Malik, Manish and Sime, Julie-Ann (2021) Trust and conflict in collaborative groups in engineering education : A multi-case study of using a computer orchestrated group learning environment with neurologically typical, autistic and ADHD students. PhD thesis, Lancaster University.
Abstract
Collaborative approaches, such as Flipped Classroom and Project Based Learning, are commonly used within engineering education. Challenges linked to group-work often render these approaches ineffective, inefficient and less inclusive. Self, Co and Shared regulation scripts offer a potentially efficient way to orchestrate group-work. However, over-scripting and successful transfer of skills to un-orchestrated environments pose challenges. Trust and conflict are important for team effectiveness but they have rarely been investigated within engineering education or scripting studies. Likewise, benefits of non-social prompts for inclusiveness has not been investigated. To this end, I developed a Computer Orchestrated Group Learning Environment (COGLE), which supports and promotes cooperation, group-wide mastery and encourages teammates to come together. I investigated its impact on acquiring knowledge, skills and attitudes necessary for team working. I also studied the transfer of these newly acquired skills to an un-orchestrated setting. This research contributes to the theory around use of computer orchestration for attitudes and regulation skills development. It explores important links between team effectiveness and conflict management, self-efficacy, team-trust and regulation skills. Two literal replication cases helped verify the findings related to COGLE use and a theoretical replication helped discard the rival theory explanations. In the theoretical replication case, students orchestrated their learning and working themselves. Within-case and cross-case analysis helped generate empirical evidence used in modifying the theoretical framework. COGLE helped neuro-typical and neuro-atypical students to engage in early and often communication, experienced reduced social awkwardness, and developed trust in each other in record time. It helped transfer goal-orientedness and regulations skills to un-orchestrated team task. Neuro-typical students improved their self-efficacy with neuro-atypical not that far behind and they delivered on team tasks together. Whereas in the theoretical replication case, clique formation, low cognitive trust, low self-efficacy, delayed communication, and partial completion highlighted the challenges of un-orchestrated collaborative settings. Keywords: Team-working, orchestration, self-efficacy, trust, conflicts, regulation of learning and scripting.