline in
the cloud and the trained model can be utilized for real-time
testing and validation.

1) Deep Learning Model: Our deep learning model uses a
neural network approach to learn the complex interdependence
of inputs and outputs. Specifically, the neural network is
composed of a number of hidden layers along with having
a single input and a single output layer. The input layer
takes the channel coefficients and provides power allocation
at the output layer. Besides this, for the hidden layers, we use
rectifier linear unit (ReLU) as the activation function, whereas,
to ensure the energy constraint, the output layer uses a special
type of activation function such as

O = min(B,max(y, 0)), (21)

where O denotes the activation function output. Without loss
of generality, we consider that the maximum transmits power
of all the BS is constant such that P jmax = Pmax, ∀j ∈ J .
Also, it is worth pointing out that the expression in (21) does
not contain the constraint on maximum power. It is because
maximum power is always greater than the energy harvesting
capabilities of the VUEs, such that 0 ≤ Em,0h ≤ B < Pmax.
As previously mentioned, we fix the values of α and β and

for each tuple, i.e., channel realization, maximum transmit
power and noise, we generate optimized power vectors from
the weighted minimum mean square error algorithm. Subse-
quently, we obtain the training sample as the tuple of the
channel and transmit power. Then, the process is repeated
multiple times to obtain the entire training, validation and
testing data set. The validation data is generated for cross-
validation, early stoppage during the training, and appropriate
model selection.

2) Training and Testing of Model: In order to optimize the
weights of our neural network, we use the entire training set
of channel realizations and transmit power. We have employed
RMSProp as the optimization algorithm which is a reliable
construction of the stochastic gradient descent method. By
running the average of the recent gradients, the RMSProp
divides the learning rate for that weight. Through exhaustive
cross-validation, we select the decay rate of learning as 0.9
and select an appropriate learning rate. The truncated normal
distribution has been used to initialize the weights of the neural
network which also improves the performance of our neural
network. More specifically, we generate the weights from a
normal distribution, however, value is dropped and regenerated
if the random number generated has an absolute value is
greater than 2. Subsequently, to ensure the normalization of
variance at the output, the weights of a neuron are divided by
the square root of a total number of inputs. In this way, we
normalize the variance of each output of the neuron.

For the sake of testing our deep learning model, we use the
same distribution for generating channel realizations as used
for the training phase. These generated channel realizations are
passed through our deep neural network and the optimized
powers are obtained at the output, as shown in Fig. 5 (b).
Subsequently, the utility function in (20) is computed using
the transmit power from the neural network. The results show
that the obtained power allocation improves the performance
of the network.

C. Computation Complexity
Our proposed optimization framework uses two learning

techniques, i.e., Q-learning and supervised learning (i.e., deep
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Figure 6. Reward as a function of the number of iterations.

neural networks). In general, the complexity of both learning
techniques varies significantly and strictly depends on the
application. For instance, a larger amount of data may require
more training time for the convergence of the learning model.
In a similar manner, an increase in the number of hidden
layers may result in consuming more time in order to reliably
train the models. Thus, due to the inherent “black box”
nature and hierarchical structure of these learning models, it
is difficult to provide exact computational complexity during
training. Additionally, since inappropriate training may lead
to issues like under-fitting and over-fitting, the hyperparameter
tuning and corresponding training duration may vary from one
scenario to another.

However, despite these indefinite characteristics of learning
techniques, many studies indicate a reasonable complexity un-
der basic training conditions (see [69] and references therein).
Moreover, since the training can be performed in an indepen-
dent manner, the complexity of such learning techniques is less
of an issue. The training of these models can be performed
in the cloud and, then, the trained models can be used for
testing in real-time. After a pre-specified period of time, these
models can be completely or partially retrained in the cloud
[70]. Since the resources in the cloud are less constrained,
retraining can be performed frequently. The analysis of the
frequency of retraining these models is beyond the scope of
this work.

