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Abstract—Currently, self-driving, emerging as a key automatic
application, has brought a huge potential for the provision of
in-vehicle services (e.g., automatic path planning) to mitigate
urban traffic congestion and enhance travel safety. To provide
high-quality vehicular services with stringent delay constraints,
edge computing (EC) enables resource-hungry self-driving vehi-
cles (SDVs) to offload computation-intensive tasks to the edge
servers (ESs). In addition, caching highly reusable contents
decreases the redundant transmission time and improves the
quality of services (QoS) of SDVs, which is envisioned as a
supplement to the computation offloading. However, the high
mobility and time-varying requests of SDVs make it challenging
to provide reliable offloading decisions while guaranteeing the
resource utilization of content caching. To this end, in this
paper we propose a collaborative computation offloading and
content caching method, named CoPace, by leveraging deep
reinforcement learning (DRL) in EC for self-driving system.
Specifically, we first introduce OSTP to predict the future time-
varying content popularity, taking into account the temporal-
spatial attributes of requests. Moreover, a DRL-based algorithm
is developed to jointly optimize the offloading and caching
decisions, as well as the resource allocation (i.e., computing
and communication resources) strategies. Extensive experiments
with real-world datasets in Shanghai, China, are conducted to
evaluate the performance, which demonstrates that CoPace is
both effective and well-performed.

Index Terms—Self-driving, deep reinforcement learning, edge
computing, computation offloading, content caching.

I. INTRODUCTION

SELF-DRIVING is emerging as a key automatic applica-
tion in intelligent transportation system (ITS) to alleviate
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the urban traffic congestion, enhance the fuel efficiency, and
improve the travel safety [1]. Self-driving vehicles (SDVs),
equipped with a large amount of on-board sensors (e.g.,
camera and radar), are capable of perceiving and analyzing
the sophisticated information on roads, which supports nu-
merous driving assistance services such as automatic path
planning and collision avoidance [2]. Besides, since the SDVs
have independent decision-making and control functionalities
without manual intervention, passengers gain more time on
the infotainment services, e.g., augmented reality (AR). These
services have prompted the considerable real-time require-
ments for processing capabilities [3]. However, due to the
limited computation and storage capacities imposed on the
SDVs, executing the computation-intensive services is heavily
constrained.

Edge computing (EC) enables the timely completion of
latency-sensitive computation tasks, which is provided as
a promising alternative to cloud computing by sinking the
processing and storage resources to the network edges in the
proximity of SDVs [4]. With EC, the sensing infrastructures,
e.g., base stations (BSs) and roadside units (RSUs), are en-
dowed with the computing and storage capacities. Therefore,
offloading the computation tasks of the SDVs to the nearby
edge servers (ESs) attached to the BSs and RSUs for imple-
mentation is feasible to satisfy the requirements of ultra-low
execution delay and mitigates the backhaul pressure of the
cloud data centers [5].

Generally, since there is a high probability that the required
data of computation tasks from diverse SDVs have the simi-
larities, the transmission of such duplicated data to the ESs
results in a huge waste of computing and communication
resources [6]. To minimize the redundant data transmission
and guarantee resource utilization, content caching is intro-
duced by mobile network operators (MNOs) that enables the
contents to be prefetched [7]. Caching reusable contents of
computation tasks on the ESs is feasible for SDVs to cut
down the repetitive computation offloading and execution,
which reduces the network delay and improves the quality
of service (QoS) of SDVs. Consequently, the content caching
is envisioned as an effective complement to the computation
offloading [8].

However, considering the constrained storage capacity, it is
unattainable for ESs to cache all the contents. For the non-
cached contents, the SDVs with computation requests have
to offload them to the ESs for completion. Thus, how to
effectively cache popular contents on the ESs is crucial to
improve the QoS of SDVs. In most of the existing works,
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the content popularity is usually supposed to follow the Zipf
distribution [9], [10]. Nevertheless, owing to the dynamic
requests of SDVs, the content popularity is time-varying, such
that the Zipf distribution is not always practical [11]. On the
other hand, due to the high mobility of SDVs, the computation
offloading and content caching strategies with imbalanced
resource allocation cause the overload or underutilized in some
ESs. Accordingly, the reliable offloading and caching decisions
is imperative to enhance the resource efficiency of ESs, and
thereby provide high-quality services for SDVs.

Technically, deep reinforcement learning (DRL) is empow-
ered with the powerful decision-making capability to tackle
the sophisticated offloading and caching problems in the
vehicular networks, which plays a critical role in self-driving
systems [12]. Multiple DRL approaches, e.g., Q-learning and
deep Q-network (DQN), are utilized to finding the optimal
offloading and caching solutions in vehicular networks [13]–
[15]. However, to the best of our knowledge, few works have
focused on the joint optimization of computation offloading,
content caching, and resource allocation, taking into account
the prediction of time-varying and spatial-temporal content
popularity. Therefore, we introduce CoPace for EC-envisioned
self-driving to jointly orchestrate the offloading, caching, and
resource allocation decision-making of SDVs. Specifically, a
spatial-temporal based content popularity prediction algorithm
is designed to acquire the future popularity of content requests.
Then, we propose an online DRL-based offloading, caching,
and resource allocation algorithm to minimize the system
latency. The main contributions of this paper are as follows.

• A collaborative computation offloading and content
caching framework for EC-enabled self-driving is devel-
oped. Moreover, the computation offloading and content
caching issue is formulated as a mixed integer non-
linear programming (MINLP) optimization problem to
minimize the latency.

• An offline spatial-temporal based content popularity pre-
diction algorithm, named OSTP, is proposed to predict
the future time-varying and mobility-aware content pop-
ularity of SDV requests.

