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Abstract15

Geomagnetically induced currents (GICs) are an impact of space weather that can oc-16

cur during periods of enhanced geomagnetic activity. GICs can enter into electrical power17

grids through earthed conductors, potentially causing network collapse through voltage18

instability or damaging transformers. It would be beneficial to power grid operators to19

have a forecast of GICs that could inform decision making on mitigating action. Long20

lead-time GIC forecasting requires magnetospheric models as drivers of geoelectric field21

models. However, estimation of the geoelectric field is sensitive to high-frequency geo-22

magnetic field variations which operational global magneto-hydrodynamic models do not23

fully capture. Furthermore, an assessment of GIC forecast uncertainty would require a24

large ensemble of magnetospheric runs, which is computationally expensive. One solu-25

tion that is widely used in climate science is “downscaling”, wherein sub-grid variations26

are added to model outputs on a statistical basis. We present proof-of-concept results27

for a method that temporally downscales low-resolution magnetic field data on a 1-hour28

timescale to 1-minute resolution, with the hope of improving subsequent geoelectric field29

magnitude estimates. An analogue ensemble (AnEn) approach is used to select similar30

hourly averages in a historical dataset, from which we separate the high-resolution per-31

turbations to add to the hourly average values. We find that AnEn outperforms the bench-32

mark linear-interpolation approach in its ability to accurately drive an impacts model,33

suggesting GIC forecasting would be improved. We evaluated the ability of AnEn to pre-34

dict extreme events using the FSS, HSS, cost/loss analysis and BSS, finding that AnEn35

outperforms the “do-nothing” approach.36

Plain Language Summary37

Forecasting space weather impacts on ground-based systems, such as power grids,38

requires the use of computer simulations of the disturbance of the Earth’s magnetic field39

by the solar wind. However, these computer simulations are often too smooth, under-40

estimating small and fast variations in the Earth’s magnetic field which are important41

for modelling induction hazards that may affect power grids. In this paper we present42

a proof-of-concept scheme that attempts to introduce realistic high-frequency variations43

using the idea of looking at how the field has previously behaved in historical events. We44

test the model and find that it allows for better impact forecasting than if our scheme45

is not used.46

1 Introduction47

Intensification of magnetospheric and ionospheric current systems drives changes48

in the geomagnetic field measured on the ground (dB
dt ) which induces an enhanced geo-49

electric field, as expressed by the Maxwell-Faraday equation. The induced geoelectric50

field drives currents within the Earth that can enter grounded conducting networks as51

geomagnetically induced currents (GICs) (Koskinen et al., 2017; Pulkkinen et al., 2017).52

GICs can flow into the power grid through earthing points at substations (Oughton et53

al., 2017; Cannon et al., 2013), particularly in regions with high ground resistance, as54

the geoelectric field is larger and the network provides a more favourable path for GICs55

to flow. The quasi-DC signal introduced into an AC grid system can lead to half cycle56

saturation in transformers causing degradation and, in extreme cases, destruction, fail-57

ure and system collapse. The geomagnetic field can be used as a proxy for potential ground58

effects and GIC studies commonly use the time derivative dB
dt to quantify potential ef-59

fects.60

Nowcasting and advanced forecasting of geomagnetic disturbances is generally achieved61

through global magnetohydrodynamic (MHD) models (Welling, 2019), driven with near-62

Earth solar wind observations or, for increased lead time, the output of solar-wind sim-63

ulations (Merkin et al., 2007). The ground-level magnetic field, which is typically extrap-64
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olated from much higher in the magnetospheric domain, is used to drive geoelectric field65

models. Empirical models also exist (Weimer, 2013, 2019).66

An example of global MHD system is the Space Weather Modeling Framework (SWMF67

Tóth et al., 2005, 2012). Other widely used MHD models include the Lyon-Fedder-Mobarry68

(LFM) model (Lyon et al., 2004) and the Open Global Generalized Circulation Model69

(OpenGGCM) (Raeder et al., 1998) (see Welling, 2019). The SWMF consists of several70

numerical modules, such as the ideal MHD solver BATS-R-US (Block Adaptive Tree Solar-71

wind Roe-type Upwind Scheme) (Powell et al., 1999; De Zeeuw et al., 2000; Gombosi et72

al., 2002), the Ridley Ionosphere Model (RIM) model (Ridley et al., 2002), and the in-73

ner magnetosphere Rice Convection Model (RCM) (Toffoletto et al., 2003).74

The operational magnetospheric MHD models underestimate the magnitude of the75

perturbations across a wide frequency range, including the sub-hourly variations impor-76

tant for GICs (Welling, 2019). Pulkkinen et al. (2013) examined dB
dt on a 1-minute timescale77

and found an underestimation of magnitude between a factor of 2 and 10. Without the78

large dB
dt associated with high-frequency variations and resolution of peaks in the geo-79

magnetic field, the magnitude of the derived surface geoelectric field (E) is too low, re-80

sulting in an underestimation of GIC magnitudes.81

However, a counter example is Raeder et al. (2001) who used an MHD model to82

simulate the Bastille day storm and compared their results to observations. Under a power83

spectral density (PSD) analysis they found that the model worked well for frequencies84

of 0-3 mHz and actually gave an overestimation at higher frequencies. These results are85

likely due to using a model configuration with a high grid resolution that would currently86

be prohibitive for operational forecasting, particularly if large ensembles of magnetospheric87

runs are required to estimate forecast uncertainty.88

Figure 1 shows an example of SWMF power spectrum at a broad range of frequen-89

cies. The observed and modelled (using SWMF) horizontal magnetic field, the magnetic90

field component most relevant to GICs, is shown for the December 2006 CCMC test case91

(https://ccmc.gsfc.nasa.gov/challenges/dBdt/) at the Newport magnetometer site.92

The time series are shown in Figure 1 a) and the resulting power spectra in Figure 1 b).93