VII. PERFORMANCE EVALUATION

This section provides a detailed discussion of the simulation
results as per the abovementioned analysis. The position of
MBS is kept fixed, whereas, the SBSs are randomly deployed
in a coverage area of MBS. Then, fixing the location of
the SBS, the locations of VUEs are changed during each
iteration. For performing Monte-Carlo simulations, the total
number of iterations is 10,000, whereby, to reduce the effect
of randomness, average values are taken in the simulations.
During each simulation, consider that there are two NSPs and
each NSP owns one MBS. In addition, two SBS associated
with the MBS of a particular NSP.
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Figure 7. Utility of NSPs against BSs transmit power.

Table II
SIMULATION PARAMETERS AND THEIR VALUE.

Simulation Parameters Values
Transmit Power Pt 1 W
Fading Channel Rayleigh fading
Realizations 104

No. of NSPs 2
No. of SBS per MBS 2
Cost of MBS ψm,1 100 units/MHz
Cost of SBS ψm,2 80 units/MHz
Price of Backhaul Resources ωm 1 unit/ Mbps
Learning rate 0.2
Bandwidth Wm 20 MHz
Reflection Coefficient µ 0.5
Hidden layers 5
Energy Conversion Efficiency η 0.8
Decay rate 0.9
Epochs 1000

For a fair comparison, we have provided two benchmark
schemes in the results. “Benchmark-1” refers to the fixed
resource allocation and VUE association scheme (also known
as hard slicing [71]). In that, each BS is allocated a fixed share
of resources no matter if they use it or not. The second bench-
mark scheme called “Benchmark-2” refers to the traditional
maximum power allocation strategy, such that a BS always
transmits at its maximum power [72]. This scheme disregards
any instantaneous QoS requirements of the VUEs and traffic
conditions in the network. Unless mentioned otherwise, the
simulation parameters and their values are provided in Table
II.

In Fig. 6, we have illustrated the results for Q-learning
reward as a function of the number of iterations. In general,
it can be seen that the reward increases with an increase in
the number of iterations. This shows that if sufficient time
is spent by the agent in exploring the environment, then it
can maximize its long-term reward. Moreover, it can also be
observed that with an increase in transmit power, the overall
reward of the agent increases. This increase can be attributed
to the fact that an increase in transmit power improves the
overall throughput of the network. However, one can also
note that with an increase in the value of transmit power, it
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Figure 8. Traing and validation plots. (a) Gradient versus the number of epochs (b) Mean square error against the number of epochs (c) Regression plot for
training data (d) Regression plot for validation data.

becomes difficult for the agent to reach a point of stability due
to increased interference in the network. Thus, it takes a larger
number of iterations to converge when the transmit power is
increased from 1 W to 5 W.

Fig. 7 compares our proposed Q-learning technique with
the benchmark greedy policy by plotting utility against the
increasing values of transmit power of BSs, where all BSs
under NSPs are assumed to transmit with the same power. Note
that the overall utility generally increases with an increase
in the transmit power. Moreover, it can be seen that the
proposed learning framework outperforms the conventional
benchmark technique. For providing more in-depth insights,
we have proved curves for different values of the ratio of
costs of MBS and SBS, i.e., φ. It can be seen that when
φ = 1, the curves of proposed and benchmark techniques
are very close. This indicates that the greedy policy performs
better when the ratio is small. However, as the value of φ
increases both proposed and benchmark techniques suffer to
maintain the utility at the same level, thereby, resulting in loss
of utility. Yet, the proposed technique greatly outperforms the
benchmark technique. It is also evident that the gap between
the curves of proposed and benchmark increases. This shows

the inability of the benchmark technique to cope with changes
and dynamicity in the model.