• A DRL-based algorithm is designed to collaboratively
optimize the offloading, caching decisions, and resource
allocation policies. Especially, the MDP problem is
solved by the deep deterministic policy gradient (DDPG)
approach.

• Comparative experiments are conducted based on the
real-world datasets of base station telecom accessing
histories and taxi trajectories in Shanghai, China, to
demonstrate the performance and effectiveness of the
CoPace.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III introduces the system
model and formulates the optimization problem. Section IV
proposes the CoPace method. In Section V, the experimental
evaluation is presented. The conclusion is drawn in Section
VI.

II. RELATED WORK

Currently, EC mitigates the computation limitation of
mobile devices by sinking cloud resources to the network
edges, which has attracted considerable attention. Besides,
with the advance of 5G technology and the soaring de-
mands of computation-intensive and delay-sensitive vehicular
services, the EC-empowered Internet of Vehicles (IoV) has
been drawing widespread attention. Hou et al. [16] combined
the software-defined networking (SDN) technique and EC-
aided IoV, and considered the computation offloading and task
allocation problems. A heuristic algorithm was presented to
address the optimization problem. Considering the high mobil-
ity of vehicles, providing an energy-efficient IoV environment
for vehicular applications still faces challenges. Pei et al.
[17] designed a power dispatch framework, which minimized
the whole network delay by taking into account the queuing
model, incomplete channel status, and the mobility of vehicles.
In addition, the joint optimization for computing, caching, and
resource scheduling is also concerned. Zhao et al. [18] focused
on the edge computation and caching management that aims
to cooperatively optimize caching, request scheduling, and
resource allocation.

Proactive caching contributes to minimizing the content
fetching time and improving the QoS in vehicular networks.
Specifically, considering the increasing heterogeneous require-
ments for vehicular applications, multiple works have been
done on edge caching in IoV. Taking into account the mobility
of vehicles and dynamic content popularity, Gao et al. [19]
put forward a probabilistic caching approach to optimize the
content placement. This dynamic content caching method
outperforms some static caching strategies (e.g., LRU). To
achieve the long-term reduction of system cost and delay and
the Improvement of hit ratio, Qiao et al. [15] collaboratively
learn the optimal content delivery and placement method by
applying the DRL-based approach, considering the content
popularity. Different from the conventional content popularity
distribution, they proposed a global content popularity function
that can adapt to the EC-enabled IoV. Yu et al. [20] presented
a proactive edge caching approach, leveraging the federated
learning to protect the private data information in distinct
vehicles.

Due to the stochastic features of resource allocation and
decision-making in IoV, DRL is a nature-inspired approach
for reducing the solution complexity and enabling intelligent
perceiving and decision-making capabilities. To improve re-
source utilization, Xiong et al. [21] developed an enhanced
algorithm based on DRL technology to achieve the mini-
mization of the execution delay and the increasing amount
of requested resources. Besides, the resource utilization and
energy efficiency in IoV also need to be considered. Luo et
al. [22] designed an integrated framework with several key
elements in vehicular EC and resorted to the improved DQN
scheme to address the resource scheduling problem for better
utilization performance. Ke et al. [23] introduced the computa-
tion offloading scheme, which leverages the DRL technology
to cooperatively optimize the energy cost and transmission
delay. Due to the multiple data sharing among the increasing
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number of vehicles, data security and privacy are also needed
to be concerned. To guarantee data privacy in knowledge
sharing, Chai et al. [24] designed a method to jointly utilize
the blockchain and federated learning technologies.

Different from these works, the DRL-based collaborative
method to optimize the offloading and caching policies, as
well as the resource allocation strategies, are considered in
this paper, in view of the spatial-temporal content request
features. Furthermore, considering the high dimension states
and the hybrid continuous and discrete actions, the existing
DRL approaches Q-learning and DQN are difficult to handle.
As a result, we resort to a DDPG-based algorithm to solve
this issue.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

Fig. 1 illustrates the EC-empowered self-driving system,
which mainly includes three kinds of entities, i.e., BS, RSU,
and SDV. RSUs and BSs, equipped with ESs, are endowed
with computing and caching functionalities and can provision
computing and caching services to the proximity of SDVs.
Let M = {1, 2, . . . ,M} represent the index set of BSs,
N = {1, 2, . . . , N} represent the index set of RSUs, V =
{1, 2, . . . , V } represent the index set of SDVs, respectively.
Without loss of generality, the constructed system works in
a time slot mode, and the timeline is divided into discrete
time frame τ ∈ T = {1, 2, . . . , T}. The BSs or RSUs can
deal with the computation requirements from SDVs, then
SDVs upload the task to the corresponding BSs or RSUs. Let
K = {1, 2, . . . ,K} represent the index set of required contents
of computation task. Moreover, computation-intensive services
from SDVs are required to be accomplished with the least
possible delay.

As presented in Fig. 1, moving SDVs in the crossroad
can access the neighboring RSUs via the wireless channel
for computation task offloading. Considering the delay con-
straints of the vehicular services and the limited computation
capabilities of the SDVs, the contents are uploaded to and
executed on the target RSUs or BSs to satisfy the computation
demands. In addition, if the required contents are cached on
the RSUs or BSs, the processed results are fetched directly
from the ESs to SDVs without uploading. Otherwise, SDVs
have to offload the non-cached contents to the target RSU for
execution. Furthermore, due to the high movement of SDVs
and dynamic vehicular network topology, how to choose the
optimal ES to implement the computational tasks and cater to
delay-constraint requirements is challenging. Intuitively, the
MNOs deploy the cooperative task offloading with a caching
mechanism, which can not only reduce the access latency
and task execution time but also provide SDVs high-quality
vehicular services. Key notations are illustrated in TABLE I.

