

AN AUTOMATIC MORPHOLOGICAL ANALYSIS SYSTEM

FOR INDONESIAN

PRIHANTORO

A thesis submitted for the degree of PhD in Linguistics

Department of Linguistics and English Language

Lancaster University

For indeed, with hardship [will be] ease (The Holy Quran 94:5)

i

Abstract

This thesis reports the creation of SANTI-morf (Sistem Analisis Teks Indonesia – morfologi), a

rule-based system that performs morphological annotation for Indonesian. The system has been

built across three stages, namely preliminaries, annotation scheme creation (the linguistic aspect

of the project), and system implementation (the computational aspect of the project).

The preliminary matters covered include the necessary key concepts in morphology and

Natural Language Processing (NLP), as well as a concise description of Indonesian morphology

(largely based on the two primary reference grammars of Indonesian, Alwi et al. 1998 and

Sneddon et al. 2010, together with work in the linguistic literature on Indonesian morphology

(e.g. Kridalaksana 1989; Chaer 2008).

As part of this preliminary stage, I created a testbed corpus for evaluation purposes. The

design of the testbed is justified by considering the design of existing evaluation corpora, such as

the testbed used by the English Constraint Grammar or EngCG system (Voutilanen 1992), the

British National Corpus (BNC) 1994 evaluation data1, and the training data used by MorphInd

(Larasati et al. 2011), a morphological analyser (MA) for Indonesian. The dataset for this testbed

was created by narrowing down an existing very large bit unbalanced collection of texts (drawn

from the Leipzig corpora; see Goldhahn et al. 2012). The initial collection was reduced to a corpus

composed of nine domains following the domain categorisation of the BNC)2. A set of texts from

each domain, proportional in size, was extracted and combined to form a testbed that complies

with the design cited informed by the prior literature.

The second stage, scheme creation, involved the creation of a new Morphological

Annotation Scheme (MAS) for Indonesian, for use in the SANTI-morf system. First, a review of

MASs in different languages (Finnish, Turkish, Arabic, Indonesian) as well as the Universal

Dependencies MAS identifies the best practices in the field. From these, 15 design principles for

the novel MAS were devised. This MAS consists of a morphological tagset, together with

comprehensive justification of the morphological analyses used in the system. It achieves full

1 http://www.natcorp.ox.ac.uk/docs/bnc2error.htm (last accessed 26/05/2021)
2 http://www.natcorp.ox.ac.uk/docs/URG/BNCdes.html (last accessed 26/05/2021)

http://www.natcorp.ox.ac.uk/docs/bnc2error.htm
http://www.natcorp.ox.ac.uk/docs/URG/BNCdes.html

ii

morpheme-level annotation, presenting each morpheme’s orthographic and citation forms in the

defined output, accompanied by robust morphological analyses, both formal and functional; to my

knowledge, this is the first MAS of its kind for Indonesian. The MAS’s design is based not only on

reference grammars of Indonesian and other linguistic sources, but also on the anticipated needs

of researchers and other users of texts and corpora annotated using this scheme of analysis. The

new MAS aims at

The third stage of the project, implementation, consisted of three parts: a benchmarking

evaluation exercise, a survey of frameworks and tools, leading ultimately to the actual

implementation and evaluation of SANTI-morf.

MorphInd (Larasati et al. 2012) is the prior state-of-the-art MA for Indonesian. That

being the case, I evaluated MorphInd’s performance against the aforementioned testbed, both as

just5ification of the need for an improved system, and to serve as a benchmark for SANTI-morf.

MorphInd scored 93% on lexical coverage and 89% on tagging accuracy. Next, I surveyed existing

MAs frameworks and tools. This survey justifies my choice for the rule-based approach (inspired

by Koskenniemi’s 1983 Two Level Morphology, and NooJ (Silberztein 2S003) as respectively the

framework and the software tool for SANTI-morf.

 After selection of this approach and tool, the language resources that constitute the

SANTI-morf system were created. These are, primarily, a number of lexicons and sets of

analysis rules, as well as necessary NooJ system configuration files. SANTI-morf’s 3 lexicon files

(in total 86,590 entries) and 15 rule files (in total 659 rules) are organised into four modules,

namely the Annotator, the Guesser, the Improver and the Disambiguator. These modules are

applied one after another in a pipeline. The Annotator provides initial morpheme-level

annotation for Indonesian words by identifying their having been built according to various

morphological processes (affixation, reduplication, compounding, and cliticisation). The Guesser

ensures that words not covered by the Annotator, because they are not covered by its lexicons,

receive best guesses as to the correct analysis from the application of a set of probable but not

exceptionless rules. The Improver improves the existing annotation, by adding probable analyses

that the Annotator might have missed. Finally, the Disambiguator resolves ambiguities, that is,

iii

words for which the earlier elements of the pipeline have generated two or more possible

analyses in terms of the morphemes identified or their annotation.

NooJ annotations are saved in a binary file, but for evaluation purposes, plain-text

output is required. I thus developed a system for data export using an in-NooJ mapping to and

from a modified, exportable expression of the MAS, and wrote a small program to enable re-

conversion of the output in plain-text format. For purposes of the evaluation, I created a 10,000 -

word gold-standard SANTI-morf manually-annotated dataset. The outcome of the evaluation is

that SANTI-morf has 100% coverage (because a best-guess analysis is always provided for

unrecognised word forms), and 99% precision and recall for the morphological annotations, with a

1% rate of remaining ambiguity in the final output.

SANTI-morf is thus shown to present a number of advancements over MorphInd, the

state-of-the-art MA for Indonesian, exhibiting more robust annotation and better coverage. Other

performance indicators, namely the high precision and recall, make SANTI-morf a concrete

advance in the field of automated morphological annotation for Indonesian, and in consequence a

substantive contribution to the field of Indonesian linguistics overall.

iv

Published works based on this thesis

Prihantoro. (2021). The Morphological Annotation of Reduplication-Circumfix Intersection in

Indonesian. In B. Bekavac, Kocijan, S. K, & S. K. M, Formalising Natural Languages:

Applications to Natural Language Processing and Digital Humanities. NooJ 2020.

Communications in Computer and Information Science (pp. 37-48). Zagreb: CCIS.

Prihantoro. An Evaluation of the Morphological Annotation Scheme for Indonesian Used in

MorphInd Program. Corpora 16 (3)

v

Declaration

To the best of my knowledge and belief, I declare that the work presented in this thesis is

original and my own work. The material has not been submitted for a degree at this or any other

university. The parts of the thesis which have been published as academic articles are listed in

the section Published works based on this thesis, above.

Prihantoro

vi

Acknowledgement

This work would not have been possible without the support and generosity of

many people and organisations around me. I am highly indebted to:

- My wife, my daughter, and my son (Dyka Santi, Yumi, and Dito), to whom this thesis is

dedicated. I can’t thank them enough for their supports, prayers, and sacrifices. For this

reason, I use ‘Santi’ to name the system, as in ‘SANTI-morf’; I prepended ‘Dyka’, ‘Yumi’

and ‘Dito’ to all SANTI-morf’s resource file names.

- My parents, who gave me constant encouragements.

- My supervisor, Andrew Hardie who taught me a lot of new things, and patiently guided

me to complete this thesis.

- Elena Semino and Jonathan Culpeper for their timely responses and support to help me

resolve some urgent issues I experienced during my study.

- NooJ author, Max Silberztein, who also serves as the external examiner on my PhD Viva

- Tony McEnery, the internal examiner on my viva

- Lembaga Pengelola Dana Pendidikan (Indonesian Endowment Fund for Education) for

its full sponsorship of my PhD program in Lancaster University.

- ESRC Centre for Corpus Approaches to Social Science (CASS) and Linguistic and English

Language (LAEL) program, Lancaster university.

- Raffa, Andressa, Irene, Tanjun, and all of my CASS mates.

Needless to say, this is a non-exhaustive list; there are many other people and

organisations that are not in this list. Their supports are highly appreciated.

vii

Table of contents

Abstract ... i

Published works based on this thesis .. iv

Declaration ... v

Acknowledgement ... vi

Table of contents .. vii

List of tables .. xix

List of figures .. xxvi

CHAPTER 1 ... 1

1.1 Morphology ... 1

1.1.1 Words and lexemes .. 1

1.1.2 Morphemes, morphs, and allomorphs .. 3

1.1.3 Categorisations of morphemes .. 5

1.1.3.1 Free versus bound morphemes ... 5

1.1.3.2 Lexical versus grammatical morphemes .. 6

1.1.3.3 Affixes and bases ... 7

1.1.3.4 Inflectional and derivational affixes ... 8

1.1.3.5 Roots, bases, and stems ... 9

1.1.4 Presenting the internal structures of words .. 10

1.1.4.1 Bracket notations and tree diagrams ... 10

1.1.4.2 Glossing .. 13

1.1.4.3 Automatic morphological annotation ... 15

1.2 Natural language processing .. 16

1.2.1 Common NLP applications ... 16

1.2.2 Token .. 17

viii

1.2.3 Annotation .. 18

1.2.4 Lexicon, rules and annotated corpus .. 20

1.2.4.1 Lexicon .. 20

1.2.4.2 Rules ... 21

1.2.4.3 Annotated corpora ... 22

1.2.5 Disambiguation .. 23

1.3 Aims, scope and procedures of the thesis project .. 24

1.4 Organisation of this thesis .. 26

CHAPTER 2 ... 28

2.1 An overview of the structure of Indonesian ... 28

2.1.1 Background .. 28

2.1.2 Phonetics and phonology ... 28

2.1.3 Morphology and syntax ... 30

2.1.3.1 Clause structure .. 30

2.1.3.2 Inflection and derivation in Indonesian ... 31

2.1.3.3 Productivity .. 32

2.1.3.4 Polymorphemic words ... 32

2.1.3.4.1 Roots ... 33

2.1.3.4.2 Affixation .. 36

2.1.3.4.2.1 Form .. 36

2.1.3.4.2.2 Function .. 39

2.1.3.4.3 Reduplication ... 42

2.1.3.4.4 Compounding ... 43

2.1.3.4.5 Cliticisation .. 44

ix

2.2 A testbed corpus of Indonesian ... 45

2.2.1 Purpose ... 45

2.2.2 Design ... 45

2.2.3 Creation .. 48

CHAPTER 3 ... 49

3.1 Scope and organisation of this review .. 49

3.2 Some Finnish MASs .. 50

3.2.1 Kimmo Koskenniemi’s MAS.. 50

3.2.1.1 Some preliminary remarks on TLM ... 51

3.2.1.2 Documentation of KKM in the literature ... 51

3.2.1.3 KKM’s handling of stems and suffixes ... 52

3.2.1.3.1 Nominal stem suffixes ... 52

3.2.1.3.2 Adjectival stem suffixes ... 54

3.2.1.3.3 Verbal stem suffixes .. 54

3.2.1.3.4 Clitics .. 56

3.2.1.4 Output format .. 56

3.2.1.5 KKM as a word-level analysis... 57

3.2.2 Later derivatives of KKM .. 57

3.2.3 The MAS used in the Finnish Treebank .. 59

3.2.3.1 Derivation tags ... 59

3.2.3.2 Output format .. 60

3.3 Some Turkish MASs .. 61

3.3.1 Oflazer’s MAS .. 61

3.3.1.1 Roots, inflections, and derivations .. 61

x

3.3.1.2 Output format .. 64

3.3.2 Coltekin’s MAS .. 65

3.3.2.1 Treatment of roots ... 66

3.3.2.2 Treatment of suffixes ... 66

3.3.2.3 Output format .. 67

3.4 Some Arabic MASs .. 67

3.4.1 Background to Arabic .. 67

3.4.2 Buckwalter’s MAS ... 68

3.4.2.1 Treatment of stems .. 69

3.4.2.2 Treatment of affixes ... 69

3.4.2.3 Output format .. 70

3.4.2.4 Null allomorphs ... 71

3.4.3 Sawalha et al.’s MAS ... 72

3.4.3.1 Overview ... 72

3.4.2.2 SAM’s output format ... 73

3.5 Some Indonesian MASs ... 74

3.5.1 Pisceldo et al.’s MAS .. 74

3.5.1.1. Overview ... 74

3.5.1.2. POS categories ... 75

3.5.1.3. Affixation and reduplication ... 76

3.5.1.4. Output format .. 76

3.5.2 Larasati et al.’s MAS ... 77

3.5.2.1 Overview ... 77

3.5.2.2 Lemma analysis ... 77

xi

3.5.2.3 Morphological analysis .. 79

3.5.2.4 Output format .. 81

3.6 The Universal Dependencies MAS ... 84

3.6.1. UDM Components ... 84

3.6.2. UDM as word-level analysis ... 86

3.6.3. Limitations of UDM for morphological annotation ... 86

3.7 Best practices for morphological annotation schemes... 87

3.7.1 Morpheme-level analysis and word-level analysis .. 87

3.7.2 Orthographic and citation form .. 92

3.7.3 Formal and functional analysis .. 94

3.7.4 Tag encoding .. 96

3.7.5 Organisation of analytic categories .. 98

3.8 Summary .. 101

CHAPTER 4 ... 103

4.1 Principles of annotation scheme design ... 103

4.1.1 Principle 1: To devise the MAS independently from technical implementations .. 103

4.1.2 Principle 2: To focus the analysis at morpheme level ... 104

4.1.3 Principle 3: To unambiguously link each morpheme to its analysis 105

4.1.4 Principle 4: To present morphemes in both orthographic and citation forms 106

4.1.5 Principle 5: To present formal and functional analyses in the annotations 107

4.1.6 Principle 6: To use reference grammars as the main basis for analytic model 108

4.1.7 Principle 7: To synthesise categories from the reference grammars based on

relevance and genericness ... 108

4.1.8 Principle 8: To use the bag of tags approach to combine independent analytic

categories .. 110

xii

4.1.9 Principle 9: To hierarchically combine analytic categories that are dependent 110

4.1.10 Principle 10: To devise this MAS’s tags using the most widely accepted terminology

 ………………………………………………………………………………………………..111

4.1.11 Principle 11: To encode tags using multi-letter or full analytical labels, not single

letters ………………………………………………………………………………………………...112

4.1.12 Principle 12: To encode the MAS’s tagset in both Indonesian and English 112

4.1.13 Principle 13: To analyse loan and foreign words as roots 113

4.1.14 Principle 14: To not treat multiword expressions differently from sequences of

single words .. 113

4.1.15 Principle 15: To provide categories that disambiguate homographs at morpheme

level ………………………………………………………………………………………………...114

4.2 A novel morphological annotation scheme for Indonesian ... 115

4.2.1. Tokenisation ... 115

4.2.1.1. Tokenisation of affixes and roots .. 115

4.2.1.2. Special remarks on infixes and circumfixes ... 117

4.2.1.3. Tokenisation of reduplications .. 119

4.2.2. Roots ... 121

4.2.2.1. Formal analytic categories for root morphemes .. 121

4.2.2.2. Formal analytic categories for cliticised root morphemes............................... 122

4.2.2.3. Functional analytic categories for root morphemes .. 123

4.2.3. Affixes ... 126

4.2.3.1. Formal analytic categories .. 126

4.2.3.2. Functional analytic categories .. 127

4.2.3.3.1. Outcome POS .. 127

4.2.3.3.2. Voice and other valency constructions .. 136

xiii

4.2.3.3.2.1. Active and passive voice .. 136

4.2.3.3.2.2. Applicative and causative constructions .. 139

4.2.3.3.2.3. Reflexive and Reciprocal ... 144

4.2.3.3.3. Adjective degree .. 146

4.2.3.3.4. Other functional categories .. 147

4.2.3.3.4.1. Definite marker ... 148

4.2.3.3.4.2. Iterative .. 148

4.2.3.3.4.3. Random action ... 150

4.2.4. Reduplication ... 151

4.2.4.1. Placement of functional analysis .. 151

4.2.4.2. Formal and functional analytic categories for reduplication 152

4.2.5. Compounds ... 154

4.2.6. The NYA tag ... 155

4.3 A full-sentence morphological analysis .. 157

4.4 Conclusion .. 159

CHAPTER 5 ... 160

5.1 A brief description of MorphInd .. 160

5.2 Why MorphInd is the state-of-the-art morphological analyser for Indonesian 161

5.3 Larasati et al.’s evaluation .. 162

5.4 Evaluation of MorphInd’s morphological annotation scheme .. 164

5.5 Evaluation of MorphInd’s performance .. 166

5.5.1 Output format .. 166

5.5.2 Rationale for the evaluation.. 167

5.5.3 Testbed corpus ... 168

xiv

5.5.4 Procedure for evaluation ... 169

5.5.5 Morpheme boundary assignment accuracy .. 174

5.5.6 Word and root tagging accuracy ... 175

5.5.7 Aggregate accuracy .. 177

5.5.8 Coverage ... 178

5.6 Summary .. 181

CHAPTER 6 ... 184

6.1 Introduction to the review ... 184

6.2 Typical tagging systems .. 185

6.3 Formal languages, grammars, and automata.. 188

6.3.1 Introduction to formal languages ... 188

6.3.2 The elements of formal grammar ... 191

6.3.3 The Chomsky hierarchy .. 193

6.3.3.1 Introduction to the Chomsky hierarchy ... 193

6.3.3.2 Further aspects of regular languages ... 197

6.3.3.2.1 Regular language operations and regular expressions 197

6.3.3.2.2 Finite state automata .. 201

6.3.3.2.2.1 Elements of an FSA .. 201

6.3.3.2.2.2 The epsilon move and loops in an FSA ... 202

6.3.3.2.2.3 FSAs and regular expressions ... 203

6.3.3.2.3 Regular relations and finite state transducers .. 204

6.3.3.2.3.1 The nature of regular relations ... 204

6.3.3.2.3.2 Finite state transducers ... 205

6.3.3.2.3.3 Practical uses of FSTs .. 207

xv

6.3.3.3 Context free grammars (CFGs) ... 209

6.3.3.4 Context sensitive grammars (CSGs) .. 211

6.3.3.5 Unrestricted grammars ... 212

6.4 Linguistic and morphological formalisms .. 213

6.4.1 Introduction to linguistic formalisms ... 213

6.4.2 Transformations and underlying and surface forms ... 215

6.4.3 Word formation rules ... 215

6.4.4 Overgeneration and blocking .. 217

6.5 Computational morphology prior to TLM .. 218

6.5.1 Early computational morphology ... 218

6.5.2 Stemmers ... 219

6.5.3 Lemmatisers... 221

6.5.4 The origins of TLM .. 222

6.6 Two-Level Morphology .. 225

6.6.1 An overview of Koskenniemi’s system .. 225

6.6.2 TLM alphabet, lexical and surface strings ... 226

6.6.3 The TLM lexicon system ... 228

6.6.4 TLM rules and their FSTs... 231

6.7 A review of present-day tagging practice ... 234

6.7.1 Tokenisation ... 234

6.7.2 Annotation .. 237

6.7.2.1 Lexicons for annotation ... 237

6.7.2.2 Rules for annotation .. 237

6.7.3 Disambiguation .. 240

xvi

6.7.3.1 Rule-based disambiguation ... 240

6.7.3.2 Statistical disambiguation .. 241

6.8 Measures for evaluation of tagging systems .. 242

6.8.1 Evaluating tagging systems .. 242

6.8.2 Precision, recall and F-measure ... 242

6.8.3 Ambiguity rate and error rate .. 244

6.9 Choice of approach for a new Indonesian MA .. 244

6.10 Choice of software for the new MA system .. 246

6.11 Concluding remarks .. 249

CHAPTER 7 ... 250

7.1 Introducing SANTI-morf ... 250

7.2 NooJ .. 250

7.2.1 NooJ lexicons .. 251

7.2.1.1 Basic format and operation ... 251

7.2.1.2 The application of ‘unambiguous’ lexical entries ... 254

7.2.2 NooJ rules .. 255

7.2.2.1 Morphological grammars .. 255

7.2.2.2 Syntactic grammars ... 258

7.2.3 Priority configuration for a set of resources ... 262

7.3 System architecture ... 263

7.4 Implementation ... 265

7.4.1 Module 1: the Annotator ... 265

7.4.1.1 Overview ... 265

7.4.1.2 DykaA1.nod (H9): the core lexicon ... 266

xvii

7.4.1.3 DykaA2 (H8): the proper noun lexicon ... 269

7.4.1.4 DykaA3.nod (H7): the foreign word lexicon ... 270

7.4.1.5 YumiA1 (H7): the rules of affixation .. 271

7.4.1.5.1 Preliminaries ... 271

7.4.1.5.2 Input-output codes for affixes ... 272

7.4.1.5.3 Root component: variable and output .. 273

7.4.1.5.4 Root component: matching constraint .. 274

7.4.1.5.5 The rules in full ... 276

7.4.1.5.6 Organisation of rules ... 277

7.4.1.6 YumiA2 (H6): rules for affixation involving clitics .. 278

7.4.1.7 YumiA3 (H6): rules for affixation involving two roots .. 280

7.4.1.8 YumiA4 (H6): rules for affixation involving two roots and clitics 281

7.4.2 Module 2: the Guesser ... 282

7.4.3 Module 3: the Improver ... 285

7.4.4 Module 4: the Disambiguator.. 289

7.4.4.1 DitoD1: disambiguating reduplication ... 289

7.4.4.2 DitoD2 and DitoD3 .. 289

7.5 Evaluation .. 291

7.5.1 The testbed ... 291

7.5.2 Procedures for evaluation.. 291

7.5.3 Coverage ... 295

7.5.4 Tokenisation ... 295

7.5.5 Morphological analysis .. 297

7.6 Summary and conclusion .. 298

xviii

CHAPTER 8 ... 301

8.1 Summary of thesis and aims achieved ... 301

8.2 Limitations ... 303

8.3 Directions for future work ... 305

8.4 Contributions of this thesis ... 306

REFERENCES .. 310

xix

List of tables

Table 1.1. Morphs of some English plurals (adapted from Fromkin et al. 2011:267) 3

Table 1.2. Distribution of English plural morphs (adapted from Fromkin et al. 2011:269) 4

Table 1.3. Two groups of morphemes preceding -er, -est, and -ness (adapted from Duran &

Katamba 2014, with additional examples) .. 5

Table 1.4. Samples of lexical and grammatical morphemes (drawn from Katamba 1993:41 and

Coates 1999:30) .. 6

Table 1.5. Affix categorisation (adapted from Katamba 1993:45-51 and Ewing 2005:24) 7

Table 1.6. Some inflectional affixes with the base perform .. 8

Table 1.7. Some derivational affixes with the base happy .. 8

Table 1.8. Examples of English roots, bases, and corresponding affixed word forms (in brackets)

(adapted from Katamba, 1993:41) .. 9

Table 1.9. Subsidiary aims and corresponding desired outputs of this thesis 24

Table 2.1. Indonesian Consonants, reproduced from Sodeberg and Olson (2008:210) 29

Table 2.2. meN- prefixation rules (root-initial consonant: L=lost, R=retained), reproduced from

Moeljadi et al. (2015:17). ... 30

Table 2.3. Twelve classes of Indonesian root morphemes ... 33

Table 2.4. Indonesian prefixes (P=Productivity, H=High, M=Medium, L=Low, U=unproductive) 37

Table 2.5. Indonesian suffixes, circumfixes and infixes (abbreviations as in Table 2.4) 38

Table 2.6. Verb outcome affixes .. 40

Table 2.7. Noun outcome affixes ... 41

Table 2.8. Adjective, adverb, and numeral outcome affixes.. 41

Table 2.9. Full, imitative, and partial reduplication in Indonesian ... 43

Table 2.10. Reduplication with affixation .. 43

Table 3.1. Nominal suffix inflectional features and values in KKM .. 53

Table 3.2. Examples of KKM tags for nominal suffixes (adapted from Koskenniemi 1983:48) 53

Table 3.3. Inflectional and derivational features for verbal suffixes in KKM, with example values

(adapted from Koskenniemi 1995) .. 55

xx

Table 3.4. FTM sample (reproduced from Voutilainen et al. 2012:53) ... 60

Table 3.5.Turkish root POS (adapted from Oflazer 2018:46) ... 62

Table 3.6. Subcategories of noun, pronoun and numeral in OM’s POS system for Turkish 62

Table 3.7. OM’s inflectional features .. 63

Table 3.8. Derivational features in OM (Oflazer 2018:46-51) .. 64

Table 3.9. LM’s “lemma” tags for major POS category (adapted from Larasati 2011) 78

Table 3.10. Morphological analyses in LM tags (reproduced from Larasati 2011) 80

Table 3.11. MorphInd’s analysis for the word mengakomodasi ‘accommodate’ using CoNLL-U

format (adapted from UD data example) ... 85

Table 3.12. Comparing morpheme- and word-level analysis with hypothetical English MASs 88

Table 3.13. Analyses of Indonesian verbs using LM versus a Hutmegs-style MAS 94

Table 4.1. The formal analytic category for root morphemes ... 121

Table 4.2. The root category within full analyses .. 121

Table 4.3. Formal categories for cliticised roots, organised based on POS 123

Table 4.4. Formal categories for cliticised roots within full analyses .. 123

Table 4.5. Major POS categories for roots .. 125

Table 4.6. Major POS categories within full analyses .. 125

Table 4.7. Formal categories for affixes ... 127

Table 4.8. Formal categories for affixes within full analyses ... 127

Table 4.9. Noun derivation outcome POS .. 130

Table 4.10. Adjective derivation outcome POS .. 131

Table 4.11. Adverb derivation outcome POS ... 131

Table 4.12.Verb derivation outcome POS (part 1, prefixes and suffixes) 132

Table 4.13.Verb derivation outcome POS (part 2, circumfixes and infixes) 133

Table 4.14. Numeral derivation outcome POS .. 133

Table 4.15. Outcome POS categories within full analyses (part 1) .. 134

Table 4.16. Outcome POS categories within full analyses (part 2) .. 135

Table 4.17. Analytic categories for active and passive voices ... 138

Table 4.18. Analytic categories for active and passive voices within full analyses 138

xxi

Table 4.19. Productivity of -kan versus -i .. 140

Table 4.20. Analytic categories for causative and applicative within full analyses 144

Table 4.21. Analytic categories for causative and applicative within full analyses 144

Table 4.22. Analytic categories for reciprocal and reflexive voices .. 146

Table 4.23. Analytic categories for reciprocals and reflexives within full analyses 146

Table 4.24. Analytic categories for adjective degree ... 147

Table 4.25. Analytic categories for adjective degree within full analyses 147

Table 4.26. Analytic category for definite suffix .. 148

Table 4.27. Analytic category for definite suffix within full analysis .. 148

Table 4.28. Analytic category for iterative aspect ... 150

Table 4.29. Analytic category for iterative aspect within a full analysis 150

Table 4.30. Analytic category for random action ... 150

Table 4.31. Analytic category for random action within full analyses ... 150

Table 4.32. Formal analytic categories of reduplication ... 153

Table 4.33. Functional analytic categories of reduplication ... 153

Table 4.34. Analytic categories for reduplication within full analyses .. 154

Table 4.35. Compounds with and without other morphological processes 155

Table 4.36. Full analysis sample .. 158

Table 5.1. A sample of MorphInd input and output .. 162

Table 5.2. Percentage coverage of word tokens and types for MorphInd and PMA (adapted from

Larasati et al. 2011:128) ... 163

Table 5.3. Percentage coverage of word tokens and types for MorphInd and modified PMA

(adapted from Larasati et al. 2011:128) ... 164

Table 5.4. MorphInd’s output structure and analysis procedures ... 167

Table 5.5. Mapping Larasati et al.’s domains to testbed domains ... 168

Table 5.6. Evaluation procedure ... 169

Table 5.7. Transferring the output to a spreadsheet .. 170

Table 5.8. Frequency of codes for morpheme boundary identification ... 174

Table 5.9. Comments in the MorphInd code on disambiguation rules relevant to tokenisation . 175

xxii

Table 5.10. Some POS taggers’ accuracy rates .. 175

Table 5.11. MorphInd’s word tagging and root tagging accuracy .. 176

Table 5.12. Incorrect morpheme boundary for compound word reduplication and reciprocal

reduplication with meN- ... 177

Table 5.13. Aggregate accuracy evaluation ... 178

Table 5.14. MorphInd’s coverage .. 179

Table 5.15. MorphInd’s coverage, breaking down out-of-coverage items....................................... 179

Table 5.16. Out-of-coverage polymorphemic and monomorphemic words from category others . 180

Table 5.17. Full results of the present evaluation compared to Larasati et al.’s (2011) evaluation

 .. 182

Table 6.1. ITU Turkish NLP Pipeline sample ... 187

Table 6.2. Sample letters and words of formal languages. ... 189

Table 6.3. Summary of GD that produces LD .. 191

Table 6.4. GE producing LE, representing the English noun phrase composed of words 193

Table 6.5. GF producing LF, representing English words composed of morphemes 193

Table 6.6. GG that produces LG, modelling the English noun phrase (adapted from Wintner

2013:56) .. 193

Table 6.7. Comparison of production rules of GD and GG .. 194

Table 6.8. Grammar types defined via restrictions on production rules (adapted from Silberztein

2016:120) .. 194

Table 6.9. Grammar types and corresponding accepting automata (adapted from Silberztein

2016:121-122) ... 196

Table 6.10. GH that produces LH ... 198

Table 6.11. GI that produces LI ... 198

Table 6.12. GJ that produces LJ .. 198

Table 6.13. GK that produces LK ... 199

Table 6.14. GL that produces LL .. 199

Table 6.15. Comparison of regular expressions to lists of rules ... 200

Table 6.16. Elements of FSA A (adapted from Wintner 2010:19).. 201

xxiii

Table 6.17. Words and corresponding tags in a regular relation (adapted from Wintner 2010:24)

 .. 205

Table 6.18. Turkish morphemes and corresponding tags from a regular relation (adapted from

Jurafsky 2007:52) .. 209

Table 6.19. GM that produces LM ... 209

Table 6.20. GN that produces LN illustrating PP recursion ... 210

Table 6.21. GO that produces LO, able to process PP attachment ambiguity 210

Table 6.22. GP that produces LP in which N is conditionally rewritten ... 212

Table 6.23. Sample WFRs (adapted from Aronoff 1976:36) .. 216

Table 6.24. Sample output from the Lovins and Porter stemmers .. 219

Table 6.25. Recoding of ‘rpt’ to ‘rb’ (Lovins 1968:26) ... 220

Table 6.26. The complexity of grammars in the Chomsky hierarchy (adapted from Silberztein

2016:121-122). .. 223

Table 6.27. Character subsets used in TLM (adapted from Koskenniemi 1983:23-27) 227

Table 6.28. TLM implementation of alternation from strong to weak grade consonant due to

genitive suffix -n (adapted from Koskenniemi 1983:17) ... 227

Table 6.29. Alternative notations in TLM.. 231

Table 6.30. Two level rule types (reproduced from Oflazer 1999:194) ... 231

Table 6.31. Finnish vowel doubling as a TLM rule ... 232

Table 6.32. Two hypothetical frequency lists from my hat and your hat. 235

Table 6.33. A hypothetical mini-lexicon for English ... 239

Table 6.34. A hypothetical gold-standard annotation ... 243

Table 6.35. A hypothetical testbed sentence, annotated by the system (TP = true positive/correct,

FP= false positive/incorrect) ... 243

Table 7.1. A lexicon with a +UNAMB entry .. 254

Table 7.2. Examples of constraint codes and entries they match .. 257

Table 7.3. NooJ’s priority codes for LA resources .. 262

Table 7.4. List of resources making up Module 1: Annotator ... 265

Table 7.5. A sample of words morphologically annotated using DykaA1 269

xxiv

Table 7.6. Existing resources used to build DykaA2 ... 270

Table 7.7. Some proper nouns originating as foreign words (in the name Blue Moon Lancaster),

as annotated by DykaA2 ... 270

Table 7.8. Foreign word lexicon sources ... 271

Table 7.9. A two-word foreign phrase (blue line) annotated by DykaA3 271

Table 7.10. Sample input-output codes from rules for affixes .. 273

Table 7.11. Some constraints (L = lexical property constraint, P = partial match constraint) 276

Table 7.12. Affixation rule patterns (patterns are in true order rather than the order in the

actual code)... 277

Table 7.13. Annotation of kesatuan as a combination of root satu and circumfix ke—an using

YumiA1 ... 278

Table 7.14. Annotation of enclitic pronoun =ku ‘pronoun’ in jawab-an=ku ‘my answer’ using

YumiA2 ... 279

Table 7.15. The annotation of a compound kaca-mata.. 281

Table 7.16. The annotation of per-tanggung-jawab-an=mu as compound tanggung-jawab plus

circumfix per—an plus enclitic =mu by rules and lexicon entries within the Annotator 282

Table 7.17. Rules and their priorities in the Guesser (* = prioritised using +UNAMB) 284

Table 7.18. Number of rules in the resources in the Guesser (46 rules) .. 285

Table 7.19. Some words annotated using the Guesser .. 285

Table 7.20. Improver resources ... 285

Table 7.21. Annotation of pukul-pukul by the Improver (added analysis in bold)........................ 286

Table 7.22. Annotation of pukul-memukul by the Improver (added analysis in bold). 287

Table 7.23. Disambiguator resources ... 289

Table 7.24. Effect of DitoD1 on the annotation of reduplication pukul-pukul (change in bold) ... 289

Table 7.25. Unresolved ambiguity for mengemas ... 290

Table 7.26. Sample output in spreadsheet format for mencapai 1 banding 4 ‘reach 1:4 ratio’ 292

Table 7.27. Sample evaluation codes with the corresponding output .. 293

Table 7.28. Proportion of words analysed by the Annotator and the Guesser 295

Table 7.29. The distribution of words guessed by different resources in the Guesser 295

xxv

Table 7.30. Evaluation of SANTI-morf tokenisation ... 296

Table 7.31. Evaluation of SANTI-morf morphological analysis ... 298

Table 7.32. Summary of SANTI-morf evaluation scores compared to MorphInd 299

Table 7.33. Cross-language comparison of SANTI-morf with other rule-based taggers 300

xxvi

List of figures

Figure 1.1. Tree diagram for the structure of the word form unsystematic (adapted from

Fromkin, et al. 2011:93) .. 12

Figure 2.1. Indonesian Monophthongs and Diphthongs, reproduced from Sodeberg and Olson

(2008: 211) .. 29

Figure 3.1. Buckwalter tags in the Penn Arabic Treebank (reproduced from Sawalha et al.