Fig. 8 generally demonstrates the training and validation
process of the proposed deep neural network approach for
improving the overall utility. In particular, Fig. 8 (a) shows the
reduction in the value of gradient over a different number of
epochs. It is worth noting that we ran 1000 epochs for training
our neural network. From the figure, it can be observed that
the value of the gradient first decreases rapidly and becomes
almost stable after crossing 700 epochs. As a result of this
descent in the value of gradient, the mean square error at
the output of the neural network drops. This phenomenon
is illustrated in Fig 8 (b). It can also be observed from the
figure that the validation error generally decreases with an
increase in the amount of training. Also, for the specified
number of epochs, the lowest value of mean square error is
reached at around 950-th epoch. Fig 8 (c) & (d) demonstrate
the regression plots for both training and validation data. It
can be seen that the training and validation curves fit the data.
This fitting helps the neural network to predict the response
when data is varied. Note that for the generated data, the fit
is reasonably good.
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Figure 9. Utility of NSPs against the spectrum allocation factor.

Fig. 9 shows a comparison of achievable utility for the op-
timal and proposed learning-based framework. In general, we
note that the utility for both optimal and proposed techniques
first increases and then gradually decreases. However, the
separation between proposed and optimal increases for larger
values of αm. To understand the impact of energy conversion
efficiency, we demonstrate the optimal and proposed curves
for different values of η. It can be seen that a higher value
of energy conversion efficiency ensures higher utility. By
contrast, for η = 0.3, the overall utility decreases for both
optimal and proposed techniques. We also note that the impact
of energy conversion efficiency significantly diminishes at
lower values. Thus, indicating that for a poor energy harvesting
hardware, the performance of optimal and proposed techniques
becomes almost identical. This results in reducing the gap
between the utility curves of optimal and proposed techniques.

In Fig. 10, we provide a comparison between the optimal,
proposed and benchmark techniques. In general, we note that
the overall utility generally increases with an increase in the
reflection coefficient and then decreases. This is because an
increase in the value of the reflection coefficient indicates
that the more part of the incident signal is reflected to the
receiver. However, as this value continues to increase, the
interference level from the other backscatter tags also grows
which contributes to a decline in the overall utility. Despite
this, we can observe that the proposed neural network-based
approach closely follows the optimal technique. However,
the proposed learning-based technique is fairly simple as it
requires only linear multiplications once the model is fully
trained. In contrast, the iterative optimization method is rigor-
ous and complex, which may not be desirable for large-scale
heterogeneous networks.

VIII. CONCLUSIONS AND FUTURE WORK

The collaboration centric and heterogeneous backscatter
communications will enable connected and smart vehicular
networks. In this regard, this article has provided some key
insights on optimizing such networks. More specifically, this
work improves the performance of heterogeneous backscatter
vehicular networks with the help of learning techniques,
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Figure 10. Utility of NSPs against the reflection coefficient of backscatter
VUEs.

including reinforcement learning and supervised deep learn-
ing. The proposed optimization framework uses Q-learning
for VUE association and spectrum sharing, whereas, power
allocation was performed with the help of deep neural net-
works. The results clearly indicate that the utility of NSPs
can be more enhanced using the learning-based framework as
compared to conventional benchmark techniques. It was also
demonstrated that the proposed learning-based optimization
framework entails reasonable complexity which is suitable for
large-scale heterogeneous backscatter vehicular networks. We
anticipate that the results provided here would significantly
contribute to the widespread deployment of heterogeneous
backscatter vehicular networks.

Although the results provided by our work show consid-
erable promise, many extensions can be derived from this
study. For instance, this work considers single antennas at
the backscatter tags. However, with the emergence of energy-
efficient schemes, backscatter tags having multiple antennas
are also becoming popular. As an extension of this work, the
performance of a heterogeneous vehicular network consisting
of multi-antenna backscatter tags can be optimized. Another
potential work can be done from the perspective of multiple
access schemes. In this work, we consider orthogonal multiple
access, however, we expect that using non-orthogonal multiple
access (NOMA) can significantly improve the performance of
such networks. This interesting work is also left for future
studies.
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H. Hämmäinen, and M. Latva-aho, “Analysis of spectrum valuation
approaches: The viewpoint of local 5g networks in shared spectrum
bands,” in IEEE DySPAN. IEEE, 2018, pp. 1–9.

