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I 

 

Abstract 

Agent-based simulation of herding in financial markets varies in the herding and market 

mechanism. Replication studies are a cornerstone of the scientific method although it is 

not applied very often. The research aims to obtain a greater understanding of herding 

and the related stylised facts, assess the herding models’ reproducibility, and find ways 

to improve reproducibility by replicating two herding models.  

 

The first herding mechanism factor (Tedeschi et al., 2012) controls the extent of the 

neighbour’s influence on the expected returns and hence on the trading decisions. The 

market mechanism is an artificial market where agents submit either ask or bid orders 

into the order book, and they trade between themselves. The second replicating herding 

mechanism (Lux and Marchesi, 2000) is based on transition probabilities to decide 

whether agents are fundamentalists, optimistic or pessimistic chartists. The market 

mechanism is demand and supply. 

 

The first replicating study fails to produce the original results, whereas the second does 

have similar findings to the original paper. The second model’s description is done by 

following the recent STRESS guidelines for specifying models. The guidelines help to 

cover everything needed for describing the second model. Then features from the 

STRESS and ODD guidelines are combined to give a slightly revised guideline with a 

defined structure. This is considered to give an improvement.  

 



II 

 

Both models have fat tails, and only the second model has volatility clustering. The 

behaviour of the second model that gives the volatility clustering is called on-off 

intermittency. This is analysed in detail to understand how the model enters and leaves 

periods of high volatility. The conclusions are that randomness causes the model to 

move into high volatility, which happens when the percentage of noise traders is high, 

and the price effect in the model soon returns the model back to low volatility. 
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Chapter 1          

Introduction 

 

Agent-based simulation, as a bottom-up method to capture phenomena with a detailed 

description and flexibility, is a widely used technique to model many systems. 

Bonabeau (2002) divides the applications into four categories: flows (e.g., evacuations 

from threats, traffic); markets (e.g., stock or options markets); organisations (e.g., 

organisational designs) and diffusion (e.g., diffusion of innovation where people are 

influenced by social connections). It can be a more natural and flexible description to 

build a model based on the behaviour of agents instead of a simple equilibrium type 

model. This also makes adding in agents or cutting out agents easy. Additionally, agent-

based simulation can represent systems with complex interactions among the agents and 

with emergent behaviour. Macal and North (2010) divide the applications into three 

categories: epidemics, markets and socio-technical systems. Macal and North (2014:6) 

explain the extent of applications as ‘ranging from modelling agent behaviour in supply 

chains and the stock market, to predicting the success of marketing campaigns and the 

spread of epidemics, to projecting the future needs of the healthcare system’. The four 

main aspects of an agent-based simulation are as follows: the agents define the set of 

agents attributes; the relationships define the set of interactions between each other; the 

environment defines the reaction to the environment; the system defines the boundary 

of inputs and outputs (Taylor, 2014). The particular interest in this thesis is the 

application of agent-based simulation in modelling financial markets.  
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Agent-based simulation is a simulation technique based on the agent. There is no agreed 

definition of an agent. One of the possible definitions is an entity that models a cognitive 

process, such as an individual’s intention and belief (Edmonds and Möhring, 2005). 

Onggo (2016) defines the agent as an independent decision making entity to achieve its 

objectives. Agents can be human or not. Bandini et al. (2020) define an agent as an 

autonomous entity, having the ability to decide the action within the environment and 

interactions among agents, according to its perceptions and internal state. Taking the 

whole economy into account, consumers, companies, regulators and governments could 

be agents. Agent-based simulation as a bottom-up method is widely used in financial 

markets. Compared to traditional equilibrium models, it is a more natural and flexible 

way to model agents’ behaviour and the complex interactions among agents (Bonabeau, 

2002).  

 

Financial markets are markets where funds are exchanged. Several common features 

are shared by different financial instruments and time scales, which are called stylised 

facts and are based on empirical studies of financial data (Cont, 2001). There are four 

main stylised facts in financial markets. Firstly, prices follow a random walk or 

martingale. Secondly, returns do not follow a Gaussian distribution: returns have a 

distribution that is sharper and narrower in the middle with fatter tails compared with 

the Gaussian distribution; this distribution feature is known as fat tails. Thirdly, returns 

are not correlated in each period. Fourthly, squared returns or absolute returns are 

correlated, which is called volatility clustering. This means, if we use the squared 

returns or absolute returns instead of real returns, big returns tend to be followed by big 

returns, and small returns tend to be followed by small returns. 
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Herding describes behaviour where groups of people keep making similar decisions. 

This may be due to some types of interactions between them or just because they are 

using similar rules to make decisions. Herding is an important behaviour identified in 

financial markets. It may be an explanation for some common features and stylised facts 

in financial markets. Unfortunately, there are no agreed explanations for these financial 

statistical features. Using agent-based simulation to study the herding behaviour in 

financial markets is a useful way to enhance the understudying of herding behaviour 

and financial markets.  

 

1.1 Research problem 

Models are built in financial markets for several purposes. The early models before 

1998 mainly aimed to investigate the out of equilibrium phenomena, like historical 

bubbles and crashes (Samanidou et al., 2007). The Kim-Markowitz (1989) model is an 

early example of agent-based modelling to reproduce the 1987 crashes from historical 

observation. The Levy- Levy- Solomon (1994) model is a simple homogenous model 

to show historical bubbles and crashes. Later models concentrate more on the statistical 

features of financial time series. The Lux (1995, 1998) models and the LeBaron et al. 

(1999) model are examples of using a model to explain the universal empirical statistical 

features, namely the stylised facts. Some models criticise the original model or the 

fundamental concepts and then modify the model. Chen and Yeh (2001) build a model 

to illustrate a school concept to fulfil the gap of strategic learning. Schools here can be 

mass media, national library, information suppliers to give a method to imitate the 

strategies while we think others’ strategy is hard to observe. Only studies about stylised 
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facts are considered in this research. Herding becomes one of the explanations for 

stylised facts such as fat tails and volatility clustering.   

 

The herding mechanism and the market mechanism are two essential components for 

herding models of financial markets. Unfortunately, there are neither general market 

mechanisms nor herding mechanisms. There are different market mechanisms such as 

excess demand (Lux and Marchesi, 1999; Alfarano et al., 2005) and order-driven 

markets (LeBaron and Yamamoto, 2007; Tedeschi et al., 2012). For the herding 

mechanism, some papers (Alfarano et al., 2005; Alfarano and Milaković, 2009; Carro 

et al., 2015) are based on Kirman’s idea of ant behaviour (1993). When facing two 

identical foods, an ant will tend to choose the option chosen previously by more ants. 

The herding factor in these models is based on a discrete choice using a probability 

factor which usually affects the transition probability of two groups, such as pessimistic 

and optimistic traders. Some papers (Lux, 1995; Lux, 1998; Lux and Marchesi, 1999) 

describe a herding factor with a continuous time discrete model which is also similar to 

Kirman’s idea but with different probability formulae. Unlike Kirman’s switching type 

model, there are several models mainly based on social imitation. The type of the agents 

in these models does not change, and the herding effect is modelled through impacting 

the agent’s decisions. The imitation rules in these models vary: the agents in spin models 

(Chowdhury and Stauffer, 1999; Bornholdt, 2001; Kaizoji et al., 2002) imitate their 

nearest neighbours; the agents in other models (Markose et al., 2004; Mauri and 

Tettamanzi, 2012; Tedeschi et al., 2012; Yang et al., 2012; Kaizoji et al., 2015) are 

influenced by other agents such as the opinions of majorities or successful agents 

(“gurus”); some autonomous models (Chen and Yeh, 1999; LeBaron and Yamamoto, 
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2007; Yamamoto, 2011) set the herding mechanism through a genetic algorithm or 

genetic programming learning; other models divide the agents into different groups with 

different sizes to replicate the herding by clustering (Chen et al., 2013; Manahov and 

Hudson, 2013; Lee and Lee, 2015). The literature on this topic is discussed further in 

Chapter 2. 

 

1.2 Research questions and overview 

In order to study the herding behaviour in financial markets, replication is chosen as the 

research method where an attempt is made to replicate (or reproduce) a model from a 

previous journal paper. In this context, replicating and reproducing a model are 

considered to mean the same thing and are used inter-changeable. Replicating involves 

repeating the research as described in an existing paper. If replicating yields the same 

or similar results, the replicability or reproducibility of the original paper is proved. 

Replicating, as a cornerstone of the scientific method, has arisen as an issue in many 

disciplines, including business and social science. Replication studies in business 

journals are as low as 10% or less of that research, and most of them do not have similar 

results as the original ones (Hubbard and Vetter, 1996). For example, one famous paper 

in economics written by Rogoff and Reinhart (2010) has several errors in data analysis 

which can be considered to lead to an inappropriate conclusion (Herndon et al., 2014). 

The result concluded by Rogoff and Reinhart (2010) influenced government policy at 

that period to some extent. A paper by the Open Science Collaboration (2015) finds that 

only 39% of 100 experiments in psychology are reproducible. Also, in biomedical 

science, a low rate of reproducible studies is found and some of them have secondary 
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studies that are based on the original unrepeatable results (Begley and Ellis, 2012). In 

addition, there are replicating issues in forecasting and social science.  

 

The detailed reason for choosing replication as the method will be discussed in Chapter 

3. Inspired by the different agent-based simulation models of herding in financial 

markets and replication issues in many areas, this research focuses on understanding the 

herding on the one hand and the replication process on the other hand. The general aims 

are to investigate whether the chosen models can be replicated and whether the herding 

structure of the models gives similar types of behaviour to that observed in financial 

markets. This leads to my two main research questions: 

i. How and to what extent can herding produce the stylised facts observed in financial 

markets? 

ii. To what extent can previous modelling results be reproduced, and how can 

reproducibility in simulation modelling be improved? 

 

The remainder of the thesis structure is as follows. Chapter 2 reviews the literature in 

three aspects: agent-based simulation, financial markets and herding. Chapter 3 

demonstrates the replicating issues in each area, problems of replicating and the way to 

improve the replicating, guidelines for simulation and why replicating is chosen as my 

research method. Chapter 4 analyses the first replicating model based on Tedeschi et al. 

(2012), along with further experiments. Chapter 5 analyses the second replicating model 

based on Lux and Marchesi (2000), especially understanding the model’s on-off 

intermittency behaviour. The STRESS (Monks et al., 2019) model specification 
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guidelines (discussed in Chapter 3) are applied in the description of the model in 

Chapter 5. Chapter 6 discusses the evaluation of the STRESS guidelines and 

suggestions for improvements, the replicating issues found in my replicating experience, 

and the similarities and differences between the two replicating model results and the 

implications for understanding herding in financial markets. Chapter 7 summarises all 

the contributions related to the research questions and suggests future work. All the 

symbols are in italics.  

 

In terms of the research questions, the question on replicating is addressed by describing 

the models (Sections 4.1 and 5.1 - 5.3) and by the results of experiments to replicate the 

results in the original papers (Sections 4.2 and 5.4). The implications and suggestions 

for improving replicability are discussed in Sections 6.1 and 6.2. 

 

For the question on herding the model descriptions are also relevant to understand the 

structure of the models. The results from reproducing the original studies also help with 

understanding the model behaviour. However, the main work on this is the 

developments of the models and the additional experiments in Sections 4.3 and 5.5. The 

discussion on this topic is in Section 6.3. 
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Chapter 2                     

Literature Review 

 

This chapter introduces the literature for agent-based simulation of financial markets. 

The different models are explained with the main types being N-type models and 

autonomous models (Section 2.1). Then, stylised facts in financial markets are 

introduced and analysed from evidence in empirical data and theoretical studies 

(Section 2.2). Finally, herding models and results are compared in terms of the types of 

agents, assets, herding mechanism, price mechanism, and the nature of the results 

(Section 2.3). 

 

2.1 Agent-based simulation of financial markets 

The agent is an essential concept in the agent-based simulation field. The agent is a 

cognitive process involving an entity (Edmonds and Möhring, 2005). For the financial 

markets, most agent-based models define the agent by the belief of investors. 

Fundamentalists and chartists are two main agents used in financial market modelling. 

Fundamentalists have the perspective that ‘the price of an asset is determined solely by 

its efficient market hypothesis (EMH) fundamental value, as given by the present 

discounted value of the stream of future dividends and chartists believe the price is 

‘predicted by simple technical trading rules, extrapolation of trends and other patterns 

observed in past prices’ (Brock and Hommes, 1998:1235). The fundamentalist plays a 

stabilising force while the chartist plays a destabilising role in the financial markets 
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(Chen et al., 2012). The fundamentalist thinks the misprice will soon correct to its 

fundamental value, but the chartist thinks the misprice trend will not disappear in the 

short run. Therefore, different strategies will be adopted by fundamentalists and 

chartists. In the market, fundamentalists sell the asset when the price is higher than the 

fundamental value as they believe the price will decrease to its fundamental value and 

vice versa. The chartist will buy the asset as they think the price will increase 

continuously even when the price is higher than the fundamental value and vice versa.  

 

There are different approaches in the modelling of agent-based financial markets, from 

the fundamentalist-chartist model (Kirman 1991, 1993), which mainly focuses on 

switching mechanisms between the two types of agent, to the Santa Fe artificial market 

(SFI market) (Arthur et al., 1996) which uses the genetic algorithms to model learning 

and adaption. In models with several different types of agents (“N-type models”), agents 

can only choose the pre-decided types and rules but can change between the different 

types. The SFI market is an example of autonomous agents (Chen et al., 2012). The 

agent in this kind of modelling type has more autonomy and flexibility. For autonomous 

models, agents use the trading belief that is not pre-decided from past experience and 

can change while the trading takes place (Chen et al., 2012). The main difference 

between N-type models and autonomous models is the learning process. Learning in N-

type models is the same in one group. Different behaviours for homogenous agents are 

usually caused by randomness. While learning in autonomous models is heterogeneous. 

Individuals have their self-learning mainly through a genetic algorithm or genetic 

programming. The following Section 2.1.1 and 2.1.2 include more information on the 

N-type models and autonomous models. Section 2.2 looks at stylised facts and then 

Section 2.3 covers more details on herding mechanisms. 
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2.1.1 N-type model 

The N-type model is a series type of model which defines the agents with their belief. 

N in the N-type model stands for the number of types of agents. For the N-type models, 

they differ from only one type of agent to numerous types of agents who have 

heterogeneous beliefs. The simplest one is with just one type of agent who follows the 

same rules, for example, Yang et al. (2012)’s model. 

 

Gode and Sunder (1993) build a model with two types of agents who are human traders 

and zero intelligence machine traders. They find human traders converge to the 

equilibrium, but the computer traders are volatile. The Lux (1995) model focuses on 

using a fixed number of traders who are optimistic or pessimistic speculators. It is a 

model to reveal herding behaviour and contagion between the two types of agents and 

the paper finds that this herding model can explain both excess volatility and mean 

reversion. 

 

Then Lux (1998) builds a three-type agent model developed from the model built in 

1995. In this model, the objective is focused on the social and economic interactions 

among fundamentalists, optimistic chartists, and pessimistic chartists in the foreign 

exchange or the securities market. Bubbles and crashes, fat tails, and aggregation 

gaussianity are found in this particular modelling. Kaizoji (2004) adds noise traders 

with fundamentalists and chartists, and Sansone and Garofalo (2007) add contrarian 

traders. Kaizoji (2004) is not in agreement with Brock and Hommes (1998), who 

categorise the noise trader as the same as the chartist mentioned before. The noise 

traders differ from chartists as the noise traders will buy when they believe the noise 

news will be good, while chartists will buy when the anticipated price of the stock is 
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positive. The noise trader is focused on the noisy information, but the chartist is based 

on their future expectation of the asset price. In the Sansone and Garofalo (2007) model, 

the contrarian trader performs opposite to the chartist. The chartist will buy when they 

believe that the price will increase while contrarian traders will sell the stock. Therefore, 

the chartist performs like the trend chaser while the contrarian performs likes the 

opposite one.  

 

Brock and Hommes (1998) build an adaptive belief systems model. This model involves 

heterogeneous beliefs that are more complex than the two and three type model. The 

most important part of the Brock and Hommes model is the idea of all beliefs. It 

generates all beliefs in one deterministic function 𝐹ℎ𝑡 = 𝑔ℎ ∗ 𝑥𝑡−1 + 𝑏ℎ where 𝑔ℎ and 

𝑏ℎ  represent the trend and bias respectively, while 𝑥𝑡−1 =   𝑝𝑡 − 𝑝𝑡
⋆  where pt means 

price and 𝑝𝑡
⋆ means the fundamental value at time t. When 𝑏ℎ = 0, g > 0 the 𝐹ℎ𝑡 is the 

belief of the pure trend chaser (strong trend chaser when g > R gross return) and when 

𝑏ℎ = 0, g < 0 the 𝐹ℎ𝑡 is the contrarian trader (strong contrarian when g < - R). The trend 

chaser believes that the price will increase when the positive trend is observed, while 

the contrarian believes that the price will decrease when there is a positive trend. If g = 

0, the model is purely biased with no trend, 𝑏ℎ  > 0 is upward noise and 𝑏ℎ  < 0 is 

downward noise and 𝑏ℎ = 0 is the fundamentalist. The fundamentalist has a belief in 

the fundamental value and believes that 𝐹ℎ𝑡  equals zero, which is the intrinsic value. As 

a result, the price is always equal to its intrinsic value. Pure bias investors have a belief 

in the increase in price when the bias is positive. This model finds that the deviation 

from the fundamental price will be persistent when the intensity of choice to switch 

prediction becomes high.  
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2.1.2 Autonomous model 

Lettau (1997) uses a genetic algorithm (GA) to explain portfolio changes to help decide 

how much of a risky asset to purchase. A single asset is taken into consideration in this 

model. Investors are trying to maximise their utility function with genetic algorithm 

learning. The genetic algorithm involves new rule generation and testing for learning 

evolution (LeBaron, 2001a). It is a biologically inspired learning method developed by 

Holland (1975) (LeBaron, 2000). The genetic algorithm treats the learning of the 

investors by replacing the worst with the best and adding new rules through mutation 

and crossover (LeBaron, 2000). For replacing the bad rule, mutation, new weight and 

crossover are chosen equally. The new weight is ‘Choose one rule from the parent set 

and choose one weight at random and replace it with a new value chosen uniformly’ 

and the mutation is ‘Choose one rule from the parent set and add a uniform random 

variable to one of the network weights’ (LeBaron, 2001a:233). The crossover takes two 

parents with good rules and chops off a branch of rules from each other and then 

switches (LeBaron, 2001a). 

 

Arifovic (1996) studies the economy in Kareken-Wallace (1981) with two currencies. 

Heterogeneous agents learn by genetic algorithm. Arifovic (1996) finds that the 

exchange rate fluctuates a lot without equilibrium, but the first period of consumption 

come to a stable equilibrium.  

 

In many models mentioned later, a utility function is used. The general background of 

the utility function and its risk attitudes are introduced here. The utility theory is a study 

of people’s preferences with respect to the risk attitude. Risk attitude is usually divided 

into three categories: risk aversion, risk neutral and risk lover. These three attitudes 
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describe different preferences when comparing certainty and uncertainty. Suppose 

people are faced with the same two expected value payoffs. For example, one will get 

five pounds in certain, and the other will get ten pounds or nothing with equal 

probability. If people prefer the certain payoff with five pounds, their risk attitude is risk 

averse; if people think the two payoffs are the same, their risk attitude is risk neutral; if 

people prefer the uncertain payoff with ten pounds or zero, their risk attitude is risk 

lover. The utility represents people’s risk attitude through the utility function. For risk 

aversion preference, the utility function will be concave; for risk neutral preference, the 

utility function will be linear; for risk lover preference, the utility function will be 

convex. The concavity of the utility function is used to measure risk aversion. The utility 

function is divided into absolute risk aversion (CARA) and relative risk aversion 

(CRRA). The difference between the CARA and CRRA is the variability for the 

concavity of the utility. For absolute risk aversion, the concavity of the utility stays 

unchanged no matter how consumption varies. While for relative risk aversion, the 

concavity of the utility will change when consumption varies. The preference may even 

change from risk lover to risk averse as consumption varies.  

 

Arthur et al. (1996) build an important model that introduces the SFI model as 

mentioned before. This model uses the constant absolute risk aversion utility function 

(CARA), which produces smooth consumption over time. The CARA preference makes 

the risky assets demand of investors not influenced by the income change or, in other 

words, the wealth change (Chen et al., 2012). The model suggests the rational 

equilibrium exists when the rational expectation regime is applied, while the crash and 

bubbles exist when a complex regime is studied. The regime is the different market 

behaviour. LeBaron et al. (1999) use the CARA risk preference for investors. The 
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absence of autocorrelations, fat tails, long memory of volume, volatility clustering, and 

volatility volume correlation are reproduced in this time series model. LeBaron (2001a) 

builds a model that instead of using the CARA as before, uses the CRRA risk preference. 

Agents have a different time horizon. The time horizon defines how far back in the past 

to estimate the future performance of a certain asset. The CRRA is the constant relative 

risk aversion which describes the demand for a certain investor in a positive linear 

relationship with the wealth the investor gets (Chen et al., 2012).  

 

Chen and Yeh’s model (2001) build a model with a school to produce the fat-tail stylised 

fact. The concept of school was aiming to solve the criticism of copying the action or 

strategy from others. The action copying is not so important as the strategy coping 

because investors usually learn strategy. Hence, it makes the strategy of coping essential. 

Unfortunately, the financial strategy of others is not easy to imitate. Therefore, school, 

which can be the national library, information suppliers makes the strategy imitation 

possible. Then the asset price modelling with utility maximisation is built in 

heterogeneous agents. Although some people claim the artificial market is efficient, it 

is interesting that traders behaviourally reject the efficient market hypothesis as the 

strategies are working in this model.  

 

2.2 Stylised facts 

The financial markets are modelled by classifying the pattern of traders with a particular 

strategy. Millions of trades take place in one day in certain financial markets like the 

London Stock Exchange. It is not possible to identify the patterns of each trader, and it 

is not even possible to track the behaviour of a trader. This makes it difficult to build a 
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model to reproduce the activity in financial markets. Therefore, some researchers focus 

on the psychology of investors and categorise investors into different groups. The 

uncertainty of model inputs makes output checking vital. As the price of the financial 

markets is unpredictable, the specific output comparison is not appropriate. The study 

of stylised facts helps us to identify the statistical features of the data from financial 

markets, thus making the output comparison work. As a result, understanding stylised 

facts will help the model building and output checking. Therefore, this section looks at 

stylised facts empirically and theoretically.  

 

There are several stylised facts divided into the high and low frequency data. High 

frequency data are intraday data from the financial markets, while low frequency data 

are daily, monthly, quarterly data, and so on. Based on the stylised facts reviewed in 

Chen et al. (2012), the stylised facts in the agent-based modelling are usually assumed 

by day. Thus, the stylised facts found in low frequency data are mainly those under 

consideration. The three well-known stylised facts are non-Gaussianity of the return 

distribution; the return of today and the subsequent return correlation is almost zero; the 

transformations of returns like an absolute return or squared returns are positively 

correlated in each period (Taylor, 2005). In the following sections, firstly, the general 

issues for stylised facts are discussed. Secondly, empirical evidence for stylised facts is 

established. Thirdly, theoretical evidence providing possible explanations for certain 

stylised facts on returns is revealed in detail. 

 

2.2.1 General background 

In the financial markets, prices are usually treated as a random walk. The efficient 

market hypothesis points out that available information is incorporated in price instantly, 
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not only the historical price information but also the public and private information 

(Fama, 1991). Therefore, only the new information can influence the price, and the price 

is not predictable as the new information is not known. Stylised facts of the time series 

describe the statistical features of the financial markets. On the surface, stylised facts 

are against the unpredictable financial markets argument as they reveal some statistical 

regularity of the price returns or the trading volumes. The regularity of returns and 

trading volumes, to some extent, can help to predict the future price. In fact, the stylised 

facts are the features of the financial time series, in the long run, sometimes more than 

half a century. Stylised facts are defined as ‘the seemingly random variations of asset 

prices do share some quite nontrivial statistical properties. Such properties, common 

across a wide range of instruments, markets and time periods are called stylised 

empirical facts.’ (Cont, 2001:224). So, it is not against the existing financial theory. The 

methods used in the empirical statistical facts are usually the non-parametric method 

and semi-parametric (Cont, 2001). The non-parametric method, a model free method, 

focuses on the patterns and features of the data itself. As the non-parametric method is 

qualitative for describing the statistic, the semi-parametric method adds the quantitative 

value to describe the property precisely, for example, the scale of the property.  

 

2.2.2 Empirical studies 

Only the main stylised facts are discussed in this section. The stylised facts discussed 

below have lots of empirical and theoretical studies.  
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2.2.2.1 Returns 

2.2.2.1.1 Absence of autocorrelation 

Cont (2001) finds after the testing of linear autocorrelations of asset logarithm returns 

for each period, the autocorrelations are insignificant. The small intraday time scale for 

less than 20 minutes is not included. The return from time t to T is defined as (Cont, 

2001): 

(2.1)  𝑟 (𝑡, 𝑇) = 𝑋 (𝑡 + 𝑇) − 𝑋(𝑡)   

(2.2)  X(t) = ln 𝑆(𝑡)   

where 𝑆(𝑡) is the price of a financial asset at time t. 

 

The autocorrelation function is based on the log return on stock price (equation (2.1) 

and (2.2)):  

(2.3)  𝐶(𝜏)  =  𝑐𝑜𝑟𝑟 (𝑟(𝑡, 𝑇), 𝑟(𝑡 + 𝜏, 𝑇))    

In equation (2.3), the Greek letter 𝜏 is the time lag. The letter 𝜏 is the multiple of the T 

typically, 𝑐𝑜𝑟𝑟 stands for correlation. Malkiel and Fama (1970) examine the 30 stocks 

in Dow Jones Industries Average from 1957 to 1962 for every one, four, nine and sixteen 

days. The log of stock price returns from the market data does not show any evidence 

for linear autocorrelations. The absence of linear autocorrelations for log returns 

indicates a further study scope in the non-linear autocorrelations for log returns. 

However, the absence of linear autocorrelations does not hold for transformation returns 

of an asset like the absolute return or square return of the stock price, which are defined 

(Cont, 2001): 

(2.4)  Absolute return 𝐶0(𝜏)  =  𝑐𝑜𝑟𝑟 ( |𝑟(𝑡 + 𝜏, 𝑇)|, |𝑟(𝑡, 𝑇)|)   

(2.5)  Square return 𝐶2(𝜏)  =  𝑐𝑜𝑟𝑟 ( |𝑟(𝑡 + 𝜏, 𝑇)|2, |𝑟(𝑡, 𝑇)|2  )   
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The stylised facts related to the absolute or square return will be illustrated in Section 

2.2.2.2. 

2.2.2.1.2 Bubbles and Crashes 

An operational definition of the bubble ‘is based on whether the future realised returns 

of the asset justifies the original price over a time period long enough so that the present 

value of cash flows received by investors during this periods constitutes at least one-

half of that price’ (Siegel, 2003: 13-14). Rosser (1997) states the existence of bubbles 

that fundamentally reflect irrational behaviour. Bubbles can be negative or positive as 

the return is below or above the fundamental value. Crashes often happen with the 

positive bubble and the price crashes to its fundamental value suddenly, and investors 

receive a diametrical loss in returns. When crashes happen, the existence of bubbles can 

be proved because crashes follow bubbles. Bubbles and crashes happen across time 

series and countries. The historical examples of crashes are the 1929 Roaring Twenties, 

1634 Dutch tulip mania, 1719 Mississippi Bubble, 1720 South Sea Bubble, March 2000 

internet share prices (Brunnermeier, 2008). The Roaring Twenties 1929 bubble was also 

called the Wall Street bubble in America. The roaring twenties describe life before the 

crash. People were interested in the stock market and bought stock with their borrowed 

money (Rosenberg, 2012). Thus bubbles emerged in the market and it crashed in 1929. 

This great crash caused economic depression, impacting not only America but also other 

countries. The 1634 - 1637 Dutch tulip mania, 1719 - 1720 Mississippi Bubble, and the 

1720 South Sea Bubble are three important bubble events in Europe. Dutch tulip mania 

is the earliest famous bubble event caused by the Dutch tulip. In the sixteenth century, 

the tulip entered Western Europe and was priced above all flowers. Then the price of 
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tulip reduced rapidly and affected the Dutch economy (Van Der Veen, 2012). The 

Mississippi Bubble was caused by a French company undertook by John Law. It was a 

company involved in some financial activity like floating shares. Then the investors lost 

confidence in the company, and the firm’s value was reduced dramatically (Velde, 2009). 

The South Sea bubble came from the South Sea company, which was granted a 

monopoly of trade with South American (Carswell, 1960). Then the share price reduced 

heavily, and the bubble crashed. The 2000 internet example was about speculative 

activity in the stock market related to the internet, then the price of such companies 

became much higher than expected (Demers and Lev, 2001). In 2000, the internet 

companies shares crashed. 

 

2.2.2.1.3 Equity Puzzle 

The average returns of stocks and treasury bills are remarkably different over a century 

in the US markets (Kocherlakota, 1996). The difference between the return of stocks 

and treasury bills, which is the equity premium, is as high as 6.9 %, while the return of 

treasure bills is only 1% for over 110 years from 1889 to 2000 (Mehra, 2003). However, 

the equity premium is much less if the duration of years is expanded to 200 years from 

1802 to 1998 with 4.1% (Siegel and Coxe, 2002). This phenomenon is not only in the 

United States but also in countries like the United Kingdom, France, and Japan (Mehra, 

2003). Since the Second World War, the premium of equity is 4.6% over the 1.1% risk 

free rate in the UK stock market. Treasury bills are usually treated as the risk free rate 

as the default risk for such bills is very small. The equity puzzle for these statistical 

features is on two sides: the low risk free rate and the high risk premium. The low risk 

free rate can be explained by several models like the generalised expected utility model, 

while the high equity premium is still a puzzle (Kocherlakota, 1996).  
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2.2.2.1.4 Fat tails 

The unconditional return usually has a positive excess kurtosis distribution (Cont, 2007). 

Ane and Geman (1999) model the returns without any conditions as: 

(2.6)  𝐹𝑇(𝜇) = 𝑃(𝑟 (𝑡, 𝑇) ≤ 𝜇)   

 

P in equation (2.6) represents the probability function. Therefore, 𝐹𝑇(𝜇) is a cumulative 

probability when r (t, T) is less or equal to 𝜇. The kurtosis represents the deviation from 

the defined distribution 𝐹𝑇  to the normal distribution. The kurtosis 𝜅  is defined as 𝜅 

(Arnoedo et al., 1998):  

(2.7)  𝜅 =
(𝑟 (𝑡,𝑇)− 𝑟 (𝑡,𝑇))4

𝜎(𝑇)4 − 3   

 

In the two equations above, 𝜎(𝑇) is the standard deviation of the log returns 𝑟 (𝑡, 𝑇) in 

equation (2.1) where 𝑋(𝑡) = 𝑙𝑛 𝑆(𝑡) which is the logarithm of a certain stock price. For 

kurtosis, if 𝜅 = 0, a normal distribution will be observed. When κ is a positive value, a 

distribution with fat tails will be produced. In the asset markets, positive values for 

assets are observed in many financial markets. The stock prices in various markets are 

non – Gaussian distributed where the kurtosis value is not zero: for US dollars / 

Deutsche Mark exchange rate futures, US dollars / Swiss Franc exchange rate futures, 

Standard & Poor’s 500 index futures, the kurtosis values are about 74, 60, 16 

respectively when the time interval is equal to five minutes (Campbell et al., 1997; Cont 

et al., 1997; Pagan, 1996). This empirical data provides a persuadable fat tail for 

intraday data, but low frequency data still holds this property (Cont, 2001). Müller et al. 

(1998) show the existent of fat tails in the daily foreign exchange markets daily. In 

recent academic literature the interpretation of kurtosis is disputed. Westfall (2014) 
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argues that kurtosis only reflects the nature of the tails of the distribution and not the 

peak, but Crack (2019) disagrees with this. As the value of kurtosis varies from market 

to market, the exact distribution which can reproduce the observed property is difficult 

to decide. Literature tries to propose lots of models with several parameters to match 

the property for the statistical findings of fat tail returns, for example, exponentially 

truncated stable distributions (Barndorff‐Nielsen, 1997). Four parameters are needed to 

make the fat tails ‘a location parameter, a scale (volatility) parameter, a parameter 

describing the decay of the tails, and eventually, an asymmetry parameter allowing the 

left and right tails to have different behaviours’ (Cont, 2001: 226). The residual returns 

after volatility clustering correction may through generalised autoregressive conditional 

heteroskedasticity (GARCH) models, still have fat tails. This is treated as a conditional 

fat tail stylised fact where the tails are not the same heavy as the unconditional one 

(Cont, 2001). Volatility clustering will be introduced in Section 2.2.2.2.2. 

 

2.2.2.2 Transformation of returns 

2.2.2.2.1 Power law of returns 

Power law behaviour is observed in returns. With the help of equation (2.1) and (2.2), 

the probability for an absolute return greater than a certain number of 𝑥 is (Gabaix et 

al., 2003): 

(2.8)  𝑃(|𝑟 (𝑡, 𝑇)| > 𝑥)   

 

There is evidence showing that the data for the probability in (2.8) follows the power 

law distribution with an exponent of about 3 (the function of power law distribution: 

𝑥−3 ). Therefore, this is also known as the inverse cubic law. This phenomenon is 

observed in a variety of markets and even consistent with the 1929 to 1987 market 
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crashes data (Gabaix et al., 2003). This demonstrates the universal statistical property 

for the power law behaviour of returns. Thirty German stocks in the Deutscher Aktien 

Index for a six-year period from 1988 to 1994 are analysed, and the probability of 

absolute return data follows the inverse cubic law (Lux, 1996). Gopikrishnan et al. 

(1999) take an observation in Standard & Poor’s 500 indexes. Power law behaviour of 

returns lasts for 8686 daily data from 1962 to 1996 and 852 monthly data from 1926 

to1996 separately.  

 

2.2.2.2.2 Volatility clustering (power law of volatility) 

Taylor (2005) reviews one year data for the Standard & Poor’s 500 index and finds the 

speed of price movements varying in one year. When there is less information, the prices 

move slower than when there are more trading and information. The speed in some 

months is faster than in other months. The rate of price change is defined as volatility, 

typically the standard deviation of stock price returns.  

 

The autocorrelation function of absolute returns is positive over several weeks and 

reaches zero slowly in the SLM stock (Cont, 2007). This indicates that the absolute 

return of a certain asset is dependent and usually follows a pattern where the big returns 

tend to be followed by big returns and small returns tend to be followed by small returns. 

The dependency of the absolute return is questionable on whether it is a long range 

dependency or a short range dependency. Long range dependency describes the 

decrease of the autocorrelation function as a power law of 𝜏 which is the time lag. While 

short range dependency describes a geometric decay of the autocorrelation function 

(Cont, 2007). Several papers study autocorrelation and provide evidence for power law 

behaviour of returns. For example, Cont (2001) demonstrates that the autocorrelation 
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function of absolute returns decreases slowly as a power law distribution with exponent 

approximately ranging from 0.2 to 0.4.  

 

2.2.3 Theoretical Studies 

The theoretical support for those stylised facts discussed in Section 2.2.2 is explained. 

The explanation for the equity puzzle is excluded because it is not so relevant to agent-

based simulation modelling. Theoretical evidence related to stylised facts is mainly 

focused on non-herding models. The herding models provide another explanation of 

how the facts can emerge and are discussed in Section 2.3. 

 

2.2.3.1 Absence of autocorrelation 

There is not much literature that discusses the absence of autocorrelations. This may be 

because it is easy to understand and fulfils the basics of financial markets. On the one 

hand, Fama’s (1991) efficient hypothesis thinks the market incorporates the new 

information instantaneously. Any irrational behaviour can be detected by arbitragers 

who eliminate the under or over the value of the price. As the information is 

unpredictable, therefore, the market price is fluctuating randomly. On the other hand, if 

the market has a strong correlation of price movement, the pattern of price and expected 

return can be predicted. Therefore, it will be the right strategy to follow the 

autocorrelations to earn a positive profit (Cont, 2001). Then the autocorrelation will be 

reduced as these strategies are used. Then patterns or excess profits pull the price back 

to random. Thus the price patterns and the autocorrelation of price are eliminated. In a 

very short time, this inefficiency may emerge, but a simple strategy that follows the 

pattern can earn a profit so that the pattern disappears through trading. Typically, the 

correlation time is short for futures markets. The foreign exchange market has an even 
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shorter time (Cont, 2001).  

