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On the Position Optimization of IRS

Jianyue Zhu, Yongming Huang, Jiaheng Wang, Keivan Navaie, Wei Huang, Zhiguo Ding

Abstract—The intelligent reflecting surface (IRS) technology is
emerged as an enabling technology for beyond 5G systems and
IoT networks in which the signal propagation is reconfigured
to enhance wireless system performance. IRS consists of many
passive elements and each reflecting the incident signal with a
certain phase shift to collectively achieve the required beamform-
ing. The IRS is to be a low profile and lightweight setting with a
conformal geometry hence its position can be easily engineered
to achieve certain performance enhancements. In the current
literature, however, the flexibility in the IRS position is often
overlooked since it is considered as a given fixture. We argue that
optimizing the IRS position provides a new degree of freedom in
the network design and enables extra performance gain. In this
paper, we analytically characterize the optimal IRS’s position to
maximize the achievable system rate. We then obtain the optimal
IRS positions for different IRS settings with fixed-height and
variable-height and consider both cost-efficient equal phase shift
IRS, and non-equal phase shift IRS that enables sophisticated
beamforming. We further incorporate antenna directivity in our
analysis and investigate its effect on the optimal IRS position
in each case. Simulation results show that the provided optimal
position yields higher performance than settings with random
IRS locations. Our results provide significant practical insights
on the network coverage design using the IRS.

Index Terms—Intelligent reflecting surface, equal phase shift,
non-equal phase shift, variable-height, fixed-height, system rate
maximization

I. INTRODUCTION

Motivated by the explosive demand of Internet of Thing
(IoT), there are ever-increasing requirements of higher capac-
ity in beyond fifth generation (5G) communication systems
and IoT networks [1]-[3]. In order to meet this goal, var-
ious technologies, such as massive multiple-input multiple-
output (MIMO) [4], millimeter wave (mmWave) [5], and
small cells [6], have been proposed in recent years. However,
the existing technologies generally require increased energy
consumption and hardware cost due to the installing of costly
radio frequency (RF) chains operating at higher frequency
bands. Therefore, it is still an open problem to find innovative,
spectral and energy efficient, and yet cost-effective solutions
for beyond 5G systems and the IoT networks.
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Recently, intelligent reflecting surface (IRS) has been pro-
posed as a promising new technology for reconfiguring the
propagation environment [7]-[9]. IRS is a planar surface
consisting of a large number of low-cost passive reflecting
elements. The reflecting elements are capable of inducing
independent phase change to the incident signal indepen-
dently and hence achieving three-dimensional (3D) reflecting
beamforming. IRS has a lower hardware cost and energy
consumption than that of the conventional active beamforming
via multiple antennas. This is mainly because IRS needs no
signal amplification and regeneration. Moreover, IRS is always
low profile, lightweight, and has a conformal geometry, which
enables its easy installation on the wall or ceiling [10]-[12].

Usually, IRS operates as a multi-antenna relay. The IRS-
assisted wireless communication has been widely studied. For
example, in [13], [14], the active transmit beamforming at the
base station (BS) and the passive reflect beamforming at the
IRS were jointly optimized in the IRS-assisted communication
system. In addition, several works focus on the positioning
problem with the assistance of an IRS. For example, in [15],
the authors studied the fundamental limits of positioning with
the aid of an IRS in mmWave systems. The authors in [16]
proposed the Fisher-information matrix and Cramer-Rao lower
bounds for positioning with IRS.

There are also other relevant topics on IRS, such as non-
orthogonal multiple access (NOMA) [17]-[19], physical layer
security [20]-[22], mmWave communications [23], [24], wire-
less power transfer (WPT) [25], [26], deep learning [27],
[28], and unmanned aerial vehicle (UAV) communications
[29], [30]. For example, in [17]-[19], the authors integrated
NOMA and IRS and proposed using IRS to facilitate the
implementation of NOMA. Also [20]-[22] leveraged the IRS
for the implementation of physical layer security in wireless
communication systems. IRSs were also proposed in [23],
[24] to provide effective reflected paths and hence enhances
coverage of mmWave signals. To improve WPT efficiency, IRS
has been used in the IoT devices to create an efficient charging
zone [25], [26]. Deep learning was adopted in [27], [28] for
configuring the IRSs to improve the efficiency of wireless
communications. The potential of the IRS in enhancing UAV
communications was also demonstrated in [29], [30].

The key point of the employment of the IRS in the wireless
communication system is its capability to reconfigure prop-
agation environment [17], [31]. In the literature, the IRS is
always assumed to be fixed in one position. Nevertheless,
considering movable IRS significantly enhances its capability
to reconfigure the propagation environment, we can design the
IRS position to achieve the best performance.

In this work, we focus on the optimization of the IRS’s
position. Given the production costs, the IRS with equal
phase shift is preferred to the IRS with non-equal phase shift.



However, the IRS with non-equal phase shift is capable of
beamforming the reflected signal to the user in any desired
direction through intelligent reflection. In this paper, the non-
equal phase shift IRS and the equal phase shift IRS are both
studied. Furthermore, considering the practical applications,
we study both of the variable-height IRS and the fixed-height
IRS. The variable-height IRS can be mounted on the aerial
platforms such as balloons and UAVs while the fixed-height
IRS can be installed on the indoor ceiling.

To the best of our knowledge, in the literature, there is only
one existing work considering the alteration of IRS’s position,
ie., [32]. In [32], a networking architecture is proposed
that is enabled by aerial intelligent reflecting from the sky,
where the transmit beamforming, IRS placement and phase
shifts are jointly optimized. Instead of the free-space path
loss channel model used in [32], we use the IRS-assisted
wireless communication channel model that is based on the
experimental results in [9]. Furthermore, we consider both of
the variable-height IRS and the fixed-height IRS while the IRS
is assumed to be placed at an altitude in [32].