[28] A. Syed, K. Yau, H. Mohamad, N. Ramli, and W. Hashim, “Channel
selection in multi-hop cognitive radio network using reinforcement
learning: An experimental study,” 2014.

[29] S. Tubachi, M. Venkatesan, and A. Kulkarni, “Predictive learning model
in cognitive radio using reinforcement learning,” in IEEE ICPCSI.
IEEE, 2017, pp. 564–567.

[30] T. K. Vu, M. Bennis, M. Debbah, M. Latva-Aho, and C. S. Hong, “Ultra-
reliable communication in 5G mmWave networks: A risk-sensitive
approach,” IEEE Commun. Lett., vol. 22, no. 4, pp. 708–711, 2018.

[31] Y. Guo, R. Yu, J. An, K. Yang, Y. He, and V. C. Leung, “Buffer-Aware
Streaming in Small Scale Wireless Networks: A Deep Reinforcement
Learning Approach,” IEEE Trans. Veh. Technol., 2019.

[32] T. K. Vu, C.-F. Liu, M. Bennis, M. Debbah, and M. Latva-Aho, “Path
selection and rate allocation in self-backhauled mmwave networks,” in
IEEE WCNC. IEEE, 2018, pp. 1–6.

[33] T. K. Vu, M. Bennis, M. Debbah, and M. Latva-Aho, “Joint Path
Selection and Rate Allocation Framework for 5G Self-Backhauled mm-
wave Networks,” IEEE Trans. Wireless Commun., vol. 18, no. 4, pp.
2431–2445, 2019.

[34] S. Nie, Z. Fan, M. Zhao, X. Gu, and L. Zhang, “Q-learning based power
control algorithm for D2D communication,” in IEEE PIMRC. IEEE,
2016, pp. 1–6.

[35] S. Sharma and B. Singh, “Cooperative Reinforcement Learning Based
Adaptive Resource Allocation in V2V Communication,” in IEEE SPIN.
IEEE, 2019, pp. 489–494.

[36] Y. Qiu, Z. Ji, Y. Zhu, G. Meng, and G. Xie, “Joint mode selection and
power adaptation for D2D communication with reinforcement learning,”
in IEEE ISWCS. IEEE, 2018, pp. 1–6.

[37] A. Moussaid, W. Jaafar, W. Ajib, and H. Elbiaze, “Deep Reinforcement
Learning-based Data Transmission for D2D Communications,” in IEEE
WiMob. IEEE, 2018, pp. 1–7.

[38] F. Jameel et al., “Reinforcement learning for scalable and reliable power
allocation in SDN-based backscatter heterogeneous network,” in IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2020, pp. 1069–1074.

[39] ——, “Towards intelligent IoT networks: Reinforcement learning for re-
liable backscatter communications,” in 2019 IEEE Globecom Workshops
(GC Wkshps), 2019, pp. 1–6.

[40] T. T. Anh, N. C. Luong, D. Niyato, Y.-C. Liang, and D. I. Kim, “Deep
Reinforcement Learning for Time Scheduling in RF-Powered Backscat-
ter Cognitive Radio Networks,” arXiv preprint arXiv:1810.04520, 2018.

[41] A. Rahmati and H. Dai, “Reinforcement Learning for Interference
Avoidance Game in RF-Powered Backscatter Communications,” arXiv
preprint arXiv:1903.03600, 2019.

[42] Y. Hu, P. Wang, Z. Lin, M. Ding, and Y.-C. Liang, “Machine Learning
Based Signal Detection for Ambient Backscatter Communications,” in
IEEE ICC. IEEE, 2019, pp. 1–6.

[43] S. Ma, Y. Zhu, G. Wang, and R. He, “Machine Learning Aided Channel
Estimation for Ambient Backscatter Communication Systems,” in IEEE
ICCS. IEEE, 2018, pp. 67–71.