The coloured lines represent different model configurations. The power spectra shows94

that each configuration of the model underestimates the power spectral density, however95

the magnitude of underestimation is highly sensitive to model configuration with 12a SWMF,96

the current operational configuration, performing best. These models are giving an out-97

put at a 1-minute resolution but the timeseries is smoother than that observed, mean-98

ing the amplitude of the higher frequency variations is reduced as shown by the power99

spectra. These simulation results have been provided by the Community Coordinated100

Modeling Center at Goddard Space Flight Center for the 2013 Space Weather Workshop101

and and an online interface is available for analysis of the model runs (https://ccmc102

.gsfc.nasa.gov/challenges/dBdt/).103

A general underestimation is in agreement with Pulkkinen et al. (2013), who show104

in their Figures 3 and 4 that SWMF underestimated dB
dt . Although we here only show105

that SWMF exhibits this underestimation, we note that this underestimation is a gen-106

eral feature of operational models predicting geomagnetic perturbations (Pulkkinen et107

al., 2010, 2011, 2013).108

Recent work from Dimmock et al. (2021) tested different spatial resolution config-109

urations of SWMF for the September 2017 event. They found that the high resolution110

made a significant improvement to the PSD and GIC forecasts. However, they noted that111

SWMF performs poorly in substorms and increasing the resolution has limited benefit112

in these periods. They concluded that a skilful GIC forecast can be done with SWMF113

but that computational power makes this operationally difficult. In contrast, Haiducek114

et al. (2017) compared the performance of SWMF on an event in 2005 using the reso-115
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lution of the operational model and a higher resolution. They used this configuration116

to estimate geomagnetic indices and cross-polar cap potential (CPCP). They found that117

results were not sensitive to resolution with the exception of predicting AL which may118

have been improved. The discrepancy is possibly because Haiducek et al. (2017) did not119

increase the resolution nearly as much as Dimmock et al. (2021). Mukhopadhyay et al.120

(2020) also used the configurations of Haiducek et al. (2017) finding that the high-resolution121

configuration performed generally better under the Heidke skill score for predicting dB
dt .122

Several further studies have shown that non-standard MHD model configurations123

can achieve excellent results for small scale phenomena in a statistical sense. Welling et124

al. (2021) modelled the magnetospheric response to a hypothetical “perfect” coronal mass125

ejection and successfully resolved high frequency phenomena. Realistic studies of ULF126

waves have been made by MHD models (Hartinger et al., 2014; Claudepierre et al., 2009)127

and small spatial and temporal features have been resolved by a new MHD model (So-128

rathia et al., 2020). These studies show that MHD models have the capability of prop-129

erly capturing high frequency ground perturbations relevant to GICs, but the model con-130

figurations required are currently computationally prohibitive for operational real-time131

forecasting.132

A viable operational alternative to increasing MHD model grid resolution is through133

the use of a method that statistically relates variability across temporal scales, namely134

a statistical downscaling approach. In addition to improving the geoelectic field recon-135

struction from a single magnetospheric model run, downscaling also has the potential136

to allow uncertainty quantification without the need for a magnetospheric model ensem-137

ble.138

This paper addresses the characterisation of high-frequency variability in the mag-139

netic field, B, through statistical downscaling. Downscaling has been used in terrestrial140

weather forecasting to effectively increase the temporal and spatial resolution of global141

climate models (GCMs)(Maraun et al., 2010; Christensen & Christensen, 2003). For rain-142

fall, this is done because rainfall typically occurs on subgrid scales so cannot be accu-143

rately captured with a GCM alone.144

Maraun et al. (2010) classifies downscaling into three general categories: perfect145

prognosis approaches, model output statistics, and weather generators. Perfect progno-146

sis approaches statistically determine relationships between low resolution predictors and147

the high resolution predictands. This works if the predictors are realistic, such as from148

a perfect (low resolution) forecast model, i.e. a perfect prognosis. Model output statis-149

tics builds a similar statistical relationship but with the aim of also correcting the bias150

of the forecast model. As such, model output statistics are model-specific. Finally, weather151

generators generate new high resolution time series that have the same statistical prop-152

erties as observations, rather than just a probability of a sub grid event. Weather gen-153

erators can be either perfect prognosis or model output statistics based.154

As discussed by Morley (2020), statistical downscaling is relevant to space physics,155

in particular, to solar wind parameters used as inputs to magnetospheric models. Owens156

et al. (2014) considered temporal downscaling of solar wind parameters for this purpose.157

This was done because the magnetospheric models are sensitive to variability at a higher158

time resolution than is represented in numerical solar wind forecasts. Owens et al. (2014)159

used a random noise generator that gave high temporal noise with approximately cor-160

rect statistical properties and added this noise onto the baseline of the solar wind pa-161

rameters. They found that even relatively simple solar wind downscaling significantly162

increased the value of the subsequent magnetospheric forecast.163

In this work we employ temporal downscaling to increase the variability of mag-164

netic field time series on the ground. By developing a model-independent perfect prog-165

nosis scheme, we are assuming that future global MHD models will provide a perfect rep-166
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Figure 1: Geomagnetic field perturbations at Newport magnetometer station in
December 2006. Several configurations of the SWMF (coloured lines) are com-
pared with observations (black). a) shows the time series of the horizontal mag-
netic field. b) shows the associated power spectra for periods of 2 minutes and less
revealing that SWMF underestimated the variability. These plots have been cre-
ated and downloaded from the Community Coordinated Modelling Centre (CCMC)
(https://ccmc.gsfc.nasa.gov/challenges/dBdt/.)

resentation of the low resolution magnetic field variations and/or model biases can be167

corrected by other means. However, the approach will be applicable to global MHD mod-168

els that return a skilful and unbiased representation of the low resolution magnetic field.169

As the high-frequency variations are sampled from an ensemble of observations, an en-170

semble of geoelectric field estimates can also be reproduced from a single magnetospheric171

model run.172

In the future we hope to apply our downscaling methodology directly to forecasts173

provided by global MHD models and potentially as a means for uncertainty estimation.174

