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Abstract: The MicroBooNE liquid argon time projection chamber located at Fermilab
is a neutrino experiment dedicated to the study of short-baseline oscillations, the measure-
ments of neutrino cross sections in liquid argon, and to the research and development of this
novel detector technology. Accurate and precise measurements of calorimetry are essential
to the event reconstruction and are achieved by leveraging the TPC to measure deposited
energy per unit length along the particle trajectory, with mm resolution. We describe the
non-uniform calorimetric reconstruction performance in the detector, showing dependence
on the angle of the particle trajectory. Such non-uniform reconstruction directly affects
the performance of the particle identification algorithms which infer particle type from
calorimetric measurements. This work presents a new particle identification method which
accounts for and effectively addresses such non-uniformity. The newly developed method
shows improved performance compared to previous algorithms, illustrated by a 93.7% pro-
ton selection efficiency and a 10% muon mis-identification rate, with a fairly loose selection
of tracks performed on beam data. The performance is further demonstrated by identifying
exclusive final states in νµCC interactions. While developed using MicroBooNE data and
simulation, this method is easily applicable to future LArTPC experiments, such as SBND,
ICARUS, and DUNE.
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1 Introduction

Liquid argon time projection chambers (LArTPCs) are powerful neutrino detectors which
enable the study of topological and calorimetric signatures of particles produced in neutrino
interactions with millimeter spatial resolution [6, 10, 12]. These particles are reconstructed
as track-like (or simply tracks) if they deposit energy predominantly through ionization,
or shower-like (or simply showers), if the main energy loss mechanism is bremsstrahlung
and pair production. Tracks are primarily associated with the reconstruction of muons,
protons, and pions, while showers are associated with electrons and photons. At typical
MicroBooNE energies, between hundreds of MeV to few GeV, hadrons do not produce
hadronic showers. However, thanks to the high resolution, if a LArTPC like MicroBooNE
were to be operated at larger energies, the different particles produced in hadronic showers
could be reconstructed individually. Energy lost by final state charged particles results
in the ionization of argon atoms. Trails of ionization electrons are detected by multiple
wire planes to provide a 3D image of the particles’ propagation through the detector.
Particle identification (PID), determination of the type of particle given its calorimetric
measurement, is performed by studying the profiles of each ionization electron trail. The
left panel of figure 1 shows the collection plane projection of a muon neutrino charged

– 1 –



Drift 
direction

Wire-pitch 
direction

0.3 cm

0.3 cm

Figure 1: Left: Example of a raw image of a νµCC interaction in MicroBooNE with two
tracks in the final state, as recorded on the collection plane. The deposited charge (color
scale) is shown as a function of wire number (x-axis) and time (y-axis). The ionization
profiles of the two particles are used to identify them as one proton and one muon. Right:
A sketch of the relevant directions and angle in the calorimetric reconstruction. The orange
and blue arrows represent two possible particle trajectories with different gamma angles
and different local pitch values, represented by their lengths. Black solid lines represent
wires, spaced 0.3 cm apart. The dashed lines are perpendicular to the wire-pitch direction,
and make evident the connection between the angle γ and ∆x, through eq. (2.1).

current (νµCC) interaction, in which two track-like particles are produced. These tracks
are classified as one proton and one muon, the two most common track-like particles in
MicroBooNE, differentiated by the different amounts of energy deposited per unit length
at any given point in their trajectories.

After a brief discussion of the MicroBooNE detector and reconstruction in section 2,
in section 3 we illustrate the angular dependence of LArTPCs’ calorimetric reconstruction.
In section 4, a review of the particle identification principles is presented. In section 5 we
address the central topic of the paper: a new method to perform particle identification
that more easily accounts for angular dependencies in calorimetric reconstruction. The
performance of this method is discussed in section 6, where the identification of different
muon neutrino interaction final states is presented.
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Figure 2: In this schematic representation of the MicroBooNE LArTPC (see text for
details), a neutrino interacts in the detector, producing two charged particles in the final
state. The ionization is drifted towards the anode, and induces waveforms on the wire
planes, which are displayed for the V and Y planes. Figure taken from [3].