2013:83) .. 70

Figure 3.2. Morpheme tags from the word bimadīnatī ‘in my city’ as a feature matrix in SAM

(reproduced from Sawalha et al. 2012:68) ... 73

Figure 3.3. BM morpheme-level analysis visualised in the online interface to the Quranic Arabic

Corpus (Dukes et al. 2009) .. 91

Figure 5.1. Example of assignment of morpheme boundaries, root tags and word tags by

MorphInd.. 167

Figure 5.2. Evaluation categories coded across three columns .. 171

Figure 5.3. Using Excel’s filter to select specific sub-categories (here, M/P) from morpheme

boundary correctness ... 171

Figure 6.1. A tree diagram for formal grammar GD .. 192

Figure 6.2. Chomsky hierarchy illustration (reproduced from Silberztein 2016:121) 195

Figure 6.3. Hierarchy of formal language types .. 196

Figure 6.4. Diagram of FSAA (adapted from Wintner 2010:19) .. 202

Figure 6.5. FSAB with epsilon moves (reproduced from Wintner 2010:18) 203

Figure 6.6. FSAC with a loop (reproduced from Wintner 2010:19) ... 203

Figure 6.7. FSAs and regular expressions (adapted from Wintner 2010:18-19) 204

Figure 6.8. FSA that accepts a word ‘goose’ from a language of English singulars (adapted from

Wintner 2010:25) ... 206

Figure 6.9. FSA that accepts a word ‘geese’ from a language of English plurals (reproduced from

Wintner 2010:25) ... 206

xxvii

Figure 6.10. FST for the regular relation of goose and geese {‘goose:geese’} from the two

languages, with all pairs of labels shown (reproduced from Wintner 2010:25) 206

Figure 6.11. FST for the regular relation of goose and geese {‘goose:geese’} using an alternative

notation (reproduced from Wintner 2010:26) .. 207

Figure 6.12. The use of epsilon to handle paired words of unequal length in an FST that

pluralises ‘ox’ (reproduced from Wintner 2010:26) .. 207

Figure 6.13. Results of a regular expression search in Notepad++ (matches highlighted) 208

Figure 6.14. The composition of sequential rules into a single rule FST (reproduced from

Kartunnen 1993) .. 224

Figure 6.15. Analysis of ketun by Fintwol (http://www2.lingsoft.fi/cgi-bin/fintwol) 226

Figure 6.16. Example root lexicon entries (reproduced from Koskenniemi 1983:155) 229

Figure 6.17. Subcategorisation of a continuation class (reproduced from Koskenniemi 1983:46)

 .. 229

Figure 6.18. Example S3 lexicon entries (reproduced from Koskenniemi 1983:28) 230

Figure 6.19. Examples of P lexicon entries (adapted from Koskenniemi 1983:154) 230

Figure 6.20. Machine code of the FST for the Finnish vowel duplication rule (reproduced from

Koskenniemi 1983:145) ... 232

Figure 6.21. One of the non-contextual disambiguation rules in MorphInd (reproduced from

MorphInd.pl: see section 5.5.5) ... 240

Figure 6.22. Lexicon-grammar table for some phrasal verbs in English (reproduced from

Silberztein 2016:92) ... 248

Figure 7.1. An example NooJ lexicon ... 251

Figure 7.2. Resource panel in NooJ, showing one active lexicon ... 252

Figure 7.3. Applying a lexicon to a text in NooJ .. 253

Figure 7.4. A lexical entry in relation to input and annotation ... 253

Figure 7.5. The analysis of can’t into two tokens .. 254

Figure 7.6. Annotation with the +UNAMB lexical entry United States,N+UNAMB 254

Figure 7.7. Annotation without any priority ... 255

Figure 7.8. Ambiguous annotation of go (case 1: correct annotation is noun) 261

xxviii

Figure 7.9. Ambiguous annotation of go (case 2: correct annotation is verb) 261

Figure 7.10. Overview of SANTI-morf modules... 264

Figure 3.1. Buckwalter tags in the Penn Arabic Treebank (reproduced from Sawalha et al.

2013:83) .. 70

Figure 3.2. Morpheme tags from the word bimadīnatī ‘in my city’ as a feature matrix in SAM

(reproduced from Sawalha et al. 2012:68) ... 73

Figure 3.3. BM morpheme-level analysis visualised in the online interface to the Quranic Arabic

Corpus (Dukes et al. 2009) .. 91

1

CHAPTER 1

INTRODUCTION

The aim of this Ph.D. project is to create a novel system for automatic morphological

annotation of Indonesian, and thus to make an advance on the prior state of the art of

computational morphological analysis for this language. As later chapters will show, drawbacks

in work in the field so far require the creation of this new system, which is to be called SANTI-

morf (Sistem Analisis Teks Indonesia – morfologi). This chapter is dedicated to introducing the

nature of the project. Sections 1.1 and 1.2 explain certain concepts in morphology and Natural

Language Processing, respectively. I discuss the aims, scope, and procedures of the project in

section 1.3, and the organisation of this thesis in section 1.4.

1.1 Morphology

Morphology is the study of the internal structure of words. Haspelmath & Sims (2013: 2-

3) explain that morphology provides an understanding of the systematic relations among the

elements of words and how words are built from these elements. Words, and the morphological

elements of which words are composed, are central in the analysis of morphology.

1.1.1 Words and lexemes

The word is often defined briefly as a meaningful linguistic unit which can be realised

concretely by sounds or orthography. Crystal (2008:522) also defines phonological words and

orthographic words. He explains that phonological words are particular sequences of sounds

2

associated with particular meanings. We produce phonological words as we speak; they can be

represented in phonetic transcription. For instance, when a standard British English speaker

says ‘word’, the utterance can be transcribed as [wɜ:d]3.

Orthographic words, on the other hand, are realised by contiguous sequences of letters,

often bounded by spaces or punctuation marks. For instance, the orthographic word word is

written with four consecutive letters or characters, w-o-r-d, and is bounded by spaces. These

concrete realisations of words in the form of speech or orthography are called word forms

(Haspelmath & Sims 2013:15, Katamba 1993:18, and Booij 2007:3).

The second key concept in morphology, alongside that of the word form, is the lexeme. A

lexeme is an abstract unit, consisting of a group of word forms which share a core meaning.

Crystal (1988: 276) notes that each abstract lexeme underlies a set of word forms whose variation

is grammatically conditioned. Grammatically conditioned means that the alternation of the forms

or variants is driven by the syntax or morphology (Matthews 2007: 165).

 Carnstairs-McCarthy (2002:40) illustrates the concept of variation being driven by syntax

or morphology by identifying, as an example, the group of word forms performs, perform,

performed, and performing as the possible realisations of a single lexeme. He points out that

alternation among these forms is driven by their tense, number, and person. For instance,

performs is used in the context of third person singular present tense, as in she performs or he

performs. The word form performed is used in the context of past tense, or perfect/passive

participle>, regardless of the number or person, as in we performed or she has performed.

Although these word forms are not identical in grammatical function, they have one core

meaning, the basic sense of perform: to do an action or a piece of work.

Unlike the word form, which is a concrete unit, the lexeme is abstract. An alternative

term to lexeme is lemma. While lexeme and lemma refer to the same entity, the latter is more

frequently used in corpus linguistics and NLP, henceforth I will use only lemma.

3 Throughout this thesis, phonetic transcription of English represents UK pronunciation, not US.

3

1.1.2 Morphemes, morphs, and allomorphs

A word can be divided into minimal abstract units carrying meaning or grammatical

function. These units are called morphemes (Katamba 1993:19), and are often identified by

observing the distribution of meaningful sub-units within the word forms of related lexemes; a

recurring form with similar functions in each of its settings is a good candidate as a morpheme.

Like lexemes, morphemes are abstract units, and thus are not directly present in the word forms.

The concrete realisation of a morpheme in the language’s orthography or phonetics is referred to

as a morph (Katamba 1993:24). The identification of morphs within words is illustrated in Table

1.1.

Orthographic form Phonetic Form Segmented Phonetic form

caps [kæps] [kæp]+[s]

cabs [kæbz] [kæb]+[z]

bags [bægz] [bæg]+[z]

backs [bæks] [bæk]+[s]

bags [bægz] [bæg]+[z]

badges [bæʤɪz] [bæʤ]+[ɪz]

Table 1.1. Morphs of some English plurals (adapted from Fromkin et al. 2011:267)

Looking at the forms in Table 1.1 allows us to identify a recurrent pattern of interchange

among three different morphs, [s], [z] and [ɪz], which share a common grammatical function,

namely the plural. These morphs are thus referred to as allomorphs, a group of morphs that

represent or realise a single abstract morpheme (in this case, the plural morpheme).

Allomorphs of a single morpheme always occur in complementary distribution (Katamba

1993:27). The distribution is the total set of contexts where a given form occurs. Hence,

complementary distribution means that the environments where different allomorphs appear do

not overlap with one another (Haspelmath & Sims 2013:23). For instance, it might be that morph

4

A occurs only in environment X, and morph B occurs only in environment Y. As the distribution

is fixed for each allomorph, it would not be possible for A to appear in Y, or B to appear in X.

The factors that dictate the distribution of allomorphs are called conditioning. In the case

of the English plural morpheme, as Table 1.2 shows, allomorphs [s], [z], and [iz] are

phonologically conditioned by one phonetic property of the final sound of the morph they attach

to.

Morph After Environment

[z] [b], [d], [g], [v], [ð], [m], [n], [ŋ], [l], [r], any vowel Voiced non-sibilant

[s] [p], [t], [k], [f], [θ] Voiceless non-sibilant

[ɪz] [s], [ʃ], [z], [ʒ] , [tʃ], [dʒ] Sibilant

Table 1.2. Distribution of English plural morphs (adapted from Fromkin et al. 2011:269)

Another type of conditioning is when the choice of allomorph is determined by the

presence of some specific adjacent morpheme. This is known as lexical or morphological

conditioning. For instance, Katamba (1993:31) contrasts the English plural form oxen with

regular English plurals. Certain lexical morphemes, like ox, do not take the allomorph that

would be selected by the usual phonological conditioning of the English plural morpheme, which

here would result in *oxes *[ɒksɪz]4. Instead, the use of the allomorph -in in oxen is dictated by

the lexical morpheme itself (ox).

 Another type of conditioning, rarely discussed in the literature on morphology, is

orthographic conditioning. Table 1.3 illustrates this using two groups of English adjectives, one

group that ends in y and another group that ends in other letters. The adjectives in the first

group have two orthographic allomorphs, for instance happy and happi. The allomorph happy

occurs at the end of a word, whereas happi occurs elsewhere, for instance in happiness. Unlike

the adjectives in the first group, the adjectives in the second group (e.g. clever) do not have any

4 As standardly in linguistics, an asterisk (*) is used to indicate that the form or construction thus labelled is not observed

in the language under discussion.

5

allomorphy; their orthographic form is the same regardless of whether they are at the end of the

word or elsewhere.

Unlike allomorphy driven by phonological conditioning, orthographic conditioning affects

only the written form. All the adjective morphemes in Table 1.3, whether in the first or second

group, have the same phonetic forms regardless of whether the morpheme is word-final or not;

only the orthography changes.

1st

Group

Allomorph 1 Allomorph 2

word end preceding -er preceding -est preceding -ness

happy [hæpi] happier [hæpɪə] happiest [hæpɪɪst] happiness [hæpɪnɪs]

heavy [hɛvi] heavier [hɛvɪə] heaviest [hɛvɪɪst] heaviness [hɛvɪnɪs]

easy [iːzi] easier [iːzɪə] easiest [iːzɪɪst] easiness [iːzɪnɪs]

2nd

Group

No allomorphy

clever [klɛvə] cleverer [klɛvərə] cleverest [klɛvərɪst] cleverness [klɛvənɪs]

hard [hɑːd] harder [hɑːdə] hardest [hɑːdɪst] hardness [hɑːdnɪs]

soft [sɒft] softer [sɒftə] softest [sɒftɪst] softness [sɒftnəs]

Table 1.3. Two groups of morphemes preceding -er, -est, and -ness (adapted from Duran &

Katamba 2014, with additional examples)

Orthographic conditioning is rarely given detailed attention in the morphological

literature, due to the general primacy of speech over writing in linguistics. I have discussed this

type of conditioning here because my project deals with written language, where only

orthographic changes, rather than phonetic changes, are directly present.

1.1.3 Categorisations of morphemes

1.1.3.1 Free versus bound morphemes

An important distinction among morphemes is whether or not a given morpheme can

stand as an independent word. Some morphemes, like the English plural morpheme (-es/-s),

6

always attach to another word, to nouns in the case of the plural, as illustrated in example (1.1).

This plural morpheme cannot occur alone as a word (1.2), while the nouns that it attaches to can

occur as independent words (1.3).

(1.1) buses, boxes, smiles

(1.2) *es, *s
(1.3) bus, box, smile

Morphemes that can stand by themselves as words are called free morphemes. Those

that cannot stand alone, but need to attach to other morphemes, are called bound morphemes

(Coates, 1999:3). In (1.3), each of the word forms consists of a single morpheme. These are thus

free morphemes, being able to stand as independent words. But neither allomorph of the plural

morpheme can occur alone as a full word; thus, it is a bound morpheme.

1.1.3.2 Lexical versus grammatical morphemes

Morphemes can also be categorised according to whether they carry semantic content or

grammatical function. Morphemes that carry semantic content usually have clear informative

meanings in themselves; they are called lexical morphemes (Katamba 1993:41). Grammatical

morphemes, by contrast, encode grammatical categories, functions, or syntactic relations (Lipka

1992:70).

 Free Bound

Lexical noun: hymn
adjective: clever
verb: link

hydro- in hydrology
geo- in geography
cran- in cranberry

Grammatical article: a, an

pronoun: this, that
conjunction: and, if

-s (plural) in hymns

-ed (past) in linked

Table 1.4. Samples of lexical and grammatical morphemes (drawn from Katamba 1993:41 and

Coates 1999:30)

7

Table 1.4 illustrates that both lexical and grammatical morphemes can be either free or

bound. Free lexical morphemes are known as content words (nouns, adjectives, verbs and

adverbs in English), while free grammatical morphemes are called function words, such as

articles, pronouns, or conjunctions in English (Fromkin et al. 2011: 93). Such categories of free

morphemes as noun, article and so on, are usually described as Part of Speech (POS) categories,

or lexical categories, or word classes, because morphemes in these categories can stand freely as

independent words.

 Table 1.4 also shows that some lexical morphemes are bound; they cannot stand as

independent words. To form a word, these morphemes have to be attached to another morpheme.

In the same vein, some grammatical morphemes are also bound, such as the English plural

morpheme, as previously discussed.

1.1.3.3 Affixes and bases

Grammatical bound morphemes like English plural -s are termed affixes. The units to

which affixes can be attached are called bases (Katamba 1993:45). Bases can be composed of a

single morpheme, or a combination of morphemes. Affixes can be categorised based on their form

and their function, as outlined in Table 1.5.

Formal

category

Prefix Suffix Infix Circumfix

Examples

(with

functions)

English

un- (negation)

re- (repetition)

English

-s (plural)

-ed (past

tense)

Tagalog

-um-
(verb nominaliser)

Javanese

ke—an
(adjective nominaliser)

Table 1.5. Affix categorisation (adapted from Katamba 1993:45-51 and Ewing 2005:24)

An affix can be categorised in terms of its position relative to the base, that is its form,

and in terms of its function (Aranoff & Fudeman 2011:3-4). A prefix is an affix that precedes the

base, such as English negative un- (e.g. unequal, unable, undo). A suffix is an affix that follows

8

the base, such as English plural -s. An infix attaches within the base, for example Tagalog

nominaliser -um- (e.g. sulat ‘write’ > sumulat ‘writer). A circumfix is an affix that surrounds its

base, for instance Javanese ke—an, which nominalises an adjective base (e.g. sugih ‘rich’ >

kesugihan ‘wealth’; Ewing 2005:24).

1.1.3.4 Inflectional and derivational affixes

 Affixes can additionally be categorised as inflectional or derivational. Before discussing

this distinction, it is necessary to define the two different kinds of word formation: inflection and

derivation.

 Booij (2007:99) defines inflection as the morphological marking on a base which produces

a set of word forms with the same meaning as the base. Thus, word forms created by inflection

are all realisations of a single lexeme, as discussed in section 1.1.1. Derivation, on the other

hand, is the process of creating new lexemes (Katamba 1993:47). This is because derivation

produces forms which are either distinct in meaning from their bases (and, thus, realise different

lexemes than their sources), or else distinct in lexical category (and, thus, realise different

lexemes than their sources).

In many languages, both inflection and derivation are coded by affixes. Hence, affixes can

be referred to as inflectional or derivational affixes. Some English examples are given in Table

1.6 and Table 1.7.

Base Inflectional affix Word

perform -s performs

-ed performed

-ing performing

Table 1.6. Some inflectional affixes with the base perform

Base Inflectional affix Word

happy un- unhappy

-ness happiness

Table 1.7. Some derivational affixes with the base happy

9

 The meaning of word forms such as performs, performed, and performing, as exemplified

in Table 1.6, is not different from the meaning of their base, perform; thus, they are forms of (or

realise) a single lemma. For this reason, -s, -ed and -ing are categorised as inflectional affixes.

The derivational affixes in Table 1.7 form words which are distinct in meaning or in POS

category from the base to which they are affixed. The meaning of unhappy is not the same as the

meaning of its base, happy, albeit they remain related. On the other hand, happiness is distinct

in POS category to its base happy. Thus, these forms represent different lexemes from those

represented by their bases. For these reasons, un- and -ness are categorised as derivational

affixes.

1.1.3.5 Roots, bases, and stems

The root morpheme (or just root) is the irreducible part of a word without anything

attached to it (Katamba 1993:41). The root possesses the core meaning of the word. Root

morphemes can be bound or free, as the examples in Table 1.8 show.

 Free Bound

Root faith (faiths, faithful, faithful, unfaithfulness)

hard (hardship, hardness)

-mit (e.g. in permit)
-ceive (e.g. in receive)

Base permit (permits, permitting)

receive (receives, receiving)

faith (faiths, faithful, faithful, unfaithfulness)

faithful (faithfulness, unfaithful)
hard (hardship, hardness)

hardship (hardships)

recept- (e.g. in

receptive)

permiss- (e.g. in

permission)

Table 1.8. Examples of English roots, bases, and corresponding affixed word forms (in brackets)

(adapted from Katamba, 1993:41)

Faith and hard are examples of free roots, able to occur as independent words, but also as

bases for affixation, both inflectional (e.g. faiths) and derivational (e.g. faithful) However, not all

bases are also roots, or even morphemes of any kind; for example, permit and receive can be

bases for affixation, but they are not morphemes, but rather words composed of multiple

10

morphemes (per-mit, re-ceive). The roots of permit and receive are -mit and -ceive, respectively.

These are examples of bound roots, because they cannot occur as independent words.

Word forms created by affixes may be bases for further affixation, including the non-root

bases in Table 1.8. For example, the derivational suffix -ship, added to the base hard, produces

hardship; hardship is subsequently the base for hardships, produced by appending the

inflectional suffix -s. Likewise faith combines with derivational suffix -ful to make faithful, which

in turn is the base to which derivational suffix un- is added to produce unfaithful.

A stem is a base to which an inflectional affix can attach (Katamba 1993:45-46). Thus, it

consists of minimally of a root (e.g. tie, to which inflectional suffix -s can attach to form ties) but

may also be composed of a root plus derivational morpheme(s) (e.g. un-tie, to which -s can attach

to form unties) or multiple roots in a compound (e.g. tie-break, to which derivational suffix -er

can attach to form tiebreaker).

1.1.4 Presenting the internal structures of words

The categorisation of morphemes helps linguists to explain the internal structure of

words, which is one of the primary aims of morphology. Morphological categories can be

annotated on linguistic examples using some specialised notation to present the internal

structure of the word under discussion. In this section, I expound three ways of presenting this

information, namely bracket notation, tree diagrams, and glossing.

1.1.4.1 Bracket notations and tree diagrams

In the morphological literature, two common notations used to represent the internal

structure of words are bracket notation and tree diagrams (Delahuntey 2010:138-140). These

notations are particularly useful for characterising how bases receive multiple affixation.

The first step for either notation is to separate out the morphs so they are isolated within

the complete word. For instance, the word unsystematic can be segmented to the following

11

sequence of morphs: un-, system, -atic5 (Fromkin et al. 2011: 93). Subsequently, labels for each

morph’s morpheme type can be assigned: AF (affix) to un- and -atic and N (noun) to system.

 The principle that underlies both bracket notation and tree diagrams is the attempt to

correctly lay out the patterns of morpheme combination within the word. This relates to one of

the tasks of morphologists, which is to describe the grammar of words within some language.

Valid affixation patterns are formulated on the basis of observed examples, and should capture

all possible affix combinations with roots of all different categories. Violating the patterns thus

established usually results in unnatural forms, that is, morpheme combinations that do not form

an actually existing word. Morphological notations help morphologists in this endeavour. The

earlier example, unsystematic (two affixes and one base), might result from two possible

affixation patterns, given in (1.4) and (1.5).

(1.4) base + atic

(1.5) un + base

In both these patterns, the base is given as an unfilled variable slot. In the particular

case of unsystematic, system is the base (and root). So next we determine whether or not system

can be a base in each of these two patterns. If we apply the two patterns unrestrictedly to system,

pattern (1.6) will produce *unsystem, which is not actually a word. However, pattern (1.4)

produces systematic, which if then used as the base for pattern (1.5), generates the valid output

unsystematic.

The base for systematic is the noun system, while for unsystematic it is the adjective

systematic. Observation of other words that carry the two affixes under consideration will show

that these affixes cannot occur with any base, but only a base of the appropriate POS (un- does

also attach to nouns and verbs, but with slightly different meanings). We can capture this by

rewriting the two patterns as (1.6) and (1.7) to use the POS symbols N and A for the variable

slots. These patterns may be observed in word forms such as problematic, idiomatic or

symptomatic for (1.6) or unusual, unfair or unacceptable for (1.7).

5 It is possible to analyse -atic as a combination of two morphemes: un-system-at-ic. My segmentation follows Fromkin et

al. (2011:93), who treat -atic as a single suffix.

12

(1.6) N + atic

(1.7) un + A

 Words formed by multiple affixations arise from an ordered sequence of changes, that is,

a sequence where each change has a specified priority. The foregoing account of the formation of

systematic shows that the affixation patterns in (1.6) and (1.7) must have that order of

precedence. The concept of precedence helps describe the formation of words in terms of the

building blocks of the patterns. Both bracket notation and tree diagrams are elaborations of this

basic idea.

 In bracket notation, the operation of the highest-precedence pattern (1.6) is presented in

the most deeply nested brackets. In a tree diagram, this pattern is at the lowest level of the

hierarchy. The adjective thus formed, systematic, becomes the base in the next layer outwards of

brackets, and at the next level up in the tree. This new base takes un- , following pattern (1.7), to

generate unsystematic, linked to both the node at the top of the tree diagram in Figure 1.1 and

the outermost of the nested bracket notation in example (1.8).

Figure 1.1. Tree diagram6 for the structure of the word form unsystematic (adapted from

Fromkin, et al. 2011:93)

(1.8) [A [AF un-] [A [N system] [AF -atic]]]

This can be expressed more formally as follows. In the tree diagram, system and –atic are

placed at the bottom of the hierarchy. Their categories, N and AF, are annotated above them.

6 This image was generated using the following tree generator http://mshang.ca/syntree/ (last accessed 17/05/2021).

http://mshang.ca/syntree/

13

Together, these form an adjective base (labelled A). This base takes affix un- (labelled AF),

forming adjective unsystematic (A) at the top of the hierarchy.

 Similarly, in bracket notation, each category is annotated next to the left bracket of the

pair that encloses the corresponding morph or combination. The two innermost pairs of brackets,

[N system] and [AF –atic], are nested within another pair of brackets, marked (A), which

indicates the formation of systematic. This then provides a base for un- (AF), with the last pair of

brackets indicating the formation of unsystematic, also an adjective, as indicated by the label (A)

for the outermost pair of brackets.

1.1.4.2 Glossing

While the general aim of bracket notation, tree diagram, and glossing is presenting the

internal structure of words, the specific aim of glossing is slightly different. The purpose of

glossing is to facilitate the description of the structure of a language which might not be familiar

to readers. Thus, there are two languages involved in glossing; the language of the observed

example, and the language used to describe the example. Morphological phenomena in the

observed example, particularly grammatical categories, often lack precise translations in the

language of description. The gloss is a way to indicate the position and function of each

morph(eme) precisely, together with the morphological function(s) it expresses. Glossing helps

linguists present all such morphological features overtly, even if the language used to describe

the observed example does not have those features.

A glossed example is presented across three lines. Lehmann (2004:1831) explains that

the first line gives the sequence of linguistic unit(s) in the observed language that serves as an

example. This is Romanised if not originally in the Latin alphabet. This sequence can consist of

just one word or more, with morph boundaries inserted as necessary. A literal morph-by-morph

translation, including a label for the categorisation of each grammatical morpheme, is annotated

on the second line. Lexical morphemes (see the discussion of roots and bases in 1.1.3.5) are

translated literally, and thus are not given grammatical labels. The third line gives a free

14

translation in the language of description. Example (1.9) demonstrates the glossing of a Korean

sentence (reproduced from Lehmann 2004:1842):

(1.9) Toli-neun kae-hako cal non-ta (Source: Korean)

 Toli-TOP dog-ADD often play:PRS-DECL (Gloss)

 ‘Toli likes to play with the dog.’ (Translation: English)

The words on the first line of the example are divided into morphs with morph breaks (-).

The categories of these morphs, or morphemes, are annotated on the second line with

grammatical labels that indicate their function in the observed language, which might be

different from the morphology of the equivalent words in the English free translation.

The glossed example tells us that Toli-neun is a Korean word composed of two

morphemes. Toli is a proper name, and so is neither literally translated (see above) nor given a

category label on the second line. It is also left untranslated in the third line. Affix -neun is given

the label TOP (topic marker) on the second line; in Korean, the category of topic is

morphologically marked (Lee 1999: 317-342). A similar interpretation applies to the other three

words in the example.

 One suggested standard guide for glossing, and for category labels to be used in

morphological annotation, is the Leipzig Interlinear Morpheme-by-Morpheme Gloss7 format,

derived from Lehmann (1982: 199-124) and Croft (2003: xix-xxv). However, some authors follow

other standards, or even develop their own labels or format. Particularly in projects related to

automatic morphological annotation, the formats and analytic labels may be quite different from

those used in this standard glossing format.

7 https://www.christianlehmann.eu/ling/ling_meth/ling_description/grammaticography/gloss/index.php (last accessed 26/05/2021)

https://www.christianlehmann.eu/ling/ling_meth/ling_description/grammaticography/gloss/index.php

15

1.1.4.3 Automatic morphological annotation

 Another type of representation of the internal structure of a word is that produced by a

computer program called a Morphological Analyser (MA). Here, morph breaks and category

labels are assigned automatically by this program, instead of written in manually by human

linguists. In the output format of the Turkish MA known as TR Morph8 (Coltekin 2014:1079-

1080), for instance, the Turkish word evimden ‘from my house’ is presented as in example (1.10).

(1.10) ev<N><P1S><ABL> (Oflazer et al. 2018:220)

 Oztaner (1996:20) describes evimden as follows. The noun base ev <N> is followed by two

inflectional morphemes. The first suffix is -im, which is the first person singular possessive suffix

<P1S>. The second is the ablative suffix <ABL> -den. This indicates that TR Morph output

represents the structure using an alternative method to bracket notation. Only the morph of the

base en is actually present. The morphs that indicate the base’s inflectional suffixes are left

implicit, indicated only by the analytic labels, which are explicitly presented in consecutive order

after that of the base morph en.

Other MAs use different output formats. For instance, many use a simple slash to

demarcate a morph from the corresponding analytic label. The Korean Morphological Analyser,

or KOMA9, uses this format. If this format were applied to Turkish, the analysis of evimden ‘from

my house’ might look like example (1.11).

 (1.11) ev/N im/P1S den/ABL

 The output generated by an MA can be used by another program for further language

processing tasks. For instance, a corpus-processing program would typically import MA output to

allow users to perform automated corpus queries, including queries based on the forms of the

8 http://coltekin.net/cagri/trmorph/index.php (last accessed 26/05/2021)
9 http://kle.postech.ac.kr:8000/demos/KOMA_KTAG/ekma.html (in English; last accessed 17/05/2021) and

http://nlp.kookmin.ac.kr/HAM/kor/ham-intr.html (in Korean; last accessed 17/05/2021)

http://tr.wiktionary.org/wiki/ev
http://coltekin.net/cagri/trmorph/trmorph-manual.pdf
http://coltekin.net/cagri/trmorph/index.php
http://kle.postech.ac.kr:8000/demos/KOMA_KTAG/ekma.html
http://nlp.kookmin.ac.kr/HAM/kor/ham-intr.html

16

morphs and/or their analytic labels.

A corpus-processing program often requires input in its specific data format, including for

morphological annotation. This is a possible reason why the output format of MAs is not as

standardised as are bracketing notation, tree diagrams, and glossing. The choice of formats

depends on the overall goal of the NLP or corpus analysis system.

1.2 Natural language processing

1.2.1 Common NLP applications

One of the most common NLP applications is the Part of Speech (POS) tagger. A POS

Tagger is a program that automatically links each word in a text with an analysis of its part of

speech (Voutilanen 2003:210). The depth of the analysis may range from basic lexical

categorisation (into nouns, verbs, prepositions, conjunctions, and so on) to more detailed

subcategories within these POS (proper nouns, infinitive verbs, locative prepositions,

coordinating conjunctions, and so on). Sometimes the analysis performed by a POS tagger is

called morphosyntactic analysis, as it often includes inflectional features such as person or

number, which are morphologically marked but deeply involved in aspects of syntax.

Another common NLP application is the Morphological Analyser (MA), which performs

automatic morphological analysis (discussed previously in 1.1.4.3). After segmenting each word

in its input into morphs, an MA links each morph to an analysis of relevant morphological

features and categories (Oflazer 1999: 175).

MAs are particularly useful for languages where a word is typically composed of multiple

morphemes, such as Turkish, Finnish, or Arabic. For instance, an MA can be used to isolate

affixes from their bases, or to identify roots. In section 1.1.3.1, I discussed how this could be

performed manually by linguists to analyse the internal structure of words. An MA can automate

this process, partially or entirely.

17

POS taggers and MAs often feed word category information to other NLP applications,

such as a grammatical parser, sometimes referred to just as a parser. Parsing is the analysis of

sentence structures (Samuelsson & Wiren, 2000: 59). A parser analyses a sentence using a set of

given rules (a grammar) or probabilistic computations. Both rules and probabilistic computations

need to refer to the POS information to select a correct, or likely, parse.

To represent sentence structure, a parse breaks down a sentence into the smaller

constituents, such as clauses or phrases, of which the sentence is composed. For instance, given

the English sentence the dog ran, a rule-based parser can analyse the dog as a noun phrase (NP)

composed of a determiner and a noun by reference to a rule expressing that structure in terms of

POS tags. Alternatively, the dog can be determined to be an NP by probabilistic means, since this

analysis is highly probable for the sequence the dog or indeed any sequence POS-tagged as

determiner then noun. Other possible phrase types, such as verb phrase (VP) or prepositional

phrase (PP), would have lower probability due to less frequent presence (or absence) in whatever

data the probabilistic system generated its statistics from.

Some NLP applications are designed for more than one task. The Stanford Parser (Klein

& Manning, 2003), for instance, is an integrated POS tagger and parser. Other examples are

Intex (Silberztein 1993;1997) and NooJ (Silberztein 2003). Some NLP applications (again, Intex

and NooJ are examples) are multi-language; they are not programmed to work with any specific

language but rather allow users to build and utilise the resources necessary for morphological

analysis, POS tagging, and/or grammatical parsing in different languages.

1.2.2 Token

There are at least two reasons why the token is a key concept in NLP. First, the process

by which tokens are created, tokenisation, is an early step in the majority of text processing

systems. Second, token is a basic term frequently used in the definition of other, more advanced

18

NLP concepts. For these reasons, it is important to clarify this concept.

The process by which tokens are identified in running text, tokenisation, can be described

as the segmentation of the raw sequence of characters in a digital text into meaningful units for

the analysis targeted by the NLP application (Mikheev, 2003: 201). These segments of the text’s

stream of characters are the units of analysis, which are called tokens.

The most common form of tokenisation is word segmentation. Once the word tokens in a

text have been identified, that text is ready for further processing or analysis. In many

languages, the presence of spaces that demarcate one word from another is an important cue for

the tokenisation. Tokenisation can be more challenging if space characters are not used to

separate the words, as is the case in the so-called unsegmented languages, such as Chinese and

Thai, whose writing systems do not indicate word breaks explicitly. Another form of tokenisation,

as section 1.1.3 discussed, is the isolation of morphs within a word, for the purpose of

subsequently identifying the morphemes. Since at this level we consider the morpheme (instead

of the word) to be the token, i.e. the unit of analysis, morpheme-level tokenisation cannot rely on

spaces as separators between tokens.

The fact that either the word or the morpheme can be treated as the token shows that the

precise definition of token depends on what units are to be processed by the NLP application. A

sequence of characters which is considered to be a single token by one application is not

necessarily treated as a single token by another application. For instance, an English MA would

typically analyse buses as two separate tokens, bus and es, as the word buses is composed of two

morphemes. Unlike an MA, an English POS tagger would treat buses as a single token, because

this latter application is designed to categorise words, not morphemes.

1.2.3 Annotation

Annotation is a key concept in NLP (as well as in corpus linguistics) because it is the core

task of many important NLP applications. This includes those applications discussed in the

previous section. In a broad sense, annotation is the combination of a text with an analysis (or

19

analyses) of the text (Silberztein 2003: 206). Wilcox (2009:1) defines linguistic annotation

specifically as the assignment of linguistic features to appropriate linguistic elements in a text

(such as words or sentences). From an NLP perspective, annotation can thus also be defined as

the integration of tokens with analytical labels that code for the linguistic features in question.

Such labels express some item of interpretative linguistic information regarding the tokens they

are attached to. A basic example is given as (1.12), in which is shown a single sentence

grammatically annotated by the CLAWS POS Tagger (Garside 1987). Here, for instance, tag

NN2 is applied to the token buses to indicate that the CLAWS tagger categorises buses as a

plural noun.

(1.12) There_EX are_VBR two_MC buses_NN2 ._.

Each underscore in (1.12) delimits a token and its analytical label. These analytical

labels are usually called tags. The full collection of tags used for a particular task, in this case

annotating a corpus for POS, is called a tagset (Bird 2009: 179). The process of annotating a tag

to each token, as shown in 1.12, is therefore often called tagging. For instance, Voutilanen

(2003:220) states that tagging means “automatic assignment of descriptors or tags to input

tokens.” This is equivalent to the definition of annotation above, and indeed, for the purposes of

this thesis, tagging can be considered synonymous with annotation.