However, it is important to develop and test the downscaling scheme in isolation, and175

not to convolve it with the performance of a specific magnetospheric model. Thus we176

–5–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Space Weather

adopt the widely-used perfect prognostic approach and produce a perfect low-resolution177

forecast time series by taking 1-hour boxcar means of B observed by ground-based mag-178

netometers. This 1-hour series is then linearly interpolated to 1-minute resolution. This179

represents the undownscaled time series. As will be shown in Section 4, this undown-180

scaled series effectively removes all power in variations below 1 hour. Thus it is not a181

direct proxy for high-resolution magnetospheric model output. However, we start from182

this 1-hour linearly-interpolated undownscaled series for two reasons. Firstly, we expect183

magnetospheric models to perform better than this but it can be thought of as a ‘worst-184

case scenario’ for low-resolution magnetospheric models such as might be used for real-185

time forecasting in large ensembles. Secondly, if the downscaling manages to successfully186

relate the variability at 1-hour resolution to that at 1-minute resolution, it should be more187

than adequate for use with magnetospheric model output.188

The downscaling scheme attempts to reintroduce high-frequency perturbations onto189

the linearly-interpolated 1-hour time series to produce a more realistic (in a statistical190

sense) B time series at the 1-minute resolution. By using observations as the undown-191

scaled time series, rather than model output, we removing model error from the process192

of developing and testing our methodology. Additionally, this approach allows us to eas-193

ily create a large database of low-resolution, undownscaled “forecasts” with which to test194

our model, without requiring decades of magnetospheric model output.195

2 Data196

The ground-based magnetometer measurements we use are provided by SuperMAG197

(Gjerloev, 2012) (http://supermag.jhuapl.edu), an international collaboration bring-198

ing together data from over 300 magnetometer stations. The SuperMAG ground-level199

magnetic field perturbation data has been homogenised in terms of coordinate system,200

processing technique and file structure.201

A ground-based magnetometer measures the magnetic field from all sources in its202

vicinity. For studies on magnetic perturbations due to ionospheric and magnetospheric203

current systems, the magnetic baseline needs to be subtracted from the measurements204

to remove effects from other magnetic sources such as the Earth’s intrinsic magnetic field.205

Gjerloev (2012) describes the SuperMAG data-processing technique for removing the base206

line, in which knowledge of typical timescales of variations of different magnetic fields207

is used. These amount to a yearly trend, mainly due to the secular variation in the Earth’s208

main field, and a diurnal trend due to the Sq current system, the quiet day daily vari-209

ation in ionospheric activity due to solar radiation. These are subtracted from the mag-210

netometer measurements, leaving the prime source of variability as space-weather driven211

activity.212

Of course, magnetometer measurements can occasionally have erroneous measure-213

ments. These usually take the form of a spike in activity for a single data point during214

an otherwise quiet period. These errors can sometimes get past the SuperMAG quality215

control and into the final datasets. The data used for this analysis is a SuperMAG dataset216

that has been cleaned for occasions where an error has exceeded the 99.97th percentile217

in terms of the change in the magnetic field with time as described in Rogers et al. (2020).218

The data may still have errors at lower levels of activity.219

In this study we primarily use data from the Eskdalemuir (ESK) station located220

in southern Scotland with geographic coordinates of 55.314◦N and 356.794◦E. In prin-221

ciple, temporal downscaling techniques are applicable to all locations but we first test222

this one location where we have access to an established model for converting local mag-223

netic field variations to geoelectric field variations, acknowledging the local ground con-224

ductivity conditions (Beggan et al., 2021). From the ESK station we have 1-minute B225

measurements for approximately 30 years, from 1983-2016.226
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3 Methodology227

3.1 Analogue Ensemble228

The Analogue Ensemble (AnEn) approach was originally used for terrestrial weather229

forecasting (e.g. van den Dool, 1989; Delle Monache et al., 2013), but has been far sur-230

passed by physics-based models for that application. However, AnEn has more recently231

been employed in space and magnetospheric physics where the physical models are less232

accurate, largely from the limited availability of observations to completely characterise233

the necessary boundary conditions. In such a situation, empirical schemes can be valu-234

able. Haines et al. (2021), Owens et al. (2017), Riley et al. (2017) and Barnard et al. (2011)235

have experimented with AnEn for forecasting the solar wind, geomagnetic activity and236

changes in space climate. In each case AnEn outperformed the benchmarks considered.237

The AnEn methodology exploits an extensive historical dataset for forecasting pur-238

poses through analogy to past evolution of a given system. Specifically, an AnEn exam-239

ines the present state of the predictors, looks in the historical dataset for analogous pe-240

riods, then takes the predictand from the most analogous period. By selecting multiple241

analogous periods, an ensemble of predictands can be created, enabling a probabilistic242

forecast of future evolution.243

In this work, AnEn is used not for forecasting, but for temporal downscaling to re-244

late variations on long and short timescales. To demonstrate that the downscaling frame-245

work works for ground-level B, we chose 1-hour and 1-minute for the long and short timescales246

somewhat arbitrarily, as described in the previous section. They are intended as exam-247

ples rather than fixed parameters. At the high frequency, 1-minute makes sense as that248

is the typically available resolution of long-term ground-based B series and also the in-249

put resolution for many geoelectric field models. At the low frequency, the time scale of250

interest will depend on the specific model and the situation in which the model is be-251

ing used. e.g., where real-time forecasting is required and/or ensembles of magnetospheric252

models are being used, it may be necessary to reduce the model resolution. As said, the253

low-resolution timescale of 1-hour is a tuneable parameter. If the downscaling is able to254

successfully relate 1-hour and 1-minute variations, it should perform even better at re-255

lating, e.g., 20-minute and 1-minute variations. Due to the perfect prognostic approach256

we can use the low-resolution time series as predictors. Specifically, the predictors used257

are the low-resolution values of the horizontal magnetic field at the start and the end258

of the considered hour. Analogous periods of these are found and used to predict a 1-259

minute resolution time series.260

The AnEn algorithm is outlined in Figure 2 and described in the following points,261

in which the subscript H stands for 1-hour and M for 1-minute values:262

1. Split the 1-minute SuperMAG data into two sets (D1M , D2M ). D1M is the test263

dataset containing the short period to be downscaled. D2M is the independent264

training dataset comprised of the remaining data.265

2. Compute low-resolution data using a 1-hour box-car means, to give D1H and D2H .266

3. Using D1H , take the values at the start (t1) and end (t2) of the hour being con-267

sidered, as shown in Figure 2 a).268

4. Search D2H for the N most similar consecutive values, by mean squared error,269

to those at t1 and t2, as in Figure 2 b), where N is the chosen number of analogues.270