2 The MicroBooNE detector and the calorimetric reconstruction of tracks

The MicroBooNE detector is an 85 ton active mass liquid argon time projection chamber
(LArTPC) [3]. The drift direction (x), vertical direction (y), and the beam direction (z)
measure 2.56m, 2.33m, and 10.36m, respectively. The nominal electric field inside the TPC
is 273.9V/cm resulting in an electron drift velocity of 0.11 cm/µs. The drifted ionization
charge from particle interactions is read out by three wire planes spaced 0.3 cm apart, with
a 0.3 cm wire spacing, oriented vertically for the collection plane (Y plane), at +60 deg for
the first induction planes (U plane), and at -60 deg for the second induction plane (V plane).
The digitized charge on the readout wires is noise-filtered [4] and deconvolved [7, 8]. The
high signal-to-noise ratio of MicroBooNE’s TPC and cold electronics allow for the accurate
measurement of charge on all three wire-planes, an essential ingredient in reliable particle
identification. The data is represented as a set of three two-dimensional images (one for
each wire plane), with wire number plotted along the horizontal axis and drift time plotted
along the vertical axis. Each provides a two-dimensional projection of the charge deposited
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in the event. An example is given in the left panel of figure 1.
The position and amount of charge deposited is characterized with the hit-finding

process: charge depositions on a given wire at a given time, called hits, are extracted
through a Gaussian fit to the waveforms [13]. Next, the Pandora multi-algorithm pattern
recognition framework [5] groups nearby hits into clusters. Clusters on the three planes
are subsequently matched to reconstruct three dimensional particles. Each cluster is a
projection on a given plane of the charge deposited by a particle. The deposited charge
is corrected for detector effects to provide a spatially uniform response. For each hit in a
cluster the charge deposited is converted to deposited energy, providing a local measurement
of the energy ∆E along a three-dimensional distance ∆x extracted from the reconstructed
trajectory [9]. The conversion is performed with a multiplicative factor specific to the plane,
and correcting for the recombination of electron and ions [2, 9]. The three-dimensional
distance ∆x is called local pitch, and is computed as

∆x = 0.3 cm / cos(γ), (2.1)

where 0.3 cm is the wire spacing and γ is the three-dimensional angle between the local
direction of the track and the vector that connects adjacent wires (also called wire-pitch
direction), as illustrated in the right panel of figure 1. The angle γ ranges between 0
and 90 degrees, while ∆x takes values between 0.3 cm and infinity. Combined with the
measurement of ∆E, the ionization density dE/dx can be estimated for every hit.

3 Angular effects in calorimetric reconstruction

When measuring calorimetric information in a LArTPC, the fact that charge is drifted
along a particular direction (drift direction) and projected on wire planes with different
orientations makes the calorimetric reconstruction angle-dependent. Both dE/dx and the
precision with which it is measured depend on the direction of the ionization trace left by
the particle, even in a "perfect detector", absent of detector effects and angle-dependent
detector response non-uniformity. The dependence appears primarily through the angle γ
illustrated in the bottom plot of figure 1. Because the angle γ relates directly to the local
pitch through a bijective function (eq. (2.1)), γ and local pitch can be used interchangeably,
and local pitch will be used in the rest of the article.

Measured dE/dx, even with a perfect detector, is angle-dependent because of intrinsic
statistical fluctuations in particle energy loss, which impact the probability density function
of measurements when averaged over different travel distances (different local pitch). A
dE/dx distribution, typically described by a Landau function for small local pitch values
[14], becomes narrower at larger local pitch and its most probable value moves to higher
dE/dx values while its average remains constant. This general geometrical effect applies
to all LArTPCs and is shown on figure 33.8 in [16].

The precision of dE/dxmeasurements also depends on the local pitch since the shape of
the signals induced on the wires by the drifting charge appears very different at lower local
pitch (< 0.7 cm) compared to larger local pitch (> 0.7 cm) [7], impacting hit reconstruction
and making measurements more precise at lower local pitch. Figure 3 illustrates these
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Figure 3: Normalized distributions of dE/dx for different local pitch in the low-local pitch
regime (left) and over the entire local pitch spectrum (right), as measured on the collection
plane in a sample of cosmic muons tracks in the MicroBooNE data.