 

2.2.3.2 Bubbles and Crashes 

Bubbles usually occur by four categories of reasons: rational or near rational bubbles, 

where bubbles are built on the speculators’ rational expectation for future asset return 

or behavioural factors like overconfidence; intrinsic bubbles where bubbles are built on 

overreaction to news; fads where bubbles are built on social interactions like media 

amplification and social networks; informational bubbles where bubbles are built on 

information cascades which the investors are faced with (Montier, 2003). The 

information bubble states a situation where people have information without 

aggregation. Thus, there is a trade-off between their own judgment on the basis of their 

own signal and following the other traders. These four factors all make the misprice 

emerge. 

 

On the other hand, the persistence of bubbles is caused by limits to arbitrage. In an 

efficient market, mispricing will be eliminated by arbitragers. The persistence of 

mispricing is due to arbitrage limitations. An arbitrager is different from the speculators 

who take a guess of future expectations and make gains through hopefully buying low 

and selling high. The arbitrager examines the price in different markets to seek the 

mispricing and believes the mispricing will converge to its fundamental value. Gromb 

and Vayanos (2010) identify the fundamental risk which arbitragers may bear in the 

financial markets. As the arbitragers make a profit by finding the mispricing in the 

market, the existence of substitutes can make this possible. The perfect substitutes are 

like a benchmark for a particular asset that makes the justification on price from 

arbitrage realistic. In other words, if there is no substitute, the arbitragers will bear the 
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risk of making mistakes on the price justification and may take the wrong position, like 

becoming a seller rather than a buyer. Also, the short selling cost may limit arbitrage 

(Gromb and Vayanos, 2010). In some countries, there is a limit for selling a financial 

asset in the market to protect the big jump of a certain asset price. When arbitragers 

need to sell a certain asset suddenly to generate profit, the short selling cost makes this 

strategy not possible. Abreu and Brunnermeier (2002) introduce a synchronisation risk 

that arbitragers may be faced with. When arbitragers plan to beat the misprice, they 

should all do this together at the same time so that the over or under price can be sent 

back to its fundamental price. The question is, as an arbitrager individually, you may 

not be able to identify other strategies or actions. Thus, this factor makes arbitrage 

difficult and limits the profit for an arbitrage opportunity. 

 

DeLong et al. (1990) demonstrate that the fear of loss by investors produced by the 

noise traders will limit the arbitrage. It is a model to prove the existence of noise traders. 

It has two types of traders: a noise trader and an informed trader. Two assets are trading: 

a safe asset with a certain dividend at 1; a risky asset with a certain dividend but in 

perfectly inelastic supply. With the help of the expected utility based on the negative 

exponential CARA utility, the utility function for an informed trader and noise trader 

can be found. Then the maximum point for the utility of each trader’s demand can be 

different. The proportion of noise traders and informed traders multiply their demand 

separately. Then the expected price can be expressed in terms of the true value, 

discounted noise trader mispricing and the present value of misevaluation with its 

proportion and risk adjustment. The price equation demonstrates the relationship 

between the expected price and the noise trader risk. Also, the demand of the informed 

trader and the noise trader with the different returns between these two types can 
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produce an expected difference formula, which proves the existence of a noise trader as 

the expected difference can be positive. The influence caused by the noise traders on 

the expected price will limit the arbitrage position. Noise traders’ misevaluation is 

unpredictable and also persistent. The informed trader may not be able to go against the 

misprice heavily as the price may not go back to its fundamentals in the short run. But 

this model just takes into account the systematic risk, not the idiosyncratic risk and the 

constant utility function, instead of the relative utility function.  

 

Furthermore, the hedge fund managers may find the predictable price through the 

investors’ sentiment may make trading on the mispricing less attractive than free riding 

the bubbles (Brunnermeier and Nagel, 2004). This paper observed the hedge fund 

performance for 71 hedge fund manager’s records for a two-year period from 1998 to 

2000. The analysis suggests managers ride bubbles instead of taking an arbitrage 

strategy. This can be explained on two sides. There is an opportunity cost of the arbitrage 

strategy, which is the amount forgone for this certain activity. Also, the factors discussed 

above related to limits to arbitrage constrain the arbitrage action further. The predictable 

sentiment can make the riding bubble strategy more profitable compared to the arbitrage 

strategy. Riding the bubble can earn more money than doing arbitrage as they can 

predict the future price through the investor sentiment and sell or buy the financial asset 

before goes back to the fundamental value. 

 

2.2.3.3 Fat tails 

Evolution and heterogeneous arrival rates of information are two factors generating the 

fat tails that will be introduced in 2.2.3.5. Also, herding models in Section 2.3, for 

example, the Kaizoji et al. (2002) model, generate fat tails.  
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Thurner et al. (2012) establish a model with leverage that causes fat tails and the 

volatility clustering effect. In this model, the leveraged asset with a margin call is 

considered. The margin call is a security for the creditors who lend money to firms to 

reduce the default risk. As we all know, if the firm is not in good condition, the money 

they borrowed from creditors may not be returned in full value. When the firm faces a 

bankruptcy risk, its assets are depreciated. Thus, they do not have enough money to pay 

back to the creditors. If the creditors cannot collect enough money from the firms who 

borrowed money for them, the creditors may fall as well. A margin call is a way to 

protect the creditors in a certain way. As the leverage contract is settled, the leverage 

ratio will be decided. The leverage ratio represents the level of loan in a certain project, 

investment, or total firm value. The more the loan’s value, the higher the leverage ratio, 

and thus, the more cash down payment. ‘A buyer at his threshold of x times leveraged 

loses x% of his investment for every 1% drops in the asset price, and on top of that will 

have to come up with $(x - 1)/ x of new cash for every $1 drops in the price of the asset’ 

(Thurner et al., 2012:02). The fall in asset price to margin call transfers the buyer to the 

seller as a non-linear dynamic. In this model, investors have a trade-off of a single asset 

and cash. The noise trader trades randomly to make the price mean-revert to its 

fundamental value V. The funds will enter the market when the price is undervalued 

compared to V. The funds borrow money from creditors at zero fixed rate and treats the 

asset as collateral. All traders in the market are so small that they cannot influence the 

market price. There are two demanders: one is a noise trader and the other is the fund. 

The demand equation for the noise trader and the fund is defined. The wealth dynamic 

is based on the relationship between the price and demand dynamic. The result increases 

the leverage ratio x with consideration of margin call from 1 to 10, when x = 1, there is 

no leverage. The negative return generates fat tails and the majority of returns are in the 
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centre. Thus, the leverage effect explains fat tails to some extent. 

 

2.2.3.4 Power law of returns 

LeBaron (2001c) introduces a stochastic volatility model and as a result, it produces 

power law behaviour. 

 

Lux (2006) demonstrated a model with a speculative bubble. The speculative bubble is 

based on rational expectations. Therefore, the price today (t) is defined as the 

expectation of the dividend tomorrow (t + 1) on the condition of today’s information (t) 

plus the price for tomorrow (t + 1) divided by the appropriate discount factor. The 

equation for a price today is based on the price tomorrow and can be extended to time 

t+2, t+3. Thus the fundamental value of the asset is the expected value of all future 

dividends on the condition of today’s information with an appropriate discount factor. 

This price relationship is based on the traditional view of efficient markets. This model 

takes the speculative activity into account, so the price will be no longer at its 

fundamental value but the fundamental value plus the bubble component. The bubble 

component is defined as  

𝐵𝑡 = 𝑎𝑡 ∗ 𝐵𝑡−1 + 𝜀𝑡   (9) 

 

The 𝜀𝑡 is a noise term as the bubble prediction from the last period may have some error. 

‘The equation, with 𝑎𝑡 belongs to A = {𝑎1,𝑎2, …, 𝑎𝑛} occurring with probabilities 𝜋1 

𝜋2,…𝜋𝑛 and 𝜀𝑡 IID (identically and independently distributed) with the mean of zero. 

The only additional restriction which the 𝑎𝑖 have to meet the condition that E[𝑎𝑡] is the 

sum total from i to t, 𝜋𝑖 * 𝑎𝑖 = 1 / δ, where δ is the discounted factor’ (Lux, 2006: 10). 

As a result, for certain parameter settings for 𝑎𝑡, the speculative model with rational 
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expectations can generate power law behaviour in a certain way. 

 

Also, there are some multi agent models that found the existence of the power law 

behaviour of return in their model, for example, the LeBaron et al. (1999) model.  

 

2.2.3.5 Volatility clustering (power law of volatility) 

As volatility clustering describes the correlation between the volatility, it is not easy to 

provide explanations that can cause the clustering in a straightforward way. Thus, the 

researchers try to build a model and add the explanation component to reproduce the 

volatility. Cont et al. (2004) establish a simple model to find the explanation for 

volatility clustering. This model has a market with a single asset traded by N agents, 

which is typically large (N = 1000, 1500) at time t = 0, 1, 2, … The time can be defined 

as minutes, hours, and days. In this case, the time is days. Each day, the agent can either 

trade through buying (demand = 1) or selling (demand = -1) or not trade on the basis of 

the public information, which modelled as a Gaussian random variable. The sign of the 

information value represents buying or selling strategies, where positive represents 

buying strategies. The significance of the information value based on the threshold 

decides the trading activity. Each agent has its own decision threshold on the basis of 

the agent’s subjective view. If the absolute value of information is greater than the 

threshold value, the information value is significant enough to activate the trade; 

otherwise, the agent will not trade at this period. The total demand can be calculated 

through the agent’s decision when buying equals to 1 and selling equals to -1. Then the 

change in price can be reproduced. The thresholds decision may be updated on the basis 

of the moving average of the absolute return by a certain agent at a certain period with 

probability q followed by the [0, 1] uniform. This model is simple in several aspects. A 
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single asset is traded and the agent is not categorised in different characteristics like 

fundamentalist and chartist. The information received by all agents is the same. The 

different trading rules for each agent are caused by their own judgment through the 

threshold value. Also, there is no interaction between the agents.  

 

The simulation results are considered in two extreme cases: one is not updating and the 

distribution of threshold remains identical at the origin where q = 0; the other is 

updating the threshold at the same time on the basis of the last time absolute returns 

where q = 1. At the same time, updating eliminates the heterogeneity. The first case has 

a non-volatility clustering pattern; the second has a volatility clustering pattern but the 

distribution of returns on condition of the last period absolute return is unrealistic (Cont 

et al., 2004). The normal setting of results with agent 1000, q = 0.01 and agent 1500, q 

= 0.1 shows the positive correlation with absolute returns. When q = 0.01, the threshold 

is updating every 100 days. When q = 0.1, the threshold is updating every ten days. 

Therefore, the three cases comparison shows heterogeneity and updating from the last 

period feedback are two important components generating the volatility clustering 

phenomenon.  

 

Then there are the evolution models, which contain the genetic algorithm first 

introduced by Holland (1975). LeBaron et al. (1999), as a Santa Fe artificial stock 

market, reproduced the volatility clustering. Settings in LeBaron et al. (1999) are more 

complex than the model demonstrated before. There are two tradable stocks instead of 

a single asset before. The two stocks are risk-free, with constant dividends and infinite 

supply, while risky assets have stochastic dividends. Investors follow the constant 

absolute risk aversion (CARA) (LeBaron et al., 1999). Both of the models reproduced 
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the volatility clustering and fat tails successfully. Thus the evolution and heterogeneous 

arrival rates of information can be two factors influencing both the volatility clustering 

and fat tails stylised facts. 

 

Also, herding is regarded as one of the explanations for clustering volatility. Some of 

the models in Section 2.3 generate volatility clustering. For example, Bornholdt 

(2001)’s model and LeBaron (2001a)’s model has a heterogeneous investment horizon. 

In LeBaron (2001a), the risk preference of agents is CRRA. 

 

2.3 Herding models and results 

Herding usually arises from two factors. One is the direct copying of the others, and the 

other is the convergence of views based on the information of the public (Markose et 

al., 2004). The herding behaviour modelled in the literature concentrates more on the 

imitation from the others through copying. There are mainly 6 aspects to be considered 

when building an agent-based modelling in financial markets. The agents, trading, 

securities, evolution, benchmarks or calibration, and time (LeBaron, 2001b). As there 

are at least 6 factors to be considered, the agent-based simulation will have numerous 

ways of building the model and studies will vary from each other on the basis of the 

theory they believe and the area or reality they want to explain. Then detailed analysis 

will be demonstrated below for twenty-five agent-based models with behavioural 

herding. As the benchmarks or calibration and time are the factors mainly ignored by 

most of the models, the remaining 4 factors will be illustrated below. Results are 

important to be included because this research is interested in stylised facts.  Identifying 

these five factors in agent-based simulation of herding in 25 papers will give us a basic 
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understanding of how to build a herding model and how to study the herding. Also, 

understanding the similarities and differences of 25 papers from these five factors will 

help to have a deeper and more detailed understanding of herding and its related results. 

Hence, it will help to decide which models to choose to be replicated. 

  

2.3.1 Agents 

As discussed in Section 2.1, agent-based simulation models are mainly divided into N-

type models and autonomous models. Agents in N-type models have N types of beliefs. 

N can be an integer from 1 to N, while in the autonomous model, agents have different 

rules. The papers in the review are ordered by categories and the time of publication. 

 

2.3.1.1 N-type model 

Raberto et al. (2001) and Yang et al. (2012) build a one type model. Markose et al. 

(2004) also build a one type model. Agents decide to buy or sell for one unit of a certain 

asset. The difference of agents in this model is the length of previous memory they have. 

Tedeschi et al. (2012) is also a one type model in which agents decide to trade or not on 

the basis of their expectations. For some experiments in this model, they add 

fundamentalists and chartists. Chen et al. (2013) introduce a one type model. For each 

agent, they choose one of three states: buying, not trade or selling. In one-type models, 

some of them (Raberto et al., 2001; Yang et al., 2012; Chen et al., 2013) divide the 

agents into different clusters. Those models are classified as one type model because all 

agents share the same rules. Two remaining ones (Markose et al., 2004; Tedeschi et al., 

2012) use the network to connect agents. Also, agents in these two models share the 

same rules, so they are categorised as a one type model.  
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Lux (1995) and Carro et al. (2015) have two-type models with optimistic and 

pessimistic traders. Agents are either fundamentalists or noise traders in Bak et al. (1997) 

and Alfarano et al. (2005). Chowdhury and Stauffer (1999) build a two-type model that 

has a similar state function to Chen et al.’s (2013). Agents are either fundamentalists or 

noise traders, too. Bornholdt (2001) introduces a two-type model with fundamentalists 

and chartists. Kaizoji et al. (2002) have a two-type model with fundamentalists and 

interacting traders. Alfarano and Milaković (2009) introduce a two-type model that 

divides agents into two groups. They can be fundamentalists and chartists like Bak et 

al. (1997) or optimistic and pessimistic traders like Lux (1995). 

 

Lux (1998), Lux and Marchesi (1999), and Lux and Marchesi (2000) have three-type 

models with fundamentalists, optimistic noise traders, and pessimistic noise traders. 

Kaizoji et al. (2015) is a three-type model with rational agents and noise agents who 

only invest in risky or risk free assets. The noise agents investing in risky or risk-free is 

similar to optimistic noise traders or pessimistic noise traders. 

 

Lee and Lee (2015) have an N-type model with N types of beliefs. They assume all 

agents know both fundamentalists and chartists’ ways to predict the expected price. 

Then the weight for these two rules is different among agents by their own belief. That’s 

why the agents in this model are considered to be N-type. N stands for the number of 

agents.     

 

2.3.1.2 Autonomous model 

Chen and Yeh (1999) build an autonomous model based on genetic programming. Two 

genetic programmings are used in this model. Chen and Yeh (2001) also build an 
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autonomous model based on genetic programming. Mauri and Tettamanzi (2012) 

introduce an autonomous model based on genetic programming in which the genome 

for each agent does not change. After a certain period, the fitness for each agent is 

compared. Then 30% of agents are eliminated. Wealth is redistributed and new agents 

will enter the market based on a genetic algorithm. LeBaron (2001a), LeBaron and 

Yamamoto (2007), Yamamoto (2011), and Manahov and Hudson (2013) propose 

autonomous models based on genetic algorithms. The rules for agents are updated 

through genetic algorithms.  

 

For agent-based modelling of herding in financial markets, autonomous models differ 

from N-type models. In N-type models, agents divide into one type, two types, three 

types and N types. There are 18 models that are N-type models and 7 models that are 

autonomous models, which indicates that the N-type models are the main focus of the 

herding ones. Based on choosing a model that can be both relatively simple and have a 

detailed description, then N-type models are selected to be replicated. 

  

2.3.2 Assets 

In most of the models, a single asset is built in to make the model simpler. Four authors 

(Bak et al., 1997; LeBaron, 2001a; Yamamoto, 2011; Kaizoji et al., 2015) propose 

models with risky and risk-free assets. For example, in Kaizoji et al.’s (2015) model 

rational agents maximise their expected utility through risky and risk-free assets while 

noise agents buy either risky assets or risk-free assets. The number of noise traders 

invests in the risky asset and the other noise traders invest in the risk free asset. Agents 

in the two models of Chen and Yeh (2001) and Manahov and Hudson (2013) invest in 

two assets: a risk asset and cash. As most of the models consider one single asset, for 
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replicating, a one single asset model is considered to be both simple and appropriate. 

 

2.3.3 Herding mechanism 

There are four types of rules of herding in 24 of the 25 models. They are group learning 

through transition probability, networks, and clusters, and individual learning such as 

genetic algorithms. Group learning is used in the N-type model, and individual learning 

is used in autonomous models. For group learning, the herding mechanism is ordered 

by the importance which is the number of models using a certain mechanism.  

 

Only one model focuses on herding in a different way as convergence views based on 

the information of the public. This means this model does not have special herding rules 

but is interested in how people react in the same market as doing the same thing on the 

basis of the same information. 

 

2.3.3.1 Transition probability 

The herding mechanism in this part is inspired by Kirman’s ants theory. Kirman finds 

that when ants are faced with two kinds of identical food, groups are not equally divided. 

That means when people are faced with two similar restaurants A and B, people will 

prefer to choose restaurant A instead of restaurant B if restaurant A has more customers. 

The switching between optimists and pessimists depends on the index which is the 

difference between optimists and pessimists in Lux (1995). Alfarano et al. (2005) also 

use transition probability as the herding mechanism. Switching between 

fundamentalists and noise traders is based on the number of fundamentalists and noise 

traders. Carro et al. (2015) have a similar herding mechanism to Alfarano et al. (2005) 

with external information. The transition probability only applies to noise traders in 
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Kaizoji et al. (2015). The opinion index, which is the difference between the noise 

traders who invest in risk-free assets and risky assets are divided by the total number of 

noise traders, and price movement decides the transition probability.  

 

Different types of agents in these models have different herding mechanisms. In Lux 

(1998), Lux and Marchesi (1999), and Lux and Marchesi (2000), the change between 

noise traders depends on the price trend and the difference between optimistic and 

pessimistic, while the change between fundamentalists and noise traders depends on the 

profits earned for each group. The herding mechanism of Chowdhury and Stauffer’s 

(1999) model is based on the transition probability. Agents switch their states (buying, 

selling, not to trade) through their herding mechanism on the basis of the transition 

probability. For noise traders, the transition probability from the current state to another 

state depends on the total opinion of traders. While for fundamentalists, the transition 

probability is dependent on not only the total opinion of traders but also their individual 

bias. The transition probability in Bornholdt (2001) is based on the opinions of all agents 

to buy or sell and the type of agents. If the agents are fundamentalists, they tend to join 

the minority, and if the agents are chartists, they tend to join the majority. The transition 

probability in Kaizoji et al. (2002) is based on agents’ opinions. Herding in this model 

only influences the interacting traders. If agents are in the minority group, they have a 

greater possibility to switch to the majority group for gaining some capital. While if 

agents are in the majority group, they have a greater possibility to switch to the minority 

group for avoiding the risk.  

 

In total, ten models are based on the transition probability. Four out of six two-type 

models are based on the same rules for the transition probability. The other two two-
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type models and four three-type models are based on different rules for the transition 

probability.  

 

2.3.3.2 Networks 

After the trading, noise traders change from buyers to sellers or sellers to buyers and 

randomly choose one seller or buyer agent to imitate in Bak et al. (1997). In Markose 

et al.’s (2004) model, the herding mechanism is based on the networks. Agents take 

recommendations from connected neighbours to buy or sell. Zero memory agents give 

random recommendations to buy or sell, while agents with memory give advice on the 

basis of their past experience. The herding in this model is measured by the number of 

buyers divided by the number of total agents. Herding in Tedeschi et al. (2012) propose 

a model with a network where agents’ expectation of returns is influenced by their 

neighbours’ expected returns.  

 

Alfarano and Milaković (2009) combine the transition probability with network 

influences. Unlike the transition probability models introduced before, the transition 

probability not only depends on the number of agents in each group like Alfarano et al. 

(2005) but also the social network for each agent. 

 

All in all, four models depend on network herding. Two of them are one-type models, 

and the other two are two-type models. Tedeschi et al. (2012) propose a model with 

three-type models in a short discussion, but network herding is only considered in one 

group. 
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2.3.3.3 Clusters 

Raberto et al. (2001) connect agents into different clusters. The clusters can either be 

active or inactive. Agents in the same active cluster submit the same orders. Then the 

cluster is destroyed. The herding mechanism in Chen et al. (2013) divides agents into 

different clusters. In each cluster, agents make the same decision to buy or sell or hold 

with the same probability. Chen et al. (2013)’s herding factor is decided by the 

difference of weighted average opinions of all agents from previous periods and the 

degree of asymmetry. The degree of asymmetry makes the herding differ from a bull 

market to a bear market. The bull market is a market where the weighted average 

opinions are positive and the bear market is one where the weighted average opinions 

are negative. Then the number of clusters is based on the total number of agents divided 

by the herding factor.  

 

Yang et al. (2012) have a herding mechanism that combines the network and clusters. 

Yang et al. (2012) divide agents into different clusters through the network. Agents 

connected together in the network are in the same cluster and make the same decision. 

 

Three models use clusters as herding mechanisms in which agents divide into different 

clusters. In each group, agents make the same decision. For models using clusters as a 

herding mechanism they are categorised as a one-type model. 

 

2.3.3.4 Genetic Algorithm 

Genetic algorithms are individual learning with an autonomous type model. In Chen 

and Yeh (1999), LeBaron (2001a) and Manahov and Hudson (2013), each agent uses 

their own rules to make independent decisions through the genetic algorithm. Herding 



39 

 

emerges when agents change their rules by crossover. Agents in Chen and Yeh (2001) 

use a function called the school, which is a place allowing direct interaction among 

agents to imitate strategies. LeBaron and Yamamoto (2007) use the genetic algorithm 

to update the learning and adaption process. The fitness of 1000 parameters is selected. 

The strategy with bigger fitness is more likely to be imitated. Yamamoto (2011) use 

genetic algorithms to update their trading strategy, make agents more likely to imitate 

the agent who has a better performance. Herding in Mauri and Tettamanzi (2012) is 

through a genealogy network. Individual’s belief is influenced by their relatives. In total, 

seven models use the genetic algorithm, and they are all autonomous models. 

 

2.3.3.5 Independent rules 

No herding mechanism is used in the Lee and Lee (2015) model. Agents have a chance 

to change their opinions from buying to selling when prices reach the tipping point. 

 

In total, ten models are based on transition probabilities. Four models are based on 

networks and three models are based on clustering. Seven models are based on genetic 

algorithms. One model has no herding mechanism. For different types of herding 

mechanisms, they are different in the herding formation process as well as the detailed 

information copying. For transition probability and clusters, agents are usually treated 

as full information copying. For network connection, some of the models are imitating 

part of information while some of them are imitating full information. For the genetic 

algorithm, only part of the information is learned. Transition probability and network 

are two main mechanisms in N-type models: one imitates full information of others, 

one copies part of the information. 
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2.3.4 Price mechanism 

2.3.4.1 Demand and supply 

Markets clear the price to bring excess demand of noise traders plus the excess demand 

of expected fundamentalists to zero in Lux (1995). Excess demand also is used in Lux 

(1998), Lux and Marchesi (1999), Lux and Marchesi (2000) and LeBaron (2001a). A 

market maker is assumed in the Kaizoji et al. (2002) model to balance the demand and 

supply from both fundamentalists and interacting traders. Alfarano et al. (2005) clear 

the price to bring the excess demand of noise traders plus the excess demand of 

fundamentalists to zero. Kaizoji et al. (2015) have a similar process as Alfarano et al. 

(2005) to bring excess demand of noise trader plus the rational traders to zero. The price 

is cleared in Yamamoto (2011). In this model, all agents submit their demand for only 

one market maker to clear the price. The demand and supply decide the price in Yang 

et al. (2012).  

 

Unlike the other models formulating the price, prices change in Chowdhury and 

Stauffer’s (1999) model is defined by the difference between the agents of buying or 

selling. Price change equals the log of excess demand at time t minus log of excess 

demand at time t-1 in Bornholdt (2001). Chen et al. (2013) introduce a similar method 

to decide the price change, which is the return. Returns are decided by excess demand 

in Lee and Lee (2015). 

 

2.3.4.2 Artificial stock market 

Unlike the market based on demand and supply, where all buyer and seller orders are 

traded, only market orders in an artificial stock market are traded. In artificial stock 
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markets, each agent submits either market or limit orders to the market. Orders which 

get executed are market orders. Orders are matched, where the price of the highest 

buyer’s order is higher than the price of the lowest seller’s order. Untraded orders left 

in the market are limit orders. Prices are usually decided by the highest of buyer’s order 

and the lowest of seller’s order of limit order left in the market. Bak et al. (1997), Chen 

and Yeh (1999), Chen and Yeh (2001), LeBaron and Yamamoto (2007), Mauri and 

Tettamanzi (2012), Tedeschi et al. (2012) and Manahov and Hudson (2013) use the 

artificial stock market.  Bak et al. (1997), Chen and Yeh (1999), Chen and Yeh (2001), 

Raberto et al. (2001), LeBaron and Yamamoto (2007), Mauri and Tettamanzi (2012), 

Tedeschi et al. (2012) and Manahov and Hudson (2013) use the artificial stock market. 

 

2.3.4.3 Reward 

Markose et al. (2004) have a reward system. Agents are rewarded randomly or follow 

the minority game: if there are more buyers than sellers, sellers win.  

 

2.3.4.4 Others 

Alfarano and Milaković (2009) do not focus on the price and returns, but only on the 

variance. In this model, no detailed price mechanism is explained. Carro et al. (2015) 

do not have a detailed description of price settings. This paper focuses on the effect of 

external information.  

 

In total, fourteen models are based on demand and supply, eight models are based on an 

artificial market, one model is based on reward, and two models do not have the price 

mechanism. For the transition probability mechanism, nine models are based on demand 

and supply, and one does not have the price mechanism. For the network mechanism, 
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two models are based on artificial stock markets, one is based on the reward system, 

and one does not have the price mechanism. For the cluster ones, two models are based 

on demand and supply, and one is based on an artificial stock market. For genetic ones, 

two models are based on demand and supply. Five models are based on artificial stock 

markets. The one without the herding mechanism is based on demand and supply. Two 

main market mechanisms are demand and supply and artificial markets. 

 

2.3.5 Results from herding models 

2.3.5.1 Fat tails 

Fat tails, bubbles and crashes are found in Lux (1995). Fat tails are found in Lux (1998) 

through the distribution of price change and also kurtosis. Fat tails are found in a figure 

of price change distribution in Bak et al. (1997). Fat tails are found in a figure of price 

change distribution; also bubbles and crashes are generated in Chowdhury and Stauffer 

(1999). Fat tails are found in Chen and Yeh (2001) with kurtosis. Also, this model rejects 

the unit root to prove the random walk and the absence of autocorrelation.  

 

2.3.5.2 Volatility clustering 

LeBaron and Yamamoto (2007) find volatility clustering through autocorrelation. Also, 

volatility clustering is obvious in the economy with herding compared to the economy 

without herding. Only volatility clustering is found in Yamamoto (2011) through the 

autocorrelation graph and GARCH parameter. They find herding is essential for 

volatility clustering by comparing models with and without herding. Also, they find if 

there is less information, the volatility clustering is less obvious. 
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2.3.5.3 Both fat tails and volatility clustering 

Both fat tails (kurtosis) and volatility clustering (GARCH parameters) are found in 

Chen and Yeh (1999), who build a model with genetic programming. But only one of 

the two genetic programming designs proves to reject the unit root, which means the 

random walk of price and absence of autocorrelation. Both fat tails (cumulative 

distribution of returns) and volatility clustering (scaling of fluctuation function) are 

found in Lux and Marchesi (1999). Both fat tails through the cumulative distribution of 

absolute returns and volatility clustering based on autocorrelation are found in 

Bornholdt (2001), Raberto et al. (2001), Kaizoji et al. (2002), Yang et al. (2012), Chen 

et al. (2013) and Kaizoji et al. (2015). Kaizoji et al. (2002) also find a positive 

correlation between volatility and trading volume. Both bubbles and crashes emerge in 

Kaizoji et al. (2015). In Kaizoji et al. (2015), bubbles and crashes still emerge when 

there are a small number of noise traders through changing the wealth ratio of rational 

and noise traders. Also, leverage (negative return-volatility correlation) and anti-

leverage (positive return-volatility correlation) effects are produced in Chen et al. 

(2013). Both fat tails (kurtosis) and volatility clustering (autocorrelation) are found in 

Lux and Marchesi (2000) and LeBaron (2001a). Also, Lux and Marchesi (2000) reject 

the unit root to prove the random walk and the absence of autocorrelation. There are 

three comparable markets LeBaron (2001a): benchmark where the equilibrium price is 

assumed, long horizon one where the agent’s horizon is from 75 to 100, and all horizon 

one where the agent’s horizon is from 5 to 100. All of the markets have fat tails, 

especially for all horizon ones. Volatility clustering is more obvious for all horizon ones. 

Both fat tails through the distribution of returns and volatility clustering based on 

autocorrelation are found in Alfarano et al. (2005). Both fat tails through the distribution 

of returns and volatility clustering through the ARCH effect are found in Manahov and 



44 

 

Hudson (2013).  

 

2.3.5.4 Others 

Markose et al. (2004) find that memory and herding links do not have any impact on 

emerging from gurus. Herding as a result is calculated by the number of buyers divided 

by the number of total agents. Herding can be generated either through the memory 

based on previous information (with and without memory) or network interactions 

(change of interaction parameter). Alfarano and Milaković (2009) use the network to 

solve the N-dependence problem in models depending on the transition probability. The 

N-dependence problem is that certain stylised facts such as fat tails disappear when N 

gets bigger. Mauri and Tettamanzi (2012) find that herding (sociality) is responsible for 

the bubbles and crashes through data with and without evolution. Tedeschi et al. (2012) 

focus on the herding behaviour of gurus, imitators and noise traders. Agents become 

richer when the herding is higher, by comparing the wealth in three situations: agents 

are based on their neighbours’ opinion; agents are based on half of their own opinion 

and half of their neighbours; agents are based on their own opinion. Carro et al. (2015) 

find that the amplification of small external information can cause instability in the 

market. Lee and Lee (2015) conclude that there are more herding effects (returns change 

frequently) when more agents share the same opinion on the tipping point.  

 

In total, five models find only fat tails: three are the transition probability model, one is 

the network model, and one is the genetic model; two genetic models find only volatility 

clustering. Twelve models find both fat tails and volatility clustering: six are the 

transition probability models, three are clusters models, and three are genetic models. 

One transition model, three network models, and one genetic model are focused on other 
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results. For full information copying: three cluster models all find both fat tails and 

volatility clustering; more than half (six out of ten) of transition probability models find 

both fat tails and volatility clustering. For part information imitating: none of the 

network models finds both fat tails and volatility clustering, and three out of seven 

genetic models find both fat tails and volatility clustering. This indicates the way of 

information copying influences the generating of fat tails and volatility clustering. 

 

Finally, Table 2.1 below contains the 25 models with the agents, herding, market and 

result. The models are ordered by herding mechanism and time of publication. 

 

No. Agent  Herding Market Result  

1. Lux (1995) Optimistic and 

pessimistic traders 

Transition 

probability 

D&S FT, BC 

2. Lux (1998) Fundamentalists and 

noise traders 

(optimistic and 

pessimistic) 

Transition 

probability 

D&S FT 

3. Chowdhury 

and 

Stauffer 

(1999) 

Fundamentalists and 

noise traders 

Transition 

probability 

Price 

change 

(D&S) 

FT, BC 

4. Lux and 

Marchesi 

(1999) 

Fundamentalists and 

noise traders 

(optimistic and 

pessimistic) 

Transition 

probability 

D&S FT, VC 

5. Lux and 

Marchesi 

(2000) 

Fundamentalists and 

noise traders 

(optimistic and 

pessimistic) 

Transition 

probability 

D&S FT, VC, 

AA 

6. Bornholdt 

(2001) 

Fundamentalists and 

chartists 

Transition 

probability 

Return 

(D&S) 

FT, VC 

7. Kaizoji et 

al. (2002) 

Fundamentalists and

 interacting traders 

Transition 

probability 

D&S FT, VC 

8. Alfarano et 

al. (2005) 

Fundamentalists and 

noise traders 

Transition 

probability 

D&S FT, VC 
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9. Kaizoji et 

al. (2015) 

Rational Investors 

and noise traders 

(risky and risk-free) 

Transition 

probability 

(only noise) 

D&S FT, VC, 

BC 

10. Carro et al. 

(2015) 

Optimistic and 

pessimistic 

Transition 

probability 

 

 

No Amplificat

ion of 

external 

informatio

n can 

cause 

instability 

11. Bak et al. 

(1997) 

Fundamentalists and 

noise traders 

Network 

(noise) 

Artificial 

market 

FT 

12. Markose et 

al. (2004) 

One-type (different 

horizon) 

 

Network Reward Memory 

and 

interaction 

13. Alfarano 

and 

Milaković 

(2009) 

Two groups Combine 

transition 

probability  

and network 

No N-

dependenc

e problem 

14. Tedeschi et 

al. (2012) 

One-type (add 

fundamentalists and 

chartists then) 

Network Artificial 

market 

Herding 

makes 

noise 

trader gain 

higher 

profit 

15. Raberto et 

al. (2001) 

One-type Clusters Artificial 

market 

FT, VC 

16. Yang et al. 

(2012) 

One-type Clusters D&S FT, VC 

17. Chen et al. 

(2013) 

One-type Clusters Price 

change 

(D&S) 

FT, VC 

18. Chen and 

Yeh (1999) 

Autonomous 

(genetic 

programming) 

GA: 

crossover 

Artificial 

market 

FT, VC, 

AA 

19. Chen and 

Yeh (2001) 

Autonomous 

(genetic 

programming) 

GA: a 

function 

called school 

Artificial 

market 

FT, AA 

20. LeBaron 

(2001a) 

Autonomous 

(genetic algorithm) 

GA: 

crossover 

D&S FT, VC 

21. LeBaron 

and 

Yamamoto 

Autonomous 

(genetic algorithm) 

GA: selection 

(imitate agent 

with better 

Artificial 

market 

VC 
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(2007) performance) 

22. Yamamoto 

(2011) 

Autonomous 

(genetic algorithm) 

GA: selection 

(imitate agent 

with better 

performance) 

D&S VC 

23. Mauri and 

Tettamanzi 

(2012) 

Autonomous 

(genetic 

programming) 

GA: 

genealogy 

Artificial 

market 

BC 

24. Manahov 

and 

Hudson 

(2013) 

Autonomous 

(genetic algorithm) 

GA: 

crossover 

Artificial 

market 

FT, VC 

25. Lee and 

Lee (2015) 

Fundamental value 

and historical prices 

component 

no herding 

mechanism 

D&S Herding 

effect 

when 

agents 

share the 

same 

opinions 

on the 

tipping 

point 

(D&S: demand & supply; FT: fat tails; VC: volatility clustering; BC: bubbles and 

crashes; AA: absence of autocorrelation)  

Table 2. 1 Twenty-five herding models 

 

From the literature, there are more N type models than autonomous models. And also, 

from the papers’ descriptions, the autonomous model involves many parameter settings 

and rules that they are not always described in detail. For N type model, the rules are 

the same in one group which makes the description of an N type model much simpler. 

On this basis, the replicating will focus on the N-type model.  In order to understand the 

herding from different herding and market mechanisms, two models were chosen that 

have different mechanisms. In addition, the models need to be described in good detail 

in the paper in order for them to be replicated. Using these criteria, the Tedeschi et al. 
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(2012) and Lux and Marchesi (2000) models were selected. Tedeschi et al.’s (2012) 

model has a network mechanism and artificial markets without stylised facts. The paper 

says, “the model generates heterogeneity, as indicated by the fat tail distribution of 

agents’ wealth and stock (Tedeschi et al., 2012:91)”.  The stylised fact of fat tails refers 

to the distribution of returns, and the paper does not comment on this. Hence fat tails 

are not included for the paper in table 2.1. However, my analysis of returns from the 

replicated model in Chapter 6 shows that the returns do have fat tails to an extent with 

kurtosis values greater than 0. And Lux and Marchesi’s (2000) model has the transition 

probability and demand and supply with both fat tails and volatility clustering. 