We then optimize the IRS’s position to achieve the max-
imum system rate. The main contributions of this paper are
summarized in the following:

« We obtain a closed-form for the optimal IRS position
that maximizes the system rate respectively for non-equal
phase shift variable-height IRS, non-equal phase shift
fixed-height IRS, equal phase shift variable-height IRS,
and equal phase shift fixed-height IRS.

« We study all possibilities of the antenna directivity and
show that the optimal position is directly related to
different coefficients of the antenna directivity.

o Our analysis covers both cases of non-equal phase shift
and equal phase shift IRS. The performance comparison
provides quantitative insights on choosing the best suit-
able working mechanism for some specific setting.

« Considering the practical application, we study two dif-
ferent cases of IRS’s height, i.e., the variable-height IRS
and the fixed-height IRS.

e Our proposed results provide various insights on the
optimal IRS position. For instance, our analysis provides
the maximum possible height for the fixed-height IRS,
which can not exceed a certain value.

« Simulations also reveal that the proposed optimal IRS’s
position outperforms any random IRS position in various
settings.

The rest of the paper is organized as follows. In Section II, we
describe the system model, the channel model, and formulation
of the optimization problem. In Section III, we optimize the
IRS’s position for the non-equal phase shift variable-height
IRS and the non-equal phase shift fixed-height IRS. In Section
IV, we then design the position of the equal phase shift
variable-height IRS and the equal phase shift fixed-height IRS.
In Section V, the performance of the proposed optimal IRS’s
position is evaluated via simulation. Finally, in Section VI, we
conclude the paper.
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Figure 1. A schematic of the considered downlink IRS-assisted communica-
tions.

II. SYSTEM MODEL

As shown in Fig.1, we consider an IRS-assisted communi-
cation system, wherein the base station (BS) equipped with
single antenna communicates with the single antenna user
through the IRS. Here, the user can be seen as a sensor, whose
location is often fixed. It is assumed that there is no direct link
between the IRS and the user. The first order reflection on the
IRS is considered [13], [17], [33]. In addition, similar to [9],
we focus on the scenario of far field, i.e., the distance between
the BS and the user and the distance between the center of the
IRS and the user are both larger than E, where D, and \ are
the largest dimension of the IRS, and the wave length of the
carrier signal respectively. Accordingly, the IRS’s position is
represented by the IRS’s center. Moreover, the user is located
at (dp,0,0) and the BS is located at (0, 0,0).

Let N, and M denote the number of the unit cells in the row
and column of the IRS respectively. Each unit cell of the IRS
is represented by Uy, ,,, forn = 1,--- N, m = 1,--- , M.
Onm = Ael®nm is the reflection coefficient of Upn,m and the
size of each Uy, , is d,, X dy,. In addition, in Fig. 1, d;, ds,
0¢, ¢, 0, and ;. denote the distance between the BS and
the center of the IRS, the distance between the user and the
center of the IRS, the elevation angle and the azimuth angle
from the BS to the center of the IRS, and the elevation angle
and the azimuth angle from the center of the IRS to the user,
respectively.

A. Channel Model

Suppose that s be the message intended to be received by
the user with E ||s|*| = 1. In the IRS-assisted communication
system, the signal received at the user is [34]

Y= VPh,®Gs +n = \/ﬁhs—i—m )

where P is the transmission power, h, € CI*MN and G €
CMN>1 are respectively the IRS-user link and the BS-IRS
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link, and n is the additive white Gaussian noise (AWGN) at the
user with zero mean and variance 2. In addition, h = h, G
denotes the channel coefficient from the BS to the user through
the IRS. Similar to [9], we consider the following two cases
for the far field scenario in the IRS-assisted communication
channel.

1) Non-Equal Phase Shift: Each unit cell U, ,, has non-
equal phase shift, ¢,, ,,, and the channel from the BS to the
user through the IRS is

o \/ GGy GM2Ndd V2] (B, 01) f (Bues: Paes) A2
' 6473d2d2 ’
@)
where Oges = 0r, ©des = ©r, and (Oges, Pdes) 1s the desired
direction. In (2), the power radiation pattern is given by

cos™d, 0<0<Z 0< o< 2m,
f(0,0) = 0 . 2
, §<9§27T,0§(p§2ﬂ',

3

where o > 0 represents the directivity of the antenna and a
larger o implies a more focused beam or highly directional
antenna [35]. In (2), G4, G,, and G denote antenna gains
of the BS, the user, and the IRS, respectively. The proposed
channel coefficient, hj, is based on the non-equal phase shifts
design in [9]

2w 1 1
b= (2 (o (= DY avs (o 2) ) )
(4)
= mod <—¥7 271') ,

where

1
W =(sin 6; cos p¢+sin Oges COS Pdes) (m — 5) dp, 5

2

2) Equal Phase Shift: Secondly, each unit cell, U,, ,,, has
the equal phase shift, ¢, the channel from the BS to the user
through the IRS is

o [GiGGMENdyd N2 £ (0.9) f (0,0 + ) A2
2 64m3d2d2

1
+ (sin 6; sin g + sin Oges SN Vges ) <n - —) .

; (6)

where 6 = 6, = 0;, ¢ = 4, and the power radiation pattern
is as in (3). Note that, for the equal phase shift IRS, hs can be
obtained by any random phase shift. Hence, considering the
production costs, the equal phase shift IRS is more preferred
compared to the non-equal phase shift IRS.