effects as measured with cosmic ray tracks in MicroBooNE’s data. By requiring the tracks
to cross the detector, this selection results in a clean set of relativistic muons, which are
minimum ionizing particles, with a constant average dE/dx. The left plot shows the shape
of the dE/dx distribution for different small local pitch values, where the peak of the
distributions shifts towards larger dE/dx values for larger local pitch, varying by 4% in
the low local pitch range (between 0.3 cm and 0.7 cm). The width of the distributions
increases at larger local pitch because the finite precision introduced by the detector smears
out the distribution more than the predicted shrinking induced by geometrical effects. The
right plot shows analogous distributions integrated over a wider range of local pitch values,
illustrating a major change in the shape of the distributions at very large local pitch. The
distributions for larger local pitch values show a second peak at smaller dE/dx values,
mainly populated by particles traveling parallel to the drift direction. These tracks induce
long signals in time, for which the Gaussian fit performed by the hit-finding process is not
sufficient. Therefore, such signals are fit by a sum of Gaussian shapes, for which the overall
number of hits, their positions, and their amplitudes are free parameters. The width is
fixed to reduce the degeneracy of the problem. The total deposited charge is therefore
segmented into multiple hits, leading to an underestimation of the hit charge and resulting
in smaller dE/dx values. These small and non-physical values of dE/dx encountered at
large local pitch are not correlated with the true dE/dx, bringing no additional information
and reducing the particle identification performance.

Only considering the dependence on the angle γ, which is the polar angle with respect
to the wire-pitch direction, is an approximation, as it encapsulates most, but not all the
angular dependence. A more complete analysis will consider the additional dependence on
the relative azimuthal angle, that, together with γ, uniquely describes the 3D trajectory.
Nonetheless, this approximation captures most of the angular dependence, significantly
improving particle identification performance.
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4 Energy deposition profile and particle identification

Typical particle identification methods condense calorimetric information into a score used
to distinguish different particle species. The score is typically obtained by starting from
the measured dE/dx profile as a function of residual range - the distance of a given energy
deposition within the track from the endpoint of the track itself. This profile is compared
with the expectation for different particle hypotheses to choose the hypothesis that best
matches the data. The hypothesized dE/dx profile is computed by integrating the Bethe-
Bloch function for a given particle mass and charge. In performing this comparison, the
intrinsic statistical nature of dE/dx must be accounted for, as do the angular dependencies
(described in the previous section) which also affect the shape of the dE/dx distribution. As
local pitch values are different on different readout planes, combining the three wire plane
measurements ensures that the calorimetric information provided by the LArTPC in the
entire 4π solid angle is fully leveraged for the purpose of performing particle identification.

5 The likelihood-based method for particle identification

The newly-developed method of particle identification accounts for angular dependencies in
calorimetric reconstruction and compensates for distortions at large local pitch by efficiently
combining the three wire plane measurements.

This method computes the likelihood for different particle hypotheses given the exper-
imentally measured dE/dx profile. The likelihood is based on a model which is computed
through an accurate description of the expected dE/dx probability density function.

5.1 The dE/dx probability density function

The dE/dx probability density function (PDF) for each particle type is the basic ingredient
of the likelihood calculation. In principle, the average dE/dx as a function of the residual
range could be estimated by integrating the Bethe-Bloch function before applying detector
reconstruction. However, a complete characterization of the dE/dx distribution requires
an analytic description of the intrinsic fluctuations of the ionization energy loss and effect
of the detector reconstruction. This is challenging given the very long computational time
required and because there is no straightforward way to derive an analytic description of the
detector reconstruction. The dE/dx PDF is instead estimated from the MicroBooNE sim-
ulation which incorporates all the described effects, as demonstrated in the data/simulation
comparisons in section 6.