 

In summary, this chapter reviews the literature of my research area in three aspects: 

agent-based simulation of financial markets, stylised facts and herding. Agent-based 

simulation of financial markets mainly has two types of model: N-type model and 

autonomous model. The main difference between these two types is the learning process. 

For N-type model, the learning is the same in one group and agents use pre-decided 

types and rules. For the autonomous model, the learning is different for each agent and 

can change during the trading. For stylised facts in financial markets, although there are 

lots of models to study them, there are no agreed explanations for them except the 

absence of autocorrelation. Herding is one of the possible explanations for stylised facts, 

although the herding models differ in a number of ways including the herding 

mechanism and price mechanism. In the next chapter, the methodology and methods 

are discussed.   
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Chapter 3           

Methodology and Methods 

 

Chapter 3 discusses the methodology and methods. Four aspects are included in this 

chapter. One is to introduce the methodology from a philosophy perspective. The beliefs 

guide the choice of the methods for this research. The second is to introduce replication 

in science and modelling. Through discussing the importance of replication and 

identifying the issues in science and modelling, the nature of replication in both science 

and modelling is demonstrated. The third is to discuss problems in the replicating 

process and ways to improve reproducibility. After issues are identified in science and 

modelling, the problems in replicating are identified and also ways to improve the 

situation are discussed. Replicating guidelines are one of the ways to improve 

reproducibility, and so these are considered. The fourth is to explain replicating as a 

method in my research. From the discussion of the previous three aspects, the reasons 

for choosing replicating as my research method are explained. 

 

Section 3.1 introduces my research approach. Section 3.2 and Section 3.3 discuss 

replication in science and modelling. Section 3.4 demonstrate the problems in 

replicating and ways to improve the reproducibility. Section 3.5 is about replicating 

guidelines for simulation. Section 3.6 discusses replicating as my research method. 
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3.1 Introduction to the research approach 

In the philosophical worldview, ‘a basic set of beliefs guide action’ (Guba, 1990:17). 

This means that the beliefs guide our choice of research methodology and methods. 

There are two main aspects of philosophy that influence the choices of research 

methodology and methods: ontology and epistemology. My research is related to agent-

based modelling, and modelling is a representation of part of the real world (Pidd, 1997). 

Thus in my research, the ontological assumption is based on the positivist perspective 

that reality does exist externally and objectively. Based on the positivist perspective, 

the epistemological assumption is that researchers are independent of what is going to 

be studied. These assumptions lead to the methodology of my research being deductive. 

From the positivist perspective, the results were tested for validity and reliability. The 

validation test is to ensure that the model is right. The reliability test is to ensure that 

the results are reproducible. 

 

The specific approach taken here is one of replicating work from past journal papers. 

This chapter explains the reason for taking this approach. In particular, why replication 

is important in science and why it is recognised as a current problem. 

 

3.2 Replication in science 

3.2.1 Importance of replication in science 

Replicating is a cornerstone of science experiments. The famous philosopher of science 

Karl Popper says the following: 
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 “We do not take even our own observations seriously, or accept them as 

scientific observations, until we have repeated and tested them. Only by such 

repetitions can we convince ourselves that we are not dealing with a mere 

isolated ‘coincidence’, but with events which, on account of their regularity and 

reproducibility, are in principle inter-subjectively testable. Every experimental 

physicist knows those surprising and inexplicable apparent ‘effects’ which in 

his laboratory can perhaps even be reproduced for some time, but which finally 

disappear without trace” (Popper, 2002:23).  

This indicates the fundamental importance of repeating experiments in scientific studies. 

The results based on a single experiment may be caused by errors or chance; hence, 

replicating them is necessary to have confidence in scientific results. 

 

Replicating involves repeating the research as described in an existing paper. If 

replicating yields the same or similar results, the replicability or reproducibility of the 

original paper is proved. Although the standards proposed by Axtell et al. (1996) of 

reproducibility are focus on the modelling area, they can be used in natural science’s 

experiment too. Therefore the standards will be applied in both the science and 

modelling part in sections 3.2 and 3.3. The standards of modelling can be illustrated in 

detail. Axtell et al. (1996) have proposed replication standards to judge the success of a 

model replication. There are three standards based on different levels of similarities: 

numerical identity, distributional equivalence, and rational alignment. Numerical 

identity describes an exact match between the replication results and the original results. 

However, this is sometimes difficult to achieve. Distributional equivalence means that 
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the replication results and the original results are statistically similar. Rational 

alignment means the results show the same relationship. 

 

However, although reproducibility in science is important to ensure scientific results, 

the reproducibility of published papers in various scientific research areas still has some 

issues. The current publication system involves peer review to check the paper’s work. 

It is a process to make sure the validation and significance of the work by researchers 

in the same field. After the peer review, whether the paper should be accepted is decided. 

But, peer review of journal papers may not guarantee the quality of journal results to 

some extent, while the process depends on trust rather than checking of evidence (Smith, 

2015). Peer reviewers can not do the work again, and their checking depends on their 

experience, understanding of the field and the description of the paper. Unless there is 

a significant conflict in the paper description, reviewers trust the paper description with 

criticised perspective. Ioannidis (2014) argues that the current publication system 

should value more on the replication studies to ensure the published results. Supporting 

Ioannidis, Woolston (2014) argues that the current system focuses on amazing results 

at a statistically significant level but ignores the carefulness of research designs. This 

makes researchers chase unexpected results at a statistically significant level under time 

pressure but ignore the reproducibility of their studies. Also, all the above arguments 

indicate that the current system does not value replicating much, although the 

importance of replicating is identified. The current system leads researchers to favour 

building something new rather than replicating existing ones of previously published 

papers.  
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3.2.2 Issues in science in general 

Although replicating is an important aspect of research in science, replicating issues are 

still found in science. Baker (2016) produced an online Nature’s survey from 1576 

researchers to be aware if there is a reproducibility crisis. The survey is a questionnaire 

about reproducibility and found that 70% of researchers failed to reproduce other’s 

work, and 50% of researchers failed to reproduce their own work.  In chemistry, biology, 

physics and engineering, medicine, earth and environment, and others, more than 60% 

of researchers in each subject fail to replicate other’s work and more than 40% of 

researchers in each fail to replicate their own work. More than half of people (52%) 

believe that there is a remarkable replicating crisis. Selective reporting, the pressure on 

the public and low statistics power and poor analysis are considered to be three main 

reasons that cause replicating crises.  

 

3.2.2.1 Issues in social science 

In social science research generally, there are also some replicating issues. A paper 

involving 100 experiments will be discussed first and then a paper of one single 

replication. The Open Science Collaboration (2015) replicated 100 experiments in 

psychology and found that whereas 97% of original results were statistically significant, 

only 36% of replicating results were significant. They do this study to be aware of 

reproducibility in psychological science. In other words, the replicating studies find 

much weaker results than the original studies. They did this study to be aware of the 

reproducibility in phycology. The requirements for replication success are based on five 

indicators such as significant level and size effect with correlation, so distributional 
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equivalence is the replication standard for the Collaboration’s work. Only 39% of the 

replicating studies have similar results to those of the original studies. This finding may 

lead to doubt of the original findings.   

 

Schooler (2014), together with psychologists in 31 different labs, replicated the verbal 

overshadowing effect which was himself initially found. This effect is that it is harder 

for witnesses to identify the person they have seen when there is a physical criminal 

appearance description. Several researchers questioned the effect, so they decided to 

repeat the research. They are doing this replication to claim meta-science can help to 

ensure reproducibility. Rational alignment is the requirement for replication success in 

Schooler (2014). The replication supports the original finding at the rational alignment 

level. 

 

3.2.2.2 Issues in biomedical 

There are replicating issues in biomedical science in general. Distributional equivalence 

is the replication standard in Begley and Ellis (2012). This paper aims to outline the 

ways to improve reproducibility in this area through a discussion about the current 

issues. In therapeutic research, clinical oncology has the highest failure reproducibility 

rate (Begley and Ellis, 2012). In preclinical cancer research, the rate of applying cancer 

research to actual clinical treatment is very low and this is influenced by the related 

published papers. Only 25% of published papers could be validated and the projects 

could be continued while the non-reproducible published papers may have follow-up 

publications based on the original results (Begley and Ellis, 2012). 



55 

 

3.3 Replication in modelling 

3.3.1 Importance of replication in modelling 

Generally, simulation is a modelling method that aims to find a representative of reality 

for a certain problem. It has a similar replicating process compared with the process in 

science. In Science, the findings from experiment results should be general with certain 

conditions. Then the experiment needs to be tested several times to ensure 

reproducibility. This makes reproducibility critical in science. The testing process in 

science is a replicating process. In Science, replication ensures the findings are validated 

in certain conditions. It is a checking process. Similar to the experiment in science, 

modelling is an experiment as well. In order to make sure the model is representative 

of the real world and also the results are not just for one run, reproducibility is crucial 

in the modelling. To check if the model is built right, it is a verification check. It is a 

process that ensures the computer programme actually builds the expected model. To 

check if the right model is built, it is a validation check. This is a process to ensure the 

confidence that the model is sufficiently realistic for its use. The replication process can 

help to ensure both verification and validation check. 

 

In modelling, the replicating method has many benefits (Wilensky and Rand, 2007). It 

proves that the scientific findings in papers are repeatable and not just exceptional cases; 

hence, it helps the understanding of the research agenda, and it clears the verification 

and validation of the model. Also, it helps researchers to study beyond the original paper 

by conducting new experiments. Additionally, Hubbard and Vetter (1996) think that 

using replicating as a method in business research can help to prove the conclusions 
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statistically by identifying the significance level to avoid type I errors (false positive) 

and to generalise the results in order to avoid isolated and fragile studies which have 

type I errors. Hence, replicating will develop business research in both theory and 

practice. 

 

Diethelm (2012) argues that sometimes the lack of reproducibility is not caused by any 

other reasons but the computer process based on mathematics algorithm calculation in 

high-performance computing. This may make two results not the same when you run 

the model again. In my research, as my objective is to find the general structure which 

produces certain financial market stylized facts, the standard of replicating is rational 

alignment at least. If it is possible, the distributional equivalence will also be considered 

to some extent. 

 

3.3.2 Issues in modelling 

Replicating issues in business and forecasting, network and communication, social 

science, biomedical and ecological science, agent-based simulation will be discussed in 

order. The order is according to the scale of the related findings and also to the relevance 

to my own research. Simulation as a bottom-up tool is a popular tool that can be applied 

in many areas like business and forecasting, network and communication, social science, 

biomedical and ecological science. For computer modelling, usually applying in 

economics, forecasting, network and communication, the numerical identity can be 

achievable when the same condition applies. But, for subjects like social science, 

biomedical and ecological science, the experiment is mainly used as a method that 
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numerical identity is not achievable. The samples selected for the experiment cannot be 

the same in the original paper and the replication one. Therefore, usually for those 

subjects which using experiments, only distributional equivalence is required for 

replication results. Uhrmacher et al. (2016) found that the replication situation in 

discrete event simulation is not positive after the practice in healthcare, logistics and so 

on. In these areas, the replication requirement is different depends on the author’s 

opinions.  

 

Stodden et al. (2018) reviewed 204 computational papers from 2011 to 2012 to evaluate 

the policy change for data and code access in Science articles as a movement to open 

science. The main features of open science are process transparency, and data and code 

sharing (Powers and Hampton, 2019). Out of the 204 articles, 24 have sufficient 

information without contacting the authors. For the remaining 180 articles, after 

contacting the authors, still 7% of them refuse to provide information and 2% refuse 

with a reason. Then they randomly chose 22 from 56 articles that seemed to have enough 

information to replicate, but even then 4 out of the 22 papers could not be replicated 

due to insufficient information or intensive hardware and conditions like computation 

requirements. 

 

As my research focuses on agent-based simulation, in each area the simulation issues 

will be discussed first. Then the remaining discussion in each area is ordered according 

to the scale of the related findings and then to the year of publication. In the end, 

simulation issues in agent-based simulation will be discussed. 
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3.3.2.1 Issues in business research and forecasting 

For simulation in economics, Kleiber and Zeileis (2013) reviewed a total of 40 papers 

in volume 23 (2008) and 15 papers in volume 153 (2009) focusing on empirical studies 

of the Journal of Applied Econometrics (JAE) and the Journal of Econometrics (JOE) 

respectively. They want to be aware of the reproducibility in econometrics. There are 

33 out of 40 papers in JAE and 14 out of 15 papers in JOE using simulation in 

econometrics research. Neither of the journals requires the code of the model. From the 

review of these published papers, they found lots of essential information for replication 

is not available. 12 out of 15, which is 80% of the papers in JOE have not provided any 

data information and the remaining 3 have not used any data. That means none of the 

paper in JOE provides detailed data information in the paper. Compared to the results 

in JOE, the JAE is much better, as all of the papers provide information related to the 

data, except three of them have not used any data. 69.7% and 92.9% of papers in JOE 

and JAE have not provided files related to replication. And only 15.2% and 7.1 % of 

papers in JOE and JAE provide the information related to the random seed.   

 

Except for papers that discuss issues in simulation specifically, replicating issues in 

business research in general will be introduced. Business usually refers to accounting, 

economics, finance, management, and marketing. Firstly, Hubbard and Vetter’s (1996) 

paper includes all five areas of business research. Hubbard and Vetter did a statistical 

analysis about published replication and extension studies involving empirical work in 

18 leading business journals from 1970 to 1991, a period of 22 years. They aim to 

identify how common the published replication and extension research work in these 

areas. Also through finding out the reproducibility in the areas to prove if the research 

results are non-repeatable fragile work. And hence to conclude if the research works in 
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these areas can give sufficient knowledge to help to build and develop in both practical 

and theory in this area. In the accounting, economics and finance areas, the replication 

and extension research in published empirical papers represent less than 10% of all 

empirical work. In marketing and management areas, the percentage of replication and 

extension studies in published empirical papers is as low as 5%. Moreover, the 

replicated results are usually not similar to those of the original studies. Hubbard and 

Vetter’s paper tried to include all empirical replication and extension research results. 

The standard for the success of replication is not clear in this paper. They reviewed 

various replication and extension work from each other and different empirical work 

involved. The exact match is still hard to achieve. Therefore I think most of the works 

involved in H&V’s (1996) paper treated distributional equivalence as the success of 

replication or rational alignment at least. 

 

Two further papers addressed the replication issues generally in economics research and 

marketing research. Chang and Li (2015) replicated 67 papers focusing on gross 

domestic product (GDP) in 13 well-known journals. They tried lots of replication in 

economics to find if the papers in economics have reproducibility or not. The standard 

for replication success in C&L’s work is demonstrated clearly: rational alignment is 

required. Their results show that the reproducibility in such economic papers is negative. 

This means more than half of the papers’ results cannot be replicated. In total, only 29 

out of 67 (43%) are replicated successfully. Six out of the sixty-seven papers do not 

have publicly accessible data and cannot be replicated. In the 29 successfully replicated 

papers, 22 papers out of 67 (33%) are reproducible without contacting the original 

authors during the replicating process. This indicates the process descriptions in the 

papers are not detailed enough to replicate and 7 papers cannot be replicated 
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successfully without the help of the original authors. Although the result in Chang and 

Li’s (2015) paper is negative, the percentage of successful replicating rate in Chang and 

Li’s (2015) paper is much higher than that of previous work which just focuses on a 

single journal: Dewald et al. (1986) found a successful replicating rate of 13% (7 of 54) 

with the help of the authors in the American Economic Review, while McCullough 

(2006) found a successful replicating rate of 8% (14 of 186) without contacting the 

authors in the Journal of Money, Credit and Banking.  

 

Evanschitzky et al. (2007) tried to identify any changes in the replicating rate in 

marketing from three leading US journals after the emphasis on replication studies in 

editorial policies. Hubbard and Armstrong (1994) had similar research previously 

before the emphasis on replication studies in editorial policies. This study tried to find 

the change after the emphasis on reproducibility by comparing this study and the 

previous one. The average rate of replicating with extensions in three leading journals 

from 1974-1989 is 2.4% in Hubbard and Armstrong (1994). This rate reduces to 1.2% 

from 1990-2004 in Evanschitzky et al. (2007) after H&A’s (1994) publication. This 

indicates that after the emphasis on replication studies was introduced, and the 

replication rate is still very low and even lower than in previous years. The standard for 

the replication success varies from each other’s in Evanschitzky et al.’s (2007) paper as 

it generates results based on several papers with replications. The exact match is hard 

to achieve, then I think the standard of distributional equivalence or rational alignment 

at least is required. The reproducibility increases in the extension studies from 1974-

1989 compared to the studies from 1990-2004: the percentage of original results’ 

confirmation increases from 15% (1974-1989) to 44% (1990-2004), and only 22% 
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(1990-2004) of extension studies disagree with the original results, a decrease of 60% 

(1974-1989).  

 

Turning to research in economics, a paper of one single replication is discussed. 

Herndon et al. (2014) replicated a famous paper in economics written by Rogoff and 

Reinhart (2010). Rogoff and Reinhart (2010) claimed that GDP growth would be 

reduced when the debt/GDP ratio exceeds 90%. This finding supports the austerity 

policy in the US and Europe to reduce the high debt level. However, Herndon et al. 

(2014) refute this finding by replicating. Herndon et al. found a number of errors in 

Rogoff and Reinhart’s (2010) paper. First, there are some problems with the dataset. 

The dataset is not adequate; some debt/GDP ratio is missing for some particular 

countries in certain time periods. Some data are excluded without appropriate reasons 

and these data are essential to influence the final findings. Second, there is a coding 

error in the spreadsheet calculation which excludes the entrance of five countries, which 

affects the summarizing process and final results. Third, the weighting of each category 

is questionable. In high debt ratio categories, the UK data lasting for 19 years weighs 

the same as the New Zealand data for just 1 year. This replication failed even at the 

rational alignment level.  

 

After replicating issues discussed with respect to business, the discussion will focus on 

the issues in forecasting. Boylan et al. (2015) replicated a famous paper by Miller and 

Williams (2003) based on a time series model that is using shrinking estimators in 

seasonal factors. They chose Miller and Williams’s paper (2003) is because it won an 

outstanding paper award. And they choose to replicate it because they want to be aware 

of the reproducibility in forecasting. Two teams tried to replicate the paper. One of the 
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teams used MATLAB and the other one used visual basic in Excel, as the original paper. 

Team A contacted the authors twice to produce the first and second sets of results. Team 

B produced their first set of results based on their own understanding of the original 

paper. Team A’s second set of results disagreed with Team B’s first set of results. After 

the communication between these two teams, Team B obtained their second set of 

results with additional information provided by Team A, and Team A obtained their 

third set of results following Team B’s steps. However, the results across the teams still 

did not match. On investigation, the teams found that the result in Excel stops in the 

local solutions and thus Team B used a different smoothing factor. Then Team B 

updated their results again and finally they had got similar results in their third set of 

results. However, the final agreed results of the two teams are still not similar to the 

original paper. This replication failed even at the rational alignment level. 

 

3.3.2.2 Issues in network and communication 

In network and communication, Pawlikowski et al. (2012) reviewed the 2246 papers 

related to stochastic simulation model on telecommunication network in the 

proceedings of the IEEE INFOCOM (II) between 1992 and 1998, the IEEE transactions 

on communications (ITC) between 1996 and 1998, the IEEE/ACM transactions on 

networking between 1996 and 1998 (ITN), and the performance evaluation journal (PEJ) 

between 1996 and 1998. They mainly focus on two aspects to ensure reproducibility 

that is a random generator and also output analysis. The review shows that the majority 

of papers do not provide the results related information, for example, the time horizon 

information on a certain result or not properly statistically analysed the potential 

statistical errors in results such as using a confidence interval. The percentage of papers’ 

results not includes such information or not properly analysed is 76.6% in II, 79.05% in 
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ITC, 71.6% in ITN and 68.6% in PEJ, separately all over 68% and averagely 76.45%.  

More than 52% of papers do not provide information about simulation type about 

whether they are terminating or steady-state. Joerer et al. (2012) reviewed conferences 

between 2009 and 2011 in intervehicle communication. They selected 116 papers of 

simulation from more than 1000 papers related to intervehicle communication with 

short-range communication and found out the missing information in parameter settings. 

In the simulation of vehicular networks, it is essential to clarify the medium access 

control (MAC) protocol to indicate the protocol used in order to match the physical 

layer technology. Still, about 15%, 30%, 20% of papers in 2009, 2010 and 2011 do not 

clarify the MAC protocol they used. Road traffic simulator is a factor to model different 

granularity like vehicles’ average speed and so on, but nearly 40%, 47%, 60% of papers 

in 2009, 2010 and 2011 do not mention this. Scenarios of vehicle network are mainly 

categorised in highway and city with a detailed description. In the city, about 7% of 

papers, and on the highway, about 27% of papers do not introduce the scenarios in detail.  

 

Kurkowski et al. (2005) reviewed the papers from 2000 to 2005 related to mobile ad 

hoc networks (MANET). They did this study to be aware of the state of MANET 

simulation. They mainly focus on the missing information that is mattered in the studied 

but is ignored in the published papers. Totally, 114 out of the 151 papers in MANET, 

which is 75.5%, use simulation as a tool. In these 114 papers related to simulation, some 

replicating issues are found. 66 papers, which are 57.9%, do not even mention the 

simulation type of their research, whether they are terminating or steady-state. Besides, 

authors generate terminating results from the steady-state simulation or the other way 

around. In the review, only eight of the simulation papers, which are only 7.0%, mention 

the bias in the initialization process. And all eight papers are deleting data based on 
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unreliable arbitrage. In simulation related to MANET, the simulator is one of the 

essential parameters that will influence the output. Still, 34 papers, which are 29.8% of 

the overall, do not value the simulator clearly in their description. Even worse, none of 

the papers discussed the pseudo-random number generator, also known as PRNG. For 

these simulation papers, the numbers of simulation runs are important factors to be 

mentioned. But, in MANET protocol simulation papers (109/114), only 39 of the 109 

which is 35.8% mention that. Also, for the graphic result (112/114), 12 out of 112 papers 

draw a graph without legends or labels. Besides, 28 out of 112, which is 25.0%, draws 

a graph without clear units. These missing information found in these papers will 

directly influence not only the accuracy of replicating the process and also the result 

comparison. 

 

3.3.2.3 Issues in social science and ecology 

For the simulation in social science research, Rahmandad and Sterman (2012) surveyed 

the published articles from 2010 to 2011 in the system dynamics review. They mainly 

focus on whether the essential parts like equations and parameter settings are included 

in the published papers or not. All in all, not all of the papers include the simulation 

results. Only 27 out of 34 include simulation results. And for these 27 papers, some of 

them do not include information such as equations and parameter settings. Only 34 % 

of them do have all equations and 7% of them have partial equations; for units in the 

equations, 67% of papers contain no complete equation units, while 11% of papers have 

partial information of units for the equations; 70% of papers, which is 19 out of 27, 

provide the parameter value; 30% of papers, which is 8 out of 27, do not introduce the 

scenarios and parameter settings for results and 19%, which is 5 out of 27, do not 

introduce them clearly. The results agreed at the distributional equivalence level.  
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Hales et al. (2003) conclude the Model to Model workshop and found two replication 

ones in social beliefs related to money as a medium exchange and social science: Juliette 

Rouchier’s one and Edmonds and Hales’ (2003) one. Juliette Rouchier tried to replicate 

Duffy and Ochs’s (1999) agent-based model, which originally proposed by Kiyotaki 

and Wright (1989). After the email contacts with Duffy, she fails to replicate the model. 

There is no detailed description for this replication. Therefore the replication standard 

applied for this one is hard to judge. Nevertheless, it should be at least at the rational 

alignment level. Edmonds and Hales’ (2003) one is a successful agent-based simulation 

replication which will be introduced later in 3.3.3. 

 

For the simulation in ecology, Lauzon-Guay and Lyons (2011) tried to replicate 

Munguia et al. (2010) model. It is a simulation model in ecology. They built a model 

with four species within the benthic community to investigate how the disturbance, 

dispersal, and competition will influence the distribution and abundance. As a result, 

they cannot replicate the model findings successfully. In the original model, they think 

the abundance of species is mainly influenced by disturbance and dispersal. But in the 

replication model, they find, interspecific and intraspecific competitions are also 

important. Therefore, in this replication, some findings are not agreed with each other 

even at the rational alignment level. They argue that it is impossible to repeat others’ 

work without plenty of guesses and assumptions. 

 

3.3.2.4 Issues in biomedical and ecological science 

A proposed framework in medical research to calculate the reproducibility, including 

the level of study power and bias, the number of other studies, the probability of no 

relationship of the relationship study, shows it is hard for the calculation of 
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reproducibility to be more than 50% (Ioannidis, 2005). Hence, Ioannidis concludes that 

most published papers maybe not valid. This makes replicating processes essential to 

confirm the results in this area. 

 

3.3.3 Issues in agent-based simulation 

In the simulation, the checking process is emphasised as well. Replication is a type of 

checking process. This is similar to other non-simulation ones: the errors in the data 

analysis can lead to misleading results, for example, the replicating issues found by 

Herndon et al. (2014) which explained in detail in 3.3.2.1. Also, the assumptions in the 

paper can influence the results as some data are excluded from the original data set 

(Herndon et al., 2014). This can be the same issue as in the simulation replicating 

process. The issues in science replicating are similar, so the problems and solutions in 

replicating are similar too. The issues found in other subjects in science also applies to 

simulation. 

 

The issues for agent-based simulation generally are mentioned by Janssen (2017). 

Janssen (2017) reviewed agent-based model papers between 1990 and 2014. He 

concentrates on code sharing of models’ issues in a total of 2367 papers. Furthermore, 

he focuses on how these models are described in three aspects: how the description is 

ordered; how the relationship is visualised; how the algorithms are listed. Only 236 

papers, which are 10% of the total, have public access to the model code. Especially in 

two journals Physic A and Environment and Planning B, there are 103 papers in Physic 

A and 30 papers in Environment and Planning B in total, but 0% of the model code is 

provided for both journals. For the software implementation information, only 52% of 
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journal papers provide such information. For the model description part, 93.3% of the 

models are described in order. 6.7% of the papers follow the ODD (Overview, Design 

concepts, and Details) protocol proposed by Grimm et al. (2006). The ODD protocol is 

a detailed guideline for model description which will be discussed in detail in Section 

3.5. 34.2% of models use the flowchart to describe a relationship. 3.2% of models use 

the unified modelling language diagram. 53.5% of models using mathematic description, 

10% using source code, and 9.7% using pseudo code. 

 

Will and Hegselmann (2008) replicated a model for building trust among distant people. 

In the original paper (Macy and Sato, 2002), the main finding is that US social mobility 

may cause a breakdown in public trust. In the prisoners’ trust game, if they do not trust 

each other they will choose to exit the game. Will and Hegselmann replicated this agent-

based model twice using different software, each has Netlogo and Fortran 95, by using 

the same set of random numbers. They tried to replicate this model because they are 

interested in mobility. However, they cannot replicate the result even at the rational 

alignment level. They think this is because there is some information missing for the 

transaction cost. There are some successful examples in agent-based simulation as well. 

 

Legendi and Gulyas (2012) replicated a paper about agent-based modelling in 

macroeconomics that describes labour consumption and credit market in relation to 

firms, banks and households. They used replication to validate the original results by 

trying different parameter settings. And also, they tried the model in alternative 

implementation by using both Matlab and Java. This gives them a chance to validate 

the results in a different environment. And also, they can compare the different running 
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times in a different environment with different runs to identify the efficiency of Metlab 

and Java. Then they can suggest how to speed up the running time. The original and 

replication results are shown in the same graph for production, rate of unemployment, 

interest rate and so on. The replication was successful with the same graphical patterns 

(distributional equivalence) with some adjustments. 

 

Wilensky and Rand (2007) replicated a similar agent-based model proposed by 

Axelrod-Hammond to study ethnocentrism. As they think replication is an important 

scientific method, there are not lots of replication work have done so far. Then they 

attempt to replicate a simulation model as a case study. The agents have three traits in 

this model. The first trait indicates the agent’s membership in one of four colours. The 

second trait indicates the agents’ strategy when they meet people of the same colour. 

The third trait indicates agents’ strategy when they meet people of a different colour. 

The local area has limited space and has four rules: immigration for new people, 

interaction for helping each other, birth for new reproduction if there is space, death for 

the disappearing of each agent. The results are measured in three ways in last 100 time: 

the percentage of agents choose to cooperate instead of defecting; the percentage of 

agents have chosen to cooperate with agents of own colours and defence with other 

colours; the percentage of agents chose to cooperate with agents of own colours and 

defence with other colours all the time. Their replication seems to confirm the original 

results, although the results are still not an exact match even after several discussions 

with the authors.  

 

Bruce Edmonds and David Hales tried to replicate an agent-based model by Riolo et al. 

(2002) in social simulation and successfully replicated the model, though there are 
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shortcomings in results’ validation found in the original one. Edmonds and Hales (2003) 

replicated Riolo et al.’s (2002) model by applying two different implementations in 

JAVA and SDML. The original one is implemented in JAVA. They (Riolo et al., 2001) 

tried to find how tags which are observable cues or markings, can make cooperation 

happened in evolving agents. Patterns from the replicated one and the original one are 

similar, but the rate for a sudden increase in the donation rate decreased from 3 to 2. 

After they investigated the model more, they found the average donation rate and 

tolerance rate used in the model reduces to zero if they change the rule a little bit. That 

means the high donation rate in the model needs a very specific rule, that is the 

shortcomings in the model. Then the simulation standard for this one is at the 

distributional equivalence level. 

 

3.4 Problems in the replicating process and ways to 

improve reproducibility 

Replicating issues are widely spread in many areas and the replication rate can hardly 

exceed 50% in many areas. However, there are still some successful replicating 

examples in these areas. It is useful to identify problems found in these replicating issues 

and draw upon the successful experience to guide my research.   

 

In these replicating processes, there are three kinds of problems are found: 

1. Papers without data and code are not easy to replicate. There are 23 out of 39 (59%) 

reproducible papers with the information provided, while 6 out of 28 (21%) 

reproducible papers without code and data provided (Chang and Li, 2015).  
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2. Besides replicating problems caused by data and code, Boylan et al. (2015) argue that 

the methods description, measurement accuracy, and software used may also mislead 

in the replicating process. For example, in Will and Hegselmann’s (2008) replication, 

they cannot find a clear description of opportunity and transaction costs. They think 

these may be factors that cause the research to fail. Wilensky and Rand (2007) 

misunderstand the description of agents’ interactions and fail to produce the exact 

statistical results. In Lauzon-Guay and Lyons (2011) replication, the inadequate 

description of equations and methods may be the main factors that cause failure. Culina 

et al. (2018) argue the importance of data interpretation through open data. For 

ecological data, the interpretation only takes place under a certain context. Hill (2015) 

thinks the real number in the binary presentation may cause a problem too. Dalle (2012) 

argues that the limited space in the published papers and hidden parameters may cause 

an inadequate description of the model. 

 

3. Some authors did not respond to requests for additional information about their 

papers (Chang and Li, 2015). In the replicating process, Evanschitzky et al. contacted 

52 authors, but 31 of them did not respond to the email for additional information 

(Evanschitzky et al., 2007). Stodden et al. (2018) contacted 180 authors and 46 of them 

did not respond to emails. Herndon et al. (2014) tried to use publically accessible data 

provided by Rogoff and Reinhart’s website but were unable to identify the data series, 

years and methods used in the paper. They contacted the authors and obtained the 

spreadsheet they used in the paper and consequently, similar results are produced. This 

spreadsheet helps Herndon et al. to identify the errors in Rogoff and Reinhart’s (2010) 

paper discussed above.  
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Based on the problems found in the replicating process, ways to improve the replicating 

issues can be suggested:  

1. The replicating process is needed but vague in some cases. Schooler (2014) suggests 

research should be replicated before it is published to guarantee new results. Wilensky 

and Rand (2007) emphasize the importance of detailed model description, although it 

is hard to check by authors themselves if the description is detailed enough or not. Thus, 

this may need the help of replicators to go through the actual replicating process to 

confirm the adequacy of a detailed description. Evanschitzky et al. (2007) suggest that 

editors should select the important papers to be replicated.   

 

2. The requirements for published papers should be improved. Vines et al. (2014) found 

the data availability was related to the publication year of papers. The older the paper 

is, the less chance the data provided. It is important to have a policy that requires data 

sharing. Yilmaz (2011) and Nature (2014) encourage code sharing in research. 

European Commission promoted new policies such as the probability of access to data 

to make open science real (Burgelman et al., 2019). In addition, Powers and Hampton 

(2019) found that policy change has arisen rapidly to increase the accessibility of code 

and data. Chang and Li (2015) suggest the following: the data and code files should be 

a requirement for a published paper; the software operating system and running time 

should be indicated; the seeds used and random generator should be demonstrated if the 

paper uses random numbers; the file order used to run the program, and raw data should 

be provided. Stodden (2010) gives six suggestions mainly in coding areas in detail about 

how to improve the reproducibility: includes code data simulation and statistical results; 

name each version of code a unique ID and keep it updated; include computer 

environment and software version; use public accessible software for code; provide 
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code and data in a readable format; provide public accessible contact. Francois Gygi 

(2013) emphasises the importance of the software’s openly access to improve 

reproducibility. Boylan et al. (2015) discuss flowchart presentation and code. They 

think that although the code can guarantee an exact replication, it may conceal the errors 

and stop thinking about developing new codes. They suggest that a flow chart 

presentation of the process description is preferable to the code. Liu et al. (2014) argue 

that besides providing the source code, input data, and input parameters, providing the 

compiler, round off errors, and computer version will be helpful. Evanschitzky et al. 

(2007) agree with the previous suggestions to require the data and methods available to 

the public. Also, sensitive analysis from the original paper may be helpful (Wilensky 

and Rand, 2007). Pawlikowski et al. (2012) think that the four elements, which are 

random generators, the type of simulation, method of results analysis and statistical 

errors in results analysis, are important to clearly state. Dalle (2012) suggests that 

decreasing human intervention, using an independent platform solution, providing 

sources code and additional material, improving the review process and avoiding 

floating point can improve the reproducibility of simulation. Ioannidis (2005) thinks 

that before we do a test, it is better to consider if there is really a relationship between 

these factors which we do a test on. The survey (Baker, 2016) shows that three main 

ways to improve reproducibility are: more robust experimental design, better statistics, 

and better mentorship.   

 

3. The general guidelines, standards, and even culture may need to be changed. McNutt 

(2014) suggests an improved guideline to provide a checklist to help researchers to 

maintain reproducibility. Begley and Ellis (2012) argue that raising standards related to 

particular research areas to ensure reproducibility is needed. Ioannidis (2005) thinks 
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interventions are needed in order to ensure reproducibility and agrees with Begley and 

Ellis (2012) that stronger standards are needed. Large-scale collaborative projects are 

encouraged. The shareholders should be understood to find the cause of bias and 

conflicts (Ioannidis, 2014).  All in all, such interventions try to reduce conflicts and bias 

and increase transparency and collaboration. Begley and Ellis (2012) propose an idea 

of developing a culture that values replicating, and they also suggest a change in a 

system that is just chasing ‘a perfect story’. The current system may change to value 

reproducibility more than publications to assure the quality of research findings 

(Ioannidis, 2014). 

 

3.5 Replicating guidelines for simulation 

As discussed before, the guidelines will be helpful to improve reproducibility. Then the 

replication guidelines for simulation will be discussed in the timeline. And it will be 

helpful for my replication research on how to write my replicating models.  

 

Grimm et al. (2006) propose a model description guideline for agent-based models in 

ecology called ODD (Overview, Design concepts, and Details). They proposed this 

guideline because before, there is no such detailed protocol to follow and equations for 

the model are sometimes just described verbally. They believe that the way researchers 

describe the information matters. For example, in a sentence, readers usually expect that 

the opinions are demonstrated at the end followed by the context at the start. Thus, 

writers better state their opinions at the end rather than at the beginning. Grimm et al. 

(2006), 28 experienced authors from seven different countries, who totally write over 

200 papers, proposed a detailed guideline that includes overviews, design concepts, and 
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details. This is also known as the ODD protocol. In the overviews which stand for O, 

purpose, state variables and scales, and process overview and scheduling are included. 

Purpose comes first to help readers understand what this model is about and why this 

model is built. State variables and scales come to the second to help readers understand 

the model structure by listing the variables and scales used in the model. Process 

overview and scheduling help readers to understand the model process, and the order of 

the process with state variables’ updates. Design concepts that stand for D include the 

general concepts for the model design, like the questions about the emergence and 

interactions among the agents. For the details which stand for D, initializations, input 

and submodels are included. After the basic background demonstrated in the overview 

(O) part and the understanding of the design concepts (D), the details (D) will be 

described. In the detail part, the initializations which stated how the model gets started 

for a simulation run come to the first. Input which is what you used in the input file to 

run the simulation comes to the second. And then, submodels related to the process 

overview and scheduling are listed and explained in detail to give a whole picture of the 

model process. Overall, this guideline focuses mainly on the model description part and 

how to describe the model in an order with a sample application in the ecology area. 