B. Achieved Rate Maximization

In this paper, with the fixed BS’s and user’s locations,
by optimizing IRS’s location, i.e., optimizing 6, ¢, 0,,
and ¢,, the channel gains can be reconfigured for obtaining
further improvements in the system performance. In other
words, employing the IRS, one can reconfigure the propa-
gation environment, which could greatly improve the system
performance, see, e.g., [17], [31]. In the current literature,
however, the position of the IRS is always assumed fixed.

Assuming movability of the IRS provides an extra degree of
freedom to improve system efficiency. Here, we focus on an
IRS-assisted communication system, where the IRS is assumed
to be movable. We analysis far field scenario where dy > 2—’;\’2
[9].

In the considered setting, the IRS’s position can be freely
moved to achieve the best performance. In addition, the IRS’s
position can also be designed based on the settings of the
environment, e.g., existing building. The IRS can be installed
on the ceiling, which has the fixed height. In this paper, for
different channel models in (2) and (6), we investigate the
optimization of the IRS’s position for two cases including the
variable-height IRS, and the fixed-height IRS.

1) The Variable-Height IRS: In this case, from Fig.1, we
write

dy cos; = dycosb,, @)
dy sin 0 |sin ;| 4 do sin 0, |sin ¢,.| = dy, ®)
dy sin 0 |cos pi| = da sin 0, |cos .| . 9)

Using (7) and (8), we then obtain:

d 0,
di =~ AL —— (10)
sin 6 cos 0, |sin ¢¢| + sin 6, cos 6y |sin ¢, |
d
d2 _ 0 COS et (1 1)

sin 6 cos 6, |sin | + sin ;. cos 0y |sin .|

Hence, the position of the IRS can be fully represented by the
variables, 0, @y, 0,., and ,.. The channel models provided in
(2) and (6) are also functions of variables 8;, ¢y, 6., and @,

Here, our objective is to find the optimal IRS position, so
that the user’s achieved rate is maximized:

2
(o3 108 (1 " Z_};> ’ (2
s.t.dy,dy > 2TD27 (13)
dy sin 0, |cos pi| = dasin b, [cos |,  (14)
0 < ¢, or < 2m, (15)
0<6,.6, < g (16)

In the above optimization problem (12), (13) ensures the far
field assumption and (14) represents the intrinsic geometric
characteristic (9) in Fig.1. Furthermore, (15) and (16) ensures
that the azimuth angles, i.e., p; and ¢,., are within [0, 27],
while the elevation angles, i.e., 6; and 6,., are assumed to be
within [0, Z]. This enforces f (6,¢) =0, 3 < 6 < 27, ie.,
the power radiation pattern function.

2) The Fixed-Height IRS: In this case, the height is fixed

at H. Using Fig.1, we write.

4= (17)
cos 0,
H
dy = . 1
2 cos 0, (18
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In this case, the IRS’s position is fully represented by the
variables 0;, ¢, 0., and ¢, and similar to (12), the rate
maximization problem is formulated as

Ph?
R=1 1+ — 19
(Oeprbrron) Og( T ) (1%
2D?
S.t. dhdg > T7 (20)
sin 6 |cos @] = sin 6, |cos ¢, |,
cos 0, cos 0,
(21)
H | . . .
sin 6y |sin @ |+ sin 0, [sin .| = dp,
cos 6 cos 0,
(22)
0 S Pty Pr S 2777 (23)
0< 6,6, < 7. (24)

where the constraints (21) and (22) represent the intrinsic
geometric characteristic as seen in Fig. 1 and (20), (23), and
(24) are similar to (13), (15), and (16).

In this paper, we find solutions to problem (12) and (19) for
two different channel models, i.e., the channel model for non-
equal phase shift as in (2), and the channel model for the equal
phase shift as in (6). The complex form of the channel gains,
however, challenges the optimization of IRS’s position. In the
following, we obtain the optimal IRS’s position for different
cases of phase shift, and height.

III. OPTIMIZATION OF THE IRS POSITION: NON-EQUAL
PHASE SHIFT

Here, we obtain the optimal IRS’s position for maximizing
the system achieved rate for the variable-height IRS and the
fixed-height IRS, where each unit cell U, ,, has a different
reflecting coefficient, ©,, ,, = Ae/®nm,

A. The Non-Equal Phase Shift Variable-Height (NE-VH) IRS

Adopting the channel model (2), problem in (12) is equiv-
alent to the following optimization problem:

max 01, 01, Odes, , 25
{@#Ptﬂdes#’des} gl ( K SOt des SOdeS) ( )
S.t. cosBges — 12 >0, (26)
cosf; — 12 >0, @7
€08 Oges sin By |cos | (28)

= 08 0 sin Oges |COS Pues]|
0 < 1,00 < 2m, (29)
0< 6,0, < 7, (30)

where

Q = sin 04 cos Oyes |sin ¢ | + Sin Oges €os Oy [sin pges|, (31)

2
and ¢ = % < 1. In problem (25), the objective function is
written as
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4
I cos® 6, cos™ 6
g1 (6,57 0t Odes, (Pdes) = d;dg des ) (32)
103
_ Teos® 20, cos® 2 0 O
dg ’
where
G:G,.GM?*N?%d,d ,\?>A?
r=-2 y . (33)
64m3

In order to solve problem (25), we propose a change of
variable by defining the new variables t; = [sin ;| and t5 =
|sin pges|, which satisfy 0 < ¢; <1, and 0 < ¢t5 < 1. We then
optimize t; and to by fixing 6; and 4. The corresponding
optimization problem is reduced to

— _ . . 4
[ cos® 2 0; cos® 2 Oges(t1 sin Oy €OS Oges 2 Sin Oges cos )

ma,

t1,t2 dé
(34)
S.t. €08 Oges—1 (t1 Sin Oy cOS Oges + Lo sin Oges cos 6;) > 0,
(35)
€08 0y —1 (t1 8in By €08 Oyes + t2 Sin Gges cos B;) > 0,  (36)
08 Oges Sin 031/ 1 — t2 = cos O sin Ogesy/ 1 — 13, 37)
0<#,t <1 (38)

In the following Proposition, we provide the optimal solution
to (34).