The PDF is estimated through a three dimensional histogram of dE/dx, residual range,
and local pitch. The histogram is normalized so that for each combination of values of resid-
ual range and local pitch, the integral of the dE/dx distribution sums to one, providing an
estimate of the conditional PDF p(dE/dx|residual range, local pitch) that is not informed
by the underlying kinematics of tracks. This procedure is repeated for each plane and for
two particle species, namely muons and protons. The histograms are filled with hits asso-
ciated with well-reconstructed tracks produced in simulated neutrino interactions. These
tracks are required to be complete, meaning that more than 90% of the true deposited
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Figure 4: Expected dE/dx distributions for muon (blue) and proton (orange) hits. The
top row shows distributions on the collection plane, with a fixed value of local pitch, and
three different values of the residual range. The middle row shows distributions on the
collection plane, with a fixed value of the residual range, and three different values of local
pitch. The bottom row shows distributions on the three wire planes, with a fixed value
of residual range and local pitch. As expected, the peak dE/dx value reduces at higher
residual range, passing from 11 MeV/cm to 5.75 MeV/cm, and to 4.25 MeV/cm across the
three bins under consideration for protons.

charge is reconstructed. They are also required to be pure, meaning that more than 90% of
their reconstructed charge was deposited by a single particle. The tracks are also required
to be contained within a fiducial volume, where both the start and end points are at least
20 cm away from the boundaries of the TPC.

The dE/dx PDF is visualized through three series of examples in figure 4, where in each
row only one of the three parameters (residual range, local pitch, and plane, respectively)
is varied, while keeping the other two fixed. The PDF changes considerably, showing, for
example, a reduction of the dE/dx of the peak value at higher residual range and an increase
of the width at higher local pitch, justifying the need for such a construction as a function
of these three variables.

5.2 The likelihood ratio test statistic as PID score

Using the PDF previously constructed, the likelihood of any particle hypothesis can be
computed for each reconstructed track. Interactions of neutrinos in the GeV energy range
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in liquid argon lead to comparable rates of muons, charged pions, and protons, making
the classification between these particle species important. However, this paper will focus
on the binary classification problem of distinguishing muons from protons. As pions and
muons have very similar masses, the calorimetric separation of these two particle species
is not addressed in this paper, and pion tracks will appear as muon-like by means of this
algorithm. Kaons are instead very rare (approximately 0.1% of the events in MicroBooNE
are predicted to contain a kaon) and are omitted in this work.

The likelihood for a track is computed starting from the single-hit-likelihood:

Lhit(type|plane, dE/dx, rr, local pitch) = p(dE/dx|type, plane, rr, local pitch), (5.1)

where p stands for the PDF, type refers to muon or proton and rr stands for residual range.
The local pitch is measured locally, and it is generally different for each hit associated with
the same track, because of changes in track trajectory due to multiple Coulomb scattering.
The plane is included because the PDFs are significantly different for the different planes.
The single-plane-likelihood is computed by taking the product of the single-hit-likelihood
for each hit on a given plane:

Lplane(type|plane, {dE/dx}i=1,...,N , {rr}i=1,...,N , {local pitch}i=1,...,N ) =

N∏
i=1

Lhit(type|plane, dE/dxi, rri, local pitchi), (5.2)

where i = 1, ..., N indexes the hits on the plane under consideration. The three-plane-
likelihood, which is the likelihood for the entire track, is then computed as the product of
the single-plane-likelihoods for the three wire planes.

The likelihood defined this way is an approximation as it neglects correlations between
the charge measured on different wires and planes. However, fluctuations of the hit charge
are in general correlated among wires on different planes, as they record the same charge
through different projections. Moreover, the induced charge on neighboring wires and
correlated noise introduce additional correlations between the charge recorded on different
wires on the same plane [7, 8]. Modeling these correlations is in general complex, as they
depend on the geometry on a track-by-track basis. Neglecting such correlations and using
an approximation of the likelihood makes the method less optimal, and may result in a loss
of separation power. A possible discrepancy between the data and the simulation for the
values of dE/dx, which are the inputs of the PID method, could introduce a systematic bias.
However, as shown in the plots in section 6 where the data and the simulation are compared,
there is no evidence that this effect is important. In fact, all the correlation and noise effects
introduced previously are reproduced in the simulation [7, 8], and a dedicated correction
of the dE/dx distribution in angular bins is applied on top of the overall calibration [9],
making the simulation precise and accurate.

The likelihood is then used to compute the likelihood ratio test statistic, which is
employed to perform the classification task:

T (dE/dx, rr, local pitch) = L(muon|dE/dx, rr, local pitch)/L(proton|dE/dx, rr, local pitch),

(5.3)
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where the indices running on wires and planes have been omitted here for simplicity, and
either a single-plane-likelihood (eq. (5.2)) or the three-plane-likelihood can be considered.