The output analysis is ignored in this guideline. They are trying to keep updating the 

ODD guideline, and the second update was published in 2020 (Grimm et al., 2020). 

 

Rahmandad and Sterman (2012) suggest four aspects of guidelines that mainly focus on 

system dynamic modelling. Although the guidelines have developed from years to years, 

there is no related one to system dynamic modelling in social science. After reviewing 

all articles published in System Dynamic between 2010 and 2011, they proposed a 

guideline for system dynamics in social science in four aspects. They are general 
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visualization guidelines, model reporting requirements, simulation experiment 

reporting, and optimization experiment reporting. For general visualization guidelines, 

the graph demonstrating the dynamic system process is required. For model reporting, 

clear data and model descriptions are required. For experiment reporting, the steps for 

each process, related scenarios, and sensitivity analysis need to be clearly illustrated. 

For optimization reporting, the optimal objective and search algorithm and the result 

should be mentioned. Rahmandad and Sterman (2012) suggestions are specifically 

based on system dynamics, as certain opinions in the visualization guidelines and 

optimisation reporting may not be applied in the agent-based models.  

 

Kamon et al. (2012) proposed a guideline in discrete event simulation of the health care 

area. They proposed a guideline with good examples in five stages, which is discussed 

and improved by members of the Task Force. The stages are structure and design, 

parameter estimation, model implementation, analysis, representing and reporting. In 

the structure and design stage, the representative system and the event which is related 

to the system are explained. In the parameter estimation stage, different types of 

variables are considered in the disease course, decision algorithms, resource and health 

condition costs, and weight of quality life. In the model implementation stage, it is the 

process to transfer the first stage (structure and design) into the computer process. In 

the model analysis stage, mean and distribution value and also optimization analysis 

can be analysed if needed to give estimations or meaningful suggestions answering why 

you design the system. In representing and reporting stage, check the representation of 

the model to check if there is some unrealistic result that may influence the validation 

of the model. Diagrams should be included in reporting the structure and function. This 
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guideline focuses on discrete event simulation in the health care settings which are too 

detailed to be applied in the agent-based simulation to some extent. 

 

Kleiber and Zeileis (2013) suggest that authors should pay attention to five aspects of 

the econometric simulation. They developed a new guideline because there is no widely 

accepted guideline in this area. They reviewed the articles in two leading journals in the 

econometric area recently and proposed a new guideline. The five aspects are model 

description, technical information, code, replication files and results generating from 

the simulation. The model description requires a detailed description of the model itself. 

But in this paper, what elements should be included in the description are not in detail. 

Technical information requires computation information such as software versions and 

environments. The code requires that the code should be provided. Replication files 

require functions in the computer process to get all the tables and figures. Results 

generating from the simulation require that the simulation result should be provided in 

a file. Suggestions from Kleiber and Zeileis (2013) do not include enough detailed 

information in each rule. And the information is not comprehensive that makes the 

guidelines hard to follow.  

 

Monks et al. (2019) think guidelines will help to improve reproducibility. Although 

until then, there are lots of useful proposed guidelines in simulation, there is no one 

especially for the operational research area. Then they examined guidelines and 

proposed an initial version. And then, the initial version was discussed and edited with 

four experts in this area. Detailed checklist guidelines are proposed by them in 

simulation: discrete event simulation, system dynamics and also agent-based simulation. 

For agent-based simulation, the guidelines are divided into six parts: objectives (1.1-
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1.3), logic (2.1-2.5), data (3.1-3.4), experimentation (4.1-4.3), implementation (5.1-5.4) 

and code access (6.1). The number in the bracket indicates how many elements are 

included in each part and it will be listed in Table 6.1 in Chapter 6. Things that need to 

be done in each part are detailed described to check if the paper provides enough 

information for the objectives, logic and so on. Taylor et al. (2019) apply the STRESS 

guideline to a simulation model to demonstrate how to use the guideline. 

 

Grimm et al.’s ODD protocol is used as a guideline for 6.7% of replication papers which 

are found in Janssen (2017). It is a detailed and comprehensive guideline for the 

modelling part. Monks et al.’s (2019) STRESS guideline is specifically for simulation 

and for each type of simulation, it has a specific checklist. Therefore, the proposed 

replication guideline for my replication models combines the ODD and STRESS 

guideline with some modifications, which will discuss in Chapter 6.  

 

3.6 Replicating as a method in my research 

Despite the fact that the importance of replicating method is discussed a lot to enhance 

reproducibility, the current system is not sufficient to ensure it. Replicating issues are 

common in many subjects. In business, replicating papers are not very common and the 

success rates of replicating models are rarely higher than 50%. And the problem is not 

an exceptional case. Similar replicating issues are also found in forecasting, social 

science, network and communication, biomedical and ecological science. The success 

rate of replicating in these areas is low and there are some secondary papers based on 

non-reproducible results from published papers. Also, there are some problems that may 

be found in the replicating process: no data or code needed, no detailed description of 
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methods or measurements, the authors do not respond to emails. This makes replicating 

even harder. Papers need to increase reproducibility in order to help the replicating 

process. Guidelines to maintain reproducibility should be provided, and also 

interventions to reduce bias like large-scale collaborative projects. The stronger 

standards like requiring the code and data and also the culture in which value 

reproducibility more is needed. The problems and solutions discussed in Section 3 will 

guide my research in the replicating process. In this section, replicating as a method in 

my research will be described in detail.  

  

There are four steps in my research: 

1. Selecting: two herding papers will be selected based on the level of model 

description and the model type. 

2. Checking: the models will be built based on the papers to check if the results 

can be reproduced or not. 

3. Extending: an extended model will be produced to obtain a more detailed 

understanding of the models through new experiments and analysis.  

4. Comparing: after reproducing the papers, the results will be compared to see 

under what conditions similar results are obtained. 

 

Choosing replicating as a method has many benefits in my research particularly: 

1. Building a model is actually helpful to understand the internal interventions 

and parameter settings. Hence, it is useful to reach the research question. 

2. It includes a check process to ensure that the general rules are based on 

reliable conclusions. Some papers may not reproducible, and then our 

conclusions may be based on the wrong findings. 
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3. The model is needed to do some extension and sensitive analysis 

experiments. Thus, building a replicating model is essential. 

 

In summary, this research is based on a positivist perspective and uses replicating as a 

method to understand the herding and replication issues. Many replicating problems are 

found in both science and modelling, which makes replicating vital. Through discussing 

the problems and ways to improve reproducibility, replicating guidelines are one of the 

useful potential ways to improve the situation.  

 

Other research approaches could be taken. For example, replicating could be examined 

by a review of a large number of papers to assess what details are provided. Herding 

and stylised facts could be investigated by analysis of empirical data or by developing 

new models. The method used here was chosen to enable a detailed study of the ability 

to replicate the chosen papers. The limitation is that reproducing simulation models is 

a difficult and time consuming task and so this limits the number of models that can be 

studied. However, the benefit is that it gives a good understanding of how the models 

work and so this leads to the further analysis of the herding mechanisms in the models. 

 

The next two chapters use replicating to study two herding models with different 

herding and price mechanisms. The model in Chapter 4 has a herding mechanism of the 

agents tending to copy the most successful trader (the “guru”). Agents trade with each 

other. The model in Chapter 5 has three different types of agents (fundamentalists, 

optimistic noise traders, pessimistic noise traders) and uses a price structure based on 

excess demand. The first stages in each case were to try and reproduce the model and 

the results from the original paper. For the description of the model in Chapter 5, the 
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STRESS guidelines were applied. Then additional analysis was done to try and improve 

the understanding of the particular herding mechanism and how it produces the stylised 

facts. This was done by running some extra experiments and making some changes to 

the models. Examining the mechanism is a good way to study herding, although because 

of the complexity of the inner connection among agents and mechanisms, it can be hard 

to understand the reasons behind certain stylised facts. 
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Chapter 4            

First replicating model 

 

The first replicating model is based on Tedeschi et al. (2012)’s original model in their 

paper called ‘Herding effects in order driven markets: The rise and fall of gurus’. The 

argument behind their model is that traders tend to imitate the expectations of the most 

successful trader (the guru) and this creates a herding effect. The model is based on the 

behaviour of “zero intelligent agents” (Gode and Sunder, 1993), where traders are 

trading according to random behaviour. In addition, there is also the effect of the guru 

who is the most successful trader and has the most imitators. The imitators simply copy 

or follow the guru’s future expectations. 

 

The market structure of this model is based on the fact that agents trade with each other. 

Each trader can view the current bid (buy) and ask (sell) price and submit a market order 

or a limit order. A market order is an order which can be traded immediately with 

another agent either fully or partially. A limit order is an order which cannot be traded 

immediately because no other agent is willing to trade. Instead, it is added to the order 

book.  

 

Three main aspects are investigated with this model. One is to replicate the model and 

the results from the original paper. As discussed in Chapter 3, model replication is very 

important in modelling to give confidence in the results from scientific studies. 
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The second aspect is the model description. There is a contrast here with Chapter 5. The 

STRESS guidelines set out in Chapter 3 are applied in Chapter 5 but not in this chapter. 

This shows how the description works without guidelines. The experience of comparing 

the description work without (Chapter 4) and with (Chapter 5) the guidelines will be 

discussed and evaluated in Chapter 6. 

 

The third aspect is to extend the understanding of the model. An altered model is 

established to try and understand the differences between the replication results and the 

original results. The aim is to get a better understanding of the reasons for the initial 

price dropping behaviour in the model. 

 

The model is described in Section 4.1 and this is divided into four aspects: initialisation, 

the network, the expectation formation mechanism, and the market. All the parameter 

settings follow the original paper and the details in Section 4.1 are obtained from 

Tedeschi et al. (2012). Any aspects that are not clear in the paper are mentioned in this 

section. 

 

In Section 4.2, the results based on the replicated model are analysed and compared 

with the original results. Unfortunately, I was unable to get the same answers as the 

original paper. The main problem in my results is the pattern of the price dropping 

quickly once the simulation starts. In the original paper, the price does drop quickly 

from 1000 to about 500, but it then stabilizes with fluctuations around 500. The price in 

my model just keeps dropping to nearly 0. One possible cause of the problem may be a 

lack of information on some parameter values in the original paper. Even after 



83 

 

contacting the paper’s authors, there was still not enough information to replicate the 

original results exactly. Problems in replicating this model will be discussed further in 

Chapter 6. 

 

One important aspect of the original model is the utility function which affects the 

trader’s order decision. This is not particularly realistic and was probably the cause of 

the price dropping behaviour. I therefore, produced an altered model with another 

function that replaces the utility function in the original model. The altered model is 

described in Section 4.3.1 and 4.3.2 and the results for the altered model are analysed 

in Section 4.3.3. 

 

4.1 The model description 

4.1.1 The initialisation and model overview 

The initialisation settings are stated here. The total number of agents is 150, and they 

have £100,000 in cash and 100 stocks at an initial price of £1000 each. In the original 

article, the initial value stated for cash is £100. This is not plausible as not even 1 stock 

can be bought unless the price drops down to less than £100. This appears to be an error 

in the article. There are two reasons for setting cash to £100,000: one is because in this 

case traders own half cash and half stock which is consistent with the settings in the 

Chiarella et al. (2009) paper which guides the market mechanism in Tedeschi et al. 

(2012), and the other is the graphs for wealth analysis (Tedeschi et al., 2012:90) which 

show the starting point as £200,000 for wealth. The simulation runs for 1000 time 



84 

 

periods. The flow chart (Fig.4.1) below illustrates the steps the model follows.  

 

Figure 4. 1 Flow chart of the model 

As seen in Figure 4.1, the flowchart of the model starts with initialisation. All agents 

are initialised with the same cash and with the stock level at the price of £1000. Network 

connection (in Section 4.1.2) is initialised randomly at the start. Then the network is 

built following the instructions in Section 4.1.2. In the expectation step, the expected 

return is built following the instructions in Section 4.1.3 based on the network. Finally, 

in the market step, based on the expected return, agents decide the expected price and 

then the number of stock they want to hold as in Section 4.1.4. The order amounts they 

want to buy or sell are agreed and the order prices they want to submit are formed by 
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the expected price and the cash they hold. They then submit their order into the order 

book to trade. After the trade, the wealth of each agent is updated as is the price. If the 

time t is less than 1000, the time is updated to t+1, and the network, expectation, and 

market are rebuilt correspondingly in the next periods with the same rules introduced in 

Section 4.1.2, 4.1.3, 4.1.4. If the time t is equal to 1000, then this simulation is ended. 

In all equations, symbols with the superscript i indicate the values are different for each 

agent. 

 

4.1.2 The network 

The network is the structure of the model to enable communication among the agents. 

All agents are nodes in the network and the edges are the communication links. For each 

node, there is just one out-going link to keep it simple. This constrains the system so 

that one agent can just get advice from one other agent.  

 

The directions of the links define the imitating relationship between the two agents. 

Supposing there are two agents called Agent 1 and Agent 2, and the link between them 

goes from Agent 1 to Agent 2. The link represents Agent 1 imitating Agent 2, who is 

called the neighbour of Agent 1. Information transfers the opposite way in that Agent 1 

uses information from Agent 2 to make trading decisions. The diagram (Fig.4.2) below 

illustrates the interaction between Agent 1 and 2. 
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Figure 4. 2 The interaction between Agents 1 and 2 

The network is randomly chosen for initialisation at the start. Changes to the network 

are based on a simple wealth fitness function. At the start, all agents are in the same 

position with the same cash holding and stock holdings as given in Section 4.1.1. In all 

the formulae here, the superscript i is the particular agent i from 0 to 149 (150 agents), 

and the subscript t is the time t from 0 to 1000.  

 

The wealth is equal to the current value of the stock plus the cash holding in the 

following equation (4.1): 

(4.1)  i i i

t t t tW S p C= +   

where W, S, C and p with subscript and superscript are the symbols of wealth, stock, 

cash and price. Thus i

tW  is the wealth for agent i at time t. p does not have a superscript 

because all agents are faced with the same price at a certain time.  

 

The fitness function simply measures the level of wealth for each agent relative to the 

wealthiest agent, as shown in equation (4.2): 

(4.2)  
max

i
i t

t

t

W
f

W
=     
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In equation (4.2),  f represents the fitness value, max

tW is the wealth of the agent who has 

the most wealth of all agents at time t. Hence, for agent i, the more wealth agent i has, 

the larger the fitness.  

 

A probability function based on the fitness function changes the whole communication 

network. Each agent has an existing assigned neighbour from the previous period. At 

the beginning of each period, a potential new neighbour is chosen for each agent 

randomly. Each agent is faced with a choice of keeping the existing neighbour or 

changing to the new neighbour. As this choice is made randomly, the probability 

function in equation (4.3) gives the probability of a switch to the new link. The 𝑃𝑟
𝑖 with 

a superscript in equation (4.3) is the symbol of agent i’s probability of switching to the 

newly formed link. The probability of keeping the existing link is 1 -
 
𝑃𝑟

𝑖.  

(4.3)  ( )

1

1
i j k

t t

i

r f f
p

e
− −

=
+

   

In equation (4.3), i is a random number sampled from the uniform distribution with a 

minimum value of 5 and a maximum value of 45 for each agent i. This random number 

protects against locking if an agent always imitates the same guru. The superscript k is 

the existing neighbour of agent i, and j is the potential new neighbour of agent i. The 

higher the fitness value for the new agent, the more likely he would be imitated, and 

hence the agent has more chances of becoming the new guru.  

 

The probability function makes the sum of two probabilities based on two fitness 

differences which are minus x and plus x equals to 1. This is when one fitness difference 
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is -0.2 and one fitness difference is 0.2, the total probabilities of these two fitness 

differences are 1. This keeps the new and existing neighbour agents consistent as if the 

absolute differences of the fitness and beta are the same and the probabilities of linking 

to the agent with greater fitness are the same. A more detailed explanation follows after 

Table 4.1 below.  

Beta/Difference -0.3 -0.2 -0.01 0.01 0.1 0.2 0.5 0.8 

5 0.1824  0.2689  0.4875  0.5125  0.6225  0.7311  0.9241  0.9820  

10 0.0474  0.1192  0.4750  0.5250  0.7311  0.8808  0.9933  0.9997  

15 0.0110  0.0474  0.4626  0.5374  0.8176  0.9526  0.9994  1.0000  

20 0.0025  0.0180  0.4502  0.5498  0.8808  0.9820  1.0000  1.0000  

25 0.0006  0.0067  0.4378  0.5622  0.9241  0.9933  1.0000  1.0000  

30 0.0001  0.0025  0.4256  0.5744  0.9526  0.9975  1.0000  1.0000  

35 0.0000  0.0009  0.4134  0.5866  0.9707  0.9991  1.0000  1.0000  

40 0.0000  0.0003  0.4013  0.5987  0.9820  0.9997  1.0000  1.0000  

45 0.0000  0.0001  0.3894  0.6106  0.9890  0.9999  1.0000  1.0000  

Table 4. 1 Probability of choosing the new link 

 

From Table 4.1, the row is the fitness difference and the column is beta. For agent i, if 

the existing link is agent k and the new neighbour is agent j, the difference fitness for 

agent k and j is -0.2, the beta is 5, the probability for changing to a new neighbour j will 

be 0.2689. The probability for keeping the existing link is 1-0.2689 = 0.7311. For 

another agent i called agent 2, if the existing link is agent j and the new neighbour is 

agent k, the difference fitness for agent j and k can be known as 0.2, if the beta is 5 as 

well, then the probability for changing to a new neighbour k is 0.7311. This is the same 

as what has been calculated and means that if the absolute differences of the fitness and 
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beta are the same, the probabilities of linking to the agent with greater fitness are the 

same. Also, from Table 4.1, when beta gets bigger, if the fitness difference is big, the 

probability is close to 0 or 1.  

 

4.1.3 The expectation 

The agent’s expected return is based on the agent’s idiosyncratic expected return and 

his neighbour’s expected return. Expected returns in this model are the expected values 

of returns in profit for trading the stock.  

 

The returns in these formulae are spot returns with the time interval from time t to time 

t + τ. The τ which is the time horizon for traders to make their expected price is fixed at 

200.  

 

The agent’s idiosyncratic (individual) expectation is based partly on a volatility factor: 

(4.4)  
%

0 ,(1 (1 ))i i

t i tl w = + −  

The i

t is the return’s volatility for agent i at time t, w is a herding factor, and 
%

,i tl  is the 

percentage of incoming links for agent i at time t. 0

i  is a uniformly distributed value 

for agent i from 0 to 0 . Although there is no detailed description of the value of 0 , 

after several attempts to make the replication results closer to the original results, the 

value was decided to be 0.01 and 0 will be further discussed in Section 6.2.1. 
%

,i tl  is the 

total incoming links for agent i divided by the total incoming links for all agents, which 
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is 150 in this case. The herding factor is an experiment scenario setting chosen by the 

modeller to vary the amount of herding.  

 

The idiosyncratic expectation is based on the result obtained from formula (4.4) 

multiplied by a normal noise factor: 

(4.5) ,
ˆi

tt

i

tt

ir + = τ    

The r̂  is the symbol of an agent’s idiosyncratic return and  is a noise term with normal 

distribution N (0,1) with mean 0 and standard deviation 1. The return’s volatility is a 

positive factor to decide how large the volatility of the expected returns can be. The 

noise term decides if the agents are pessimistic or optimistic about the expected returns. 

According to equation (4.4), with the herding factor w smaller than 1, the agents with 

more incoming links can have a higher chance to have a higher return’s volatility. Thus, 

according to equation (4.5), traders who have more imitators have more chances to be 

either too optimistic or pessimistic. 

 

The overall expected return of each agent is calculated by a combination of their own 

idiosyncratic return and their neighbour’s return, as follows: 

(4.6)  , , ,( ˆ1 )ˆi i j

t t t t t tr wr w r+ + += + −τ τ τ  .                                                        

In this formula, r is the symbol of return and ,
ˆ j

t tr +τ  is the neighbour j’s idiosyncratic 

return when agent j is the neighbour of agent i.  
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In equations (4.4) and (4.6), the smaller the herding term w is, the bigger the herding 

influence is. This follows the terminology in the original paper, although it can be 

confusing in the sense that the higher w means less herding. When w gets smaller, the 

return is affected more by the neighbour’s return rather than by the agent’s own 

idiosyncratic return. 

 

When all the agents have their idiosyncratic expectation returns formed as in equation 

(4.5), the return in equation (4.6) is revised in a random order one by one for each agent. 

Once the revised return in equation (4.6) is updated for a particular agent i following 

the random order, the agent’s idiosyncratic return is updated to the revised return, which 

means after the agents have updated their revised returns, their idiosyncratic returns are 

the same as the revised returns. 

 

4.1.4 The market 

The general approach taken in the model is to calculate the ideal stock holding of the 

agent. Comparing this with the actual current stock holding determines how much the 

agent will buy or sell. A utility function is used to find the ideal stock holding. This 

depends on the expected price and on the agent’s estimate of the variance of returns. 

This section explains the detailed mechanisms used and how they are derived.  

 

In the model, the market is an order driven market where agents trade with each other. 

All traders at a certain time period submit an order with a price, the amount of stock 

and a buy or sell position. Traders submit orders in a random sequence to the order book. 



92 

 

The best bid price is the highest buying price and the best ask price is the lowest selling 

price in the order book. Trading takes place when the price of buying is higher than the 

price of selling in the order book. When trading takes place, the best bid and best ask 

will be updated as the orders in the order book are changed. The executed orders are 

called market orders while the orders remaining in the order book are called limit orders. 

At the start, all orders are limit orders until trading takes place. 

 

In the model, each trader has only one active order at time t. In the original paper, all 

orders are kept for 200 time periods and have just one active order for each trader at 

time t (Tedeschi et al., 2012). This may not be that reliable because the price observed 

by all traders at any one time is updated according to the trading taking place in the 

order book based on the updated price, agents’ expected returns and the order they want 

to submit in the order book is changed. The expectation and the order submitted are 

revised each time.  

 

After the expectation is formed by each agent at a particular time t, as described in 

Section 4.1.3, the market can work based on the expectation. The expected future price 

at time t + τ based on the expected return is defined as:  

(4.7)  
,

,
ˆ

i
t tri

t t tp p e  


+

+ =    

The symbol tp  is the market price at the current period t which is known by all the 

traders. It starts at the price 0p  equal to 1000. The traders make a forecast for period τ 

after time t.  
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When the interest rate is continuously compounded, the basic finance equation is 

,

,

i
t tr

t t tp p e 


+

+ = . In the order driven market, each agent submits his order based on 

his own expectations on returns. Therefore, the value of the future price is not exactly 

the same as in this equation. The difference is that equation 4.7 uses the square root of 

time τ. This square root describes a geometric random walk that occurs when traders 

are purely noise traders (Tedeschi et al., 2012). This is consistent with financial theories 

that the price is unpredictable and follows a random walk.  

 

The preferred stock holdings for each agent are deduced using a utility function. In this 

model, the CARA (constant absolute risk aversion) exponential utility function is used 

to get the optimal number of stock holding.  

 

Another well known utility function is CRRA which is the “constant relative risk 

aversion”. The difference between these two utility functions is the type of risk aversion. 

The CARA utility function assumes that risk aversion will not change with wealth or 

consumption, whereas the CRRA utility function assumes that risk aversion does 

change with different levels of wealth or consumption. The exponential function is the 

basic structure for CARA. By contrast, CRRA is an isolated utility function defined as  

𝑢(𝑐) =
𝐶1−𝜌−1

1−𝜌
 for the consumption utility when 𝜌 is positive and not equal to 1. When 

it equals 1, 𝑢(𝑐) = 𝑙𝑜𝑔 (𝑐).  C is consumption and 𝜌 is the risk aversion parameter.  

 

In this model, the CARA utility function is defined as: 
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(4.8)  𝑈(𝑊𝑡
𝑖 , 𝛼) =  −𝑒−𝛼𝑊𝑡

𝑖
 

In this equation, W is the wealth and 𝛼 is the risk aversion parameter that controls the 

investor’s risk preference (Tedeschi et al., 2012). Risk aversion ranges from where α = 

0, and risk is neutral; to α > 0 which indicates risk averse; and α < 0 shows risk-seeking. 

In this model, α is fixed at 0.01, which means agents are risk averse.  

 

When people are risk averse, they prefer a return that is guaranteed rather than an 

uncertain return when these two options have the same expected return or even when 

the uncertain one has a slightly bigger expected return. Risk neutral indicates that people 

treat the two options the same when they have the same expected return. The risk 

seeking investors are prepared to gamble on the uncertain return in the hope of a higher 

payoff even though the expected value is lower. The optimal solution for balancing the 

expected return and risk is decided by the individual’s risk perceived variance. The risk 

perceived variance is determined from the unconditional variance of returns.  

 

As the time horizon τ is 200, the unconditional variance is calculated from the 200 

previous returns. The equation for mean returns is:  

(4.9)  
1 1 1

1 1
ln

t j

t t j

j j t j

p
r r

p

 

 

−

−

= = − −

= =     

r  is the mean spot return based on the previous price. The return from period t-j-1 to 

t-j is the relative change in price (e.g., a price moving from 500 to 505 gives a return of 

5/500 or 1%). The equation uses the logarithm of the price at period t-j divided by the 

price one period before that. This is because the logarithm value is nearly equivalent to 
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, / 1t t tp p+ −  (Tedeschi et al., 2012). The total value of all previous 200-period returns 

is then summed up and the average number of the spot return is obtained through 

dividing the total by 200, the number of periods.  

 

The paper does not state the initial position for the return. At time period 0, there is no 

return as no previous price is available. Also there is not much information to calculate 

the average spot return for the time period less than 200. At time period 1, there is just 

one return value but in equation (4.9), 200 returns are needed. 

 

The unconditional variance then can be calculated by the usual variance formula. The 

variance is based on the returns for the previous 200 periods: 

(4.10)  
2

1

1
[ ]t t j t

j

V r r



−

=

= − .                                                                             

tV  is the unconditional variance based on return t jr −  and average spot return tr .  

 

At the start, in period 0 there is no return to calculate the variance and in period 1 if just 

one period is taken into account, the average spot rate of return is the return itself which 

makes the unconditional variance zero. This is not acceptable as equation (4.12) 

illustrates later as the variance, the denominator, cannot be zero. Therefore, the variance 

is set at 0.001 at the start of initialisation.  

 

The variance for the individual agent taking the network into account is: 



96 

 

(4.11)  
%

,(1 (1 ) )i

t t i twV lV −= −    

The individual’s variance depends on the herding parameter w and the percentage of 

incoming links for that agent. The smaller the w is, the smaller the individual’s variance 

is. This indicates a herding effect which causes a decrease in the individual’s 

unconditional variance. Hence, herding decreases the risk assessment. If the herding 

phenomena in the market increases, the agents are copying each other and so the 

prediction may be less risky because their beliefs are similar. They are confident with 

the information from the other agents.  

 

In addition, the larger the percentage of incoming links, the smaller the variance i

tV  is. 

The percentage of incoming links indicates the level of success of the agent. If the agent 

has more links their prediction will be less risky because others will copy that agent 

making it more likely that the prediction becomes true. 

 

The portfolio which the agent needs to hold to be an optimal solution according to the 

exponential CARA utility function based on the wealth is: 

(4.12)  
,

ˆl )
)

/n(
(

i

t t

t

i

i

p p
p

V p

 +
=

α
.                                                                                    

This equation is derived from the utility function (4.8), with the derivation provided in 

Tedeschi et al. (2012). ( )i p  is the preferred number of stock to hold for agent i at 

certain price p. The optimal solution for stock holdings given the price p is related to 

the risk aversion parameter alpha which is equal to 0.01 in this model, the future 
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expected price ,
ˆ i

t tp +  from equation (4.7), the individual’s variance i

tV   from equation 

(4.11) and the price level itself.  

 

In this model, the 150 traders trade with each other and there is no short selling and 

borrowing. No short selling means that traders are constrained and can only sell the 

stock available at hand; no borrowings constrains traders borrowing money from others 

to buy stock. Hence at each time period, the stock position and cash position for each 

trader are crucial. Equation (4.12) establishes the relationship between the price and 

optimal portfolio amount of stock, and from this the price related to the stock and cash 

position for each trader can be found.  

 

The cash position limits how much a trader can buy. The price at which a trader is 

willing to buy, multiplied by the optimal stock amount at this buying price, cannot 

exceed the total cash. The i

mp , controlled by the total amount of cash is as follows in 

this equation: 

(4.13)  ( ) )(i i

m m

i i i

t tp Sp C − =    

In this equation, i

mp  is the price limit due to the cash position which needs to be found 

and ( )i i

mp  is the optimal stock amount at i

mp . The existing stock amount is i

tS . The 

( )i i

mp minus the i

tS  is the number of stock the trader wishes to have minus the number 

the trader now has and is the maximum amount to buy at this cash position. The smaller 

the price is, the larger the amount the trader can buy with the given available cash. i

mp

is the minimum price for the trader to submit in the order driven market in order to get 
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the optimal buying amount as decided by equation (4.13).  

 

The biggest highest price a trader can submit is decided by equation (4.7) by the symbol

,
ˆ i

t tp + . The reason is that the stock amount for holdings must be positive in this model. 

If the actual price p is greater than this, the stock holding in equation (4.12) will be 

negative. Therefore, the maximum value for order price p is ,
ˆ i

t tp + . In the model, the 

order price p for each trader to submit is chosen randomly from a uniform distribution 

using the interval ( i

mp , ,
ˆ i

t tp + ). Once the trading price is selected, then the amount they 

wish to hold related to this price can be calculated using equation (4.12).  

 

The price *p  relates to the existing stock amount and determines whether the trader’s 

order is a buy order or a sell order. The price *p  is the price at which the trader would 

be happy with their current stock holding according to the utility function. The value of  

*p   can be determined by solving equation (4.14) where the utility quantity from 

equation (4.12) equals the current stock:  

(4.14)  

*

,*

*

ˆln )(
( )

/i

t ti i

i

t

t

p
p S

V p

p 


+
= =   

In this equation, the i

tS  and the denominator are all positive numbers which means *p  

cannot be larger than ,
ˆ i

t tp + . The relationship between the price and stock amount to buy 

or sell is always a negative relationship. The difference of i

tS  and ( )i p  is the amount 

to trade. If the submit order price is more than *p , that means the trader i values the 
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stock at more than *p  . This will lead to a smaller amount to hold where there is a 

negative relationship between price and demand than i

tS which is the demand at *p . This 

makes the trader a seller with an amount to sell at i

tS  - ( )i p . If the submit order price 

is less than *p , the trader values the stock at less than *p . This will lead to a larger 

amount being held compared to i

tS  and will make trader i a buyer with an order amount 

of  ( )i p  - i

tS . In fact, we do not need to calculate *p . We can simply compare i

tS  and 

( )i p . The market mechanisms for order price and amount to trade are summarised 

in Table 4.2: 

 

Table 4. 2 Trading mechanisms (Tedeschi et al., 2012:87) 

In Table 4.2, the t

qa   and t

qb   are the best ask and best bid price in the market. The 

relationship between the different prices i

mp , *p , ,
ˆ i

t tp +  and their related stock level are 

shown in the graph (Fig.4.3) below: 
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Figure 4. 3 The relationship between price ( i

mp , *p , ,
ˆ i

t tp + )  and demand (Chiarella et 

al., 2009:528) 

The first demand related to mp  is t m t

m

S p C

p

+
 , the budget constraint. This graph shows 

the negative relationship between price and demand. The relationship between price p, 

i

mp , *p , ,
ˆ i

t tp + with the related demand amounts, and the buy and sell conditions are also 

illustrated.  

 

When all the above parameters have been decided, the market can start to trade. The 

orders enter the market one at a time in random order. The best bid and best ask is the 

highest buying price and lowest selling price and changes with orders entering and with 

trading happening. When there is no buying or selling order in the order book, the best 

bid or best ask is non-existent. Trading happens when one condition is met: a buyer 

price in the order book is higher than a seller price. The amount to trade is the smaller 

amount of the buyer amount and the seller amount. At each time, one order comes into 

the order book, and then the orders are separated into buy orders and sell orders. For 
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buy orders the prices are sorted from highest to lowest, while for sell orders the prices 

are sorted from lowest to highest. When an order comes in, the trading condition is 

checked. When the first line in the order book meets the trading condition as mentioned, 

trading happens. The amount for the buyer or seller for the first line changes to zero and 

the order is deleted from the order book. The cash and stock positions are changed for 

the trading buyer and seller at their submitted price with the amount traded. The next 

one in the order book then becomes the first. The process continues until the trading 

condition is not matched and a new trader enters. When no more traders come into the 

order book, the trading for time t is completed.  

 

All stock and cash positions for the trading agent are updated according to the amount 

traded. The observed price for the next period is the average of the highest bid and 

lowest ask price. If these are not available, the price for the next period is the previous 

price. The wealth is updated according to the change in cash, stock and price. Then the 

time t becomes t +1 until the end of the simulation at time 1000. The code description 

for this model is in appendix A. 

 

4.2 The results 

The replicating results in Section 4.2.1 to 4.2.2 are based on a single run with run length 

1000. The time unit for the run length is not specified in the original paper. The total 

agents are 150. The herding factor w in this model is 0.1, 0.5 and 1, respectively. Section 

4.2.3 has a herding coefficient based on a single run and average returns for ten runs 

with run length 1000. 
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4.2.1 The results from network analysis 

The network analysis is based on the network connection introduced earlier. The index 

of the guru, the incoming links with the guru and the fitness of the current guru, are 

discussed. The connections between them for the final period are as shown in Figure 

4.4 below for one typical run: the first one with a blue point is the connection network 

with w=0.1; the second one with a red point is the connection network with w=0.5; the 

third one with a grey point is the connection network with w=1. The x axis is the agent 

himself and the y axis is the neighbour of that agent.  

 

At the final period, the agent connections in the change of herding are similar when w 

is 0.1 and 0.5. They all have a guru who has many imitators and the number of agents 

who are imitated by others is not large. But at the communication network when w is 1, 

there is a guru who has many imitators and an agent who has many imitators as well, 

though fewer than the guru. Therefore herding exists to some extent which limits the 

number of agents being imitated and increases the incoming links of the guru. 

w = 0.1: 
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w = 0.5: 

 

w = 1: 

 

Figure 4. 4 The network when w=0.1, 0.5, 1 at the last period in the replication model 
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Figure 4. 5 The network when w=0.1, 0.5, 1 from left to right in the original model 

(Tedeschi et al., 2012:88) 

agent w=0.1 w=0.5 w=1 

1 4 3 2 

2 4 11 3 

3 1 1 1 

4 1 1 3 

5 1 1 1 

6 16 1 1 

7 1 2 3 

8 1 2 1 

9 4 17 1 

10 4 1 8 

11 4 1 1 

12 1 1 2 

13 1 2 1 

14 1 1 1 

15 1 8 1 

16 61 58 1 

17 1 1 42 

18 4 14 26 

19 39 3 1 

20  1 1 

21  2 2 

22  18 2 

23   1 

24   2 

25   1 

26   11 

27   30 

total 150 150 150 

Table 4. 3  Agents connections in the original model 
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As seen in Figure 4.5 and Table 4.3, when w increases, there is less herding in the 

original model; the network is less centralised which means the guru has fewer 

followers. The pattern from the replication model is different. Figure 4.4 shows w is 0.1 

and 0.5, the guru has a similar amount of followers and the network is similarly 

centralised when w is 0.1 and 0.5. By counting, the guru in the replication model is 45, 

57, 35 when w is 0.1, 0.5 and 1. The amount of agents’ connections is reducing from w 

= 0.5, 1 to 0.1. 

 

The index of current guru, the percentage of incoming links of the guru and the fitness 

of guru are shown in the three figures below where w is equal to 0.1, 0.5, and 1 

respectively. The index of the current guru is shown in which the agent is the guru. The 

value used is the number of the guru agent divided by the total number of agents. For 

example, if the guru is agent 75 the index value will be 75/150 = 0.5. The guru is the 

trader who has the most incoming links thus indicating that he has the most followers.  

 

In the Figures 4.6-4.8 below the x–axis represents the time from 0 to 1000. The black 

line is the index of the current guru from 0 to 1 and shows how often the guru changes 

over time. The green line is the fitness - it is almost one because fitness in the equation 

(4.2) is
max

i
i t

t

t

W
f

W
= . A fitness of 1 means the guru is the wealthiest agent. The 

red line is the percentage of incoming links to the guru.  

 

Figure 4.6 shows when w = 0.1, the percentage of incoming links increases at the start 

to about 0.3 on average. Fitness is one most of the time. The guru remains the same and 
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lasts more than 500 periods. 