B. SDV Mobility Model

Generally, SDVs require high-quality vehicular services to
meet the application demand from users. However, the high

ESES
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Cached
contents
Cached
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Result 
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Fig. 1: The architecture of collaborative computation offload-
ing and content caching in EC-empowered self-driving system.

TABLE I: Main Notations

Notation Description

M The set of BSs, M = {1, 2, . . . ,M}
N The set of RSUs, N = {1, 2, . . . , N}
V The set of SDVs, V = {1, 2, . . . , V }
K The set of contents, K = {1, 2, . . . ,K}
Li(τ) The mobility of SDV i at time slot τ

ck The input size of content k

δk The required CPU cycles for processing content k

rk The size of processed result of content k

Fj The total computation capability at ES j

Cj The total caching storage at ES j

Bj The total bandwidth capacity at ES j

SNRi,r(τ) The signal noise ratio between SDV i and RSU/BS r

Ri,r (τ)
The data transmission rate between SDV i and RSU/BS
r

bi,r (τ) The allocated bandwidth on RSU/BS r for SDV i

fi,r(τ)
The allocated computation resource on RSU/BS r for
SDV i

movement of SDVs poses a great challenge to construct the
reliable computation offloading and content caching for EC-
envisioned self-driving system [3]. To this end, it is essential
to consider the dynamic mobility of SDVs. For SDV i, let lxi
and lyi denote the location in 2D map. In the time interval
from τ to τ ′, the location Li(τ

′) =< Lxi (τ ′), Lyi (τ ′) > of
SDV i at time slot τ ′ is given by

Lxi (τ ′) = lxi(τ) + di cos θi, (1)

and
Lyi (τ ′) = lyi(τ) + di sin θi, (2)

where di is the distance of SDV i between time slot τ and τ ′

and θi is the moving angle of SDV i.
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C. Communication Model

In the constructed system, SDVs are connected to the RSUs
or BS via a wireless channel and can offload the computation
tasks and download required results with no channel interfer-
ence. Without the loss of generality, assumed that the topology
of the vehicular network is invariable during one time slot. For
the available accessing RSU r, SDV i uploads the required
content and obtain the desired output data over the wireless
communication. Let xi,r (τ) = {0, 1} be defined as the binary
variable between the SDV i and RSU r at time slot τ , which
indicates whether SDV i accesses to its target ES or not. If
xi,r (τ) = 1, SDV i is connecting to RSU r for task execution,
otherwise xi,r (τ) = 0. Meanwhile, at one time slot, each SDV
can only be served by one RSU.

Besides, the signal noise ratio (SNR) between SDV i and
RSU r is given by [6]

SNRi,r (τ) =
pi,r (τ)Gi,r (τ)

ξi,r (τ) di,r (τ)σi,r (τ)
2 , (3)

where pi,r (τ) is the transmission power; Gi,r (τ) is the
channel gain, ξi,r (τ) is the path loss, σi,r (τ)

2 is the power of
the white Gaussian noise, and di,r(τ) is the distance between
SDV i and RSU r. Note that the mobility of SDVs is time-
varying, the distance between SDV i and RSU r is calculated
as

di,r(τ) =

√
[lxi(τ)− lxr(τ)]

2
+ [lyi(τ)− lyr(τ)]

2
. (4)

Considering the parallel processing capability of each ES, it
can handle requirements from distinct SDVs simultaneously.
The allocated bandwidth resource between SDV i and RSU
r is denoted by bi,r (τ). Therefore, the instantaneous data
transmission rate of the wireless connection between the SDV
and RSU is expressed as

Ri,r (τ) = xi,r (τ) bi,r (τ) log2 (1 + SNRi,r (τ)) . (5)

D. Computation Model

In our model, considering the large enough coverage range
of the BSs, the offloaded tasks are performed both on RSU
r and the BSs collaboratively. µi (τ) ∈ {0, 1} is defined as a
processing decision variable, which denotes whether or not the
RSU has to process the computation task requested from SDV
i at time slot τ . If µi (τ) = 0, the BSs process the computation
task from SDV i. Otherwise, the RSUs are selected to perform.
The offloading decision variable µi (τ) is given by

µi (τ) =

{
1, if task from SDV i is processed at RSUs,
0, otherwise.

(6)
The required CPU cycles for processing content k is defined

as δk. Note that multiple SDVs can share the same RSU within
the coverage range. Due to the computation resource constraint
of each RSU, it is hard to allocate the full computational
capabilities to the SDVs which request task offloading. There-
fore, fi,r (τ) denotes the instantaneous resource allocation at
RSU r for the requested SDV i. The completion time for the

computation task at RSU r and the required task at the BS
are both given by

ωcomi,r,k (τ) = µi (τ)
δk

fi,r (τ)
, (7)

and
ωcomi,l,k (τ) = (1− µi (τ))

δk
fi,l (τ)

, (8)

where fi,l (τ) is the allocated computational resource at the
BS l for SDV i.

Therefore, the total execution time for SDV i is given by

ωcomi,k (τ) = µi (τ)
N∑
r=1

δk
fi,r (τ)

+ (1− µi (τ))
M∑
l=1

δk
fi,l (τ)

.

(9)

E. Caching Model

For the offloaded task generated from SDV i, the ES on
RSU r or BS l has the caching capability to satisfy the required
task, which improves the QoS and reduces the computation de-
lay. Note that each ES has a limited caching storage constraint,
it is impossible to cache all the requested data. Let yk (τ)
be the caching decision variable, which denotes whether the
required content k is cached on the RSU or BS, where yk (τ)
is expressed as

yk (τ) =

{
1, if requested content k is cached,
0, otherwise.

