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Abstract
Nanoelectromechanical resonators are useful as both probes and generators of
turbulence in superfluid helium. Individual quantum vortices may become “trapped”
by a doubly-clamped beam-type resonator, permitting probing of a single vortex line
in isolation. This opens the door for studies of the fundamental processes governing
the transfer and dissipation of energy in quantum turbulence at the smallest of length
scales. As the small-scale limit of the Kelvin cascade is as yet poorly investigated, this
is of great interest in the drive to understand how energy is ultimately returned to the
environment in turbulent superfluid. In this thesis, evidence of single-vortex dynamics
directly influencing resonator response is presented, via analysis of the transmission
of a doubly-clamped beam resonator in the presence of quantum vortices. A length of
vortex extending from the resonator beam to the substrate results in greatly increased
dissipation, damping, and turbulence nucleation. The vortex also introduces a large,
negative nonlinear restoring force. These effects are attributed to the motion of the
vortex filament. These results demonstrate the ability of the nanoelectromechanical
scheme to transduce motion on single vortex lines and recommends the system for
future studies investigating the evolution of Kelvin waves.
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Chapter 1

Introduction

Turbulence in fluids is an exceedingly common and impactful phenomenon that is
nevertheless little understood. The complex interplay of chaos, randomness, and,
especially in real systems, external influences hinders attempts at finding rigorous,
general descriptions of behaviours in turbulent fluids4. The famous Navier-Stokes
equations well describe such systems, but the character and, in many cases, even the
existence of their solutions remains an open problem5.

A firm understanding of how energy is transferred into, through, and out of
a turbulent fluid is, however, essential in solving a vast number of problems in
both pure and applied science. Turbulence must be accounted for in the design of
vehicles6, buildings7, and electric generators8. It is a major hurdle in the development
of viable fusion power9. It is an essential process in the evolution of nebula
and galaxies10. Current work on classical fluid dynamics centres primarily around
statistical descriptions of turbulence, attempting to predict average behaviour on large
space and time scales11. In many cases, however, a more fundamental understanding
of the small scale nonlinear processes that give rise to these average behaviours would
be very beneficial.

In recent years, quantum turbulence, particularly in superfluid, has emerged
as a possible means of investigating these fundamental processes in a much less
chaotic environment. Quantum turbulence is the manifestation of turbulent flow
in non-classical fluids such as superfluids1 and quantum gases12. Rather than the
complex, hierarchical structure of vortices of ever-changing size seen in classical
systems, quantum turbulence consists of tangles of vortex lines each possessing, in
almost all cases, a single quantum of circulation1. Despite this dramatic departure
from classical vorticity, the behaviour of these quantized vortices as they interact with
each other and their environment, transfer and dissipate energy, and move through the
fluid has shown promising parallels to classical turbulence13–15. A rigorous description
of quantum turbulence may therefore be the key to a more rigorous description of

1



Chapter 1. Introduction 1.1. Superfluids

macroscopic turbulence.
In this paper, the interaction of quantized vortices in superfluid 4He with a

nanoelectromechanical resonator (NEMS) is described. The NEMS demonstrates
highly nonlinear behaviour when a vortex becomes partially aligned with the
oscillating beam. Experimental observations of this behaviour provide insight into
the dissipation mechanisms governing the cascade of energy to smaller length scales
in quantum turbulence, and indicate the potential utility of this measurement scheme
in probing Kelvin waves along individual vortices. By modelling the NEMS-vortex
system as a driven-damped Duffing oscillator, the degree of nonlinearity in the
response of the resonator is quantified and its dependence upon resonator drive force
is investigated.

1.1 Superfluids
A superfluid is a non-classical state of matter which behaves as a liquid possessing
zero viscosity1. The superfluid state has been achieved using a number of elements
and isotopes, including 3He16, 4He17, and a mixture of 6Li and 7Li18. The most
commonly studied superfluid is 4He, having a comparatively high lambda transition
temperature Tλ - the point at which the fluid begins transitioning to the superfluid
phase - of around 2.17K.

1.1.1 Superfluid 4He
The superfluidity of low-temperature 4He is a product of Bose-Einstein condensation
(BEC)1. Below the lambda transition temperature 4He atoms begin to condense,
occupying the same quantum ground state. Near the lambda point, however, most
of the fluid remains in the classical state. This is the basis for the “two-fluid model”,
a common description of 4He below 2.17K19. The two-fluid model assumes that the
normal fluid fraction and superfluid fraction behave as two mixed, non-interacting
fluids, with the normal fluid fraction declining asymptotically to zero as temperature
approaches 0K. A qualitative plot of the normal and superfluid fractions as a function
of temperature can be seen in Fig. 1.1. The mixture of normal and superfluid phases
is known simply as “He-II”. The lack of viscosity in the superfluid component allows
for dissipationless flow in He-II so long as the velocity of the fluid does not exceed a
critical velocity vc.

1.1.2 Critical velocity in superfluid
Both superfluids and other BECs exhibit a critical velocity above which superflow
breaks down. In a superconductor, often viewed as a superfluid of Cooper pairs,

2



Chapter 1. Introduction 1.1. Superfluids

Figure 1.1: Qualitative plot of the temperature dependence of the density of the
superfluid (ρsf, blue curve) and normal fluid (ρn, red curve) components of low-
temperature helium as a fraction of the total density ρ4He.

supercurrent is possible due to an energy gap between the quantum ground state and
the first excited state20. If the energy of the pairs is sufficient, they have enough
momentum to jump the energy gap separating the ground and excited states and
once again behave normally.

In a superfluid, however, no such energy gap exists. This is illustrated in the
dispersion relation for 4He, which can be seen in Fig. 1.2. There are no wave numbers
for which excitations are impossible. The existence of superflow in superfluids is thus
due to different mechanisms. The simplest is the Landau criterion, responsible for
the Landau critical velocity vL

1. To derive vL, consider an object of mass m passing
through a superfluid with velocity v. Suppose this object generates an excitation in
the superfluid, with energy Eexc and momentum pexc. The generation of excitations
must conserve momentum and energy

1

2
mv2 =

1

2
m(v′)2 + Eexc (1.1)

mv = mv′ + pexc, (1.2)
where v′ is the velocity of the projectile after the excitation is produced. Eq. (1.2)

3



Chapter 1. Introduction 1.1. Superfluids

Figure 1.2: Qualitative plot of the dispersion relation for 4He. Image adapted from
Guénault1.

yields v′ = v − pexc/m. Eq. (1.1) then gives

1

2
mv2 =

1

2
m
∣∣∣v − pexc

m

∣∣∣2 + Eexc =
1

2
mv2 − pexc · v +

p2

2m
+ Eexc

⇒ Eexc = pexc · v − p2

2m
≤ pexcv −

p2

2m
≤ pexcv

(1.3)

Thus, the projectile velocity needed to produce this excitation must satisfy

v ≥ Eexc

pexc
. (1.4)

Assuming m is sufficiently large that p2

2m
is negligible, the Landau critical velocity

necessary to produce any excitations is1

vL =

(
Eexc

pexc

)
min

. (1.5)

Although these calculations were done for a projectile moving through stationary
fluid, this picture is equivalent to a moving fluid encountering a stationary object,

4



Chapter 1. Introduction 1.1. Superfluids

Figure 1.3: Approximate plot of the temperature dependence of the speed of first
sound in 4He. Image adapted from Atkins2.

for example imperfections in an interface along which the fluid flows. Eq. (1.5) is
therefore a general result.

The value of Eexc

pexc
can be found from the dispersion relation. As illustrated in

Fig. 1.2, there exist two regimes in the dispersion of 4He. In the phonon regime,
dispersion is caused by phonons travelling at the speed of sound c. The energy of
excitations in this regime is thus Ephonon = pc, so1

Eexc

pexc
= c. (1.6)

The speed of sound in He-II depends upon temperature as seen in Fig. 1.3, but will
be between approximately 220 and 240m s−1 in the superfluid phase. For larger
momenta, the phonon regime gives way to the roton regime, with the energy of
excitations given by1

Eroton = ∆+
(p− p0)

2

2m4He

, (1.7)

where (p0,∆) is the location of the roton minimum marked in Fig. 1.2 and m4He is
the effective mass of a 4He atom in the superfluid. The minimum of the ratio Eexc

pexc

5
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then occurs where

d(Eexc/pexc)

dp
=

d

dp

(
∆

p
+

(p− p0)
2

2m4Hep

)
= 0. (1.8)

The momentum at which Eexc

pexc
is minimised is thus

pmin =
√
p20 + 2m4He∆ (1.9)

and therefore (
Eexc

pexc

)
min

=
∆√

p20 + 2m4He∆
+

(
√
p20 + 2m4He∆− p0)

2

2m4He

√
p20 + 2m4He∆

. (1.10)

In He-II, p0 ≈ 2.1× 10−24 kgm s−1, ∆ ≈ 1.2× 10−22 J, and m4He ≈ 6.6× 10−27 kg21,
yielding Eexc

pexc
≈ 53m s−1. Thus,

vL = min

{(
E

p

)phonon

min
,

(
E

p

)roton

min

}
= 53m s−1. (1.11)

In specific cases of superfluid flow far from an interface, most notably observations of
ions travelling through a bulk of He-II22 and molecules propelled through helium
nanodroplets23, the critical velocity is close to vL. In many cases, however,
experimental observations of the onset of dissipation in He-II suggest a far lower
critical velocity. When superfluid flows through a pipe or other constriction, the
critical velocity can be 0.5m s−1 or lower24,25. Vibrating tuning forks submerged
in 4He generally begin to experience drag at approximately 0.05m s−1 26. Another
dissipation mechanism thus operates at superfluid velocities lower than vL. Rather
than being mediated by phonons and rotons, dissipation in this regime occurs due to
the generation of quantum vortices.

1.1.3 Quantum vortices
Vortices are common structures in classical fluids, consisting of fluid moving in a closed
line about a central axis with velocity dependent upon the distance r from the axis.
Typically, vortices are either irrotational, with velocity proportional to 1

r
; rigid-body,

with velocity proportional to r; or, more commonly, some combination of rotational
and irrotational flow. In viscous fluids dissipation is negligible in rigid-body rotation,
such as that of a rotating bucket, but significant in irrotational systems, such as most
free vortices, due to shear between regions of differing angular velocity.