Systems of tags may differ from one application to another. For instance, as we have

seen, NN2 in the CLAWS tagset signifies plural common nouns. But in the Penn tagset, the same

category is indicated by tag NNS. Thus, users must carefully verify their understanding of what

the tags mean by consulting the tagset documentation10 before conducting further processing or

undertaking research based on the tagged data.

10 I use the term tagset documentation following Bird (2009: 180). However, other terms such as tagset manual or

specification are also in use. Such documentation usually contains a list of tags used in the system, the full label that

each tag abbreviates, and sometimes examples of tokens that would receive each tag. More extensive documentation may

include discussions of the criteria by which tokens are deemed to be in one category versus another and/or guidelines for

deciding borderline cases.

20

1.2.4 Lexicon, rules and annotated corpus

Lexicon, rules, and annotated corpus are key concepts in NLP. These terms refer to types

of source information used by NLP applications such as MAs, POS taggers or parsers to perform

annotation. For this reason, together they are commonly referred to as annotation resources.

1.2.4.1 Lexicon

An NLP lexicon is a listing of items at some level of linguistic analysis, each of which is

associated with a potentially wide range of linguistic information. These items are sometimes

referred to as entries, because they are usually organised in a list, just like dictionary entries. In

general, Litkowsi (2005:753) argues that a lexicon includes a wide array of information

associated with entries (words, phrases or concepts). However, a lexicon for automatic

morphological analysis could include morphological entries (see Silberztein 2016:220). The type

of information associated with lexicon entries may include POS, inflectional features, or other

grammatical properties. The nature of some probabilistic systems also requires lexicon entries to

be associated with statistical information (Schiller & Kartunnen 1999:136).

NLP scholars sometimes use other terms to refer to a lexicon, such as lexical database.

The term dictionary can also refer to an NLP lexicon, as the function of a lexicon is similar to

that of a dictionary: to store (information regarding) the vocabulary of a language. To distinguish

an NLP dictionary or lexicon from a conventional dictionary, sometimes the term machine-

readable dictionary is used.

A lexicon can be used by an NLP application to perform annotation. In most POS taggers,

for instance, a lexicon plays a crucial role (Voutilanen 1999:6). One subtask of a tagger is to

identify, for a token in a text, which entry or entries, if any, in the system’s lexicon correspond(s)

to the form of that token. If the token does match an entry, the information in that entry can be

assigned as a tag or tags. For instance, when an English POS tagger encounters the, the lookup

module checks whether an entry for this form is present in the lexicon. If such an entry is found,

21

as of course is likely, the system tags the token with the analyses present in that entry. In this

case, the information in the lexicon entry for the would include a determiner or article tag (e.g.

DET).

A lexicon can also play a crucial role in the earlier tokenisation phase, especially in an

MA, where the tokens are not delimited by spaces and tokenisation is thus not trivial. The MA

would check whether sub-sequences of characters inside a word string match entries in the

lexicon, to determine whether to analyse those sub-sequences as separate tokens.

1.2.4.2 Rules

Chun-Hsien & Honavar (2000:880) describe two major types of lexicons: root lexicons and

full-form lexicons. A full-form lexicon includes (ideally) all possible word forms (variants or

inflected forms of their lexeme) in the language or variety the system targets. For instance, a full-

form English lexicon would ideally contain an entry for help as well as entries for helps, helping,

and helped. A root lexicon, on the other hand, only contains entries for roots (or, perhaps, a

related type of entity such as stems, lemma, or uninflected forms). A root lexicon is more compact

than a full-form lexicon, but requires the software to support a rule system in order to handle

polymorphemic words. A rule in this sense can be defined as a formalised word formation pattern

or, sometimes, a joined set of such patterns.

Silberztein (2003:97) gives an example, reproduced here as (1.13), of a possible entry for

<help> in an NLP system’s root lexicon. This entry is associated with the POS information <V>

and an inflectional code <FLX=ASK>. ASK is a symbol which refers to a set of inflectional rules

defined as in (1.14).

(1.13) help,V+FLX=ASK

(1.14) ASK = <E>/INF | <E>/PR+1+2+s | <E>/PR+1+2+3+p | s/PR+3+s | ed/PP |

ed/PRT | ing/G ;

22

The combination of the root entry for <help> and this rule allows the system to recognise

not only tokens of help but also tokens of helps, helped, and helping. For each matching token,

the rule attaches the relevant inflectional features to the token as annotation tags. This process

is also called lexical analysis. Sproat (2000: 37) defines lexical analysis as the determination of

(lexical) features for each word in the text. Silberztein (2016:210) points out that the result of a

lexical analysis may be ambiguous, because multiple possible (sets of) features can be annotated.

So, for instance, in rule (1.14), the fragment ed/PP | ed/PRT assigns two tags to each instance

of the form helped: PP (past participle) or PRT (preterite or past tense). This means that the

result of lexical analysis is ambiguous between PP and PRT. In the sentence I helped you, the

correct analysis is PRT, and thus the other analysis (PP) should ideally be removed. The opposite

is the case in the sentence I have helped you.

1.2.4.3 Annotated corpora

In addition to lexicons and rules, an annotated corpus can also be a resource for

automated annotation; this is, therefore, also a key NLP concept. A corpus is a collection of

natural language data, likely to be in the form of machine-readable texts (McEnery & Wilson

2001:31); thus, an annotated corpus can simply be defined as a collection of tagged or annotated

texts. Taggers or parsers can be created by exploiting an annotated corpus. Often, a tagging

system uses annotated corpus data to build a probabilistic model of some kind. An annotated

corpus being used in this way can be called a training corpus, from its utilisation as training

material to build the model (Brill 1999:266). Subsequently, the model derived from this corpus is

used by the system to perform or to enhance annotation.

Annotated corpora also serve other functions, as van Halteren & Voutilanen (1999: 111)

point out: an illustration of the tagging scheme; a model with which to build hand-written rules;

and testing material for a final evaluation of a complete system. Thus, an annotated corpus is

still useful even when the system does not employ a probabilistic method for annotation.

23

1.2.5 Disambiguation

Disambiguation is the final task of NLP applications such as POS taggers, MAs or

parsers11. Disambiguation is the removal of tags deemed likely to be incorrect, or the selection of

the most likely correct tag, for a token which has initially received multiple tags from lexical

analysis. Voutilanen (2003:226-227) illustrates this concept by considering the lexical analysis of

the word design, which receives a noun tag and a verb tag. In example (1.15), which I reproduce

from Voutilanen, the proper category for design is noun. However, in the contrasting example

that I give in (1.16), the correct category is verb.

(1.15) The design of the guesser is very complex

(1.16) Computer scientists design various guessers

Lexical analysis will assign at least two tags to each instance of design: noun (NN1) and

verb (VV0) 12. A tagger can utilise contextual cues to resolve this ambiguity. For instance, an

article tends to precede a noun rather than a verb. Thus, selection of the noun tag can be

conditioned on the presence of the before design. If this is implemented, design in (1.15) is likely

to receive the NN1 tag. Meanwhile, design in (1.16) is likely to receive the VV0 tag, as it is

preceded by a plural noun, scientists.

This exemplifies one of several methods of resolving ambiguities, that is, the use of

disambiguation rules. These rules take into account relevant contextual cues, such as a preceding

or following word or tag, as previously explained. The rules must be formally expressed in a

format that the system can understand to enable the system to remove incorrect tags. These

rules can be built manually, in which case they are known as handcrafted rules (Voutilanen

1999:217-247).

11 Disambiguation by parser programs was already introduced in section 1.2.1
12 The tags NN1 and VV0 (singular common noun, base-form lexical verb) are drawn from the CLAWS tagset (Garside

1987).

24

Disambiguation can also be performed by exploiting a probabilistic model, such as a

Hidden Markov Model (El-Beze & Merialdo 1999:263), or a machine learning approach

(Daelemans 1999:285). A probabilistic tagger consults its model in each case of an ambiguous

token in order to determine which tags to remove or to retain in the analysis. The model is

usually derived from an annotated corpus (as discussed in 1.2.4). It is also possible to combine

handcrafted rules and probabilistic models (Brill 1999: 248-262).

1.3 Aims, scope and procedures of the thesis project

As I noted at the outset of this chapter, the primary aim of this project is to create a novel

system for automatic morphological annotation of Indonesian, which will be named SANTI-morf.

To achieve this primary aim, I will proceed by addressing a number of subsidiary aims. These

three subsidiary aims will be completed in three stages; each stage will lead to one or more

specific outputs produced in fulfilment of the corresponding subsidiary aim, as laid out in Table

1.9.

Stage Subsidiary Aim Output

1

Preliminaries

To provide a description for this project

containing aims, scope and procedures, a brief

introduction of the target language’s structure,

and the creation of a testbed for the system.

Project description and

testbed

2

Scheme creation

To design a novel Morphological Annotation

Scheme (MAS) for use in this project, in the form

of a document that discusses theoretical issues,

and a choice of annotation scheme.

Document defining the

MAS (as a chapter of

this thesis)

3

Implementation

To evaluate the performance of the state-of-the-

art MA for Indonesian, and identify its

limitations; to build a set of morphological

annotation resources for a novel MA; to perform

and to evaluate automatic morphological

annotation using the created resources, with

comparison to the state-of-the-art system.

SANTI-morf system

and results of

evaluation exercise

Table 1.9. Subsidiary aims and corresponding desired outputs of this thesis

Some aspects of annotation are beyond the scope of this project. First, in terms of the

level of annotation, I focus on morphological annotation. Thus, syntactic annotation (as a parser

does), morphosyntactic annotation (as a POS tagger does), and other types of annotation that are

25

beyond the morphological level are excluded. Second, this project does not aim to address issues

in morphological theory, as it focuses solely on developing a practical application. Third, the

novel MA system will be designed primarily to handle written rather than spoken data. Fourth,

the morphological annotation is aimed at Indonesian specifically and not any other varieties of

Malay (see discussion in Chapter 2).

The procedures to be carried out for each stage of the overall project are as follows:

I. Preliminaries

a. introduce key terms used in the thesis

b. introduce Indonesian, particularly Indonesian morphology

c. build a corpus of Indonesian for use in later stages of the project

II. Scheme creation

d. review existing Morphological Annotation Schemes (MASs), and identify best practices

for the creation of MASs

e. devise a novel MAS for Indonesian based on these best practices

III. Implementation

f. evaluate the output and performance of the present state-of-the-art MA system for

Indonesian

g. choose a framework for the novel system via a literature review of work in the field of

MA creation

h. survey existing annotation software, and determine which program is optimal for

applying the novel MAS

i. build annotation resources following the MAS whose format is compliant with the

chosen annotation software

j. apply and evaluate the performance of the resulting system

26

k. compare and contrast the performance of the novel system with that of the existing

state-of-the-art system (see above).

1.4 Organisation of this thesis

The thesis consists of nine chapters. Chapters 1 and 2 present the first stage of the

project, the preliminaries. Chapter 1 has introduced key concepts in morphology and NLP. It has

also introduced the primary aim, subsidiary aims, and scope of this thesis.

Chapter 2 will introduce aspects of the Indonesian language and its morphology which

are relevant to morphological annotation. This chapter will also describe an Indonesian corpus

built for use in this project. Textual data drawn from this corpus will be used for two purposes: to

evaluate an existing MA (in Chapter 5) and to test the performance of SANTI-morf (in Chapter

7).

Chapters 3 and 4 present the second stage of the project, annotation scheme creation. In

Chapter 3, I will conduct a literature review of schemes of analysis for morphological annotation

in different languages (but with a focus on languages with a high degree of agglutination). The

goal of the review is to identify best practices for such MASs. The findings from this chapter,

particularly on the MASs used by existing Indonesian MAs, will be important to set a benchmark

for an eventual evaluation of SANTI-morf to underpin my claim that it represents an advance on

existing systems.

In Chapter 4, building on the outcomes of Chapter 3, I will present the development of

my MAS, the annotation scheme that SANTI-morf will use. One of the primary aims is to justify

the choice of morphological features tackled in this project. Here, I will provide justifications for

why certain features need to be excluded or be included, and why some annotation styles are

preferred over others.

Chapters 5 to 7 present the third and final stage of the project, implementation. Chapter

5 will first review existing Indonesian MAs, identifying one of these as the state-of-the-art MA

whose performance any novel system must aim to surpass. This state-of-the-art system will then

be subject to an extensive evaluation. It will be applied to a sample of the corpus and its

27

performance will be measured. A thorough examination of the outputs will further allow it to be

determined which aspects of the state-of-the-art MAs still need improvement. This chapter will

provide important input data for later chapters on the creation of SANTI-morf.

Chapter 6 will discuss the formalism and software tool used in this project. First, a

review of relevant background in the theory of formal language will be given to clarify the basic

concepts that underpin contemporary MAs, including especially regular grammars, regular

expressions, and regular relations, and the related notions of Finite State Machines (FSMs) and

other automata. Relevant concepts in early generative morphology will also be reviewed. Then,

work on computational MAs beginning in the 1970s will be surveyed, in order to illustrate the

emergence of Koskenniemi’s seminal Two Level Morphology (TLM) model (Koskenniemi 1983),

which has influenced nearly all subsequent MA systems. On the basis of this review, I will justify

my choice of one particular formalism and program for implementation of the novel MA over

other possible candidates.

In Chapter 7, I will describe the architecture of SANTI-morf. I will also describe the

creation and organisation of the SANTI-morf resources for use in the program of my choice. I will

apply the completed SANTI-morf system to the testbed (see section 2.2) and evaluate the results

to measure how well SANTI-morf performs. I will fully report multiple relevant evaluation

measures. This exercise will determine whether or not SANTI-morf can outperform the state-of-

the-art system evaluated in Chapter 5 and make it possible for firm claims to be made regarding

what advancements have been accomplished by the novel MA.

 Chapter 8 will conclude this thesis. First, I will review each part of the thesis project,

summarising the outcomes and achievements, and in particular the resources developed.

Subsequently, after a discussion of the limitations of the project and of possible directions for

further work in the future (including plans for the development of SANTI-morf), I will conclude

the thesis with some remarks to highlight the contribution to knowledge that this project has

accomplished.

28

CHAPTER 2

BACKGROUND ISSUES TO THE MORPHOLOGICAL ANNOTATION OF INDONESIAN

This chapter introduces some background on Indonesian, the language for which

automatic morphological annotation shall be developed in this thesis. The first section outlines

the linguistic structure of Indonesian. The second section describes an Indonesian corpus built

for use in this project.

2.1 An overview of the structure of Indonesian

2.1.1 Background

Indonesian (ISO 639-3 Ind), or Bahasa Indonesia (its autonym), is one of the

standardised varieties of Malay or Bahasa Melayu. Indonesian is, by far, the most widely spoken

Malay variety with more than 250 million speakers (Lewis 2009). It is the sole official language,

as well as the national language, of the Republic of Indonesia. Indonesian is used as the medium

of instruction in schools and universities in Indonesia. It is also used to write literature, for day-

to-day communication, and is moreover widely used in both formal and casual situations in

either spoken or written mode among Indonesians.

2.1.2 Phonetics and phonology

As Table 2.1 and Figure 2.1 illustrate, there exist 22 consonants (including 4 that are non-

native, only found in loanwords), 6 simple vowels, and 3 vowel diphthongs in present-day

Indonesian (Soderberg & Olson, 2008: 210-211).

29

Table 2.1. Indonesian Consonants, reproduced from Sodeberg and Olson (2008:210)

Figure 2.1. Indonesian Monophthongs and Diphthongs, reproduced from Sodeberg and Olson

(2008: 211)

The great majority of Indonesian roots are disyllabic, each syllable being CVC, VC, CV, or

V (Prentice, 1987: 190) (C = consonant, V = vowel). Prentice notes that Indonesian roots with one

or three or more syllables are most probably loanwords (e.g. bom [bom] ‘bomb’ from Dutch or

jendela [dʒən.de.la] ‘window’ from Portuguese). Similarly, non-(C)V(C) syllable structures (e.g.

struk [struk] ‘cash receipt’, from Dutch) are likely to indicate loanwords.

A frequently discussed topic in Indonesian phonology and morphology is the sound changes

that apply upon certain affixations (Alwi et al 1998:110-113; Sneddon 2010:13-17), known as

morphophonemic alternations (or, sometimes, sandhi, but I do not use this term). For instance,

menge-, meng-, meny-, men-, mem-, and me- are allomorphs of the morpheme whose citation

form is often written meN-. The uppercase N in meN- represents the varying nasals [ŋə], [ŋ], [ɳ],

[n], [m], and [∅], whose alternation depends on the phonetic environment, that is the root-initial

sound. Specifically, there is homorganic nasal assimilation with an initial consonant of the root,

30

which may be lost (L) or retained (R) in the process. Moeljadi et al. (2015: 17) summarise the

rules as shown in Table 2.2.

Table 2.2. meN- prefixation rules (root-initial consonant: L=lost, R=retained), reproduced from

Moeljadi et al. (2015:17).

So, for instance, root beli ‘buy’ begins with b, so the cooccurring allomorph is mem- and

the root-initial consonant is retained, yielding membeli ‘buy’. Conversely, for root pakai ‘wear’,

the allomorph is the same but the initial p is lost, yielding memakai ‘wear’.

2.1.3 Morphology and syntax

2.1.3.1 Clause structure

The basic transitive word order in Indonesian is SVO (Subject-Verb-Object), a common

word order in the world’s languages. Some languages employ copulas to link subjects and non-

verbal predicates, such as English be. Whether this is true of Indonesian is a contentious matter.

Prentice (1987: 204) argues that this category of verb is absent in Indonesian; clauses such as

saya guru ‘I am a teacher’, literally I + teacher, or dia gembira ‘he is happy’, literally he + happy,

are well-formed. Uzawa (2007:315-338) argues that, in closely-related Malaysian, the words ialah

and adalah have copulative functions, but doubts that they are verbs. By contrast Prentice

(1987:204) notes that verbs ialah and adalah are used in equational sentences (with subject and

subject complement), without categorising them as copulas.

31

2.1.3.2 Inflection and derivation in Indonesian

Views differ on the existence of inflectional affixes in Indonesian. Some scholars,

including Prentice (1987:193) and Chaer (2008:37-41), maintain that the voice-marking prefixes

meN- and di- are inflectional, but other affixes are derivational. However, they further argue

that meN- is ambiguous because it can also be derivational; thus there are actually two meN-

prefixes. Mueller (2007:1221-1222) argues that definite/pronominal suffix -nya is also

inflectional.

Other scholars doubt or reject the notion that any affix can be considered inflectional.

Musgrave (2001:5), for instance, argues that Indonesian is exclusively derivational in its

morphology.

Yet other scholars avoid discussing the inflection-derivation distinction, including

Kridalaksana (1989) and Alwi et al. (1998), instead focussing on describing affixes’ meaning (in

terms of what functional grammatical and semantic categories they indicate). Alwi et al.’s (1998)

reference grammar uses the term penurunan ‘derivation’ for all affixation, but whether this is

intended to assert that Indonesian morphology is exclusively derivational is unclear.

Derivational affixes do not exhibit regularity and productivity as inflectional affixes

typically do. A few of these irregularities are as follows. First, affixes do not always apply to

every base in a relevant category. For instance, of intransitive verbs bangkit ‘ get up’ and bangun

‘ wake up’, only bangkit can take nominaliser circumfix ke—an: ke-bangkit-an but *ke-bangu-

nan. Second, some functional grammatical categories can be present whether or not an affix that

marks that function is present. For instance, me- (allomorph of meN-)optionally marks active

voice in example (2.1); without it, the voice remains active. Other voice affixes (e.g. passive di-)

cannot be omitted thus.

(2.1) saya (me-)makan burger itu

1s (ACV-)eat burger DEM

‘I ate that burger’

 Third, a number of affixes are ambiguous, with various means of being disambiguated.

Morphological contexts resolve some, e.g. the POS of the base; for instance, prefix teR- is usually

32

to be understood as forming a superlative adjective when the base is an adjective (see (2.2),

whereas elsewhere it is likely to be read as deriving a verb.

(2.2) ter-cantik

SUP-beautiful

‘the most beautiful’

 In other cases, the ambiguity might be resolved by higher-level analysis. For instance, in

pem-buka ‘opener’, from verb root buka ‘open’, nominaliser prefix pem- can either be agentive or

instrumental, as indeed can English -er. This ambiguity is typically resolved via syntactico-

semantic, or even extra-linguistic, factors. However, some verb bases force one reading: e.g. in

pem-bohong ‘liar’, from bohong ‘lie’, pem- is definitely agentive.

2.1.3.3 Productivity

Morphologically productive affixes create a wide range of full forms and have a regular

function, e.g. meN-, which regularly marks active voice, and can occur with most verbs and nouns

as well as certain bases with other POS. Unproductive affixes occur with closed sets of bases and

cannot be extended to new words. These include certain infixes, e.g. -em- in g-em-etar ‘tremble’

from getar ‘vibration’.

2.1.3.4 Polymorphemic words

Along with affixation, compounding and reduplication are the principal morphological

operations forming complex words in Indonesian (Mueller, 2007:1208-1215), as in other western

Austronesian languages (such as Tagalog, Javanese, or other Malay varieties). Complex words

may also include clitics or particles, written with or without spaces.

Examples (2.3) and (2.4) illustrate complex word formation with more than one type of

morphological operation: respectively reduplication plus affixation and compounding plus

33

affixation. Central to these formations is the root, the core morpheme to which all operations

(reduplication, affixation, and cliticisation) apply.

(2.3) ku=men-cari -cari =mu=pun

1s=ACV-search-search=2s=even

‘even if I am looking for you over and over

(2.4) men-(t)anda -tangan -i
ACV-sign- hand -APPL

‘provide a signature’

2.1.3.4.1 Roots

In traditional morphological analyses, the core of a word may be analysed as a root, base

or stem. Here, I focus on the root because in morphological annotation, words are formally

tokenised into individual morphemes; bases and stems, being possibly composed of multiple

morphemes, are less important concepts.

POS Examples

Noun nasi ‘rice’, jagung ‘corn’, London ‘London’

Pronoun aku ‘I’ (personal), kenapa ‘why’ (interrogative), sini ‘here’ (demonstrative)

Numeral satu ‘one’ (cardinal), pertama ‘first’(ordinal), semua (indefinite)

Classifier ekor ‘animal classifier’, orang ‘human classifier’

Verb pergi, ‘go’, makan ‘eat’, lari ‘run’

Adjective cantik ‘beautiful’, cepat ‘quick’, lama ‘long’

Adverb selalu ‘always’, jarang ‘seldom’, hanya ‘only’

Preposition di ‘at’, ke ‘to’, dari ‘from’

Conjunction dan ‘and’, atau ‘or’, ketika ‘when’

Interjection hai ‘hi’, aduh ‘ouch’, astaga ‘oh my god’

Article si ‘the(derogatory)’, sang ‘the (honorific)’

Particle kah, lah, pun (all emphasis)

Table 2.3. Twelve classes of Indonesian root morphemes

34

Table 2.3 illustrates some roots according to their POS. Morphological operations do not

apply to some categories of root (interjections and articles). Cross-linguistically common

categories (noun, verb, adjective) require no further explanation here. Others merit further

comment.

First, the category of classifier is widely present across Asian languages including

Japanese, Korean, Vietnamese, and Assamese. Classifiers group enumerated head nouns into

semantic domains, such as person, animal, or plant (see further Aikhenvald 2000). The majority

of Indonesian classifiers also occur as nouns. For instance, orang ‘person’, ekor ‘tail’ and buah

‘fruit’ are also human, animal, and generic classifiers respectively. Classifier versus noun

ambiguity can be resolved from position within the noun phrase, since classifiers always

immediately follow numerals in Indonesian. The numeral-classifier complex normally precedes

(2.5) but sometimes follows (2.6) the head noun.

(2.5) tiga ekor ikan

Three CLA fish

‘three fish’

(2.6) ikan tiga ekor

fish three CLA

‘three fish’

Numeral one can be expressed in free form satu or in bound form se=. Sneddon (2010:60)

argues that se- is a prefix. However, I would argue that se= is a clitic form of satu owing to the

definition of a clitic as a phonologically dependent but syntactically independent unit, and

following Alwi et al.’s (1998:280) use of the term proclitic numeral for certain loan numerals in

clitic form.

Words like some and all are normally described as quantifiers in English. According to

some scholars, the Indonesian equivalents (e.g. semua ‘all’; beberapa ‘some’) make up one of the

subcategories of numerals, i.e. indefinite numerals (Kridalaksana 2007:80, Alwi et al. 1998:279),

since their quantity is indeterminate.

Some Indonesian adjectives can be used as manner adverbs without any affixation, e.g.

cepat ‘quick’ is used as adverb in (2.7) but adjective in (2.8). Resolving this ambiguity requires

syntactic information. Cepat as a manner adverb follows a verb (here, ber-jalan ‘ walk’) to which

35

it may be linked by instrumental-comitative preposition dengan ‘with’. However, cepat not

preceded by a verb is read as an adjective.

(2.7) kereta ini ber-jalan (dengan) cepat
train DEM INTR-run with quick

‘the train runs quickly’

(2.8) kereta ini sangat cepat
train DEM very fast

‘this train is very quick’

Particle is a category whose formal definition varies from one language to another (see

2.1.3.4.5 and 3.5.1.1.4.2.2.2). Indonesian particles express discourse functions, e.g. focus

particle lah in expressions such as saya=lah (‘it is I’).

Indonesian has two articles, si and sang, which have derogatory and honorific purposes,

but are rarely used. A more frequently used definite marker in Indonesian is suffix –nya.

However, none of these behaves similarly to typical articles like English a or the.

Indonesian pronouns, including cliticised pronouns, have the same form whether

syntactically functioning as a subject, object, or possessive pronoun. First-person singular aku,

for instance, occurs in aku kirim ‘I send’ (subject), kirim aku ‘send me’ (object), and rumah aku

‘my house’ (possessive). The inanimate pronoun, equivalent to it in English, is only present in

clitic form, not free form. For instance, in the phrase mengirim uang ‘send money’, uang ‘money’

cannot be replaced by an independent pronoun, but only by clitic =nya, as in meng-(k)irim=nya

‘send it’ (see 2.1.3.4.5 for more on Indonesian clitics).

Bound roots cannot surface as monomorphemic words (see 1.1.3.1). Prentice (1983:183)

terms these precategorial. To form a word, such a root must undergo affixation, compounding, or

another morphological process. For example, the roots of pengungsi ‘refugee’ and pelanggan

‘subscriber’, which are ungsi ‘refuge’ and langgan ‘subscribe’, cannot occur alone as

monomorphemic words. Some affix, if not peN- then another, is needed.

36

2.1.3.4.2 Affixation

The content of this section draws on the accounts of Alwi et al. (1998), Sneddon et al.

(2010), Kridalaksana (1989;2007), and Chaer (2008).

2.1.3.4.2.1 Form

Four formal categories of affix exist in Indonesian, prefix, suffix, circumfix, and infix, of

which circumfixes and infixes are less common cross-linguistically than prefixes and suffixes. A

circumfix is an affix that surrounds its base, and thus is composed of two elements (opening and

closing). An example of an Indonesian circumfix is nominaliser circumfix ke—an, as in for

instance ke-mampu-an ‘ability’ from mampu ‘be able to’.

All Indonesian circumfixes pair elements which also occur separately as prefix/suffix in

other contexts. Thus, it could be argued that each circumfix is merely a combination of a prefix

and a suffix. However, I do not accept this argument, on the basis that, in contrast to a

combination of prefix and suffix, the two elements of each circumfix must occur together.

Removing one of the elements may make the word invalid (e.g. *ke-mampu) or change its

function (e.g. mampu-an ‘more able to (informal)’). That said, Alwi et al. (1998:32) observe that in

some cases, whether to treat a word as formed by a circumfix or a formally identical prefix+suffix

combination is an analytic decision that must be made with caution. They illustrate this by

contrasting examples of elements ber and an: ber-datang-an ‘come randomly’ and ber-halang-an

‘be under constraint’. The former involves the random action circumfix beR—an applied to

datang ‘come’, while the latter combines prefix beR- and suffix -an. The verbal root halang

‘constrain’ is nominalised by -an, and subsequently, the nominal base halangan ‘constraint’ is

prefixed with intransitive verbaliser beR- yielding ber-halang-an.

An infix is an affix that intervenes within a root. Indonesian infixation is no longer

productive and occurs only with a closed set of roots. For instance, root tunjuk ‘point at’ can be

nominalised by infix -el- into t-el-unjuk ‘index finger’. A full list of Indonesian affixes is given in

Table 2.4 and Table 2.5 (including functional details to be explained subsequently).

37

Type Affix P Outcome Other

function

Word Root

PFX beR-(1) H Verb intransitive ber-satu 'unite' satu 'one'

PFX beR-(2) L Verb reflexive ber-cermin 'look at self

on a mirror'

cermin 'mirror'

PFX di- H Verb passive di-ambil 'be taken' ambil 'take'

PFX ke- L Numeral ordinal-

collective

ke-dua 'both/second' dua 'two'

PFX meN- H Verb active meng-ambil 'take' ambil 'take'

PFX pe- L Noun patientive pe-suruh 'person to be

commanded'

suruh 'command'

PFX pel- U Noun patientive pel-ajar 'student' ajar 'teach'

PFX peN-(1) H Noun agentive peny-(s)uruh

'commander'

suruh 'command'

PFX peN-(2) H Noun instrumental peny-(s)erap 'absorber' serap 'absorb'

PFX peR-(1) H Verb causative per-besar 'enlarge' besar 'big'

PFX peR-(2) L Noun profession pe-tani 'farmer' tani 'farm'

PFX peR-(3) U Noun nominaliser per-tapa 'meditator' tapa 'meditate'

PFX peR-(4) M Verb Verb marker per-buat ‘do’ buat ‘make’

PFX se-(1) H Adjective equative se-cantik 'as beautiful

as'

cantik 'beautiful'

PFX se-(2) H Adjective collective se-kantor 'the whole

office'

kantor 'office'

PFX teR-(1) M Verb accidental

passive

ter-telan 'be swallowed

accidentally'

telan ‘swallow'

PFX teR-(2) M Verb Abilitative

passive

ter-beli 'can be

bought/buyable'

beli ‘buy'

PFX teR-(3) M Verb Stative

passive

ter-tulis 'be written' tulis ‘write'

PFX teR-(4) H Adjective superlative ter-cantik 'most

beautiful'

cantik 'beautiful'

PFX teR-(5) L Noun patientive ter-sangka 'suspect' sangka ‘suspect'

Table 2.4. Indonesian prefixes (P=Productivity, H=High, M=Medium, L=Low, U=unproductive)

38

Type Affix P Outcome Other

function

Word Root

SFX -an H Noun nominaliser makan-an 'food' makan 'eat'

SFX -i (1) H Verb verbaliser kepala-i 'lead' kepala 'head'

SFX -i (2) H Verb applicative kirim-i 'send to' kirim 'send'

SFX -i (3) H Verb causative panas-i 'apply heat' panas 'hot'

SFX -i (4) H Verb iterative ketok-i 'knock

iteratively'

ketok 'knock'

SFX -i (5) H Verb applicative &

iterative

pukul-i 'punch sth

iteratively using sth'

pukul 'punch'

SFX -kan (1) H Verb verbaliser gambar-kan ‘draw' gambar 'picture'

SFX -kan (2) H Verb applicative kirim-kan 'send for' kirim 'send'

SFX -kan (3) H Verb causative periksa-kan 'have sth

examined'

periksa

'examine'

SFX -nya (1) H Noun definite buku-nya 'the book' buku 'book'

SFX -nya (2) H Noun deadjectival

/deverbal

sakit-nya 'the pain' sakit 'sick'

SFX -nya (3) L Adverb adverbialiser biasa-nya 'usually' biasa 'usual'

SFX -wan U Noun male warta-wan ‘male

reporter’

warta ‘news’

SFX -wati U Noun male warta-wati ‘female

reporter’

warta ‘news’

CFX beR—an (1) L Verb reciprocal ber-pukul-an 'hit one

another'

pukul ‘hit'

CFX beR—an (2) L Verb reciprocal &

iterative

ber-pukul-an 'hit one

another iteratively'

pukul ‘hit'

CFX beR—an (3) L Verb random action ber-jatuh-an 'fall

randomly'

jatuh ‘fall'

CFX beR—kan L Verb possessive ber-senjata-kan ‘have

weapon'

senjata

'weapon'

CFX ke—an (1) H Noun nominaliser ke-baik-an 'kindness' baik 'kind'

CFX ke—an (2) L Verb adversative ke-hujan-an 'get

caught in rain'

hujan 'rain'

CFX ke—an (3) L Adjective ‘-ish’ ke-merah-an 'reddish' merah 'red'

CFX peN—an H Noun deverbal

/deadjectival

peny-(s)atu-an

'unification'

satu 'one'

CFX peR—an M Noun nominaliser per-satu-an 'unity' satu 'one'

CFX peR—i L Verb verbaliser per-baik-i 'fix' baik 'good'

CFX peR—kan L Verb verbaliser per-tahan-kan

'maintain'

tahan 'hold'

CFX se—an U Adverb duration se-hari-an 'all day

long'

hari 'day'

CFX se—nya H Adverb manner se-cepat-nya 'as soon

as possible'

cepat 'quick'

IFX -el- U Noun nominaliser g-el-embung 'bubble' gembung

'swollen'

IFX -em- U Noun plural j-em-ari 'fingers' jari 'finger'

IFX -em- U Verb verbaliser g-em-etar 'shake' getar 'vibrate'

IFX -er- U Noun nominaliser s-er-uling 'flute' suling 'flute'

IFX -er- U Noun plural g-er-igi 'teeth' gigi 'tooth'

Table 2.5. Indonesian suffixes, circumfixes and infixes (abbreviations as in Table 2.4)

39

It is possible for an affixed word to be a base for further morphological processes. For

instance, per-besar ‘enlarge’, with prefix per-, can serve as base for passive di-, as in di-per-besar

‘be enlarged’. The circumfixed word ke-mampu-an ‘ability’ can serve as base for intransitiviser

beR-, as in ber-ke-mampu-an ‘possess ability’.