(10)

If the required data have cached on the ES, only the
computed result transmits to the corresponding SDV i with
no content uploading. Otherwise, SDV i needs to upload the
task k to the ES on the RSU or the BS for execution. The
feedback time for RSU r and the BS l that sending back the
computed results to SDV i is given by

ωfeei,r,k (τ) = µi (τ)
rk

Ri,r (τ)
, (11)

and
ωfeei,l,k (τ) = (1− µi (τ))

rk
Ri,l (τ)

, (12)

where rk denotes the size of processed result of task k. Similar
to Ri,r (τ), Ri,l (τ) is the instantaneous allocated bandwidth
for the BS l.

Moreover, the total feedback time for SDV i is given by

ωfeei,k (τ) = µi (τ)
N∑
r=1

rk
Ri,r (τ)

+ (1− µi (τ))
M∑
l=1

rk
Ri,l (τ)

.

(13)
Let ck be the size of required content k, then the offloading

latency for the non-cached data delivers to the RSU r and the
BS l by SDV i at time slot τ is given by

ωoffi,r,k (τ) = (1− yk (τ))µi (τ)
ck

Ri,r (τ)
, (14)

and

ωoffi,l,k (τ) = (1− yk (τ))(1− µi (τ))
ck

Ri,l (τ)
. (15)
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The total offloading latency for SDV i is expressed as

ωoffi,k (τ) = (1− yk (τ))

×

(
µi (τ)

N∑
r=1

ck
Ri,r (τ)

+ (1− µi (τ))
M∑
l=1

ck
Ri,l (τ)

)
. (16)

As a result, the total transmission latency contains the data
uploading and downloading time, which is expressed as

ωtrai,k (τ) = ωfeei,k (τ) + ωoffi,k (τ) . (17)

F. Problem Formulation

Considering the latency of vehicular services and the net-
work efficiency, the collaborative computation offloading and
content caching between the BSs, RSUs, and SDVs aims to
minimize the total system latency. For the offloaded task,
the target ES on RSU and BS executes in a cooperative
manner. If the requested data are cached on the ESs, only the
execution time and feedback time are taken into consideration.
Otherwise, the additional offloading latency cost is incurred.
Therefore, the system latency Θ (τ) consists of the execution
time and transmission time, where Θ (τ) is given by

Θ (τ) =
V∑
i=1

K∑
k=1

[
(1− yk (τ))ωcomi,k (τ) + ωtrai,k (τ)

]
. (18)

The joint optimization problem, considering offloading and
caching decision, as well as the resource allocation, aims to
minimizes the system latency is given by

min
x,µ,f,b,y

1

T

T∑
τ=1

Θ (τ) . (19)

s.t.
V∑
i=1

xi,z (τ) bi,z (τ) ≤ Bz,∀z ∈ N or M, (20a)

V∑
i=1

µi (τ) fi,z (τ) ≤ Fz,∀z ∈ N or M, (20b)

K∑
k=1

yk (τ) ck (τ) ≤ Cz,∀z ∈ N or M, (20c)

µi (τ) ∈ {0, 1},∀i ∈ V, (20d)

xi,z (τ) ∈ {0, 1},∀i ∈ V, z ∈ N or M, (20e)

yk (τ) ∈ {0, 1},∀k ∈ K. (20f)

where the constraint (20a), (20b), and (20c) ensure the allo-
cated bandwidth, computation resource, and occupied storage
to SDVs have to be less than or equal to the communication
capability Bz , processing capability Fz , and storage capability
Cz of ES z. The constraint (20e) is the decision variable that
determines whether computation task is performed at the RSU
or at the BS. The constraint (20e) and (20f) are the binary
variable, which represent the offloading and caching decisions.
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Fig. 2: An overview of CoPace.

IV. THE DESIGN OF COPACE

In this section, we introduce the design of CoPace, which
aims to minimize the long-term latency by jointly optimizing
the offloading and caching decisions, as well as the resource
allocation strategies. First, an overview of CoPace is pre-
sented. Afterwards, we propose an offline content popularity
prediction algorithm and an online DRL-based algorithm.
Furthermore, the complexity analysis of proposed algorithms
is drawn.

A. CoPace Overview

The CoPace method is illustrated in Fig. 2, which is divided
into three parts. First, the constructed EC-empowered self-
driving system is served as an environment that observes the
key information including computation requests, the status of
both RSUs and BSs, and the mobility of SDVs. Next, the
offline popularity prediction leverages the OSTP algorithm to
predict the future content popularity level based on the histori-
cal request records by a deep learning model. Furthermore, the
DRL-based offloading, caching and resource allocation policy
is proposed to utilize the DDPG agent to optimize the system
delay. Specifically, the original optimization problem is first
modeled as a Markov decision process (MDP). After that,
the DRL-based approach interacts with the EC-enabled self-
driving environment to address the formulated MDP, aiming to
maximize the reward value to achieve the optimal collaborative
offloading, caching, and resource dispatching decisions. The
details of CoPace are further elaborated as follows.

B. Spatial-Temporal Content Popularity Prediction

To minimize the system latency, the ESs can cache the
popular contents when multiple SDVs requests the same
computation tasks. The popularity of requested content can
reflect the preference by requirement. Namely, high popular
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content is most probably to be requested. Many existing works
supposed that the content popularity usually follows the Zipf
distribution [9], [10]. However, in the vehicular networks,
given the mobility of SDVs and the dynamic resource require-
ments, the popularity is time-varying such that the assumption
may not be always realistic. Therefore, it is challenging to
acquire accurate popularity in practical self-driving scenarios
to cache target contents to further enhance the QoS of SDVs.
In the light of this, we propose OSTP, a spatial-temporal
based content popularity prediction algorithm. Considering
the movements of SDVs, the content request distributions
from SDVs are also affected by the spatial and temporal
dependence [25]. Therefore, motivated by DeepSTN+ [26], a
deep learning model to capture the spatial-temporal features,
the OSTP leverages the DeepSTN+ based model to train and
predict the future time-varying and mobility-aware content
request distributions. Then, based on the request distribution
prediction, OSTP derives the future content popularity. The
details of OSTP are described as follows.