6



Chapter 1. Introduction 1.1. Superfluids

Proposed by Feynman in 195527 and first observed by Vinen in 196128,
quantum vortices are vortex lines similar to those in classical turbulence that carry
quantized circulation. Quantum vortices are always irrotational, even when the
normal component of a mixed superfluid-classical fluid system experiences rigid-body
rotation. The existence and character of these excitations is a consequence of quantum
condensation. Consider atoms of 4He in the superfluid ground state. Since they
form a Bose-Einstein condensate, they can be described by a single wavefunction; for
simplicity, assume it is a free-particle wavefunction such that1

Ψ = C(r, t)eiϕ̃(r,t), (1.12)

where C is amplitude and ϕ̃ is phase, both dependent upon space and time. Spatial
contortions of a wavefunction correspond to the system’s momentum, so the phase
can be written as

ϕ̃ = k · r =
p · r
ℏ

=
m4Hevsf · r

ℏ
, (1.13)

where k is the wavevector, r is the position vector, p is momentum, vsf is the superfluid
velocity, and m4He is the mass of a 4He atom. Inverting this equation yields

vsf =
ℏ

m4He

▽ ϕ̃. (1.14)

Circulation is defined as the integral of the velocity along a closed line∮
vsf · dℓ =

∮
ℏ

m4He

▽ ϕ̃ · dℓ. (1.15)

If the fluid occupies a connected region, the wavefunction must obey periodic
boundary conditions. Thus, the phase difference around any closed line must be
an integer multiple of 2π, and the circulation must therefore be

h

m4He

n = nκ, (1.16)

where κ is the circulation quantum and n is an integer. It should be noted that the
derivation of vsf accounts for only the fraction of the superfluid in the quantum ground
state. However, the motion of atoms not in the ground state is expected to be entirely
random, with the average net motion equal to that of the ground state. Eq. (1.14) is
therefore a general result for the whole superfluid, if vsf is taken to be the average net
velocity. If the region is simply connected, n must be zero since the integral may be
taken about an arbitrarily small line. However, if the region is multiply-connected,
for example possessing a singularity around which the fluid circulates, this is not the
case, and any integer is possible29.
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Chapter 1. Introduction 1.1. Superfluids

Figure 1.4: Qualitative diagram of a superfluid vortex filament.

In quantum vortices, this central singularity is provided by a topological defect in
the fluid, a singularity in the velocity field forming a core with radius approximately
equal to the inter-atomic spacing and typically no greater than 0.1 nm3,30. A
qualitative depiction of a vortex filament can be found in Fig. 1.4.

Although any number of circulation quanta are possible, only single-quantum
vortices are energetically favourable. To see this, consider a container with superfluid
filled to a depth l and multiple parallel vortices with core radius ξ and average distance
between vortices b. The kinetic energy per unit length of vortex ε = E/l is then given
by20

ε =
1

l

∫∫∫
V

1

2
ρsfv

2
sfdV, (1.17)

where ρsf is the superfluid mass density and the integral is over the average volume
of fluid between two nearest-neighbour vortices. Thus,

ε =
1

2

1

l

b∫
ξ

2π∫
0

l∫
0

ρsf

( κn

2πr

)2
rdzdϕdr = ρsf

κ2

4π
n2 ln

(
b

ξ

)
. (1.18)

Since energy is proportional to the square of the number of circulation quanta n, a
two-quanta vortex would have four times the energy of a single-quantum vortex. It is
therefore thermodynamically favourable for multi-quanta vortices to split into many
single-quantum vortices.

The generation of quantum vortices can explain the very low experimentally
observed critical velocity of 4He, particularly when fluid flows through pipes, grids,
or other narrow spaces, using an argument due to Feynman31. Consider superfluid
flowing with velocity v out of a constriction of radius R into a bulk reservoir. Let
the coordinate r be the radial distance from the central axis of the constriction, and
z be the lateral distance from the end of the constriction. Consider a rectangular
path C of length l in the ẑ direction with one edge at r = 0 and the parallel edge at
r = 2R. As in a classical system, fluid flowing out of a constriction will “fan out”,
with fluid farther from the central axis moving slower than fluid closer to the centre.
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Chapter 1. Introduction 1.1. Superfluids

Assume a simple model in which the fluid flows with velocity v in a “tube” of radius
R extending in the ẑ direction from the end of the constriction, and is stationary
elsewhere. This discontinuity in the velocity field will give rise to a series of vortices
along the interface between the moving and stationary fluid. Assuming all the vortices
have a single quantum of circulation, the net vortex velocity about C is

vC =

∮
C

v · dr = nlκ, (1.19)

where n is the number of vortices per unit length. In terms of the general velocity v
of the superfluid, then,

n =
v

κ
. (1.20)

The energy of the nucleated vortices per unit length of flow per unit time is then equal
to the product of ε, n, and v

Evort = ρsf
κ2

4π
ln

(
b

ξ

)(v
κ

)
v =

ρsfκv
2

4π
ln

(
2R

ξ

)
, (1.21)

where the distance between vortices is assumed to be 2R. The energy of the superfluid
leaving the constriction per unit length per unit time is

Esf =
1

2

(
ρsfv

2
)
vR. (1.22)

The energy of the turbulence Evort must be equal to the energy of the flow creating
it Esf. Thus,

v =
κ

2πR
ln

(
2R

ξ

)
≡ vc. (1.23)

Eq. (1.23) is only an approximation, but suggests critical velocities far closer to those
observed experimentally than does the Landau criterion. For a 67 µm pipe, such as
that used in an experiment by Baehr et al.32, Eq. (1.23) would suggest vc ≈ 0.6 cm s−1,
compared with the experimental observation of vc ≈ 1.5 cm s−1.

The quantization of turbulence in superfluid is the primary reason for superfluid’s
utility as a “toy model” for classical turbulence. Individual quantum vortices may be
trapped and probed, and the evolution of these structures is much easier to track
experimentally and explain mathematically than the many eddies of arbitrary size
that comprise classical turbulence33.

1.1.4 Vortex reconnection
When two vortices, or two segments of the same vortex, move sufficiently close, they
often reconnect with each other, a process illustrated in Fig. 1.5. Both vortex lines
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Chapter 1. Introduction 1.1. Superfluids

Figure 1.5: Qualitative depiction of the vortex reconnection process.

will split, and the ends will reconnect to the ends of the other vortex. Reconnection
events occur most readily for antiparallel vortices, in which the axes of rotation point
opposite directions at the point of closest approach. Numerical simulations have
demonstrated that even vortices with perpendicular axes of rotation can reconnect if
sufficiently close, however34.

This process is known to occur in classical vortices, being a prediction of the
Navier-Stokes equations35 and an experimentally observed phenomenon36. In super-
fluid, vortex reconnection has been studied numerically as a prediction of both the
Biot-Savart law37,38 and Gross-Pitaevskii equation39–42, as well as experimentally43.
Numeric studies using the Gross-Pitaevskii model have additionally predicted that
reconnections will result in the emission of a phonon44.

Notably, after reconnection, the resultant vortices will have “kinks”, as seen in
Fig. 1.5. These kinks cannot exist in equilibrium and will relax, becoming smooth
curves. When they do, they perturb the entire vortex line, creating propagating
helical displacements called Kelvin waves45.

1.1.5 Kelvin waves
Kelvin waves were first proposed by Lord Kelvin to describe waves in water46, and are
widely used in classical fluid dynamics to model oceanic47 and atmospheric48 gravity
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Chapter 1. Introduction 1.2. Energy dissipation

Figure 1.6: Plot of the dispersion relation for kelvons on a quantum vortex in 4He,
given by Eq. (1.24).

waves. In superfluids and non-superfluid BECs, they are applied to waves travelling
along vortex filaments45, where they behave as quasiparticles called kelvons20. Kelvin
waves admit the dispersion relation29

ω =
κk2

4π
ln

(
1

kξ

)
, (1.24)

where k is the wavenumber. A plot of Eq. (1.24) can be seen in Fig. 1.6. Direct
experimental observation of Kelvin waves on a single vortex in a BEC of rubidium
was achieved by Bretin et al.49,50, and observation of Kelvin waves on a superfluid 4He
vortex was achieved by Fonda et al. by injecting tracer molecules into vortex lines51.
Kelvin waves are believed to play a fundamental role in the dissipation of turbulent
energy at the smallest of length scales in superfluids.

1.2 Energy dissipation
Although a characteristic of superfluid is its ability to flow without viscosity, quantum
vortices do dissipate energy. At high temperatures and large length scales the
dissipation mechanisms mirror those of a classical fluid. At lengths smaller than
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the average distance between vortices, however, different processes are believed to
take over, the precise nature of which has not yet been fully explored.

1.2.1 Dissipation in classical turbulence
In a classical fluid, turbulence is dissipated via the Kolmogorov cascade, in which
energy is transferred to progressively smaller length scales as large vortices break apart
and reconnect into many smaller vortices52. The kinetic energy stored in the vortices is
largely conserved until the Kolmogorov length scale is reached, at which point energy
is ultimately dissipated as heat from friction between fluid molecules. Length scales
between the characteristic length - the length scales of the initial turbulent eddies -
and the Kolmogorov scale are known as the inertial range11.

The Kolmogorov cascade is characterised by its energy spectrum53. If k is the
wavenumber of a turbulent excitation, then the energy spectrum E(k) gives the
average energy per unit mass of excitations with wavenumber k. The spectrum was
derived by Kolmogorov54 and is known to be

E(k) = Cϵ2/3k−5/3, (1.25)

where ϵ is the rate at which energy per unit mass is transferred to smaller length scales
and C is a constant53. Since energy is constantly flowing down the cascade, the rate
of energy transfer in the inertial range must be equal to the rate of dissipation on the
Kolmogorov scale. Assuming that the boundary of the region containing the turbulent
vorticity experiences viscous stress52 and that the turbulence is homogeneous and
isotropic, the dissipation rate can be shown to be53

ϵ = ν⟨ω2⟩, (1.26)

where ν is viscosity, ω = ▽× v is vorticity, and ⟨ω2⟩ is the mean square vorticity.

1.2.2 Dissipation in quantum turbulence
The Kolmogorov cascade can be seen in quantum vortices. At large length scales,
individual vortices become difficult to resolve and the energy cascade is dominated by
their collective behaviour, which mirrors classical turbulence55. Similar to a classical
fluid, large superfluid vortices will split and reconnect to form many shorter vortex
lines. At small length scales, however, the superfluid cascade diverges from the
classical45. The small-scale energy cascade is dominated by Kelvin waves, which
ultimately dissipate energy into the surrounding fluid55.

The available mechanisms by which energy can be transferred to the environment
are restricted by the quantum nature of superfluid vortices. At high temperatures close
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to the phase boundary, the normal fluid fraction is much larger than the superfluid
fraction. Dissipation at very small scales is then believed to be mediated by classical,
viscous dissipation in the normal fluid component55.

However, at lower temperatures, particularly below about 1K, the normal fluid
fraction is negligible. Vortex energy cannot be lost by “slowing down”, reducing
circulation, as circulation cannot fall below its minimum value of h/m4He until the
vortex fully dissipates. Energy can, however, be reduced by a reduction of the
total length of vortex lines. Length contraction occurs during reconnection events,
in which two lengths of vortex split and reconnect with each other. The total
length of the resultant vortices is slightly smaller than their initial lengths. Some
of the energy associated with the length difference is radiated as a phonon during
reconnection44. The remainder is transferred to Kelvin wave excitations of the child
and parent vortices45. Kelvin waves follow a process analogous to the Kolmogorov
cascade, with wavelength declining over time55. As in the classical cascade, the large-
wavelength Kelvin waves experience minimal dissipation, instead simply transferring
energy to smaller length scales. Eventually, however, Kelvin waves are generated
with sufficiently high frequency to begin to radiate phonons, completing the transfer
of energy back to the environment56,57. This process is known as the Kelvin wave
cascade to distinguish it from the long-length-scale Kolmogorov cascade.

Recent work suggests the Kelvin cascade may be complemented by further self-
reconnections as Kelvin wavelength decreases. The reduction in wavelength during the
cascade necessarily means local curvature of the vortex line will increase. Eventually,
local curvature will increase to the point that loops form in the vortex line, which
could then break off in a self-reconnection event. The parent and child vortices then
continue the cascade to ever-smaller length scales until all turbulent energy has been
converted to phonons45.