Proposition 1. The optimal solution to problem (34) is t] =
1, t5=1.

Proof. See Appendix A. O

Remark 1. According to Propositiop 1, the optimal ¢} and @}
satisfy [sin py| = [singi| = 1, ie., ¢} = § or ¢; = =,
Qs = 5 O @l = 3. Hence, the optimal position of the

NE-VH IRS is always on the vertical plane.

Using the optimal values of ¢, and (4.5, we then optimize
0: and O4es. The corresponding optimizing problem is

I cos® 2 0, cos* 2 Bges sin® (6; + Oges)

bt d 9
s.t. COS Oges — L 8in (0; + Oyes) > 0, (40)
cos 0y — vsin (0 + Oaes) > 0, (41)

0 < b, bues < 5. (42)

The optimization problem in (39) is non-convex due to the
non-concave objective function. In the following Theorem, we
provide the optimal solution to problem (39).

)
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Theorem 1. The optimal solution to problem (39) is

0<a<2:6f =7T*—arccos (¢tsin T™), (43)
03, = arccos (tsin T*) | or
0; = arccos (tsin T%), (44)
05, = T* — arccos (¢sin T%) |
x __ % __ E | 1
oo 00 = Oy = mresing;, 5 <1, @s)
9:79;es:A7 Z>17
arccos( o ), %ZQQ )
a>2: 0 =05 = 2 e
arccos(\/l—él—}g), ﬁg<ai+2,
(46)

where in the above,

T
A= {9;",9;“ | 0; + 65, = 505 — arccost < #0; <arccost,

47)
T* = arcsin < sy ) ) (43)
V1412 = 2sinv
0, =<0,
v={z, 0gEgaurcsinmin{%,l}7

arcsin min {%, 1} , = > arcsin min {%, 1} ,

(49)
and
2y _ 4_,2)q2_4,2 2
- : 2t _ 2
arcsin (m) s o = 3
(50)
Proof. See Appendix B. O

Remark 2. According to Theorem 1, for the NE-VH IRS, the
optimal elevation angles are characterized with three cases,
ie, 0 < a <2 a=2, and a > 2. Specifically, if 0 < a <
2, the optimal elevation angles, i.e., 8; and 6}, always take
different values. Given o = 2 and % > 1, to achieve the best
performance, the optimal elevation angles can have various
choices. In addition, the optimal elevation angles are always
equal for v > 2. Furthermore, if ﬁ < Q%_Q and o > 2, the

optimal elevation angles are 8; = 0., = arccos ( 1-— 411%)

Consequently, the optimal position for the NE-VH IRS is
jointly characterized by Proposition 1 and Theorem 1. The
optimal three-dimensional coordinates of the NE-VH IRS are
given by

(Ly, Ly L) = (0,71 8in 6y, ry cos6y), (51)

where

d *
r == 0 €05 0y . (52)
sin 0f cos 0 4 sin 07 cos 0

Furthermore, using the proposed optimal azimuth angles and
elevation angles, the corresponding optimal phase shift, ¢y, ,,
forn =1,--- N, m = 1,--- ;M of the NE-VH IRS are
given by (4).

B. The Non-Equal Phase Shift Fixed-Height (NE-FH) IRS

In this subsection, given the fixed height of the IRS, its
position is optimized to maximize the user’s achieved rate.
Adopting the channel model proposed in (2), the optimization
problem (19) is transformed to the following form:

max 01, 01, Oges, , 53
{0t7¢ta0desvwdes}g2( K SOt des SOdeS) ( )
H 2D?
.t > 54
St cos 6, = X 4
H 2D?
> —, (55)
€08 Bges A
H
sin 6y |cos | (56)
cos b,
H in e, | |
= sin cos
05 Oges des Pdes|
sin 0y |sin | (57)
cos b,
+ Sin G ges |sin <Pdes| = do,
€08 B ges
0 < @1, Pdes < 2, (58)
0 < b, fes < 5. (59)
where the objective function in (53) is
I cos® 6y cos™ 6
92 (01,1, s> Ptes) = e (60)
143
T cos*t2 0, cos®2 Ges

In order to solve problem (53), we first optimize the azimuth
angles, i.e., ¢ and (g, by fixing the elevation angles, i.e.,
0; and O4es. The solution of the azimuth angles is given in the
following Proposition.

Proposition 2. In (53), given 0; and 0, the optimal azimuth
angles ©} and @}, are

P; = Prm = arcsinQ, or i = Py, = arcsin Q4+, (61)

* % - . * o .
Pdes = PFHdes — M CSII QQu OT Phes = PFHdes — ArCSIL Q2+7T7

(62)
where

2

tan? 0, — tan? O, + dy
Q= (63)

2# tan 915

2 2 dz

tan® 0,45 — tan® 0; + Vi (64)
2 2%} tan 64, .

Proof. See Appendix C. ]

As it is seen in Proposition 2, in contrast to the NE-VH
IRS, the azimuth angles of the NE-FH IRS are determined by
the elevation angles, the height, and the distance of the user
from the BS.
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By using the results provided in Proposition 2, we further
optimize the elevation angles 0; and 4. Using the following
optimization problem:

T cos®t2 6, cos®t2 04,

max 7 ; (65)
H 2D?