First, considering the dynamic content requests, the problem
of requested content distribution prediction can be modeled as
a time series. To better capture the request distributions in
different regions, an area is divided into several grids where
each grid has the same size. Let G = {1, 2, . . . , G} be the
index set of regions. Meanwhile, φk,g (τ) is defined as the
counts of requested content k generated from SDVs in region
g at time slot τ , which is given by

φk,g (τ) =

{
1, if content k is requested in region g,
0, otherwise.

(21)
To extract the temporal dependence in different ranges of

time, the timeline is grouped into three parts, i.e., recent time,
near history, and distant history. These three temporal features
are fused into one distribution that denotes the historical record
during the ith time interval. The historical content request
records from X1 to Xτ−1 are combined with the prior time-
weighted PoI information, feeding to the DeepSTN+ model for
training. After the multi-scale outputs, the long-range spatial
and temporal attributes are extracted. Then, the convolution
operation is utilized to obtain the future predicted content
request distributions. Specifically, based on the future request
distributions, the content popularity pk (τ) of content k at
time interval τ can be computed and updated, where pk (τ) is
calculated as

pk (τ) =

∑G
g=1 φk,g (τ)∑K

i=1

∑G
g=1 φi,g (τ)

,∀k ∈ K. (22)

Therefore, the popularity of all contents at time interval τ
is defined as

P (τ) = [p1 (τ) , p2 (τ) , ..., pK (τ)] . (23)

Algorithm 1 shows the process of OSTP for CoPace. In the
training phase, the leveraged DeepSTN+ model is trained with
the historical records of content requests from SDVs. Specif-
ically, the time-weighted training inputs of request tensor X,
which is transformed into three kinds of time granularity, i.e.,

Algorithm 1: OSTP for CoPace
Input: K, G, φk,g(∀k ∈ K,∀g ∈ G)
Output: P (τ)
/* Training phase */

1 while Training not finished do
2 Generate the time-weighted request tensor X by

historical record φk,g(∀k ∈ K,∀g ∈ G) ;
3 Feed to the model with three different granularities

of time inputs (closeness, period, and trend) ;
4 Minimize the loss function with Adam optimizer ;
5 end
/* Prediction phase */

6 for each testing sample do
7 Predict the future request distribution matrix with

the trained model on sampled batch;
8 end
9 Calculate the content popularity pk (τ) of k at time

slot τ by Eq. (22) ;
10 Derive the content popularity vector P (τ) at time slot

τ by Eq. (23) ;
11 Return P (τ)

closeness, period, and trend (denote the difference during the
length of time), to better capture temporal features of data
(lines 2 to 3). In addition, during the training phase, the objec-
tive is to minimize the loss function with Adam optimizer until
overfitting occurs (lines 4). Based on the trained model, the
future request distributions are derived in the prediction phase.
Eventually, we compute the content popularity pk (τ) of k and
the content popularity vector P (τ) by Eq. (22) and (23) (lines
6 to 10). According to the predicted content popularity, we
then propose an online computation offloading, caching, and
resource allocation algorithm to optimize the system latency
to improve the QoS of SDVs. The formulated optimization
problem is modeled as an MDP and the prediction content
popularity is converted as the component of state definition,
which is explained in detail in the following.

C. Implementation of DRL-based Collaborative Algorithm

Intuitively, the Eq. (19) is a MINLP optimization problem,
which is proved to be NP-hard [27]. Due to the stochastic
and time-varying requests and high movements of SDVs,
conventional techniques, e.g., convex optimization and game
theory, hardly handle this problem effectively. Currently, DRL
is emerging as a promising approach that enables to reduce the
solution complexity by nature-inspired exploration of actions.
Inspired by the DRL technology which is endowed with
powerful decision-making capabilities, it is attempted to utilize
the DRL approach to get the optimal decision-making to deal
with the formulated optimization problem in a time-varying
and dynamic environment.

To implement the DRL-based method, the proposed prob-
lem is modeled as a MDP. Three main elements (i.e., states,
actions, and reward) are taken into consideration, which are
presented as follows in detail.
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States. The system state space reflects the observation from
the constructed system environment, consisting of the status
of SDVs and available resources of ESs. The state s (τ) at
time slot τ is given by

s (τ) ={R1 (τ) , R2 (τ) , · · · , RV (τ) , C1 (τ) , C2 (τ) , · · · ,
CV (τ) , P1 (τ) , P2 (τ) , · · · , PK (τ) , F1 (τ) , F2 (τ) ,

· · · , FN+M (τ) , B1 (τ) , B2 (τ) , · · · , BN+M (τ) ,

L1 (τ) , L2 (τ) , · · · , LV (τ)},
(24)

where Ri (τ) represents the requested content from SDV i,
Ci (τ) represents the input size of requested content, Pi (τ)
represents the predicted content popularity level based on
Algorithm 1 described in Section IV-B, Fi (τ) represents
available computation resources of ESs, Bi (τ) represent the
available bandwidth resources of ESs, and Li (τ) represents
the location of SDV i including the latitude and longitude.
Considering the mobility of SDVs and different vehicular
services, the computation requirement from SDVs and the
location of SDVs are time-varying.