2.1.3.4.2.2 Function

Affixes can also be analysed by functional grammatical categories. One such is outcome

POS category, that is the POS of the word that the affixation creates. For instance, the outcome

POS of prefix meN- is a verb (whether or not the base is a verb). In some cases, outcome POS

category is ambiguous. For instance, jatuh ‘fall’ plus ke—an yields kejatuhan, which may be a

noun ‘fall’ or a verb ‘get hit by something that fell’. The list of affixes reorganised according to

outcome POS is given in Table 2.6, Table 2.7, and Table 2.8. The examples given in Table 2.4 and

Table 2.5 are not repeated.

40

Affix Outcome Other function

beR-(1) Verb intransitive

beR-(2) Verb reflexive

di- Verb passive

meN- Verb active

peR-(1) Verb causative

peR-(4) Verb verb marker

teR-(1) Verb accidental

teR-(2) Verb abilitative

teR-(3) Verb stative

-i (1) Verb verbaliser

-i (2) Verb applicative

-i (3) Verb causative

-i (4) Verb iterative

-i (5) Verb applicative

-kan (1) Verb verbaliser

-kan (2) Verb applicative

-kan (3) Verb causative

beR—an (1) Verb reciprocal

beR—an (2) Verb reciprocal & iterative

beR—an (3) Verb random action

beR—kan Verb possessive

ke—an (2) Verb adversative

peR—i Verb verbaliser

peR—kan Verb verbaliser

-em- Verb verbaliser

Table 2.6. Verb outcome affixes

41

Affix Outcome Other function

pe- Noun patientive

pel- Noun patientive

peN-(1) Noun agentive

peN-(2) Noun instrumental

peR-(2) Noun profession

peR-(3) Noun nominaliser

teR-(5) Noun patientive

-an Noun nominaliser

-nya (1) Noun definite

-nya (2) Noun deadjectival/deverbal

-wan Noun Male

-wati Noun Male

ke—an (1) Noun nominaliser

peN—an Noun deverbal/deadjectival

peR—an Noun nominaliser

-el- Noun nominaliser

-em- Noun plural

-er- Noun nominaliser

-er- Noun plural

Table 2.7. Noun outcome affixes

Affix Outcome Other function

se-(1) Adjective equative

se-(2) Adjective collective

teR-(4) Adjective superlative

ke—an (3) Adjective -ish

-nya (3) Adverb adverbialiser

se—an Adverb duration

se—nya Adverb manner

ke- Numeral ordinal-collective

Table 2.8. Adjective, adverb, and numeral outcome affixes

Affixes have other functions beyond the POS they derive. For example, di- and meN-

mark active and passive voices respectively. Some scholars suggest that different terminology

should be used to describe these voices in Indonesian, such as agent and patient orientation

(Prentice 1987:193), or actor voice and patient voice, plus also undergoer voice (Mistica et al.

2009:46). To explain the reasons for these proposal is beyond the scope of this thesis. Likewise,

this thesis does not aim to explore this debate or to argue for any particular proposal. For sake of

42

practicality, I will use the familiar terms active and passive, because they are widely understood

by not only linguists but also non-linguists.

2.1.3.4.3 Reduplication

Reduplicated words have two elements, one a root, and the other the realisation of some

abstract reduplication morpheme. I will refer to the former as the source, and the latter as the

copy. There are three formal categories of reduplication in Indonesian, full, partial, and

imitative, discussed in Alwi et al. (1998:147-151,196-197,200,238-241), Sneddon (2010:18-26),

and Chaer (2008:178-209).

In full reduplication, the source and copy are exactly alike, e.g. hari-hari ‘days’ from hari

‘day’. Here, it is irrelevant which unit is deemed the source or copy. However, for imitative and

partial reduplication, the two elements are distinct, and the source (root) and copy are

identifiable. For instance, in the imitative reduplication in sayur-mayur ‘a variety of vegetables’

from sayur ‘vegetable’, sayur is the source and mayur the copy. In the partial reduplication in je-

jaring ‘webs’ from jaring ‘web’ je- is the copy. The various grammatical functions of reduplication

are given in

Full reduplication

1 plural hari ‘day’ hari-hari ‘days’

2 distributive lima ‘five’ lima-lima ‘five each’

3 distributive cantik ‘beautiful’ cantik-cantik ‘each is beautiful’

4 iterative pukul ‘hit’ pukul-pukul ‘hit iteratively’

5 manner adverbialiser pelan ‘slow’ pelan-pelan ‘slowly’

Imitative reduplication

6 plural sayur ‘vegetable’ sayur-mayur ‘a variety of vegetables’

7 plural warna ‘color’ warna-warni ‘a lot of colours’

8 iterative balik ‘return’ bolak-balik ‘go back and forth’

Partial reduplication

9 plural daun ‘leaf’ de-daun-an ‘leaves’

10 plural jamur ‘mushroom’ je-jamur-an ‘mushrooms’

11 plural batu ‘stone’ be-batu-an ‘stones’

Table 2.9. Reduplication and affixation may interact in complex ways; this is discussed further in

4.2.4.2

43

Full reduplication

1 plural hari ‘day’ hari-hari ‘days’

2 distributive lima ‘five’ lima-lima ‘five each’

3 distributive cantik ‘beautiful’ cantik-cantik ‘each is beautiful’

4 iterative pukul ‘hit’ pukul-pukul ‘hit iteratively’

5 manner adverbialiser pelan ‘slow’ pelan-pelan ‘slowly’

Imitative reduplication

6 plural sayur ‘vegetable’ sayur-mayur ‘a variety of vegetables’

7 plural warna ‘color’ warna-warni ‘a lot of colours’

8 iterative balik ‘return’ bolak-balik ‘go back and forth’

Partial reduplication

9 plural daun ‘leaf’ de-daun-an ‘leaves’

10 plural jamur ‘mushroom’ je-jamur-an ‘mushrooms’

11 plural batu ‘stone’ be-batu-an ‘stones’

Table 2.9. Full, imitative, and partial reduplication in Indonesian

 Function Reduplication and affixation Root Root

1 iterative mem-(p)ukul-m-(p)ukul ‘hit

iteratively’
pukul ‘hit’ pukul ‘hit’

2 plural pem-(p)ukul-an-pem-(p)ukul-an
‘acts of hitting’

pukul ‘hit’ pukul ‘hit’

3 iterative-reciprocal pukul-mem-(p)ukul ‘hit each other

iteratively’
pukul ‘hit’ pukul ‘hit’

4 adverbialiser ber-hari-hari ‘for days’ hari ‘day’ hari ‘day’

5 adverbialiser se-cantik-cantik-nya ‘as beautiful

as possible’
cantik
‘beautiful’

cantik
‘beautiful’

6 ‘no matter how’ se-cantik-cantik-nya ‘no matter

how beautiful’
cantik
‘beautiful’

cantik
‘beautiful’

Table 2.10. Reduplication with affixation

A compound or even a phrase may undergo reduplication. For instance, in es krim-es

krim ‘ice creams’; each element of the compound (es ‘ice’ and cream ‘cream’) is reduplicated. The

next section discusses compounding in Indonesian.

2.1.3.4.4 Compounding

Most Indonesian compounds are left-headed, unlike typically right-headed English

compounds. Some compounds, e.g. mata-hari ‘sun’ from mata ‘eye’ and hari ‘day’ (Mueller

2007:1208), do not admit a space. In other cases, a spaceless compound is distinct from the same

elements with a space, typically by the compound having idiomatic interpretation, for example

orang tua ‘old person’ (from orang ‘person’ and tua ‘old’) versus orangtua ‘parents’. In yet other

44

cases, the combination means the same regardless of the presence or absence of space, e.g.

tandatangan or tanda tangan ‘signature’ (from tanda ‘sign’ and tangan ‘hand’) (Sneddon et al.

2010:26-28). Orthographic convention requires that a compound must not include a space when

surrounded by a circumfix or prefix-suffix combination.

2.1.3.4.5 Cliticisation

A root morpheme may be analysed formally as a clitic if it is syntactically independent,

but phonologically dependent, and thus, attached to another word (which I shall refer to as the

clitic’s host). The free and clitic forms are distinct. For example, the clitic form of the first person

pronoun aku is =ku or ku=. A handful of morphemes only occur in clitic form, for instance,

interrogative particle =kah.

Like affixes, clitics can be categorised based on their position relative to the host. In

ku=ambil ‘I take’. the clitic ku= is attached to the start of ambil ‘take’; it is thus a proclitic. In

mem-(p)ukul=ku ‘hit me’, by contrast, =ku is attached to the end of the host and is thus an

enclitic.

Very few Indonesian morphemes can be cliticised: three personal pronouns, namely aku

‘I’, kamu ‘you’, and dia ‘s/he’; a number of discourse particles including interrogative =kah; and

one numeral, se=, the clitic form of satu ‘one’. Aku ‘I’ can be proclitic or enclitic; the other

pronouns are only enclitics, and se= only proclitic.

There is no independent inanimate third-person pronoun in Indonesian (like it in

English; see also 2.1.3.4.1). Demonstratives ini ‘this’ and itu ‘that’ are used instead, never dia –

but dia’s clitic form, =nya, is used for inanimates. However, nya can also be read as a suffix

(definite marker, adverbialiser, or deadjectival/deverbal noun marker; see Table 2.7). This adds

further ambiguities. For example, bukunya can be glossed as buku-nya ‘the book’ or buku=nya

‘his/her book’, depending on the context.

45

2.2 A testbed corpus of Indonesian

2.2.1 Purpose

A corpus for evaluation purposes, or testbed, is needed in order to assess performance of

morphological annotation software (a task to be carried out in Chapter 5 and section 7.5). This

section details its purpose, design, and creation.

My testbed is not intended as a reference corpus of general Indonesian. Many issues that

arise for general reference corpora are thus irrelevant here. A morphological testbed should

ideally be representative in terms of morphological complexity and vocabulary coverage.

However, this is hard to guarantee; no standard exists by which the morphological complexity of

an Indonesian text could be measured. How, then, can suitable testbed data be selected and

obtained?

The first alternative is to use an existing gold-standard morphologically annotated corpus

(see Hierschman & Mani 2003:415; Wissler et al. 2014) as a basis for comparison. If such a

corpus is available, it is important to ensure that it uses the same morphological annotation

scheme as the program to be evaluated. However, to my knowledge, no such gold-standard corpus

exists for Indonesian. Thus, this alternative is ruled out.

The second alternative, which I adopt, is to collect new corpus data so as to maximise

vocabulary coverage generally, and coverage of morphologically complex words specifically.

2.2.2 Design

I hypothesise that the variety of morphologically complex words will be higher in corpus

data from varied domains than from varied media; thus, the design of the corpus should

emphasise variation of domain rather than of medium of publication. A single-domain corpus is

likely to repeat domain-specific vocabulary, even if the source medium varies. On the other hand,

a similar amount of text drawn from multiple domains is likely to contain more distinct word

types, and thus provide better coverage of vocabulary and morphological phenomena.

46

In support of this hypothesis, I manually inspected and compared a 3,000-word text from

a collection of poems and a 3,000-word text from a collection of science articles. I discovered that

clitics ku= ‘I’, =ku ‘my/me’, and =mu ‘your/you’ occur in the former, but not in the latter. A corpus

of science articles, then, would be unlikely to include words with these clitics – whose annotation

ought to be part of any assessment.

I reviewed the variety of domains present in already existing Indonesian corpora. There

are two open-access corpora of written Indonesian: 1) a 500K-word Indonesian national

newspaper corpus, used in the PAN localisation project (Mirna & Riza 2009)13; and 2) a 5M-word

corpus of Indonesian academic articles compiled by the Agency of Language Development and

Cultivation14.

These corpora, however, do not represent a wide range of domains. The PAN localisation

corpus includes four (sports, economy, science, and international news); the academic writing

corpus also includes four (health, life science, social science, and physics). I consider neither

adequate in range.

Another open-access Indonesian corpus is available in the Leipzig corpora collection15

(Goldhahn et al. 2012). This corpus consists of (1) encyclopaedia entries (from the Indonesian

Wikipedia); (2) news articles (from online news portals); and (3) texts retrieved by random web-

crawling, a category labelled “mixed” in the online catalogue16. While much larger than the PAN

localisation corpus at 260M+ words , this corpus has only two clearly separate domains, and is

thus not suitable overall, although subsections might be (see 2.2.3).

As a point of departure, I considered the British National Corpus or BNC1994 (Aston &

Burnard 1998), a major English reference corpus. The written texts in BNC1994 are drawn from

nine domains: applied science, arts, belief & thought, commerce & finance, imaginative/creative,

leisure, natural sciences, social sciences, and world affairs. I opted to follow this model for the

domains in my testbed.

13 http://www.panl10n.net/english/OutputsIndonesia2.htm (last accessed 08/10/2019)
14 https://korpusindonesia.kemdikbud.go.id/index.php?r=site/home (last accessed 26/05/2021)
15 http://wortschatz.uni-leipzig.de/en/download/ (last accessed 26/05/2021)
16 https://wortschatz.uni-leipzig.de/en/download/Indonesian (last accessed 26/05/2021)

http://www.panl10n.net/english/OutputsIndonesia2.htm
https://korpusindonesia.kemdikbud.go.id/index.php?r=site/home
http://wortschatz.uni-leipzig.de/en/download/
https://wortschatz.uni-leipzig.de/en/download/Indonesian

47

The next point to consider is the overall target size for the testbed, and the amount of

text per domain. The part-of-speech tagging of the BNC1994 was evaluated17 over a 50K-word

test sample, i.e. approximately 0.05% of the overall BNC1994. By this standard, a 10K-word

testbed would be representative of an actual corpus of about 20M words. However, the BNC1994

annotations in question were word-level, not morpheme-level.

MorphInd (Larasati et al. 2011), the state-of-the-art morphological analysis system for

Indonesian (see Chapter 5), was trained on a corpus of 100 sentences (Larasati, personal

communication). This corpus is not publicly available. Assuming a sentence to be approximately

10-15 words, its size would be around 1 to 1.5K words.

Voutilanen et al. (1992) report a performance test of the English Constraint Grammar

tagger (EngCG) using only a 2,167-word corpus. This is a highly relevant point of comparison.

First, although EngCG is a parser, it also performs morphological analysis and ambiguity

resolution. Second, EngCG uses a rule-based approach, which (as will be explained in section 6.9)

is the approach I use. Third, Voutilanen et al. (1999:18) report that several evaluations using

more text give essentially the same figures.

On the basis of these precedents, I set a target of 10K words for my testbed. Although

this emerges from a review of practice for English, whose morphology is relatively simpler than

Indonesian, two considerations support the decision. First, the tagging for English previously

referred to is POS tagging, not morphological tagging. Arguably, POS in English is at least in the

same league of difficulty as morphology in Indonesian. Second, for morpheme-level annotation,

the number of units of evaluation is the number of morphemes, not words as in POS analysis.

For every polymorphemic word composed of 3 morphemes, for instance, there will be 3 analyses

to evaluate. Thus, the number of evaluations may be much greater than the wordcount. Finally,

a practical consideration should be noted: since the data is to be manually processed, any much

larger testbed could not be checked word-by-word within the time constraints of a PhD project.

17 http://www.natcorp.ox.ac.uk/docs/bnc2error.htm (last accessed 26/05/2021)

http://www.natcorp.ox.ac.uk/docs/bnc2error.htm

48

2.2.3 Creation

The testbed was created as a subset of the Leipzig Indonesian corpus collection, the

largest of the three mentioned above. This corpus is openly downloadable, with free-to-use-and-

transform status (Creative Commons CC-BY-NC18). Along with the texts, the source URLs of the

texts are provided. This made it possible to reclassify texts by domain to build a smaller, more

varied corpus from the Leipzig data.

The reclassification was performed as follows. I identified seed terms for each of the nine

BNC1994-derived domains by two methods. First, I translated the names of the domains to

Indonesian, and used them as node terms to search the corpus; their collocates were manually

inspected to identify further seed terms. Second, I used my native speaker introspection to

identify additional seed terms for those domains. This resulted in nine groups of seed terms

reflecting nine different domains.

I built a small PHP program to process the Leipzig corpus’s URLs, classifying each

according to the nine domains. Any text whose URL contains one of the seed words is deemed to

belong to the domain that that seed word relates to. The script then downloads the original text

from the internet. This generates a collection of texts from nine different domains, in total more

than 18M words, balanced at 2M words per domain. This is only a fraction of the original Leipzig

corpus, because many URLs could not be classified or were no longer accessible on the web. At

this point, paragraphs were randomly selected (by searching for new-line characters) from each

domain to form the 10K-word testbed (1.1K words per domain).

18 https://creativecommons.org/licenses/by-nc/4.0/

49

CHAPTER 3

A REVIEW OF MOPRHOLOGICAL ANNOTATION SCHEMES

In Chapter 1, I stated several aims, among which the creation of a novel Morphological

Annotation Scheme (MAS) is of central importance. Constructing a new MAS necessitates the

identification of the current accepted best practices in this area. An account of these best

practices will be the outcome of this chapter.

These best practices will be identified by means of a literature review of MASs. I

consider, in order of presentation, MASs for Finnish, Turkish, Arabic, and Indonesian; and one

universal MAS. The choice of these MASs are discussed in section 3.1. Each MAS is then

reviewed separately (sections 3.2 to 3.6). The best practices identified from the reviews of these

MASs are laid out in section 3.7.

3.1 Scope and organisation of this review

There exist many MASs, of which a high proportion are likely to share common features.

Thus, reviewing all MASs in full would lead to redundant multiple discussions of these shared

aspects. To avoid such unnecessary redundancy, I establish criteria to determine which MASs to

include in this review. First, it is important that the MASs’ coverage be broad. Some MASs target

only specific morphemes, specific grammatical functions, or specific word formations. For

instance, Neme’s (2011) MAS focuses only on handling Arabic verbs. Neme & Laporte (2013)

target only Arabic nouns, specifically the so-called broken (irregular) plurals. Such limited MASs

are less relevant for present concerns, and are thus not included in this review. Second, the

MASs to be reviewed must have been implemented in the annotation of a corpus. MASs that are

still under development or not yet applied are not considered in this review. Third, I consider

only MASs for languages whose morphological structures are as rich as or richer than

Indonesian’s (see 2.1), namely Finnish, Turkish, and Arabic. MASs for languages with little

morphology, such as Chinese, are passed over as less relevant. Finally, I also include the cross-

language Universal Dependencies (UD) MAS, because this annotation scheme has been adopted

50

in many NLP systems for basic applications such as POS tagging, syntactic parsing, or higher

level applications such as machine translation, text mining, and information retrieval.

For each language, I consider existing MASs in chronological order. A MAS used in an

actual Morphological Analysis (MA) system and with relatively broad coverage of its language

was first built for Finnish in the early 1980s by Koskenniemi (1983). Other Finnish MASs were

developed from the early 1990s to the early 2010s. Turkish MASs were pioneered by Oflazer

(1994). His work on Turkish MASs and NLP systems began in the early 1990s. Many later

Turkish MASs and NLP systems would be driven by Oflazer’s precedent. In addition to Oflazer’s

work, I also consider Coltekin’s (2010) MAS for Turkish. As of the late 1990s to the late 2000s,

Arabic MASs and NLP systems began to be developed. The two Arabic MASs considered here are

the Buckwalter Arabic Morphological Analyser (BAMA) scheme (Buckwalter 1999) and the

Standard Arabic Language Morphological Analysis (SALMA) scheme (Sawalha et al. 2013). For

Indonesian, I consider two distinct MASs used in different MA systems: Pisceldo et al.’s (2008)

Two-Level Morphological Analyser (PMA) and MorphInd (Larasati et al. 2011).

Around the early 2010s, a cross-linguistic annotation scheme called Universal

Dependencies (UD) was created (McDonald et al. 2013). The morphological subsystem of UD is

commonly used in modern NLP applications; it is the final MAS reviewed here, having been

developed more recently than those mentioned above.

3.2 Some Finnish MASs

3.2.1 Kimmo Koskenniemi’s MAS

The first widely-known Finnish MAS was associated with Koskenniemi’s (1983) seminal

Two-Level Morphology formalism, henceforth TLM. The MAS that Koskenniemi used is referred

to here as Kimmo Koskenniemi’s MAS or KKM. TLM was Koskenniemi’s innovation in response

to generative grammar, a highly influential theory based in the work of Chomsky (1957; 1963;

1965; 1968); see further Chapter 6. The current implementation of TLM which applies this MAS

51

is Fintwol19.

3.2.1.1 Some preliminary remarks on TLM

Chomskyan generative morphology describes word structure in terms of a sequence of

transformations between an abstract (or underlying) representation and a surface form,

formalised as transformational rules. Due to limitations of computer memory in the 1980s, it was

not possible to implement this linguistic formalism as a working NLP system. Thus,

Koskenniemi designed TLM as an alternative formalism that could be feasibly implemented

(Koskenniemi 1983).

TLM bypasses all intermediate stages between underlying and surface forms, simplifying

all processes into just two levels: the lexical and surface representations. In TLM, the surface

representation is not seen as the result of transformations of the lexical representation. Instead,

the two representations are seen as corresponding to one another. The technical details of TLM

system will be discussed in section 6.6. I here focus on KKM.

3.2.1.2 Documentation of KKM in the literature

KKM was the first MAS successfully implemented in a fully working automatic MA

system (there were earlier partial systems; see 6.5). The first published description of KKM is

distributed throughout the text of Koskenniemi (1983), primarily an account of the software

implementation. The documentation of a later version of Fintwol (Koskenniemi 1995) also covers

both scheme and software. Covering MAS and software together makes the account concise but

poses challenges for this review of KKM: its description presupposes some understanding of TLM

(as covered above) and of Finnish morphology.

Finnish is a highly agglutinative Finno-Ugric language. A Finnish verb, for instance may

be composed of seven morphemes or even more (Karlsson 1999:25). A polymorphemic word in

19 http://www2.lingsoft.fi/cgi-bin/fintwol (last accessed 26/05/2021); http://www2.lingsoft.fi/doc/fintwol/intro/tags.html (last

accessed 26/05/2021)

http://www2.lingsoft.fi/cgi-bin/fintwol
http://www2.lingsoft.fi/doc/fintwol/intro/tags.html

52

Finnish is usually built by concatenating endings onto roots. In Finnish morphology, ending is a

cover term for enclitics, case suffixes, possessive suffixes, and other suffix-like morphemes

(Karlsson 1999:4); however, I will stick to the more common linguistic terms suffix and enclitic.

The interaction of a Finnish root with its suffixes (and clitics) involves much morphophonemic

alternation, due to phenomena such as consonant gradation and vowel harmony (Karlsson

1999:28-38).

An important item of terminology in KKM is feature. Koskenniemi (1983:24) has two

distinct definitions for feature. On the one hand, he uses it to refer to a morphological property or

morphological boundary; features may trigger the application of morphophonological rules

(Koskenniemi 1983:24). On the other hand, he also uses the term feature for functional features,

such as the morphosyntactic feature of number (Koskenniemi 1983:48). This latter is more akin

to the meaning of feature in usual linguistic terminology. For consistency, I will use feature only

for the latter concept in this review.

3.2.1.3 KKM’s handling of stems and suffixes

In KKM, Finnish suffixes are classified based on the categories of stem POS to which

they can be affixed. The main categories of stem POS in Finnish are nominal and verbal. Each

category of suffix is additionally subcategorised on the basis of how they combine with different

sets of actual stems. These categories are called continuation classes, or simply classes; they are

used for internal management of morphophonemics.

3.2.1.3.1 Nominal stem suffixes

Koskenniemi defines four classes within the category of nominal suffixes (S), namely

nominative (S0), singular (S1), plural (S2) and other (S3/S4/S5). Class definitions are based on

functional grammatical features as well as technical morphophonemic considerations

(Koskenniemi 1983:48-51).

53

S0 contains the null suffix/zero morpheme, which characterises unmarked nominal roots

whose reading is nominative singular. The other classes contain explicit case/number suffixes.

Table 3.1 lists the possible values for case and number, and the tags that indicate them; Table

3.2 illustrates the use of these tags to annotate various nominal suffixes.

Nominal feature (S)

Number

• Singular (SG)

• Plural (PL)

Case

• Nominative (NOM)

• Genitive (GEN)

• Essive (ESS)

• Partitive (PTV)

• Inessive (INE)

• Illative (ILL)

• Adessive (ADE)

• Ablative (ABL)

• Commitative (CMT)

• Instructive (INS)

• Translative (TRA)

Table 3.1. Nominal suffix inflectional features and values in KKM

Continuation

class

Nominative (S0) Singular (S1) Plural (S2) Other (S3/4/5)

Example

suffixes

(unmarked)

NOM SG

-n GEN SG

-t NOM PL

-ksi TRA SG

-ien GEN PL

-ita PTV PL

-issa INE PL

-ta PTV SG

-ten GEN PL

-tta PTV SG

Table 3.2. Examples of KKM tags for nominal suffixes (adapted from Koskenniemi 1983:48)

It is odd that there should be a plural suffix, -t, in class S1 (labelled “singular”). If the

categorisation were to be consistent, S1 ought only to include suffixes marking singular number.

Koskenniemi (1983:48) explains, however, that this inconsistency is for technical reasons: the S2

class holds plural suffixes that begin with -i, and since nominative plural -t does not begin with -

i, it is in class S1. However, this indicates that the S0 to S5 subclasses are not analytically

meaningful, despite the titles that Koskenniemi gives them. Another indication of this is that

grammatical features exhibit no exclusivity to particular continuation classes, e.g. genitive case

is present in all of S1 to S5. Since this subclassification according to morphophonemic form and

combining behaviour is not a part of the analytic annotation, but rather a part of the system of

54

suffix recognition used in the implementation, I will pass in silence over continuation class for

the remainder of my review of KKM.

3.2.1.3.2 Adjectival stem suffixes

Two features are defined in KKM for adjectival suffixes, namely degree (comparative

(CMP), positive (POS), superlative (SUP)) and manner (MAN; present/absent) (Koskenniemi

1983:57). Although not explicitly defined, MAN seems to flag the function of suffixes which derive

manner adverbs from adjectives. If so, this is an inconsistency in KKM, because MAN is unlike

the other KKM tags for derivation (see Table 3.3).

(3.1)-mpi CMP

(3.2) -in SUP

(3.3) -sti POS MAN

(3.4) -mmin CMP MAN

(3.5) -immin SUP MAN

3.2.1.3.3 Verbal stem suffixes

The features of Finnish verbal suffixes are more complex than those of adjectival and

nominal suffixes. They include: participle, infinitive, tense, mood, voice, person and number,

case, negation, and derivation. The values of these features and corresponding tags in KKM are

shown in Table 3.3 below.

55

Verbal feature (V)

Person and Number

• First person singular

(Sg1)

• Third-person plural (Pl3)

• Fourth person (Pe4)

Case

• Inessive (INE)

• Translative (TRA)

• Instructive (INS)

Voice

• Active (ACT)

• Passive (PSS)

Participle

• Present Participle (PCP1)

• Past Participle (PCP2)

Infinitive

• 1st infinitive (INF1)

• 2nd infinitive (INF2)

Mood

• Conditional

(COND)

• Imperative (IMPV)

• Potential (POTN)

Tense

• Present (PRES)

• Past (PAST)

Derivation

• DVMI = ‘mi’ ending

• DVMA = ‘ma’

ending’

Participles

• Present (PCP1)

• Past (PCP2)

Table 3.3. Inflectional and derivational features for verbal suffixes in KKM, with example values

(adapted from Koskenniemi 1995)

Verbal suffixes can indicate up to four features at the same time. For instance, in (3.6)

and (3.7), -koon and -kaame both mark imperative mood and active voice but indicate different

person/number agreement categories.

(3.6) -koon IMPV ACT SG3

(3.7) -kaamme IMPV ACT PL1

Much of KKM is dedicated to representing inflectional suffixes. However, some

derivational suffixes may be found within the class of verbal suffixes. The functional analyses for

these derivational suffixes are distinctive from those for inflectional suffixes, as a comparison of

(3.8) to (3.11) and (3.12) to (3.13) may serve to illustrate.

(3.8) -da PRES PSS

(3.9) -taisi COND PSS

(3.10) -da INF1 NOM

(3.11) -tu PCP2 PSS

(3.12) -taessa DVMA PSS INE

(3.13) -ma DVMA ACT

Each tag for a derivational suffix begins with DV, short for derivation applied to a verb.

The remainder of the tag is based on the form of the derivational suffix. For instance, DVMA is

56

the tag for suffix -ma in (3.13). Whereas tags for inflectional suffixes are functional grammatical

analyses based on abbreviations commonly used in linguistic glossing, no functional

characterisation of the derivation processes is included in the MAS. A tag which uses the

morpheme’s actual form to represent a functional category will be referred to henceforth as self-

labelled functional category.

3.2.1.3.4 Clitics

Clitics, often referred to as clitic particles in the literature on Finnish, are annotated with

self-labelled functional categories. For example, the tag for the interrogative mood clitic is kan.

This is identical to its form =kan. Likewise, the emphatic clitic =han is annotated with tag han

(Koskenniemi 1983:60). Koskenniemi does not discuss the clitics’ functions. However, Karlsson

(1999:20) reports that clitics =han and =pa are used for emphasis. Other clitics can be used to

mark interrogative mood or for stating options (equivalent to English either).

3.2.1.4 Output format

The representation of KKM generated as output by the earliest TLM program

(Koskenniemi, 1983) is laid out in two lines per word. The first line gives the word’s morphemes,

encoded in TLM formalism rather than citation or orthographic form. Fintwol imports this

representation from its TLM-format lexicon resources. For instance, passive suffix -tu is

represented as *ZTU. Example (3.14) shows this in the context of a full word. This formalism

shows explicit morpheme boundaries (with +) and other details which support morphophonemic

and morphotactic rule processing.

 (3.14) Hakatuimassa word

hakKa$t*$ZTU$+imPA$+ssA first annotation line

Hit V PCP2 PSS SUP INE SG second annotation line

57

The second line presents a series of analytic labels: first a literal translation of the word’s

root into English, then a tag for the root’s POS category, and finally tags for the values identified

from the analysis of the non-root morphemes. In contrast to the first line, no morpheme

boundaries are represented or implied. Thus, the correspondence between morphemes and

analytic features is not preserved. The tags are all associated equally with the word as a whole.

3.2.1.5 KKM as a word-level analysis

The foregoing review makes clear the strong tendency of KKM to address word-level

analysis instead of morpheme-level analyses. Koskenniemi’s decision to include analytic

categories associated with null morphemes attests to this. The categories of nominative singular,

or positive degree, are represented by tags assigned to words, even though they correspond to no

actual morpheme (nor even a zero element added to output line1).

This tendency is also evident from the lack of morpheme boundaries in the second line of

the output format (the analyses). For instance, example (3.14) illustrates an analysis of six tags,

with no morpheme boundaries given, for a word composed of a root and three suffixes. While the

root translation and the first tag are associated with the root by definition, the remaining tags

could relate to any of the suffixes. This approach is completely acceptable for word-level analysis,

but does not fit well with morpheme-level analysis, as it is not possible to determine which

analytic categories correspond to which morphemes.

3.2.2 Later derivatives of KKM

The Fintwol program is in continuous development; see 3.2.1.2. Since the version of

Fintwol described by Koskenniemi (1983), some minor adjustments have been made. One is

that the morpheme form analysis is no longer shown in the output. Thus, Fintwol output now

consists of a single line, as in example (3.15). The literal English translation of the root has also

been removed from the output. One point which has not changed, however, is that more recent

versions of Fintwol still produce word-level (instead of morpheme-level) analyses.

58

 (3.15) koirillannekaan (no translation provided)

"koira" N ADE PL 2PL kAA

Creutz et al. (2004) report on a corpus of Finnish (and English) which are annotated

using KKM, but with certain adjustments. For instance, Creutz et al.’s MAS has only nine POS

categories. Creutz et al. also introduce a special POS, A/N, for words ambiguous between

adjective and noun. Another novel category introduced by Creutz et al. is PFX for prefix. Finally,

certain derivational suffixes are defined as marking the agentive nominalisation, such as -ma

(DV-MA) and -ja (DV-JA). This functional elaboration is absent from KKM, as explained above;

yet the categories are still self-labelled.

 Creutz et al. ’s (2004) analysis is implemented using the Hutmegs software (Helsinki

University Technology Morphological Evaluation Gold-standard Packages) instead of Fintwol

(1995). However, it is reported elsewhere that Hutmegs’ analysis is based on Fintwol’s resources

(Creutz & Linden 2004: 20). The Creutz & Linden MAS is, in consequence, another derivative of

KKM.

Two substantial changes in this derivative of KKM mean that Hutmegs’ analyses are

morpheme-level instead of word-level. First, all tags that correspond to word-level analyses by

virtue of analysing unmarked or “zero” suffixes have been removed from the MAS (e.g.

nominative singular for a noun; see discussion in 3.2.1.3.1). Second, in the single-line Hutmegs

output, each tag is linked to the orthographic form of the specific morpheme it analyses, as

shown in (3.16).

(3.16) arvo:arvo|N a:PTV mme:1PL, arvo:arvo|N amme:amme|N

The word form arvoamme is ambiguous, with two alternative readings, which are

analysed and presented comma-separated in the output. Whether this form is the simple

inflected word ‘of our value’ or the compound word ‘valuable bathtub’ depends on whether amme

is read as two suffixes or a single element (a compounded root). Regardless, the format is

consistent: each analysis consists of the morpheme’s orthographic form, then a colon, then its

59

canonical form, then a pipe, and then the morpheme’s tag. In the interpretation of arvoamme as

a compound, both elements are tagged as roots.

3.2.3 The MAS used in the Finnish Treebank

One of the sub-systems of the annotation of the Finnish Treebank (Voutilainen et al.

2012) is morphological analysis. This was applied primarily using Omorfi (Pirinnen 2015), a

Finnish morphological analyser, and secondarily using a number of additional post-processors

(Voutilainen, personal communication). Henceforth, this MAS will be referred to as the Finnish

Treebank MAS (FTM).

One major difference from the MASs discussed previously is that FTM introduces a new

category of tags called other for various non-word elements based on their orthographic form. In

corpus annotation generally, the POS of such elements is commonly termed residual. In FTM,

the residual category is split into the subcategories of abbreviation, punctuation, acronym,

sentence ending, and truncated compound.

3.2.3.1 Derivation tags

Another significant difference is the inconsistent organisation of the derivation tags in

FTM. FTM’s derivation tags are encoded identically to KKM, but their placement in the analysis

output differs. In most cases, derivation tags are placed at the end of the morphological analysis,

as illustrated by the self-labelled tag for suffix -aise in example (3.17). In example (3.18), the

derivation tag is not shown despite the presence of the derivational suffix -elle. In example (3.19),

the derivation tag for suffix -llinen appears in first position, indicating that in FTM, the order of

tags (or at least of DV-tags) is meaningless.