5. Remove the baseline value from the associated D2M leaving only the higher fre-271

quency structure of the analogue interval, i.e. minute-scale variations with the base-272

line removed, as in Figure 2 c). The baseline is defined as the 60-minute rolling273

mean.274

6. Add each D2M analogue onto D1H to produce an ensemble of downscaled values275

as in Figure 2 d).276
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7. Repeat this process for each hour in D1H .277

The data is then repeatedly split into different test and training sets so that the278

whole 34-year period can be downscaled using an independent training set. Note that279

this procedure uses data from after the ‘forecast’ time, so is not strictly a hindcast. How-280

ever, this approach uses the volume of available historical data available to a forecast made281

today and thus quantifies the current expected performance of downscaling.282

Figure 2: A schematic of the AnEn process. This process is repeated with the N best
analogous periods to give an ensemble of downscaled time series.

3.2 Reference model283

We use a reference model, as suggested by Liemohn et al. (2018), as a benchmark284

of comparison for the AnEn’s performance. As this is a proof of concept study, we choose285

a reference model that represents a “do-nothing” approach to downscaling. For this we286

downscale the 1-hour time series of the magnetic field using a linear-interpolation, de-287

noted as the linear-interpolation approach. Through this, we end up with 1-minute res-288

olution time series without adding further high resolution structure.289
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As stated in Section 2, this 1-hour linear-interpolation series is not representative290

of ground-level B produced by typical state-of-the-art magnetospheric models, as can291

be seen from the power spectra in Figures 1 and 4. Instead, 1-hour can be seen more as292

a worst-case scenario – most magnetospheric models would be expected to reasonably293

reproduce the B-field fluctuation power at around 0.00028 Hz, even in real-time ensem-294

bles.295

3.3 MT-transfer function296

The goal of this work is not to recreate the high resolution magnetic field on a point-297

by-point basis, but to add in realistic high-frequency variability in a statistical sense. In298

particular, we are interested in the higher frequency structure insofar as it improves the299

subsequent estimate of the induced geoelectric field, which is the driver of GICs.300

This can be tested with an “impacts” model. For this purpose we use a magnetotelluric-301

(MT-) transfer function (Simpson & Bahr, 2020; Beggan et al., 2021) produced for the302

ESK site by the British Geological Survey (BGS). The MT-transfer function converts303

a time series of the local magnetic field into a time series of local geoelectric field. The304

MT-transfer function first makes a Fourier transform of the magnetic field, then mul-305

tiplies the result by an empirically determined matrix of coefficients which account for306

the local ground conductivity, and finally makes an inverse Fourier transform to com-307

pute the geoelectric field in the time domain. The matrix of coefficients is derived from308

simultaneous observations of the magnetic and geoelectric fields at ESK.309

To quantify the performance of the downscaling scheme, we focus on the magni-310

tude of the estimated E-field. Each B-field ensemble member was individually transformed311

with the MT-transfer function to result in an associated E-field ensemble member. A312

‘good’ outcome would be that the |E| from the downscaled series is closer to the |E| ob-313

tained from using the observed series, than the linear-interpolation approach. An ideal314

outcome would be that the observed |E| output falls within the spread of the ensemble315

of |E| outputs obtained with the ensemble of downscaled series.316

4 Evaluation317

The AnEn downscaling approach has been applied to the entire 34-year period (1983-318

2014) of observations using an ensemble of 100 members built hour by hour as described319

above. Figure 3 shows an example spanning six-hours of heightened activity, with the320

x-component (east-west) in 3 a) and the y-component (north-south) in 3 b). This pe-321

riod was a geomagnetic storm with a minimum Dst of -172 nT. The observed time se-322

ries is shown in red, the linear-interpolation series is shown in blue, and the median of323

the AnEn series is shown in black, with colour bands showing the 0th−100th, 10th−324

90th and 25th−75th percentiles. The linear-interpolation approach is shown as a bench-325

mark for the AnEn series to be compared against.326

For the interval shown in Figure 3, the 10th−90th percentile band captures some327

of the variability seen in the observations, however, it seriously underestimates the vari-328

ability on several occasions. Notably, towards the middle of the period, when the event329

is at the peak, the ensemble spread captures less of the variability. This suggests that330

the AnEn will struggle with the larger events such as this. By the definition of confidence,331

we would expect the observation to sit within the 0th−100th percentile band 100%of332

the time, in the 10th − 90th percentile band 80% of the time and in the 25th − 75th333

percentile band 50% of the time. In actuality here, the percentage of observations in the334

0th−100th, 10th−90th and 25th−75th percentile bands for Bx are 83.4%, 40.3% and335

20.3%, respectively. For By this is 98.9, 51.8% and 21.3%, respectively for this illustra-336

tive period.337
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Figure 4 shows the power spectra of the magnetic field from observations and AnEn.338

Shown is the median and percentile bands of the PSD’s achieved by all the ensemble mem-339

bers computed with Welch’s method using the Hanning window without overlap. The340