Actions. According to the observed environment states, the
agent decides which ES should be selected by SDVs and how
many computation and communication resources should be
allocated to SDVs. The action a (τ) is given by

a (τ) ={o1 (τ) , o2 (τ) , · · · , oV (τ) , c1 (τ) , c2 (τ) ,

· · · , cN+M (τ) , f1 (τ) , f2 (τ) , · · · , fN+M (τ) ,

b1 (τ) , b2 (τ) , · · · , bN+M (τ)},
(25)

where oi (τ) denotes the association variable whether ES
j ∈ N or M is selected to serve SDV i ∈ V . ci (τ) is the
caching variable that whether the content is cached in ES.
Note that oi (τ) and ci (τ) are both the binary discrete actions
that determine the decision-making of offloading and caching.
fi (τ) and bi (τ) denote the computation resources and the
bandwidth resources that ES j ∈ N or M allocates to SDVs,
which are the continuous variables.

Reward. After taking action a (τ) based on the environ-
ment states, the agent obtains the reward R(s (τ) , a (τ)).
Meanwhile, the reward function should correspond with the
optimization problem (19). The reward function based on the
optimization problem minimizing the system latency is defined
as

R (s (τ) , a (τ)) = −Θ (τ) . (26)

Based on the states, actions, and reward function, the con-
ventional methods (e.g., convex optimization and game theory)
are difficult to solve such problems due to the environment
with the dynamic states and state-to-action space. Therefore,
the DRL approach is utilized to obtain the optimal solutions.
Generally, several DRL algorithms are available, e.g., DQN
[28] and DDPG [29]. DQN is a traditional approach that can
find the optimal policy based on the Q value. By implementing
the deep neural network (DNN) to evaluate the Q value to
explore the action compared with the Q-learning algorithm,

the DQN algorithm learns the policy with DNN on the high
dimension states, but can only handle the discrete actions.
Nevertheless, we consider the high dimension state and action
with mixed continuous and discrete space in this paper. To
this end, the DDPG algorithm is selected, where DDPG is a
model-free and actor-critic scheme with two kinds of network
architecture that can tackle the high dimension and continuous
states and actions by the policy gradient method.

Specifically, to maximize the reward value and obtain
the optimal actions, a DDPG-based collaborative computa-
tion offloading, caching, and resource allocation scheme is
designed. The DDPG agent is responsible for the optimal
policy of resource assignment, ES selection, and content
placement decision, which involves a replay memory and two
components, i.e., actor and critic. In particular, the replay
memory is utilized to store experience tuples, consisting of
four components: current state, action, next state, and reward,
which can be sampled for the actor to train and update the
network parameters. The detailed process of the DDPG-based
algorithm is explained as follows.

The information of the observed environment is collected by
the agent, consisting of the status of SDVs and the status of
available resources of ESs. Then the explored policy maps the
current state to the action to obtain the resource dispatch and
ES selection policy. The primary actor neural network selects
the action a (τ) by adding the noise for better performance of
exploring the behavior policy, where action a (τ) is given by

a (τ) = µ (s (τ) | θµ) +N (τ) , (27)

where µ (s (τ)|θµ) denotes the explored policy by the actor
and N (τ) denotes the random noise. After obtaining the
action a (τ), the immediate reward can be calculated by the
agent, and the next state s(τ + 1) is returned.

In the each training step, the four-tuple transitions are
extracted from the experience replay buffer as training data
sets for the actor and critic. The critic updates the parameter
θQ by decreasing the cost function, which is given by

L
(
θQ
)

= E
[(
y (τ)−Q

(
s (τ) , a (τ) | θQ

))2]
, (28)

where Q
(
s (τ) , a (τ)

∣∣θQ) denotes the action-value function,
which can present the score to evaluate the policy. Therefore,
for each action, it requires the state s (τ) and s(τ + 1) to
calculate the action-value function.

Besides, the target value y (τ) can be calculated by Q′ and
µ′ of the target critic network, which is calculated as

y (τ) = R (s (τ) , a (τ)) +

λQ′
(
s(τ + 1), µ′

(
s(τ + 1) | θµ

′
)
| θQ

′
)
. (29)

According to the Q
(
s (τ) , a (τ)

∣∣θQ) and the sampling
experience transition tuples, the parameter θµ updates by the
actor neural network by utilizing policy gradient. Such that
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Algorithm 2: CoPace

/* Initialization phase */
1 Initialize the replay memory ;
2 Initialize the µ (s (τ)|θµ) and Q

(
s (τ) , a (τ)

∣∣θQ) ;
3 Initialize the actor and the critic ;
/* Execution phase */

4 for each episode do
5 Initialize the system state s ;
6 for time step = 1, 2, ..., T do
7 Pridict the future content request distributions

and then derive the popularity level of
contents by Alg. 1 ;

8 Collect the s (τ) ;
9 Select the at based on the µ (st|θµ) and s (τ) ;

10 Obtain the R(s (τ) , a (τ)) and s(τ + 1) ;
11 Store the four-tuple transition into replay

memory ;
12 Sample N transitions from the experience

replay buffer ;
13 Calculate the y (τ) by Eq. (29) ;
14 Update the θQ to minimize the loss function by

Eq. (28) ;
15 Update the µ (s|θµ) ;
16 Update the actor and critic by Eq. (31) and Eq.

(32) ;
17 Calculate the system latency by Eq. (18) ;
18 end
19 end

the policy gradient is presented as [23]

∇θµJ ≈

E

[
∇aQ

(
s, a
∣∣θQ)∣∣

s=s(τ),a=µ(s(τ))
∇θµµ (s|θµ)

∣∣∣
s=s(τ)

]
.