(3.17) sutaista (Voutilainen et al. 2012: 56)

V Act Imprt Sg2 DV-AISE

(3.18) ponnistella (Voutilainen et al. 2012: 68)

V Act Ind Prs Pl3

60

(3.19) kaupallinen (Voutilainen et al. 2012: 74)

DV-LLINEN N Nom Sg

Voutilainen (personal communication) explains that derivation tags are added after the

other tags, which explains their variable placement. He moreover confirms that these analyses

do not account for all derivational phenomena in Finnish.

3.2.3.2 Output format

FTM-annotated data is formatted as a five-column table, where the fourth column

contains the morphological analyses (see Table 3.4). This and KKM’s format share many

similarities. The POS category of the word is followed by suffix tags, without no link from tags to

corresponding morphemes; thus, FTM is another word-level MAS, not a morpheme-level MAS.

Table 3.4. FTM sample (reproduced from Voutilainen et al. 2012:53)

To summarise this review of Finnish MASs, I would observe that only the MAS used by

Hutmegs (Creutz & Linden 2014) expresses a morpheme-level analysis. KKM and FTM, and the

programs which implement them, provide word-level analyses, an approach which I would argue

is more appropriate for morphosyntactic tagging than for morphological tagging.

61

3.3 Some Turkish MASs

Turkish is a highly agglutinative language of the Turkic family. It has much in common

typologically with Finnish (and many other languages across central and northern Asia),

including its agglutinativity. Oflazer (2018:23) notes that a Turkish word can theoretically be

composed of up to 12 morphemes. As in Finnish, Turkish words are formed by productive

suffixation with morphophonemic adjustments (geminations, alternations, and elisions of both

consonants and vowels depending on the phonological environment).

The following notes on Turkish morphology draw on Goksel and Kerslake (2005). Turkish

nominals can be marked by number, possession and case suffixes. Nominative singular stems are

morphologically unmarked, as in Finnish. However, there are fewer nominal cases in Turkish

than in Finnish. Locatives are generally expressed by postpositions instead of cases. Turkish

verbal stems can be marked by voice and tense suffixes, as well as suffixes for subject agreement

(person and number).

3.3.1 Oflazer’s MAS

Oflazer was one of the first scholars to successfully apply TLM to a language other than

Finnish, in this case Turkish. Oflazer’s success justifies Koskenniemi’s claim that TLM can serve

as a general approach to computational analysis (or annotation) of morphology.

The first version of Oflazer’s MAS (henceforth, OM) (Oflazer 1994) reflects Koskenniemi’s

work in that the distinction between the overall TLM formalism and the MAS specifically is not

clear-cut. In the most recent version (Oflazer 2018), however, the discussion of TLM is kept apart

from the discussion of the MAS, and no TLM formalism is used for the description of the MAS.

3.3.1.1 Roots, inflections, and derivations

In OM, Turkish roots are classified into 13 POS categories (shown in Table 3.5). One of

these is onomatopoeic words. Treating onomatopoeia as a POS category is strictly inaccurate,

62

because onomatopoeia is not a POS, but a word formation process; but this seems to be for

practical purposes (see Goksel and Kerslake 2005:56). The categories of noun, numeral, and

pronoun have subcategories.

Tag POS

+Noun

+Adverb

+Pron

+Num

+Det

+Ques

+Dup

+Adj

+Verb

+Postp

+Conj

+Interj

+Punc

Noun

Adverb

Pronoun

Number

Determiner

Question clitic

Onomatopoeic words

Adjective/modifier

Verb

Postposition

Conjunction

Interjection

Punctuation

Table 3.5.Turkish root POS (adapted from Oflazer 2018:46)

Noun Pronoun Numeral

+Prop Proper noun +Demons Demonstrative

pronoun

+Card Cardinal

number

+Ques Interrogative

pronoun

+Ord Ordinal

number

+Reflex Reflexive pronoun +Dist

Distributive

number +Pers Personal pronoun

+Quant Quantifying

pronoun

Table 3.6. Subcategories of noun, pronoun and numeral in OM’s POS system for Turkish

The OM tagset for inflection is presented in Oflazer (2018:47-51) and summarised in

Table 3.7. In OM, all three types of nominal suffixes (number, possession and case) are

considered inflectional. There are eight cases in Turkish; the singular and nominative are

marked by null morphemes but are tagged explicitly in OM (Oflazer 2018:29, 48-50). Like KKM,

it is a word-level analysis.

63

Number and Person

+A1sg = 1st person singular

+A2sg = 2nd person singular

+A3sg = 3rd person singular nouns

+A1pl = 1st person plural

+A2pl = 2nd person plural

+A3pl = 3rd person plural nouns

Possession

+P1sg = 1st person singular possessive

+P2sg = 2nd person singular possessive

+P3sg = 3rd person singular possessive

+P1pl = 1st person plural possessive

+P2pl = 2nd person plural possessive

+P3pl = 3rd person plural possessive

+Pnon = No possessive

Case

+Nom= Nominative

+Acc= Accusative

+Dat= Dative

+Abl= Ablative

+Loc= Locative

+Gen= Genitive

+Ins= Instrumental

+Equ= Equative

TAM

+Past = Past tense

+Narr = Evidential past tense

+Fut = Future tense

+Prog1 = Present continuous tense—process

+Prog2 = Present continuous tense—state

+Aor = Aorist mood

+Desr = Desiderative mood

+Cond = Conditional aspect

+Neces = Necessitative aspect

+Opt = Optative aspect

+Imp = Imperative aspect

Polarity

+Pos = Positive polarity

+Neg = Negative polarity

Table 3.7. OM’s inflectional features

Not all features marked by verbal suffixes are treated as inflectional. Polarity, person-

number agreement, and a number of Tense-Aspect-Mood (TAM) suffixes are considered

inflectional, whereas the suffixes marking voice and modality are considered derivational

(Oflazer 2018:49-50). By contrast, Goksel and Kerslake (2005:69) analyse voice as an inflectional

feature. We will see a similar phenomenon in Indonesian, described later in section 3.5, where

Indonesian scholars dissent over the classification of Indonesian voice marking as inflection or

derivation.

The OM derivational tagset is summarised in Table 3.8 . In OM, Turkish valency changes

are treated as derivational, and classified into four voice categories, namely passive, causative,

reflexive, and reciprocal; all are expressed by overt morphemes. Active voice is expressed by a

null morpheme and is not included in OM. This is inconsistent with OM’s treatment of

nominative case, for which a tag is assigned (Table 3.7), even though the nominative is expressed

by a null morpheme, like active voice.

64

Voice

+Pass = Passive

+Caus = Causative

+Reflex = Reflexive

+Recip = Reciprocal

Modality

+Able =Able to verb

+Repeat= verb repeatedly

+Hastily= verb hastily

+EverSince= have been verbing ever since

+Almost =Almost verbed but did not

+Stay =Stayed/frozen while verbing

+Start= Start verbing immediately

Adverbial derivation (converb)

+AfterDoingSo = After having verbed

+SinceDoingSo = Since having verbed

+As = As ... verbs

+When = When . . . is done verbing

+ByDoingSo = By verbing

+AsIf = As if verbing

+WithoutHavingDoneSo = Without having

verbed

Others

+Ly = Manner

+Since =From temporal noun

+With/+Without =modifiers derived from noun

(in general)

+Ness = nominaliser from adjective

+Become = Inchoative

+Acquire = Reception of something

+Dim = Diminutive

+Agt = Agentive

Table 3.8. Derivational features in OM (Oflazer 2018:46-51)

Oflazer (2018:49-50) uses the term semantic twist to characterise the meaning of many

derivational suffixes. The tags for modality and subordinating suffixes are based on English

translations of their meanings (see Table 3.8). The remaining derivational suffix analyses (under

the heading of other) vary; some use common glossing conventions (e.g. +Dim, +Agt); others use

the English translation pattern (e.g. +Ly, +Since, +Ness).

3.3.1.2 Output format

The OM output format consists of two lines. The first contains the word’s morphs

separated by explicit boundaries. The second contains the surface form of the root and its POS

tags followed by morpheme tags. The same symbol (+) serves to demarcate both morphemes and

tags on the two lines, but there is no transparent link between each morpheme and the

corresponding analyses. In example (3.20), there are three morphemes (ok, -um, -a) whose tags

are respectively ok+Noun, +A3sg+P1sg and +Dat, but nothing in the format indicates which tags

apply to which morpheme.

65

(3.20) Okuma ‘my arrow’ (Oflazer, 2018:33)

ok+um+a

ok+Noun+A3sg+P1sg+Dat

In OM, derivational suffixes are assigned tags consisting of ^DB plus the suffix’s outcome

POS plus functional analytic category/ies. Example (3.21) exemplifies a word whose analysis

includes multiple derivations; the final derivation(^DB+Adverb+While) determines the POS of

the word.

(3.21) Öldürülürken ‘while he is being caused to die’ (Oflazer, 2018:33)

öl+dür+ül+ür+ken

öl+VerbˆDB+Verb+CausˆDB+Verb+Pass+Pos+AorˆDB+Adverb+While

The roots of lexicalised collocations are treated as single sequences in OM, which

therefore only receive single analyses. They are connected by an underscore as shown in (3.22).

The multiword expression hiç olmazsa ‘at least’ is considered a lexicalised collocation in OM.

(3.22) Hic olmasza “become mentally deranged” (literally “eat head”) (Oflazer, 2018:39)

hic_olmaza+Adj

In this review of OM, my main finding is that it is a word-level, rather than morpheme-

level, analysis scheme . This is evident in the non-association of tags to specific morphemes and

the varying use of tags for categories represented by null morphemes (see (3.21)and (3.22):

nominative case and active voice are both null-marked but differently treated). Morpheme

boundaries are present in the OM output, but they do not allow the user to link a tag to the

morpheme that marks the function in question.

3.3.2 Coltekin’s MAS

Another Turkish MAS is that used in TRmorph (Coltekin 2010). Compared to OM,

Coltekin’s MAS (henceforth, CM) makes improvements in certain areas, but in essence, is no

different from OM in terms of specifying word-level rather than morpheme-level analysis, as the

following review will show.

66

3.3.2.1 Treatment of roots

CM uses two POS categories not present in OM, namely existence and symbol alphabet.

In addition, CM has more detailed coverage of the negation category than OM. In OM, negation

is present only as a functional label associated with a given suffix. In CM, negation is present in

both suffix and POS analyses, with distinctive tags. The negation suffix is tagged <neg>. The

POS <NOT> consists only of the negator degil . Coltekin argues that, as degil has a special

function, it should be assigned a distinctive tag (Coltekin 2013:3). The word degil is not

mentioned in Oflazer (1994).

CM augments six POS categories (noun, pronoun, numeral, determiner, conjunction,

postposition) with subcategories. The hierarchy in CM can be up to three levels deep. For

instance, abbreviation is a subcategory of proper noun, and proper noun is a subcategory of noun;

so the tag for abbreviations is in full <N:prop:abbr>. This stands in contrast to OM, where

abbreviation is an independent major POS category.

3.3.2.2 Treatment of suffixes

OM’s and CM’s treatments of inflectional suffixes share many similarities. One

significant difference is that CM has tags for copulative functions of verbal suffixes that form

predicative clause constructions (Coltekin 2013: 9-10), such as past <cpl:past>, evidentiality

<cpl:evid>, and conditional <cpl:cond>.

Coltekin (2013: 14-15) follows Goksel and Kerslake (2005:85-86) in using the term

subordinating suffix for the suffixes listed as converbs20 in OM; verbs so derived are placed in

three subcategories, i.e. verbal noun, participle, and converb, which in turn have subcategories

labelled either according to their TAM or with self-labelled functional tags. So, for instance,

20 Roughly equivalent to English adverbial participial clauses.

67

infinitive verbal noun suffix <vn:inf> is the analysis of -mak, past participle suffix <part:past> is

the analysis of -Dik, and converbial suffix <conv:cesine> is the analysis of -cesine .

3.3.2.3 Output format

CM’s output format is a line which contains, in order, the root form of the word, the root’s

POS, and a collection of tags representing suffix analyses. Each tag is enclosed by angle brackets.

Examples (3.23) to (3.25), taken from Coltekin (2010: 13, 7, 14), illustrate this

(3.23) ev-ler-i ‘houses (accusative)’

ev<N><pl><acc>

(3.24) ev-de-ki ‘in the house’

ev<N><loc><ki><Adj>

(3.25) doktor-lar ‘they are doctors’

doktor<N><0><V><cpl:pres><3p>

Example (3.23) illustrates an inflection, but (3.24) and (3.25) involve derivational

suffixes. The tag for -ki is self-labelled functional category <ki> plus outcome category <Adj>.

Unlike OM, CM does not explicitly encode derivational boundaries, but they are implicit in the

sequential suffix-and-outcome-POS tag pairs. The tag <0> prior to the outcome POS <V>

indicates derivation with a null morpheme (zero derivation).

3.4 Some Arabic MASs

3.4.1 Background to Arabic

Arabic is an Afro-Asiatic language, written in the Arabic alphabet, which is laid out from

right to left. In this review, for sake of readability, I render all Arabic words in the Latin

alphabet following Buckwalter’s transliteration scheme (Habash et al. 2010:15-22).

Arabic stems are derived by the nonconcatenative combination of roots and patterns.

Typically, in Arabic, a root is a set of consonants with empty slots for vowels, while a pattern is a

68

set of vowels that can potentially fill those slots. Arabic is well known for this root-pattern

morphology.

Ryding (2005:46) compares this nonconcatenative phenomenon to ablaut in English,

albeit the equivalence is inexact. We might analyse the inflection of sing as involving a root s_ng

to which four different vowel patterns i, a, u, and o may be inserted to create stems sing, sang,

sung, and song. This system is, however, much more prominent in Arabic; for instance the single

root k_t_b yields many stems including kaatib ‘writer’, -ktubu ‘write (present tense)’, kitaab

‘book’ and kutuub ‘books’.

An Arabic inflectional morpheme can mark multiple features, as is characteristic of

inflectional languages. An example is suffix -at in katab-at ‘she wrote’ and takallam-at ‘she

spoke’ (Ryding 2014:101). This one suffix marks the word as a feminine singular third person

past tense verb21. Thus, at the same time, it marks four features (gender, number, person, and

tense).

3.4.2 Buckwalter’s MAS

One of the most well-known automatic morphological analysers for Arabic is the

Buckwalter Arabic Morphological Analyzer (Buckwalter, 1999; 2001), or BAMA. BAMA’s MAS is

utilised by many other Arabic NLP systems, such as MADA (Habash et al. 2009), AMIRA (Diab

et al. 2007), and MADAMIRA (Pasha et al. 2014). The purposes of these systems vary from POS

tagging, to syntactic parsing or word-sense disambiguation, to higher-level applications such as

information retrieval and named entity recognition. Interestingly, BAMA’s main purpose is

lexical tagging (i.e. lemmatisation and POS tagging), not morphological analysis, as Buckwalter

explains:

My primary goal in building a morphological parser was lexical tagging or

identification—for use in lexicography, especially lemmatization—rather than

morphological analysis per se. (Buckwalter 1999)

21 Tense is also indicated by the vowel patterns.

69

Despite BAMA’s popularity, its MAS is not documented in the published literature. (The

citations I give here to Buckwalter are mostly to the different versions of BAMA distributed by

the Linguistic Data Consortium.) I am thus forced to rely on the MAS documentation on Tim

Buckwalter’s website, the tagset file supplied with the program, and discussion of BAMA in the

literature on other Arabic NLP systems. Henceforth, BAMA’s MAS is referred to as BM.

3.4.2.1 Treatment of stems

In the BAMA tagset file, 135 tags for Arabic stems and affixes are listed; these can be

combined to form larger tags. The examples provided imply that this MAS follows the three-class

traditional POS classification for the Arabic lexicon (noun, verb, particle), plus a residual class.

BM analyses the major category of stems; these analyses are elaborated with

subcategories, such as person and number, types of pronouns (demonstrative, possessive, etc.),

and voice and TAM on verbs. Categories in the residual class include abbreviations, interjections,

and foreign, Latin-alphabet and dialect words (Habash 2010:81).

3.4.2.2 Treatment of affixes

BM analyses a large number of inflectional affixes that co-occur with the two major stem

categories of noun and verb. All affixes in BM are analysed into subcategories, as well as being

assigned tags for morphosyntactic features such as TAM, gender, and voice.

In BM, all suffixes are analysed by form, and then by function; these analyses combine to

form larger tags. These larger tags include, for instance, NSUFF_FEM_SG,

NSUFF_MASC_PL_NOM, and IVSUFF_SUBJ:D_MOOD:I. All three of these join a formal

analysis (stem type plus SUFF) to functional analyses. This stands in contrast to the MASs

reviewed in the preceding sections, in which affixes are not explicitly labelled according to their

forms as prefix or suffix; very likely, this is because in Finnish and Turkish, the use of suffixes is

prevalent. In Arabic, both prefixes and suffixes are used.

70

The fact that Arabic inflectional affixes can mark multiple features (see 3.4.1) is reflected

in BM’s combinations of feature tags. For instance, NSUFF_MASC_SG_ACC_INDEF encodes

four different inflectional features: masculine, singular, accusative, and indefinite. All these

values are expressed by a single morpheme, -an, for which NSUFF_MASC_SG_ACC_INDEF is

the analysis.

3.4.2.3 Output format

BM’s native output is complex; for readability, I use the more compact representation

from the BAMA-tagged Penn Arabic Treebank (Maamouri et al. 2004), as shown in Figure 3.1;

the morphological analysis is the same regardless of the representation used.

The full analysis extends over five lines: input string, lookup word, comment, solution

and gloss. For words that may have multiple analyses, the alternate analyses differ merely in the

last two lines (solution and gloss).

Figure 3.1. Buckwalter tags in the Penn Arabic Treebank (reproduced from Sawalha et al.

2013:83)

Let us focus on the third line, the solution, which contains the morphological

analysis. Each morpheme is separated by a slash (/) from its tag; the plus (+) symbol demarcates

morphemes in polymorphemic words. In the example in Figure 3.1. the word riHolap is analysed

as being composed of the noun stem riHol and the nominal feminine singular suffix -ap. Tags

composed of more than one value utilise a number of separators internally.

While BM covers almost all features of Arabic morphology an, one problem is

inconsistency in how the tags represent its categories. The tag assigned to riHolap,

NSUFF_FEM_SG, includes elements for three distinct features: affix type, gender and number.

The first is a feature of form, while the other two are features of function. In this tag, the

71

underscore (_) symbol is used as the demarcator. Here, all three features are independent; one is

not a subcategory of another. However, in other cases, e.g. NOUN_PROP, the underscore is used

to indicate a subcategory (proper noun is a subcategory of noun).

The NOUN_PROP example suggests that the tags are organised in a descending

hierarchy, from left to right. But this directionality is not always preserved. For instance, in

DEM_PRON_F, for feminine demonstrative pronoun, pronoun (PRON) is the highest level

category. If the descending hierarchy were presented left-to-right, the tag should have begun

with PRON instead of DEM.

3.4.2.4 Null allomorphs

It is common for morphemes to be manifest not only in the form of actual allomorphs, but

also as a null morpheme or zero allomorph, as previously discussed for Finnish and Turkish; this

is also true of Arabic. In BM, zero allomorphs are explicitly presented as (null) and are associated

with analyses just as nonzero allomorphs are, as example (3.26)shows.

(3.26) yaHotawiy ‘he/it contains’22

ya/IV3MS + Hotawiy/IV + (null)/IVSUFF_MOOD:I

In (3.26), the null morpheme is added to the tokenised word, and linked to a suffix tag

that analyses it as marking indicative mood. The presence of this concrete link keeps BM’s

analysis at morpheme level. If the indicative mood value was not attached to (null), it could only

be associated with the full word token, giving a word-level instead of morpheme-level analysis.

Alternative mood morphemes in the same context are realised as actual non-zero forms, for

instance, subjunctive suffix -a; for these, of course, the actual form is shown, as in (3.27).

 (3.27) yaHotawiya ‘he/it contain (subjunctive)’

ya/IV3MS + Hotawiy/IV +a/IVSUFF_MOOD:S

22 https://catalog.ldc.upenn.edu/desc/addenda/LDC2004T27.xml (26/05/2021)

https://catalog.ldc.upenn.edu/desc/addenda/LDC2004T27.xml

72

Although BAMA is the earliest morphological analyser for Arabic, its MAS can still be

considered state-of-the-art, because its resources are used by many cutting-edge Arabic NLP

systems. BAMA’s strength lies in its wide coverage of Arabic morphology features and the link

between each morpheme and its tag – despite a number of inconsistencies in the organisation of

the MAS’s tags, which are likely to concern linguists more than they do NLP researchers.

3.4.3 Sawalha et al.’s MAS

3.4.3.1 Overview

Another MAS for Arabic is that used by the SALMA morphosyntactic tagger (Sawalha et

al. 2013). While it ultimately generates word-level morphosyntactic analysis, internally, SALMA

performs analyses at morpheme level. Here, I do not consider SALMA’s final morphosyntactic

tagging output, but rather focus on its morpheme-level analysis.

The MAS used in SALMA will be referred to as Sawalha et al.’s MAS, or SAM. The

practical and theoretical details of SAM are comprehensively documented by Sawalha et al.

(2013). This stands in contrast to BM, whose documentation is sparse (see 3.4.2). The layout of

SAM’s analytic features is detailed in Sawalha et al. (2013:85-97), and the values for every

feature are fully listed in the paper’s appendix.

Analytic categories in SAM are represented as a feature-value matrix, in which

numbered columns represent the features, and the row contains the corresponding values (see

Sawalha et al. 2013:67). For instance, the major POS categories (noun, verb, particle, residual23,

and punctuation) are possible values of feature 1, Main POS. Feature 2 is POS Noun, with 34

values for noun subcategories. Feature 3 is POS Verb, with three verb subcategories.

The features for properties other than POS begin at the 7th position. Feature 7, for

instance, is Gender; feature 8 is Number. In this matrix representation, feature-values do not

have to be organised as a hierarchy. For example, the subcategories of N (position 2) and of V

23 The term ‘residual’ has broader meaning in SAM than other MASs discussed in this review, and includes some affixes

and clitics as well as the usual borderline-word elements.

73

(position 3) are separate features rather than branches of a hierarchy of categories for the POS

feature. There are 22 features, with more than 200 distinct values in total.

3.4.2.2 SAM’s output format

In SAM, polymorphemic words are divided into morphemes; to each morpheme, a fixed-

length 22-character tag is assigned. Crucial to this tag are not only the characters that encode

particular feature-values, but also the positions of these characters, since the same characters

are used in multiple positions. Each character position represents one column of the matrix, i.e. a

single feature. Therefore, interpreting SAM tags involves two points, the analytic code plus its

position in the feature matrix. This is illustrated by Figure 3.2.

Figure 3.2. Morpheme tags from the word bimadīnatī ‘in my city’ as a feature matrix in SAM

(reproduced from Sawalha et al. 2012:68)

Values are assigned only to positions whose features are relevant to the morpheme under

analysis. Hyphens are assigned to positions whose features are irrelevant. The first example in

figure 3.2 shows a tag for proclitic preposition bi ‘in’. The tag begins with p (in first position)

indicating that it is a particle. Another p (for preposition) occurs in fourth position, the column

for particle subcategories. Hyphens appear in all the other positions, their features not being

relevant for this morpheme. For instance, as a preposition, bi has no values for gender, number

74

and person, so the corresponding positions (7th, 8th and 9th) contain hyphens. Other morphemes

in Figure 3.2 do have values at these positions.

Three final points may be made. First, the documentation of SAM is meticulous and

much more systematic than the other MASs considered so far; thus, it is more linguistically

motivated. Second, its feature matrix organisation results in 22-character tags which are lengthy

and challenging for human readers to interpret, though easily manipulable by computer

programs. Finally, that there is a separate tag for each morpheme means that SAM’s

intermediate analysis is at morpheme level – even though it is not the end product, which is a

morphosyntactic analysis.

3.5 Some Indonesian MASs

Earlier sections of this review began by overviewing the morphology of the language

under discussion. However, Indonesian morphology has been covered in Chapter 2, and therefore

need not be introduced now.

3.5.1 Pisceldo et al.’s MAS

3.5.1.1. Overview

Pisceldo et al.’s MAS (henceforth, PM) is a scheme used by the Two-Level Morphological

analyser for Indonesian (Pisceldo et al. 2008). This system performs two distinct NLP tasks:

synthesis (generating words from roots) and analysis; this review addresses only analysis. I will

treat PM briefly, before dealing with subsequent work at greater length. This is because Pisceldo

et al. acknowledge that their analysis is oversimplified (Pisceldo et al. 2008:145), which means

there is little to discuss

The PM documentation extensively describes Indonesian morphology, the scheme’s

morphological tags, and its technical implementation and evaluation. However, only a limited

75

number of output examples are presented. Thus, unless indicated by citation, examples in this

section are not from Pisceldo et al. (2008), but rather, attested textual examples to which I have

manually applied PM analysis.

3.5.1.2. POS categories

Pisceldo et al. (2008) classify the Indonesian lexicon into only four categories: noun

(+Noun), verb (+Verb), adjective (+Adjective), and other (+Etc). The remaining major POS, such

as adverbs, prepositions and conjunctions, are included within +Etc, even though they are

actually major categories. Particles and cliticised pronouns are left unanalysed in PM.

While a three-division POS classification is commonly found in analysis schemes for

Arabic (see 3.4.3.1), it is contrary to the usual tradition of Indonesian grammar, which typically

places other major POS categories such as adverbs, prepositions or conjunctions on the same

level of the hierarchy as verbs, nouns and adjectives. Pisceldo et al. do not explain why they

organise the categories this way, but do acknowledge that it is an oversimplification to be

addressed in the future (Pisceldo et al. 2008:146).

The POS tags for monomorphemic and polymorphemic words are slightly different. The

POS tags for monomorphemic words (unaffixed roots used as words) are preceded by +Bare., This

mechanism is illustrated in examples (3.28) and (3.29), showing a monomorphemic verb tagged

as +BareVerb and a polymorphemic verb tagged as just +Verb.

(3.28) pukul ‘hit’ (monomorphemic word)

pukul+BareVerb

(3.29) mem-(p)ukul ‘hit’ (polymorphemic word)

pukul+Verb+AV

(reproduced from Pisceldo et al. 2008:150)

76

3.5.1.3. Affixation and reduplication

PM incorporates labels for two functional grammatical features marked by affixes: voice

(active (+AV), passive (+PASS), undergoer (+UV), causative (+Caus_I and +Caus_kan),

applicative (Appl_I and Appl_kan)); and nominalisation (agentive(+Actor) or instrumental

(+Instrument)). PM also takes into account polysemous grammatical morphemes by integrating

formal and functional labels. The tags +Caus_I and +Appl_I illustrate this; -i can mark either

applicative or causative voice in Indonesian, and PM has a category for each function (see

2.1.3). PM also has a +Redup category, applied to all reduplications at word level.

The interaction of reduplication and affixation is left unanalysed in PM. For instance, the

interaction of prefix meN- and full reduplication of a transitive verb results in reciprocal voice

(see 2.1.3.4.3 and 4.2.4.2). In PM annotation, this interaction is analysed just as verb

reduplication, without specifying the reciprocal function, as shown in (3.30).

(3.30) pukul-mem(p)ukul ‘hit one another’.

pukul+Verb+Redup

3.5.1.4. Output format

PM output is a single line consisting of, in order, the root of the word; the POS of the

word; and all the morphological tags. These elements are separated by the plus symbol. For

example, pukul+Verb+AV is the analysis of memukul ‘hit’, composed of active prefix mem- and

verbal root pukul ‘hit’ (Pisceldo et al. 2018:150). Example (3.31) has more complex morphological

tags, due to the suffixation of causative -kan.

(3.31) mem-(p)eriksa-kan ‘have (oneself) examined’

periksa+Verb+AV+Caus_kan

Although PM claims to be a system for morphological analysis (Pisceldo et al. 2008:146), I

would argue that the analysis is at word level, for two reasons. First, in the output, the POS tag

after the root is not that of the root, but that of the full word. Second, PM does not link

morphological tags to the morphemes they analyse; for instance, in (3.31) +AV is not linked to

77

mem- (which is, in fact, absent from the analysis). This link, absent in PM, is indispensable to

morpheme-level analysis.

3.5.2 Larasati et al.’s MAS

3.5.2.1 Overview

Larasati et al.’s (2011) MAS is used in MorphInd, the state-of-the-art automatic

morphological analysis system for Indonesian. Chapter 5 is dedicated to discussion of MorphInd

and an evaluation of its performance. This section focuses on Larasati et al.’s MAS (henceforth

LM). In addition to Larasati et al.’s paper, I draw on the more up-to-date documentation for

MorphInd on Larasati’s website (Larasati 2011).

In LM, each word is given two tags of different kinds. The first is a shallow POS tag for

the word’s root; Larasati et al. incorrectly use the term lemma for this tag. The second is the full-

word tag (or fine-grained POS). Larasati et al. term this a morphological tag, whereas it is

actually a morphosyntactic tag. Affixes are not separately tagged. Thus, LM fully implements

word-level morphosyntactic analysis, but at morpheme level, only the root receives any analysis.

LM does not have any formal morphological tags for prefix, infix, suffix, or circumfix form

or for reduplication. All MorphInd tags are functional. In the initial version of LM (used in

MorphInd v.1.1), there was a tag for reduplication, but in the most recent version (MorphInd

v.1.4), this has been replaced by a tag for plural, which references the function of the

reduplication.

3.5.2.2 Lemma analysis

In the LM documentation (Larasati 2011), the term lemma is used for the unit on which

shallow POS categories are annotated. However, this terminology is apparently incorrect (or at

least highly idiosyncratic) because the unit to which this term is applied in LM is actually the

root, in free or clitic form. One significant difference between PM and LM is that there are 18

78

POS categories in LM, plus 1 residual category (punctuation); Larasati et al. (2011) class all

these as “lemma tags”. All the major POS categories are at the same hierarchical level (see Table

3.9).

Noun <n>

Personal pronoun <p>

Verb <v>

Numeral <c>

Adjective <q>

Coordinating conjunction <h>

Subordinating conjunction <s>

Foreign word <f>

Preposition <r>

Modal <m>

Determiner

Adverb <d>

Particle <t>

Negation <g>

Interjection <i>

Copula <o>

Question <q>

Unknown <x>

Punctuation <z>

Table 3.9. LM’s “lemma” tags for major POS category (adapted from Larasati 2011)

Although LM is more fine-grained than PM, the organisation of root tags does not fully

reflect the usual organisation of POS categories in the Indonesian lexicon, just as with PM. All 16

categories (excluding foreign, unknown, and punctuation) are major categories, even though

some are obviously subcategories, such as interrogative (in their terms, “question”) pronouns and

personal pronouns (subcategories of pronoun); subordinating and coordinating conjunctions

(subcategories of conjunction); and modal and negative adverbs (subcategories of adverb) (for

evidence in support of these judgements see Kridalaksana 2007:51-121).

LM’s use of one-letter tags is of note. Mostly, the tag is the initial letter of the full

category name, such as n for noun or v for verb. However, when two or more categories begin

with the same letter, all but one category must use a different letter. So, for instance, out of

pronoun (p), preposition (r) and particle (t), only pronoun is represented by its initial.

Unfortunately, Larasati et al. do not explain the choice of r and t as labels for preposition and

particle. This lack of systematicity may cause issues for users, by making it harder to memorise

the tags.

79

3.5.2.3 Morphological analysis

 In LM, word-level tags for nouns, pronouns, verbs, conjunctions, and adjectives consist of

the single letter for the POS plus extra letters for further analytic categories, whereas other

classes of word have tags that consist only of the single letter.

A number of features of LM that are claimed to be morphological analyses are actually

word-level analyses. This is evident from these analyses’ encoding, as well as their content. For

instance, LM includes number and person as features in the morphological analysis of personal

pronouns (see Table 3.10). While this is appropriate for Finnish, Arabic, or Turkish (because

person and number may correspond to a suffix), in Indonesian, these are always features of

certain words, namely pronouns; no suffixes express these features.

Similarly, PM treats number as a property of verbs. This is inaccurate because, in

contrast to English, verbs do not exhibit subject-verb agreement in Indonesian (see Chapter

2). However, it is possible that Larasati et al. confuse the term plural with iterative. For

example, pukul-pukul ‘hit iteratively’ (reduplicated from pukul ‘hit’) is analysed as an active

plural verb, tagged VPA (P means plural) in parallel to e.g. buku-buku ‘books’ tagged as NPS.

Since Larasati et al. have no category label for iterative (see Table 3.10), it seems likely that they

mean ‘plural’ verbs in the sense of iterativity, not in the sense of subject-verb agreement.

80

First character Second character Third character

Noun <N> Plural <P>

Singular <S>

Feminine <F>

Masculine <M>

Non specified <D>

Personal pronoun <P> Plural <P>

Singular <S>

First person <1>

Second person <2>

Third person <3>

Verb <V> Plural <P>

Singular <S>

Active <A>

Passive <P>

Numeral <C> Cardinal <C>

Ordinal <O>

Collective <D>

Adjective <A> Plural <P>

Singular <S>

Positive <P>

Superlative <S>

Coordinating conjunction <H>

Subordinating conjunction <S>

Foreign word <F>

Preposition <R>

Modal <M>

Determiner

Adverb <D>

Particle <T>

Negation <G>

Interjection <I>

Copula <O>

Question <Q>

Unknown <X>

Punctuation <Z>

Table 3.10. Morphological analyses in LM tags (reproduced from Larasati 2011)

Like the POS labels, each LM morphological analysis element is represented by a letter,

and the full tags are decomposable strings of one letter per analysis. For instance, the tag VSA

decomposes to Verb–Singular–Active. This encoding style is distinct from the other MASs I have

reviewed, where values are separated by a demarcator. However, decomposable tags like this are

commonly found in morphosyntactic tagsets, as in CLAWS (Garside 1987) or the Penn Treebank

(Marcus et al. 1993). This style of tagset seems concise and easy to remember, but also has some

drawbacks.

First, I earlier noted that it is common for single-letter labels to derive from the first

letter of the appropriate grammatical term. But when multiple categories begin with the same

letter, another letter has to be chosen, reducing memorability. Second, when single-letter labels

81

are organised in decomposable strings, users have another factor to memorise, namely the

position. For instance, P in first position encodes personal pronoun but P in second and third

position encodes plural and positive respectively. For the MASs previously considered, users only

need to memorise the labels (except for SAM, where users must also memorise positions; see

3.4.3).

The organisation of LM’s decomposable tags is neither fully hierarchical nor entirely flat.