The binary classification problem of distinguishing protons from muons has the likeli-
hood ratio as the most powerful statistical test, as proven by the Neyman-Pearson lemma.
It provides the largest classification efficiency for any given value of the mis-identification
rate.

For computational purposes, in the rest of article, instead of T , the PID score P will
be considered, defined as:

P =
2

π
arctan (log(T )/100). (5.4)

Computing the logarithm of T is convenient as it reduces to a sum of log-likelihoods rather
than a product of likelihoods. This bijective non-linear transformation of T does not change
the separation power of the method, but it constrains the value of the PID score P, otherwise
unbounded, between -1 and 1, making it easier to display.

5.3 Performance of the particle identification

The performance of P is evaluated on a test sample of more than 20000 simulated protons
and muons, selected in the same manner as in section 5.1. The sample contains inclusive
neutrino interactions from the Booster Neutrino Beam (BNB) simulated with GENIE v3.0.6
[11], using a tailored MicroBooNE tune [15]. A receiver operating characteristic (ROC)
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Figure 5: Comparison of the proton/muon separation power of different PID scores. The
left plot shows the ROC curves on the entire sample, and the right plot shows the area
under the curve (AUC) in bins of the track angle φ. The blue curves refer to the proposed
PID score P using three planes, the orange refer to the collection plane only P, whereas the
green curves show the χ2 test with respect to the proton hypothesis. The purple vertical
line on the left plot slices the curves at muon mis-identification rate 0.1, comparing the
proton identification efficiencies of the three methods at the same working point.

curve is calculated from the test statistics distributions for the two particle types and
shown in the left plot of figure 5 for the three-plane P, for the collection plane only P, and
for the χ2 test with respect to the proton hypothesis, which represents the previous state
of the art [9]. The latter quantity, computed by comparing the data with the expectation
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from Bethe-Bloch theory, has been used in several previous MicroBooNE analyses and it
is shown here as a reference for comparison. The ROC curves show the proton efficiency
as a function of the muon mis-identification rate, which are bounded between 0 and 1. For
a given method, every possible cut value between -1 and 1 corresponds to a point on the
ROC curve. The performance is quantified at the working point with 10% of the muons
mis-identified as protons: the three-plane P provides 93.7% efficiency at selecting protons
compared to 83.4% for the collection plane only P and 81.6% for the the χ2 test with respect
to the proton hypothesis. An overall measure of the separation power is defined using the
area under the ROC curve (AUC). When this metric is equal to 1, the variable allows
perfect separation at any working point, whereas a value of 0.5 represents a random guess.
The three-plane P scores a AUC of 0.977 compared to 0.955 for the collection-plane only P
and 0.838 for the the χ2 test with respect to the proton hypothesis. The robustness of the
quoted performance is tested against detector systematic uncertainties. The performance is
evaluated on a series of simulations with a modified detector response to assess the detector
systematic uncertainty. This leads to an uncertainty on the proton efficiency of 1.2% at
10% muon mis-id. The uncertainty on the AUC is 0.002 units for the nominal value of
0.976. This uncertainty is dominated by the modeling of electron-ion recombination. The
statistical uncertainty on the efficiency and AUC determination is negligible. The right plot
of figure 5 shows the AUC in bins of the azimuthal angle φ of the track, which describes the
direction of the track on the plane orthogonal to the beam direction: φ = 0◦,±180◦ refer
to the drift direction and φ = ±90◦ refer to the vertical direction. Both plots illustrate an
overall improvement of the separation power with respect to the χ2 test with respect to
the proton hypothesis, and a mitigation of the dependence of the performance on the track
angle. Combining the three planes improves the separation power in every angular region,
especially for vertical tracks (φ ∼ ±90◦), where the collection plane is the least effective.

6 Applications to physics cases

The following analyses were developed using data collected by MicroBooNE with the BNB
during winter and spring 2016. This data amounts to 4.8× 1019 protons on target (POT).
This data, in which neutrino interactions are present, is labeled as DATA Beam ON. The
prediction comes from a combination of the simulation of neutrino interactions and data
collected out of the beam windows, labeled as DATA Beam OFF. Even in events where a
neutrino interaction is present, O(10) cosmic rays cross the detector on average. Instead of
being simulated, cosmic ray waveforms are acquired out of the beam window and overlaid
to simulated neutrino interactions.