[44] X. Wen, S. Bi, X. Lin, L. Yuan, and J. Wang, “Throughput Maximization
for Ambient Backscatter Communication: A Reinforcement Learning
Approach,” in IEEE ITNEC. IEEE, 2019, pp. 997–1003.

[45] W. U. Khan et al., “Secure backscatter communications in multi-cell
NOMA networks: Enabling link security for massive IoT networks,” in
IEEE INFOCOM 2020 - IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), 2020, pp. 213–218.

[46] T. Hong, C. Liu, and M. Kadoch, “Machine learning based antenna de-
sign for physical layer security in ambient backscatter communications,”
Wireless Communications and Mobile Computing, vol. 2019, 2019.

[47] X. Fan, F. Wang, F. Wang, W. Gong, and J. Liu, “When RFID
Meets Deep Learning: Exploring Cognitive Intelligence for Activity
Identification,” IEEE Wireless Commun., p. 2, 2019.



14

[48] Q. Zhang, Y.-C. Liang, and H. V. Poor, “Intelligent User Association for
Symbiotic Radio Networks using Deep Reinforcement Learning,” arXiv
preprint arXiv:1905.04041, 2019.

[49] W. U. Khan, E. Lagunas, A. Mahmood, S. Chatzinotas, and B. Ottersten,
“Integration of backscatter communication with multi-cell NOMA: A
spectral efficiency optimization under imperfect SIC,” arXiv preprint
arXiv:2109.11509, 2021.

[50] M. Ahmed et al., “Backscatter sensors communication for 6G low-
powered NOMA-enabled IoT networks under imperfect SIC,” arXiv
preprint arXiv:2109.12711, 2021.

[51] W. U. Khan et al., “Energy-efficient resource allocation for 6G
backscatter-enabled NOMA IoV networks,” IEEE Transactions on In-
telligent Transportation Systems, pp. 1–11, 2021.

[52] X. Li et al., “Physical layer security of cognitive ambient backscatter
communications for green Internet-of-things,” IEEE Transactions on
Green Communications and Networking, vol. 5, no. 3, pp. 1066–1076,
Sept. 2021.

[53] W. U. Khan, X. Li, M. Zeng, and O. A. Dobre, “Backscatter-enabled
NOMA for future 6G systems: A new optimization framework under
imperfect SIC,” IEEE Communications Letters, vol. 25, no. 5, pp. 1669–
1672, May 2021.

[54] A. Ihsan et al., “Energy-efficient backscatter aided uplink NOMA
roadside sensor communications under channel estimation errors,” arXiv
preprint arXiv:2109.05341, 2021.

[55] W. U. Khan, F. Jameel, N. Kumar, R. Jäntti, and M. Guizani,
“Backscatter-enabled efficient V2X communication with non-orthogonal
multiple access,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 2, pp. 1724–1735, Feb. 2021.

[56] F. Jameel et al., “Multi-tone carrier backscatter communications for
massive iot networks,” in Wireless-powered backscatter communications
for Internet of things. Springer, 2021, pp. 39–50.

[57] W. U. Khan, N. Imtiaz, and I. Ullah, “Joint optimization of NOMA-
enabled backscatter communications for beyond 5G IoT networks,”
Internet Technology Letters, vol. 4, no. 2, p. e265, 2021.

[58] F. Jameel et al., “Time slot management in backscatter systems for large-
scale IoT networks,” in Wireless-powered backscatter communications
for Internet of things.

[59] W. U. Khan et al., “Secure backscatter-enabled NOMA system design
in 6G era,” Internet Technology Letters, p. e307.

[60] F. Amato, C. W. Peterson, B. P. Degnan, and G. D. Durgin, “Tunneling
RFID tags for long-range and low-power microwave applications,” IEEE
J. Radio Freq. Identif., vol. 2, no. 2, pp. 93–103, 2018.
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