Given hierarchical organisation, one would expect that the A in VSA represents a subcategory of

S, and the S represents a subcategory of V. In fact, however, A is not subcategory of S; both are

subcategories of V and signify different features at the same level.

A major problem with LM’s so-called morphological analysis is that only four functional

features of Indonesian morphemes are analysed. The first is voice, but it is limited to active and

passive; the second is adjective degree, limited to superlative. Other constructions (applicative,

causative, reciprocal, iterative; see 2.1.3.4.2) are present in Indonesian, but absent from LM.

As noted in section 3.5.2.1, reduplication was analysed as a feature of form in the initial

version of LM, but was later replaced with a functional analysis, namely plural. I would argue

that analysing Indonesian reduplication by form is more reasonable, because not all

reduplications (even those with the same phonetic pattern) express plurality. Some mark

similarity, variation, or reciprocality; some are metaphorical. Taking it for granted that all

reduplication indicates plural number is prone to lead to incorrect analysis. Thus, analysing

reduplication by form is a safer option. The LM approach also leaves the interaction of

reduplication and affixation (explained in 2.2.3) unaddressed, even though this interaction can

mark important functions such as reciprocal voice. With LM, users have less ability to retrieve

such functions.

3.5.2.4 Output format

LM’s output format is distinct from the previously discussed MASs, even PM. It presents

all morphemes within polymorphemic words in citation form, with plus symbols as morpheme

breaks. Thus, for instance, the word kumengirimkannya in (3.32) receives the analysis in (3.33).

82

(3.32) ku=meng-(k)irim-kan=nya

1s=ACV-send-APPL=3s

‘I send him it’

(3.33) aku<p>_PS1+meN+kirim<v>+kan_VSA+dia<p>_PS3

The citation form of meN- is shown instead of the actual allomorph meng-; the root’s

canonical form kirim is given even though it has undergone initial consonant loss after meN-.

The verb is surrounded by first person proclitic and third person enclitic pronouns; the LM

analysis presents their full forms.

A fundamental concern with this segmentation is that it does not distinguish prefix-suffix

combinations from circumfixes, a distinction crucial in Indonesian (see 2.1.3.4.2). The

polymorphemic word kejatuhan ‘fall (n)’ is segmented in exactly the same way as mengirimkan

‘send (something)’ in example (3.33). However, ke—an is a circumfix whereas meng- and -kan are

a prefix-suffix combination.

After each word is an underscore and the word’s morphosyntactic tag, VSA ‘verb singular

active’ in (3.33) and NSD ‘noun singular not determined’ in (3.34).

(3.34) kejatuhan ‘fall (n)’

ke+jatuh<v>+an_NSD

In LM, there are two types of POS tags. The first is applied to root morphemes (Larasati

et al. term this the lemma tag; see 3.5.2.2), and presented within angle brackets. Both kirim

‘send’ in (3.33) and jatuh ‘fall (v)’ in (3.34) are labelled <v> for the POS of the root (i.e. verb).

The second POS tag is a morphosyntactic tag (which they term a morphological analysis

tag), given following an underscore symbol after the chain of morphemes in canonical form. The

category of not Determined represented by D in the tag NSD is a value of the gender feature.

Including gender as a feature is not really useful, because Indonesian lacks grammatical gender.

Two suffixes borrowed from Sanskrit, -wan and -wati (see 2.1.3.4.2.2), were used historically to

create gendered nouns, but these suffixes are no longer productive, and in some cases are falling

out of use. For instance, wartawan ‘male reporter’ is used to refer to both female and male

83

reporters in contemporary Indonesian. LM’s treatment of this word and its feminine counterpart

are shown in examples (3.35) and (3.36).

(3.35) warta-wan ‘male reporter’

warta<n>+wan_NSM

(3.36) warta-wati ‘female reporter’

warta<n>+wati_NSF

LM annotates clitics as monomorphemic words. Both the clitics in example (3.33), that is

ku= ‘I’ and =nya ‘him/her’, are given a root tag (in angle brackets) as well as a morphosyntactic

tag (following an underscore). But while clitics thus receive separate treatment, all affixes are

left untagged. This is a fundamental concern about the linguistic adequacy of LM as a

morpheme-level analysis. In (3.33), for instance, the tag component A (active voice) is only

present as part of the morphosyntactic tag VSA. It is not linked to the prefix meN- which

expresses active voice.

The LM output format for a given word, and the same word with reduplication, are

identical; both are analysed as single tokens. Only the tags are distinct, the tag for the

reduplicated word will include P (plural).. For example, the output for non-reduplicated buku

‘book’ is buku<n>_NSD, while the output for reduplicated buku-buku ‘books’ is buku<n>_NPD.

Overall, then, I have observed that LM confuses the terms lemma and root (by using the

former to label the POS of the root) as well as morphosyntactic and morphological analysis. The

final product of LM is a morphosyntactic analysis (that is, a word-level POS tag), even though

the output of an LM analysis does present polymorphemic words divided into morphemes.

Moreover, while roots (not lemmas) are annotated for POS, affixes, the major element of

Indonesian morphology, are left unannotated in LM. The fact that affixes are not separately

analysed, and that functional categories are not linked to the morphemes that express them, are

two critical drawbacks to LM. In the novel MAS for Indonesian which I will propose in chapter 4,

one of my aims is to address these drawbacks

84

3.6 The Universal Dependencies MAS

In section 3.1, I briefly introduced Universal Dependencies (UD) and explained why the

UD MAS (henceforth, UDM) is encompassed in this review. I will now expand on this issue.

3.6.1. UDM Components

UD is a system for multiple layers of corpus annotation. Its format follows the earlier

CoNLL-U format (Computational Natural Language Learning - U) (Buchoolz & Marsi 2006). In

this format, analyses are presented in tabular form, so the word tokens flow vertically. Each

column stores different type of annotation; these are referred to as UD components. Columns 1, 2

and 3 contain a token ID, the word form, and a lemma annotation; columns 4, 5 and 6 contain

analyses largely relevant to morphosyntax (and to small extent also morphology); columns 7, 8,

and 9 are reserved for syntactic annotation; and column 10 can be used to store any annotation.

Table 3.11 exemplifies the values that these columns would take for an Indonesian word

annotated by MorphInd. (The LEMMA annotation given in this example is actually incorrect, but

we will ignore this for the moment.)

85

1 ID 7 Token number 7

2 WORD mengakomodasi Word form of token

3 LEMMA menakomodasi Lemma of the word (all lowercase)

4 UPOS VERB

UD Universal POS tag24, in this case VERB as an

expansion of V part of VSA in XPOS

5 XPOS VSA

Language specific POS tag; in this case

MorphInd’s word POS tag, VSA

6 FEATURE Number=Sing|Voice=Act

UD features, in feature=value form; in thisn case

expanded from SA part of VSA in XPOS

7 HEAD 5 Token number of syntactic head of the current

token

8 DEPREL xcomp UD relation, in this case open clausal

complement25

9 DEPS _ Enhanced dependency graph in the form of a list

of head-deprel pairs, not available in this case

10 MISC MorphInd=^meN+akomoda

si<n>_VSA$

Any other annotation, in this case MorphInd’s full

output

Table 3.11. MorphInd’s analysis for the word mengakomodasi ‘accommodate’ using CoNLL-U

format (adapted from UD data example)26

In this example, column 10, MISC, contains the raw MorphInd (LM) analysis of the word

token. This example actually represents Larasati et al.’s (2011) conversion of MorphInd’s output

to UDM, as part of which they preserve the original LM analysis in column 10. The

morphological features in column 6 are expressed in terms of the UD universal feature inventory

(Nivre 2015). These are additional lexical and grammatical properties of word not covered by the

universal POS tags in column 4.

UD defines 17 universal major/coarse POS tags, a list which is fixed and cannot be

expanded or customised27. The UPOS will normally be the tag among the 17 that is the best

match for the word POS indicated by XPOS – as in Table 3.11.

This list of features is expandable, not fixed. The UDM documentation states that “Users

can extend this set of universal features and add language-specific features when necessary”28. In

Table 3.11, the features have been expanded from the morphosyntactic tag VSA. Column 4

expands V, while column 6 expands S and A. Column 5, XPOS, contains a language-specific

morphosyntactic tag. It may use a non-universal tagset. Usually the XPOS tag reflects the

24 https://universaldependencies.org/u/pos/index.html (last accessed 26/05/2021)
25 https://universaldependencies.org/u/dep/index.html (last accessed 26/05/2021)
26 https://github.com/UniversalDependencies/UD_Indonesian-GSD/blob/master/id_gsd-ud-dev.conllu (last accessed

26/05/2021)
27 https://universaldependencies.org/u/overview/morphology.html (last accessed 26/05/2021)
28 https://universaldependencies.org/u/overview/morphology.html (last accessed 26/05/2021)

https://universaldependencies.org/u/pos/index.html
https://universaldependencies.org/u/dep/index.html
https://github.com/UniversalDependencies/UD_Indonesian-GSD/blob/master/id_gsd-ud-dev.conllu
https://universaldependencies.org/u/overview/morphology.html
https://universaldependencies.org/u/overview/morphology.html

86

FEATURE In this case, the XPOS comes from the LM word-level tag VSA, and the values in

FEATS derive from the XPOS.

3.6.2. UDM as word-level analysis

UDM is morphological analysis performed at word level, not morpheme level. Moreover,

it is designed for morphosyntactic annotation, not morphological annotation. This is explicitly

mentioned in the UDM documentation (my emphasis in bold):

The UD scheme allows the specification of a complete morpho-syntactic representation

that can be applied cross-linguistically. This effectively means that grammatical notions

may be indicated via word forms (morphologically) or via dependency relations (UDM

web documentation) 29

3.6.3. Limitations of UDM for morphological annotation

Linguists who wish to use UDM for morphological analysis at morpheme level may face

difficulties. First, UDM does not include any tokenisation of morphemes. We saw earlier that

words are lemmatised, but this is not sufficient for morphological analysis at morpheme level.

Second, UDM’s morphological features are in practice limited to inflectional features

only, as per the UDM documentation30. The fact that that UDM allows for the extension of the

list of morphological features makes it obvious that UDM cannot be used as is for all languages.

And the fact that the features are only inflectional is a further indication that UDM analyses are

morphosyntactic, not morphological.

Third, the restricted possible values for UPOS tags mean that any category absent from

the list of 17, such as classifier, must still be forced into one of the 17 possibilities, however poor

the fit. This is a problem not only for morphological annotation but also for morphosyntactic

annotation.

29 https://universaldependencies.org/docsv1/u/overview/morphology.html (last accessed 26/05/2021)
30 https://universaldependencies.org/ (last accessed 26/05/2021)

https://universaldependencies.org/docsv1/u/overview/morphology.html
https://universaldependencies.org/

87

Fourth, the CONLL-U format does not allow each morpheme to be linked to the

corresponding analysis. But this is simply an obvious consequence of the fact that the CONLL-U

format is designed for morphosyntactic analysis not morphological analysis.

3.7 Best practices for morphological annotation schemes

The best practices for MASs identified here are those that will produce the best possible

result for linguists, particularly corpus linguists who want to search a corpus based on

morphological criteria, that is, to search for particular morpheme forms and/or particular

morphological tags. Therefore, linguists whose research objectives are not of this kind, or non-

linguists such as Information Retrieval (IR) practitioners, may find these best practices less

relevant or indeed counterproductive.

Both IR practitioners and corpus linguists need to be able to ‘search’ a corpus in a generic

sense. But the types of search, the degree of detailed annotation that they require, and the

nature of the analysis of what is retrieved substantially differ. A number of the best practices

that will be identified here could even be considered to promote excessive detail, from certain

perspectives. But the goals of this thesis overall justify the definition of these best practices in a

manner targeted to the needs of linguists studying morphology, particularly Indonesian

morphology.

3.7.1 Morpheme-level analysis and word-level analysis

The MASs reviewed in this chapter exhibit two different levels of morphological analysis.

The first is morphological analysis performed at word level (which is closely akin to

morphosyntactic tagging); the second is morphological analysis performed at morpheme level.

I wish to argue here that morpheme-level analysis, as exemplified by BM (3.4.2), SAM

3.4.3), and Hutmegs (3.2.2), represents the best practice. Such MASs are characterised by explicit

links between morpheme tokens and the tag(s) that encode their analysis. This can be

88

established as a best practice for two reasons. First, users of an MAS are likely to need to need to

search their annotated corpus based on analysis of morphemes. This requires the words to be

tokenised into morphemes using obvious demarcation symbols that delineate one morpheme

token from the next. This is a key distinction that characterises morpheme=level analysis, and is

not a feature of either word-level morphological analysis or morphosyntactic tagging.

The examples in Table 3.13 present two hypothetical English MASs applied to the same

words, one morpheme-level MAS and one word-level MAS, illustrating how the level of analysis

would affect the tags and thus any corpus query system. The morpheme-level MAS follows the

format of BM, while the word-level MAS follows the format of Fintwol.

Word Morpheme-level MAS Word-level MAS

painters paint/V+er/NOMR+s/PL paint, V NOMR PL

buses bus/N+es/PL bus, N PL

dogs dog/N+s/PL dog, N PL

cats cat/N+s/PL cat, N PL

oxen ox/N+en/PL ox, N PL

children child/N+ren/PL child, N PL

sees see/V+s/SG see, V SG

pass pass/V pass, V

energies energy/N+es/PL energy, N PL

operators operate/V+or/NOMR+s/PL operate, V NOMR PL

Table 3.12. Comparing morpheme- and word-level analysis with hypothetical English MASs

The morpheme-level MAS tokenises words to morphemes, clearly demarcating them with

the plus symbol. Conversely, the word-level MAS, like many such MASs, presents separately

only the root morpheme, followed by a series of morphological tags for the full word form;

morphemes other than roots are usually left untokenised. Moreover, in this MAS, all the features

tagged are inflectional (i.e. they are features which would be relevant to morphosyntactic

tagging) as tends to be the case for such word-level MASs.

89

The absence of affix tokenisation in word-level MASs means that users cannot search a

corpus by morpheme form. For instance, it would not be possible to search directly for the literal

suffix -s. Querying the tag PL (within word-level bags of tags such as V NOMR PL or N PL) as an

alternative would not be directly equivalent; this would return not only -s as in painters, but also

-es in buses, as well as -en in oxen and -ren in children.

Performing underspecified searches on raw word forms is another alternative, but

equally unsatisfactory. For example, using a wildcard to underspecify all letters prior to a final s

(*s) would retrieve plurals such as buses or energies which contain allomorphs other than -s, as

well as monomorphemic words such as pass. On the other hand, with a morpheme-level MAS,

searching for suffix -s accurately retrieves painters, but excludes buses and pass. Even if the

software is not annotation-aware, morpheme forms can be searched using literal queries that

utilise the scheme’s delimiter symbols. In the example at hand, a query such as +s/ uses +

(morpheme boundary) and / (token-tag demarcator) around s to ensure that only tokens of the

exact morpheme that the user has targeted will be retrieved.

Another reason why morpheme-level analysis is best practice is the anticipated need of

users to perform retrievals based on criteria on morphological tags. Morphological analysis at

morpheme level ensures that every morphological tag corresponds to a morpheme. If this

principle is not followed, users cannot search for a tag that does not necessarily correspond to any

single morpheme. This is best illustrated by contrasting two KKM examples. The

monomorphemic word katto in (3,37) is tagged by Fintwol with tags S NOM SG: noun root,

nominative case, singular number. A query for the NOM tag would allow users to retrieve katto.

However, the tag NOM is not associated with any morpheme in katto, since the nominative in

Finnish is a feature of word-level analysis (as discussed in 3.2.1.5). This is a breach of the

principle established earlier: each analysis must correspond to a morpheme.

(3.37) katto (Koskenniemi 1983:157)

katTo

Roof S NOM SG

(3.38) katon (Koskenniemi 1983:158)

katTo$+n

Roof S GEN SG

90

This is underlined by the fact that unlike Fintwol, Hutmegs, a morpheme-level Finnish

MAS (Creutz et al. 2004), has no tags for nominative or singular. On the other hand, if users of a

Fintwol-tagged corpus perform a query for the tag GEN (genitive), one of the words returned will

be katon as in example (3.38). Here, GEN corresponds to the suffix token -n; thus, it is a

morpheme-level analysis which complies with the principle established earlier. In this case, a

morpheme-level MAS like Hutmegs would not be different in principle from Fintwol.

So far, two best practices have been identified. First, each individual morpheme must be

tokenised (using unambiguous demarcation symbols in the output), and second, each analysis

(consisting of one or more tags) must correspond to an actual morpheme token. Fulfilling these

two best practices allows users of the MAS to build corpus queries using either or both of

morphological forms and tags.

For instance, returning to the English examples in Table 3.12 with the morpheme-level

MAS, users could search for all noun roots that are followed by suffix -s, to retrieve cats, dogs,

etc., by combining the morphological tag N and the morpheme form s, via a query which might be

expressed as: */N+s/*. The first part of the query (*/N) matches any morph tagged with N, and

the second part (s/*) ensures that the root is followed by a token with the form s without

specifying any morphological tag. These two elements are connected by a plus marking the

morpheme boundary; this instructs the software to retrieve all instances of two morphemes

matching the respective conditions occurring in succession. Corpus annotation can be presented

in many different ways, but morpheme level-analysis ensures that these two features, morpheme

token-tag links and morpheme boundaries, will be expressed in any presentation style. The

symbols used to represent these two elements may vary from one MAS to another, but it is best

practice for the symbols to be consistently used and unambiguous. In BM, for example, a

morpheme token and its tags are always separated by a slash. This symbol unambiguously links

the token and tag and shows them to be paired. One token-tag pair and the next are separated by

a plus (i.e. the morpheme boundary); see example (3.39). Similarly in Hutmegs, morphemes and

their tags are linked by a vertical bar, and the space is reserved to mark morpheme boundaries;

see example (3.40).

91

(3.39) yaHotawiya ‘he/it contain (subjunctive)’ BM

ya/IV3MS + Hotawiy/IV +a/ IVSUFF_MOOD:S

(3.40) arvoamme Hutmegs

arvo:arvo|N a:PTV mme:1PL

As long as this consistency and non-ambiguity are maintained, annotated output that is

reformatted (for instance, for use in another search tool) still preserves the morpheme token-tag

links and boundaries. That such reformatting can be achieved without breaching the best

practices under discussion is shown by the example in Figure 3.3. Instead of using punctuation

symbols to represent token-tag links and morpheme boundaries, like the original BM output

format, the new format indicates links and boundaries using distinctive colours in a browser

display, on the website for the Quranic Arabic Corpus (Dukes et al. 2009).

Figure 3.3. BM morpheme-level analysis visualised in the online interface to the Quranic Arabic

Corpus (Dukes et al. 2009)

Figure 3.3. shows that the word ‘alayhim ‘on them’, written in Arabic characters, is

composed of two morphemes, rendered in different colours (red for ‘alay ‘on’ and grey for him

‘them’). Under each morpheme appear the category analyses (P for preposition and PRON for

pronoun). The vertical alignment reflects the link between morpheme tokens and their tags

(textual English descriptions on the right side of the interface give more details of the analysis).

The clarity of the visual representation of BM in Figure 3.3 is sound evidence, I would

argue, that morpheme-level analysis is indeed the best practice for MAS design. If implemented

correctly, it offers many benefits for users, not only more precise queries, but also the possibility

of flexible corpus data visualisation.

92

3.7.2 Orthographic and citation form

The previous section discussed the importance of tokenising all morphemes. It is also

important to consider what forms the morphemes are tokenised into. In this section, I argue that

tokenising each morpheme to both orthographic and citation form is best practice.

Searches based on orthographic and citation forms are functionalities that are likely to be

required by users. For instance, users might want to retrieve all cases of English plural suffixes -

s and -es in a single search, as they are allomorphs of one morpheme. In a corpus where

morphemes are tokenised in orthographic form, one way to do this is by combining the two

suffixes with a disjunction (“or”) symbol, often the vertical bar. In that case, the query would be

s|es. To accomplish this, users need to know all the orthographic forms that are variants of the

morpheme for which they want to search. But in fact, this is not always the case.

The search can be more effective, particularly for morphemes with many allomorphs, if

the citation form of the variant is encoded in the annotation scheme. So, for instance, if the

citation form of -s and -es is represented as S, a query for S will retrieve all words that contain

either suffix. (There would also need to be some mechanism in the query software for the user to

specify whether they are targeting the orthographic or citation form, e.g. distinct query

delimiters.) The presence of the two distinct representations of the tokenised units (orthographic

and citation forms) affords flexibility of corpus searching.

Instead of tokenising all morphemes, a number of MASs (such as Fintwol, CM, and PM)

tokenise only each word’s root morpheme, and present it only in citation form, as in examples

(3.41) to (3.43).

(3.41) koirillannekaan Fintwol

"koira" N ADE PL 2PL kAA

(3.42) mem-(p)ukul ‘hit’ PM

pukul+Verb+AV

(3.43) ev-de-ki ‘in the house’ CM

ev<N><loc><ki><Adj>

93

This breaches the best practice of morpheme-level annotation (3.7.1). Tags for non-root

morphemes cannot be linked to their morphemes due to lack of morpheme tokenisation.

Obviously, since they do not tokenise at all, they equally do not tokenise to both forms, as I am

arguing is best practice.

Other MASs, such as LM, BM and Hutmegs, do require all morphemes to be tokenised.

But only Hutmegs fulfils the additional best practice argued for in this section, that tokenised

morphemes should be presented in the output in both orthographic and citation forms.

(3.44) meng-(k)irim-kan ‘send (sth)’ LM

meN+kirim<v>+kan_VSA

(3.45) yaHotawiya ‘he/it contain (subjunctive)’ BM

ya/IV3MS + Hotawiy/IV +a/ IVSUFF_MOOD:S

(3.46) arvoamme Hutmegs

arvo:arvo|N a:PTV mme:1PL

An LM analysis includes only citation forms. For instance, in (3.44), we see the prefix

meng- presented as meN+ instead of its orthographic form meng. Likewise, the root is presented

in the analysis in its citation form, kirim, even though the orthographic form is irim31.

Conversely, a BM analysis only presents orthographic form (or rather, a transliteration thereof)

as shown in (3.45). But a Hutmegs analysis presents both orthographic and citation form, linking

them with a colon as in example (3.46).

I argue that presenting the morphemes of the words in both orthographic and citation

form, as in Hutmegs, is the best practice. To justify this, in Table 3.13, I present LM analyses of

five Indonesian words, alongside a Hutmegs-style analysis of the same words (Hutmegs itself

being Finnish only).

31 The k is lost due to a morphophonemic process which I have described in the overview of Indonesian morphology in

section 2.1.2.

94

LM Hypothetical Hutmegs-style MAS

mengirim meN+kirim<v>_VSA meng:meN|PFX+A irim:kirim|V

mengambil meN+ambil<v>_VSA meng:meN|PFX+A ambil|V

mengeras meN+keras<v>_VSA meng:meN|PFX+A ambil|V

menanam meN+tanam<v>_VSA men:meN|PFX+A anam:tanam|V

merebut meN+rebut<v>_VSA me:meN|PFX+A rebut|V

Table 3.13. Analyses of Indonesian verbs using LM versus a Hutmegs-style MAS

The LM analysis of merebut, for instance, does not allow an orthographic-form-based

query for me-, because all allomorphs are presented only in their citation form meN+. Querying

me- with an underspecified query on the raw word form (e.g. me*) would result in many false

positives – including every other word in Table 3.13, since all meN- allomorphs begin with me.

Using the Hutmegs-style MAS, however, searching for the specific allomorph form is

feasible, because prefix me- is presented in orthographic form, me, followed by colon, and then

the citation form. This enables users to retrieve all and only these instances of the me- allomorph

of meN-. Equally the presence in the analysis of the citation form supports another anticipated

need: queries to find all allomorphs of one morpheme. In practice, retrieving all the allomorphs

(meng-, men-, me- in Table 3.13) would be achieved by a query for meN+ in LM: or meN| in the

hypothetical Hutmegs-style MAS.

3.7.3 Formal and functional analysis

I have shown that the annotations encoded by MASs can be classified into two categories:

formal and functional. Identifying each morpheme as root, prefix, suffix, infix, circumfix, enclitic

or proclitic is an example of formal analysis, and we can refer to the tags that encode them as

formal tags. On the other hand, such analytic categories as noun, verb, passive voice, agentive

nominaliser, and many others mentioned in my review, exemplify functional grammatical

analyses, encoded as functional grammatical tags. A number of the MASs that I reviewed include

only functional tags, such as Fintwol, OM, CM, PM, and LM. By contrast, BM includes both

formal and functional tags.

95

 Formal analysis is, comparatively, neglected by MASs in the former group. I wish to

argue that the approach taken by BM, where both formal and functional analysis is captured by

the MAS is a best practice. Formal analysis is indispensable for the anticipated needs of linguist

users. Queries based on formal categorisation are a foreseeable requirement for corpus querying

in languages like Indonesian, where a variety of formal types of morphemes are present.

Formal tags can potentially be useful for improving both retrieval precision and the

accuracy of quantitative analyses. Retrieval precision is reduced by morphological homographs,

e.g. the locative preposition di ‘at’ and the passive voice prefix di- in Indonesian. But while these

do not differ in orthographic or citation form, the former is a root and the latter is an affix,

specifically a prefix. Here the distinction of the root versus prefix being made explicit by the tags

is crucial. If a user searches for all instances of root di, they would expect prefix di- to be excluded

from the results. Prefix di- would be a false positive. Avoiding these false positives and thereby

improving precision cannot be achieved by a query for raw word forms that begin with di, as this

would retrieve di as a preposition, di as a prefix, plus monomorphemic words that happen to

begin with di such as diam ‘quiet’, dia ‘s/he’, or diri ‘self’. But if a ROOT tag is used, it can be

included in the conditions of the query for di, and the false positives excluded. The same would

work in reverse using a PFX formal tag to retrieve only prefix di-. Eliminating false positives to

improve query precision is the first benefit of implementing formal as well as functional tags.

Formal tags are also useful for quantitative analyses. Let us consider a situation where a

linguist wishes to calculate the morpheme per word ratio from a corpus or across corpora. For the

sake of argument, let us assume that our corpus consists of only three words, those in (3.47) to

(3.49) – repeated from the discussion of LM in section 3.5.2.

(3.47) meng-(k)irim-kan ‘send (it) to’

meN+kirim<v>+kan_VSA

(3.48) pukul-an ‘hit (n)’

pukul<v>+an_NSD

(3.49) ke-jatuh-an ‘fall (n)’

ke+jatuh<v>+an_NSD

96

We observe that the LM analysis tokenises the three words into a total of 8 analytical

units (each demarcated by plus): meN-, kirim, -kan, pukul, -an, ke-, jatuh, and -an. If each

segment were a morpheme, the morpheme/word ratio would be 8/3, equal to 2.66. However, this

calculation is inaccurate. There are actually only 7 morphemes in the above three words: meN-,

kirim, -kan, pukul, -an, jatuh, and ke—an. Unlike the +an in (3.48), the +an in (3.49) is not a unit

on its own. Rather, it is the second element of circumfix ke—an. LM does not distinguish

circumfixes from combinations of prefix and suffix, and so cannot capture this subtlety.

Making the distinction between a circumfix and a homograph prefix-plus-suffix

combination necessitates each affix being tagged for its formal category, using tags such as PFX

(prefix), SFX (suffix) and CFX (circumfix). With this information, the correct ratio can be

calculated. This information being present not only allows morpheme per word ratios to be

calculated, it also makes possible many other quantitative analyses. For example, studying the

productivity of affixes requires the same kind of fine distinctions for accurate quantification;

looking at the productivity of suffix -an will be easier and more accurate when instances of

circumfix ke—an are excluded from query results and frequency counts.

3.7.4 Tag encoding

Although the encoding of tags is theoretically independent from the definition of analytic

categories, in practice users access the categories only via the tags. Thus, the fitness of the tags

for this purpose is in fact of considerable importance. My review has identified a number of

different practices regarding how the analyses in a MAS are encoded, namely that grammatical

(and formal) categories may be represented by single letters, longer abbreviations, or full

analytical labels.

For morphological analysis, I would argue that schemes where analytic categories are

encoded as abbreviations or full analytical labels represent best practice, as opposed to schemes

where each tag is a decomposable string of single-letter values encoding different analytic

categories. I argued in section 3.5.2.3 that the decomposable tags used in LM can potentially

cause memorisation problems for users

97

Decomposable tags are also usually hierarchical. For instance, the tag for singular

common noun is NN1 in CLAWS (Garside 1987), more precisely the CLAWS-7 tagset32, where

the letters code respectively noun, common noun, singular. Each analysis is a subcategory of that

before it.

There are three mechanisms by which letters to represent each analysis can be chosen.

Some values are encoded as their initial letter, such as N for nouns, V for verbs and P for

pronouns. Other values are not encoded as their initial letter, but as some other letter present in

the full analytical label, as in R for adverb. The third way is for some otherwise unused letter to

be chosen arbitrarily. An example might be C for numeral. The letter C is nowhere in the full

analytical label numeral (it may perhaps abbreviate cardinal). These different ways of choosing

letters makes the task of memorisation harder, as which of the mechanisms is in use must also

be memorised.

The second memorisation problem of single-letter labels is position, that is, the letter’s

position within a decomposable tag. To illustrate this, consider three simple decomposable tags in

LM: CC (cardinal numeral), CO (ordinal numeral) and CD (collective numeral). The letter in first

position indicates the category at the top of the hierarchy, i.e. C alone means any numeral. The

letters in second position encode subcategories of numeral. The letters C and O have been chosen

by the first mechanism, and the letter D by the third mechanism (as D is not present anywhere

in the full analytic label collective). When these letters are joined into a decomposable-

hierarchical tag, their position is fixed. Users cannot reverse the order of CD to DC, because D in

the first position signifies the adverb category in LM. This constraint affects how users must

build queries: all letters of a tag being searched for have to be typed in the order that reflects the

hierarchy – even if the query is underspecified with one or more wildcards. The query *D

(wildcard prior to D) would find collective numeral morphemes, for instance. But collective

numerals would not be retrieved by D* (wildcard following D) because specifying D in the first

position would retrieve adverbs instead of collectives.

Users of a morphologically annotated corpus might need to retrieve items based on only

one feature of the analysis, without specifying other features. This requires the query system to

32 http://ucrel.lancs.ac.uk/claws7tags.html (last accessed 26/06/2021)

http://ucrel.lancs.ac.uk/claws7tags.html

98

be flexible. Effectively applying positional restrictions (which, as noted, will often imply

hierarchical restrictions) to all letters representing categories is an adverse effect which, for the

sake of users, we might well wish to avoid.

In morphosyntactic (POS) tagging, a decomposable expression of the tag system’s

hierarchy of POS categories is often useful (Leech & Wilson 1999; Calzolari 1996; Sinclair 1996);

but that this concept is equally applicable to morphological annotation is a position with which I

do not completely agree. My counterargument to that position is presented in the next section.

3.7.5 Organisation of analytic categories

In any MAS where an analysis may consist of more than one tag, each tag indicating a

different analytic category or categories, the question of how these tags are organised must be

addressed. My view, based on my review of MASs, is that the best practice is to organise tags

using a semi-hierarchical approach. Some analytic categories can be freely organised (using what

is informally called a “bag of tags” approach). Other categories are hierarchically linked, and

then the hierarchy of analytic categories must be expressed using decomposable-hierarchical tags

within the morphological analysis.

The term bag of tags refers to the free organisation of independent analytic values that

apply to a single token (here, morpheme token). For instance, the hypothetical tags SUFF

(suffix), NOMZR (nominaliser), and PL (plural) encode values for features which are completely

independent from one another. SUFF is an analysis of form, NOMZR is a derivation feature, and

PL is a value for the grammatical analysis of number.

Any combination of these tag values therefore does not require the three values to be

placed in any particular order; due to their independence, there is no hierarchy to reflect. None of

the three is a subcategory of any other of the three. For this reason, how these categories are

presented does not matter; their tags can be arranged like items placed in a bag in random or

arbitrary order (thus the term bag of tags). SUFF_NOMZR_PL, or PL_NOMZR_SUFF, or

SUFF_PL_NOMZR would all be acceptable renderings for the conjunction of these analytic

categories.

99

The bag of tags organisation affords a degree of flexibility to queries using the

annotation. For instance, users do not have to consider the position of each value in the sequence

of the analytic elements; they are, thereby, spared the problem which I discussed in 3.7.4. To

extract all plural morphemes, for instance, users would need only to run a query for morphemes

whose annotation includes PL, regardless of order within the annotation.

Hierarchical analytic categories, which express some dependency, are a different matter.

For instance, if we have formal categories AFX (affix) and SFX (suffix), then we have a

dependency: suffix is a subcategory of affix. When a morpheme receives both, the tag’s left-to-

right order should reflect that, so AFX_SFX makes sense, but SFX_AFX would not.

This impacts how the MAS must be used in a query system. For instance, to devise a

query to extract all suffixes, a user must remember that SFX is at the lowest level of the

hierarchy. Thus, if they cannot remember the subcategorisation of the values, they would need to

use a wildcard search to underspecify as the higher-level category, as for instance *SFX; but

SFX* would be incorrect, as it underspecifies the hierarchy below rather than above SFX. In

some cases, this may become cumbersome for little value (that all suffixes are affixes is true by

definition), and higher level categories, such as AFX, might appropriately excluded from the

MAS. In other cases, the hierarchical relations amongst analytic categories are necessary and

should be reflected in the MAS and the tags that encode it. For instance, root morphemes may be

analysed not only on the basis of major POS, but also on the basis of that major POS’s

subcategories. In CM, for example, when the POS analysis of a root includes two or more

hierarchically-linked categories, the category and subcategory tags are connected by a colon, as in

for instance <N:prop>. Here, proper noun is a subcategory of noun; the hierarchy cannot go the

other way, and the features are not independent (see 3.3.2). As the very term suggests, “proper

noun” is an analysis relevant to nouns but not verbs, adjectives or other POS categories. This

hierarchy of categories is, I would suggest, useful (proper nouns should be found both by a search

for proper nouns and by a search for all nouns), and must be preserved in the encoding of

categories as tags.

The semi-hierarchical approach which I argue for combines the two approaches discussed

so far, because it is possible for the categories relevant to a single morpheme token to be neither

100

completely independent of one another, nor fully hierarchically dependent. To illustrate this, let

us take an example from Indonesian, the clitics discussed in section 2.1.3.4.5. The personal

pronoun aku ‘I’ can be cliticised into enclitic =ku (or proclitic ku= , but this is not relevant to the

present point). This clitic has two independent features: its POS category of pronoun (functional)

and its status as a clitic (formal). However, for each of the independent features, there is an

additional category hierarchically dependent on the main category (for pronoun: personal

pronoun; for clitic: enclitic or proclitic). POS category and morpheme form can thus be organised

via the bag of tags approach, as they are independent, but the subcategories of each are

dependent, and thus must be organised and encoded hierarchically.