AnEn ensemble follows the observations closely with a general trend to slightly under-341

estimate the power at lower frequencies (0-0.003) and slightly overestimate the power342

for higher frequnecies (0.007 and above). The 10-90% range of the AnEn is very narrow343

at approximately 0.5 at the most, reflecting a consistent performance across the whole344

ensemble. The linear-interpolation approach is shown in blue but has been cut off be-345

cause, as expected, the power spectral density is very low and hence makes scaling the346

y-axis difficult. It is clear that AnEn provides a power spectrum much more similar to347

that of the observations than the linear-interpolation approach achieves.348

To measure the effectiveness of adding higher frequency structure we use the B time349

series magnetic fields from the observations, AnEn and the linear-interpolation approach350

to drive the MT-transfer function as described in Section 3.3. The output of the MT-351

transfer model is shown in Figure 5 for the same six-hour period shown in Figure 3. We352

see that the AnEn captures some of the geoelectric field variability within its spread but353

the observations lie outside the range of the analogue ensemble on many occasions. The354

percentage of observations in the 0th− 100th, 10th− 90th and 25th− 75th percentile355

bands for Ex are 97.4%, 59.5% and 31.3%, respectively. For Ey this is 97.4%, 51.8% and356

27.4%, respectively for this illustrative period.357

Figure 5 reveals that, as expected, the linear-interpolation series yields very low358

geoelectric fields, without any significant variation. With a large ensemble size, the AnEn359

median will tend toward a smooth line despite variations in individual ensemble mem-360

bers. Therefore, the usefulness of AnEn is not in its median but rather in the spread of361

its ensemble members for showing possible realisations of the timeseries. Because of this362

it is not useful to directly compare AnEn median to the linear-interpolation approach363

values. However we do see that the spread on the analogue ensemble is of a more sim-364

ilar magnitude to that in observations than the linear-interpolation approach time se-365

ries. In addition, AnEn provides an idea of the uncertainty in a forecast which is use-366

ful for making decisions.367

While this example period is illustrative, it is necessary to evaluate AnEn as a down-368

scaling model over the full 34-year period using a set of metrics. In the following eval-369

uation we have taken care to chose metrics that are robust to timing errors, as we make370

the assumption that the spectral properties of fluctuations and the magnitude of the peaks371

are generally more important than the phasing for GIC impacts. This is also relevant372

since operations require a lead time of possible occurrence and an estimate of the sever-373

ity of that occurrence as they cannot implement system wide mitigation in real-time. When374

comparing data on a point-by-point basis, timing errors, in which a defined event is cor-375

rectly predicted to occur but at slightly the wrong time, will incur a double penalty by376

many common metrics (e.g. see Figure 8 of Owens, 2018). For example, accuracy, which377

gives a fraction of correct predictions across the whole dataset, will count the forecast378

as wrong when it predicts an event that doesn’t occur at the exact time step and wrong379

when the forecast does not predict an event that is observed, even if the time step is off380

by just one step.381

The sensitive values of GIC magnitude and timescales are dependent on the set up382

of individual transformers and the power grid configuration. For example, the size of geo-383

electric field that will cause a significant GIC is dependent on the ground conductivity384

in the region around the transformer. We use horizontal geoelectric field as a practical385

solution to provide a general evaluation of the method (Beamish et al., 2002), however386

transformers are sensitive to the individual Ex and Ey parameters, depending on grid387

configuration (Orr et al., 2021).388
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4.1 Threshold-exceedance prediction389

In this subsection we evaluate each individual ensemble member within AnEn for390

its ability to give a binary prediction of an event at individual time steps. We examine391

three levels of activity for event classification using the magnitude of total horizontal geo-392

electric field, denoted |E|, from the MT-transfer function. The magnitude of the total393

horizontal geoelectric field is shown for an illustrative period in Figure 6. The chosen thresh-394

olds for evaluation are the 99th, 99.9th and 99.99th percentiles of the magnitude of the395

total horizontal geoelectric field from the MT-transfer function driven by observed mag-396

netic field time series over the period 1983 to 2016. These are 22.3, 58.8 and 171.9 mV/km397

respectively and shown in Figure 6 by the horizontal dashed lines. For context, the peak398

geoelectric field magnitude for the March 1989 storm at ESK was 411.4 mV/km as com-399

puted using the MT-transfer function. It is worth noting that the system collapse ex-400

perience during this geomagnetic storm occurred before the peak due to the rapid on-401

set of a substorm (Boteler, 2019).402

In order to allow for timing errors at the minute scale, we evaluate AnEn using the403

fraction skill score (FSS) (Roberts & Lean, 2008; Owens, 2018). The FSS is most com-404

monly used to measure the fractional occurrence of events in a given spatial window. Here,405

we use FSS with a 60-minute temporal window and count the fraction of predicted time406

points which are classified as events, and the fraction of observed time points which are407

events, within the same time window. This is repeated for each ensemble member for408

time windows covering the whole dataset and the mean squared error (MSE) between409

the observed and predicted fraction time series is computed. This is repeated for a ref-410

erence forecast, in this case the linear-interpolation series, and the FSS is taken as 1−411

(MSEforecast/MSEreference). A perfect forecast would achieve FSS = 1, a forecast412

with no skill compared to the reference would achieve FSS = 0 and a forecast perform-413

ing worse than the reference will achieve a negative score. FSS is most useful to end users414

who need to know if an event will occur within a given time window without the need415

for exact (in this case, to the minute) knowledge of when it will occur.416

Figure 7 shows the FSS achieved for each of the 100 ensemble members across the417

entire dataset for each of the three event thresholds. Ensemble ID is ordered from best418

to worst analogues considered, where best means the 1-hour values in the analogous pe-419

riods are most similar to present conditions by RMSE. For the 99th percentile thresh-420

old (panel a) we see that each ensemble member has a positive FSS, with an average value421

across the whole ensemble of 0.095, showing it outperforms the reference method. When422

considering events over the 99.9th percentile, Figure 7 b) again shows all ensemble mem-423

bers having a positive FSS with an average across the ensemble of 0.17. We also see a424

clear trend in which ensemble members based upon better analogues produce better FSS425