. > — 66

s cosfy — N’ (66)
H 2D?

> — 67

coSBges ~ A 67

0 < 0, s < 5. (68)

The above optimal optimization problem is nonconvex as
the objective function in (65) is not concave. The following
Theorem provides the solutions.

Theorem 2. The optimal solution to problem (65) is

0F = 03,, = Opy = arccos A, (69)

where
A:min{;[—D);,l}. (70)
Proof. See Appendix D. ]

Remark 3. Theorem 2 indicates that the optimal elevation
angles for the NE-FH IRS are always equal. In addition, the
optimal elevation angles for the NE-FH IRS are determined
by the height, H, and are not related to the antenna directivity.
Specifically, as expected, if H < g, the elevation angles
decrease by increasing H. However, if the height is large
enough to satisfy H > %, the optimal elevation angles are

0%.. = 0 = 0, which is in fact the extreme case.

The optimal position of the NE-FH IRS for maximizing rate
is fully characterized by Proposition 2 and Theorem 2, i.e., the
three-dimensional position is given by

(Lg, Ly, L) = (H tan 6y cos ppy,, H tan Ogy sin ppy, H) .

(71)
In addition, the optimal phase shifts of the NE-FH IRS are
obtained by setting 0} = 03.. = Oy, 7 = Prue and Qi =
<p1§Hdes in (4)

IV. OPTIMIZATION OF THE IRS’S POSITION: EQUAL
PHASE SHIFT

Here, we investigate the cases when the IRS shares the
same reflecting coefficient, ie., Oy, = Aei?, for n =
1,---,N, m = 1,---, M. According to (6), the optimal
elevation angles and the azimuth angles for the equal phase
shift IRS shall satisfy 6, = 6; and ¢, = ¢, + 7, respectively,
and the corresponding optimal phase shift, i.e., ®, can take
any value. Similarly, in the following, we obtain the optimal
IRS’s position for the variable-height IRS and the fixed-height
IRS, respectively.
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A. Equal Phase Shift Variable-Height (E-VH) IRS
Using (10), (11), 6, = 6, and ¢, = ¢; + 7, therefore

do

dy = dy = — 0
P T 26inbsing)|’

(72)

where 8 = 6, = 0, and ¢ = ;. Therefore, the optimization
problem in (12) is reduced to

16T

max v (0, ) = — cos®® Osin* Osin* ¢, (73)
0,p dO
d 2D?2
st > (74)
2sin 6 |sin | A
0<0< 3, (75)
0 << 27 (76)

Similar to the above, the objective function in (73) results
in non-convexity of the optimization problem. The following
Theorem provides the closed-form optimal solution to problem
(73).

Theorem 3. The optimal solution to problem (73) is given by

1 2
arccos (1 [ ) > ==
+2 )0 .2 = a2
0" = “ 77
arccos 1— L L 2 77

42 )0 442

at2
. T 37
=—or —.
7 T2
Proof. See Appendix E. a

Remark 4. According to Theorem 3, the optimal azimuth
angles of the E-VH IRS are given by @5 = ¢* = 5 or 37’7 and
Pdes = @*+m, which are same as the NE-VH IRS. In addition,
given o > 2, the optimal elevation angles are also the same
as NE-VH IRS. It is also seen the optimal elevation angles
decrease by increasing . This is because the increasing of
«a means higher directivity. Thus the optimal elevation angles

decrease to achieve a higher performance.

Therefore, the optimal position of the E-VH IRS to maxi-
mize the achieved rate is obtained by using Theorem 3 as

(Lg, Ly, L,) = (0,rosin6*,r3 cos 6) , (78)

where o = ﬁ?

B. Equal Phase Shift Fixed-Height (E-FH) IRS

In this subsection, we focus on the E-FH IRS and the height
of the IRS is fixed at Hm. In Fig.1, we have

H
dy =dy = —, (79)
cos 6
and
H
sin 6 |sin | = dp, (80)

os 6



Page 7 of 17

cONOULT A WN =

where 6 = 6, = 6; and ¢ = ;. Hence, the rate maximization
problem in (19) is transformed to the following:

T cos*t2a 9
a; 0,0) = ——, 81
max vy (0,¢) L (81)
H 2D?

.t > — 82

Shcs0 T A (82)
2H

7 sin @ |sin | = dp, (83)

0 < < 2m, (84)

0<6< g (85)

The optimal solution to problem (81) is given in the following
Theorem.

Theorem 4. The optimal solution to problem (81) is

0" =0p = arccos min {ﬁ’ 1} , (86)

@ =y =5 or " = oy = E +m, (87)
where d
- . 0

== —_— 88

aresin 0 (88)

Proof. See Appendix F. ]

Remark 5. From Theorem 4, it is easy to find out that the
optimal azimuth and elevation angles of the E-FH IRS are
the same as the NE-FH IRS. The optimal azimuth angles
and elevation angles are also not affected by the value of a.
Therefore, the antenna directivity has no effect on the optimal
position.

Thereby, the optimal position of the E-FH IRS for the rate
maximization is provided by Theorem 4 as the following

(Lg, Ly, L,) = (H tan 0y cos ppy, H tan Oy sin ppy, H) .
(89)

V. SIMULATION RESULT

In this section, we show the performance of our proposed
solution to the rate maximization problem in the downlink
IRS-assisted communication system. According to [35], by
assuming 100% antenna efficiency, the antenna gain is

4m
27 ™ . bl
fap:O Jo—o F (6, ) sin 0dOdy

where F (6,) is the normalized power radiation pattern.
In our simulations, using Fy (6¢,¢:) = F,(0r,0,) = 1,
F(6,0) = f(0,9), we easily obtain Gy, G-, and G. The other
parameters of the IRS are given by M = N = 100, d,, =
dmn = 0.01, A = 0.9, operating frequency, f = 10.5GHz,

A=c/f=00286m, and 22° = 2MNdedy _ 71 4y [9]. The

(90)

Gantenna =

bandwidth is B = 10MHz. The noise power is 02 = BN,
with Ny = —174dBm. The transmission power of the BS is
P =10W.