(30)

At each iteration, the network parameters θQ and θµ updates
utilizing the soft update scheme, which is presented as

θµ
′
← ωθµ + (1− ω) θµ

′
, (31)

and
θQ

′
← ωθQ + (1− ω) θQ

′
, (32)

where ω ∈ [0, 1] is an update coefficient.
The procedure of CoPace is illustrated in Algorithm 2. First,

the initialization phase is conducted for initializing phase.
For each episode, based on the predicted content popularity
level, the system state needs to be initialized. To maximize
the reward value, the system agent interacts with the EC-
enabled environment. Based on the behavior policy and states,
the action is selected by the system agent in each time slot τ .
Then, the reward and the next state are obtained. A four-tuple
transition is stored into the replay memory. When the replay
buffer is full, a batch of transitions is sampled for training.
After that, the system agent updates key network parameters.
At the end of each time step, the system latency is calculated.

D. Complexity Analysis

The complexity of the proposed OSTP and CoPace is
based on the computation complexity of neural networks.
For OSTP, let L denote the number of multiplications of
propagation and backpropagation in neural networks and N
denote the number of epochs in the training. The complexity
of training phase of OSTP is O(LN). During the prediction
phase, the propagation computation of neural networks is
represented by Lk and the number of mini-batch is repre-
sented by |Ik| of content k. The complexity of prediction
phase is O

(∑K
k=1 L

′
k |Ik|

)
. The complexity of OSTP is

O
(
LN +

∑K
k=1 L

′
k |Ik|

)
. For CoPace, let L′ denote the num-

ber of multiplications of propagation and backpropagation in
neural networks by DRL agent and let N ′ denote the number
of episodes. Each episode performs T time steps. Within one
episode, the OSTP is executed to predict the future content
popularity level. Note that we perform the training process of
OSTP at the beginning of CoPace, and for each time step the
prediction is conducted. Therefore, the complexity of CoPace
is O

(
LN +N ′TL′

∑K
k=1 L

′
k |Ik|

)
.

V. EXPERIMENTAL EVALUATION

In this section, extensive simulations of the CoPace is
conducted to evaluate the performance.

A. Datasets

The performance of the CoPace is evaluated on two real-
world datasets in Shanghai, China. First, the telecom datasets
from Shanghai are utilized, which includes more than 7.2 mil-
lion accessing histories through more than 3200 base stations
from Jun 1, 2014 to Nov 30, 2014 [30]–[32]. In addition,
we resort to the taxi trajectory datasets with GPS reports on
Feb 2007 in Shanghai, China, which contains 4316 taxis with
the movement of longitude and latitude of the location [33].
Inspired by the work [32], these two real-world datasets are
combined with the synthetic dataset, and the simulation area is
of the latitude from 30◦9′ to 31◦4′ and longitude from 121◦12′

to 121◦72′ in this paper. Fig. 3 illustrates the distribution of
base stations by telecom datasets with the records selected
from Jul 1 to Jul 31 and the mobility of vehicles by taxi
trajectory datasets.

All the simulations are conducted on a PC of Windows 10
with Intel i7-8700 (6 cores, 3.20GHz), 32GB DRAM, and
NVIDIA GTX 1080 GPU. The Python 3.7 with TensorFlow
1.15.0 and Keras 2.1.5 is implemented as the simulation
environment. Besides, the key parameters in the experiment
are illustrated in TABLE II.

B. Performance Evaluation of OSTP

In this subsection, we conduct the performance evalution of
OSTP. Specifically, the simulation area is divided into 5×6
regions for model training and prediction. The metrics of
root mean squared error (RMSE) and mean absolute error
(MAE) are utilized to evaluate the accuracy of prediction for
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Fig. 3: The distribution of synthetic dataset combined with
the real-world telecom datasets and taxi trajectory datasets in
Shanghai, China.

TABLE II: Key Parameters

Description Value
Number of BSs 4
Number of RSUs 18 ∼ 30
Number of SDVs 60 ∼ 100
Number of type of contents 10
Bandwidth of RSUs and BSs 20, 40 MHz [34]
Size of each required data 60 ∼ 100 MB [34]
Storage capacity of RSUs and BSs 0.5, 0.8 GB
Computation capacity of RSUs and
BSs 1, 2 GHz [35]

Required CPU cycles 10 ∼ 90 Megacycles [35]
Gauss white noise power -174 dBm/Hz [36]

the spatial-temporal distributions. In addition, we perform the
OSTP in comparison with the other three baselines as follows:
• Convolution neural network (CNN). A traditional convo-

lution based neural network which can capture the spatial
attributes.

• DeepST [37]. The first DNN model utilizes the neural
network to capture the spatial-temporal data dependence.

• ST-ResNet [38]. A classical convolution based residual
network, which can model the neighboring and distant
spatial-temporal features.

Fig. 4 illustrates the comparison of prediction error on
baselines with different batch sizes from two evaluation met-
rics, i.e., RMSE and MAE. The OSTP is better than CNN,
DeepST, and ST-ResNet on both metrics. It can be observed
in Fig. 4(a) that when the batch size is higher, the RMSE
of OSTP decreases linearly. In particular, OSTP outperforms
16.7 % than ST-ResNet, which is the model that can effectively
capture the spatial-temporal features, when batch size is 32.
MAE means the absolute error between the ground-truth and
the predicted one. As shown in Fig. 4(b), OSTP outperforms
other baselines on different batch sizes. When batch size is
32, OSTP is 27.1 % lower on MAE than DeepST. Generally,
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Fig. 4: Prediction error with different batch size.

the bigger size of the batch can improve the efficiency of
training. Nevertheless, the higher batch size does not mean
better performance. It can be seen that the OSTP of batch
size 32 achieves the lowest RMSE and MAE.