 

Figure 4. 6 Guru, incoming links and fitness when w=0.1 in the replication model 

 

Figure 4.7 shows that the incoming links are growing at first with an average of 0.3 

when w = 0.5. If the herding w works as expected from the original paper, when w 

increases, the herding effect is reduced and the percentage of incoming links should be 

lower than Figure 4.6. Also, the guru remains the same and lasts longer than in Figure 

4.6. Therefore, it would seem that the herding effect is not reduced by the herding 

parameter from 0.1 to 0.5. Fitness is 1 most of the time. 
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Figure 4. 7 Guru, incoming links and fitness when w=0.5 in the replication model 

 

The fitness for the guru at each time is nearly one and the guru remains unchanged for 

more than 500 periods until the end when w is 0.1 or 0.5 in Figure 4.6 and Figure 4.7.  

 

Figure 4.8 shows the guru, incoming links and fitness changes in the time period from 

0 to 1000 when w=1.  
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Figure 4. 8 Guru, incoming links and fitness when w=1 in the replication model 

 

In this case, the red line with a proportion of incoming links is lower than the previous 

two graphs and it seems that the herding is reduced from w = 0.1 to 1 and also from 0.5 

to 1. The fitness for the guru at each time is not exactly one as in the other two graphs 

indicating that the traders here do not imitate the most successful one which has the 

maximum wealth at each time to give him a fitness of 1. The guru keeps changing and 

does not last very long compared to Figures 4.6 and 4.7 when w is 0.1 and 0.5. 

 

All in all the herding effect is not that obvious from 0.1 to 0.5, but it can be observed 

when comparing the graphs from w = 0.1 to w = 1 and from w = 0.5 to w =1. 
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Figure 4. 9 Guru, incoming links and fitness when w=0.1 (top left) 0.5 (top right) 1 

(bottom) in the original model (Tedeschi et al., 2012:89) 

 

In the original model, the incoming links (red line) are much higher compared to the 

replication model with almost all under 0.4. The guru (black line) changes little when 

w=0.1 and 0.5. The fitness (green line) is not always one compared to the replication 

model.  
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The results of the replication model and the original one are different but when 

comparing the patterns generated when w changes from 0.1 to 1, the trend is similar. 

Incoming links increase and the guru lasts longer from w=1 to w=0.5 and w=0.1. The 

fitness is almost 1 when w=0.5 and 0.1but it is not when w=1 which is different from 

the original model. 

 

4.2.2 The results from the price analysis 

The price analysis focuses on the market price p and the average expected price which 

is the p̂   in equation (4.7). The expected price is the maximum price a trader i can 

submit in the order book at that time t. The three graphs below show the price change 

at w = 0.1, w = 0.5 and w = 1 respectively. 

 

Figure 4.10 shows more or less the same pattern: the black line for the price drops 

sharply at first and then the price fluctuates around a very small price. The green line 

for the average expected price in these graphs is hard to observe. This shows that the 

average expected price and the final price are almost the same at any one time. 
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w = 0.1: 

 

w = 0.5: 
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w= 1: 

 

Figure 4. 10 Prices and average expected prices when w=0.1, 0.5, 1 in the replication 

model 

In order to evaluate the variation of price under the three different conditions of w, the 

relatively stable periods are picked up to study. 

  

For all the three values of w the stable period starts close to period 200. The price 

variation for w = 0.1 after period 200 is as below: 
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Figure 4. 11 Prices and average expected prices when w=0.1 after period 200 

 

The price movements for w = 0.5 are shown next.  

 

Figure 4. 12 Prices and average expected prices when w=0.5 after period 200 

The average expected price and price behave in a much more stable way in Figure 4.12 

compared to the same period in Figure 4.11.   
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The price trend for w = 1 is shown below from period 200.  

 

Figure 4. 13 Prices and average expected prices when w=1 after period 200 

The expected price and price is not very stable as might be expected especially around 

the 500 period. The variation in price and the average expected price in Figure 4.13 and 

Figures 4.11 and 4.12 are hard to compare.  

 

The price trend in the original model is shown in Figure 4.14. 

 

Figure 4. 14 Prices and average expected prices when w=0.1 0.5 1 (left to right) in the 

original model (Tedeschi et al., 2012:91) 
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To conclude, Figure 4.14 shows herding causes price fluctuation to some extent as in 

previous studies such as that of LeBaron and Yamamoto (2007). However, a pattern is 

not clear in the replication model except when w=1 and prices become stable more 

quickly than w=0.1 and 0.5. As both sets of results are based only on one run, the pattern 

may not be that obvious in multiple runs. 

 

4.2.3 Price dropping analysis 

The herding effect can be assessed in this model by herding coefficient H = total buyers 

/ total traders (Tedeschi et al., 2012). If H is equal to 0.5, that means half of the total are 

buyers and half are sellers in the markets. When H is nearly 1 this would indicate that 

there is a lot of herding and the numbers of buyers and sellers are not equal. The average 

herding coefficient for one run with 1000 time are 0.9500, 0.9333, 0.9413 respectively 

for w=0.1, w=0.5 and w=1. The minimum value, maximum value and average value for 

the herding coefficient with time series  from 1-1000 are summarised in Table 4.4 below: 

w 0.10000 0.50000 1.00000 

Min 0.43000 0.46000 0.43333 

Max 0.95055 0.93330 0.94135 

Average 0.90361 0.87423 0.89357 

Table 4. 4 The minimum, average, maximum values for herding coefficient 

As seen in Table 4.4, the range of herding coefficients decreases from w = 0.1 to w = 

0.5, but increases from w = 0.5 to w = 1. This indicates a slight herding effect that is 

produced by parameter w where the range of the herding coefficient is shrinking when 

w gets bigger. The average herding coefficient is not as in the original paper which was 

equal to 0.5. Also, the average is greater than 0.85, which means the market has many 
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buyers under the three conditions for different w. This may indicate that in most periods 

the markets do not have a lot of trading which might influence the final price. 

 

The average and variance of returns for ten runs are shown in Table 4.5:  

  average variance 

w=0.1 -0.00471  0.00253  

w=0.5 -0.00405  0.00115  

w=1 -0.00432  0.00256  

Table 4. 5 Average returns and variance 

In Table 4.5, the average returns are all negative when w is 0.1, 0.5 and 1. To some 

extent, this indicates the price dropping as well. And there is not much difference for 

average returns when w is 0.1, 0.5 and 1, which means in this case, the herding w does 

not have much influence for returns. And the variance is reduced when w is 0.5. More 

discussion about replication results based on ten runs are in Chapter 6.3 for herding and 

related stylised facts.  

  

4.3 The altered model and results 

As the original results and the replication results were different and the prices dropped 

a lot in the replication model, some modifications were made. The model is modified 

to some extent to stop the price from dropping. There are three reasons for changing the 

utility function in the market mechanism. Firstly, the utility function changes very little 

when the wealth is large. Secondly, the utility function in the model makes an unrealistic 

assumption that the noise traders balance returns and risks to make optimal decisions. 

Thirdly, the price function based on the utility function constrains the maximum 
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submitted price to the expected price, which is not realistic in the real world. Traders 

may submit a price to sell above expectations in order to make more profit. 

 

4.3.1 Altered initialisation 

The traders in the model are in the same situation at the start. They all have 100 stocks 

at a price of £1000 each and £100,000 cash. Hence, in the beginning, the values of stock 

and cash are exactly the same for each trader. For initialization, the trading rules for the 

first period are not the same as for the remaining periods. It is a warm-up period with 

no price change after each trading during the period and no change of traders’ stock and 

cash positions. Therefore, it is more or less dummy trading in the beginning period. The 

closing market price then changes according to the best-bid price, as illustrated in 

Section 4.1.4 (the market mechanism description). The remaining un-traded orders are 

the active orders in the next period and are traded on a rolling basis (Section 4.1). There 

are 150 traders in this model for 1000 periods from starting point period 0 to period 

1000 with 100 runs. The following section will discuss the altered market. The network 

and the expectation are unchanged. 

 

4.3.2 Altered market 

After the expectation for each agent is formed, the future price for each agent is also 

formed based on their expectations. In order to have more variety in expected returns, 

the 0 is set to 0.07. The expected price at time t + τ when the agents are at time t is:  
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(4.15)  , ,
ˆ i i

t t t t tp p r+ += τ                                                                           

The p̂  here in the equation (4.15) is the future price. After agents get information like 

the current price and the expected price, they make decisions about their prices and 

amounts submitted to the order driven market, which are mainly based on the work of 

Chiarella et al. (2009).  

 

At any given time, each agent always has just one order in the market. The discount 

factor in this model is ignored. Then instead of considering the utility function, the noise 

traders in this model submit orders based on a very simple rule. They compare the 

current price with the expected price from equation (4.15) to submit a buy or sell order. 

Obviously, if the current price is greater than the expected price, traders sell now and 

hope to buy in the future to make gains; otherwise, the traders buy now at a lower current 

price and hope to sell at the higher future price to make a profit. After the traders have 

made their decisions to submit their buy or sell orders through the comparison between 

the current price and expected price, the prices and amounts for the orders are generated. 

When the difference between the current price and expected price is greater than or 

equal to 50, the buy order price for a certain agent is the current price plus 50 and the 

sell order price is the current price minus 50 to ensure some gains. Otherwise, traders 

submit limit orders at buy order prices or sell order prices which are expected price 

minus 50 or expected price plus 50 to ensure at least 50 profit if the expectation is right. 

This reflects the two attitudes of traders. When traders think there is a satisfactory gain 

in the market, they make a concession and make orders to be traded to make some gain. 

When no satisfactory gain in the market is expected, they make an unrealistic stricter 

rule to ensure their profit, but their order does not easily trade.  
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The amount of the order for a certain agent to submit is based on their cash, the probable 

gain they make and also the risk attitude. The probable gain is equal to: 

(4.16)  ,| |ˆi i

t t ti

t i

t

Po p

Po
g

+−
=                                                                        

The g is the probable gain for the trading and Po  is the price submitted into the order 

driven market. The equation for the amount the agent to submit is:  

(4.17) 
i

i t
t i

i

t

t

s
P xo

C g

Ma
=    (when

i

tg ≤ Max )                                                             

i

ti

t i

t

C
s

Po
=    (when

i

tg > Max )                                                              

The s and Max stand for the stock amount to submit in the market and the acceptable 

percentage of gain for using the full cash. C is cash. There is an assumption that the 

relationship between the cash in hand and the stock amount to submit is a straight line. 

The amount of cash to use depends on the probable gain and the gain which the agent 

is expecting. Max is a uniform distribution from 0.5 to 1 which means the agent is 

willing to invest all of the cash into the market when the profit is at least from 50% to 

100%. Once the probable gain exceeds the Max, the agent invests all of his cash into 

the market. When the level factor of cash to invest 

i

tg

Max
 has been decided, the stock 

amount to submit into the market is the cash to be invested divided by the price expected 

to trade which is Po .  
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The market mechanism in the order driven market is now discussed. The agent’s order 

is submitted on a rolling basis in a random sequence. The rolling basis means that when 

a certain agent enters the market, the last period order for that particular agent is 

cancelled if it is still in the order book. During time period t, when agents are entering 

the market, the current price is equal to the average of the best bid and best ask. The 

best bid is the highest buy order price in the order book and the best ask is the lowest 

sell order price in the order book. If there is no best ask the current price is the best bid. 

If there is no best bid the current price is the best ask. When all the agents have 

submitted their orders to trade, the current price at the end of the period is the average 

of the best bid and best ask. If there is no best bid or best ask or both, the current price 

is the previous end market price. When the new order comes into the market, the price 

of the new buy or sell order is compared to the best ask or best bid price. If the price of 

the buy order is greater than the best ask or the price of the sell order is smaller than the 

best bid, there is a match. The new order is the market order and trades at best ask or 

bid. The same rules apply to the newly updated best bid or ask price when the previous 

best bid or ask has the amount of 0 after the trade unless the amount of new order is 

fully satisfied or there is no match. If this is the case and the new order still has some 

untraded amount of order, the remaining amount of new order goes into the order book 

and the best bid or best ask is updated accordingly. The new order comes into the order 

book directly if there is no match and the best bid or best ask is updated accordingly. 
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4.3.3 Results based on the altered model 

4.3.3.1 Illustrative results from a single run 

Results in this part are all from a single run which was chosen from several single runs 

for its typical results. These results give an understanding of the patterns of this model. 

They follow the format in the original paper. However, these results are illustrative only 

and we need to be careful when drawing conclusions from just one run. Some results 

from 100 runs are given in Section 4.3.3.2. 

 

4.3.3.1.1 The network 

The three graphs below show information about the guru for one particular run based 

on the same random seed when w is 0.1, 0.5 and 1. The black line is the current guru 

index using the guru’s agent number divided by the total number of agents (150). The 

red line is the percentage of incoming links for the guru which are the total number of 

imitators divided by the total number of agents (150). The green line is the fitness for 

the guru which is the wealth of the guru divided by the richest agent’s wealth. At the 

start, there may be more than one agent who has the most incoming links. The guru is 

the agent with the smaller agent number for limiting the current guru to obtain 1 for 

each period.  
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Figure 4. 15  Guru, incoming links and fitness when w=0.1 

 

Figure 4. 16 Guru, incoming links and fitness when w=0.5 
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Figure 4. 17 Guru, incoming links and fitness when w=1 

   

From the above Figures 4.15, 4.16, 4.17, the fitness for the guru in each situation is 

more or less the same: they are all close to 1. This shows the wealth of the guru is larger 

than that of the majority of agents. The guru performance is better than other agents in 

this market. Comparing the three graphs for incoming links, there are no obvious 

differences between them. The incoming links for each figure are all smaller than 0.2 

with an average below 0.1. As for the black lines, an unchanged horizontal segment 

indicates the guru lasting longer than one period. Unfortunately, these three graphs do 

not show any big variations for the guru’s life among the different herding factors. This 

is not the situation in the original paper as seen in Figure 4.9: when w gets smaller, the 

red line for incoming links gets larger and the black line for the current guru has fewer 

fluctuations indicating that the guru’s life is increasing when w is decreasing.  
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4.3.3.1.2 The wealth 

The three graphs below show the information about the wealth for the guru, guru 

imitators and noises based on one particular run with the same random seed when w is 

0.1, 0.5 and 1. The black line is the guru’s wealth at each period (there is only one guru 

for each period). The red line is the wealth for the imitators who follow the guru’s 

decisions. The green line is the wealth of the noises.  

 

Figure 4. 18 Wealth of the guru, imitators and noises when w=0.1 
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Figure 4. 19 Wealth of the guru, imitators and noises when w=0.5 

 

Figure 4. 20 Wealth of the guru, imitators and noises when w=1 

The above figures, 4.18, 4.19 and 4.20, show that the guru always performed better than 

the imitators and noises while there is no difference between the wealth of imitators and 

noises.    
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In the original paper in Figure 4.21, when w gets smaller, the average wealth of the guru, 

imitators and noises, and the wealth gap between the guru, imitators and noises, become 

larger and wider which suggests the guru may perform (in wealth) much better than 

imitators and that the imitators may perform much better than noises. This pattern is 

confirmed by the 100 run graph for wealth in the original paper. 

 

Figure 4. 21 Wealth of the guru, imitators and noises when w=1 in the original model 

(Tedeschi et al., 2012:90) 
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4.3.3.1.3 The price 

The three graphs below show prices and expected prices for one particular run based on 

the same random seed when w is 0.1, 0.5 and 1. The black line traces the prices based 

on the time series and the red line is the average expected prices based on the total 

expected prices for all agents divided by the number of total agents.  

 

Figure 4. 22 Prices and average expected prices when w=0.1 

 

Figure 4. 23 Prices and average expected prices when w=0.5 
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Figure 4. 24 Prices and average expected prices when w=1 

From the three graphs above, it can be seen that all the prices fluctuate on the time series 

with the average expected price. Comparing the three graphs, the fluctuations in prices 

are minimal for  w=0.5 and w=1. The prices for w=0.1, however, fluctuate a lot more   

Figure 4.14 in the original paper shows that the price fluctuations increase as the herding 

factor gets smaller. 

 

4.3.3.2 Results from 100 runs 

The five graphs below are the results generated from the average values from 100 runs. 

These results follow the format in the original paper. It is the value for each run divided 

by 100 for the first four graphs. The fifth graph is the mean and standard deviation of 

returns from 100*1000 data. For each graph, the left side line is the information for 

herding factor w=0.1, the middle line is the information for herding factor w=0.5 and 

the right side line for herding factor w=1. The middle point is the average value and the 

two bars represent ±1 standard deviation. 
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In Figure 4.25, the wealth of the guru, imitators and noises match the information in 

Figure 4.18, 4.19 and 4.20 in that the guru’s wealth is bigger than those of the imitators 

and noises which are similar. There is also not much difference in the results when 

w=0.1 and w=1. 

 

Figure 4. 25 Average wealth of guru, imitators and noises when w=0.1, w=0.5, w=1 

 

Figure 4.26 from the original paper shows that the guru and imitators gain higher profits 

than noises because of the herding effect. 
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Figure 4. 26 Average wealth of guru, imitators and noises when w=0.1, w=0.5, w=1 in 

the original model (Tedeschi et al., 2012:90) 

 

Comparing Figures 4.25 and 4.26, the herding effect is not clearly generated as the gaps 

between the guru and imitators and also imitators and noises are expected to increase 

when w gets smaller (as in the original paper).  

 

In Figure 4.27, the guru’s average life is the total period of 1000 divided by the number 

of gurus. When w=0.5 the average guru life is shortest while w=1 has the longest 

average guru life.  
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Figure 4. 27 Guru’s average life when w=0.1, w=0.5, w=1 

From the results in the original paper in Figure 4.28, the average guru life increases 

when w gets smaller. Herding generates more social imitation which helps the guru to 

be successful and so to last longer. Comparing the results of Figure 4.27 and Figure 

4.28, the guru’s average life is very different from 100 (original) to only 2 (replication). 

 

Figure 4. 28 Guru’s average life when w=0.1, w=0.5, w=1 in the original model 

(Tedeschi et al., 2012:89) 
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The average percentage of marketable sell orders are similar to marketable buy orders. 

They are the volume of marketable sell orders divided by the total volume of orders. In 

Figure 4.29, the marketable orders are only a small percentage of the total volume of 

orders which means that many orders are limit orders. And when w gets smaller, the 

marketable sell orders first decrease and then increase.  

 

 

Figure 4. 29 Average percentage of marketable sell orders when w=0.1, w=0.5, w=1 

 

In the original paper in Figure 4.30, herding generates more marketable orders. 
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Figure 4. 30 Average percentage of marketable sell orders when w=0.1, w=0.5, w=1 in 

the original model (Tedeschi et al., 2012:92) 

 

The herding coefficient is the number of agents to buy divided by the total number of 

agents. In Figure 4.31, although the standard deviation increases when w gets smaller 

the average value is almost the same. This indicates that although there is a herding 

factor in the model, it did not cause the different clustering for buyers and sellers but 

just influenced the volatility of the number of buyers and sellers. 
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Figure 4. 31 Average herding coefficient when w=0.1, w=0.5, w=1 

   

In the original paper in Figure 4.32, the herding coefficients of w= 0.5 and 1 are similar, 

but bigger when w=0.1. 

 

Figure 4. 32 Average herding coefficient when w=0.1, w=0.5, w=1 in the original model 

(Tedeschi et al., 2012:92) 
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The returns are the current closing price minus the closing price one period before 

divided by the closing price. It is a percentage change for one period of price change. 

In Figure 4.33, the mean of returns does not change when herding changes and is nearly 

0. The volatility of returns increases with more herding indicating that herding may be 

one of the factors for price fluctuations.  

 

 

Figure 4. 33 Mean and standard deviation of returns when w=0.1, w=0.5, w=1 

   

In the original paper in 4.34, the pattern is similar to Figure 4.33. 
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Figure 4. 34 Mean and standard deviation of returns when w=0.1, w=0.5, w=1 in the 

original model (Tedeschi et al., 2012:93) 

 

As shown in all the graphs above, there is no clear herding effect in this market. 

Although the standard deviation of the herding coefficient and returns gets larger when 

w gets smaller, it did not increase the stability of gurus (the guru’s average life), the gap 

among the wealth of guru, imitators and noises, and the marketable orders. 

 

All in all, the first replication model is not a successful one. The results are different 

from the original paper even after the model was modified. There are only partially 

similar results with the original model. Comparing the results from the replication and 

altered model, the price dropping issue is stopped. The main differences from the results 
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are the guru’s life and herding coefficient. From the replication model, the guru lasts a 

long period. While, from the altered model, the guru lasts a short time, and it changes a 

lot during the time period. For the herding coefficient (total buyers / total traders), the 

average is greater than 0.85 in the replication model, which means there are a lot more 

buyers than sellers. But, the average herding coefficient is almost 0.5 in the altered 

model. This may indicate that the price dropping is caused by the bias in the market of 

an inequal number of buyers and sellers. A second replicating model will be analysed 

and discussed in Chapter 5.  
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Chapter 5              

Second replicating model 

 

This chapter describes the work on the second replicating model. The model is a 

financial markets model developed by Lux and Marchesi (2000) where there are 

different types of trading behaviour and the agents switch between the different types. 

This is a well known a highly cited paper, with related works including a letter in Nature 

(Lux and Marchesi, 1999). 

 

Three main aspects have been investigated with this model. One is to try and reproduce 

the model and the results from the original paper. As discussed in Chapter 3, model 

replication is very important in science and in modelling to give confidence in the 

results from scientific studies. 

 

The second aspect is to apply the model description guidelines set out in Chapter 3. The 

guidelines are used in this chapter to describe the model. This shows how the guidelines 

work for a real modelling example. The guidelines are used as a checklist which is the 

recommended method of the STRESS guidelines. The experience of applying the 

guidelines will be discussed and the guidelines evaluated in Chapter 6. 

 

The third aspect is to extend the understanding of the model. This is done by some 

detailed analysis of the model behaviour and additional experiments. The aim is to get 

a better understanding of the reasons for the patterns of behaviour in the model. 
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Section 5.1 gives an overview of the model. The design concepts are in Section 5.2, and 

the model details in Section 5.3. Section 5.4 gives the results obtained from the model 

and compares these with the results from the original paper. Section 5.5 explains the 

additional work and analysis done on the model. Conclusions are given in Section 5.6. 

 

5.1 Model description overview 

5.1.1 Purpose 

The overall purpose of the modelling project is to get a better understanding of how 

stylized facts in financial markets could be produced by particular types of behaviour 

of the traders. The project takes the approach of replicating a model from a journal 

paper, which is Lux and Marchesi’s (2000) paper entitled: Volatility clustering in 

financial markets: a microsimulation of interacting agents.  

 

From the literature discussed in Section 2.3.3, there are five herding mechanisms in the 

agent-based literature. They are transition probability, networks, clusters, genetic 

algorithm, and independent rules. In my first model described in Chapter 4 of the thesis, 

the herding mechanism is networks and fat tails are produced, but there is no volatility 

clustering. Then this second paper is selected to be one with both fat tails and volatility 

clustering with a different herding mechanism – transition probability. The transition 

probability used in the model is inspired by Kirman’s ants’ theory – when ants are faced 

with two identical foods the groups are not equally divided. This is a similar situation 

to that when people are faced with two similar restaurants A and B, where people will 

generally prefer to choose restaurant A instead of restaurant B if restaurant A has more 

customers. Hence, there is a feedback mechanism that leads to one restaurant being 
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more popular than the other. The detailed herding mechanism will be illustrated in 

Sections 5.3.3.1 and 5.3.3.2.  

 

Although this paper was written about 20 years ago, it is still a suitable paper with a 

detailed description of the modelling part and results with an analysis of the main 

stylised facts. Also, it is a popular paper that is cited more than 800 times in Google 

Scholar statistics.  

 

After Lux and Marchesi’s paper (2000), other models were developed based on similar 

mechanisms. For example, Alfarano et al. (2005) developed another model with 

asymmetric transition probabilities. Alfarano and Milaković (2009) investigated 

alternative network structures that decide the agents’ connection in four different ways: 

regular networks, random networks, small-world networks, and scale-free networks. 

Also, it considered individual heterogeneity. Other papers tend to concentrate on these 

models’ parameter settings compared with the actual financial markets. From the above 

discussion, the Lux and Marchesi (2000) model is rarely improved by the authors since 

the related papers are mostly focused on the parameter settings or changes in herding 

mechanism settings. 

 

In the model of Lux and Marchesi (2000), there are three types of traders: 

fundamentalists, optimistic chartists, and pessimistic chartists. Fundamentalists are 

traders who think the price will go back to its fundamental value while chartists are 

traders who chase the price trend. Optimistic chartists are chartists who think the price 

will go up and pessimistic chartists are those who think the price will go down. Agents 

switch between the different types of traders.  
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The market mechanism is based on excess demand. Excess demand is decided by the 

agents’ opinion and the number of agents of each type. For example, if the agent is a 

fundamentalist and the price is lower than the fundamental value, the agent believes the 

price will go back to its fundamental value. Therefore, the agent thinks the price will 

increase. The detailed marketing mechanism will be explained later in Section 5.3.3.  

 

My aim of replicating this model is to find out how interactions among these agents 

produce stylised facts like fat tails and volatility clustering. 

 

5.1.2 Variables and scales 

All the parameters used in the model are discussed in this section. Three tables (Table 

5.1, 5.2, and 5.3) are produced to draw together the constants and their notation, the 

alternative parameter sets of values for the constants, and dynamic variables that change 

during the simulation run. 

 

Table 5. 1 Constant variables 

Symbol Meaning

N total number of agents

importance of individuals place on the majority opinion

importance of actual price trend

frequency of revaluation of opinion

pressure exerted by profit

r nominal dividends of the asset

 frequency of transition

R average real returns from other investments

s discount factor

 fundamental value 

number of units of all chartists either buy or sell

reaction strength 

speed of the auctioneer

small noise term

 time interval
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Table 5. 2 Parameter sets of values for the constants 

 

 

Table 5. 3 Other variables 

In appendix B, the coding and the variables in the code are explained. 

Symbol Parameter set 1 Parameter set 2 Parameter set 3 Parameter set 4

N 500 500 500 500

0.6 0.9 0.75 0.8

0.2 0.25 0.25 0.2

3 4 0.5 2

0.5 1 0.75 1

r 0.004 0.004 0.004 0.004

 2 1 0.5 0.6

R 0.0004 0.0004 0.0004 0.0004

s 0.75 0.75 0.8 0.75

 10 10 10 10

0.02 0.015 0.02 0.01

0.01 0.01 0.02 0.01

6 4 2 4

N ~ (0, sd 0.05) N ~ (0, sd 0.1) N ~ (0, sd 0.1) N ~ (0, sd 0.05)

 0.01 or 0.002 0.01 or 0.003 0.01 or 0.004 0.01 or 0.005

Symbol Meaning

 number of chartists

number of fundamentalists

 number of optimistic chartists

 number of pessimistic chartists 

x opinion index

z fraction of chartists 

 decision effect factor 

price trend

probability of changing from pessimistic to optimistic chartists

probability of changing from optimistic to pessimistic chartists

 decision effect factor 

probability of changing from fundamentalists to optimistic chartists

probability of changing from optimistic chartists to fundamentalists

decision effect factor 

probability of changing from fundamentalists to pessimistic chartists

probability of changing from pessimistic chartists to fundamentalists

excess demand of chartists

excess demand of fundamentalists

total excess demand

probability of price going up 

probability of price going down
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5.1.3 Process overview and scheduling 

In this model, there are 500 agents. Each agent has three states representing the type of 

trader: fundamentalists (f) or optimistic chartists (+) or pessimistic chartists (-).  

 

A flowchart of the process that happens in each time increment is shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

Further details of some of the steps in the flow chart are: 

Step 1. Initial agent type: agents are divided randomly. To maintain the number of 

fundamentalists at the start, the probabilities of agents to be optimistic chartists or 

pessimistic chartists are 10% each at the start. As a result, the probability of agents to 

1. Initial agent type (f,+,-) 

2. Choose next agent 

3. Change agent type 

4. All agents? 

5. Price update 

6. Time update (t=t+∆t) 

No 

Yes 

Figure 5. 1 Flowchart of the model process 
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be fundamentalists is 80% at the start.  

 

Step 2.   Choose next agent: the order of choosing agent does not make any differences. 

The price only updated when all agents are changed.  

 

Step 3. Whether to change agent type: each agent only switches once in each interval 

time ∆𝑡. The agents switch from one to another according to the switching rules given 

later in Section 5.3.3.1 and 5.3.3.2: 

For fundamentalists – they will switch to either optimistic chartists or pessimistic 

chartists according to the equation (5.9) and (5.12) respectively in Section 5.3.3.2. 

For optimistic chartists – they will switch to either pessimistic chartists or 

fundamentalists according to the equation (5.7) in Section 5.3.3.1 and (5.10) in Section 

5.3.3.2 respectively. 

For pessimistic chartists – they will switch to either optimistic chartists or 

fundamentalists according to the equation (5.6) in Section 5.3.3.1 and (5.13) in Section 

5.3.3.2 respectively. 

 

Step 5. Price update: the price updates by increasing or decreasing by 0.01 or staying 

unchanged according to equations (5.17) and (5.18) in Section 5.3.3.3.  

 

Step 6. Time update: the time updates by a time increment. The time increment ∆𝑡 can 

either be 0.01 time units or 0.002 time units. This means that in 1 time unit there will 

either be 100 or 500 time increments. The main results are just recorded at the end of 

each whole time unit.  The paper indicates that the time increment value depends on 

whether the change in price is greater than the average price change but the exact criteria 
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for changing the time increment is not entirely clear from the paper. This is investigated 

further in Section 5.5. In my model, if the price changes so frequently that it exceeds 

0.405 per time unit, then the time increment changes from 0.01 to 0.002. The value for 

the average of price fluctuation of 0.405 is calculated from two models built-in c and 

witness. It is calculated by the average price change in each model from time unit 0-

20000 when the increment is 0.01 with parameter set 1. As we think the switching of 

chartists happens instantly, the components of the switching formula (for the number of 

each type of agent and the price) will not update during the time increment ∆𝑡 but only 

after each time unit. 

        

5.2 Design Concepts 

Environment: agents interact with themselves. 

Agents: data access - according to the equations 5.6, 5.7, 5.9, 5.10 explained below, 

each agent knows the price trend, the price now, the total number of optimistic 

chartists, pessimistic chartist, fundamentalists, and the total number of agents; 

              objective - maximise profit; 

              rules - equations 5.6, 5.7, 5.9, 5.10. If there are more optimistic chartists and a       

   positive price trend, agents prefer to switch from pessimistic to optimistic 

   chartists. If optimistic chartists’ excess profit is more than that of the  

   fundamentalists, agents prefer to switch from fundamentalists to optimistic 

   chartists, and vice versa. If pessimistic chartist’s excess profit is more than that 

   of the fundamentalist, agents prefer to switch from fundamentalists to     

   pessimistic chartists, and vice versa; 

              working in group and prediction - not applicable as agents work alone – i.e., 
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   they do not collaborate directly with their trading. 

Interaction: Three agent groups are agent states. Agent states can be optimistic chartists, 

pessimistic chartists and fundamentalists. The state changes at each small time 

increment. There are two switching strategies among these agents: the switching 

between optimistic chartists and pessimistic chartists, and the switching between 

fundamentalists and chartists.  

Enter/exit: no new agent will enter the market and no agent will leave the market– i.e., 

the market always has the original 500 agents. 

Emergence: the price changes when the number of optimistic chartists, pessimistic 

chartists, and fundamentalists is changed. The price also has an effect on whether agents 

switch and so there are complex interactions between the number of each type of agent 

and the price. 

Assumption: It is assumed that people follow Kirman’s ant’s theory. For the price 

changes, it is assumed that the auctioneer will adjust the price to the next higher or lower 

possible value within the next small time increment based on the imbalance between 

demand and supply. The auctioneer will adjust the price by increasing or decreasing the 

market price by a fixed amount of 0.01. 

 

5.3 Model Details 

5.3.1 Initialisation 

At the initialisation stage in Figure 5.1, agents are randomly separated into different 

types with one requirement: the number of fundamentalists is maintained to be 

reasonably high for stabilisation purposes. This requirement is vague in the original 

paper. I set the probabilities of agents to be optimistic chartists, pessimistic chartists or 
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fundamentalists as 10%, 10%, and 80% respectively. The total number of agents is fixed 

at 500 shown in Table 5.1. At the start, the price is equal to the fundamental price of 10. 

 

5.3.2 Input 

Returns in financial markets are usually defined with log returns. That means when the 

time scale is 1, the return is rett = ln(𝑝𝑡) − ln(𝑝𝑡−1). There are two main reasons to 

use the log return instead of the raw return which is rett = (𝑝𝑡 − 𝑝𝑡−1)/𝑝𝑡−1 . First, log 

returns and raw returns have similar results. Second, log returns have time additivity 

which makes sure that the return from time 0 to time t is 𝑙𝑛(𝑝𝑡) − 𝑙𝑛(𝑝0).  

 

The input file for code access provided in Appendix B is called parameter in a txt form 

and the random number generator used in the model is the one built-in to c. 

 

5.3.3 Submodels 

Agents in the model try to maximise their gains. The number of chartists is 𝑛𝑐, and the 

number of fundamentalists is 𝑛𝑓. The total number of agents is equal to the total number 

of chartists plus the total number of fundamentalists which gives equation (5.1): 

(5.1)  𝑛𝑐 + 𝑛𝑓 = 𝑁   

The number of chartists is divided into the number of optimistic chartists 𝑛+ and the 

number of pessimistic chartists 𝑛−. From the meaning of these symbols, we can obtain 

equation (5.2): 

(5.2)  𝑛+ + 𝑛− = 𝑛𝑐                                                     

The changes between fundamentalists, optimistic chartists, and pessimistic chartists are 
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based on the herding mechanism. The herding mechanism in this model is based on the 

switching between these agents through the transition probabilities. Also, inspired by 

Kirman’s ants’ theory, the transition probabilities are mainly influenced by the number 

of agents. A detailed explanation will be given in Sections 5.3.3.1 and 5.3.3.2.  

 

The reference numbers for the equations for switching between the agent types are as 

follows: 

            𝑛+ Eq. (5.9)  

   𝑛𝑓 

               𝑛− Eq. (5.12) 

               𝑛− Eq. (5.7) 

   𝑛+ 

               𝑛𝑓 Eq. (5.10) 

               𝑛+ Eq. (5.6) 

   𝑛− 

               𝑛𝑓 Eq. (5.13) 

 

5.3.3.1 Switching between chartists 

There are two components of switching between chartists: the decision making 

influenced by the individuals’ opinions called “flows” inspired by Kirman, and also a 

supplementary component influenced by market “charts”. The first one is influenced by 
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the majority decision of agents and the second one is influenced by the price trend. 

Hence, the equations deciding the probability of changing between chartists are based 

on these two components. And in the process of switching, if the number of 

fundamentalists, optimistic chartists, and pessimistic chartists is lower than 4, they will 

not switch to other types.  

 

The opinion index x which captures the individuals’ opinion is defined in equation (5.3). 

This is a simple factor showing the net majority opinion of the chartists which is the 

difference between the number of optimistic chartists and pessimistic chartists divided 

by the total number of chartists. If there are more optimistic chartists than pessimistic 

chartists, the value of x is positive; otherwise, the value of x is negative. 

(5.3)  𝑥 =
(𝑛+−𝑛−)

𝑛𝑐  
 

The fraction of chartists out of the total number of agents z is: 

(5.4)  𝑧 =
𝑛𝑐

𝑁
 

 

The price trend 𝑝̇ is captured by the price changes in continuous time. In this model, the 

price change during the last increment from t-∆𝑡 to t can only be -0.01, 0, and +0.01. To 

get more possibilities of price trend, 𝑝̇, it is calculated by the average price change with 

a time lag of 0.2. That means when we calculate the price change at time t, 𝑝̇ is the 

average change in price from t -0.2 to t (i.e., the total change in price divided by 0.2).  

 

The decision effect factor 𝑈1  is used in the equations for the probability of agents 

changing their type between optimistic and pessimistic chartists. The equations for 𝑈1 

is given in equation (5.5). In this equation, 𝛼1 is a factor for the amount of importance 
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which individuals place on the majority opinion, the value of which for parameter set 1 

is 0.6; and 𝛼2 is the factor for the amount of importance in the actual price trend which 

in parameter set 1 is 0.2; 𝑣1 in the model represents the frequency of revaluation of 

opinions which is 3 in parameter set 1. The original paper has a note that: “α1 and α2 

need not sum up to 1”. 

 

The decision effect factor 𝑈1 is affected by “flows” and “charts” which is discussed 

before. If x is positive, which means there are more optimistic chartists than pessimist 

chartists, and 𝑝̇ is positive and so moves in the same direction as the majority opinion, 

then 𝑈1 will be greater than zero. Similarly, if x is negative and 𝑝̇ is negative then 𝑈1 

will be less than zero. If 𝑝̇ moves to the contrary direction with the majority view given 

by x, the influence of the opinion will be weakened or even reversed.  