The spectrum of the Kelvin wave cascade is an open problem. Two competing
theories have been put forward to describe it. The first, developed by Kozik and
Svistunov58, assumes local six-wave interaction to derive the energy spectrum58,59

E(k) = C6κ
7/5ϵ1/5k−7/5, (1.27)

where C6 is a dimensionless constant, κ is the circulation quantum, and ϵ is the energy
flux. It was later suggested by L’vov that the locality assumption used to derive
Eq. (1.27) was invalid60 and, using local four-wave interaction, a different spectrum
was derived by L’vov and Nazarenko59,60

E(k) = C4κ
5/3ϵ1/5Ψ−2/3k−5/3, (1.28)

where C4 is a dimensionless constant and Ψ is

Ψ =
2

γ

∫
1/lv

k2n(k)dk, (1.29)
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where lv is the inter-vortex spacing and n(k) is the action density for a wave with
wavenumber k. There has been, and remains, debate regarding which formulation is
more accurate, although there is growing consensus in favour of the L’vov-Nazarenko
model (Eq. (1.28)) based on numerical studies59,61–68.

It should be noted that while the picture of the Kelvin wave cascade is supported
by theory56 and numerical studies44,69, there has not yet been a direct observation of
cascading Kelvin waves, phonon emission from reconnection, or Kelvin-wave-induced
self-reconnection68. A simple and reliable means of experimentally probing Kelvin
wave dynamics on individual vortices would be an important step towards better
understanding the Kelvin cascade. Vortex trapping using nanoelectromechanical
resonators could provide such a means.

1.3 Nanoelectromechanical resonators
A common tool used to probe turbulence and other phenomena in superfluids is
the nanoelectromechanical resonator. Two of the most common resonator layouts
are doubly-clamped beams (Fig. 1.7a) and tuning forks (Fig. 1.7b). In this study, a
tuning fork is used to generate vortices, while a doubly-clamped beam is used to probe
them. When a vortex moving through the fluid comes into contact with the beam
of the resonator, there is a chance that it may become “trapped”, with circulation
enveloping some or all of the beam and the ends of the vortex line pinned to either
the resonator clamps or the walls of the sample cell. A “trapped” state alters the
behaviour of the resonator, and by analysing these changes significant information
about the vortex can be inferred. An accurate model of the behaviour of the doubly-
clamped beam is necessary to quantify the changes, which often result in nonlinearity.
The Duffing model of a nonlinear oscillator provides a useful description of the beam
resonator used in this study.

1.3.1 Linear model
In the absence of mechanical or superfluid-originated nonlinear forces, the doubly-
clamped beam resonator may be modelled as a simple driven-damped linear oscillator
with flexural modes. Assuming the sole degree of freedom is the displacement of the
centre of the beam x(t), the equation of motion is

x′′ + ζx′ + ω2
0x =

1

2
f
(
eiωt + e−iωt

)
, (1.30)

where ω0 is the resonant frequency of the oscillator; ζ is the linear drag coefficient,
also known as the damping ratio; f = F/m is the magnitude of the drive force
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Figure 1.7: Devices used to generate and trap vortices. a) is an SEM image of the
doubly-clamped beam, zoomed-in on one of the clamps. This image was used to
estimate the cross-sectional dimensions of the beam extending towards the right of
the image (130 nm by 200 nm), as well as the distance from the beam to the substrate
(1 µm). b) is an SEM image of a tuning fork. The tuning fork shown is a sister sample
of the device used in this study, with very similar structure.

normalised to the the effective mass m of the oscillator; and ω is the drive frequency.
By introducing the dimensionless time t̃ = ω0t, the equation can be rewritten

x′′
t̃ + ζ̃x′

t̃ + x =
1

2

f

ω2
0

(
eiω̃t̃ + e−iω̃t̃

)
, (1.31)

where ω̃ =
ω

ω0

and ζ̃ =
ζ

ω0

are the dimensionless drive frequency and drag coefficient,
respectively. The general solution of this equation can be written

x =
1

2

(
x0e

iω̃t̃ + x∗
0e

−iω̃t̃
)
, (1.32)

where x0 is the complex amplitude of oscillation. By using this trial function one can
obtain the frequency response of the resonator

x2
0 =

(
f

ω2
0

)2
1

(ω̃2 − 1)2 + ω̃2ζ̃2
. (1.33)

Equation (1.33) is a Lorentzian function relating the amplitude of oscillation to
the drive frequency, and has a peak about the resonant frequency ω̃ = 1. Plots of
Equation (1.33) for various values of ζ̃ can be seen in Fig. 1.8. Note that the quality
factor Q of the resonator is equal to Q = ζ̃−1.
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Figure 1.8: Frequency response of a linear driven-damped oscillator (Eq. (1.33)) with
different values of the dimensionless linear drag coefficient ζ̃. The dimensionless
amplitude x̃0 is equal to x0ω

2
0/f , and the dimensionless frequency ω̃ is equal to ω/ω0.

1.3.2 Duffing force
This description is not sufficient, however, when nonlinear effects become significant.
Nonlinearities may originate internally, for example mechanical nonlinearities due
to strain in the beam, or externally, for example due to interactions with trapped
vortices. In the absence of interactions with the superfluid, the beam resonator
used in this study is expected to develop a Duffing-type nonlinearity of the form
αx3 at sufficiently high oscillation amplitudes. This additional force functions as a
nonlinear restoring force. While α can be positive, thereby “hardening” the resonator,
or negative, “softening” the resonator, the intrinsic, mechanical nonlinearity will result
in a positive α as the beam resists stretching when the amplitude of oscillation becomes
sufficiently large, of the same order of magnitude as the width of the beam70. Multiple
physical effects can give rise to a Duffing-type force, depending upon the arrangement
of the resonator and the environment. See Chapter A for a derivation of the Duffing
force due to resistance by the beam’s material to stretching, as well as an estimation
of the intrinsic Duffing parameter for our doubly-clamped beam. Interaction with
a partially-trapped vortex may also be modelled as a Duffing force, though with a
negative α. This will be discussed further in Chapter 4.
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1.3.3 Duffing model
Taking as a given the existence of a Duffing force, the equation of motion for a driven-
damped oscillator becomes

x′′ + ζx′ + ω2
0x+ αx3 =

1

2
f
(
eiωt + e−iωt

)
. (1.34)

A general closed form solution for Eq. (1.34) does not exist. However, provided the
quality factor of the resonator is sufficiently large and the amplitude of oscillation
is sufficiently small, secular perturbation theory may be applied to extract an
approximate frequency response, following a derivation by Lifshitz and Cross70.

Dimensionless variables t̃ = ω0t and x̃ = x

√
α

ω2
0

are introduced for time and

displacement, respectively. Normalisation of all terms of Eq. (1.34) yields the scaled
equation of motion

x̃′′
t̃ + ζ̃ x̃′

t̃ + x̃+ x̃3 =
1

2
f̃
(
eiω̃t̃ + e−iω̃t̃

)
, (1.35)

where f̃ =
f
√
α

ω3
0

. Provided the linear drag coefficient and displacement are sufficiently

small such that ζ̃ ≪ 1 and O(x̃) = O
(
ζ̃1/2

)
, damping may be considered a

perturbation. From the linear harmonic oscillator, it must be that x̃ ∝ f̃ ζ̃−1 and
thus O(f̃) = O(ζ̃

3
2 ). Drive force may therefore be considered a perturbation as well.

Define a new, further-scaled drive amplitude g such that f̃ = ζ̃
3
2 g. This analysis

concerns frequencies in a range of order ζ̃ about the resonant frequency ω̃ = 1. It is
therefore convenient to introduce a new frequency Ω such that ω̃ = 1+ ζ̃Ω. Eq. (1.35)
then becomes

x̃′′
t̃ + ζ̃ x̃′

t̃ + x̃+ x̃3 =
1

2
gζ̃

3
2

(
ei(1+ζ̃Ω)t̃ + e−i(1+ζ̃Ω)t̃

)
. (1.36)

Eq. (1.36) can be solved by using the ansatz

x̃(t̃) =
1

2
ζ̃

1
2

(
A(τ)eit̃ + c.c.

)
+ ζ̃

3
2y(t̃) +O(ζ̃

5
2 ), (1.37)

where A(τ) is the time-varying complex amplitude of oscillation of the resonator,
τ = ζ̃ t̃, and y(t̃) is the first-order perturbative correction. Note that the first term is
the ansatz for a simple harmonic oscillator in scaled units. Inserting Eq. (1.37) into
Eq. (1.36) and extracting only terms of order ζ̃3/2 yields the first-order perturbative
correction

ỹ′′t̃ + y(t̃) =
1

2

(
−2iA′

τ − iA− 3

4
|A|2A+ geiζ̃Ωt̃

)
︸ ︷︷ ︸

=0

eit̃ +
1

8
A3e3it̃ + c.c. (1.38)
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The terms multiplied by e±it̃ are the secular terms and act as an effective drive force
at exactly the resonant frequency. If the first-order correction does not diverge, it
must be that these terms sum to zero. This gives a differential equation in terms of
the complex amplitude A(τ)1

2iA′
τ (τ) + iA(τ) +

3

4
|A(τ)|2A(τ) = geiΩτ . (1.39)

A good ansatz is harmonic motion at frequency Ω

A(τ) = aeiτΩ = |a|eiφeiΩτ , (1.40)

where φ is the phase of oscillation. Substituting Eq. (1.40) into Eq. (1.39) yields an
algebraic equation for the amplitude of oscillation a

a =
g

i+
3

4
|a|2 − 2Ω

. (1.41)

The real part of a can be found by multiplying Eq. (1.41) by a∗, yielding an implicit
formula for the frequency response of the resonator

|a|2 = g2(
3

4
|a|2 − 2Ω

)2

+ 1

, (1.42)

or, in unscaled units

|x0|2 =
(

f

ω2
0

)2
1(

2(ω̃ − 1)− 3

4

|x0|2α
ω2
0

)2

+

(
ζ

ω0

)2
. (1.43)

The phase can be found by inserting a = |a|eiφ into Eq. (1.41) and solving for g/|a|

g

|a|
=

(
3

4
|a|2 − 2Ω

)
cosφ− sinφ

+ i

[(
3

4
|a|2 − 2Ω

)
sinφ+ cosφ

]
.

(1.44)

The quantity g/|a| must be real, so the imaginary terms must sum to zero. This
yields a formula for φ

tanφ =
1

2Ω− 3

4
|a|2

, (1.45)

1Complex conjugate terms provide a similar equation.
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or, in unscaled units

tanφ =

ζ

ω0

2(ω̃ − 1)− 3

4

|x0|2α
ω2
0

. (1.46)

The time-varying displacement is thus the simple harmonic

x(t) = x0 cos(ωt+ φ). (1.47)

Eq. (1.43) may be further rewritten in terms of dimensionless parameters as

x̃2
0 =

1(
2(ω̃ − 1)− 3

4
α̃x̃2

0

)2

+ ζ̃2
, (1.48)

where the dimensionless amplitude of oscillation x̃0 is

x̃0 =
ω2
0x0

f
, (1.49)

and the dimensionless Duffing parameter α̃ is

α̃ =
αf 2

ω6
0

. (1.50)

Eq. (1.43) is a “skewed” Lorentzian, similar to Fig. 1.8 with the resonant peak
“pulled” towards either higher or lower frequencies. The direction of asymmetry
is determined by the sign of α; a negative Duffing coefficient pulls the maximum
amplitude of oscillation toward frequencies lower than the natural resonant frequency
ω0 (softening the resonator), and a positive Duffing coefficient pulls the maximum
amplitude towards frequencies higher than ω0 (hardening the resonator). The degree
of asymmetry is determined by the magnitude of α, with higher magnitudes pulling
the maximum amplitude further from ω0. The effect of α̃ on the qualitative behaviour
of Eq. (1.48) can be seen in Fig. 1.9

Eq. (1.43) provides an implicit relationship between the maximum amplitude
of oscillation of the resonator x0 and drive frequency ω, which can be fitted to
experimental data with the Duffing parameter α, resonant frequency ω0, drive force
f , and linear drag ζ free parameters.