6.1 Proton-muon separation for tracks recorded on data

The first test performed is to verify if the result obtained in the simulation in section 5.3
holds also with neutrino data. Tracks are selected by requiring track-score> 0.5, a mea-
surement of the likeliness of a reconstructed particle to be a track, with values ranging
from 0 for shower-like particles to 1 for track-like particles. Track-score is provided by the
Pandora reconstruction. Tracks are also required to be reconstructed within 5 cm from the
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Figure 6: Distribution of the three-plane P for neutrino-induced tracks selected in data
and simulation. The data (black cross) shows the difference between the DATA Beam ON
and the DATA Beam OFF, in order to remove the contribution from non-beam events.
The simulation (stacked histogram) is normalized to the same number of events observed
in the data, and it is broken down for different particle species. In the case the particle
selected in the simulation is an overlaid cosmic, it is assigned to the category "cosmic".
The uncertainties shown on the data points are the expected statistical uncertainties from
Poisson counting.

vertex, and to be contained within a fiducial volume, defined as the set of points that are at
least 20 cm apart from every side of the TPC. Figure 6 shows the distribution of the PID
score for these tracks, comparing the data (black cross) with the simulation (stacked colored
histogram). Protons, reconstructed with a low P, populate the left side of the distribution.
These are well separated from lighter particles, such as muons and pions, which populate
the region at larger values of P. Tracks associated with cosmic rays are distributed along
the whole spectrum, as they can be induced by cosmic muons or by protons kicked out
of the argon nuclei. A peak at P ∼ 0 is also present. These are short tracks, for which
there is too little information to discriminate between the two hypotheses. In fact, log(T )

is additive for each hit: the longer the track, the more hits, the larger log(T ) and thus
P can be. The simulation reproduces the shape of the data, confirming the performance
studied in the simulation. Two additional plots (figure 7) illustrate that P correctly iden-
tifies the Bragg peaks, in good agreement with the theoretical prediction. Fully contained
tracks, with track-score> 0.8 and collection plane local pitch < 1 cm are selected in beam
data events. The 2D distributions dE/dx vs residual range on the collection plane, for
muon-like tracks with P > 0.5, and proton-like tracks with P < -0.5, are plotted on the
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Figure 7: Collection-plane dE/dx vs residual range profile for well reconstructed, con-
tained, and low local pitch tracks in data, identified as muon (proton) candidates on the
left (right) plot. The profiles are compared to the most probable values (MPV) as expected
by the theory for the extremes of the range of local pitch under consideration (red lines).
The two plots are normalized to the maximum value in order to share a common color scale.

left and right of figure 7, respectively. The two Bragg peaks are clearly visible and distinct.
This is possible because of the track local pitch requirement: selecting hits with small local
pitch ensures dE/dx is measured properly, resulting in physical and meaningful values. The
solid and dashed red lines show the theoretical prediction of the most probable value of the
dE/dx distribution for the extremes of the range of local pitch under consideration. The
core of the data distribution lies between the two bands, demonstrating good calorimetric
reconstruction for small local pitch.

6.2 Large collection-plane-local pitch tracks identified with the two induction
planes

The following example illustrates the efficacy of combining the calorimetric measurements
performed with the three wire planes. Figure 8 shows the 2D distribution of dE/dx and
residual range measured on the U, V, and Y planes, for proton candidate tracks with large
collection plane local pitch. Proton candidates are required to be fully contained, and to
have track-score> 0.8. Proton-likeness is required through P < -0.5. The collection plane
local pitch is required to be larger than 1 cm: such tracks lie on the plane orthogonal to
the beam, traveling in directions where the calorimetric reconstruction is subject to large
distortion. For this set of tracks, only the induction planes exhibit the expected Bragg peak:
combining the three planes recovers the separation power by correctly classifying protons
whose calorimetric reconstruction is not accurate on one or more views.