scores. The increased visibility of the trend for the 99.9th percentile compared to the 99th426

percentile suggests that at higher thresholds we are inherently considering rarer events,427

which reduces the number of good analogues available.428

For events over the 99.99th percentile (panel c) the FSS is mainly positive for the429

first 50 ensemble members and approximately zero for the second 50. The mean FSS for430

the whole ensemble is 0.067. There is a very stark decrease in the skill of the ensemble431

members as the ensemble ID increases suggesting that for such a high threshold there432

are only around 30 to 50 good analogues for AnEn to work with. This finding can help433

inform a decision on an appropriate ensemble size for deployment. It also suggests that434

it would be appropriate to weight ensemble members if they are to be combined in any435

way.436

4.2 1-hour mean value prediction437

The impact of GICs on transformers can be dependent on time-integrated effects,438

meaning that problems occur when GICs exceed a certain threshold for a certain dura-439
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tion. With this in mind, we now evaluate the model using events classified using thresh-440

olds of the 1-hour mean value of |E| previously used. The hourly mean of the magnitude441

of geoelectric field is shown for an illustrative period is shown in Figure 8. We again con-442

sider thresholds at the 99th, 99.9th and 99.99th percentiles of the 1-hour means of the443

horizontal geoelectric field magnitude from the observed time series. These values are444

17.9, 47.0 and 139.0 mV/km respectively. These are shown on Figure 8 by the horizon-445

tal dashed lines. For context, the peak hourly mean observed at ESK during the March446

1989 storm was 77.1 mV/km, suggesting that although the peaks of this storm were large,447

they were short lived. These metrics are useful as impacts of a heightened geoelectric448

field are often caused by sustained heightened values on approximately the tens of min-449

utes to 1-hour time scale (Pulkkinen et al., 2017). The metrics in this section are use-450

ful to end users who need to know when periods of heightened activity will occur and451

users who are impacted by time-integrated effects.452

4.2.1 Deterministic prediction453

The first metric chosen is the Heidke skill score (HSS) (Jolliffe & Stephenson, 2003).454

HSS measures the accuracy of a model, taking into account the number of correct ran-455

dom forecasts. This allows for proper measurement of skill in a situation where an event456

is rare. In fact, the rarer the event considered, the less HSS takes into account correct457

predictions of “no event”, which becomes the overwhelming majority class. HSS uses the458

four categories on a standard contingency table: the number of true positive (TP), true459

negative (TN), false positive (FP) and false negative (FN) events. HSS is then given by:460

HSS =
TP + TN − crf

TP + TN + FP + FN − crf
, (1)

where crf , the number of correct random forecasts, is461

crf =
(TP + FP )(TP + FN) + (FP + TN)(FN + TN)

n
, (2)

where n is the total number of predictions.462

HSS of AnEn is shown in Figure 9 for the three event thresholds considered. HSS463

is has been computed for each ensemble member shown by the yellow bars and HSS for464

the linear-interpolation approach is shown by the black dashed horizontal line. AnEn465

clearly outperforms the linear-interpolation approach and it generally achieves a good466

positive score with the exception of some of the ensemble members based on weaker ana-467

logues for the 99.99th percentile threshold. This again suggests that the available data468

set is too small for 100 analogues of more extreme events.469

4.2.2 Probabilistic prediction470

Next we evaluate AnEn in its ability to give a probabilistic prediction of an event471

by counting how many of the ensemble members predict an event and normalising by472

the size of the ensemble. This is evaluated using the Cost/Loss analysis (Murphy, 1977;473

Richardson, 2000; Owens et al., 2017), which allows different end users of a forecast to474

assess its value for their particular use case. The idea is that taking mitigating action475

due to a forecast incurs a Cost, C, of fixed value, and experiencing an event without tak-476

ing mitigating action incurs a Loss, L, of fixed value. The Cost/Loss analysis sums these477

Costs and Losses for acting on a particular forecast across a long time series and com-478

pares the sum to that of a perfect forecast and a climatological forecast method (which,479

at all times, predicts the probability of an event as the fraction of time in which that event480

is experienced across the whole dataset). The result is the potential economic value (PEV)481

which is 1 for a perfect forecast, 0 for a forecast of equal ability to climatology, and neg-482

ative for a forecast with worse ability than the climatology. PEV is given as a function483
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Threshold
(percentile)

BSS
(100 members)

BSS
(20 members)

99th 0.30 0.32
99.9th 0.32 0.38
99.99th 0.15 0.31

Table 1: Brier skill score (BSS) for AnEn using the linear-interpolation approach as the
reference. Three event thresholds are considered.

of the Cost/Loss ratio, C/L, which is between 0 and 1 for all end users that may find484

a forecast valuable. In a probabilistic Cost/Loss analysis that we employ here, mitigat-485

ing action is taken if the probability given by AnEn exceeds the Cost/Loss ratio of the486

end user. For more details see Murphy (1977); Richardson (2000).487

Figure 10 shows the PEV for the Cost/Loss domain (0, 1) for the probabilistic down-488

scaling from the AnEn and the linear-interpolation approach. We see that for all three489

event thresholds AnEn outperforms the reference method. We also see that the PEV is490

highest for the lower end of the Cost/Loss domain which means it will most benefit end491

users who better tolerate false alarms (false positives) rather than missed events (false492

negatives). This is because at the low end of the C/L domain the cost of taking miti-493

gating action is very low compared to the loss incurred due to not taking action and an494

event happening. Therefore, these users would generally prefer to take mitigating action495

on a false alarm than not take action on a real event.496

Finally we look at how AnEn performs under the Brier skill score (BSS) (Jolliffe497