In the following, we will evaluate the system performance
using the IRS with different cases of phase shifts and heights.
The proposed optimal positions are then compared with the
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Spectral efficiency (bit/s/Hz)

18 T T T

= P~ Optimal angle M=100,N=100
—Pp— Optimal angle M=200,N=200
== Random angle M=100,N=100
16 - —s— Random angle M=200,N=200

Spectral efficiency (bit/s/Hz)

Figure 3. The spectral efficiency versus « for the NE-VH IRS.

random positions for different antenna directivity, «, and
distances from the user to the BS, dy. In addition, in our
simulations, the fixed-height (FH) IRS represents both of the
E-FH IRS and the NE-FH IRS, as it is seen the E-FH IRS and
the NE-FH IRS achieve the same performance.

In Figs. 2. 3, we show the data rate achieved by our
proposed optimal position for the NE-VH IRS. As seen from
the figure, our proposed optimal position outperforms the
random position. The performance gap between the schemes
with the proposed optimal position and the random position
is increased with smaller o and dy. In addition, increasing
a results in a significant decrease of the rate performance,
especially for small values of «. Furthermore, from Fig. 3,
it’s easy to find that the system performance can be obviously
improved by increasing the number of IRS units.

Fig. 4 depicts the comparison between the NE-VH IRS and
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Figure 4. The spectral efficiency versus the distance from the user to the BS
for the HF IRS.

the E-VH IRS. It is clearly seen that the NE-VH IRS achieves
better rate performance than that of the E-VH IRS, which is
because the NE-VH IRS is able to beamform the reflected
signal toward the user in any desired direction via intelligent
reflection. Furthermore, increasing dy results in decreasing
the performance gap while there is a larger gap between the
NE-VH IRS and the E-VH IRS by reducing «. Considering
practical issues such as production cost, the above results
suggest that NE-VH IRS is preferred to E-VH IRS for @ > 2
and large dj.

Fig. 5 shows the spectral efficiency versus the distance from
the user to the BS for the variable-height (VH) IRS. According
to Theorem 1 and Theorem 3, given o > 2, the NE-VH IRS
and the E-VH IRS achieve the same rate performance. Thus,
the results in Fig. 4 are for the VH IRS. As it is seen the
proposed optimal position achieves a higher performance than
that of the random position. Furthermore, the performance
improvement is more obvious significant for a smaller «v and
dp.

Figs. 6. 7 demonstrate the spectral efficiency performance
versus the height, and « for the fixed-height (FH) IRS respec-
tively. Similar trend is seen as in Fig. 4 and Fig. 2, where our
proposed position scheme outperforms the random position.
In addition, the gap is much larger with larger values of a.
However, different from Fig. 4 and Fig. 2, the performance
gap almost keeps same for different values of H.

VI. CONCLUSION

In this paper, we have studied the optimization of IRS’s
position in the IRS-assisted communication system to max-
imize the system rate. Considering the practical application,
the cases of equal phase shift and non-equal phase shift and
the cases of free height and fixed height are all studied. The
optimal IRS’s 3D position has been characterized in closed
forms respectively for the NE-VH IRS, the NE-FH IRS, the
E-VH IRS, and the E-FH IRS. Moreover, we considered all
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Figure 5. The spectral efficiency versus the distance from the user to the BS
for the VH IRS.
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Figure 6. The spectral efficiency versus the height for the FH IRS.

possibilities of the directivity of antenna and showed that the
IRS’s position is closely related to the directivity coefficient.
We also provided a lot of insights about the influence factors
of the optimal solution, which is instructive to the practical
application. The simulation results have shown that the pro-
posed optimal IRS’s position achieves better performance than
any random location.

APPENDIX

A. Proof of Proposition 1

Problem (34) is difficult to solve due to the equality con-
straint in (37). We first relax this constraint, reduce problem
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(34) to

max t1 Sin 0y cos Oges + to Sin Gges cOs Oy, 91)

t1,t2
s.t. 08 Bges — ¢ (t1 8in Bt cos Oges + t2 SN Oges cOs 0:) > 0,
€08 8 — ¢ (t1 sin 6 cos Oges + t2 8in Oges cos §;) > 0,
0<t,t2 <1,
which is a convex optimization problem. Using Lagrange
coefficients methods, we get
L =t sin 0, cos Bges + to Sin Oges COS O
+ 1 (cos Oges — ¢ (t1 Sin 6y €O Oges + to sin Oges cos ;)
+ pig (cos By — 1 (t1 8in B; oS Oges + t2 Sin Byes cos 0;))
=z (tr —1) — pa (t2 — 1),
where (1, o, p3, and py are the Lagrange multipliers. As
(91) is a convex optimization problem, its optimal solution

is characterized by the following Karush-Kuhn-Tucker (KKT)
[36] conditions:

ot1
(92)
L . .
% =Sin Oges COS Op—i1 ¢ SN Oges COS O—fiot SiN Bges cOS Op—114 =0,
’ (93)
w1 (cos By — ¢ (t1 sin Oy cos Oges + 2 Sin fges cos 0;)) = 0,

(94)

2 (o8 Bges — ¢ (t1 8in O cos byes + to sin Oges cos ;) = 0,
(95)
ps(tr —1) =0, (96)
Ha (tz — 1) =0. (97)