Fig. 5 elaborates the predicted performance of the content
popularity. It can be seen that the predicted popularity level
based on the OSTP is very close to the ground-truth value.
The main reason is that with the OSTP, the spatial-temporal
attributes of requirements from SDVs are more efficiently to
be captured and higher prediction performance is acquired.
First, with the consideration of 10 types of contents, the
content popularity level is based on the Eq. (22). In addition,
the request distributions are predicted and then the future
content popularity level is derived. Due to the spatial-temporal
dependence of content requests, it is effective to achieve the
features of request distribution by deep learning technology.
For example, the ground-truth content popularity of content 6
is 7.98e-2, and the predicted value of content 6 is 8.36e-2.

C. Performance Evaluation of CoPace

CoPace is proposed to optimize the coordination of offload-
ing decisions, content placement, and resource allocation. The
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performance of CoPace is evaluated and compared with the
other two baselines as
• DQN-based algorithm (DQN) [28]. In this scheme, of-

floading, caching, and computing and communication
resources allocation policies are generated by the DQN
agent.

• DDPG-based computation offloading and resource alloca-
tion without caching (DCR). In DCR, ES has no caching
capabilities. The computation offloading and resource
allocation strategies are derived from the DDPG agent.
In addition, the network architecture of utilized DDPG
in DCR is same to the CoPace.

First, Fig. 6 presents the convergence performance of our
proposal with different learning rates. In the CoPace method,
the actor is responsible for the selection of action by the
policy, as well as the critic estimates the performance of the
selected action. The learning rate can affect the convergence
performance and convergence speed of the whole network,
which is the crucial parameter for network training. It is
observed that when the episode is from 0 to 100, the system
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latency drops dramatically. As the episode exceeds 100, the
curve tends to be stable. Intuitively, we can see that the
learning rate is lower, the better convergence performance of
the CoPace is achieved. Furthermore, as the learning rate is
1e-3, the convergence speed is faster than where the learning
rate is 1e-5 or 1e-7.

Fig. 7 illustrates the latency comparison with different
numbers of SDVs. It is observed that the system latency of
these three methods increases when the edge nodes serve more
SDVs. This is because more SDVs share the computation
and communication resources with ES. When the ES has
the caching capabilities, the offloading time is reduced if the
requested content is cached on the corresponding ES. As the
number of SDVs rises, more high-frequency required data are
cached on the RSUs that the offloading delay is reduced. When
the number of SDVs is 60, CoPace outperforms 88.8 and 13.6
% than DQN and DCR, respectively. Moreover, in the DQN
scheme, due to the limited capabilities on high-dimensional
state and action space, it is difficult to explore and generate
the optimal joint offloading, caching, and resource dispatching
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policies. In addition, CoPace achieves a better performance
than DCR with the number of SDVs from 60 to 100.

Fig. 8 shows the latency comparison under the different
number of RSUs. We can see that the system latency de-
creases linearly when more RSUs are deployed for performing
computation tasks. This is because more RSUs can provision
more computation resources, caching storage, and bandwidth.
Especially, when the number of RSUs is 18, the performance
of system latency for CoPace relative to DCR is about 7.4 %.
Meanwhile, CoPace performs 2.2 times better than the DQN
scheme. As the number of RSUs increases, the system latency
reduces and more SDVs meet the demand for delay-sensitive
vehicular applications. For example, as the number of RSUs
increase to 30, the CoPace decreases the latency by 91.4 %
and 28.5 % as compared with the DQN and DCR, respectively.
Furthermore, with the caching capabilities, CoPace realizes
the offloading latency decrease if the required content result
is cached.

Fig. 9 provides the comparison of performance for the
latency with different sizes of required data. It is observed

that the increased size of data mainly affects the network
transmission time, leading to the rise of system latency. The
required data should be delivered to the ESs for execution,
which causes time consumption during the transmission. The
larger the size of data is, the offloading delay can be taken
more. When the required data gets larger, the CoPace can
obtain a better improvement of network latency than DQN.
This is mainly because the DDPG-based approach gains better
exploration performance in the action space, which derives
the better action with a higher reward value. Particularly,
when the size of required data is from 60 to 100 MB, the
latency reduction ratio of the CoPace compared with DQN
and DCR minimize from 71 % to 94 % and 34 % to 33 %,
respectively. This is because that if the requested content is
cached, the offloading delay can be sharply reduced. When
requested content is cached on the ES, the corresponding
processed results are returned to SDVs directly rather than
offloading them.

Fig. 10 elaborates the latency with different required CPU
cycles. It is seen that the latency of the three schemes increases
when more CPU cycles are required. The key reason is that
SDVs can hardly satisfy the computation-intensive vehicular
services for executing them with more processing resources.
Compared to the local processing on SDVs, computation
resources are deployed on ESs in proximity to SDVs to meet
the ultra-low response time requirements of delay-sensitive
applications. When the computation requires 10 megacycles,
the latency reduction ratio of the CoPace compared with DQN
and DCR is 2.2 and 1.9 times, respectively. As the number of
required CPU resources achieves, the CoPace is also superior
to DQN and DCR on system delay. Furthermore, CoPace can
outperform offloading latency over DCR due to the caching
capabilities imposed on ESs that only deliver the processed
results to SDVs if the required data is cached. Therefore, the
offloading time is minimized.

VI. CONCLUSION

In this paper, we proposed CoPace, a collaborative com-
putation offloading and content caching method. Specifically,
an offline spatial-temporal content popularity prediction algo-
rithm, OSTP, is designed first to predict the future popularity
level. According to OSTP, we then introduced the DDPG-
based offloading, caching, and resource dispatch algorithm
to optimize the latency. Based on two real-world datasets
(i.e., telecom access records and taxi trajectories) in Shang-
hai, China, extensive experiments are conduct and numerical
results demonstrate that CoPace is both more effective and
well-performed than baselines.
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