& Stephenson, 2003). Like Cost/Loss analysis, BSS can compare probabilistic forecasts498

with deterministic ones, allowing direct comparison of the probabilistic AnEn and the499

deterministic undownscaled series. BSS is useful to end users who wish to use the prob-500

abilistic information of AnEn. To compute BSS, the standard Brier score (BS) must first501

be computed. The BS is the normalised sum of the square error between the probabilis-502

tic forecast and the observations over the whole time series, where the observations takes503

a binary value of 0 or 1 depending on whether an event occurs. Events are again taken504

to be hours exceeding the 99th, 99.9th and 99.99th percentiles of observed |E|. BS is com-505

puted for both AnEn and the reference model then combined into BSS by506

BSS = 1− BSforecast

BSreference
. (3)

Similarly to the Cost/Loss and FSS, a perfectly skilful forecast receives BSS=1, a507

forecast with no skill relative to the reference receives BSS=0, and a negative score sig-508

nals the forecast method performs worse than the reference.509

BSS is shown for AnEn for the three event thresholds in Table 1. It seems that the510

100-member AnEn has skill over the linear-interpolation approach for all considered thresh-511

olds but drops in skill for the 99.99th percentile events. It is likely that this is the re-512

sult of the limited span of the dataset and hence number of analogous extreme events.513

A reduced ensemble size or ensemble-member weighting would likely yield a better BSS,514

particularly for the 99.99th percentile events. This is shown in the third column of the515

table which gives BSS for a 20 member ensemble. We see that the BSS of the 99.99th516

percentile events increases more in line with the lower thresholds.517
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5 Discussion & Conclusions518

Statistical downscaling of magnetic field data for the purposes of GIC forecasting519

has been demonstrated in the form of a perfect prognostic approach. We employed the520

analogue ensemble (AnEn) methodology, finding that with its spread and higher frequency521

contributions, a more accurate E-field mapping is obtained than when compared to an522

E-field derived from undownscaled B-field data.523

To obtain a “low-resolution” dataset, ground-level magnetic field perturbation data524

was smoothed from high frequency (1-minute) to low frequency (1-hour) resolution. High525

frequency structure was then reintroduced into the low-resolution (1-hour) series using526

the AnEn approach. Both the low frequency and the downscaled time series were then527

used in a magnetotelluric-transfer function to compute the corresponding horizontal geo-528

electric fields.529

We presented the power spectrum of the observations, AnEn showing that AnEn530

closely resembles the spectral properties of the observations and far outperforms the linear-531

interpolation approach. Although AnEn has not been applied to the output of a global532

MHD model, it can be seen that it has the potential to improve the spectral properties533

of a forecast that has an underestimation of spectral power at the high frequencies.534

The method was validated using a range of methods to test different aspects of the535

downscaling scheme. Specifically, we used the fraction skill score (FSS), Heidke skill score536

(HSS), Cost/Loss analysis and Brier skill score (BSS). FSS was used to evaluate AnEn537

on the occurrence rate of 1-minute events within 1-hour windows. The events were de-538

fined using three thresholds, namely, 99th, 99.9th and 99.99th percentile of the entire dataset539

(1983 to 2016). AnEn had a positive FSS for all ensemble members for the 99th, 99.9th540

percentile thresholds showing that AnEn outperformed the undownscaled approach. For541

the 99.99th percentile threshold, some of the weaker analogues achieved a negative FSS542

suggesting that the ensemble size of 100 was too large for the current dataset to allow543

good analogues of the most extreme events to be found. Nevertheless, the overall FSS544

was still positive.545

Since impacts of GICs tend to require an elevated geoelectric field over a sustained546

period, we also evaluated AnEn for its ability to predict the hourly-mean value of geo-547

electric field. This was achieved by defining events as the 1-hour mean value exceeding548

the thresholds of 99th, 99.9th and 99.99th percentile of the hourly-means of the entire549

dataset. With this event definition, HSS revealed that AnEn outperformed the undown-550

scaled series for all ensemble members in the three event thresholds, except for a small551

number in the 99.99th percentile events.552

This work has evaluated AnEn with an ensemble size of 100. The ensemble size should553

be chosen large enough that a wide range of possible outcomes can be included, but small554

enough to ensure analogues are of a good quality and are in fact analogous. The frac-555

tion skill score and Heidke skill score revealed that better quality analogues downscaled556

more skilfully. The number of good quality analogues available depends both on the size557

of the historical dataset and on the rarity of event considered. This was particularly ev-558

ident when considering events above the 99.99th percentile suggesting 100 members is559

too many to ensure all analogues are of a good quality. A more appropriate ensemble560

size for this threshold would be approximately 20 as shown by the BSS analysis. Future561

implementations of this method should use these results to inform an appropriate en-562

semble size for the size of event of interest.563

In this work the probabilistic prediction given by AnEn was made by simple en-564

semble member voting. The impact of analogue quality could be mitigated if, when con-565

verting to a probabilistic prediction from an ensemble of predictions, the voting power566

of each member is dependent on the quality of the analogue, as measure by the inverse567

of the RMSE between analogue and period under consideration and normalising. This568
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Eskdalemuir Lerwick Hartland
99 99.9 99.99 99 99.9 99.99 99 99.9 99.99

Mean FSS 0.10 0.17 0.07 0.41 0.28 0.07 0.11 -0.06 -0.04
Mean HSS 0.31 0.32 0.12 0.54 0.34 0.13 0.27 0.17 0.03

BSS 0.30 0.32 0.15 0.51 0.35 0.14 0.26 0.15 0.04

Table 2: The mean FSS, mean HSS and BSS for the three thresholds at Eskdalemuir,
Lerwick and Hartland.

would mean that members expected to have the most insight into the situation have greater569

sway in the overall prediction.570

We implemented a probabilistic Cost/Loss analysis revealing that AnEn has a higher571

potential economic value than the undownscaled approach and that the value of the fore-572

cast was greater for end users who can tolerate false alarms at the lower end of the Cost/Loss573

domain. Like the previous metrics, AnEn performed better in the 99th and 99.9th per-574

centile events.575

A shortcoming of AnEn is that there is expected to be a lack of good analogues576

for the most extreme events. To address this AnEn could be improved by expanding the577

predictors used to include such things as geomagnetic indices and estimates of current578

systems. This could allow AnEn to be more aware of the drivers of geomagnetic activ-579

ity and thus allow the use of fewer-but-better-quality analogues in a reduced size ensem-580

ble. Although this is a shortcoming, it is important to remember moderate space weather581

events are problematic as well as the rarer, more extreme events (e.g. Schrijver et al.,582