Let us assume that PRON, Pers, CLI and ENCL represent, respectively, pronoun, clitic

and enclitic. For the first person enclitic =ku, valid analyses would thus be

PRON:Pers+CLI:ENCL and CLI:Encl+PRON:Pers. The relative ordering of PRON and CLI is

arbitrary, but :Pers and :Encl must be placed following their superordinate categories, PRON and

CLI. In this example, the colon serves to mark this as an explicitly hierarchical relationship.

Where tags represent hierarchical categories combined together, consistency of order is

highly important. In section 3.4.2.3, I showed that BM breaches this principle. For instance, one

BM tag NOUN_PROP (noun, proper) indicates a left-to-right hierarchy, while another BM tag

DEM_PRON (demonstrative pronoun) implies a right-to-left hierarchy. The former order is, I

would argue, generally more intuitive, and my hypothetical examples have used it. But either

order is better than an inconsistent mixture.

To make full use of a semi-hierarchical MAS combining these two approaches (bag of tags

and hierarchical), corpus search software requires a query mechanism that can accept different

orderings of values – so that queries for, say, PRON+CLI and CLI+PRON are both accepted and

yield the same results – but can also respect instances where the order of elements must strictly

be maintained – so pers:PRON is rejected, or runs but matches nothing, whereas PRON:Pers

works as expected.

The best practices that I have laid out in this section do not duplicate the approach of any

one MAS that I reviewed. Rather, they synthesise current best practices across a range of MAS

projects, addressing more languages than just Indonesian. The two most important benefits of a

101

MAS that implements these best practices are, in my view, linguistic accuracy (particularly, in

my case, with regard to accurate description of Indonesian morphology) and practicality (for use

in corpus searching systems allowing queries on morphological annotation as well as word form).

3.8 Summary

The best practices for morphological annotation schemes that I have identified in this

chapter on the basis of a detail, cross-linguistic review of relevant prior work are as follows:

• The analysis should be performed at morpheme level

• Each morpheme should be given a separate analysis

• Morphemes should be tokenised within word forms and unambiguously linked to their

analytic labels (or tags)

• Both the orthographic and citation (or canonical) forms of morphemes should be captured

in the output

• A wide range of formal types of bound morphemes – prefixes, suffixes, infixes,

circumfixes, proclitics and enclitics – should be incorporated

• Both formal and functional analyses should be taken into account

• The MAS should be expressed using tags based on abbreviations or full analytic labels

and not on single letter labels

• Analyses whose values are independent from one another should be combined using the

bag of tags approach

• Analyses whose values are dependent on one another should be combined hierarchically

My identification of, and arguments in support of, this list thus fulfil the aims established

at the outset of this chapter. These best practices emerged from my review of a number of MASs

for individual languages as well as one universal MAS (sections 3.2-3.6), MASs selected for

review according to principles laid out in 3.1.

The level of detail of analysis that I argue to be best practice might well be considered to

an over-analysis, or to include irrelevant fine distinctions – especially when seen from another

102

field, such as information retrieval. However, these best practices are defined with the interests

of corpus linguistic research in view, particularly into morphology, and specifically into

Indonesian morphology, given that the purpose of this exercise was to develop a foundation for

the creation of a new MAS for Indonesian. Defining this new MAS’s analytic categories and the

tagset that encodes them is the task of the next chapter.

103

CHAPTER 4

A NEW MORPHOLOGICAL ANNOTATION SCHEME

4.1 Principles of annotation scheme design

The objective of this chapter is to devise a novel Morphological Annotation Scheme (MAS)

for Indonesian, to be applied by the automatic morphological annotator. One preliminary issue is

that underlying principles to guide creation of this new MAS must be defined. To formulate these

principles is this section’s objective.

Few published studies discuss the principles of designing annotation schemes, as

compared to studies presenting some particular tagset or tagger(s) which applies that tagset.

Leech (1997) and Cloeren (1999) do discuss tagset design principles; however, both focus on

morphosyntactic rather than morphological annotation.

Therefore, my approach is based primarily on the best practices summarised in 3.8. In

what follows, these best practices are translated into guiding principles for the creation of a MAS

for Indonesian.

4.1.1 Principle 1: To devise the MAS independently from technical implementations

The novel MAS will be constructed independently from considerations of technical

implementation, that is, some automated system to apply the MAS. Some studies argue that

annotation scheme and system are not independent, for instance that tagset granularity may

affect a system’s performance (Veronis & Khouri 1995; Mille et al. 2012). This first principle

requires me not to take this issue of granularity into account at this stage. Rather, the MAS will

be designed from the perspective of linguistic adequacy (particularly with respect to Indonesian

morphology) and practical utility in corpus analysis. The MAS will be as granular as this

objective requires. In consequence, it may or may not be feasibly implemented in full; changes

may well be needed to facilitate implementation. However, if so, the unamended MAS in this

104

chapter will serve to valuably inform any future work on implementations.

4.1.2 Principle 2: To focus the analysis at morpheme level

Treating morph(eme) tokens as the locus of the analysis is a best practice for which I

have argued in section 3.8. This implies that, first, only morphologically marked categories are to

be analysed; any functional grammatical categories expressed beyond the morphological level are

excluded. Examples (4.1) to (4.4) illustrate this principle using the active and passive voices in

Indonesian.

(4.1) dia kena pukul Analytic passive, syntactically/

3s get hit periphrastically marked

‘S/he got hit’

(4.2) saya mem-(p)ukul dia Active, morphologically marked

1s ACV-hit 3s

‘I hit him/her’

(4.3) saya pukul dia Active, morphologically unmarked

1s hit 3s

‘I hit him/her’

(4.4) dia di-pukul Passive, morphologically marked

3s PSV-hit

‘S/he was hit’

Active and passive will be captured by the MAS in cases like examples (4.2) and (4.4),

where the voices are morphologically marked (by mem- and di- respectively). Conversely, the

active and passive in (4.1) and (4.3) go beyond the morphological level. Determining that (4.1) is

passive necessitates noting that dia ‘s/he’ has the semantic role of patient despite being the

subject in order to recognise the periphrastic construction formed by two root-form verbs: that is,

syntactic, not morphological analysis. This excludes the analytic passive from the purview of this

MAS. Ultimately, users must be aware that, when they search for morphemes tagged as passive,

they will retrieve morphological passives as in (4.4), not analytic passive as in (4.1). The same

will apply to any parallel cases involving other functional categories.

105

This principle secondly implies that the MAS will annotate only morphemes with non-

zero form. In Buckwalter’s MAS for Arabic, null allomorphs are introduced in some cases; for

instance, a null suffix may be inserted and tagged as marking indicative mood (see 3.4.2.4). This

approach is useful for Arabic, where the null allomorph is part of the verbal paradigm; the

unmarked verb base has imperative mood, whereas verb bases with an affix in the same position

have other moods. However, identifying null allomorphs would not be appropriate in Indonesian,

as such paradigms are not a feature of Indonesian verbal morphology.

4.1.3 Principle 3: To unambiguously link each morpheme to its analysis

This principle reflects the best practice discussed in 3.7.1 and is one of the key

distinctions between word-level and morpheme-level morphological analyses. I argued in 3.7.1

that breaching this practice can result in the inaccurate linking of one morpheme to the analysis

of another morpheme. To avoid any potential for such errors, I adopt the principle that no such

breaches will be permitted. This implies that the demarcation among morph(eme) tokens must be

presented consistently and annotated explicitly .

To satisfy this purpose, polymorphemic words must be tokenised into morphemes to

permit eventual users to perform morphological searches of annotated text, that is, queries based

on the forms of, or analytic tags applied to, morph(eme)s.

This implies three requirements. First, morpheme boundaries must be explicitly marked.

This ensures that (for instance) when users search for a word composed of three unspecified

morphemes, words with two morphemes will not be returned. As such, explicit boundaries make

morpheme counts more accurate, assisting quantitative analyses.

 Second, morpheme forms as well as annotations must be presented for each bounded

element. In this MAS, morpheme boundaries are indicated by angle brackets, such that each pair

of angle brackets encloses one morpheme’s form(s) and formal and functional tags. So for

instance, the word dipukul, glossed in (4.5), is tokenised as in (4.6).

106

(4.5) di-pukul

PSV-hit

‘be hit’

(4.6) <di,PFX+PSV>

<pukul,ROOT+VER>

In (4.6), the forms of di- and pukul ‘hit’ are given after the opening angle bracket. Tags

for analytic categories follow. Labels PFX and ROOT encode the formal analyses of di- and pukul

as a prefix and a root, respectively. Labels PSV and VER encode functional analyses (passive

marker, verb root). Finally, a closing angle bracket completes the annotation of each morpheme.

4.1.4 Principle 4: To present morphemes in both orthographic and citation forms

The principles that morphemes’ orthographic and citation forms must both be present in

analysed output is among the best practices that I identified (see 3.7.2). In effect, the citation

form corresponds to the morpheme whereas the orthographic form corresponds to one of its

allomorphs. Incorporating both forms allows users to search a corpus based on either, enabling

corpus analysis of both morphemes and allomorphy. The two existing Indonesian MASs reviewed

in sections 3.5.1 and 3.5.2 both fail to comply with this principle. They therefore do not permit

this kind of dual query. Accommodating both forms in this MAS will avoid this serious limitation

of earlier research.

Practically speaking, if a morpheme’s orthographic and citation form differ, the format is

as follows: orthographic form, comma, citation form, comma, as in (4.7). If the orthographic and

citation forms do not differ, only one form is presented, followed by a comma, as in (4.8).

(4.7) <meng,meN,PFX+DRV:VER+ACV>

(4.8) <di,PFX+DRV:VER+PSV>

107

Example (4.7) illustrates a morphophonemic alternation: meng is the orthographic form

of the allomorph, whereas meN- is the morpheme’s citation form. In (4.8), only di is given, as di

does not exhibit any allomorphy.

For presentation of orthographic form, this MAS does not take into account whether the

morph is realised in upper or lower case in the actual text. For instance, English undo might be

written as Undo (so-called title case, perhaps sentence-initially) or UNDO (uppercase, perhaps

for emphasis) or even UnDo (mixed case). The orthographic form given in this MAS’s output

ignores these variations, collapsing to a single case form. It is expected that users who desire

case sensitivity would therefore query raw rather than annotated text.

4.1.5 Principle 5: To present formal and functional analyses in the annotations

I argued in section 3.7.3 that best practice is for a MAS to incorporate analysis of a range

of formal types of bound morphemes (roots, prefixes, suffixes, infixes, circumfixes, proclitics and

enclitics), as well as formal types of reduplication, in anticipation of users wanting to query texts

and corpora based on these categories. Another user need that this MAS anticipates is searches

based on grammatical functions of morphemes, e.g., voice or root POS category.

In this MAS, both types of analytic label are presented after the forms, delimited by a

plus, as in (4.9) and

(4.10). Here, and throughout this thesis, formal analyses (PFX i.e., prefix and ROOT)

precede functional analyses (PSV i.e., passive and VER i.e., verb). However, in implementation

terms, no order is prescribed: each analysis is an unordered set of tags.

(4.9) <di,PFX+PSV>

(4.10) <pukul,ROOT+VER>

108

4.1.6 Principle 6: To use reference grammars as the main basis for analytic model

This MAS will draw its analytic categories mainly from existing reference grammars of

Indonesian. Two such grammars are well-known. The first is Tata Bahasa Baku Bahasa

Indonesia (TB3I), the ‘Standard Indonesian Reference Grammar’ (Alwi et al. 1998), written in

Indonesian. This grammar is published by Badan Pengembangan dan Pembinaan Bahasa

(BPBB), an official Indonesian government body dedicated to development and cultivation of

languages and literature in Indonesia. The Indonesian Reference Grammar (Sneddon et al.

2010), by contrast, is written in English. Sneddon et al.’s reference grammar is not a translation

of Alwi et al.’s, however; they were independently written. The categories in my MAS will be

defined primarily on the basis of these two grammars.

Textbooks on Indonesian morphology, which cannot be considered reference grammars,

but whose contents nevertheless are directly relevant to the MAS, will be considered as auxiliary

sources. Kridalaksana (1989) and Chaer (2008) are examples of such publications.

A number of recent studies have offered new insights into Indonesian grammar, some of

which might be relevant to the MAS. For instance, Nomoto (2013) studies prefixes active meN-

and passive di- from an aspectual perspective and argues that they are markers of eventiveness

and telicity. On principle, work of this kind will not be considered in the creation of this MAS.

The aim of the MAS is to represent a morphological model of Indonesian that captures a broad,

established picture of the overall system, not detailed cutting-edge research of specific facets of

the grammar. Basing the analytic categories on published reference grammars achieves this aim.

4.1.7 Principle 7: To synthesise categories from the reference grammars based on relevance

and genericness

Sneddon (2010:65) argues correctly that there is considerable variation in the categories

presented by different authors of Indonesian grammars – and even more in Indonesian

morphology textbooks. As indicated above, I draw on several of these sources, whose accounts of

109

any given analytic category may differ from one another. How can such disagreements be

resolved?

I will not attempt to incorporate all categories documented in all sources utilised.

Instead, I will synthesise different accounts on the basis of relevance and genericness. The

principle of relevance is derived from principle 2, i.e., morphologically marked categories are

relevant, and others will not be considered.

In some cases, eliminating non-relevant categories is sufficient to synthesise the accounts

of multiple sources. For instance, prefix peN- is usually discussed as a nominaliser prefix, but in

some sources the discussion also includes its semantic categorisation as agentive or instrumental

nominaliser (not directly relevant to morphology). This analysis can be discounted. In this case,

the synthesis is a nominaliser prefix without any further semantic categorisation: the most

relevant analysis in morphology.

In other cases, it is necessary to apply the genericness principle, as follows. The

genericity principle refers to the use of the most generic property when a morpheme is

ambiguously categorised. For instance, ber- is described by Sneddon (2010: 66-69) as marking

four different categories when prefixed to a noun base (for present purposes, it does not matter

exactly what these are). But Alwi et al. (1998:138) describe the same prefix as marking only

three functions. Chaer (2008:106) argues that ber- with a noun base marks 12 categories;

Kridalaksana (1989: 44) counts 19. The number of categories given by the latter two sources

reflects the fact that morphology textbooks tend to be more fine-grained in their categorisation

than the reference grammars.

However, I have found that all these sources have one thing in common: analysis of ber-

as a verb-forming derivational prefix (Alwi et al. 1998: 137-142). The various other functions

suggested by different authors are secondary or special cases of this, using subclassification

based largely on the semantics of the root, and sometimes not adequately described. The

genericness principle therefore dictates including in the MAS only one analysis of ber-: deriving

verbs from roots (of any kind; see further 3.5.1.1.4.2.3.3.1).

110

4.1.8 Principle 8: To use the bag of tags approach to combine independent analytic

categories

Analytic categories can be dependent on, or independent of, one another. In section 3.7.5,

I argued that the bag of tags approach should be used to combine tags within an analysis whose

values are independent of one another (that is, values for different features that are not

subcategories of each other). An example is the combination of plural a category whose feature is

number) and suffix (whose feature is affix type): these are independent values (see 3.7.5).

This approach fits the morphology of Indonesian, particularly for affixes and roots, whose

analyses include multiple categories from unrelated features, formal and functional. The two

Indonesian MASs reviewed in 3.5 do not attempt such a comprehensive analysis. However, since

my MAS does attempt that, the bag of tags approach is required. For these reasons, this best

practice is adopted here as a principle.

The symbol that delimits tags representing independent analytic categories in this MAS

is the plus (+) symbol. Thus, ‘PFX+PSV’ is a combination of two tags, a formal category ‘PFX’

(prefix) and a functional category ‘PSV’ (passive).

(4.11) <di,PFX+PSV> correct use of connecting symbol(+)

The order of tags within a bag of tags is not meaningful. Therefore, the analysis

‘PSV+PFX’ would be 100% equivalent and acceptable. However, for the sake of consistency and

easy reading, formal categories are always presented before functional categories in this chapter.

4.1.9 Principle 9: To hierarchically combine analytic categories that are dependent

Values that depend on one another will be combined hierarchically in this MAS’s tagset,

as per the best practices discussed in 3.7.5. An example given there is the relationship of noun

and proper noun, the latter being a subcategory of the former; thus, proper noun is an analytic

value that is dependent on noun. If sets of dependent values form a hierarchy, it is best practice

111

for tags to represent the hierarchy.

 To comply with this best practice, tags for dependent categories need to be linked to each

other by a consistent symbol, which in this MAS will be the colon (:). Let us examine the

derivational outcome POS of peN- (Alwi et al 1998:225). This is functionally a nominaliser,

represented by the tag DER:NOU.

DER:NOU reflects the hierarchical relationship between two analytic categories; it is a

derivational morpheme (DER) which derives a noun (NOU) from its base. In contrast to a bag of

tags, the order cannot be swapped: NOU:DER would not reflect the hierarchy. A group of

dependent units joined hierarchically is then, in turn, joined to other tags (or linked sets of tags)

using +, as in example (4.12). The uses of : (dependent) and + (independent) are thus mutually

exclusive.

(4.12) <peng,peN,PFX+DER:NOU>

4.1.10 Principle 10: To devise this MAS’s tags using the most widely accepted terminology

This MAS will encode its analytic categories into tags using the most widely accepted

terminology. The need for this principle can best be illustrated by the terms active and passive,

as applied to Indonesian. A number of scholars use alternative terms, such as subject-object focus

(Johns & Stokes 1996), agent-object orientation (Prentice 1987:193) or agent-patient voice / actor-

patient voice (Mistica et al. 1999). Each of these scholars argues that these new terms capture

relevant differences between this Indonesian phenomenon and the active and passive voices

found in various European languages.

In this thesis, I am in no position to examine their arguments further or to come to a

conclusion. However, I would argue that these terms are not yet widely recognised; conversely,

even among linguists who do not engage with theoretical discussions of voice, the terms active

and passive are very widely recognised. This is evident, for instance, from Djawanai’s (1999:28-

37) survey of Indonesian diathesis (another term for the active-passive distinction). Using novel

112

terminology for tags for such categories could potentially cause users who are not familiar with

the terms to interpret a category as absent when it is actually present, but under a different

label. The principle of avoiding all but widely accepted terminology is adopted to prevent this

from happening.

4.1.11 Principle 11: To encode tags using multi-letter or full analytical labels, not single

letters

In section 3.7.4, I argued that single letter tags have a number of potential drawbacks,

particularly when combined to form larger tags; and that multi-letter and full analytical labels

are easier to remember and fit better with search systems for morphologically annotated corpora.

The present MAS follows this best practice.

4.1.12 Principle 12: To encode the MAS’s tagset in both Indonesian and English

In any corpus search interface for texts annotated with this MAS, users will access the

annotation via the category labels. For this reason, it is important that these labels, the tags,

should be understandable. One aspect of the understandability of a tagset is the language from

which the labels are drawn; this is almost always English.

All the MASs discussed in section 3.2 to 3.6 use English-based tags, including Fintwol for

Finnish (section 3.2), OM for Turkish (section 3.3), BAMA for Arabic (section 3.4), and PM for

Indonesian (section 3.5), although all analyse a non-English language. None reports how usable

English tags were found to be for the users that the creators of these MASs and associated

implementations may have had in mind.

One possible reason for this omission is that English is a language with which the target

audience is already familiar. For most of the schemes reviewed, the target audience is not

explicitly stated, but is likely to be NLP practitioners or linguists already used to working with

English as the language of scholarly communication. No such assumption will be made for this

MAS. The main audience for this MAS is expected to be speakers of Indonesian who may or may

113

not be familiar with English. Thus, I will encode the tagset for this MAS in both Indonesian and

English. Users more familiar with Indonesian can rely on the Indonesian tagset, and users who

speak little or no Indonesian, e.g. foreign scholars engaged in multi- or cross-lingual research,

can rely on the English tags. In the account of the MAS later in this chapter, Indonesian-

language labels and English-language labels for a category are referred to as that category’s I-tag

and E-tag, respectively.

4.1.13 Principle 13: To analyse loan and foreign words as roots

In this MAS, loan and foreign words will be tokenised as if they were monomorphemic,

regardless of their morphological structure in the source language. Some foreign words have been

fully adapted to Indonesian, such as marketing ‘marketing’ and fenomena ‘phenomenon’

(English) or ulama ‘Islamic cleric’ (Arabic). The internal structures of such words are evidently

lost in Indonesian; for instance, -ing (in marketing) would not be considered a morpheme in

Indonesian even though it is a suffix in the source language. Likewise, fenomena and ulama are

plural in their source languages (English, Arabic). However, as loans in Indonesian, they are

singular. For this reason, foreign words and loanwords will not be analysed internally, but

treated as unaffixed root morphemes, tokenised following the procedure for monomorphemic

words. Consequently, loan affixes such as -isme, -isasi, and -logi in words such as paleontologi

‘paleontology’, komunisme ‘communism’ and grafologi ‘graphology’ will not be not treated as

affixes by this MAS. Loanwords with these affixes are considered monomorphemic.

4.1.14 Principle 14: To not treat multiword expressions differently from sequences of single

words

This MAS will not apply any special treatment to multiword expressions. Each

morpheme of each word of multiword expressions will be analysed as-is. This includes

morphemes within compounds and idiomatic or fixed expressions. While the identification of

114

multiword expressions, and their internal structure in terms of the component words’

interrelations, is an interesting and valuable analysis, it is not a matter of morphology. Even if it

were desirable to represent multiword expressions within morphological annotation, doing so

would drastically complicate any attempt to build a MAS – potentially confusing the important

distinctions between an MAS and a morphosyntactic annotation scheme or semantic annotation

scheme (due to the non-compositional meaning in fixed expressions and idioms).

4.1.15 Principle 15: To provide categories that disambiguate homographs at morpheme level

Often, annotation of analytic categories can disambiguate homographs (units with the

same form, but more than one function/meaning). In English, for instance, suffixes -er in learn-er

and smart-er mark distinct functions (agentive nominaliser and comparative degree adjective

marker, respectively). Identifying the base POS suffices to determine which function is in use:

nominaliser -er applies to a verb base while comparative -er applies to an adjective base.

Examples (4.13) and (4.14) illustrate this concept in Indonesian.

(4.13) ter-ambil teR- with verb base

PSV.Accidental-take

‘be taken accidentally’

(4.14) ter-cantik teR- with adjective base

SPV.Adj-beautiful

‘The most beautiful’

 Ter- marks the accidental passive (see 2.1.3.4.2.2) in (4.13) and the superlative in (4.14),

respectively with a verb base and with an adjective base. To allow for disambiguation of this

polysemous morpheme, the MAS must include both categories.

 Another polysemous Indonesian affix is ke- (Sneddon 2010:61-62), but this is a

counterexample to the principle above. Prefixed to a cardinal numeral such as dua, ke- can

indicate either an ordinal numeral, as in orang ke-dua ‘second person’, or a collective numeral, as

in ke-dua orang ‘both people’. Disambiguating ke- requires information beyond the morphological

level: in this case, whether ke-dua appears as a determiner or modifier of its head. Following the

115

head, ke- forms an ordinal numeral modifier (“Nth X”); prior to the head, prefix ke- forms a

collective numeral determiner (“all N Xs”).

Since this disambiguation operates at the syntactic level, this MAS will not include

different analytic categories for these two uses. Rather, both uses of ke- will receive the same

analysis. This is a point of contrast to the LM annotation scheme (see 3.5.2) which disambiguates

this polysemy, with tags O and D for ordinal and collective numerals respectively (Larasati et al.

2011:123). In this MAS, unlike LM, any disambiguation which requires linguistic information

from beyond the morphological level (morphosyntactic, syntactic, semantic, or any combination

thereof) will not be taken into account.

4.2 A novel morphological annotation scheme for Indonesian

4.2.1. Tokenisation

4.2.1.1. Tokenisation of affixes and roots

Following principle 4, each morpheme’s orthographic and citation forms will be included

within analyses in this scheme . When orthographic and citation forms do not differ, only one

form is presented (see xample (4.8) in 4.1.4). When they differ, for instance due to nasal

assimilation of prefix meN- as discussed in 2.1.2, principle 4 dictates that the MAS should

represent both, as shown by example (4.7) in 4.1.4.

The question now is how the meN- root boundary should be tokenised so as to fit best

with users’ anticipated needs for orthographic search. In example (4.7), the phonological process

merely selects an allomorph, without affecting the root. However, there are cases when the

phonological process removes the root’s first consonant (in the phonological environments

outlined in 2.1.2), as in example (4.15). Here, the root-initial consonant /p/ is lost through the

same process that selects allomorph mem-. In example (4.15), the transcription of memakai as

116

mem-(p)akai reflects these processes. But this representation is not appropriate for a

morphological annotation, due to its ad hoc complexity.

(4.15) mem-(p)akai

ACV-use

‘use’

In this MAS, in the orthographic transcription, I retain the allomorph mem- for the

prefix, and akai for the root. That this segmentation is widely accepted is evident in reference

grammars (Alwi et al. 1998:111), in which memakai is segmented as mem-akai. To capture the

root’s initial consonant loss, an additional analytic label, +Luluh or +LOST, is added to any root

whose first consonant is omitted due to morphophonemic changes, as in (4.16). Users can thus

search for +LOST and obtain all tokens of roots whose first consonant is lost, without having to

specify the lost consonant.

(4.16) <mem,meN,PFX+DER:VER+ACV>

<akai,pakai,ROOT+UNCLT+VER+LOST>

From the perspective of generative morphology, polymorphemic words are constructed by

the operation of a sequence of word formation rules (see 6.4), applied in a set order. Some

Indonesian scholars adhere to this generativist characterisation. For instance, Chaer (2009:33)

manifests this view while discussing the verb ber-pakai-an ‘dress (oneself)’. He argues that the

rule sequence begins with suffixation of nominaliser -an to verb root pakai ‘wear’. Subsequently,

the resulting word pakaian ‘dress’ serves as base for prefixation of verbaliser beR-, which

finalises the orthographic word form, berpakaian.

The view of word formation through an ordered sequence of morphological processes is

not used as an ordering principle by this MAS. If a suffix is deemed to be added by an earlier rule

than a prefix, then annotation encoding an ordered generative analysis might reflect this in the

arrangement of the two affixes’ tags. But in this MAS, rather, all morpheme tokens are presented

linearly, with no indication of which processes precede or follow any other. This approach is

demonstrated by the tokenisation examples in sections 4.2.1.1 to 4.2.1.3, which do not exhibit any

117

effect of sequence of affixation. Chaer’s sample word berpakaian is linearly tokenised as shown

in (4.17).

(4.17) ber-pakai-an
<ber,beR,PFX+DRV:VER+RFLX>

<pakai,ROOT+VER>

<an,SFX+DER:NOU>

Why does this MAS adopt linear presentation style rather than a style reflecting a

sequence of processes? I argue that presenting the order of morphemes linearly is a more neutral

approach, as it simply mirrors how they are presented in text. Thus the concept is easier for

users to grasp, whether or not they are generativists. Moreover, linear presentation means that

when querying the annotation, users do not need to specify the ordering of different analyses. For

example, a style of annotation that included sequencing would require examples like (4.17) to be

found using queries in which the -an is explicitly prior in the derivation to the ber-. The linear

presentation adopted by MAS allows users to ignore this issue, and build queries that refer only

to the orthographic sequencing of morphemes; a query for <ber><pakai><an>, or the same query

with one or more underspecified elements, would find berpakaian. There is only one exception,

namely treatment of circumfixes, which section 4.2.1.2 will address.

4.2.1.2. Special remarks on infixes and circumfixes

Principle 3, that each morpheme must be unambiguously linked to its analysis and

presentation, is problematic when we deal with discontinuous morphemes. This issue arises for

circumfixes and infixes.

In existing glossing conventions (as in Comrie et al. 2008; Lehmann 2004), a circumfix is

usually presented as a discontinuous sequence around its base, as in example (4.18), following

Comrie et al.’s proposal; and an infix is usually presented within its base, as in example (4.19),

following Lehmann (2004:1858).

118

(4.18) pem-betul-an

NOMZR-correct-NOMZR

‘correction’

(4.19) t<el>unjuk

<AGNR>point

‘forefinger’

Tokenising the elements of a circumfix as a discontinuous sequence is ambiguous. The

sequence can be read as one morpheme or two morphemes. For human linguists, this ambiguity

is relatively unimportant. However, when this glossing convention is used within machine-

readable rules, it becomes an issue.

Intervening an infix within its root makes the root discontinuous. The elements on the

first line and the elements on the second line no longer line up unambiguously. Again, the

ambiguity might not be problematic for human linguists, but can be for automated annotation.

In this MAS, despite the potential problems, I follow the glossing convention. A circumfix

is annotated as two discontinuous parts around a base. The advantage of this is that the order of

annotation is natural, in the sense that the presence of an opening and a closing analysis for each

circumfix, each with orthographic/citation form plus tags, mirrors the actual order of the

elements of the root-plus-circumfix combination.

The drawback is that the tokenisation of a circumfix is then similar to that of a prefix

and suffix combination. But this can be compensated for by using tags to explicitly mark the

opening and closing parts of the unit, here +A and +Z, as in <OpeningCircumfixUnit,CFX+A>

and <ClosingCircumfixUnit,CFX+Z>, where to be valid the two elements must occur in the same

word. This distinguishes the circumfix from the corresponding prefix and suffix combination, in

which the latter elements would be annotated using the prefix (PFX) and suffix (SFX) category

labels, rather than the circumfix label (CFX).A correct annotation of circumfix would be as in

(4.20).

(4.20) pem-betul-an

<pem,peN,CFX+A+DER:NOU>

<betul,ROOT+ADJ>

<an,CFX+Z+DER:NOU>

119

An infix’s annotation precedes that of its root, as (4.21) illustrates. Unlike the practice for

circumfixes, this representation is not natural, although the treatment of both follows glossing

convention. But this approach has the advantage of coding the root intact, making its

representation in the annotation less ambiguous. This serves the needs of users, as it allows

queries for citation form tunjuk ‘point at’ to return all instances of telunjuk as well as of

orthographic tunjuk.

(4.21) t-el-unjuk
<el,IFX>

<tunjuk,NOU+ROOT>

Why should the annotation or gloss for the infix precede that for the root, and not the

other way around? Lehmann (2004:1858) does not give any reason. For either glossing examples

or devising a MAS, arguably whatever layout is used, the choice of order could always be

questioned. Yet still, it is necessary to make a decision in order to proceed. So, the need for this

arbitrary technical decision is not a major drawback.

4.2.1.3. Tokenisation of reduplications

There are three types of reduplication, full, partial, and imitative, as discussed in

2.1.3.4.3. The question is, how are these reduplications to be tokenised in this MAS? The first

alternative is to tokenise the whole reduplicated word or word-part as one unit (as previous

Indonesian MASs did; see 3.5). But this implies word-level morphological analysis. Thus, this

alternative must be ruled out. The second alternative is to tokenise reduplicated parts as units at

morpheme level. This prevents the MAS from breaching principles 2 and 4. This is exemplified by

examples (4.22) to (4.26).

(4.22) buku-buku full reduplication
<buku,ROOT+NOU>

<buku,RED:FULL+DER:NOU+PLUR>

120

 Any non-reduplicated morphemes must not be tokenised as a part of the reduplication.

For instance, meN- in (4.23), which intervenes between pukul ‘hit’ and its copy, is not

reduplicated, and thus must be separately analysed.

(4.23) pukul-mem-ukul full reduplication with affixation

<pukul,ROOT+NOU+VER >

<mem,meN,PFX+DER:VER+ACV >

<ukul,pukul,RED:FULL+DER:VER+ITRV+RECP>

Conversely, in full-word reduplication, the whole word is copied. In this case, all the

copies of the morphemes that make up the reduplicated word are treated as distinct tokens. For

example, the compound es krim ‘ice cream’ is composed of two roots; see (4.24). Its reduplicated

form is annotated as if it consisted of four elements: two separate copies for each of the two

morphemes. I am aware that some scholars may disagree with this, arguing instead that the

whole-word reduplication should be considered as a single morpheme (for three tokens in all), but

I will argue (in 4.2.4 and 4.2.5) that analysing four morpheme units here is a useful fiction.

(4.24) es krim-es krim

<es,ROOT+NOU> full word reduplication

 <krim,ROOT+NOU>

<es,RED:FULL+DRV:NOU>

 <krim,RED:FULL+DRV:NOU>

The citation forms of imitative and partial reduplication morphemes are considered to be

identical to the roots which they duplicate; see (4.25), (4.26).

(4.25) sayur-mayur imitative reduplication
<sayur,ROOT+NOU>

<mayur,sayur,RED:IMTV+DER:NOU+PLUR>

(4.26) te-tangga partial reduplication
<te,tangga,RED:PART+DER:NOU>

<tangga,ROOT+NOU>

By adhering to this approach, whether or not non-reduplicated morphemes occur within

the reduplicated word, the annotation of each morpheme is accessible (in addition to the

121

annotation of the reduplication morpheme itself). Conversely, the word-level approach to

tokenising reduplication would produce annotation of the sort in

(4.27), where the polymorphemic word pukul-memukul ‘hit one another’ is not annotated

at morpheme level. This blocks access to morphological tokenisation and annotation, prohibiting

searches from retrieving morpheme tokens within reduplicated words.

(4.27) <pukul-memukul,RED:FULL+VER+ITRV+RECP>

4.2.2. Roots

4.2.2.1. Formal analytic categories for root morphemes

The first analysis of a root morpheme is the identification of its formal category as a root,

encoded as ROOT (E-tag) or AKR (I-tag) (see Table 4.1); this distinguishes roots from affixes and

reduplication morphemes. Some examples are given in Table 4.2, where the tag under discussion

is boldfaced (the other tags present will be discussed later).

 I-tag E-tag Examples

Root AKR ROOT layar ‘screen’, jatuh ‘fall’

Table 4.1. The formal analytic category for root morphemes

Description Full I-tag Full E-tag

Nominal root morpheme <layar,AKR+NOM> <layar,ROOT+NOU>

Verbal root morpheme <jatuh,AKR+VER> <jatuh,ROOT+VER>

Table 4.2. The root category within full analyses

122

4.2.2.2. Formal analytic categories for cliticised root morphemes

A number of Indonesian roots can be cliticised (see 2.1.3.4.5.). Users might want to search

based on the cliticised-root category to avoid also retrieving the uncliticised root (free form roots),

or the other way around. Thus, it is important for the MAS to distinguish cliticised and

uncliticised root morphemes as separate categories. Examples (4.28) and (4.29) illustrate the

enclitic and proclitic forms of first person pronoun aku ‘I/my’.