From the KKT conditions, five cases should be considered,
which are respectively (1) g1 = 0, s = 0, pu3z # 0, g # 0;
2 p1 =0, p2 #0, ug # 0, pg = 0; 3B) 1 =0, p2 # 0,

L . . .
—— =sin 6; coS Oges— 1L Sin O €08 Oges— it sin By cos Bges—pu3=0,

pz =0, pg # 05 (4) p1 # 0, po = 0, pu3 # 0, g = 0; (5)
w1 #0, woe =0, ug =0, puyg # 0.
For the first case, the optimal solution is

t1=1,t5=1. (98)
For the second case, following (95) and (96), we get
€08 Bges — ¢ (L1 sin By cos Oges + to sin Oges cos 6;) = 0, (99)
and t; — 1 = 0,which implies
COS Bges — ¢51n B COS Oges
tr =1, t; = 100
! $ 2 £ Sin Bges COS B: (100)
Similarly, for the third case, we obtain
. cos@des—LsinﬁdescosHt’ Y (101)

1 8in 0y coS Bges
For the fourth and fifth cases, the optimal solutions are
similarly obtained as:

. . €0sB; — 1sin By cos Oges
tl = 1, t2 - N )
1 81N Bges COS O,

(102)

and .
o cos 6y — ¢ sin Bye cos O;
Y=

=1 (103)

L sin 6; cos Oy

Therefore, the optimal solution to problem (91) is given
by (98), (100), (101), (102), and (103). Taking the equality
constraint (37) into consideration, only the first case is valid.
Accordingly, the optimal solution to problem (34) is t] = 1,
t5 =1.

B. Proof of Theorem 1

1) For 0 < a < 2: We introduce T = 6; + 04es and T €
[0, 7]. Then, the problem in (39) is transformed to

T cos® 26, cos® 2 (T — 6;)sin* T

e G - a0y
s.t. cos (YT —6;) —esinY >0, (105)
cosfy —tsinY > 0, (106)
0<6: <3, (107)
0<YT <. (108)

Here we first optimize 6; by fixing Y, the corresponding
optimization problem is

I cos® 2 6; cos® 2 (T — 6;)sin* T

mezjx d% , (109)
s.t. cos (Y —6;) —esinY >0, (110)
cosf; —tsin Y > 0, (111)
0<6, < 3. (112)

From (110) and (111),
0y > T — arccos (tsin 1), (113)

and

0; < arccos (¢tsinY). (114)

In order to guarantee the feasibility of problem (109), we have

T — arccos (¢sin 1) < arccos (¢sin Y) (115)
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53

implying sin% < 2% Denote the objective function of

problem (109) as

I'cos® 2 6; cos® 2 (T — 6;)sin* T

2(6;) = 1 (116)
0
The derivative of function z (6;) is
dz T (a—2)sin* T COSa;3 (Y—6;) cos® 3, in (T—20,)
do, ds
(117)

Hence, given 0 < « < 2, z(6;) is monotonically decreasing
for 6, < % and monotonically increasing for 6; > %
Considering (113) and (114), we then obtain the maximizer
0 = arccos (¢sin ) or 7 =Y — arccos (¢sin T).

We then optimize Y by setting 6 = arccos (¢sin 1) or
0f = T — arccos (¢sinT). The corresponding optimization
problem for T is

122 cos® 2 (T — arccos (¢sin 1)) sin®*t2 Y

max il , (118)
T 1

t. sin — < — 119

s.t. sin 5 S g3, (119)

0<T <. (120)

cos vV

Let v = T — arccos (¢sinT), thus sin T = ——8L .
o K . Vi1+e —2L.SIHV
As it is seen v = T — arccos(¢sinY) is monotonically
increasing with Y. Therefore, from the constraint (119), we
obtain sinv < i Therefore, problem (118) is reduced to

I a+2
max h(v) = L—4 cos® 2 ( o8y ) ,
v d; V1412 —2sinv
(121)
. 1
s.t. siny < % (122)
ogugg. (123)

The maximizer of function h (v) is given by (50). Hence, the
optimal solution to problem (121) is given in (49). Using v =
T — arccos (¢sin T'), the optimal solution to problem (118) is
obtained as in (48).

2) For a = 2: We set T = 0; + 045 and problem (39) is
rewritten as

ind
o (24
s.t. dgcos (T —6;) — 2D* sinT > 0, (125)
do cos 0; — ’ sinY >0, (126)
ogmgg, (127)
0<T<r. (128)

Similarly, we first optimize 8; with a given Y. The correspond-
ing optimization problem is

Tsin® T
s.t. T —arccos (¢tsinT) < 6; < arccos (¢sinY), (130)
og@gg. (131)
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The optimal solution to problem (129) is

07 = {07 | Ap <07 < Ao}, (132)
where
A; = max {Y — arccos (¢sin 1), 0},
. , m
Ay = min {arccos (¢sin?), 5} :
and
arccos (¢sin T) > 5 (133)

We then further optimize Y through the following optimization
problem

[sin* Y
max e (134)
s.t. sin — < l (135)
2 — 2
0<YT <m,

where constraint (134) is equivalent to (133). Given 2% <1,
the optimal solution to problem (134) is

T* = 2arcsin —. (136)
For 5- > 1, the optimal solution is
T

T = —. 137

> (137)

Combining (132), (136), and (137), the optimal solution to
problem (39) is obtained as presented in (45).
3) For o > 2: From (117), z (6;) is monotonically increas-

ing for 6, < % and monotonically decreasing for ¢, > %,

which implies the maximizer is 6, = % The maximizer

obviously satisfies constraint (112). Thus, the maximizer, i.e.,
T

b =5 (138)

is the optimal solution to problem (109).
Then, for o > 2, by using the optimal §; = %, the T
optimization problem is give by

I cos?e—4 % sin® T

max dé , (139)
T .

s.t. cos 5~ tsinY >0, (140)

0<T <. (141)

2 Y
2

Let u = cos and problem (139) is equivalently written as

16Tu® (1 — u)?