If nonlinear effects are sufficiently strong, a region of bistability may emerge, as
seen in Fig. 1.9 when α̃ = ±7. This is a prominent feature of experimental observations
of nonlinear NEMS. Within this interval, bounded by two bifurcation points ω+ and
ω−, there exist two stable and one unstable solutions to Eq. (1.48).
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Figure 1.9: Plots of Eq. (1.48) with different values of the dimensionless Duffing
parameter α̃. The dimensionless amplitude x̃0 is equal to ω2

0x0/f , and the
dimensionless frequency ω̃ is equal to ω/ω0.

Both the existence and location of the bifurcation points, and thus the region of
bistability, can be determined from Eq. (1.42). Since the bifurcation points are local
extrema of the inverse amplitude function (|a|2)−1(Ω), they occur where dΩ/d|a|2 = 0.
Taking a derivative of Eq. (1.42) with respect to Ω yields

d|a|2

dΩ

[
−27

64
|a|4 − 3

2
Ω|a|2 + 1

4
+ Ω2

]
=

3

4
|a|4 − 2Ω|a|2

⇒ 27

64
|a|4 − 3

2
Ω|a|2 + 1

4
+ Ω2 =

dΩ

d|a|2

[
3

4
|a|4 − 2Ω|a|2

]
.

(1.51)

Setting dΩ/d|a|2 = 0 means the right hand side of this equation is equal to zero,
leaving a quadratic equation in Ω

27

64
|a|4 − 3

2
Ω|a|2 + 1

4
+ Ω2 = 0 (1.52)

which has solutions
Ω± =

3

4
|a|2 ± 1

2

√
9

16
|a|4 − 1, (1.53)

or, in unscaled units,

ω± = ω0 +
3

4

|x0|2α
ω0

± 1

2

√(
3

4

|x0|2α
ω0

)2

− ζ2. (1.54)
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Figure 1.10: Hysteresis in the response of a Duffing oscillator exhibiting bistability
during a) a drive frequency upsweep and b) a drive frequency downsweep.

Thus, the bifurcation points appear if and only if 3

4

|x0|2α
ω0

> 1, and are located at
the corresponding frequencies ω+ and ω−. In Fig. 1.9, when |α̃| < 2 this is not the
case. The birfurcation frequencies are complex, so there is no bistable region. When
|α̃| = 7, however, Eq. (1.54) has two real solutions, and therefore a bistable region
exists.

Bistability is a source of hysteresis in drive frequency sweeps of the resonator,
as seen in Fig. 1.10. During drive frequency upsweeps (Fig. 1.10a) the system will
remain on the upper (if α > 0) or lower (if α < 0) branches until reaching the second
bifurcation point ω+. The system will then make a discontinuous jump to the other
branch, with resonator response decreasing (if α > 0) or increasing (if α < 0) suddenly
and dramatically before decaying smoothly as drive frequency is further increased.
During a drive frequency downsweep (Fig. 1.10b) the opposite will happen, with the
discontinuous jump at the first bifurcation point ω−. In practice, these jumps will
typically happen at frequencies slightly lower than ω+ and slightly higher than ω−

due to thermal noise pushing the system to the other branch prematurely.
The existence of bifurcation points give NEMS potential utility as highly sensitive

sensors and detectors of quantum behaviour. For the former application, operating
a resonator near one of the bifurcation points will allow a very small change in drive
frequency, or any parameter which determines the location of the bifurcation points,
to produce a strong and easily detectable change in response so long as noise can be
sufficiently controlled for. For the latter application, the drive frequency and other
parameters may be tuned so that thermal noise is insufficient to force the system to
jump branches if the resonator is behaving classically, but if the resonator is behaving
quantum mechanically it may tunnel between states with relative ease. This provides
a means of determining whether the system is obeying classical or quantum rules70.

The remainder of this work is laid out as follows: Chapter 2 will detail the
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experimental setup and procedures used to trap vortices and probe their behaviour.
Chapter 3 will present an analysis of the experimental data and argue for the existence
of several mechanisms by which Kelvin waves on individual vortices modify the
behaviour of our nanoelectromechanical resonator. Chapter 4 will present the results
of fitting the driven-damped Duffing oscillator solution (Eq. (1.43)) to experimental
data and briefly outline possible physical mechanisms that may be responsible for
observed trends. Finally, Chapter 5 will provide a summary of the results, their
utility in the broader drive to better understand superfluid turbulence, and potential
next steps in this line of inquiry.
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Chapter 2

Experiment

Experiments are conducted in a brass sample cell filled with high-purity 4He, thermally
connected to the mixing chamber of a cryogen-free dilution refrigerator. A pressure of
approximately 0.8 bar and temperature of 12mK is maintained in the sample cell. At
this temperature and pressure the normal fluid component of the He-II is very small
compared to the superfluid component, and the system can be well approximated as
a pure superfluid. Two nanoelectromechanical resonators are present in the sample
cell: a tuning fork and a doubly-clamped beam-type resonator. A diagram of the
experimental setup can be seen in Fig. 2.1. Vortices generated by the tuning fork will
travel in a random direction away from it. Some of these vortices will collide with the
nearby beam resonator, and will occasionally become trapped by it. These trapped
vortices alter the behaviour of the beam resonator, and the effect they have on the
device’s response can be used to infer the behaviour of the vortices themselves.

2.1 Tuning fork theory and operation
A quartz piezoelectric tuning fork, hereafter referred to as the “fork”, is used to
generate turbulence. The fork is actuated using the reverse piezoelectric effect, via
an RF voltage signal applied at the fork’s resonant frequency. The voltage is applied
to electrodes on each prong, causing the quartz to expand and contract and thereby
actuating the device. Assuming flexural modes of oscillation dominate torsional modes
in the tuning fork, the drive force F applied to the fork is directly proportional to the
voltage V applied to electrodes mounted on each quartz prong via

F =
afV

2
, (2.1)

where af is the fork constant, determined by the geometry of the device as

af = 3d11Ewh/l, (2.2)
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Chapter 2. Experiment 2.1. Tuning fork theory and operation

Figure 2.1: Schematic of the experimental setup used for real-time detection of
quantized vortices. The overall setup is shown in a): a tuning fork generates quantum
turbulence, while a 70 µm-long nanomechanical beam suspended 1 µm above the
substrate is used as a detector. The beam and fork are driven by vector network
analysers or signal generators through several stages of attenuation at different
temperatures. The beam’s and fork’s signals are amplified at room temperature by
a 79 dB amplifier and an I/V converter respectively. A more detailed diagram of the
NEMS circuit can be found in b): “NA” refers to the network analyser input port; Zin
is the input impedance of this port, and Zout is the output impedance of the signal
generator driving the NEMS.
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Chapter 2. Experiment 2.1. Tuning fork theory and operation

Figure 2.2: Response of the tuning fork as a function of frequency and drive power.
Resonant frequency f0 is 32 058Hz. A cooler colour indicates a higher magnitude
response. The plateauing of the response at high drive powers can be seen by the
progressive broadening of the resonance peak.
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where d11 is the longitudinal piezoelectric modulus of quartz; E is Young’s modulus;
and w, l, and h are the width, length, and height of the prongs, respectively71.
In practice the fork constant is measured experimentally to be 2.5× 10−5 kg s−1.
Crucially, the drive force is independent of applied magnetic field, so the operation
of the tuning fork is not affected by the magnetomotive scheme used to actuate the
nearby beam-type resonator.

In order to produce vortices, the prongs of the fork must exceed a threshold
velocity26. Velocity is modulated via drive force, which is in turn modulated via
applied current. The power supplied to the fork is IV , where I is the current through
the device, and the power dissipated by the fork is approximately Fv, where v is the
velocity of the tips of the prongs. The velocity of the prongs is therefore

Fv = IV ⇒ v = 2I/af . (2.3)

In practice the threshold velocity for turbulence generation is found by observing the
current transmitted by the fork. Prior to the onset of turbulence the transmission
of the fork as a function of drive frequency is Lorentzian. Once vortex generation
begins, a characteristic “plateau” emerges, as seen in Fig. 2.2. Operating the device
at a frequency within this plateau will generate quantum vortices. The operating
point of the tuning fork during all our experiments is a frequency of 32 058Hz and a
drive power of 0.13 µW.

2.2 Doubly-clamped beam theory and operation
The aluminium-silicon nitride doubly-clamped beam-type resonator, hereafter re-
ferred to as the “NEMS”, is positioned approximately 2mm from the fork, as seen in
Fig. 2.1, and is used to trap and probe vortices generated by the fork. The NEMS
consists of an oscillating beam composed of a 30 nm thick aluminium layer used to
actuate the device through a magnetomotive scheme atop a 100 nm thick Si3N4 layer
which is responsible for most of the beam’s mechanical properties. The beam is
clamped on each end by thicker aluminium electrodes.

2.2.1 Physical parameters
A cross-section of the resonator beam can be seen in Fig. 2.3. The beam is a sister
sample to that used in a previous study by Guthrie et al.72, during which there was no
significant observed longitudinal or torsional motion. Assuming pure flexural motion,
then, the resonant frequency f0 of a doubly-clamped beam with a rectangular cross
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Figure 2.3: Cross section of the resonator beam.

section can be approximated as73

f0 =
k2

π
√
48

w

l2

√
E

ρbeam

√
1 + γ

(w
l

)2 T0

whE
(2.4)

where w is the width of the beam (200 nm), h the height of the beam (130 nm), l the
length of the beam (70 µm), E Young’s modulus (70GPa), ρbeam the mass density
of the beam (averaged to 3062 kgm−3 accounting for both the silicon nitride and
aluminium layers72), T0 the intrinsic strain, and k and γ dimensionless constants that
vary depending upon the harmonic (4.73 and 0.295 respectively for the fundamental
mode). Resonant frequency in a vacuum at approximately 16mK was measured to
be 2.249 58MHz, implying an intrinsic strain T0 = 3.66 µN.