(5.5)  𝑈1 = 𝛼1𝑥 + 𝛼2
𝑝̇

𝑣1
   

 

In equations (5.6) and (5.7), 𝜋−→+  and 𝜋+→−   are the probability of changing from 

pessimistic to optimistic chartists, and the probability of changing from optimistic to 

pessimistic chartists respectively. From the equations, we can see the transition 

probabilities in this model are symmetrical. ∆𝑡 is the time increment in this model. It 

may change during the running of the model. When prices fluctuate a lot, investors will 

check and update their strategy more frequently. Therefore, the time increment will be 

decreased. In this model, the time increment is 0.01 at the start and in the case when 

prices are relatively stable. The time increment is 0.002 when prices fluctuate a lot. The 

prices fluctuate a lot when the price changes so frequently that it exceeds the average 

price change (as discussed in step 6 in Section 5.1.3). In equations (5.5) and (5.6), 𝑣1 is 
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the parameter used to represent the frequency of revaluation of opinions and is one of 

the input parameters in Table 5.2. Then the probability of changing between optimistic 

chartists and pessimistic chartists in time increment ∆𝑡 is:  

(5.6)  𝜋−→+ = 𝑣1 (
𝑛𝑐

𝑁
exp(𝑈1)) ∆𝑡 

(5.7)  𝜋+→−  = 𝑣1 (
𝑛𝑐

𝑁
exp(−𝑈1)) ∆𝑡 

 

5.3.3.2 Switching between fundamentalists and chartists 

The switching probability between fundamentalists and chartists has more complex 

components compared with the one in Section 5.3.3.1. The optimistic chartists are 

assumed to buy fixed units. In optimistic chartists’ opinion, they think the price will go 

up. Therefore, they will buy now at a lower price. At the same time, pessimistic chartists 

are assumed to sell fixed units in the financial market. In pessimistic chartists’ opinion, 

they think the price will go down. Therefore, they will sell now at a higher price. 

 

The probabilities for switches between fundamentalists and optimistic chartists are 

based on the decision factor 𝑈2,1 given in equation (5.8). This has the change between 

fundamentalists and optimistic chartists as the difference between excess profit per unit 

for optimistic chartists and excess profit per unit for fundamentalists. In equation (5.8), 

𝛼3 measures the pressure exerted by the pay-off differential and this is fixed at 0.5 for 

parameter set 1. r is a nominal dividend of the asset which is 0.004 for all parameter 

sets.  𝑣2 represents the frequency of this type of transition, which is 2 for parameter set 

1. 𝑝̇ represents the price trend, while 𝑝 represents the actual price. R is the average real 

returns from other investments and is set in the model for all parameter sets at 0.0004.  
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The excess profit for optimistic chartists per unit is  (𝑟 +
𝑝̇

𝑣2
) /𝑝 − 𝑅 . That means 

chartists avoid losses by comparing the asset portfolio return (𝑟 +
𝑝̇

𝑣2
) /𝑝 with the return 

from other investments 𝑅. The parameter s means the discount factor which is set at 

0.75 for all parameter sets. The profit for chartists is realised immediately whereas the 

expected gain for fundamentalists will be realised when price goes back to its 

fundamental value in the future and hence a discount factor is applied. 𝑝𝑓  is the 

fundamental value of the asset which is fixed at 10. The excess profit for 

fundamentalists is given by: 𝑠 |
𝑝𝑓 − 𝑝

𝑝
|.  

 

In equation (5.8), agents compare the excess profit between optimistic chartists and 

fundamentalists times the pressure depending on the price differential and then switch 

to the more successful one.  

(5.8)  𝑈2,1 = 𝛼3 ((𝑟 +
𝑝̇

𝑣2
) /𝑝 − 𝑅 − 𝑠 |

𝑝𝑓 − 𝑝

𝑝
|)   

In equation (5.9) and (5.10), 𝜋𝑓→+  and 𝜋+→𝑓  are probabilities of the change from 

fundamentalists to optimistic chartists and the change from optimistic chartists to 

fundamentalists in the time interval ∆𝑡 respectively. 𝑣2 represents the frequency of this 

type of transition as in equation (8). And the probabilities are: 

(5.9)   𝜋𝑓→+ = 𝑣2 (
𝑛+

𝑁
exp(𝑈2,1)) ∆𝑡 

(5.10)  𝜋+→𝑓 = 𝑣2 (
𝑛𝑓

𝑁
exp(−𝑈2,1)) ∆𝑡   

 

The factor 𝑈2,2  that decides the change between fundamentalists and pessimistic 

chartists is the difference between excess profit per unit for pessimistic chartists and 
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excess profit per unit for fundamentalists and is specified in equation (5.11). It is a 

similar equation to equation (5.8). In equation (5.11), the excess profit for pessimistic 

chartists per unit is  𝑅 − (𝑟 +
𝑝̇

𝑣2
) / 𝑝 . That means that chartists avoid losses by 

comparing the asset portfolio return (𝑟 +
𝑝̇

𝑣2
) /𝑝  with the other investment return 𝑅 . 

Agents compare the excess profit between pessimistic chartists and fundamentalists 

times the pressure depending on the price differential and switch to the more successful 

one. The factor 𝑈2,2 in equation (5.11) decides the changes between fundamentalists 

and pessimistic chartists: 

(5.11)  𝑈2,2 = 𝛼3 (𝑅 − (𝑟 +
𝑝̇

𝑣2
) / 𝑝 − 𝑠 |

𝑝𝑓 − 𝑝

𝑝
|)    

In equation (5.12) and (5.13), 𝜋𝑓→− is the probability of changing from fundamentalists 

to pessimistic chartists. It is influenced by the profit factor 𝑈2,2 and also the number of 

pessimistic chartists. 𝜋−→𝑓 is the probability of changing from pessimistic chartists to 

fundamentalists. Similarly, it is influenced by the profit factor 𝑈2,2 and also the number 

of fundamentalists. 𝑣2 represents the frequency of this type of transition as in equations 

(5.8) - (5.11). The probabilities based on the factor 𝑈2,2 are: 

(5.12)  𝜋𝑓→− = 𝑣2 (
𝑛−

𝑁
exp(𝑈2,2)) ∆𝑡 

(5.13)  𝜋−→𝑓 = 𝑣2 (
𝑛𝑓

𝑁
exp(−𝑈2,2)) ∆𝑡 

 

5.3.3.3 Market mechanism 

The market mechanism is based on excess demand. There is an assumption behind it: 

the auctioneer will adjust the price to the next higher or lower possible value within the 

next small time increment based on the imbalance between demand and supply. The 
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auctioneer will adjust the price by increasing or decreasing the market price at a fixed 

amount ± 0.01. In the equation, 𝑡𝑐 is the number of units that all chartists either buy or 

sell which is set at 0.02 for parameter set 1 and 𝛾 is the reaction strength set at 0.01 for 

parameter set 1. The excess demand for chartists 𝐸𝐷𝑐  and excess demand for 

fundamentalists 𝐸𝐷𝑓 are: 

(5.14)  𝐸𝐷𝑐 = (𝑛+ − 𝑛−)𝑡𝑐   

(5.15)  𝐸𝐷𝑓 = 𝑛𝑓 𝛾 (pf − 𝑝) 

 

The total excess demand is ED: 

(5.16)  𝐸𝐷 = 𝐸𝐷𝑐 + 𝐸𝐷𝑓   

The probability of the price changing is given by equations (5.17) and (5.18). In the 

equations, 𝛽 is the speed of the auctioneer fixed at 6 for parameter set 1, and 𝜇 is the 

small noise term following the normal distribution with N ~ (0, 𝜎 (standard deviation)) 

where the standard deviation for parameter set 1 is 0.05. 𝜋↑𝑝 is the probability of price 

going up and 𝜋↓𝑝 is the probability of price going down.  

(5.17)  𝜋↑𝑝 = max[0, 𝛽 (𝐸𝐷 + 𝜇)]   

(5.18)  𝜋↓𝑝 = − min[0, 𝛽 (𝐸𝐷 + 𝜇)] 

For the code, It runs in Windows with language c++. The software Code Block 10.05 

is used to run the code. The random number generator is the built-in version in c. It runs 

with fixed time steps. The runtime is about 12 minutes for one long run. It runs on the 

laptop. The code is accessible on the DOI 10.5281/zenodo.5524993. Or by the email 

request by x.liu1@lancaster.ac.uk or liuxinbess@126.com. 

mailto:x.liu1@lancaster.ac.uk
mailto:liuxinbess@126.com
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5.4 Results and Comparisons 

This section will analyse results related to the model which are introduced in Section 

5.1-5.3. In this model, there is no warm-up period. This follows what was done in the 

original paper. This is based on designing the initial conditions to have a particular 

structure and mix of the different type of agents and wanting to see what will happen in 

the model from those initial conditions. 

 

Following what was done in the original paper, only one long run is used for each 

parameter set mentioned in Table 5.2 with a run length of 20000 time units. What the 

time unit in this model represents in real time is not specified in the original paper. This 

experimentation method is running the model for one long run.  

 

Some of the statistics in the original paper come from calculating values for sub-periods 

within the run, such as 10 sample values for each 2000 time units for the tail index. This 

is effectively a batch means approach.  

 

Each unit of time is actually divided up into time increments ∆𝑡, in which agents are 

switched among each other, and then the price is updated. As explained earlier, 

depending on the simulation conditions ∆𝑡  is either 0.01 or 0.002 (Step 6 of Section 

5.1.3). This means that there are actually either 100 or 500 updates every unit of time. 

Hence one run of the model has at least 2,000,000 time increments in which the agents 

can change their type, and the price can change. Hence, this seems reasonable as the 

long run. 
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The number of agents in each group and the price are recorded at the end of every unit 

time interval. That means the result will be recorded in every 100 increments when ∆𝑡 is 

0.01 or every 500 increments when ∆𝑡 is 0.002.  

 

In the results analysis, returns, the fraction of chartists, unit root, measures of fat tails, 

and d for volatility clustering are calculated. The returns rett = ln(𝑝𝑡) − ln(𝑝𝑡−1) 

measure the price difference between the price now and the last previous price using 

the logarithm; in other words, they measure the fluctuation of prices. 

 

The fraction of chartists among traders z is introduced in the equation (5.4) in Section 

5.3.3.1. It is the total number of chartists divided by the total number of agents which 

are 500.   

 

In the original paper, Lux and Marchesi (2000) use unit-roots to test if the data is a 

random walk or not. The Dickey-Fuller test is used. The 20000 data values are divided 

into 40 subsamples. Hence, in each subsample, there are 500 values. The null hypothesis 

and alternative hypothesis for the one-sided test are: 

H0: ρ =1  and  H1: ρ <1 in the regression： pt = ρpt-1 + ϵ 

 

If the data rejects the hypothesis, the prices are not dynamic to conceal systematic 

motion. If the hypothesis is rejected by ρ >1, the unit root is rejected by explosive roots 

of the dynamics. That means extreme instability occurred temporarily and it could be 

bubbles. On the other hand, if the hypothesis is rejected by ρ < 1, the unit root is rejected 

by mean-reverting dynamics. 
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In this model, there are two methods to measure fat tails. The same as the measure of 

tails in the first replication model, they use kurtosis to represent fat tails. There is 

another method to measure fat tails as well to get a median of a tail index from samples. 

20000 data are divided into ten subsamples. Hence, in each subsample, there are 2000 

values. To calculate the tail index from 10 samples, the 2000 values in each sample need 

to be ordered. The tail index is calculated by using the equation (5.19) where H is the 

percentage of the tail, k is the number of observations locating in the tail distribution:  

(5.19)  

The equation 5.19 is copied from the paper, there is a typo in it: n–l+1 should be n-i+1. 

For kurtosis, the bigger the value indicates more fat tails. For a tail index, the smaller 

the value indicates more fat tails. From empirical results, the tail index usually ranges 

from 2 to 5. 

 

To test volatility clustering the 20000 data values are divided into ten subsamples. 

Hence, in each subsample, there are 2000 values. From 2000 entries in one sample, the 

autocorrelation function ρ(k) is calculated. Then d is calculated while ρ(k) ~ k^(2d-1). 

A value of d which exceeds 0 indicates that there is volatility clustering. And if it is 

greater than 0.5, it indicates a non-stationary aspect of the volatility process. From the 

empirical data, d usually ranges from 0.22 to 0.6 for absolute returns. 

 

The replication results comparing with the original paper will be illustrated. Throughout 

the comparison, the reproducibility of the original paper will be illustrated.  

 

In Figure 5.2, the returns from time 1000 to 4000 is presented with the parameter set 1. 
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This follows the original paper which showed charts for this time period. It was not 

clear how typical this data was in the original paper. In my results, I produced charts for 

the whole time period and from a visual inspection this data does appear to be similar 

to the rest of the data. 

 

Figure 5. 2 Returns from 1000-4000 in the replication model 

 

In Figure 5.3, the fraction of chartists among traders which is z from time 1000 to 4000 

is presented with the parameter set 1.  
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Figure 5. 3 z from 1000-4000 in the replication model 

 

In Figure 5.4, returns and z are presented in the same graph to compare the patterns of 

returns and chartists’ fraction with the parameter set 1. Chartists’ fraction z is drawn on 

the left y-axis while returns are drawn on the right y-axis. From Figure 5.4, it is clear 

that when z gets larger, the magnitude of returns gets bigger too. 
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Figure 5. 4 Returns and z from 1000-4000 in the replication model 

 

In Figure 5.5, the returns and fraction of chartists in the original paper are presented 

with the parameter set 1. In the original paper, returns are stable most of the time. When 

the fraction of chartists among traders get extremely high, returns become big. 
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Figure 5. 5 Returns and z in the original model (Lux and Marchesi, 2000:689)  

 

Comparing the patterns in Figure 5.4 and 5.5, they are visually similar. The returns are 

mostly stable when z is less than 0.5. When z is more than 0.5, which means there are 

more chartists than fundamentalists, the variability of returns becomes large. This is 

called “on-off intermittency” in the original paper. 

 



162 

 

In Table 5.4, it shows the results of unit-roots from my replication model. 

Parameters range 

    

Parameter set 1 0.999301-0.999996 

Parameter set 2 0.999819-1.000021 

Parameter set 3 0.999899-1.000061 

Parameter set 4 0.999874-1.000031 

Table 5. 4 Unit root in the replication model 

 

In Table 5.5, it shows the results of unit-roots from the original paper. 

 

Table 5. 5 unit root in the original model (Lux and Marchesi, 2000:691) 

 

Comparing the results in Table 5.4 and 5.5, the ranges of ρ in the replication model and 

the original paper are similar. The replication model has a little wider range of unit root 

than in the original paper except for parameter set 1. And the range in the replication 

model for the parameter set 1 does not quite include the value 1. For Table 5.5 and Table 

5.9, the number of rejections for unit root and volatility clustering is provided. The 

number of rejections is not included in the replication model because the way to do the 

test is not clearly described. 
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Again following the results in the original paper, in Figure 5.6, the price from period 

14950 to 15450 with parameter set 4 based on the replication model is shown. 

 

Figure 5. 6 Prices from 14950-15450 in the replication model 

 

In Figure 5.7, the price from period 14950 to 15450 with the parameter set 4 from the 

original paper is shown.  
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Figure 5.7 Prices from 14950-15450 in the original model (Lux and Marchesi, 2000:692)  

 

Comparing the prices in Figures 5.6 and 5.7, the patterns of prices are visually fairly 

similar. However, obviously the exact pattern is not the same since this will vary with 

using different random numbers and the precise details of the model. All in all, the prices 

in this model go up and down with some extreme values like about 10.5 and 9.5 in the 

replication model and 10.4 and 9.7 in the original model. It is difficult to make a precise 

comparison, particularly when only a small section of values over 500 time units is 

provided in the original paper. 

 

Measures of fat tails based on my replication model are shown in Table 5.6. The results 

of kurtosis and tail index of 2.5% tail, 5% tail, and 10% tail are shown following that in 

the original paper. The kurtosis is the excess kurtosis statistic where a normal 
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distribution has a value of 0. 

 

The tail index is calculated for the ten samples of 2000 observations across the whole 

run, and so there are ten values of each tail index. In Table 5.6, the median and the range 

of the tail index are shown. For example, for the parameter set 1 the median of the 5% 

tail index is 2.51, ranging from 2.20 to 3.20 across the 10 sample values. 

 

median αH from 10 samples of 2,000 observations (in parentheses: range of 

estimates) 

Parameters kurtosis 2.5%tail 5%tail 10%tail 

   3.06  2.51  2.21  

Parameter set 1 19.34 (2.15-3.93) (2.20-3.20) (1.98-2.81) 

   3.72  3.09  2.63  

Parameter set 2 11.57 (2.18-4.27) (2.37-3.60) (2.16-3.20) 

   4.21  3.62  3.05  

Parameter set 3 8.72 (3.03-5.67) (2.51-4.20) (2.29-3.39) 

   3.36  3.00  2.60  

Parameter set 4 13.94 (2.43-4.66) (1.99-3.98) (1.71-3.28） 

          

Table 5. 6 Fat tails in the replication model 

 

Measures of fat tails based on the original model are shown in Table 5.7. 
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Table 5. 7 Fat tails in the original model (Lux and Marchesi, 2000:693) 

 

Comparing the kurtosis in Table 5.6 and 5.7, in the replication model, it is 19.34 while 

in the original paper, it is 135.73 when we use the parameter set 1. This is a big 

numerical difference but might not imply a big difference in model behaviour. The 

comments about the kurtosis values in the original paper are “As can be seen, we have 

excessive fourth moments in each case. As compared to empirical data at daily 

frequency, the results from parameter sets 2 to 4 look very realistic while the first variant 

may seem to exhibit too high a degree of leptokurtosis [footnote q: However, such high 

numbers are not uncommon for thinly traded assets at daily frequencies and for more 

frequently traded ones at intra-daily frequencies.] However, note that kurtosis is a 

somewhat ambiguous concept and it is not entirely clear how to compare the statistics 

obtained for various time series. Furthermore, empirical power-law tails with exponents 

in the range 2 to 4 imply non-convergence of the fourth moment which also makes 



167 

 

empirical estimates of the kurtosis statistics unreliable.” Hence, it is difficult to assess 

the practical significance of the differences in the kurtosis values between the original 

paper and my results.  

 

Also, even in the fairly recent academic literature the interpretation of kurtosis is 

disputed. For example, Westfall (2014) argues that kurtosis only reflects the nature of 

the tails of the distribution and not the peak, but Crack (2019) disagrees with this.  

 

The main kurtosis result is that for both my results and the original paper, the kurtosis 

values are considerably higher than 0, indicating fat tails. 

 

The tail index is an estimate of the shape of the tail. A value of α means than Pr(X>x) 

is distributed in proportion to x-α and so follows a power law.  

 

For parameter set 1, the median from 10 samples of 2000 observations of 2.5% tail in 

my model is 3.06 ranging from 2.15 to 3.93. While the median of 2.5% tail is 2.04 from 

the original paper, ranging from 1.61 to 4.50.  

 

Looking at all the median values there appears to be a systematic difference. With the 

exception of the 2.5% tail for the parameter set 3, the median values are higher in my 

model than in the original paper with the differences being between 0.14 and 1.02. The 

average difference for all twelve values is 0.42. Given such a consistent difference this 

probably indicates a difference in the model. 

 

In the original paper, the comment about the results for the tail index values is “The 
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results are, in fact, close to the usual empirical finding of tail indices somewhere 

between 2 and 5. There is also some indication of an increase of the estimate with 

decreasing tail size - a pattern which is also often encountered in empirical 

investigations.” Although there is a difference in my values compared to the paper, they 

still follow this description. The difference corresponds to a relatively small change in 

shape for the tail. For example, for the 5% tail with parameter set 1, a power law shape 

with index 2.51 compared to 2.11.  

  

In Figure 5.8, the result of the autocorrelations of raw, squared and absolute returns with 

the parameter set 4 are shown based on my replication model. 

 

Figure 5. 8 Autocorrelations in the replication model 

 

In Figure 5.9, the autocorrelation based on the original model with the parameter set 4 

is shown. 
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Figure 5. 9 Autocorrelations in the original model (Lux and Marchesi, 2000:695) 

 

Comparing the pattern in Figure 5.8 and 5.9, they are similar. Autocorrelation reaches 

zero when the lag is around 250 in Figure 5.8. Autocorrelation of absolute returns 

reaches zero when the lag is 300 and autocorrelation of squared returns reaches zero 

when the lag is 250 in Figure 5.9. The differences between the autocorrelation decrease 

in absolute returns and squared returns are bigger in the original model than in the 

replication model.   

 

Table 5.8 shows the value of d in my replication model. The median d is 0.00 ranging 

from -0.09 to 0.23 with the parameter set 1 of squared returns based on my replication 

model. This indicates the volatility clustering is not that obvious with the parameter set 

1 based on my replication model. 
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  squared returns absolute returns 

Parameters 

median d from 10 

samples of 2000 

observations (in 

parentheses:range of 

estimates) 

median d from 10 

samples of 2000 

observations (in 

parentheses:range of 

estimates) 

      

Parameter set 1 0.00  0.16  

  (-0.09)-0.23 0.06-0.30 

Parameter set 2 0.10  0.20  

  (-0.06)-0.22 0.08-0.28 

Parameter set 3 0.15  0.21  

  0.03-0.26 0.18-0.34 

Parameter set 4 0.14  0.24  

  0.00-0.28 0.05-0.36 

Table 5. 8 d in the replication model 

 

Table 5.9 shows the value of d in the original model. 
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Table 5. 9 d in the original model (Lux and Marchesi, 2000:696) 

 

In my model (Table 5.8), the median d is 0.16, ranging from 0.06 to 0.30 of absolute 

returns from 10 samples of 2000 observations based on the parameter set 1. While d is 

0.38, ranging from 0.21 to 0.64 in the original model. The values are not the same. This 

may be caused by different calculations as the description for this part is not so clear 

and it will be discussed in detail in the replication reflect part in Chapter 6. 

 

Overall, my replication model and the original model have similar patterns, and both 

have the stylised facts of fat tails and volatility clustering. The statistics on the results 
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are fairly similar but with some systematic differences. Therefore the model has been 

replicated to the level of rational alignment.  

 

5.5 Model Extension 

This section describes work to extend the experiments and analysis on the model to get 

a better understanding of the model behaviour. One area of uncertainty in the 

description of the original paper is in how the time increment changes. The effect of 

this was investigated by keeping the increment fixed and comparing the results. This is 

described in Section 5.5.1. 

 

One particular aspect of interest is to try and get a better understanding of the reasons 

for the behaviour of the model. The model results show the short period of high 

volatility and then periods in between of more stable behaviour, described as “on-off 

intermittency” in the original paper. Various analysis was done to investigate the 

reasons for this behaviour and why the model enters and leaves the high volatility 

periods. This is described in Sections 5.5.2 – 5.5.6. 

 

5.5.1 Time increment value 

The requirement for the change of time interval from 0.01 to 0.002 is vague. Although 

it is said in the original paper that the time interval will change to 0.002 when the price 

changes so frequently that it exceeds the average prices change, there is no description 

of how to calculate the average prices change. Besides, in the original paper, there are 

four parameter settings, and the average price change may be different each time. If the 

value is set dynamically for each run, then this will need some data during the run in 
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order to calculate the average and it is not clear how or when to incorporate this into the 

simulation. 

 

Because the change of time interval may increase the value of extreme returns and the 

reasoning behind the change of time interval is not particularly persuasive, comparative 

experiments were run in which the time increment does not change and is always 0.01. 

The run length and number of runs are the same as the original one, which is 20000 and 

1. The parameter set 1 was used and the results are presented in the following paragraphs. 

The time increment is 0.01 with run length 20000, and parameter set 1 with one long 

run is used for the remaining sections in Section 5.5. 

 

In Figure 5.10, the pattern of returns and the fraction of chartists among traders are 

shown.  
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Figure 5. 10 Returns and z from 1000-4000 in the replication model with ∆𝑡 = 0.01 

 

From Figure 5.10, when the time interval is not changed, the returns get higher when 

the fraction of chartists is bigger. This is the same pattern that is found in my replication 

model with the change of time interval and also in the original model. The difference is 

that the extreme values of both returns and fraction of chartists are a bit lower here 

compared to the original replication model which has the change of time increment. 

These, on the other hand, confirm the effect of the time increment that change of time 

interval may increase the value of extreme returns. 

 

In Figure 5.11, the pattern of price change from 14950 to 15450 is presented. 
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Figure 5. 11 Prices from 14950-15450 in the replication model ∆𝑡 = 0.01 

 

The pattern of price change from time 14950-15450 in Figure 5.11 is similar to the 

original replication model with the change of time increment and also the original model 

although the parameter sets are different. The result in Figure 5.11 is based on parameter 

set 1, while in the replication model (Figure 5.6) and original paper (Figure 5.7) are all 

based on parameter set 4. 

 

In Figure 5.12, the result of autocorrelations of raw, squared and absolute returns with 

the parameter set 4 are shown. 
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Figure 5. 12 Autocorrelations in the replication model ∆𝑡 = 0.01 

The patterns of autocorrelations change are generally similar to the results in Figure 5.8 

and 5.9 before, although the result in Figure 5.12 is based on parameter set 1 while the 

result in Figure 5.8 is based on parameter set 4. The autocorrelation in Figure 5.12 

decreases to 0 of both absolute returns and squared returns when the lag is 100. The 

autocorrelation in Figure 5.12 decays much more quickly than in the replication model 

with the change of time increment and the original model. 

 

In Table 5.10, 5.11 and 5.12, the unit root, fat tails, and d in the replication model while 

∆𝑡 = 0.01 are shown. 

 

Parameters range 

    

Parameter set 1 0.999796-1.000026 

Table 5. 10 Unit root in the replication model ∆𝑡 = 0.01 

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 100 200 300

au
to

co
rr

e
la

ti
o

n

lag

raw returns

absolute returns

squared returns



177 

 

 

median αH from 10 samples of 2,000 observations 

Parameters kurtosis 2.5%tail 5%tail 10%tail 

   3.40 2.79  2.29  

Parameter set 1 8.48 (2.94-3.65) (2.26-3.62) (2.05-2.87) 

Table 5. 11 Fat tails in the replication model ∆𝑡 = 0.01 

  squared returns absolute returns 

Parameters 

median d from 10 

samples of 2000 

observations (in 

parentheses:range 

of estimates) 

median d from 10 

samples of 2000 

observations (in 

parentheses:range 

of estimates) 

      

Parameter set 1 0.08  0.13  

  (-0.04)-0.18 0.04-0.24 

Table 5. 12 d in the replication model ∆𝑡 = 0.01 

 

In Table 5.10, the values of unit root based on parameter 1 are closer to the values in 

the original model in Table 5.5 than the values in the replication model with the change 

of time increment in Table 5.4. In Table 5.11, the kurtosis value is lower than that in the 

replication model with the change of time increment in Table 5.6 that in the original 

model in Table 5.7. The tail indices are slightly higher than the previous values. 

 

In Table 5.12, the values of d in both Table 5.12 and in the replication model with the 

change of time increment in Table 5.8 are much lower than the value in the original 

model in Table 5.9.  

 

All in all, the result without change of time increment is quite similar to the replication 

model with the change of time increment and the original model. Whilst the statistics 

are slightly different, the prices follow a random walk, and returns have fat tails and 



178 

 

volatility clustering. Hence, changing the time increment does not appear to have a very 

large effect and does not seem to be a factor in causing the stylized facts. A fixed time 

increment was therefore used for the other experiments described in Sections 5.5.2 – 

5.5.6. 

 

5.5.2 Relationship analysis 

From the results in Section 5.4, the periods of high volatility happen when the fraction 

of chartists is high. Hence, it is important to understand how the number of each type 

of agent changes. The model enters a period of high volatility when the number of 

chartists increases and so a key question is how does this occur?  

 

The relationship between the number of agents and probabilities will be analysed in this 

section. The experiments are run using parameter set 1 and with the time increment 

fixed at 0.01. 

 

From the probabilities equation of changing between agents, the probabilities are 

influenced by the number of agents in each type and by the price. The relationship 

between each probability and the number of a certain type of agent will be analysed one 

by one.  

 

The following analysis shows that the probability is mainly based on the number of 

agents in each type rather than the price. In each case there is essentially a linear 

relationship. The mathematical reasons why this is the case will also be discussed. 

 

From equation (5.6), the probability of changing from pessimistic chartists to optimistic 
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chartists is influenced by the total number of chartists. Hence, it will be partly due to 

the number of optimistic chartists. Of course, changing from a pessimistic to optimistic 

chartist does not change the total number of chartists. 

 

In Figure 5.13, the relationship between the number of optimistic chartists and the 

probability of changing from pessimistic chartists to optimistic chartists is shown. 

 

Figure 5. 13 Relationship between the number of optimistic chartists and the probability 

of changing from pessimistic chartist to optimistic chartists 

 

From Figure 5.13, the relationship between the number of optimistic chartists and the 

probability of changing from pessimistic chartists to optimistic chartists follows 

approximately a straight line with a slope of about 0.0001169 and an intercept of 

0.0001561. R square is 0.9893, indicating that there is a strong linear relationship, which 

is also clear from the chart. 
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From equation (5.7), the probability of changing from optimistic chartists to pessimistic 

chartists is influenced by the total number of chartists. In Figure 5.14, the relationship 

between the number of pessimistic chartists and the probability of changing from 

optimistic chartists to pessimistic chartists is shown. 

 

Figure 5. 14 Relationship between the number of pessimistic chartists and the 

probability of changing from optimistic chartists to pessimistic chartists 

 

From Figure 5.14, the relationship between the number of pessimistic chartists and the 

probability of changing from optimistic chartists to pessimistic chartists follows a 

straight line with a slope of about 0.0001163 and an intercept of 0.0002461. R square is 

0.989, indicating that there is a strong linear relationship. 

 

Comparing the patterns in Figure 5.13 and 5.14, they are very similar. That indicates 

the probabilities of changing from pessimistic chartists to optimistic chartists and 
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of optimistic chartists and pessimistic chartists is the same, the probability of changing 

between these two types of agents is the same, too. 

 

From equation (5.9), the probability of changing from fundamentalists to optimistic 

chartists is influenced by the number of optimistic chartists. In Figure 5.15, the 

relationship between the number of optimistic chartists and the probability of changing 

from fundamentalists to optimistic chartists is shown. 

 

Figure 5. 15 Relationship between the number of optimistic chartists and the probability 

of changing from fundamentalists to optimistic chartists 

 

From Figure 5.15, the relationship between the number of optimistic chartists and the 

probability of changing from fundamentalists to optimistic chartists can be modelled by 

a straight line with a slope of 0.0000397 and an intercept of 0.0000051. R square is 

0.9999, indicating that there is a very strong linear relationship. 
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From equation (5.10), the probability of changing from optimistic chartists to 

fundamentalists is influenced by the number of fundamentalists. In Figure 5.16, the 

relationship between the number of fundamentalists and the probability of changing 

from optimistic chartists to fundamentalists is shown. 

 

Figure 5. 16 Relationship between the number of fundamentalists and the probability of 

changing from optimistic chartists to fundamentalists 

 

From Figure 5.16, the relationship between the number of fundamentalists and the 

probability of changing from optimistic chartists to fundamentalists follows a straight 

line with a slope of 0.0000398 and an intercept of 0.0001157. R square is 0.9998, 

indicating again that there is a very strong linear relationship. 

 

From equation (5.12), the probability of changing from fundamentalists to pessimistic 
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from fundamentalists to pessimistic chartists is shown. 

 

Figure 5. 17 Relationship between no of pessimistic chartists and the probability of 

changing from fundamentalists to pessimistic chartists 

 

From Figure 5.17, the relationship between the number of pessimistic chartists and the 

probability of changing from fundamentalists to pessimistic chartists follows a straight 

line with a slope of 0.0000397 and an intercept of 0.0000050. R square is 0.9999, 

indicating that there is almost exactly a straight-line relationship.  

 

From equation (5.13), the probability of changing from pessimistic chartists to 

fundamentalists is influenced by the number of fundamentalists. In Figure 5.18, the 

relationship between the number of fundamentalists and the probability of changing 

from pessimistic chartists to fundamentalists is shown.  
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Figure 5. 18 Relationship between no of fundamentalists and the probability of 

changing from pessimistic chartists to fundamentalists 

 

From Figure 5.18, the relationship between the number of fundamentalists and the 

probability of changing from pessimistic chartists to fundamentalists follows a straight 

line with a slope of 0.0000398 and an intercept of 0.0001159. R square is 0.9998, 

indicating that there is almost exactly a straight-line relationship.  

 

From Figure 5.15, 5.16, 5.17, and 5.18, the slope of the straight line is about the same 

(0.00004), only the intercepts are different. The intercepts in Figure 5.15 and 5.17 are 

the same (0.000005) and those in Figure 5.16 and 5.18 are also the same (0.0001). The 

straight-line relationships between the number of agents and probabilities of changing 

between agents are: 
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(5.20)  𝜋𝑓→+ = 0.00004 ∗ 𝑛+ + 0.000005   

(5.21)  𝜋+→𝑓 = 0.00004 ∗ 𝑛𝑓 + 0.0001 

(5.22)  𝜋𝑓→− = 0.00004 ∗ 𝑛− + 0.000005 

(5.23)  𝜋−→𝑓 = 0.00004 ∗ 𝑛𝑓 + 0.0001 

 

The reason for the values for the slopes is considered in the next section. However, what 

the equations imply is that if the number of a particular type of agent increases, then the 

probability of swapping to that type also increases. In particular, if the number of 

chartists increases just through random variability, then the probability of 

fundamentalists changing to chartists increases and so this can lead to a high proportion 

of chartists and the start of a period of high volatility. The next question is what factors 

might cause the period of high volatility to end. 

 

5.5.3 Price effect 

The relationship lines in figure (5.13) and (5.14) from the probabilities of changing 

between optimistic chartists and pessimistic chartists are almost the same. The 

probabilities which influence the change of the number of fundamentalists depend on 

the relationships in figure (5.15) (5.16) (5.17) and (5.18).  

 

The on-off intermittency is a pattern that the returns change with the change of chartists’ 

fraction. The fraction of chartists depends on the relative numbers of chartists and 

fundamentalists. Therefore, the price effect discussion only focuses on the change 

between fundamentalists and chartists. 
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For the relationship between fundamentalists and chartists, the slope is the same, only 

the intercept is different.  

 

Considering the probability equations 5.9, 5.10, 5.12, 5.13, the price effect in these 

equations is due to the value of  𝑈2,1 and 𝑈2,2. These depend on the rate of change of 

the price and the difference in the price from the fundamental value. In times of stability 

these will both be small and so 𝑈2,1 and 𝑈2,2 will be small.  

 

In the probability equations the terms involving 𝑈2,1  and 𝑈2,2  are the exponential of 

either plus or minus 𝑈2,1 or 𝑈2,2. For the exponential function, if x is close to 0 then 

exp(x) ≈1+x.  

 

And usually, their values are close to 0, which leads to the values of exp(𝑈2,1) and 

exp(𝑈2,2) being very close to 1. If the price effect is ignored and the probability is only 

dependent on the number of agents then the slope for equation (5.9) (5.10) (5.12) and 

(5.13) is equal to (
𝑣2

𝑁
) ∆𝑡 which is 0.00004. This is because for parameter set 1: v2 = 2. 

We also have N = 500 and ∆t = 0.01. Hence: (
𝑣2

𝑁
) ∆𝑡 = 0.00004. This is the reason why 

the relationships in the previous section have a slope of 0.00004. 

 

If the prie stands for the price effect, then the equations (5.9) (5.10) (5.12) and (5.13) 

can be changed to: 

 

 

 



187 

 

(5.9.1)   𝜋𝑓→+ = (
𝑣2

𝑁
) ∆𝑡 (1 + 𝑝𝑟𝑖𝑒) ∗ 𝑛+   

(5.10.1)  𝜋+→𝑓 = (
𝑣2

𝑁
) ∆𝑡 (1 + 𝑝𝑟𝑖𝑒) ∗ 𝑛𝑓 

(5.12.1)  𝜋𝑓→− = (
𝑣2

𝑁
) ∆𝑡 (1 + 𝑝𝑟𝑖𝑒) ∗ 𝑛− 

(5.13.1)  𝜋−→𝑓 = (
𝑣2

𝑁
) ∆𝑡 (1 + 𝑝𝑟𝑖𝑒) ∗ 𝑛𝑓 

 

The simulation model was run and the price effect was calculated at each time unit using 

the probability equations. Figures 5.19, 5.20, 5.21, and 5.22 show the change of price 

effect (prie) in equations 5.9.1, 5.10.1 5.12.1, and 5.13.1 along with the returns in 

simulated time from 0-20000. 