2014; Schrijver, 2015). A further way to increase ensemble member quality would be to583

create the training dataset, D2M , using a rolling-mean rather than box-car as this would584

create a more potential analogous periods and hence increase analogue quality overall.585

We used a perfect prognostic approach to downscaling which assumes the low time586

resolution forecast given is a perfect forecast. This allowed us to use historical observa-587

tions as if they were forecast model outputs. However, this approach is limited because588

the models are not perfect. It is expected that biases in the forecast model would not589

be corrected but carried through by the downscaling methodology.590

This paper has focused on the results for the Eskdalemuir station, however, an equiv-591

alent analysis has been conducted for the Lerwick and Hartland magnetometer stations592

in the UK. The AnEn downscaling methodology applied to these stations generally per-593

form similarly to ESK, supporting the claim that this methodology could be applied more594

broadly. The achieved mean FSS, mean HSS and BSS for events above the three thresh-595

olds are shown in Table 2 for Lerwick and Hartland. The results for ESK are also shown596

for reference. AnEn is shown to perform to a slightly better standard at Lerwick, par-597

ticularly for the 99th percentile threshold, and slightly worse at Hartland, particularly598

for the higher thresholds.599

In this work, AnEn has been used both to generate a downscaled time series and600

to estimate the uncertainty of it by using many ensemble members. It would be quite601

possible to remove the downscaling element and just use the algorithm to provide prob-602

abilistic information for a forecast that already has the correct spectral properties.603

This work has given proof of concept that downscaling can be implemented to im-604

prove a forecast that lacks realistic high-frequency structure. From here, research should605

be conducted to create downscaling schemes that are optimised to perform better than606
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AnEn when the downscaled data is used to drive an “impacts” model. The optimisa-607

tion could include finding different model configurations for specific space weather drivers.608

This would take knowledge of the solar wind driving the magnetosphere, such as CMEs609

or CIRs, and restrict AnEn to choosing analogues from historical periods driven by the610

same solar wind context. Once downscaling methods have been further investigated, the611

front runners will need to be manipulated to form a “bolt-on” piece for a global MHD612

model. We finally note that the methods developed here do not attempt to correct for613

any biases in the magnetospheric models. Thus it remains to be seen whether the im-614

provements demonstrated here translate directly to a forecasting situation, or where fur-615

ther bias-correction of magnetospheric models is also required.616
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Figure 3: A six-hour time series from 1983-02-04 of the magnetic field at ESK in the x
(east-west) and y (north-south) directions in the geographic coordinate system. The red
line shows the observed 1-minute time series, the colour bands show the spread of the
AnEn series (the 10th-90th and 25th-75th percentiles) with the median in black, and the
blue line shows the linear-interpolation approach, taken to be the undownscaled magnetic
field, as a reference.
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Figure 4: The power spectrum of the magnitude, Bx and By components of the magnetic
field from the whole 34-year period from observations and AnEn. The yellow colour band
shows the 10-90% range of the AnEn. The linear interpolation approach is shown in blue,
part of which has been cut from the plot due to large differences in scale.
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Figure 5: A six-hour time series from 1983-02-04 at ESK of the geoelectric field com-
puted from the magnetic field using the MT-transfer function. The data is in the x
(east-west) and y (north-south) directions in the geographic coordinate system. The red
line shows the time series computed from the 1-minute observed time series, the colour
bands show the spread of the geoelectric field computed from the analogue ensemble with
the median in black, and the blue line shows geoelectric field computed from the linear-
interpolation approach magnetic field.
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Figure 6: A six-hour time series from 1983-02-04 at ESK of the total magnitude of the
geoelectric field computed from the magnetic field using the MT-transfer function. The
red line shows the magnitude of time series computed from the 1-minute observed time
series, the colour bands show the spread of the magnitude of geoelectric field computed
from the analogue ensemble with the median in black, and the blue line shows the magni-
tude of geoelectric field computed from the linear-interpolation approach magnetic field.
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Figure 7: The fraction skill score (FSS) for each ensemble member. Ensemble members
are ordered from best to worst analogues considered. A FSS of 1 represents a perfect
model FSS of 0 represents a model with no skill over the reference. The time window for
computing FSS is 60-minutes. a), b) and c) show FSS for events over the 99th, 99.9th and
99.99th percentiles of the geoelectric field.
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Figure 8: A time series from 1983-02-04 to 1982-02-05 at ESK of the 1-hour box-car
mean of the magnitude of the geoelectric field computed from the magnetic field using
the MT-transfer function. The red line shows the 1-hour mean of the magnitude of time
series computed from the 1-minute observed time series, the colour bands show the spread
of computed from the analogue ensemble with the median in black, and the blue line
shows the 1-hour mean of the magnitude of geoelectric field computed from the linear-
interpolation approach magnetic field.
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Figure 9: The Heidke skill score (HSS) for the three event thresholds on applied to 1-
hourly |E| data. Ensemble members are ordered from best to worst analogues considered.
A perfect forecast has a score of 1, a forecast with no skill over random prediction has a
score of 0, and a forecast with every prediction incorrect has a score of -1. HSS is shown
for each ensemble member. The black dashed horizontal line represents the HSS achieved
by the linear-interpolation approach for each event threshold
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Figure 10: A Cost/Loss analysis showing the potential economic value (PEV) of the
probabilistic AnEn downscaling method with respect to the undownscaled (linear-
interpolation) reference method. A score of PEV = 1 represents a perfect forecast and
PEV = 0 represents no value with respect to the reference method. a), b) and c) show
PEV for events over the 99th, 99.9th and 99.99th percentiles of the geoelectric field.
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