When immersed in helium, the added inertia of the fluid that must be displaced
as the beam oscillates manifests as an increase in the effective mass meff of the
device and a corresponding decrease in the resonant frequency. The ratio between the
vacuum resonant frequency f vac

0 and the immersed resonant frequency f imm
0 is equal

to74 (
f vac
0

f imm
0

)2

=
meff

mbare

= 1 + β
ρ4He

ρbeam
+B

ρn
ρbeam

S

V

√
ν

πρnf imm
0

(2.5)

Where mbare is the mass of the beam in vacuum, ρ4He is the mass density of He-II
(approximately 145 kgm−3 at 10mK75), ρn is the mass density of the normal fluid
fraction, S is the surface area of the beam, V is the volume of the beam, ν is
the viscosity of the normal component, and β and B are dimensionless parameters
dependent upon the geometry of the beam. For an infinitely long beam with a
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rectangular cross section, β = (πh)/(4w) and B = 1. At 10mK, we consider
the normal fluid fraction sufficiently small so as to render the term in Eq. (2.5)
proportional to B negligible. Thus,

f imm
0 =

f vac
0√

1 + β
ρ4He
ρbeam

≈ 2.22285 MHz (2.6)

The observed f imm
0 is approximately 2.199 60MHz. The discrepancy is likely due

to the constant β imperfectly capturing the geometry of our device, which deviates
from a perfectly straight, rectangular cross-section due to fabrication artefacts. Using
f imm
0 = 2.199 60MHz, the actual value of β is 0.97.

2.2.2 Drive force
An AC current is applied to the beam in the presence of an external magnetic field
directed straight up, perpendicular to both the beam and the substrate. The resultant
Lorentz force F = I × B drives the resonator, with drive frequency equal to the
frequency of the drive current.

In practice, drive force is modulated by altering the power applied to the NEMS,
rather than the current directly. If Pin is the power applied to the device after
accounting for line attenuation, the drive force FDrive is given by

FDrive = Bl

√
Pin

Z0

, (2.7)

where l is the length of the NEMS, approximately 70 µm, and Z0 is the output
impedance of the signal generator, approximately 100Ω.

2.2.3 Beam velocity
The transmission of the NEMS is used to determine the motion of the beam. The
oscillating beam is a current-carrying wire moving in a magnetic field, and therefore
a back-emf is generated equal to

Vemf =
d

dt
(AB), (2.8)

where A is the area across which the beam sweeps during one period, approximated
as lx where l is the length and x the displacement of the centre of the beam, and B
is the applied magnetic field. The maximum velocity of the centre of the resonating
beam is related to the back-emf as

Vemf = lvB ⇒ v =
Vemf

lB
. (2.9)
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This emf manifests as an additional drop in voltage across the device when
it is driven at resonance, compared to when the drive is far from resonance and
displacement is negligible. Thus, the peak velocity of the beam can be determined
by measuring the voltage drop when it is driven at resonance, after accounting for
impedance from other sources. In practice, the maximum beam velocity is computed
from the power dissipated by the NEMS at resonance. If ∆Pmax is the difference in
power transmitted by the NEMS when driven far from resonance versus at resonance,
then maximum beam velocity is

vBeam =

√
Zi∆Pmax

Bl
, (2.10)

where Zi is the input impedance of the network analyser used to measure the
transmitted signal, approximately 100Ω.

In both the linear and nonlinear regimes, the relationship between drive force
and beam velocity is expected to take the form

v = bF n, (2.11)

where b and n are nonzero real numbers. In the linear regime, n = 1 as the Lortentz
force gives

Fmag = IlB =
vB2l2

Z0

. (2.12)

When submerged, however, a NEMS oscillating with sufficient speed is expected
to generate turbulence. Vortices serve to dissipate energy that would otherwise
contribute to the motion of the resonator. Thus, in the nonlinear, turbulent regime,
it is predicted that n < 1. In the case where turbulence generation is the primary
loss mechanism, vortex nucleation may be modelled as a drag force on the oscillator
beam. The drag equation gives v ∝ F 0.5, so a value of n = 0.5 is expected in the
nonlinear regime53.

2.2.4 Beam losses
The relationship between the losses of the NEMS, defined as the inverse quality factor
Q−1, and the square of the external magnetic field B2 is also used to characterise
the behaviour of the NEMS. A qualitative plot of the expected relationship between
these quantities for a vortex-free resonator can be seen in Fig. 2.4. At sufficiently
high magnetic fields, magnetomotive damping is the primary dissipation mechanism
and a linear relationship between Q−1 and B2 is expected. If the impedance of the
circuit is Z0, the back-emf generated by the oscillating beam produces a back-current
Imag = vBl/Z0. In accordance with Lenz’s law, the current generates a force that
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Figure 2.4: Qualitative plot of the expected dependence of losses on the square of
the applied field for a vortex-free resonator. The superconducting transition field of
0.125T is marked as a vertical dashed line. Solid lines indicate the actual expected
response. Note the difference in slope between the superconducting and normal
regimes; this is due to the inverse dependence of slope on the impedance of the circuit
seen in Eq. (2.16).
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opposes the drive force. The opposing force will have the same form as Eq. (2.12),
but with the current being the back-current.

The quality factor for a mechanical resonator can be defined as

Q = 2π
Emax

(∆E)one period
, (2.13)

where Emax is the maximum energy stored by the resonator and (∆E)one period is
the energy dissipated by the resonator in one period of oscillation. The influence of
dissipative mechanisms on the quality factor of a resonator can be represented as a
sum of inverse quality factors

Q−1
tot =

∑
i

Q−1
i , (2.14)

where each Qi is the ratio of the energy stored in the resonator and the power
dissipated by a particular mechanism76. Assuming for simplicity that all energy is
stored as kinetic energy, this gives for magnetomotive damping

Qmag = 2π

1

2
mv2

Fv
=

πf0mv2(
v2B2l2

Z0

) =
πf0mZ0

B2l2
. (2.15)

Inverting this gives
Q−1

mag =
B2l2

πmZ0

. (2.16)

Thus, inverse quality factor will be proportional to the square of the magnetic field.
At very low magnetic fields, other dissipation mechanisms such as clamping losses and
inter-crystallite friction dominate and this linear relationship breaks down as seen in
Fig. 2.4. Our measurements are performed in the linear regime, however, in which
magnetomotive damping is expected to dominate.

An additional notable feature of Fig. 2.4 is a discontinuity at a critical field
strength Bc = 0.125T. At fields lower than Bc, the thin aluminium beam of the
NEMS becomes superconducting, resulting in a sudden increase in quality factor. An
additional, less dramatic transition occurs at approximately 0.065T, at which point
the thick aluminium clamps of the resonator also become superconductors. However,
this second transition was not observed to have a significant effect on the quality
factor.

2.3 Trapped vortex states
When a vortex collides with the NEMS, it will create one of three possible states,
illustrated in Fig. 2.5. The first and most common is a “no-vortex” state, denoted
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Figure 2.5: Qualitative depiction of various vortex states: a) the no-vortex state
Henv, b) the fully-trapped state He||, and c) a partially-trapped state He⊥. Note
that the gradual curve off the beam in the He⊥ image is an artistic generalisation.
No experimental study of the geometry at such a pining point has been performed,
though a theoretical analysis by Griffiths3 suggests the vortex line forms a sharper
cusp.

Henv and illustrated in Fig. 2.5a. This is a vortex-free resonator that is additionally
“topologically clean”, with any vortices that may have previously been pinned to the
device destroyed by the vortex collision. The vortex that collides with the NEMS
is also either destroyed in this process or detaches and diffuses away. The second
possible state is a “fully-trapped” state, denoted He|| and illustrated in Fig. 2.5b.
This state is created when the colliding vortex ring splits and each end of the vortex
becomes pinned to each end of the NEMS beam, so that the entire length of the beam
is enveloped by circulating superfluid.

The third possible state is a “partially-trapped” state, denoted He⊥ and
illustrated in Fig. 2.5c. Rather than both ends of the vortex becoming pinned to the
ends of the beam as in a He|| state, in a He⊥ state at least one end instead becomes
pinned to another structure in the sample cell. Only part of the beam is enveloped
in circulating superfluid, and there is a length of vortex not aligned with the beam.
Typically, an end of the vortex not pinned to the resonator becomes pinned to the
substrate directly below the beam, a distance of approximately 1 µm. This is due to
energy conservation. Vortices carry an energy per unit length, so it is energetically
favourable for a vortex to have minimal length. The shortest path from the NEMS
beam to another structure the vortex can be pinned to is in almost all cases straight
down, from the beam to the substrate. It is thus expected that almost all partially-
trapped states will be pinned in the manner seen in Fig. 2.5c, although the length of
beam enveloped by circulation is different in every partially-trapped state.

The creation of neither partially- nor fully-trapped states has been observed
without the action of the tuning fork. While theoretically possible due to, for example,
a thermally-generated vortex impinging on the device during cool-down of the system,
this appears to be rare as it has not yet been observed and, regardless, is very unlikely
to occur when the system is operating in its steady state at temperature.
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Figure 2.6: Response of the NEMS during two trapping events. The y-axis is drive
frequency, and a cooler colour indicates a greater magnitude response. The NEMS is
in a Henv state at (a), a He⊥ state at (b), and a He|| state at (c). The names and
resonant frequencies of all vortex states referred to in this study can be seen to the
right of the histogram.

A fourth state, the “vacuum” state, denoted Hevac, corresponds to the NEMS
in vacuum. It is used as a reference point to determine which behaviours are due to
interaction with the superfluid and which are due to the intrinsic properties of the
NEMS. Measurements of the Hevac state are performed at approximately 16mK, as
this is the lowest achievable temperature in the sample cell without the presence of
helium.

When a vortex becomes trapped, it has a profound effect on some behaviours of
the resonator. One of the most dramatic changes is in resonant frequency. When a
vortex becomes fully trapped, the tension of the beam increases due to the force of
interaction between the trapped vortex a distance d above the substrate and its image
a distance d beneath the substrate. The force per unit length f due to this interaction
is given by72

f = κ× j (2.17)
where κ is the circulation quantum in the direction of vorticity (parallel to the beam)
and j = ρ4Hevimag is the flow density due to the image vortex, which at the location
of the beam generates a fluid velocity

vimag =
κ

2π(2d)
ϕ̂ (2.18)

with the ẑ direction taken to be parallel with the vorticity. The magnitude of the
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force per unit length on the beam is then

f =
κ2ρ4He

4πd
(2.19)

The additional tension Tvort due to this force per unit length is72

Tvort =
1

2
f
l2

h
(2.20)

Based on the experimental parameters of our system (l = 70 µm, h = 130 µm,
d = 1 µm), this would suggest Tvort = 2nN. Adding this to the equilibrium tension
T0 in Eq. (2.4) and accounting for the increased effective mass due to immersion
using Eq. (2.6), the resonant frequency in a fully-trapped state is predicted to be
2.200 20MHz, an increase of 600Hz.

Experimental observation of fully-trapped states indicates the resonant frequency
upshifts by approximately 3.1 kHz relative to the Henv resonance, within an order of
magnitude of the theoretical estimate. When a vortex becomes partially-trapped, the
resonant frequency again upshifts, but by less than 3.1 kHz. The degree of deviation
from the Henv resonance is believed to depend upon the length of beam that is
enveloped by circulation, with greater deviation occurring when more of the beam
is enveloped. States are distinguished experimentally based on the shift in resonant
frequency. This effect is illustrated in Fig. 2.6, which depicts the transmission of the
resonator as a function of drive frequency during two separate trapping events. In
these events, the vortex initially becomes partially-trapped, before gradually shifting
into a fully-trapped configuration. This is typical of the onset of a fully-trapped state,
though most partially-trapped states do not evolve into fully-trapped states.
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Chapter 3

Resonator Response Analysis

Three fully-trapped states and four partially-trapped states, along with the no-vortex
and vacuum states, were created and measured. Not all measurements were performed
on every state. These states will be denoted as shown in Table 3.1 and Fig. 2.6.