 

 

Figure 5. 19 Price effect in Eq. (5.9.1) and returns from 0 – 20000 
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Figure 5. 20 Price effect in Eq. (5.10.1) and returns from 0 – 20000 

 

 

Figure 5. 21 Price effect in Eq. (5.12.1) and returns from 0 – 20000 

-0.3000

-0.2500

-0.2000

-0.1500

-0.1000

-0.0500

0.0000

0.0500

0.1000

0.1500

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

re
tu

rn
s

p
ri

ce
 e

ff
e
ct

 (
o

p
 t

o
 f

) 

time

price effect returns

-0.1500

-0.1000

-0.0500

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

re
tu

rn
s

p
ri

ce
 e

ff
e
ct

 (
f 

to
 p

e
) 

time

price effect returns



189 

 

 

Figure 5. 22 Price effect in Eq. (5.13.1) and returns from 0 – 20000 

 

Figure 5.19 and 5.21 show that the price effect from fundamentalists to chartists is 

negative. While Figure 5.20 and 5.22 show that the price effect from chartists to 

fundamentalists is positive. Hence, the price effect is a factor that increases the 

probability of agents being fundamentalists. 

 

From Figure 5.19, 5.20, 5.21, 5.22, the absolute value of the price effect increases when 

the magnitude of returns are big. That means the price effect from fundamentalists to 

chartists reduces the probability more from fundamentalists to chartists when returns 

are big. In contrast, the price effect from chartists to fundamentalists increases the 

probability more from chartists to fundamentalists when returns are big. Therefore, 

when volatility is high the price effect is big which will increase the probability of 

agents changing to fundamentalists. Hence, this provides a mechanism for ending the 

period of having a high fraction of chartists and high volatility. 
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5.5.4 Without price effect 

From the discussion before, the price effect seems to be a stabilising force that drives 

the returns back to their stable stage by changing chartists to fundamentalists. To 

confirm the discussion of the price effect, the model without the price effect will be 

analysed below.  

 

The model without price effect changes the 𝑝̇ in equation (5.5) to 0. Then the equation 

(5.5) changes to equation (5.5.1) for the change between chartists as below: 

(5.5.1)  𝑈1 = 𝛼1𝑥  

 

The value of 𝑈2,1  and 𝑈2,2  changes to one, which makes the price effect (prie) in 

equation 5.9.1, 5.10.1, 5.12.1, and 5.13.1 equal to 0. That reduces the intercept in 

original straight-line relationships to 0. In other words, the probability of changing 

between chartists to fundamentalists in the model without the price effect purely 

depends on the number of agents. Then the straight-line relationships without price 

effect change the equations (5.20) (5.21) (5.22) (5.23) to: 

(5.20.1)  𝜋𝑓→+ = 0.00004 ∗ 𝑛+   

(5.21.1)  𝜋+→𝑓 = 0.00004 ∗ 𝑛𝑓 

(5.22.1)  𝜋𝑓→− = 0.00004 ∗ 𝑛− 

(5.23.1)  𝜋−→𝑓 = 0.00004 ∗ 𝑛𝑓 

 

The returns and fraction of the chartists of the model without the price effect are 

presented in Figure 5.23. 
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Figure 5. 23 Returns and z from 1000-4000 in the replication model without price effect 

 

The patterns of returns and fraction of chartists are very different from the patterns 

before in Figure 5.10. Although the returns are big when the fraction of chartists is big, 

the volatile period when the returns are big lasts much longer than in Figure 5.10. And 

the stable periods when the returns are small are very short. Most of the time the system 

shows high volatility. These patterns influence the statistical results. 

 

In Table 5.13, 5.14, and 5.15, the unit root, fat tails, and d in the model without price 
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effect are shown. 

Parameters range 

    

Parameter set 1 0.997269-1.000104 

Table 5. 13 Unit root in the replication model without price effect 

 

median αH from 10 samples of 2,000 observations 

Parameters kurtosis 2.5%tail 5%tail 10%tail 

   9.09 8.33  6.39  

Parameter set 1 0.25 (5.64-13.76) (4.68-9.63) (3.21-7.02) 

Table 5. 14 Fat tails in the replication model without price effect 

 

  squared returns absolute returns 

Parameters 

median d from 10 

samples of 2000 

observations (in 

parentheses:range 

of estimates) 

median d from 10 

samples of 2000 

observations (in 

parentheses:range 

of estimates) 

      

Parameter set 1 0.25  0.30  

  0.01-0.36 0.05-0.40 

Table 5. 15 d in the replication model without price effect 

The statistical values in Table 5.13 and 5.15 are relatively similar to the results before 

in Table 5.10 and 5.12. Comparing the values in Table 5.15 and 5.12, the values for d 

are higher for this model and in that sense the volatility clustering is much more obvious 

than for the model with price effect. There is volatility clustering in that there are periods 

of high and low volatility. The difference is that the periods of high volatility are long 

and periods of low volatility are short. 

 

The values in Table 5.14 show that there are almost no fat tails in the model without 

price effect. Compared with the model with price effect and the model without price 
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effect, the model without price effect has on-off intermittency differently and the stable 

period is really small, which leads to no stylised fact of fat tails.  

 

Overall, the work here indicates that the price effect is one of the main factors that drives 

the model back to its stable period.  

 

5.5.5 With constant probability 

The model with constant probability discusses in this section. The probability changing 

from fundamentalists and chartists is fixed at 0.005.  And the probability of changing 

between chartists is fixed at 0.015. The scale of the probability setting is based on the 

generated probability in the replicating model.  
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Figure 5. 24 Returns and z from 1000-4000 in the constant probability model 

 

The patterns of returns and fraction of chartists are very different from the patterns 

before in Figure 5.10, 5.23. The fraction of chartists is concentrated between 0.6-0.7 

because of constant switching probability. The returns do not have on-off intermittency 

with the volatile period and the stable. Compared to returns in Figure 5.10, 5.23 and 

5.24, returns in Figure 5.23 stay in the volatile period to some extent because of a large 

fraction of chartists. The settings for the constant probability, in this case, produce a 

large number of chartists. This confirms that the model does not change the volatile 

period or stable period without the price effect and randomness. 

 

5.5.6 Understanding the on-off intermittency 

If the discussion before is in the right direction, then the analytical model with the 

probabilities based on the relationships in Figure 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18 
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The probability rules of changing between chartists and fundamentalists are based on 

equation (5.20) (5.21) (5.22) (5.23) in Section 5.5.2: 

(5.20)  𝜋𝑓→+ = 0.00004 ∗ 𝑛+ + 0.000005   

(5.21)  𝜋+→𝑓 = 0.00004 ∗ 𝑛𝑓 + 0.0001 

(5.22)  𝜋𝑓→− = 0.00004 ∗ 𝑛− + 0.000005 

(5.23)  𝜋−→𝑓 = 0.00004 ∗ 𝑛𝑓 + 0.0001 

The probability rules of changing between chartists are based on equation (5.24) (5.25): 

(5.24)  𝜋−→+ = 0.0001 ∗ 𝑛+ + 0.0002 

(5.25)  𝜋+→−  = 0.0001 ∗ 𝑛− + 0.0002 

The reference numbers for the equations for switching between the agent types are as 

follows: 

            𝑛+ Eq. (5.20)  

   𝑛𝑓 

               𝑛− Eq. (5.22) 

               𝑛− Eq. (5.25) 

   𝑛+ 

               𝑛𝑓 Eq. (5.21) 

               𝑛+ Eq. (5.24) 

   𝑛− 

               𝑛𝑓 Eq. (5.23) 
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For each agent, the switching probability of changing into the other two types are 

decided. And then, the number of agents in each type is calculated. The price formation 

process keeps unchanged following Section 5.3.3.3. 

 

Figure 5.25 shows returns and the fraction of the chartists of the analytical model.  

 

 

Figure 5. 25 Returns and z from 1000-4000 in the analytical model 

 

The patterns in Figure 5.25 are similar to those in Figure 5.10 to some extent. The 
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autocorrelations of raw returns squared returns and absolute returns are illustrated in 

Figure 5.26.  

 

Figure 5. 26 Autocorrelations in the analytical model 

 

The patterns of autocorrelations are similar to the results in Figure 5.12 before. The 

autocorrelation of absolute returns in Figure 5.26 decreases to 0 when lag is 150 and the 

autocorrelation of squared returns decreases to 0 when lag is 100. In Figure 5.12, it 

decreases to 0 with both absolute returns and squared returns when the lag is 100. 

 

In Table 5.16, 5.17 and 5.18, the unit root, fat tails, and d in the analytical model are 

shown. 

Parameters range 

    

Parameter set 1 0.999220-1.000330 

Table 5. 16 Unit root in the analytical model 
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median αH from 10 samples of 2,000 observations 

Parameters kurtosis 2.5%tail 5%tail 10%tail 

   3.27 2.67  1.99  

Parameter set 1 19.83 (1.74-5.01) (1.69-3.52) (1.74-2.63) 

Table 5. 17 Fat tails in the analytical model 

  squared returns absolute returns 

Parameters 

median d from 10 

samples of 2000 

observations (in 

parentheses:range 

of estimates) 

median d from 10 

samples of 2000 

observations (in 

parentheses:range 

of estimates) 

      

Parameter set 1 0.07  0.17  

  (-0.01)-0.28 0.10-0.34 

Table 5. 18 d in the analytical model 

 

Compared with the statistical value in Table 5.16, 5.17, 5.18 and 5.10, 5.11, 5.12, they 

are similar to some extent. That indicates that the model with probabilities just depends 

on the number of agents and can generate similar results with the replication model and 

also similar stylised facts like volatility clustering and fat tails. In this model, the price 

effect is replaced by the intercept part of a model depending only on the number of 

agents. 

 

The pattern of on-off intermittency is somehow similar to the original one and also the 

replication model. That gives a clue that the price effect is the key force that drives the 

returns and fraction of chartists back to its stable stage. The volatile stage starts 

randomly and the price effect drives the volatile stage quite quickly back to its normal 

stage.  
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5.6 Conclusions 

In conclusion, my replication model and the original model have the same patterns of 

prices, returns, and the fraction of chartists. Although the statistical measures of unit 

root, fat tails, and volatility clustering are varied, most of them are statistically similar. 

My replication model and the original model generate both fat tails and volatility 

clustering. The model has been replicated at a rational alignment level. 

 

The probability set by equations is not just related to the number of a certain type of 

agents but also the price effect. A linear relationship is found between the probabilities 

and the number of a certain type of agent. The price effect is negatively related to 

probability from fundamentalists to chartists, and it is positively related to probability 

from chartists to fundamentalists. The price effect is big when the returns are big then 

it decreases the number of agents to chartists and increases the number of agents to 

fundamentalists. This indicates price effect dives the returns back to its stable stage. If 

the price effect is replaced by a constant intercept found in the linear relationship, the 

analytical model is built on understanding the herding. The reasons behind the on-off 

intermittency are identified. Most of the time, returns are stable and the fraction of 

chartists is relatively low. The volatile period starts mainly because of random variation. 

From Section 5.5.4, even without the price effect, the probability is only related to the 

number of certain agents. The volatile period still starts but it lasts longer. From Section 

5.5.5, how the returns and number of chartists are changed with constant probability is 

shown. The analytical model is built in Section 5.5.6. Comparing the differences in 

Section 5.5.4 and Section 5.5.6, the price effects drive the returns back to their stable 

stage quicker. The analytical model also confirms that if the model uses the intercept to 
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replace the price effect, similar results can be generated. The effect will drive the model 

back to its stable stage quicker than the one without price effects.
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Chapter 6        

Discussion 

 

This chapter discusses the replication issues of the two replicating models in Chapter 4 

and 5 related to the replication literature in Chapter 3. Also, this chapter extends the 

understanding of herding and the related stylised facts by comparing the two models’ 

results.  

 

Three main aspects will be discussed in this chapter. One is to compare the model 

described in Chapter 4, which is without the help of the Stress Guideline, and 5, which 

is with the help of the Stress guideline. Besides adding the ODD guideline and other 

replication guidelines introduced in Chapter 3, this chapter suggests a guideline based 

on both STRESS guideline and ODD guideline with some other minor suggestions. 

 

The second is to identify all the main and minor replication issues in the replicating 

models in chapters 4 and 5 separately. 

 

The third is to compare the two models’ results to extend the understanding of herding. 

The first replicating model in Chapter 4 has a network herding mechanism with an 

artificial market. The second replicating model in Chapter 5 has transition probabilities 

herding mechanism with a demand and supply market. By discussing the results from 

the two replication models with different mechanisms, how herding can produce certain 

stylised facts like fat tails and volatility clustering will be analysed with the herding 

literature in Chapter 2.  
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Section 6.1 discusses the replication framework. Section 6.2 discusses the replication 

issues of the two replicating models found in Chapter 4 and 5 in detail. Then Section 

6.3 analyses herding and related stylised facts.  

  

6.1 Replication framework 

This section discusses the replication experience of my own in Chapter 4 and 5, also the 

related guidelines mainly about the STRESS and ODD guidelines. Firstly, it focuses on 

how the framework can improve the model description by comparing the first model 

described in Chapter 4, without the STRESS guideline, to the second model in Chapter 

5, written with the STRESS guideline. Also, it shows the reflection of applying the 

guideline in Chapter 5. Secondly, by comparing the similarities and differences of the 

STRESS guideline and ODD guideline, a new combination of both guidelines is 

suggested. And also how Chapter 5 will change if it follows the new guideline. Some 

minor suggestions are added from the guideline literature in Chapter 3 for the new 

suggested guideline.  

 

6.1.1 STRESS guideline 

Although the first model in Chapter 4 tries to cover everything, some parts are still not 

clearly stated compared to Chapter 5. 

 

In Chapter 4, compared to Chapter 5, the experimentation aims do not clearly describe 

the investigation objective according to STRESS guideline 1.3. The components for 

entities, activities, resources, queues, and entry/exit, are not pointed out specifically, 

according to guideline 2.5. Variables are not listed according to guideline 3.3. The 
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implementation information for software or programming language, random sampling, 

model execution, system specification is missing according to guideline item 5.  For 

Chapter 4, the implementation and code access are similar to Chapter 5: For the code, 

It runs in Windows with language c++. The software Code Block 10.05 is used to run 

the code. The random number generator is the built-in version in c. It runs with fixed 

time steps. The runtime is about 4 minutes for one run. It runs on the laptop. The code 

is accessible on the DOI 10.5281/zenodo.5524993. Or by the email request by 

x.liu1@lancaster.ac.uk or liuxinbess@126.com. 

 

Experimentation aims with investigation objectives help the reader to compare the 

model results more easily. If several experiments apply for one model, it is better if each 

experiment’s aims are stated.  

 

Each agent’s components are clearly outlined in the second model description to help 

the reader have a better overview and understanding. Components such as environment, 

interaction and entry or exit of agents, help the reader understand the model easier. 

Besides, it helps the author conclude the model in a simpler way, including the main 

and basic components of the model.  

 

It is better to list all the variables and parameter settings in a table at first. It is easier to 

get an idea of the fixed values in the model and variables that change from time to time. 

For model replication, it is much easier to look up variables in the variables table than 

finding the value of variables throughout the whole paper. Besides, building a table for 

variables gives the author one more time to check the model variables and the scales. 

That will help the author to include all values of variables appropriately. The replication 

mailto:x.liu1@lancaster.ac.uk
mailto:liuxinbess@126.com
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issues in the original papers had the omission of variables value or errors in the variables 

from the first and second model, making my replication harder.   

 

For implementation information, including it helps to build the model. Also, it helps to 

find the reason if the results differ from each other for replication. 

 

The reflection of Chapter 5 applying the STRESS guideline is shown in Table 6.1. 

 

Section/Subsection Item Section 

1.       Objectives     

Purpose of the model 1.1 5.1.1 

Model Outputs 1.2 5.4 and 5.5 

Experimentation Aims 1.3 5.4 paragraph 2 above Figure 5.2 and 5.5 

2.       Logic     

Base model overview 

diagram 
2.1 5.1.3 Figure5.1 

Base model logic 2.2 
5.1.3 and related 5.3.3 (equation 

5.6,7,9,10,12,13,17,18) 

Scenario logic 2.3 
5.4 paragraph 2 above Figure 5.2, 5.5.1, 5.5.4, 

5.5.5 and 5.5.6 paragraph 1 

Algorithms 2.4 5.3.3 

Components 2.5 5.2 first 4 and related 5.3.3 

3.       Data 

Data sources 3.1 5.1.1 

Pre-processing 3.2 not applicable 

Input parameters 3.3 5.1.2 

Assumptions 3.4 5.2 last 1 

4.       Experimentation      

Initialisation 4.1 5.3.1 

Run length 4.2 5.4 paragraph 1  

Estimation approach 4.3 5.4 paragraph 1  

5.       Implementation   

Software or 

programming language 
5.1  5.3.3.3 last 1 

Random sampling  5.2  5.3.3.3 last 1 

Model execution 5.3  5.3.3.3 last 1 
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System Specification 5.4  5.3.3.3 last 1 

6.       Code Access    

Computer Model 

Sharing Statement 
6.1  Appendix B 

Table 6. 1 The checklist applied in the second replication model 

 

From the checklist in Table 6.1, with the STRESS guideline’s help, Chapter 5 includes 

everything in the checklist. Comparing the description in chapters 4 and 5, and the 

reflection of Chapter 5 shows how the conceptual framework helps to include 

everything needed clearly. From Table 6.1, the sections reflect the checklist spread out 

across the table. For this checklist, the writing order does not follow this checklist order, 

making it more difficult for the reader to find the position of specific information. 

 

6.1.2 Improve the guideline 

From my own replication experience and the replication literature, there are some 

suggestions for the STRESS guideline. It is better to order the framework to help the 

reader quickly understand and compare the models. Sometimes, when you read a paper, 

you may not want to understand the entire content but parts of it. The ordered guideline 

will help you to locate the information you need quickly. If used for many models the 

reader will learn and remember where to find each item of information. Comparing the 

descriptions in Chapters 4 and 5, although the titles outline each section’s contents, it is 

still not that easy to locate specific information very quickly to compare as they are 

written in a different order and have different titles. Especially since these two models 

have very diverse mechanisms. The framework’s order is clearly stated in Grimm et 

al.’s ODD protocol mentioned in Chapter 3.4 and has been applied in some papers. Also, 

for the equations presentation, it is better to follow the model flowchart. From my 
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experience, it took lots of time to make sure from the original paper how the model 

worked in Chapter 4. The equations are not listed by order, and there are many different 

parameters, making replicating difficult. Also, some equations in the middle are not 

really used to run the model, which makes the model description even harder for 

understanding. In the ODD protocol, the design concepts are extra features compared 

to the STRESS guideline. It focuses on the model’s design to include the model design 

aspects and communication such as emergent behaviour, interaction, stochasticity and 

observation. That’s why the framework suggested below is the combination of the ODD 

protocol and the STRESS guideline. For the modelling part, the framework is mainly 

based on the ODD protocol with the order. Because the ODD did not suggest the 

guidelines for results, for the results part, the framework is ordered by replication 

experience from Chapter 4 and 5.  

 

Therefore, Table 6.2 below is the modified guideline that ordered the modelling and 

results combining the STRESS and ODD guideline (Grimm et al., 2006: 116-119; 

Monks et al., 2019: 20170916_Appendix_STRESS_ABS_R1). The modified guideline 

applies in agent-based simulation in financial markets particularly, as my experience of 

modifying the guideline comes from this area. Broadly, it can be used in agent-based 

simulation as the STRESS guideline applies. But this needs more experience from 

putting it into practice, as mentioned in Chapter 7, for future work. For the modelling 

part, the guideline is divided into overview, design concepts and details. For Section 1.1, 

overview, the purpose of the model needs to start first. Then Section 1.2, variables and 

scales are discussed. The first two sections demonstrate why the model is built and what 

variables are used in the model. Hence, in Section 1.3, process overview and scheduling 

are described to give an overview picture of the model based on the previous two 
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sections. Section 2 is the design concepts, which demonstrate how the model is designed 

for emergent behaviour interaction and so on. STRESS guideline doesn’t have this 

section in the checklist. Section 3 is the details section. The discussion of this part in 

the ODD is not as comprehensive as the STRESS guideline. Thus, Section 3 is mainly 

based on the STRESS guideline. Data sources, pre-processing and input are Section 3.1, 

3.2 and 3.3 respectively. These three parts discuss how to get the data, how to sort data 

out, what data are used in the model in the sequence. In Section 3.4, initialisation and 

assumptions are described based on the input data. And submodels are described in 

detail in Section 3.5 with the environment, agents, algorithms, interaction topology and 

entry/exit. For the results in Section 4: 4.1 states the experiment aims; 4.2 introduces 

the run length; 4.3 discusses the estimation approach, and 4.4 analyses model scenario 

and outputs. For Section 4, the type of experiment states first. And then the run length 

and the number of runs are introduced if it is stochastic. At last, the analysis is discussed 

based on the information given in Section 4.1 to 4.3. Section 5 discusses the 

implementation and code access. In Table 6.2, the first column is the section name. The 

second column is the item number, and the number in the bracket indicates the original 

item number in the STRESS guideline. The third and fourth column is the 

recommendation part: the first column is the original description in the STRESS 

guideline, and the second column is from the ODD guideline. The preferred one is put 

in bold. For item 2.1, the preferred one is from ODD and some STRESS description 

from item 3.5. 

 

Section/Subsection Item Recommendation  

1. Overview  STRESS ODD 

Purpose 1.1 (1.1) Explain the background and rationale 
for the model 
 

State why you need 
to build a complex 
model, and what, in 
general and in 
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particular, you are 
going to do with it. 

Variables and scales 1.2 (3.3) List all input parameters in the 
model, providing a description of 
each parameter and the values used. 
For stochastic inputs provide details 
of any continuous, discrete or 
empirical distributions used along 
with all associated parameters. 
Where applicable define the 
time/spatial dependence of 
parameters and any correlation 
structure. 
Clearly state: 

• Base case inputs 

• Inputs used in 
experimentation, where 
different from the base 
case. 

• Where optimisation or 
design of experiments has 
been used, state the range 
of values that parameters 
can take. 

Where theoretical distributions are 
used, state how these were selected 
and prioritised above other 
candidate distributions. 

Describe the full set 
of variables and state 
the scales addressed 
by the model, i.e. 
length of time steps 
and time horizon. 
 

Process overview and 
scheduling 

1.3 (2.1) Provide one or more of: state chart, 
process flow or equivalent diagrams 
to describe the basic logic of the base 
model to readers. Avoid complicated 
diagrams in the main text. 
 

Provide a verbal, 
conceptual 
description of each 
process and its 
effects; Describe the 
scheduling of the 
model processes. 
This deals with the 
order of the 
processes and, in 
turn, the order in 
which the state 
variables are 
updated. 

2. Design Concepts    

Design concepts 2.1 Environment 
Describe the environment agents 
interact within, indicating its 
structure, and how it is generated. 
For example, are agents bound 
within a homogeneous grid, or do 
they have continuous movement 
through a detailed landscape 
incorporating geographic or 
environmental information? 
Agents 
List all agents and agent groups 
within the simulation. Include a 

Provide a common 
framework for 
designing and 
communicating 
(emergency, 
interaction, 
stochasticity, 
observation, 
environment, 
agents, entry/exit) 
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description of their role in the 
model, their possible states, state 
transitions, and all their attributes. 
Describe all decision-making rules 
that agents follow in either 
algorithmic or equation form. Where 
relevant, authors should report: 

• The data that agents access 
(i.e. internal attributes or 
external information from 
the environment) and how 
it is used. 

• The objectives agents seek 
to achieve. 

• The algorithms, 
optimisations, heuristics 
and rules that agents use to 
achieve objectives. 

• How agents work together 
within a group along with 
any rules for changes in 
group membership. 

• Predictions of future events 
and adaptive action. 

Entry / Exit 
Where relevant, define how agents 
are created and destroyed in the 
model. 

3. Details    

Data sources 
 
 
 
 
 
 

3.1 (3.1) List and detail all data sources. 
Sources may include: 

• Interviews with 
stakeholders 

• samples of routinely 
collected data, 

• prospectively collected 
samples for the purpose of 
the simulation study,  

• public domain data 
published in either 
academic or organisational 
literature. Provide, where 
possible, the link and DOI 
to the data or reference to 
published literature. 

All data source descriptions should 
include details of the sample size, 
date ranges and use within the study. 

 

Pre-processing 3.2 (3.2) Provide details of any data 
manipulation or filtering that has 
taken place before its use in the 
simulation, e.g. interpolation to 
account for missing data, removal of 
outliers or filtering of large scale 
data. 

 

Input 3.3 (3.3) Section 1.2 All the 
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environmental 
conditions, which 
change over space 
and time, are 

“input”, i.e. 
imposed dynamics 
of certain state 
variables. The model 
output gives the 
response of the 
model to the input. 
Readers need to 
know what input 
data are used, how 
they were generated 
or obtained. To 
really achieve full 
reproducibility it 
might be necessary 
to provide (in online 
archives) the input 
files that you used 
yourself, including 
even the random 
number used as 
seed. 

Initialisation and 
assumptions 
 
 

3.4 (3.4 &4.1) 
 

State if a warm-up period has been 
used, its length and the analysis 
method used to select it. (State 
what, if any, initial agent and 
environmental conditions have been 
included. For example, the initial 
agent population size, agent states 
and attributes, initial agent network 
structure(s), and resources within 
the environment. Report whether 
initialisation of these variables is 
deterministic or stochastic. 
Where data or knowledge of the real 
system is unavailable, state and 
justify the assumptions used to set 
input parameter values and 
distributions; agent interactions or 
behaviour; or model logic. 

Deal with such 
questions as: How 
are the environment 
and the agents 
created at the start 
of a simulation run?  

Submodels 3.5 
(2.2&2.4&2.5) 
 
 

Give details of the base model logic. 
This could be text to explain the 
overview diagram along with extra 
details including ABS product and 
process patterns. Include details of all 
intermediate calculations. 
3.5.1 Environment 
Describe the environment agents 
interact within, indicating its 
structure, and how it is generated. For 
example, are agents bound within a 
homogeneous grid, or do they have 

Present and explain 
all submodels 
representing the 
processes listed 

above in ‘Process 

overview and 

scales’ in detail 

(including ABS 
product, process 
patterns and the 
parameterisation of 
the model. Give 
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continuous movement through a 
detailed landscape incorporating 
geographic or environmental 
information? 
3.5.2 Agents 
List all agents and agent groups within 
the simulation. Include a description 
of their role in the model, their 
possible states, state transitions, and 
all their attributes. 
Describe all decision-making rules 
that agents follow in either 
algorithmic or equation form. Where 
relevant, authors should report: 

• The data that agents access 
(i.e. internal attributes or 
external information from 
the environment) and how it 
is used. 

• The objectives agents seek 
to achieve. 

• The algorithms, 
optimisations, heuristics and 
rules that agents use to 
achieve objectives. 

• How agents work together 
within a group along with 
any rules for changes in 
group membership. 

• Predictions of future events 
and adaptive action. 

3.5.3 Algorithms 
Provide further detail on any 
algorithms in the model that (for 
example) mimic complex or manual 
processes in the real world (i.e. 
scheduling of 
arrivals/appointments/operations/m
aintenance, operation of a conveyor 
system, machine breakdowns, etc.). 
Sufficient detail should be included 
(or referred to in other published 
work) for the algorithms to be 
reproducible. A Pseudo-code may be 
used to describe an algorithm. 
3.5.4 Interaction Topology  
Describe how agents and agent 
groupings are connected with each 
other in the model [and] define: 

• with whom agents can 
interact, 

• how recipients of 
interactions are selected 

• what frequency interaction 
occurs.  

• How agents handle and 

details of the base 
model logic 
including all 
intermediate 
calculations.) 
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assign priorities to 
concurrent events 

It is recommended that interactions 
are described using a combination of 
equations, pseudo-code and logic 
diagrams. 
Report how interactions are affected 
by agent states and the environment 
state 
3.5.5 Entry / Exit 
Where relevant, define how agents 
are created and destroyed in the 
model. 

4 Result    

Experimentation 
Aims 

4.1 (1.3) If the model has been used for 
experimentation, state the research 
questions that it was used to answer.  

a.) Theory driven analysis. – 
Provide details and 
reference the theories that 
are tested within the model.  

b.) Scenario based analysis – 
Provide a name and 
description for each 
scenario, including a 
rationale for the choice of 
scenarios. (Give details of 
any difference in the model 
logic between the base case 
model and scenarios. This 
could be incorporated as 
text or, where differences 
are substantial) 

c.) Design of experiments – 
Provide details of the 
overall design of the 
experiments with reference 
to performance measures 
and their parameters 
(provide further details in 
data below).  

d.) Simulation Optimisation – 
(if appropriate). Provide full 
details of what is to be 
optimised, the parameters 
that were included and the 
algorithm(s) that was be 
used. Where possible 
provide a citation of the 
algorithm(s). 

 

Run length 4.2 (4.2) Detail the run length of the 
simulation model and time units. 

 

Estimation approach 
 

4.3 (4.3) State if the model is deterministic or 
stochastic. If the model is stochastic, 
state the number of runs that have 
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been used. If an alternative 
estimation method has been used 
(e.g. batch means), provide full 
details. 

Model Scenario (if 
any) and Outputs 

4.4 (1.2&2.3) 4.4.1 Model scenario 
Give details of any difference in the 
model logic between the base case 
model and scenarios. This could be 
incorporated as text or, where 
differences are substantial, could be 
incorporated in the same manner as 
1.3.  
 
4.4.2 Model outputs 
State the qualitative or quantitative 
system level outputs that emerge 
from agent interactions within the 
ABS. 
Define all quantitative performance 
measures that are reported, using 
equations where necessary. Specify 
how and when they are calculated 
during the model run along with how 
any measures of error such as 
confidence intervals are calculated 

 

5 Implementation 
and Code 
Access 

   

Software or 
programming 
language 

5.1 (5.1) State the operating system and 
version and build number.  
State the name, version and build 
number of commercial or open 
source ABS software that the model 
is implemented in.  
State the name and version of 
general-purpose programming 
languages used (e.g. Python 3.5.2). 
Where packages, frameworks and 
libraries have been used provide all 
details including version numbers. 

 

Random sampling  
 
 

5.2 (5.2) State the algorithm or package used 
to generate random samples within 
the software/programming 
language used e.g. Mersenne Twister 
or Java. Random version x.y 

 

Model execution 5.3 (5.3) If the ABS model has a time 
component, describe how time is 
modelled (e.g. fixed time steps or 
discrete-event). State the order of 
variable updating within the model. 
In time-stepped execution state how 
concurrent events are resolved. 

If the model is parallel, distributed 
and/or uses grid or cloud computing, 
etc., state and preferably reference 
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the technology used. For parallel and 
distributed simulations the time 
management algorithms used. If the 
HLA is used then state the version of 
the standard, which run-time 
infrastructure (and version), and any 
supporting documents (FOMs, etc.) 

System Specification 5.4 (5.4) State the model run time and 
specification of hardware used. This 
is particularly important for large 
scale models that require substantial 
computing power. For parallel, 
distributed and/or use grid or cloud 
computing, etc. state the details of 
all systems used in the 
implementation (processors, 
network, etc.)  

 

Computer Model 
Sharing Statement 

5.5 (6.1) Describe how someone could obtain 
the model described in the paper, 
the simulation software and any 
other associated software (or 
hardware) needed to reproduce the 
results. Provide, where possible, the 
link and DOIs to these. 

 

Table 6. 2 The altered framework 

 

Comparing the guideline from STRESS and ODD, most of the concepts they are using 

have similar meanings. But for the input, these two guidelines have a different focus. In 

the STRESS guideline, input means all the input parameters; in the ODD, input 

emphasises environmental conditions, which change over space and time and input files. 

The difference between these two guidelines is that the variables and scales are already 

emphasised in Section 1.2 in the ODD guideline. 

 

For the altered framework in Table 6.2, the preferred recommendation is in bold: for 

ODD -1.1, 1.3, 2.1 plus STRESS 3.5 for environment, agents, enter/exit, 3.3, 3.5; for 

STRESS - 1.2, 3.1, 3.2, 3.4, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.3, 5.4, 5.5. 
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From this altered framework in Table 6.2, the writing in Chapter 5 would need to be 

reordered. All the item numbers in Table 6.2 would be modified in the chapter by adding 

5 in the front like item 3.1 in Chapter 5 becomes 5.3.1. The changes in Chapter 5 would 

be as follows: 

1. For Section 5.3 submodels, 5.3.1 is the data source section: All data are from 

the original paper. 

2. 5.3.2 is the pre-processing: The model does not involve any pre-processing 

stages. 

3. 5.3.3 is the input moved from the original 5.3.2 and adding: All inputs are 

discussed in Section 5.1.2 before. 

4. 5.3.4 is the initialisation and assumptions changing from the original 5.3.1 and 

adding assumptions from the original 5.2.1. Delete the assumptions from the 

original 5.2.1.  

5. 5.3.5 is the submodels from the original 5.3.3. 

6. For Section 5.4 results and comparisons, 5.4.1 is the experimentation aims 

section: This model is a scenario based analysis. The scenarios are: replication 

results in the original Section 5.4 (changes to 5.4.4.1 later at 9); increment fixed 

model in Section 5.5.1 (changes to 5.4.4.2); model without price effect in 

Section 5.5.4 (changes to 5.4.4.5); model with constant probability in Section 

5.5.5 (changes to 5.4.4.6); analytic model in Section 5.5.6 (changes to 5.4.4.7). 

The aims are accordingly: Compare replication results with the original paper 

to confirm the original paper’s reproducibility; Uncertainty of time increment 

changes was investigated by keeping the increment fixed and comparing the 

results; The model without the price effect is analysed to confirm whether the 

price effect is a stabilising force; Analytical model with the probabilities based 
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on the relationships generate a similar result to the model with price effect to 

confirm the on-off intermittency theory. 

7. 5.4.2 is the run length section: This model is for a long period of 20000, and the 

time unit in this model is not specified. 

8. 5.4.3 is the estimation approach - Although it is a stochastic model, only one 

long run is used for each scenario. 

9. 5.4.4 is the model scenario and outputs - the whole output section from 5.4 to 

5.5. Combine 5.4 and 5.5 to one Section 5.4.4. All subitem number changes 

from 5.4.4.1 for each discussion. For example, 5.4 changes to 5.4.4.1 and 5.5.1 

changes to 5.4.4.2, and all the headings change accordingly in the original 

Section 5.5. 

10. For Section 5.5 implementation and code access, 5.5.1 is the software or 

programming language - It runs in Windows, Code Block 10.05, c++. 

11. 5.5.2 is the random sampling - The random number generator is the built-in 

version in c. 

12. 5.5.3 is the Model execution - Fixed time steps. 

13. 5.5.4 is the System Specification – The runtime is about 12 minutes for one 

long run. It runs on the laptop. 

14. 5.5.5 is the Computer Model Sharing Statement -  The code is accessible on the 

DOI 10.5281/zenodo.5524993. Or by the email request by 

x.liu1@lancaster.ac.uk or liuxinbess@126.com. 

15. After this, Section 5.6 is the conclusions that keep unchanged. 

There are some suggestions if the framework has more detailed requirements in these 

aspects. It will be more helpful to have a clearer coding standard. Stodden (2010) 

provided a coding standard in six areas mentioned in Section 3.3.  

mailto:x.liu1@lancaster.ac.uk
mailto:liuxinbess@126.com


217 

 

It is better to have meaningful words for the symbols in the equations to help to 

understand. This can help to avoid my replication issues from my second replication 

model for wrongly misunderstanding the equations. For simulation models, verification 

and validation are two very important elements. The STRESS guideline mentioned it 

and think verification and validation are not that essential to ensure reproducibility. It is 

often not done well in simulation projects, so including it in the checklist might help 

with that. It will be helpful to include these in the overview part for verification about 

how to demonstrate the model’s conceptual framework and the result for validation 

regarding the level of confidence in the model and the validation tests carried out. 

 

There may be too much parameter setting for complex modelling, which makes it 

impossible to include all of them and also the code. It is reasonable to put some part of 

the parameter set in the appendix rather than in the main text. 

 

To conclude, by comparing the description between Chapter 4 and 5, Chapter 5 is more 

straightforward and includes everything needed. That shows how the guideline helps to 

improve reproducibility. The reflection of Chapter 5 shows how to apply the STRESS 

guideline in an agent-based simulation example. From my replicating experience, the 

guideline is improved, and some minor suggestions are stated. It is easier to apply the 

modified guideline, and it helps the reader to locate information more easily.  

 

6.2 Replication issues 

Two models are reproduced separately in Chapter 4 and 5. Although these two 

reproducing models are different, replication issues are found both in chapters 4 and 5. 
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The replication issues from the first Tedeschi et al. (2012) model described in Chapter 

4 and from the second Lux and Marchesi (2000) model described in Chapter 5 will be 

discussed in detail.  