, (142)
P d3
1
stu>1- 1, (143)
0<u<l. (144)
Denote )
16w (1 —
w(w) = LW (145)
dO
and we obtain
d 16w (1 —
w:——i—L—ﬂha—m+mm, (146)

du di
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which implies the maximizer of function w is u = 55.

However, considering the constraint (143), we characterize the
optimal solution to problem (142) as

_o 1
ut = aF 4;2
L=z, 32<3

=

«

+

2 (147)
-

A IV
T

(]

Finally, by using (138), (147), and u = cos %, the optimal so-
lution to problem (39) is given by Theorem 1. This completes
the proof.

C. Proof of Proposition 2

Given 6; and 645 for the problem in (53), the optimal ¢}
and ¢j,, are obtained by using constraints (56) and (57), i.e.,

tan 6 |cos | = tan Oges |COS Pges| 5 (148)

d
tan 6y [sin @] + tan Oges [sin Yges| = EO' (149)

Furthermore, we note that sin? (pt—|—cos2 p¢ = land sin? Pdes T+
cos? @ges = 1, thus the solutions of ¢} and ¢}, must satisfy

d2
tan? 0, — tan? Oges + =

2% tan Ht

jsin ;| = . 50)

2 2 5

tan® Oges — tan® 0; + 7%
2%1 tan Oges

Therefore, from (150) and (151), (61) and (62) are obtained.
This completes the proof.

|sin .| = (151)

D. Proof of Theorem 2

In order to solve problem (65), we first optimize 8; with a
given Oges. The corresponding optimization problem is

T cos®2 6, cos®2 Oges
max
0 H*
H\
2D2’
0 <cosf; <1.

) (152

s.t. cosf; <

Given the monotonicity of the objective function with respect
to 6, the optimal solution to problem (152) is

0; = arccos A. (153)

Taking the optimal solution (153) into problem (65), we then
optimize 4 through the following optimization problem

T cos®2 0} cost? Oyes

r%ix i , (154)
B < 222
S.tl. COS Uges < W’

0 < cosBges < 1.
The optimal solution to problem (154) is then obtained as
03.s = 07 = arccos A, (155)

which completes the proof.

11

E. Proof of Theorem 3

Let ¢ = |sin ¢|. In the following, we first optimize ¢ for a
given 6 through the following optimization problem

max 16I't* cos®® #sin 6, (156)
1

Lt — 157

s = 2usin@’ (a57)

0<t<1. (158)

Denote

q (t) = 16T't* cos* @ sin* 4,

which is a monotonically increasing function of ¢. Hence, the
optimal solution to problem (156) is given for the following

1 1
t*:{ZLsinG’ 2¢sin 0 <L
1
17 2, 8in 6 > 1.
In the following, using ¢t*, we further optimize the elevation
angles, . The corresponding optimization problem for case 1
and 2 are:

case 1: max 161 cos>* @ sin’ 6, (159)
Sto— > (160)
" 2using T 7
0<0< 7. (161)
and
r 2«
case 2: max — cos™ 0, (162)
0 ¢
1
. <1 163
s 2usinf — 7’ (163)
0<< g (164)

Introducing u = cos? 6, problem (159) is transformed into
problem (142) in the proof of Theorem 1, and thus the optimal
solution is

_a 1S 2
ut =< at2’ 42 = a+2 (165)

11 1. 2

4,29 4.2 a+2°

Setting u = cos? @, problem (162) is reduced to
r

max ¢z = L—4uo‘, (166)
0<u<l. (168)

Suppose that ﬁ < 1, the optimal solution to problem (166)
is then obtained as

1
=1-—. 169
u 12 (169)
The problem in (166) is however infeasible for ﬁ > 1, this
results in the second case to be infeasible.
In order to achieve the optimal solution to problem (159),
we should take the maximum objective value of problem (159)
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and problem (162). For the first case, by using (165), the
optimal solution to problem (142) is

g arccos (\/QIH) ; 7 > oo (170)
arccos (,/ — ﬁ) , ﬁ < sl
and hence the optimal objective value is
3 2
Q= Lot (‘%2) g@%ﬂ> ’ ﬁ = "‘L”’ 171)
160 (1- )" ()" 2 > 32

In addition, by using (169), the optimal solution to problem
(166) is

1 1
1— —

* _
6" = arccos 12|12 <1,

and the corresponding optimal objective value is

3 2
1 1 1
=16 (1—-— — — <1
© < 4L2> (4L2) 42

Note that

(172)

max {q1, g2} = q1,

implying the adoption of the first case. Therefore, the optimal
solution to problem (156) is (170) and t* = 1, which results
in (77). This completes the proof.

FE. Proof of Theorem 4

Here we first assume 6 is given and find the optimized value
of . The corresponding problem is

T cos?t22 9
m;iX V2 (9, QD) = T, (173)
H .
s.t. 5 sin 6 |sin | = dp, (174)

0< <27,

The optimal solution to problem (173) is then obtained by
applying the constraint (173), which is given in (87).

We then optimize 6 via the following optimization problem:

I" cos?t22 9

S TR

2D?
>
cosf — X
0<4

(175)

=

S.t.

IA
0ol

Noting that the objective function is a monotonically decreas-
ing function of 6, the optimal solution is obtained as in (86).
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