3.1 Losses and magnetic field
The dependence of the losses experience by the NEMS, equal to the dimensionless
linear drag coefficient ζ̃ or the inverse quality factor Q−1, on applied magnetic field
B was measured for the beam in the Hevac, Henv, He1∥, He2∥, He3∥, He2⊥, He3⊥, and He4⊥
states.

Quality factor at each magnetic field was found by fixing drive power and
sweeping drive frequency about resonance. The magnitude of the transmission
coefficient S21 is measured at each frequency. If the FWHM of the resonance peak
formed by the distribution of S21 is ∆f and the resonant frequency is f0, Q is

Q =
f0
∆f

. (3.1)

In some cases, sweeps were done at multiple drive powers; where this is the case, the
results presented here are an average of all sweeps done for a given state. A comparison
of states Hevac, Henv, He1∥, He2∥, and He3∥ can be seen in Fig. 3.1. A comparison of states
He2⊥, He3⊥, and He4⊥ can be seen in Fig. 3.2. A comparison of states Hevac, Henv, He2∥,
and He2⊥ can be seen in Fig. 3.3. In all cases, fits are of the form Q−1 = m(B2) + b,
with m and b free parameters. The value of the fit parameters are given in Table 3.2.

As seen in Fig. 3.1, the Hevac, Henv, and all three He∥ states behave very similarly,
and very linearly. The Hevac state exhibits slightly lower losses, a difference of Q−1

ac =
1.8× 10−6 relative to the Henv state. This is expected as acoustical loss via phonon
emission is a dissipation mechanism available to immersed states but not possible in
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State Label Resonant Frequency (Hz)
Hevac 2250109
Henv 2199602
He1∥ 2202622
He2∥ 2202669
He3∥ 2202715
He1⊥ 2200229
He2⊥ 2200546
He3⊥ 2199755
He4⊥ 2199975

Table 3.1: State labels and resonant frequencies. Resonant frequency is estimated
from a Lorentzian fit (Eq. (1.33)) of the data when drive force is tuned so there is no
noticeable nonlinearity.

Figure 3.1: Plot of losses vs B2 measurements for various fully-trapped and vortex-
free states. Dashed lines are linear regression fits. A vertical dashed line marks the
superconducting transition field 0.125T. Fit parameters can be found in Table 3.2.
The fully-trapped and no-vortex states demonstrate very similar losses. The difference
in losses Q−1

ac = 1.8× 10−6 between states Henv and Hevac is attributed to acoustical
losses not present in a vacuum.
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a vacuum. There is no significant difference between the response of the He∥ and
Henv states, indicating that the existence of a fully-trapped vortex has little effect on
the dissipation mechanisms available to the resonator. The strong linear relationship
between Q−1 and B2 for the Hevac, Henv, and He∥ states above the superconducting
transition field 125mT agrees with theoretical predictions described in Section 2.2.
This suggests that in these states there is minimal interaction with the superfluid
at the drive powers accessed during these measurements, with the exception of some
energy loss via phonon emission when the NEMS is immersed.

State m b
Hevac 1.1× 10−5 3.0× 10−6

Henv 1.2× 10−5 4.8× 10−6

He1∥ 1.1× 10−5 5.0× 10−6

He2∥ 1.1× 10−5 5.9× 10−6

He3∥ 1.1× 10−5 5.3× 10−6

He2⊥ 1.2× 10−5 2.1× 10−5

He3⊥ 1.4× 10−5 1.2× 10−5

He4⊥ 2.5× 10−5 2.9× 10−5

Table 3.2: Fit parameters for regression lines in Fig. 3.3, Fig. 3.2, and Fig. 3.1. Lines
are of the form Q−1 = mB2 + b.

The partially-trapped states exhibit losses which vary depending upon state, as
seen in Fig. 3.2. The qualitative behaviour of the three states is very similar, although
there is a significant quantitative difference in the losses experienced by each. This
quantitative difference does not appear to correlate with resonant frequency. As
resonant frequency is believed to be closely related to the length of resonator beam
enveloped by circulation, this suggests that the additional dissipation in a partially-
trapped state is not governed by the portion of vortex aligned with the beam. Rather,
it is believed to be produced by the motion of the unaligned filament(s), with some
possible dependence upon their length and location.

In all partially-trapped states losses are significantly higher than in the Hevac,
Henv, and He∥ states, as illustrated in Fig. 3.3. This indicates the existence of a
dissipation mechanism in partially-trapped states not seen in any other state. We
hypothesise that this dissipation comes from phonons radiated by the unaligned
portion of the partially-trapped vortex. The motion of the resonator beam will couple
with the unaligned filament, likely inducing Kelvin waves. These Kelvin waves would
then cascade as described in Section 1.2.2, ultimately leading to a gradual emission of
energy via phonons and, possibly, self-reconnections. Both these processes result in
an additional loss of energy, which would manifest as greater dissipation. The latter
process is suspected due to previous experimental observations of a vibrating wire in
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Figure 3.2: Plot of losses vs B2 measurements for various partially-trapped
states. Dashed lines are linear regression fits. A vertical dashed line marks the
superconducting transition field 0.125T. Fit parameters can be found in Table 3.2.
The qualitative behaviour of the three states is very similar. The quantitative
difference does not correlate with resonant frequency, and is therefore attributed to
differences in the unaligned filaments of each state.
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Figure 3.3: Plot of losses vs B2 for various vortex states. Dashed lines are linear
regression fits. A vertical dashed line marks the superconducting transition field
0.125T. Fit parameters can be found in Table 3.2. The partially-trapped state
exhibits significantly greater losses than other states, suggesting the presence of an
unaligned vortex filament provides an additional dissipation mechanism.

superfluid 3He. In these studies, Bradley et al. found a periodic fluctuation in wire
velocity between two critical values during the onset of turbulence generation, which
they attribute to the periodic emission of vortices created by self-reconnections on the
perturbed trapped vortex line34,77. Hashimoto et al. found that a wire vibrating at
velocities too low to nucleate turbulence in superfluid 4He generates quantum vortices
when a vortex becomes pinned between the wire and the wall of the sample cell, which
they likewise attribute to vortex rings generated by high-amplitude Kelvin waves78,79.

The difference in losses between different partially-trapped states could be related
to the position and number of unaligned filaments. A partially-trapped vortex with
two unaligned filaments would be expected to have higher losses than a similar
vortex with one end pinned to a resonator clamp. The beam exhibits nonuniform
deflection, with higher-amplitude motion near the centre of the beam and relatively
little displacement near the clamps. Therefore, an unaligned filament extending from
the middle of the beam would be more violently excited than a filament extending
from one of the ends, and would dissipate more energy.

If the above picture is accurate, we would expect to see evidence of increased drag
in partially-trapped states, beyond that seen in vortex-free or fully-trapped states.
Our study of beam velocity as a function of applied drive force provides such evidence.
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Figure 3.4: Plot of velocity-force measurements for states Henv, He2∥, and He1⊥ at 0.3T.
Data has been smoothed with a Savitzky–Golay filter. Unlike in the fully-trapped and
no-vortex states, the partially-trapped state has no linear regime in which velocity
is directly proportional to drive force, suggesting the unaligned filament provides an
additional means of generating turbulence even at low drive forces.

3.2 Beam velocity and drive force

State b n b n
Pre-vc Pre-vc Post-vc Post-vc

He2∥ 2.5× 1010 0.97 8.8× 103 0.48
Henv 2.1× 1012 1.12 2.5× 104 0.52
He1⊥ 2.7× 103 0.48 2.0× 105 0.60

Table 3.3: Fit parameters for regression lines in Fig. 3.4. Lines are of the form
v = bF n, and vc refers to the critical velocity.

The dependence of NEMS beam velocity v on applied drive force F was measured
for states Henv, He2∥, and He1⊥. Magnetic field was held fixed at 0.3T and the NEMS
was driven at its resonant frequency as drive power was swept from 0.1 fW to 100 fW.
Drive power is directly related to drive force as described in Section 2.2. Results can
be seen in Fig. 3.4. Fit parameters can be found in Table 3.3; fits are of the form
v = bF n, with b and n free parameters.

The fully-trapped and no-vortex states exhibit highly consistent behaviour,
having largely coinciding linear regimes in which n ≈ 1 and nonlinear regimes in
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which n ≈ 0.5. The transition to turbulent behaviour is not as abrupt as expected,
with no single critical velocity distinguishable. Rather, a small range of velocities
appears to form a “critical regime”, over which the onset of turbulence is gradual.

Partially-trapped states deviate significantly from other states. A “kink” can be
seen in the response in Fig. 3.4, indicating the existence of a critical velocity believed to
be the onset of turbulence nucleation by the beam. However, even at velocities below
the kink, n ≈ 0.5 in state He1⊥, and in all other partially-trapped states observed.
Significant drag even below the critical velocity is thus inferred, via a mechanism not
present in any other state. As the primary feature distinguishing partially-trapped
states from fully-trapped states is the presence of unaligned vortex filaments, these
filaments are believed to be the source of the additional turbulence. This would
support the theory posed in Section 3.1, with energy loss via phonons radiated
by Kelvin waves and possibly the emission of vortices due to self-reconnections
manifesting as increased drag.

3.3 Spectrum analysis
A frequency domain analysis of the signal transmitted by the NEMS in states Henv,
He3∥, He3⊥, and He4⊥ reveals the existence of phase modulation in partially-trapped
sates. Magnetic field was fixed at 1T and drive frequency was fixed at resonance.
The frequency components of the transmitted signal were then parsed for various
drive powers. The results can be seen in the histograms in Fig. 3.5 and Fig. 3.6.

In all four states, the most significant component is at the resonant frequency, as
expected for a monochromatic drive signal at resonance. The He3⊥ and He4⊥ states,
however, exhibit frequency sidebands, occurring at integer multiples of 9.8Hz relative
to the resonant frequency as noted in Fig. 3.5. The magnitude of each sideband does
not increase monotonically with increasing drive power, as the resonance component
does. Instead, sideband magnitude appears to oscillate about an increasing mean as
drive power is increased. The magnitude of the sidebands generally decreases with
distance from the resonant frequency, but at some drive powers more distant sidebands
can have higher magnitude than those closer to resonance.

Sidebands are never observed in Henv or He∥ states, and are not present in the
input signal. They are observed in most, though not all, He⊥ states, always in the
configurations seen in Fig. 3.5 and Fig. 3.6: evenly spaced at integer multiples of
9.8Hz relative to the state’s resonant frequency, and with the same nonmonotonic
dependence of magnitude on drive power.