 

6.2.1 Replication issues in the first model 

In the first replication model in Chapter 4, there are two main issues related to the value 

of 
0   

and 
tV . The discussions about these two main issues and the effects on the 

results come first. And then the discussion about some minor issues comes later. 

 

There is no clue found in the paper of Tedeschi et al. (2012) to know the value of the 

parameter 
0 . 

0  
is illustrated in Chapter 4 Section 4.1.3 to decide the value of 

0

i
. 

0

i  is used in equation (4.4) %

0 ,(1 (1 ))i i

t i tl w = + − . It is introduced in Chapter 4 that 

in equation (4.4), i

t  is the return’s volatility for agent i at time t, w is a herding factor, 

and %

,i tl   is the percentage of incoming links for agent i at time t. 
0

i   is a uniformly 

distributed value for agent i from 0 to 
0 . The expected return of agent i is influenced 

by the return’s volatility, which is i

t
 
in equation 4.4. Finally, the expected future price 

for agent i is decided by the expected return. After trading, the final market price will 

be influenced. The market price in this model is one of the essential indexes for two 

reasons: On one hand, price is an important parameter in the model mechanism itself to 

decide the agent’s reaction for the next period. On the other hand, the market price is 

one of the essential model output. In this model, the aim is to find the results related to 

the herding. For price and returns specifically, the price variation caused by herding is 

proved by this model. The impact of 
0  

on return’s volatility in equation (4.4) will be 
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seen. These two tables below show the influence of parameters 
0 and %

,i tl  leading to 

the change of i

t . According to the equation (4.4), i

t
  
is decided by 

0

i
  
which is 

uniform distributed in the interval (0, 
0 ), the incoming links %

,i tl  and the herding 

parameter w. It is assumed that 
0

i
 
= 

0 to look at the influence of 
0 . In Table 6.3 

and Table 6.4, the first row is the value of 
0 , and the first column is the value of the 

incoming links %

,i tl . The values in the tables are the values of i

t . The first table (Table 

6.3) is with w = 0.1 and the second table (Table 6.4) is with w =0.5: 

%

,i tl /
0  0.001  0.010  0.050  0.500  1.000  

0.1  0.0011  0.0109  0.0545  0.5450  1.0900  

0.2  0.0012  0.0118  0.0590  0.5900  1.1800  

0.3  0.0013  0.0127  0.0635  0.6350  1.2700  

0.4  0.0014  0.0136  0.0680  0.6800  1.3600  

0.5  0.0015  0.0145  0.0725  0.7250  1.4500  

0.6  0.0015  0.0154  0.0770  0.7700  1.5400  

0.7  0.0016  0.0163  0.0815  0.8150  1.6300  

0.8  0.0017  0.0172  0.0860  0.8600  1.7200  

0.9  0.0018  0.0181  0.0905  0.9050  1.8100  

1.0  0.0019  0.0190  0.0950  0.9500  1.9000  

Table 6. 3 i

t  with the change in 
0  

and %

,i tl  (w=0.1) 

%

,i tl /
0  0.001  0.010  0.050  0.500  1.000  

0.1  0.0011  0.0105  0.0525  0.5250  1.0500  

0.2  0.0011  0.0110  0.0550  0.5500  1.1000  

0.3  0.0012  0.0115  0.0575  0.5750  1.1500  

0.4  0.0012  0.0120  0.0600  0.6000  1.2000  

0.5  0.0013  0.0125  0.0625  0.6250  1.2500  

0.6  0.0013  0.0130  0.0650  0.6500  1.3000  

0.7  0.0014  0.0135  0.0675  0.6750  1.3500  

0.8  0.0014  0.0140  0.0700  0.7000  1.4000  

0.9  0.0015  0.0145  0.0725  0.7250  1.4500  

1.0  0.0015  0.0150  0.0750  0.7500  1.5000  

Table 6. 4  i

t  with the change in 
0  

and %

,i tl  (w=0.5) 
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From Table 6.3 and Table 6.4, i

t  increases when 
0 gets bigger across each row. The 

influence caused by the percentage of the incoming links is relatively small, which can 

be observed by the slightly increasing data down each column. It is even smaller when 

the w gets bigger, comparing the difference in the i

t  value in each column from the 

first table to the second one. The data in the same position from these two tables show 

the influence of w. The increase in w causes a drop in i

t . All in all, these two tables 

show all the impacts of these three control variables of i

t , and 
0   has the most 

significant impact. The value of i

t   is controlled by the parameter 
0 . Hence, it is 

deduced here that 
0  has a significant impact on future price and also the price in the 

market. 

 

Figures 6.1 to 6.3 are from the model testing of 
0 . The model testing runs for 30 

agents and a time period of 50 with the same other parameters. For figures 6.1 to 6.3, 

the initial variance 
tV  is 0.001. Figure 6.1 is the market price for 

0 =0.01, 0.05, 0.5 

and 1 (blue line for 
0 =0.01, red line for 

0 =0.05, green line for 
0 =0.5, purple line 

for 
0 =1).  
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Figure 6. 1 Price with 
0 =0.01 (blue), 

0 =0.05(red), 
0 =0.5 (green) and 

0 =1 

(purple) 

 

Figure 6.1 shows that the market price drops heavily at the first ten periods for 
0

=0.05, 0.5 and 1. The price behaves so differently compared with the result in the 

original paper. The price for 
0 =0.01 doesn’t drop that heavily. The price and expected 

price are shown in Figure 6.2 and Figure 6.3 for 
0 =0.05 and 0.01. 

 

Figure 6.2 below shows the market price and average expects price change with time 

series. Figure 6.2 is for 
0 = 0.05 where the blue line is the market price and the red 

line is the average expected price.  
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Figure 6. 2 Price & average expected price at 
0 = 0.05 

 

Figure 6.2 shows the price drop to almost zero after period 30. This is not the 

performance in the original paper. The price and expected price are above 500 pounds 

before period 50 and never get down to zero in the original paper. This indicates 
0

=0.05 is not an appropriate setting.  

 

Figure 6.3 is for 
0 =0.01 below (the blue line is the market price, and the red line is 

the average expected price).  
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Figure 6. 3 Price & average expected price at 
0 = 0.01 

 

The price drops as in all three graphs (Figure 6.1-6.3) related to 
0 above, but on 

average, the market price increases as
0 reduces. When 

0 gets bigger, bigger 

volatility will cause both higher and lower expected price. From Figure 6.1, the bigger 

difference between agents expected price influences the market price and makes the 

market price drop. The performance for 
0  = 0.01 is much better than the other three 

as the price drop is not that heavy, and in period 50, the price is still 300 pounds. This 

is a much more reasonable setting for the price. Also, if 
0  gets even smaller, it may 

be not that reasonable. As 
0  gets to 0.01, the idiosyncratic expected return for agents 

in equation (4.5) based on equation (4.4) becomes in a range of (-0.03, 0.03). If 
0 gets 

even smaller than 0.01, the maximum expected return is less than 3%. It is too small to 

be realistic.  
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Except for the unclear settings of 
0 , the description for how to calculate unconditional 

variance is not that clear as well, which is the 
tV . In equation (4.10), 

2

1

1
[ ]t t j t

j

V r r



−

=

= − . The unconditional variance depends on the previous 

returns, but for the start point, there are no previous returns. Therefore, it is hard to 

decide the value of the unconditional variance at the start. The unconditional variance 

tV from equation (4.10) is used in equation (4.11) %

,(1 (1 ) )i

t t i twV lV −= − for the 

variance i

tV  and hence has an impact in (4.12) ,
ˆl )

)
/n(

(

i

t t

t

i

i

p p
p

V p

 +
=

α
to decide the 

number of holdings. Assuming 
,

ˆ i

t tp +   
is fixed at 1000 and α  is set at 0.01.

 
Table 6.5 

below shows the change in the amount to hold ( )i p  with the change in individual 

risk assessment variance i

tV , which is dependent on the unconditional variance 
tV , and 

the change in price. In each column from the second row to the last row, the amount to 

hold varies with the value of the price. In each row from the second column to the last 

column, the amount to hold varies with the value of the variance. 
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p / i

tV  0.1000  0.0100  0.0025  0.0001  

50 59.91465  599.14645  2396.58582  59914.64547  

100 23.02585  230.25851  921.03404  23025.85093  

150 12.64747  126.47467  505.89866  12647.46657  

200 8.04719  80.47190  321.88758  8047.18956  

250 5.54518  55.45177  221.80710  5545.17744  

300 4.01324  40.13243  160.52971  4013.24268  

350 2.99949  29.99492  119.97967  2999.49178  

400 2.29073  22.90727  91.62907  2290.72683  

450 1.77446  17.74462  70.97846  1774.46155  

500 1.38629  13.86294  55.45177  1386.29436  

550 1.08698  10.86976  43.47905  1086.97637  

600 0.85138  8.51376  34.05504  851.37604  

650 0.66274  6.62743  26.50972  662.74295  

700 0.50954  5.09536  20.38143  509.53563  

750 0.38358  3.83576  15.34304  383.57610  

800 0.27893  2.78929  11.15718  278.92944  

850 0.19120  1.91199  7.64795  191.19874  

900 0.11707  1.17067  4.68269  117.06724  

950 0.05399  0.53993  2.15972  53.99294  

1000 0.00000  0.00000  0.00000  0.00000  

1050 -0.04647  -0.46467  -1.85867  -46.46682  

1100 -0.08665  -0.86646  -3.46582  -86.64562  

Table 6. 5 ( )i p  with the change in price and i

tV  

 

Table 6.5 shows that the equation that decides the amount each agent is willing to hold 

is very sensitive to the price and i

tV . When the variance is changed, the amount to hold 

increases hugely with the decrease in variance value. Therefore the initialisation for the 

unconditional variance matters very much. 

 

Figure 6.4 shows the price change in different variance settings with time series to 

period 50 where 
0  is 0.01. The blue line shows the performance of the price when the 
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variance is 0.1. The red line shows the price movements at variance 0.01. The green 

line shows the price change at the variance of 0.0025. The black line where the variance 

is 0.0001 and the purple line with variance 0.00001.  

 

 

Figure 6. 4 The price change on different level of 
tV  

 

From Figure 6.4, when the variance is 0.1 in the initialisation of the blue line, then there 

are no buyers in the market at that period as the cash position equation (4.13) related to 

( )i p  produces a high price exceeding the *p  got from equation (4.14). Then there 

is no bid price. The price for the next period is the price before. Therefore the variance 

is just influenced by the initialisation setting for return at time 0. Then the market for 

the remaining period is just left with buyers only as the variance is so small to make 

agents willing to hold more than what they already have. Therefore there is no ask price 

in the market to change the market price (market price is the average of the highest bid 
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and lowest ask) and also change the variance. As explained before, the price keeps the 

original level of 1000. The red line shows the price movements at variance 0.01. The 

price starts at 200 and drops down to nearly zero very quickly which indicates that 0.01 

cannot be used when compared to results in Tedeschi et al. (2012). The green line shows 

the price change at variance equal to 0.0025. The price starts at 400 pounds and drops 

to nearly zero in just 50 periods. This sudden drop is not a reasonable price performance. 

The black line where the variance is equal to 0.0001 shows a better performance of the 

price time series. The purple line with the variance of 0.00001 has performance similar 

to the black line with some variation. Then the initialisation setting for 0.0001 is used 

in the model. It still gets down to zero by period 50. Hence, it still does not match the 

paper.  

 

For the initialisation stage, the cash for each agent to hold is wrongly written in the 

paper as 100, whereas it should be 100000 according to the graph. For the market part, 

although the rules are explained in the paper, there is no detailed description of how to 

update the order book from a limit order to a market order to make the trade happen. 

For the formula, the time subscript is changing from time t to time t + τ. And some 

subscript is missing in the original paper. Equations are not introduced in order. That 

can make readers lose track of how to use the equations easily. We try to contact the 

authors for all these issues in the model, but they can not precisely remember all these 

details as there are too many models that were built. 
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6.2.2 Replication issues in the second model 

In the second model replication in Chapter 5, the main issues are how to apply the 

switching transition probabilities between chartists and fundamentalists, calculate the 

value of d and apply the measurement tests for both unit root and d. There are also some 

minor issues about how to set the initial number for fundamentalists and chartists and 

the symbols in the formulae. 

 

The modelling description part is not detailed enough. In the original paper, there are 

three elements of the modelling process: (1) switching between chartists, (2) switching 

between fundamentalists and chartists, and (3) price formation. It is clear that the (3) 

price formation process is based on the (1) (2) changes among optimistic chartists, 

pessimistic chartists, and fundamentalists. The problem is how to apply the two 

switching strategies in the model. The strategies are either applied step by step as first 

(1) then (2) or first (2) then (1), or applied following in the second switching stage of 

my flowchart in Figure 5.1. This may not make a big difference as the switching among 

traders in each time interval is very rare, and the rules for each strategy are the same. 

The difference is just the order of rules. Hence the number of optimistic chartists, 

pessimistic chartists and fundamentalists are different when the rules apply. 

 

The measurement d in the results analysis part with returns to measure the dependency 

for volatility clustering is not clearly described. The d is the exponential index which 

indicates the data used to calculate d follows the exponential distribution. While we 

applied the data to calculate the d, some of the data is negative. It is not clear what to 

do with the negative data when the result of the exponential function is always positive. 
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The tests used in the original paper in Table 5.5 of the unit root test and 5.9 for d test 

are not clear enough. In Table 5.5, the test applied based on either the Dickey-Fuller 

test or Augmented Dickey-Fuller test is vague. In Table 5.3, there is no clear description 

of how to do the test. This makes the comparison between my replication result and the 

original result not accurate enough. 

 

For the initialisation, the fundamentalists, optimistic chartists, and pessimistic chartists 

are randomly separated. It is required that the number of fundamentalists is maintained 

to be reasonably high for stabilisation purposes. It is not explained clearly the definition 

of reasonably high and how to separate the fundamentalists, optimistic chartists, and 

pessimistic chartists at the very beginning. For the formula in the second model, it is a 

little bit misleading that makes me build the wrong model at the start. For the probability 

change from pessimistic to optimistic, the subscript is +-, which makes me think it was 

changed from optimistic to pessimistic. 

 

From the two models, there are no apparent clues of how to decide the values, such as 

the values set, the number of runs, and the run length. And even for the equations, there 

is no clear clue of the theory about the equations. It may because the financial market 

is complicated. Therefore the model is built on what people think about how it works. 

 

6.3 Herding 

This section tries to understand herding and related stylised facts like fat tails and 

volatility clustering more by comparing the two replication models. Compared to the 

two models’ results in chapters 4 and 5, the results are not similar. The replication 
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models all have fat tails, but the first model does not have volatility clustering. The 

results can be easily identified from the returns. When we changed the herding 

mechanism for the altered first model, the model still did not have volatility clustering.  

 

6.3.1 Herding in the first replication model 

For the first replicated model, even when we compared the result with the strongest 

herding model, which means w=0.1, the pattern of the returns and price are so different 

from the pattern identified in the second model. The prices are not following the rules: 

the big price followed by the big price, the small price followed by the small price. 

 

Figure 6. 5 Returns from 0-1000 in the first replication model when w=0.1 (seed 2) 

 

Figure 6.5 shows that returns from the first replication model do have some extreme 

values and returns fluctuate around 0 with the kurtosis=0.80 when w=0.1. Compared to 

the second replication model, the kurtosis is much smaller, but it has some fat tails effect 

when we looked at it in the histogram with returns and the normal distribution. 
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Figure 6. 6 Histogram and normal distribution from 0-1000 in the first replication model 

when w=0.1 (seed 2) 

From the features in Figure 6.6, the returns have a slightly sharper distribution in the 

middle with fatter tails compared to the normal distribution. 

 

 

Figure 6. 7 Returns from 0-1000 in the first replication model when w=0.5 (seed 2) 
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From the features in Figure 6.7, the returns from the first replication model do have 

some extreme values, and returns fluctuate around 0 with the Kurtosis=0.86 when 

w=0.5. Compared to the first replication model when w=0.1 in Figure 6.6, the kurtosis 

is similar. 

 

 

Figure 6. 8 Histogram and normal distribution from 0-1000 in the first replication model 

when w=0.5 (seed 2) 

 

In Figure 6.8, the returns again have a slightly sharper distribution in the middle with 

fatter tails compared to the normal distribution. The patterns in Figure 6.8 and 6.6 are 

similar, while the kurtosis for these two settings is similar as well.  
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Figure 6. 9 Returns from 0-1000 in the first replication model when w=1 (seed 2) 

 

In Figure 6.9, the returns from the first replication model have some extreme values and 

returns fluctuate around 0 with the Kurtosis=0.039 when w=1. The kurtosis for w=1 is 

much smaller compared to the kurtosis for w=0.1 and w=0.5. The kurtosis is keeping 

reducing while w is increasing, which means the fat tails are less obvious when there is 

no herding from the first replication model. 
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Figure 6. 10 Histogram and normal distribution from 0-1000 in the first replication 

model when w=1 (seed 2) 

 

From the features in Figure 6.10, the returns have a sharper distribution in the middle 

with fatter tails compared to the normal distribution. Compared to the patterns in Figure 

6.8 and 6.6, the returns in the middle are not as sharp and narrow in Figure 6.10. 

 

median αH from 10 samples of 1000 observations (in parentheses: range of 

estimates) 

Parameters kurtosis 2.5%tail 5%tail 10%tail 

  1.24 5.50  4.70  3.87  

w=0.1 (0.32-2.74) (4.59-10.33) (4.24-9.97) (3.34-7.10) 

  0.62 6.09  5.53  4.34  

w=0.5 (0.19-1.53) (4.39-8.53) (4.71-9.33) (3.66-7.82) 

  0.65 5.89  5.08  4.37 

w=1 (0.00-0.83) (4.93-7.63) (4.40-10.34) (3.72-9.22) 

Table 6. 6 Fat tails in the first replication model (seed 1-10) 

The fat tails for w=0.1, w=0.5 and w=1 from 10 runs are not easy to identify. From the 

tail index, fat tails are more obvious when there is less herding for w=0.5 and w=1. 
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Contradictory, from the kurtosis, fat tails are more obvious when there is more herding 

for w=0.1. This is then related to the discussion in Chapter 5 about what are fat tails. 

The tail index only focuses on the tail, but kurtosis does not. For the first replication 

model, fat tails are produced. For volatility clustering, most of the d is negative, which 

indicates there is no volatility clustering in the first replication model. 

 

6.3.2 Herding in the first altered replication model 

Figure 6.11 shows returns from the altered version of the first model when w=0.1, which 

has the most herding. 

 

Figure 6. 11 Returns from 1000-4000 in the first altered replication model when w=0.1 

(seed 2) 

 

From the features in Figure 6.11, the returns from the first altered replication model still 

have some extreme values and returns fluctuate around 0 with the Kurtosis=0.56 when 
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w=0.1. This is smaller than the first replication model when w=0.1 and w=0.5. That 

means the fat tail in the first altered model is even smaller than the first replication 

model. This is may because of the change in price settings mechanism which is 

discussed in Section 4.3.2. 

 

 

Figure 6. 12 Guru, incoming links and fitness in the first altered replication model when 

w=0.1 (seed 2) 

 

In Figure 6.12, incoming links for the gurus, the percentage of followers is as low as 

0.2 when w=0.1, which means lots of herding. This altered mechanism makes incoming 

links less than the original replication one. That means that the new market mechanism 

does not make the agents keep imitating each other as much. 
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Figure 6. 13 Histogram and normal distribution from 0-1000 in the first altered 

replication model when w=0.1 (seed 2) 

 

From the features in Figure 6.13, returns again have a slightly sharper distribution in 

the middle compared to the normal distribution. The fat tails are less noticeable 

comparing the distribution in Figure 6.13 of the altered model to the distribution in 

Figure 6.6 of the original replicated model. 

 

median αH from 10 samples of 1000 observations (in parentheses: range of 

estimates) 

Parameters kurtosis 2.5%tail 5%tail 10%tail 

  0.70 6.08  4.87  3.93  

w=0.1 (0.29-69.80) (0.61-7.09) (0.93-10.30) (1.37-6.56) 

  0.90 6.42  4.79  3.70  

w=0.5 (0.58-2.46) (4.26-10.86) (4.00-10.28) (2.96-8.73) 

  0.24 6.43  5.76  4.66 

w=1 (0.23-0.54) (4.30-8.36) (4.68-12.21) (3.99-9.12) 

Table 6. 7 Fat tails in the first altered replication model (seed 1-10) 
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Compared to the values in Table 6.7 and Table 6.6, the kurtosis is smaller when w=0.1 

and w=1 in the altered replication model. While, for the tail index in Table 6.7, the data 

shows not much difference, which indicates the fat tails in the altered replication model 

are similar when w=0.1, w=0.5 and w=1. Herding does not have much influence in the 

altered model for fat tails. Also, compared to the tail index in Table 6.6, the data is not 

that different, which means the fat tails in the altered replication model and replication 

model are similar. The d for the volatility clustering is negative mostly. The first model 

does not have any volatility clustering. 

 

6.3.3 Herding in the second replication model 

In the second model, the returns are in the figure below: 

 

Figure 6. 14 Returns from 1000-4000 in the second replication model 
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some extreme values and returns fluctuate around 0. And the returns in Figure 6.14 has 

different stages like the stable stage and the volatile stage. And it follows the volatility 

considering the description that: small returns followed by small returns, big returns 

followed by big returns when we consider the absolute value instead of the real value. 

 

median αH from 10 samples of 2,000 observations (in parentheses: range of 

estimates) 

Parameters kurtosis 2.5%tail 5%tail 10%tail 

   3.06  2.51  2.21  

Parameter set 1 19.34 (2.15-3.93) (2.20-3.20) (1.98-2.81) 

   3.72  3.09  2.63  

Parameter set 2 11.57 (2.18-4.27) (2.37-3.60) (2.16-3.20) 

   4.21  3.62  3.05  

Parameter set 3 8.72 (3.03-5.67) (2.51-4.20) (2.29-3.39) 

   3.36  3.00  2.60  

Parameter set 4 13.94 (2.43-4.66) (1.99-3.98) (1.71-3.28） 

          

Table 6. 8 Fat tails in the second replication model 

 

From Table 6.8, the kurtosis is 19.34, 11.57, 8.72,13.94 separately with parameter set 1, 

2, 3, and 4. The second replication model’s kurtosis is much higher than any of the 

models in the first replication.  
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Figure 6. 15 Histogram and normal distribution from 0-999 in the second replication 

model with the parameter set 1 

 

From the features in Figure 6.15, we can see the returns have a very sharp distribution 

in the middle with fat tails compared to the normal distribution. The time is from 0 to 

999 is to be consistent with the first model, which only has 1000 periods. Returns in 

Figure 6.14 have some large extreme values to about -0.16 that indicate the distribution 

has fatter tails compared to the normal. The fat tails should be obvious, but because the 

frequency differences are so large, the fat tail is not that clear in Figure 6.15.  

 

The second replicating model has volatility clustering, and the on-off intermittency is 

detailed analysed in Chapter 5.5. In the second replication model, most of the time, the 

returns are relatively low as the fraction of chartists. The volatile stage starts because of 

random variation, and then the price effect drives the volatile stage back to the stable 

stage. 
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To conclude, the first and second model results differ from each other because of the 

herding mechanism and the price mechanism. In the first model, agents formed the price 

expectations through the herding factor w in both the original one and the altered model. 

Based on agents’ expectations, the price and the amount to trade are decided by 

themselves. In these cases, herding in the first model only influences the agent’s 

opinions but not the final decision directly. Compare this to the herding in the second 

model, agents are divided into three groups: fundamentalists, optimistic chartists and 

pessimistic chartists. From the price mechanism in this model, the price will go up or 

down by 1% depending only on how many agents are in each group. That indicates 

agents from the same group are making the same decisions. Thus the herding in this 

model influences agents’ decisions rather than just opinions. This may be the reason 

why the first model is so different from the second one. The herding mechanism is so 

different: the first one imitates the expectation. Then, they make a different decision 

whereas the second one imitates the decision and influences the price together. That 

may lead to the conclusion that volatility clustering more easily happens while agents 

imitate the result rather than each other. This might be the reason why this second model 

has both fat tails and volatility clustering, but the first model only has fat tails. From the 

herding models examined in Chapter 2, 8 out of 12 demand and supply models have 

volatility clustering and 1 out of 3 artificial market models have volatility clustering. 

This may also indicate that direct imitation can generate volatility clustering more easily 

than indirect imitation. For transition probability models, the price effect is one of the 

stabilising reasons that drive the returns back to the stable stage from understanding the 

on-off intermittency. The price effect for transition probability models is one of the vital 

herding components that make both fat tails and volatility clustering. 
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Chapter 7             

Conclusion 

 

This chapter draws conclusions from this whole thesis. Section 7.1 identifies the 

research contribution in the two aspects of the research questions in Section 1.2: one is 

the herding, and the other is replicating. Section 7.2 suggests the limitations of the 

research and future work. 

 

7.1 Contributions 

My first research question is how and to what extent can herding produce the stylised 

facts observed in financial markets? For the literature reviewed in Chapter 2, 68% of 

models have fat tails, and 60% have volatility clustering. Of the 25 models reviewed, 

13 have fat tails and volatility clustering, 4 models have just fat tails, 2 models have just 

volatility clustering, and 6 models have neither.  

 

For the stylised facts, the first replicating model in Chapter 4 can only generate fat tails. 

The problem with the first replicating model is the price dropping. Then the first altered 

model in Chapter 4 is built by mainly changing the utility function to solve the price 

dropping. The reason behind the price dropping is the utility function. From the analysis 

of the results, the number of buyers and sellers could be the reasons for price dropping. 

For the replication model, on average, there are more buyers than sellers and the guru 

keeps unchanged for a long time. After changing the formation of expectation, for the 

first altered model, the number of buyers and sellers is equal, and guru keeps changing 
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a lot during periods. Still, the first altered model only produces fat tails. The herding 

mechanism is through the network for both the first replication model and altered 

models, and the market mechanism is the order book market. All in all, in Chapter 4, 

two models (replication and altered) with network herding mechanism and order book 

market only produce fat tails. The herding in these models only partially influences the 

agent’s expectation and indirectly affects the agent’s decision about how much to buy 

or sell at which price.  

 

The second replicating model, ∆𝑡 = 0.01 model and analytical model can generate fat 

tails and volatility clustering. The model without price effect can only generate volatility 

clustering. These models’ herding mechanisms are transition probability, and the 

market mechanisms are demand and supply. Through analysis (Chapter 5.5.2 and 5.5.3) 

of the relationship between the transition probability and the number of certain agents 

and the price effect, the analytical model is built in Chapter 5.5.6 to study the price 

effect in the transition probability. Understanding on-off intermittency provides a 

detailed understanding of how herding generates volatility clustering and fat tails to 

some extent. The model without price effect in Chapter 5.5.4 shows the on-off 

intermittency but the volatile periods are long and this model only has volatility 

clustering. Also the model with constant probability in Chapter 5.5.5 does not have on-

off intermittency and stylised facts. The analytical model in Chapter 5.5.6 shows on-off 

intermittency and both fat tails and volatility clustering. The randomness of the 

transition probability causes the start of the volatile stage of the on-off intermittency to 

produce volatility clustering. Then the price effect drives the volatile stage back to the 

stable stage quickly to produce fat tails. The on-off intermittency indicates that the price 
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effect in the transition probability models is one of the vital herding components that 

make both fat tails and volatility clustering. All in all, four models (replication, ∆𝑡 = 

0.01, without price effect, analytical) in Chapter 5 produce volatility clustering with 

transition probability and demand and supply market. One model with constant 

probability with demand and supply market produces neither fat tails nor volatility 

clustering. This shows how herding in the transition mechanism with price effect makes 

both volatility clustering and fat tails.   

 

My second research question is to what extent can previous modelling results be 

reproduced, and how can reproducibility in simulation modelling be improved? The 

first replicating model in Chapter 4 fails to produce the original results. Some parameter 

settings and initialisation information are missing in the original paper. That makes the 

model difficult to be replicated and achieve reproducibility. The first altered model is 

closer to the original results but still fails to replicate them. The second replicating 

model in Chapter 5 has the rational alignment level of replicating. Still, for the second 

model, there is some missing information that makes it hard to replicate exactly. Also 

the model ∆𝑡 = 0.01, analytical model are similar to the original model with rational 

alignment level. In practice, it is challenging to achieve the level of distributional 

equivalence as different models have different situations and scales and this replicating 

level will generally require comprehensive information about the model and the 

experiments. From the two replication models in Chapter 4 and 5, only the second 

model replicates successfully even with changes in conditions. All in all, from the 

literature in Chapter 3, replication of studies is essential in science but often does not 

happen. My experience in replicating agent-based simulation in financial markets gives 

a taste of reproducibility in this area. 
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The STRESS guidelines have recently been produced for specifying simulation models. 

The description of the second replicating model in Chapter 5 was done using the 

STRESS guidelines. The guidelines help to improve reproducibility by providing a 

checklist for all the information and parameter settings. The guidelines are in the format 

of a checklist and the reflection of the guidelines in Chapter 6 shows that it is not easy 

to locate each item from the checklist. That makes comparison among agent-based 

simulation harder because they have different mechanisms and structures. It also makes 

it more difficult to find a specific piece of information. Some papers use the ODD 

guidelines, which have a suggested order. The new suggested guideline of Table 6.2 is 

the combination of STRESS and ODD along with structural advice. The new guideline 

helps include the things needed in the description and makes cross-comparison among 

papers easier in the field of agent-based simulation in financial markets.  The new 

suggested guideline helps the author to include things needed accurately and in order. 

Hopefully, the new one is more helpful to some extent to ensure reproducibility. An 

additional suggestion is to include more verification and validation in the guidelines, as 

this is very important and can sometimes be overlooked in simulation projects. All in 

all, the new suggested guideline is one of the ways to improve reproducibility in agent-

based simulation in financial markets.  

 

7.2 Limitations and future work 

The main limitations of this research have three aspects. It only focuses on the N-type 

model but ignores the autonomous model. Also, it replicates two models in total, which 

is not that sufficient. These can lead to future work.  
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More replicating is needed in autonomous models to understand how herding and the 

market mechanism works with related stylised facts. Comparing the two already 

replicated models and the autonomous type of model could identify how the herding 

and market mechanisms are different from each other. Also, it could help to understand 

further how certain herding components can produce specific stylised facts. Manahov 

and Hudson (2013) and LeBaron (2001a) might be good choices. It depends on the 

extent of the detail of the descriptions in the papers to enable them to be replicated. It 

is more challenging for the genetic algorithms to be replicated because it needs more 

detail in the genetic algorithm rules than the N-type model. 

 

More investigation is needed to understand herding and related stylised facts from the 

understanding of the on-off intermittency. The first replicating model only has fat tails. 

Suppose the knowledge of the on-off intermittency helps alter the model structure and 

generates volatility clustering in the first replicating model. In other words, a guru 

model but with a mechanism that produces high volatility periods but with also a factor 

that tends to return the model fairly soon to low volatility. In that case, it is sufficient to 

confirm that the specific herding component can cause certain stylised facts even if the 

model details are different. 

 

The first replicating model is an indirect imitation from the network, and the second is 

a direct imitation from demand and supply. From the literature in Chapter 2, 8 out of 12 

demand and supply models have volatility clustering, and 1 out of the 3 artificial market 

models has volatility clustering. Literature may also indicate that direct imitation can 

generate volatility clustering more easily than indirect imitation. The differences 

between direct imitation and indirect imitation need more investigation in the future. 
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Changing the indirect imitation mechanism into the direct imitation in the first 

replicating model could be a way to develop the model and to show how the direct 

imitation works. The network herding mechanism in the first model can change to a 

direct copy of the order price through the network. Or the agents could be grouped by 

the network connections somehow and change the market mechanism.  

 

More N-type models also need to be replicated to understand different herding and 

market mechanisms. By comparing the similarities and differences, the understanding 

of herding and related stylised facts could be enhanced. Besides, it may be possible to 

find a way to measure the amount of herding mechanism in the future. How the herding 

mechanism can produce certain stylised facts can then perhaps be generalised.   

 

The improved guideline needs to be applied to evaluate in practice. After that, the 

reflection of the improved guideline can be produced which may lead to more 

suggestions. Also, if the guideline can be used in agent-based simulation, it can be tested 

in practice. It is derived from agent-based simulation guidelines. Hence, there is a large 

probability that the improved guideline can also apply in a more general area which is 

agent-based simulation.    
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Appendix A                                                                     

Coding for first replicating model 

In the code of replication model, there are three matrices with 150 elements to code the 

network part. Matrix a is the existing neighbour for each agent. Matrix a1 is the newly 

formed neighbour for each agent. Matrix a2 is the final neighbour through the fitness 

selection between matrix a and a1. Then, at the next period, a is equal to a1 for updating 

the communication network. For each matrix, a[0] = 3 means that agent 0 links to agent 

3. Hence, from a[0] to a[149], the needed neighbour information is collected. For 

matrix a, a[0] can not be 0 to rule out copying itself. For matrix a1, a1[0] can not be 0 

or a[0] to make sure there are two options for a certain agent to choose and exclude the 

agent itself. The calculation has followed the formula before calculating the probability 

of switching from matrix a to matrix a1. Then a random number is chosen for each 

agent. If the random number for a certain agent is less than the probability calculated 

for that agent, a3 is equal to a1. Otherwise, a3 is equal to a.  

 

The expectation coding is reflected mainly in the matrix ret. From the network matrix 

introduced before, the incoming links for each agent are able to get from array a3. Hence 

the percentage of incoming links is known. The array called volatility with 150 elements 

is stored in the calculation results. Then the matrix ret is calculated after knowing the 

value of volatility. Then a random number from 0 to 149 is produced in an array ran. 

At last, the matrix ret is updated in the sequence of ran.  

 

The market coding part mainly depends on the matrixes c, s, p2, order_volume, order, 

new_entrance, best_bid and best_ask. The p2 and order_volume are two 150 elements: 
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order price and order amount for each agent. New_entrance, best_bid and best_ask are 

the three one row array that has particular information for just one agent which is 

entering the market, the highest buy price and the lowest sell price. The matrix order is 

recorded the order book information with 300 rows for rolling basis purpose. For 

new_entrance and order, there are four aspects of information: the number of the agent, 

order price, order amount and buy or sell state, with 1 represents a buy and -1 represents 

a sell. For best_bid and best_ask, there are five aspects of information: adding in the 

best bid and best ask agent’s row in the order book. Once the random sequence is formed, 

the new_entrance is produced based on the p2 and order_volume for that agent which 

are calculated according to the equations illustrated in this part. Then the price and 

amount information in the new_entrance are compared with best_bid and best_ask 

according to the rules discussed before. Then the c, s position for a certain agent is 

updated and also the current price. Then the order book updated, so as the array best_bid 

and best_ask.  

 

The code is accessible on the DOI 10.5281/zenodo.5524993. Or by the email request 

by x.liu1@lancaster.ac.uk or liuxinbess@126.com. 
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Appendix B                                                                     

Coding for second replicating model 

In the code of replication model, the result will be recorded in every one period. That 

means the result will be recorded in every 100 periods when ∆𝑡 is 0.01 or every 500 

periods when ∆𝑡 is 0.002. If the price changes so frequently that it exceeds 0.405, then 

the time interval changes from 0.01 to 0.002. The value is the average of price 

fluctuation from two models built in c and witness. It is calculated by the average price 

change in each model in 20000 time when the interval is 100 by the parameter set 1. 

There are variables in the code that track: time interval, total small time increments, 

either 100 or 500, prices before and price after. Those variables change every 100 

periods when ∆𝑡 is 0.01 or every 500 periods when ∆𝑡 is 0.002. Also, there is a variable 

that tracks the small time increments, and if this variable equals the total small time 

increments, then the conditions will be compared to see if there are any changes in the 

values of time interval settings. As we think the switching of chartists happens instantly, 

the components of the switching formula will not update during the time interval ∆𝑡. 

The code of this model has three stages in all-the code starts at the initial stage. Then 

agents switch between each other in the switching stage. And then, the price is changed 

and the time is changed into the next small time increment from t to t+∆t. Agents start 

to switch again based on the new information. 

1. Initial stage (figure 5.1 step1): agents are divided randomly.  

2. Switching stage (figure 5.1 step 2,3,4): Each agent only switches once in each 

interval time ∆𝑡. The agents switch from one to another according to the switching 
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rules given later in Section 5.3.3.1 and 5.3.3.2. The order for agents’ change does 

not matter.        

3. Price formation stage (figure 5.1 step 5): The price updates by increasing or 

decreasing by 0.01 or staying unchanged according to equations (5.17) and (5.18) 

in Section 5.3.3.3. 

4. Time update stage (figure 5.1 step 6): The time updates by a time increment. 

The symbols of code are provided in the table for information to understand the code 

quicker if required. 

  

The code is accessible on the DOI 10.5281/zenodo.5524993. Or by the email request 
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by x.liu1@lancaster.ac.uk or liuxinbess@126.com. 
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