6.3 Exclusive νµ selection

To further illustrate the separation power of P, a general νµCC selection is performed, with
the selected events divided into different exclusive channels. Events are selected similarly
to the procedure in [1], adding a containment requirement for all tracks reconstructed in
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Figure 8: 2D distribution of dE/dx and residual range measured on the three wire planes
for tracks identified as proton candidates in the data, with large collection plane local pitch.

the event, by requiring the start and end points of each track to lie inside the fiducial
volume, as described in section 6.1. First, a muon candidate is chosen among the tracks
attached to the vertex that are longer than 10 cm, by selecting the one with the largest P
value. The top plot of figure 9 shows the distribution of P for muon candidates, showing a
good separation between muon and proton tracks. Selecting only events with a candidate
with P > 0.2 rejects most of the proton background, ensuring a pure selection of νµCC
interactions.

Among the νµCC candidates, events with one additional reconstructed track (two-
track events) are selected. If correctly reconstructed, they result predominantly from νµCC

interactions with either one proton and no pions (νµCC0π1p) or one pion and no protons
(νµCC1π0p) in the final state. In general, the former case predominantly (but not solely)
results from quasi-elastic interactions while the latter is largely produced by the decay of
a ∆ resonance. The PID score of the second track (bottom left plot in figure 9) separates
the two cases, with νµCC0π1p populating the left side while the νµCC1π0p are located at
positive values, because pions are indistinguishable from muons with this variable. With a
similar methodology, events with two additional reconstructed tracks (three-track events),
are selected. Events with two protons and no pions in the final state (νµCC0π2p), predicted
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Figure 9: PID score distributions for the muon candidate track (top), the second track
in events with two reconstructed tracks (bottom left), and the third track in events with
three reconstructed tracks (bottom right). The DATA Beam ON (black cross) is compared
with the prediction based on the sum of the simulation of neutrino interactions (stacked
histogram) and DATA Beam OFF (gray bars). The selections are based on reconstructed
quantities, while the prediction is broken down into different categories based on truth
information. In the first plot the different colors correspond to different particle types,
while in the other two they correspond to different final states. The uncertainties shown
on the data points are the expected statistical uncertainties from Poisson counting, while
the hashed patches on the stacked histogram illustrates systematic uncertainties on the
prediction related to the simulation of the neutrino flux and interaction model.

to be mainly induced by meson-exchange current interactions and final state effects, can
be distinguished from events with one proton and one pion in the final state (νµCC1π1p),
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produced by a resonance decay. Because the presence of a proton, identified by a large
negative P, is common to the two cases, the track with the largest PID score among
the two additional tracks (bottom right plot in figure 9) is used to discriminate between
νµCC0π2p, on the left, and νµCC1π1p, on the right. These examples demonstrate the
potential of the PID score in selecting exclusive final states that can enrich contributions
from different interaction modes, eventually leading to precise and detailed neutrino cross-
section measurements.

7 Conclusions

The capability to perform precise calorimetric measurements is one of the most impor-
tant factors that make LArTPCs powerful tools in the study of neutrino interactions. This
work illustrates a detailed study of the performance of the calorimetric reconstruction using
MicroBooNE data, the longest-operating LArTPC in a neutrino beam producing a large
dataset of GeV scale neutrino interactions. The first important observation is that the
calorimetric reconstruction performed by LArTPCs exhibits angular dependencies. Since
the charge is drifted in a specific direction, and projected onto wires oriented in three
different directions, both the dE/dx distribution that a perfect detector would measure
and the precision and accuracy with which dE/dx is actually measured depend on the
track direction. These effects are intrinsic to any wire-based readout LArTPC. When not
properly accounted for, they result in non-uniform and sub-optimal particle identification
performance. This work proposes a new likelihood-based method to perform particle iden-
tification which properly accounts for angular dependencies and mitigates their impact by
effectively combining the calorimetric measurements performed on the three wire planes.
It does so through the calculation of a likelihood derived from the detailed MicroBooNE
simulation. The resulting PID score shows greater separation power between proton and
muon-induced tracks, with smaller dependence on the track angle with respect to the pre-
vious PID method. This is quantified as a 94% proton selection efficiency with a 10% muon
mis-identification rate. This methodology allows a highly effective separation of different
final states, with only minor angular dependency, as demonstrated by selecting exclusive
final states originated by different νµCC interaction modes. Part of the future MicroBooNE
analyses will incorporate this method in the event selection strategy. This methodology can
be exported to other present and future LArTPCs, making it an important ingredient to
address the ambitious liquid argon neutrino physics program moving forward.
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