Mathematically, this effect matches the response expected of a phase (or,
alternatively, frequency) modulated device. Consider a phase modulated response
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Figure 3.5: Histogram of NEMS spectral response as a function of drive power for state
He3⊥. Response magnitude is represented by colour; warmer colour indicates higher
magnitude. The resonant frequency f0 = 2.199 755MHz and the n = ±1, ±2, 3
sidebands are labelled.
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Figure 3.6: Histogram of NEMS spectral response as a function of drive power for
states: a) He4⊥, b) Henv, and c) He3∥. Response magnitude is represented by colour;
cooler colour indicates higher magnitude. Colouring between different states is not to
scale. Resonant frequency f0 is 2.199 975MHz for state He4⊥, 2.199 602MHz for state
Henv, and 2.202 715MHz for state He3∥.
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at the resonant frequency ω0

x(t) = A exp (iω0t+ b sin(Ωt)) , (3.2)

where A is the unmodulated amplitude, b is the modulation magnitude, and Ω the
modulation frequency. A Jacobi-Anger expansion then returns

x(t) = Aeiω0t

n=∞∑
n=−∞

Jn(b)e
inΩt, (3.3)

where Jn is the nth Bessel function of the first kind. The response has an infinite
number of sidebands, each at a frequency of ω0 ± nΩ, n ∈ Z. If Ω = 9.8Hz, this
matches the experimental observations. The magnitude of the nth sideband will be
AJn(b). For integer values of n, Jn(b) is oscillatory, with the magnitude of successive
extrema decreasing with increasing b. If the parameter b increases monotonically with
increasing drive power, this explains nonmonotonic behaviour of sideband magnitudes.
The increasing mean can be explained by a dependence of the unmodulated amplitude
A on drive power. Alternatively, this effect could be due to a second signal with
much higher frequency, exactly 9.8Hz greater or lower than the resonant frequency
of the system. However, no hypothesis regarding the physical origin of such a signal
could be found, especially given the fact that such a signal would have to change
depending upon the vortex state to always be 9.8Hz relative to resonance. A 9.8Hz
signal therefore appears more likely. AM modulation is likewise considered unlikely
as multiple modulation signals would be required to achieve the observed sideband
behaviour.

The source of this phase modulation is also currently unknown, however.
Helmholtz resonance is a possible culprit. The sample cell and the attached pipe
used to deliver helium to the cell form a system analogous to a Helmholtz resonator.
The resonant frequency fH of such a system will be approximately

fH =
vc
2π

√
An

VcLeq
(3.4)

where vc is the speed of sound, An is the cross-sectional area of the cavity neck, Vc

is the volume of the cavity, and Leq is the equivalent length of the neck accounting
for end correction, equal to Ln + 0.3dn where Ln is the actual length of the neck
and dn the diameter of the neck. Assuming the pipe is a neck with cross-sectional
area 0.64mm2, length 33 cm and diameter 0.9mm, and the sample cell is a cavity
with volume 2.6 cm3, fH ≈ 33 Hz, within an order of magnitude of the observed
modulation signal.

It is unclear why the excitation of a Helmholtz resonance would induce sidebands
only in partially-trapped states, however, or why some partially-trapped states do not
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exhibit modulation. Given that the distinguishing feature of partially-trapped states is
the existance of an unaligned filament, it seems likely that the motion of the unaligned
filament provides coupling between the source of the modulation frequency and the
beam. Kelvin waves induced by oscillator motion are thought to be an unlikely source,
as standing waves in the filament are predicted to have frequencies in the hundreds
of kilohertz, far too high to account for a 9.8Hz modulation signal.

Further work is needed to determine the origin of the modulation. One means of
determining whether the modulation is related to Kelvin waves is by varying pressure
in the sample cell. Core radius depends upon pressure, with one study finding a 30%
increase as pressure was increased from 0 to 24 atm19. As demonstrated by Eq. (1.24),
Kelvin wave frequency depends upon core radius. If the Kelvin waves are involved in
generating the modulation signal, the spacing between sidebands should decrease with
increasing pressure. To test for the influence of a Helmholtz resonance, the length of
the pipe leading to the sample cell may be shortened or elongated. If a Helmholtz
mechanism is contributing to the effect, sideband spacing should change.

Mechanical resonance of the sample cell was also considered as a possible source
of the modulation signal. However, utilising the derivation of mechanical resonances in
a hollow cylinder provided by Wang and Lai80, the estimated fundamental frequencies
of longitudinal, flexural, and torsional motion of the sample cell are 0.8MHz, 0.2MHz,
and 0.8MHz, respectively. Resonance of the sample cell is therefore not believed to
be the source of the modulation signal. Vibrations from sources outside the sample
cell are also considered unlikely. The cryostat is suspended by dampers to insulate
it from the laboratory environment, and heavy machinery such as the pulse tube are
kept in a separate room.

Attempts to directly excite the sidebands in the He3⊥ and He4⊥ states were
unsuccessful. Amplitude modulation was induced on the input signal to attempt
to drive the sideband resonances, as shown in Fig. 3.7a. If sideband modes were being
excited, a much stronger response would be expected when the AM rate is equal
to a sideband frequency. This does not appear to be the case. In addition to the
10− 100Hz sweep in Fig. 3.7a, additional sweeps with AM rate as low as 0.1Hz and
as high as 10 kHz were performed, with no discernible impact on sideband magnitude.

Driving the system at sideband frequencies also had no effect on sideband
magnitude. By applying a drive signal at a sideband frequency, it was hoped that the
source of the modulation could be directly driven, which could back-couple with the
NEMS and alter the magnitude of other frequency components. As shown in Fig. 3.7b
and 3.7c, however, a drive signal at a sideband frequency has no greater effect on the
magnitude of other frequency components than a drive signal at a frequency between
sidebands.
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Figure 3.7: Histogram of NEMS spectral response for a) state He3⊥ with an AM
input signal with 5% depth and increasing modulation rate, b) state He4⊥ with a
non-modulated drive signal at the frequency of sideband n = −6, and c) state
He4⊥ with a drive signal at a frequency between sidebands n = −6 and n =
−5. Response magnitude is represented by colour; cooler colour indicates higher
magnitude. Colouring between different states is not to scale. Resonant frequency f0
is 2.199 755MHz for state He3⊥ and 2.199 975MHz for state He4⊥.
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Duffing Oscillator Fit

4.1 Duffing force in a partially-trapped state
Along with intrinsic nonlinearities, the influence of a partially-trapped vortex on
the NEMS may be modelled as another Duffing-type force. Consider the situation
depicted in Fig. 2.5c, with one end of the vortex pinned to the substrate a distance
h directly below the beam. Let ε be the energy per unit length of the vortex and l
be the length of the unaligned filament. The length of the filament is a function of
displacement

l =
√
x2 + h2 (4.1)

The tension of the vortex line may be derived from its energy, giving

FVortex =
d

dx
(εl) = εx(x2 + h2)−1/2. (4.2)

Assuming displacement is small, a Taylor expansion of (x2+h2)−1/2 about x = 0 then
gives

FVortex ≈ εx

(
1

h
− x2

2h3

)
=

ε

h
x− ϵ

2h3
x3. (4.3)

The influence of the vortex may thus be modelled as two effects: a positive
addition to the linear restoring force which will shift the resonant frequency, and a
negative addition to the nonlinear restoring force which will soften the resonator. It
is with this in mind that the Duffing model was used to fit the frequency response of
the NEMS in fully-trapped, partially-trapped, and no-vortex states.

4.2 Data processing
The frequency response of the Duffing oscillator (Eq. (1.43)) takes drive frequency
as the independent variable and oscillator amplitude as the dependent variable. The
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amplitude of oscillation x0 must therefore be extracted from the raw experimental
data in order to fit Eq. (1.43) and estimate the Duffing parameter α.

The motion of the NEMS is encoded in its complex transmission. The device is
actuated and probed using a network analyser (NA). The NA is a two-port device
which emits a signal at Port 1 that passes through the NEMS, actuating it. The
signal transmitted by the NEMS is then read at Port 2. For each drive frequency ω
at which the NEMS response is sampled, the NA returns the complex transmittance
S21, defined as

S21 =
V out
2

V in
1

, (4.4)

where V in
1 is the complex voltage applied at Port 1 and V out

2 the complex voltage
received by Port 2. The modulus of the complex-valued transmission |S21| is typically
used when computing displacement. A Lorentzian curve is fitted to the transmission
coefficient |S21|(ω) data, from which quality factor Q and background signal Sbkg are
extracted. The power dissipated due to NEMS motion ∆P at a given drive frequency
ω can then be computed via

∆P (ω) = APin{[Sbkg]
2 − [|S21|(ω)]2}, (4.5)

where Pin is the power applied by the network analyser and A is a scale factor
accounting for both the attenuation and gain of the transmission line and amplifier
separating the NEMS output and the NA. This is the power dissipated by the NEMS
alone, with other electrical losses factored out.

Amplitude of oscillation can then be found from the definition of the quality
factor. Assuming energy is stored purely mechanically in one degree of freedom, the
maximum stored energy Emax in Eq. (2.13) can be written

Emax =
1

2
mω2

0x
2
0, (4.6)

where m is the effective mass of the beam. One period of oscillation is approximately
2π/ω assuming drive frequency is close to the resonant frequency, so the energy
dissipated over one period can be written

(∆E)one period =

∫
Period

∆Pdt = 2π
∆P

ω
. (4.7)

Plugging this and Eq. (4.6) into Eq. (2.13), the amplitude of oscillation as a function
of drive frequency is

x0(ω) =

√
2Q∆P (ω)

mωω2
0

. (4.8)
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Figure 4.1: Example of fits of Eq. (1.43) (blue line) to experimental amplitude-
frequency data (red circles) for states a) He4⊥, b) He3∥, and c) Henv at 1.5T. The
experimental data has been smoothed with a rolling average filter.

4.3 Fit algorithm
Once the amplitude of oscillation has been extracted, Eq. (1.43) can be fitted to the
x2
0(ω) data, with f , α, and ζ free parameters. Resonant frequency is also allowed

to vary by adding as another free parameter a perturbation ωdev to ω0. The fit
parameters can then be tracked as functions of drive force, as given by Eq. (2.7), for
different vortex states. For ease of comparison with previous and later work, the fit
parameters are converted to their dimensionless forms in the plots that follow, defined
in Section 1.3.3.

4.4 Fit results
The Duffing parameter as a function of drive force for states Henv, He2∥, He3∥, He2⊥,
He3⊥, and He4⊥ was estimated using the above fit algorithm. An example of fits of
experimental data can been seen in Fig. 4.1. Drive force was modulated by changing
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the magnetic field while holding drive power constant at 1 fW. Drive force was chosen
as the independent variable over oscillation amplitude or beam velocity as drive force
increases linearly with magnetic field, while velocity - and therefore amplitude - do
not necessarily increase linearly with drive force as discussed in Section 3.2.

4.4.1 No-vortex and fully-trapped states
The Duffing parameter and drag coefficient as a function of drive force for states
He1∥, He2∥, and Henv at a drive power of 1 fW can be seen in Fig. 4.2. The Duffing
parameter is positive, and the magnitude is small at low drive forces. At higher drive
forces α̃ increases in a close-to-linear fashion. Intrinsic nonlinearities, such as the
geometrically-induced Duffing force described in Section 1.3.2, stiffen the resonator,
yielding a positive Duffing parameter. The intrinsic Duffing force is proportional to
the amplitude of oscillation, explaining the increase in α̃ with increasing FBeam.

The linear drag coefficient also increases with increasing drive force, but in a less
linear manner. At low drive forces ζ̃ is small and relatively constant. Once a critical
point is reached, however, ζ̃ increases super-linearly. The increase is consistent with
an increase in drag due to turbulence nucleation by the resonator beam, as discussed in
Section 3.2, and an increase in magnetomotive damping, as discussed in Section 3.1.
The qualitative and quantitative behaviour of all three states is very similar, with
the only significant divergence being α̃ at high drive forces. The difference is well
within the margin of uncertainty in the fits, however. This similarity is consistent
with the similarity between no-vortex and fully-trapped states noted in Section 3.1
and Section 3.2.

4.4.2 Partially-trapped states
The Duffing parameter and linear drag coefficient as a function of drive force for
states He2⊥, He3⊥, and He4⊥ at a drive power of 1 fW can be seen in Fig. 4.3. The value
of α̃ is negative and of greater magnitude than in the Henv and He∥ states. As force
increases, a critical point is reached, after which α̃ increases in magnitude nonlinearly.
Greater oscillation appears to increase the influence of the partially-trapped vortex,
manifesting as an increase in the magnitude of α̃ with increasing drive force. The
exact mechanism by which increased oscillation amplitude of the beam strengthens
the negative nonlinear influence of the vortex is unknown. While a negative α̃ is
expected from the derivation in Section 4.1, the existence of a critical point is not.
This behaviour is possibly due to competition between the intrinsic positive Duffing
parameter and the vortex-induced negative parameter. At low drive forces, the vortex-
induced nonlinearity may be balanced by the intrinsic nonlinearity, with the former
beginning to dominate the latter only after the amplitude of oscillation is sufficiently
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Figure 4.2: Dimensionless Duffing parameter α̃ and linear damping ζ̃ as a function of
drive force FDrive for states He2∥, He3∥, and Henv at a drive power of 1 fW. The increase
in ζ̃ is attributed to an increase in magnetomotive damping as higher drive forces are
achieved by increasing magnetic field, as well as the onset of turbulence nucleation
by the beam. The increase in α̃ matches that expected of the geometrically-induced
Duffing force discussed in Section 1.3.2.
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Figure 4.3: Dimensionless Duffing parameter α̃ and linear damping ζ̃ as a function of
drive force FDrive for states He2⊥, He3⊥, and He4⊥ at a drive power of 1 fW. The increase
in ζ̃ is similar to that seen in no-vortex and fully-trapped states, though damping
is of a higher magnitude at all drive forces - expected based on the increased losses
in partially-trapped states described in Section 3.1. In contrast to no-vortex and
fully-trapped states, α̃ is negative, though magnitude still increases with increasing
drive force. This behaviour is attributed to the unaligned vortex filament, via the
mechanism discussed in Section 4.1.
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large. Compared to fully-trapped and no-vortex states, ζ̃ is greater in magnitude but
displays the same qualitative behaviour as a function of drive force. This is consistent
with the existence of additional dissipation in partially-trapped states, discussed in
Section 3.1 and Section 3.2.

The qualitative behaviour of the three states is similar, with both α̃ and ζ̃ growing
in magnitude with increasing drive force. The difference in quantitative behaviour
between the three states does not correlate with resonant frequency or, therefore,
the length of beam enveloped in circulation. The divergence could be related to the
location of the pinning points on the resonator beam. A partially-trapped vortex that
extends from the middle of the beam is likely to behave differently than a vortex
extending from near to one of the ends, as any torque exerted by the vortex on the
beam will have a greater effect far from the beam clamps. The Duffing and linear drag
coefficients correlate with each other. States having a higher magnitude α̃ also have
a higher magnitude ζ̃, suggesting that the mechanism by which a partially-trapped
vortex induces a Duffing force and the mechanism by which it increases damping may
be related.

Modelling the system as a driven-damped Duffing oscillator thus appears to
support our other experimental observations. Linear drag increases with increasing
drive force, with fully-trapped and no-vortex states possessing a nearly identical
response and partially-trapped states exhibiting increased drag, in line with the
findings presented in Section 3.1 and Section 3.2. The existence of a positive and
increasing Duffing coefficient in fully-trapped and no-vortex states indicates that
the largest drive forces achieved in this study are sufficient to introduce intrinsic
nonlinearity to the system, and the overwhelmingly negative Duffing force seen in
partially trapped states provides additional evidence that an unaligned filament
attached to the beam can profoundly change the response of the resonator.
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Conclusions

The results of this work demonstrate several possible mechanisms by which the motion
of single vortex filaments may be probed using a nanoelectromechanical resonator.

Analysis of the losses experienced by a doubly-clamped beam resonator and
the relationship between peak beam velocity and drive force suggests a partially-
trapped vortex introduces additional dissipation and drag beyond that present in a
vortex-free resonator or a fully-trapped state. This is believed to be due to phonon
emission by high-frequency Kelvin waves excited by the motion of the resonator beam.
This suggests that dissipation in a trapped-vortex state could be used as a measure
of Kelvin wave energy provided other loss mechanisms can be controlled for. The
possible contribution of self-reconnections to these increased losses warrants further
investigation. If a second beam resonator is placed near the primary device and
the primary resonator is driven in a partially-trapped state at a velocity too low for
the beam to nucleate turbulence, the observation of trapping events on the second
resonator would provide strong evidence in favour of the self-reconnection model.

Phase modulation of the signal transmitted by the NEMS in partially-trapped
states could provide further evidence for the motion of a single vortex filament
influencing NEMS behaviour. The presence of frequency sidebands with uniform
spacing across many partially-trapped states could be explained by a Helmholtz
resonance coupling to the motion of the resonator. Since these sidebands are not
seen in no-vortex and fully-trapped states, it is evidently the unaligned filament that
facilitates the coupling, though the manner in which this could happen is currently
unknown. Further experiments will modulate pressure in the sample cell, which is
known to alter core radius and therefore Kelvin wave velocity19. If Kelvin waves are
involved, a change in sideband spacing should be observable as pressure increases.
Altering the length of the pipe leading to the sample cell will allow the existence of a
Helmholtz resonance to be confirmed or refuted.

Modelling the NEMS-vortex system as a driven-damped Duffing oscillator
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provides a compelling means of quantifying the changing behaviour of the NEMS due
to both intrinsic and extrinsic nonlinear forces. Intrinsic geometric and mechanical
nonlinearities tend to introduce a positive nonlinear restoring force that increases with
increasing drive force, effectively hardening the resonator as the beam material resists
stretching during high-amplitude oscillations. The presence of a partially trapped
vortex introduces an overwhelming negative nonlinear restoring force, explained by
the tension of the unaligned vortex filament. A means of mathematically quantifying
the degree and direction of nonlinear behaviour in trapped-vortex states will permit
easier comparison of different states. Applying this model to past and future data
and tracking nonlinearity as a function of drive force and other independent variables
could potentially reveal previously overlooked patterns and anomalies in the data that
warrant further investigation.

The results of this work recommend the nanoelectromechanical vortex trapping
scheme for further studies of Kelvin wave dynamics on individual vortices. The
action of Kelvin waves in partially trapped states can be transduced by the resonator,
manifesting as increased dissipation and, possibly, a negative nonlinear restoring force
and modulation of the resonator’s motion. This potentially provides a means of better
experimental understanding of small-scale motion in individual quantum vortices, and
therefore the as-yet poorly investigated Kelvin cascade.
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Estimate of Intrinsic Duffing
Parameter

To see how additional tension in the beam can lead to a Duffing-type nonlinearity,
consider the Euler-Bernoulli equation for a thin oscillating beam of equilibrium length
L0

70

ρA
∂2X

∂t2
= −EI

∂4X

∂z4
+ T

∂2X

∂z2
, (A.1)

where ρ is density, A is the cross-sectional area of the beam, E is Young’s modulus, I
is the moment of inertia, T is tension, X is displacement, t is time, and z is position
along the length of the beam, with one clamp at z = 0 and the other at z = L0. Let
∆L be the extension of the length of the beam due to stretching during oscillation.
Stretching will induce an additional strain ∆T beyond the equilibrium tension T0, so

Figure A.1: Resonator beam modelled as a segment of an ellipse.
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that T = T0 +∆T . The additional strain is related to the length extension via

∆T =
∆LEA

L0

. (A.2)

The total length of the beam when stretched L = L0 +∆L is the line integral along
the displaced beam which, via a first-order Taylor expansion, gives

L = L0 +∆L =

L0∫
0

√
1 +

(
∂X

∂z

)2

dz

≈
L0∫
0

(
1 +

1

2

(
∂X

∂z

)2
)
dz

= L0 +
1

2

L0∫
0

(
∂X

∂z

)2

dz.

(A.3)

Eq. (A.1) then becomes

ρA
∂2X

∂t2
= −EI

∂4X

∂z4
+

T0 +
EA

2L0

L0∫
0

(
∂X

∂z

)2

dz

 ∂2X

∂z2
. (A.4)

This equation can be solved assuming the ∆T term is a perturbation and the solution
to the linear component can be separated into temporal and spatial components
X = x(t)ϕ(z)81. Without loss of generality, let ϕ(z) = 1 at the point of maximum
displacement, so that x(t) is the maximum displacement of any point on the beam.
Multiplying Eq. (A.4) by ϕ(z) and integrating over z yields

0 =ρA
d2x

dt2

L0∫
0

ϕ2dz + EIx

∫ L0

0

ϕ
d4ϕ

dz4
dz − T0x

L0∫
0

ϕ
d2ϕ

dz2
dz

− EAx3

2L0

 L0∫
0

(
dϕ

dz

)2

dz

 L0∫
0

ϕ
d2ϕ

dz2
dz

 .

(A.5)

Integrating by parts then gives

0 =

ρA L0∫
0

ϕ2dz

 d2x

dt2
+

EI

L0∫
0

(
d2ϕ

dz2

)2

dz + T0

L0∫
0

(
dϕ

dz

)2

dz

x

+

EA

2L0

 L0∫
0

(
dϕ

dz

)2

dz

2
x3.

(A.6)
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where the cross-terms are zero since clamping requires ϕ(0) = ϕ(L0) = ϕ′(0) =
ϕ′(L0) = 0. Stretching thus introduces a Duffing term, with a positive coefficient that
increases with increasing bending of the beam.

The value of the expected intrinsic Duffing parameter of our beam can be
estimated using this derivation. Assume that the amplitude of oscillation of the
beam is x0 = 10−8m, approximately the maximum observed experimentally. When
the beam is at the point of maximum deflection, it can be modelled as a segment of
an ellipse with minor axis b = 10−7 and major axis

a =

√√√√√√ (L0/2)
2

1−
(
b− x0

b

)2 = 8.03× 10−5, (A.7)

where L0 is 70 µm. The segment of this ellipse corresponding to the deflected beam is
illustrated in Fig. A.1. The position function ϕ(z) in Eq. (A.6), with z = 0 now fixed
at the centre of the beam, is thus

ϕ(z) = b

√
1− z2

a2
− (b− x0), −L0

2
≤ z ≤ L0

2
. (A.8)

The derivative is
ϕ′(z) = − b

a

z√
a2 − z2

. (A.9)

The intrinsic Duffing parameter suggested by Eq. (A.6), normalised to the effective
mass of the resonator, is therefore

αintrinsic =

EA

2L0

 L0/2∫
−L0/2

(
b

a

)2
z2

a2 − z2
dz


2

ρA

L0/2∫
−L0/2

(
b

a

√
a2 − z2 − (b− x0)

)2

dz

. (A.10)

Given that E is approximately 70GPa; the height and width of the beam are 130 nm
and 200 nm respectively, giving A = 2.6× 10−14m2; and the combined density of
the silicon nitride and aluminium is ρ = 3062 kgm−3, αintrinsic is approximately
2.6× 109m−2 s−2.
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