(4.28) rumah=ku pronominal enclitic (possessor)

house=1s

‘my house’

(4.29) ku=ambil pronominal proclitic (subject)

1s=take

‘I take’

In some cases, the cliticised and uncliticised forms are identical. This is the case for

emphasis particles (lah, pun), one question particle kah, and one pronoun (eng)kau ‘you’, an

alternative to the main second person pronoun kamu ‘you’33. When these roots morphemes are

cliticised, their forms are not different; they are simply attached to their host without any space

between (=lah, =pun, =kah, kau=, etc.).

The analytic categories for cliticised and uncliticised roots are as follows. If a root is not

cliticised, its formal tag is ROOT as per 4.2.2.1. If a root is cliticised, an additional category is

given: PKLT or PCLT for proclitic, EKLT or ECLT for enclitic. This means that if a user should

wish to search for a clitic without specifying its position, they can use a wildcard search on the

clitic tag (e.g. *KLT).

In the literature on Indonesian grammar, the particles which can be written identically

as free forms or as bound forms are never categorised explicitly as clitics. However, by describing

these elements as possibly free or bound, scholars implicitly acknowledge that they exhibit the

behaviour of clitics. For this reason, such “attached” particles are categorised as clitics in this

MAS. (Special considerations apply to enclitic =nya; see section 4.2.6.)

33 The sociolinguistic differences among alternative second person singular pronouns (kamu, (eng)kau, Anda) are

discussed in Alwi et al. (1998:250-260).

123

Independent form Clitic form Type I-tag E-tag

Pronouns (personal/possessive)

aku (1s) ku= Proclitic PKLT PCLT

aku (1s)

kamu (2s)

dia (3s)

=ku

=mu
=nya

Enclitic EKLT ECLT

Numeral

satu se= Proclitic PKLT PCLT

Particle

pun =pun Enclitic EKLT ECLT

lah =lah

kah =kan

Table 4.3. Formal categories for cliticised roots, organised based on POS

Clitic I-tag E-tag

ku= <ku,aku,AKR+PKLT+PRO> <ku,aku,ROOT+PCLT+PRO>

=ku <ku,aku,AKR+EKLT+PRO> <ku,aku,ROOT+ECLT+PRO>

=mu <mu,kamu,AKR+EKLT+PRO> <mu,kamu,ROOT+ECLT+PRO>

se= <se,satu,AKR+PKLT+NUM> <se,satu,ROOT+PCLT+NUM>

=pun <pun,AKR+EKLT+PKL> <pun,ROOT+PCLT+PAR>

=kan <kan,AKR+EKLT+PKL> <kan,ROOT+PCLT+PAR>

=lah <lah,AKR+EKLT+PKL> <lah,ROOT+PCLT+PAR>

=kah <kah,AKR+EKLT+PKL> <kah,ROOT+PCLT+PAR>

Table 4.4. Formal categories for cliticised roots within full analyses

4.2.2.3. Functional analytic categories for root morphemes

Part-of-speech is a category which applies to both roots and entire words; it is therefore a

matter of morphology as well as a matter of morphosyntax. It is very common for researchers to

search in POS-tagged corpora for particular word-level POS categories. It follows that users of a

124

morphologically annotated corpus are likely to wish to search for particular categories of root

morpheme: noun roots, verb roots, and so on. The difference between such a search and word-

level POS queries is best illustrated by considering words based on the same root but with

different POS tags. For instance, in English, a word-level POS query for nouns would retrieve

danger but not dangerous (adjective) or endanger (verb); but a query for words containing a

morpheme tagged with noun as its root POS would retrieve all three of these words, since the

morpheme danger would have the same root POS annotation in all three. This justifies including

root POS in morphological annotation: it is distinct from – and provides additional possibilities

for analysis to – the word-level POS provided by morphosyntactic annotation.

Why, then, use only major POS categories and not fine-grained POS categories? Much

fine-grained POS analysis is within the domain of morphosyntax, operating at word level,

because fine distinctions such as “singular noun” versus “plural noun”, or “present-tense verb”

versus “past-tense verb” (to cite two distinctions common in POS tagsets for English), reflect

features encoded not in the root but in affixes. For this MAS to use such fine-grained distinctions

would thus be counterproductive, as the analysis could not then be clearly assigned to a specific

morpheme – breaching principle 3, to unambiguously link each morpheme to its annotations.

Fine-grained features which are properties of root morphemes, such the distinction

between common and proper nouns, tend not to be structural features, but rather features of

(lexical) semantics. Encoding such features is not part of morphological annotation (even though

it could well be useful for users). Thus, the analysis of root POS will not go beyond the major POS

category. There are 12 root POS categories, in addition to a Foreign category (foreign words).

For many Indonesians, the term foreign refers to entities from outside Indonesian; thus,

a language such as Javanese, which is spoken within Indonesia, is not referred to as a foreign

language. I do not use the term foreign in this sense. In this MAS, foreign refers to any non-

Indonesian word, whether from a language spoken outside Indonesia (e.g. English, French) or

from a language spoken in Indonesia (e.g. Javanese, Sundanese).

Finally, although the category of Article exists, Indonesian articles are atypical compared

to articles in most languages, because they occur only in limited circumstances;

definiteness/indefiniteness is usually implicit.

125

POS I-Tag E-Tag Examples

Noun NOM NOU nasi ‘rice’, jagung ‘corn’, London ‘London’

Pronoun PRO PRO aku ‘I’ (personal), kenapa ‘why’ (interrogative), sini
‘this place’ (demonstrative)

Numeral NUM NUM satu ‘one’ (cardinal), pertama ‘first’ (ordinal)

Classifier PGL CLA ekor ‘animal class’, orang ‘human class’

Verb VER VER pergi ‘go’, makan ‘eat’, lari ‘run’

Adjective AJE ADJ cantik ‘beautiful’, cepat ‘quick’, lama ‘long’

Adverb ADV ADV selalu ‘always’, jarang ‘seldom’, hanya ‘only’

Preposition PRE PRE di ‘at’, ke ‘to’, dari ‘from’

Conjunction KNJ CON dan ‘and’, atau ‘or’, ketika ‘when’

Interjection ITJ INT hai ‘hi’, aduh ‘ouch’, astaga ‘oh my god’

Article ART ART si ‘the (derogatory)’, sang ‘the (honorific)’

Particle PKL PAR kah, lah, pun (all emphasis)

Foreign ASG FRG revenue (English), aqua ‘water’ (Latin), monggo
‘please’ (Javanese)

Punctuation TDB PUNC colon (:), question (?), exclamation (!)

Table 4.5. Major POS categories for roots

 I-tag E-tag

nasi <nasi,AKR+NOM> <nasi,ROOT+NOU>

satu <satu,AKR+NUM> <satu,ROOT+NUM>

cantik <cantik,AKR+AJE> <cantik,ROOT+ADJ>

Table 4.6. Major POS categories within full analyses

126

4.2.3. Affixes

4.2.3.1. Formal analytic categories

The four categories of Indonesian affix are prefix, suffix, infix, and circumfix (see

2.1.3.4.2.1). Prefix and suffix are common formal morphological categories, and thus should

obviously be included in this MAS. What about circumfix and infix? The importance of

circumfixes in Indonesian has been argued in section 2.1.3.4.2.1, and they are thus included in

this MAS. As for the infixes, Sneddon (2010:28-29) argues that they are no longer productive, and

that therefore infixed words are often treated as monomorphemic words. While I agree with this

for word-level analysis, I argue that for morpheme-level annotation, infixes are still worth

analysing separately, as they function to mark functional categories (e.g. nominaliser, plural)

which users are likely to wish to retrieve from annotated corpora.

It is tempting to encode affix as a super-category of these four, either organising the two

categories hierarchically (following principle 9), e.g. AFX:PFX and AFX:SFX, or merging the

concepts directly as one category, e.g. APFX and ASFX. But this would have little user benefit,

since the category of affix is already retrievable using wildcards in an underspecified query

pattern such as *FX. So no explicit super-categorisation of these four categories is incorporated

into the MAS.

127

I-Tag E-Tag Category example In word

PFS PFX Prefix di- di-bakar
PSV-burn

‘be burnt’

SFS SFX Suffix -an tembak-an
shoot-NOMZR

‘shot’

IFS IFX Infix -er- g-er-igi
PL-tooth

‘teeth’

KFS CFX Circumfix ke—an ke-raja-an
NOMZR-king-NOMZR

‘kingdom’

Table 4.7. Formal categories for affixes

 I-tag E-tag

di- <di,PFS+DER:VER+PSV> <di,PFX+DER:VER+PSV>

-an <an,SFS+DER:NOM> <an,SFX+DER:NOU>

-el- <el,IFS+DER:NOM> <el,IFX+DER:NOU>

ke—an <ke,KFS+A+DER:NOM>
<an,KFS+Z+DER:NOM>

<ke,CFX+A+DER:NOU>

<an,CFX+Z+DER:NOU>

Table 4.8. Formal categories for affixes within full analyses

4.2.3.2. Functional analytic categories

4.2.3.3.1. Outcome POS

The first functional category relevant to affixes is outcome POS. This is an important

factor for derivational processes. In glossing convention, labels such as nominaliser (NOMZR) or

verbaliser (VBZR) include an indication of the POS category which a derivational morpheme

produces when applied to some base; the annotation of an affix’s outcome POS captures this

information. An affix’s outcome POS may be identical to that of the root it applies to, but does

not have be . Likewise, an affix’s outcome POS may be the same as the broad POS tag of the

overall word (as is the case for examples di-bakar and tembak-an in Table 4.7, but does not have

128

to be. Being able to search for outcome POS separately from both root POS and (in possible

accompanying morphosyntactic annotation) word POS is therefore potentially beneficial to users.

For instance, verb berkebutuhan in example (4.30), annotated in (4.31), is composed of

three morphemes: prefix ber-, circumfix ke—an, and root butuh. Of these three, the first two

morphemes are annotated with outcome POS. Prefix ber- derives a verb from a noun base (i.e.

kebutuhan). Circumfix ke—an derives a noun from a verb root (i.e. butuh). The POS that each

derives, verb and noun respectively, is its outcome POS. Only the outcome POS of ber- is

equivalent to the POS of the full word (verb). But since this MAS aims at morpheme-level

annotation, morpheme outcome POS is the relevant information.

(4.30) ber-ke-butuh-an

VBZR-NOMZR-need-NOMZR

‘have needs’

(4.31) berkebutuhan

<ber,beR,PFX+DER:VER>

<ke,CFX+A+DER:NOU>

<butuh,ROOT+VER>

<an,CFX+Z+DER:NOU>

Inflectional affixes should not be given outcome POS as the POS of the word they

generate is the same as that of the base. But any derivational affix may potentially change the

POS of its base, and therefore should have outcome POS tagging. I wish to argue that all affixes

in this MAS must be given outcome POS because Indonesian is exclusively derivational. The

argument is as follows.

In 2.1.3.2, I noted that the presence of any inflection in Indonesian is a matter of debate.

While Alwi et al. (1998) do not explicitly adopt a stance on this issue, they consistently use the

term penurunan ‘derivation’ for affixation processes. By contrast, Sneddon et al. (2010) suggest

that two affixes only (active meN- and passive di-) are inflectional. In this, they seem to follow

Prentice’s (1987) argument, but Prentice in fact argues that meN- is ambiguous, and can be

inflectional or derivational. Following principle 6, the view of the Indonesian reference grammars

(Sneddon et al. 2010; Alwi et al. 1998) should be prioritised, but here they differ. While Sneddon

et al. assert the existence of active and passive inflection, they give no account of the distinction

between inflectional and derivational affixes beyond this, implying that this distinction is

129

marginal. This being the case, I follow Alwi et al. and consider all affixation to be derivation for

purposes of this MAS.

As previously observed, an affix’s outcome POS may be but is not always the same as the

POS of the word overall. Specifically, in the case of a word formed via multiple derivations, the

last-added derivational morpheme’s outcome POS determines the POS of the word. Other affixes’

outcome POS have no effect on word-level POS. POS is a property of words, while outcome POS

is a property of derivational affixes, so they are conceptually distinct even for words where they

happen to coincide.

The tags for outcome POS begin with a super-category label DER (derivation), whose I

and E tags are identical. Then follows the major POS which is the outcome of the affix annotated,

such as noun (NOU), verb (VER), or adjective (ADJ). These are the same labels used for root POS

(see 4.2.2.3). Thus, the two categories are organised hierarchically, the POS being dependent on

the category of derivation. Following principle 9 on combining tags for dependent categories

yields the tags DER:NOU, DER:ADJ, DER:ADV, DER:VER and DER:NUM (see Table 4.9 to

Table 4.16).

130

I-tag E-tag Affix Example

DER:NOM DER:NOU pe- pe-suruh
PAT-command

‘person to be commanded’

pel- pel-ajar
PAT-teach

‘student’

peN-(1,2) peny-(s)uruh
AGNR-command

‘commander’

peR-(2,3) pe-tani
AGNR-agriculture

‘farmer’

teR-(5) ter-sangka
PAT-suspect(verb)

‘suspect’

-an makan-an
eat-NOMZR

‘food’

-wan warta-wan
news-male

‘male reporter’

-wati warta-wati
news-female

‘female reporter’

-nya(1,2) buku-nya
book-DEF

‘the book’

ke—an(1) ke-jahat-an

NOMZR-evil(adj)-NOMZR

‘crime’

peN—an

peny-(s)atu-an
NOMZR-one-NOMZR

‘unification’

peR—an

per-satu-an
NOMZR-one-NOMZR

‘union’

-el- t-el-unjuk
<NOMZR>point

‘index finger’

-em- j-em-ari
<PL>finger

‘fingers’

-er- s-er-uling
<NOMZR>-flute

‘flute’

-er- g-er-igi
<PL>-tooth

‘teeth’

Table 4.9. Noun derivation outcome POS

131

I-Tag E-Tag Affix Example

DER:AJE DER:ADJ se-(1) se-mahal
EQU-expensive

‘as expensive’

se-(2) se-kantor
COLL-office

‘whole office’

ke—an(3) ke-merah-an
ADJZR-red

‘Reddish’

teR-(4) ter-cantik
SUP-beautiful

The most

beautiful

Table 4.10. Adjective derivation outcome POS

I-Tag E-Tag Affix Example

DER:ADV nya-(3) biasa-nya
usual-ADV

‘usually’

se—an se-hari-nya
ADV-day-ADV

‘full-day’

se—nya se-cepat-nya
ADV-quick-ADV

‘as quickly as

possible’

Table 4.11. Adverb derivation outcome POS

132

I-tag E-tag Affix Example

DER:VER beR-(1) ber-pistol
VBZR-gun

‘have a gun’

beR-(2) ber-cermin
RFLX-mirror

‘look at oneself on a mirror’

di- di-ambil
PSV-take

‘be taken’

meN- meng-ambil
ACV-ACV

‘take’

peR- per-kuat
CAUS-strong

‘strengthen’

teR-(1,2,3) ter-bawa
PSV-bring

‘be brought by accident’

-i(1) kepala-i
head-VBZR

‘lead’

-i(2) kirim-i
send-APPL

‘send sth’

-i(3) panas-i
hot-CAUS

‘make hot’

-i(4) ketok-i
knock-ITRV

‘knock over and over’

-i(5) pukul-i
punch-APPL.ITRV

‘punch sth over and over with

sth’

-kan(1) lurus-kan
straight-CAUS

‘straighten’

-kan(2) kirim-kan
send-APPL

‘send sth’

-kan(3) periksa-kan
examine-CAUS

‘have sth examined’

Table 4.12.Verb derivation outcome POS (part 1, prefixes and suffixes)

133

I-tag E-tag Affix Example

DER:VER beR—an(1) ber-salam-an
RECP-shake.hand-VBZR.RECP

‘shake hands one each other’

beR—an(2) ber-pukul-an
RECP.ITRV-punch-RECP.ITRV

‘punch one another again and again’

beR—an(3) ber-jatuh-an
VBZR.RAND-fall-VBZR.RAND

‘fall randomly’

beR—kan ber-senjata-kan
POSS-weapon-POSS

‘have weapon’

ke—an (2)

ke-curi-an
PSV-steal-PSV

‘be robbed of’

peR—i per-baik-i
VBZR-good-VBZR

‘repair’

peR—kan per-malu-kan
VBZR-ashamed-VBZR

‘embarrass’

-em- g-em-etar
<VBZR>-vibration

‘tremble’

Table 4.13.Verb derivation outcome POS (part 2, circumfixes and infixes)

I tag E-tag Affix Sample

DER:NUM ke- ke-dua
ORD/COLL-two

‘second/both’

Table 4.14. Numeral derivation outcome POS

134

 I-tag E-tag

Adjective

se-(1) <se,PFX+DER:AJE+EKTF> <se,PFX+DER:ADJ+EQTV>

se-(2) <se,PFX+DER:AJE> <se,PFX+DER:ADJ>

teR-(4) <ter,teR,PFX+DER:AJE+SUPF> <ter,teR,PFX+DER:ADJ+SUPV>

ke—an (3) <ke,KFS+A+DER:AJE>

<an,KFS+Z+DER:AJE>

<ke,CFX+A+DER:ADJ>

<an,CFX+Z+DER:ADJ>

Adverb

-nya (3) <nya,SFX+DER:ADV> <nya,SFX+DER:ADV>

se—an <se,KFS+A+DER:ADV>

<an,KFS+Z+DER:ADV>

<se,CFX+A+DER:ADV>

<an,CFX+Z+DER:ADV>

se—nya <se,KFS+A+DER:ADV>

<nya,KFS+Z+DER:ADV>

<se,CFX+A+DER:ADV>

<nya,CFX+Z+DER:ADV>

Noun

pe- <pe,PFX+DER:NOM> <pe,PFX+DER:NOU>

pel- <pel,PFX+DER:NOM> <pel,PFX+DER:NOU>

peN-(1,2) <pen,peN,PFX+DER:NOM> <pen,peN,PFX+DER:NOU>

peR-(2&3) <pe,peR,PFX+DER:NOM> <pe,peR,PFX+DER:NOU>

teR-(5) <ter,teR,PFX+DER:NOM> <ter,teR,PFX+DER:NOU>

-an <an,SFX+DER:NOM> <an,SFX+DER:NOU>

-nya (1,2) <nya,SFX+DER:NOM+DEF> <nya,SFX+DER:NOU+DEF>

ke—an (1) <ke,KFS+A+DER:NOM>

<an,KFS+Z+DER:NOM>

<ke,CFX+A+DER:NOU>

<an,CFX+Z+DER:NOU>

peN—an <peN,KFS+A+DER:NOM>

<an,KFS+Z+DER:NOM>

< pen,peN,CFX+A+DER:NOU>

<an,CFX+Z+DER:NOU>

per—an <per,peR,KFS+A+DER:NOM>

<an,KFS+Z+DER:NOM>

<per,peR,CFX+A+DER:NOU>

<an,CFX+Z+DER:NOU>

-el-(1) <el,IFS+DER:NOM> <el,IFX+DER:NOU>

-em-(1) <em,IFS+DER:NOM> <em,IFX+DER:NOU>

-er-(1) <er,IFS+DER:NOM+PLUR> <er,IFX+DER:NOU+PLUR>

-er-(2) <er,IFS+DER:NOM> <er,IFX+DER:NOU>

Table 4.15. Outcome POS categories within full analyses (part 1)

135

Numeral

ke- <ke,PFX+DER:NUM> <ke,PFX+DER:NUM>

Verb

beR-(1) <ber,beR,PFX+DER:VER> <ber,beR,PFX+DER:VER>

beR-(2) <ber,beR,PFX+DER:VER+RFLX> <ber,beR,PFX+DER:VER+RFLX>

di- <di,PFX+DER:VER+PSV> <di,PFX+DER:VER+PSV>

meN- <men,meN,PFX+DER:VER+ACV> <men,meN,PFX+DER:VER+ACV>

peR-(1) <per,peR,PFX+DER:VER+CAUS> <per,peR ,PFX+DER:VER+CAUS>

peR-(4) <per,peR,PFX+DER:VER> <per,peR,PFX+DER:VER>

teR-
(1,2,3)

<ter,teR,PFX+DER:VER+PSV> <ter,teR,PFX+DER:VER+PSV>

-el-(2) <el,IFS+DER:VER> <el,IFX+DER:VER>

-em-(2) <em,IFS+DER:VER> <em,IFX+DER:VER>

-i (1) <i,SFX+DER:VER> <i,SFX+DER:VER>

-i (2) <i,SFX+DER:VER+APLI> <i,SFX+DER:VER+APPL>

-i (3) <i,SFX+DER:VER+CAUS> <i,SFX+DER:VER+CAUS>

-i (4) <i,SFX+DER:VER+ITRF> <i,SFX+DER:VER+ITRV>

-i (5) <i,SFX+DER:VER+APLI+ITRF> <i,SFX+DER:VER+APPL+ITRV>

-kan (1) <kan,SFX+DER:VER> <kan,SFX+DER:VER>

-kan (2) <kan,SFX+DER:VER+APLI> <kan,SFX+DER:VER+APPL>

-kan (3) <kan,SFX+DER:VER+CAUS> <kan,SFX+DER:VER+CAUS>

beR—
an (1)

<beR,KFS+A+DER:VER+RECP>

<an,KFS+Z+DER:VER+RECP>

<ber,beR,CFX+A+DER:VER+RECP>

<an,CFX+Z+DER:VER+RECP>

beR—
an (2)

<ber,beR,KFS+A+DER:VER+RECP+ITRF>

<an,KFS+Z+DER:VER+RECP+ITRF>
<ber,beR,CFX+A+DER:VER+RECP+ITRV>

<an,CFX+Z+DER:VER+RECP+ITRV>

beR—
an (3)

<ber,beR,KFS+A+DER:VER+RAND>

<an,KFS+Z+DER:VER+RAND>

<ber,beR,CFX+A+DER:VER+RAND>

<an,CFX+Z+DER:VER+RAND>

beR—
kan

<ber,beR,KFS+A+DER:VER+POSS>

<kan,KFS+Z+DER:VER+POSS>

<ber,beR,CFX+A+DER:VER+POSS>

<kan,CFX+Z+DER:VER+POSS>

ke—an
(2)

<ke,KFS+A+DER:VER>

<an,KFS+Z+DER:VER>

<ke,CFX+A+DER:VER>

<an,CFX+Z+DER:VER>

peR—i <per,peR,KFS+A+DER:VER>

<i,KFS+Z+DER:VER>

<per,peR,CFX+A+DER:VER>

<i,CFX+Z+DER:VER>

peR—
kan

<per,peR,KFS+A+DER:VER>

<kan,KFS+Z+DER:VER>

<per,peR,CFX+A+DER:VER>

<kan,CFX+Z+DER:VER>

-em- <em,IFS+DER:VER> <em,IFX+DER:VER>

Table 4.16. Outcome POS categories within full analyses (part 2)

136

4.2.3.3.2. Voice and other valency constructions

4.2.3.3.2.1. Active and passive voice

Active and passive voice can be briefly described in terms of the semantic and

grammatical roles of a verb’s arguments. In the active voice, the grammatical role of subject is

occupied by an agent (or agent-like semantic role), whereas in the passive voice the grammatical

role of subject is occupied by a patient (or patient-like semantic role). In many languages

including English, the active voice is the basic form of the verb, and passives are constructed by

modification of an active transitive verb (either morphologically or periphrastically), with the

consequence that the object ‘slot’ of the active verb corresponds to the subject ‘slot’ of the passive

verb.

The Indonesian active and passive differ from this pattern (see 2.1.3.4.2.2). In

Indonesian, prefix meN- marks active voice, while prefixes di- and teR- and circumfix ke—an

mark passive voice (note that I here discuss teR-(1) and ke—an(2) whose outcome POS is verb,

not teR-(5) and ke—an(1) whose outcome POS is noun). Here, I diverge slightly from Sneddon et

al. (2010: 17,116), who label only di- and teR- as passive, because, their analysis involves not only

morphological marking, but also morphosyntactic class and syntactico-semantic context. Sneddon

et al. firmly argue that di- is a pure morphological marker of the passive. By contrast, they argue,

a verb marked by teR- can be transitive or intransitive, and the derivation can express one of

three categories: accidental, stative and abilitative. They then argue that the passive reading

applies only when the verb is transitive. Compare examples (4.32), with transitive root tembak

‘shoot’, and (4.33) with intransitive root tidur ‘sleep’; the latter does not have a passive meaning.

(4.32) dia di-tembak atau ter-tembak polisi
3s PSV-shoot or PSV.ACCIDENTAL-shoot police

‘s/he was deliberately or accidentally shot by a cop’

(4.33) Latif ter-tidur di kelas

PN PSV.ACCIDENTAL-sleep in classroom

‘Latif fell asleep in the classroom’

137

The categories of stative and abilitative are not linked to passive by Sneddon et al., but

the examples they propose are written as passive voice constructions in the translations. Stative

teR- verbs express the subject patient entity’s ongoing state as a result of the verb’s action,

without specifying an agent; see example (4.34). This might be equivalent to an English agentless

passive. Abilitative teR- adds modal meaning; see (4.35). Again, the passive construction is used

in the translation.

(4.34) surat itu ter-tulis dalam bahasa Inggris

letter that PSV.STAT-write in language English

‘That letter is written in English’ (Sneddon et al. 2010:117)

(4.35) mobil se-mahal itu tidak ter-beli oleh saya

car EQT-expensive that not PSV.ABILITY-buy by 1s

‘I can’t afford to buy a car as expensive as that’ (Sneddon et al. 2010:121)

Sneddon et al. (2010:124) argue that circumfix ke—an marks an event as adversative, as

shown by example (4.36) in comparison to example (4.37). Here, Tomo is an undergoer. Sneddon

et al. use the same English passive “was stolen” in the translations for both for prefix di-

(passive) and circumfix ke—an (adversative).

(4.36) mobil Tomo di-curi
car PN PSV-steal

‘Tomo’s car was stolen’ (Sneddon et al. 2010:124)

(4.37) Tomo ke-curi-an mobil
PN PSV.ADVRS-steal-PSV.ADVRS car

‘Tomo was robbed of his car’ (Sneddon et al. 2010:124)

If we adhere to Sneddon et al.’s model of Indonesian voice, the categories are as follows:

active, passive, accidental, accidental passive, abilitative, stative, and adversative. Passive could

be made a super-category, with the subcategories of deliberate passive and accidental passive.

But this would be odd, as accidental would then be both a subcategory of passive and an

independent category.

The alternative to Sneddon’s et al.’s approach is to distinguish two opposed categories,

active and passive. In this approach, while the five distinct subtypes of passive – general passive

di-, accidental passive teR-, stative passive teR-, abilitative passive teR- and adversative passive

138

ke—an are acknowledged, they are not distinguished in the analysis. The reason for this

approach is that determining the precise subtype function of teR- requires semantic context. So

teR- is analysed in this MAS as marking one functional category only, passive.

Therefore, there are two categories: the affix that definitely marks active voice (meN-),

and the affixes that definitely mark passive voice (di-, teR-, ke—an). I will not attempt to

annotate the “zero” active implied by the absence of a passive marker, only the explicit marker

meN-. This adheres to principle 4. The category of active is encoded as AKF or ACV. The category

of passive is encoded as PSF or PSV.

I-Tag E-tag Affix Word

AKF ACV meN- meng-ambil
ACV-take

‘take’

PSF PSV di- di-ambil
PSV-take

‘be taken’

teR- ter-ambil
PSV-take

‘be taken accidentally’

ke—an ke-curi-an
PSV-steal-PSV

‘is robbed of’

Table 4.17. Analytic categories for active and passive voices

 I-tag E-tag

meng- <meng,meN,PFS+DER:VER+AKF> <meng,meN,PFX+DER:VER+ACV>

di- <di,PFS+DER:VER+PSF> <di,PFX+DER:VERB+PSV>

teR- <ter,teR,PFS+DER:VER+PSF> <ter,teR,PFS+DER:VERB+PSV>

ke—an <ke,KFS+A+DER:VER+PSF>
<ke,KFS+Z+DER:VER+PSF>

<ke,CFX+A+DER:VERB+PSV>

<an,CFX+Z+DER:VERB+PSV>

Table 4.18. Analytic categories for active and passive voices within full analyses

139

4.2.3.3.2.2. Applicative and causative constructions

As it has been introduced in 2.1.3.4.2.2, there are some affixes in Indonesian which can

be used to mark applicative and causative constructions. According to Payne (1997:186), an

applicative construction promotes to core argument status an oblique with some specific semantic

role such as recipient or instrument. So, for instance, in John sent a gift to Mary, Mary is an

oblique, but in the equivalent dative shift construction (a type of applicative) John sent Mary a

gift, Mary is promoted to the status of object, a core argument. Discussing causative

constructions (Payne 1997:176) requires an understanding of two important terms, causer and

causee. In a causative construction, an event is represented as being caused to happen by some

entity other than its immediate agent participant. In a causative clause, the external entity

responsible for the causation is called the causer, and is usually the subject. The immediate

agent of the event, i.e. the subject of the equivalent non-causative clause is then the causee, and

has a grammatical relation other than subject. So, for instance, in the sentence I had him

examine my eyes, I is the causer and him is the causee, in contrast to non-causative he examined

my eyes, where there is no causer and he is the agent/subject.

In Indonesian, the causative and applicative can be morphologically marked. As shown in

Indonesian reference grammars (Alwi et al. 1998; Sneddon et al. 2010) and other works

discussing causative constructions (such as Arka 1993), the term causative is defined as deriving

a verb with the meaning ‘make something [VERB/ADJECTIVE]’ from the ‘VERB/ADJECTIVE’

base. Sneddon (2010:74) argues that the base of Indonesian morphological causatives can be

verb, adjective, or noun. Here are some examples they proposed (Senddon et al. 2010:74-78).

(4.38) Siti bangun

 PN wake

 ‘Siti woke’

(4.39) Ibu mem-bangun-kan Siti
 mother ACV-wake-CAUS PN

 ‘mother woke Siti up’

(4.40) kamar ini bersih

 room DEM clean

 ‘this room is clean’

140

(4.41) Siti sudah mem-bersih-kan kamar ini
 PN PF ACV-clean-CAUS room DEM

 ‘Siti has cleaned the room/Siti has made this room to be clean’

(4.42) pesawat sudah men-darat
 Plane PF ACV-land

 ‘the plane has landed’

(4.43) Pilot sudah men-darat-kan pesawat
 pilot PF ACV-land-CAUS plane

 ‘the pilot has landed the plane/the pilot has put the plane on the land’

This is slightly different from the standard understanding of causatives, as described in

Payne (1997), as a valency-changing construction on verb bases. In this MAS, I adopt the

extended definition of causative given in the Indonesian reference grammars.

Three verbal affixes indicate applicative or causative, namely peR-, -kan and -i.

Indonesian scholars agree that peR- is causative and not applicative. -kan and -i are less

straightforward. Sneddon et al. (2010:74-98) argue for a tendency for -kan to mark causative and

-i applicative, whereas Arka (1993: 209) argues that both -kan and -i can mark both applicative

and causative.

Furthermore, both -kan and -i exhibit idiosyncratic behaviour in terms of compatibility

with specific bases, as Table 4.19 shows. Jatuh ‘fall’ combines with both, forming a causative with

-kan and an applicative with -i; lupa ‘forget’ combines with -kan to form an applicative, but not

with -i. Moreover, -i cannot co-occur with a base ending in -i, so *beri-i, for instance, is not a

word. Overall,-kan is more productive than -i.

Root Root with -kan Root with -i

jatuh ‘fall’ jatuh-kan ‘drop’ (causative) jatuh-i drop (something) at

(something)’ (applicative)

lupa ‘forget

(intrans.)’

lupa-kan ‘forget (trans.)’ (applicative) *lupa-i

beri ‘give’ beri-kan ‘give (sth) to someone’

(applicative)

*beri-i

Table 4.19. Productivity of -kan versus -i

Many authors, including Alwi et al. (1998), Sneddon (1996), and Sneddon et al. (2010), do

not use the term applicative. Instead, they label this construction with the semantic role of the

141

nominal promoted to become the applicative object. Thus, Sneddon et al. (2010) establish the

categories of instrumental, benefactive, locative, and recipient illustrated in examples (4.44) to

(4.51). This stands in contrast to studies focusing on voice such as Arka (1993), Arka (2009) and

Shiohara (2012), which do use the term applicative. Note that unlike causative, no extended

definition is proposed for applicative constructions in Indonesian.

 While many examples show that suffix -i tends to mark applicative constructions in

Indonesian, Shiohara adds that in some cases, the applicative suffix is optional. For instance, in

the recipient applicative example in (4.51), it is possible to delete -i and still obtain an applicative

reading for the sentence.

(4.44) dia mem-(p)ukul anjing dengan tongkat.
3s ACV-hit dog with cane

‘he hit the dog with a stick’

(4.45) dia mem-(p)ukul-kan tongkat pada anjing. Instrumental

3s ACV-hit-APPL cane to dog

‘He used the stick to hit the dog with. (Sneddon 1996: 78)

(4.46) pe-layan meng-ambil se=gelas air

NOMZR-serve ACV-take one=glass water

‘The waiter took a glass of water.’

(4.47) pe-layan meng-ambil-kan tamu se=gelas air Benefactive

NOMZR-serve ACV-take-APPL guest one=glass water

‘The waiter took the guest a glass of water.’ (Sneddon 1996: 80)

(4.48) dia men-(t)anam padi di sawah=nya

3s ACV-plant rice at ricefield=3

‘He planted rice in his field.’

(4.49) dia men-(t)anam-i sawah=nya dengan padi Locative

3s ACV-plant-APPL ricefield=3 with rice

‘He planted his field with rice.’ (Sneddon 1996: 91)

(4.50) Ayah meng-(k)irim uang kepada saya.

Father ACV-send money to 1s

‘Father sent me money.’

(4.51) Ayah meng-(k)irim(-i) saya uang. Recipient

Father ACV-send(-APPL) 1s money

‘Father sent me money.’ (Sneddon 1996: 90)

Sneddon et al. seem to classify causatives on the basis of the POS of the root. When the

root is a verb, the semantic roles of causer and causee seem to be relevant in their explanation of

142

causatives like those in (4.53). When something other than a verb is causativised, then what is

important is that the causer imposes the state coded by the non-verb root onto the object, as

exemplified in (4.55). This example is from Arka (1996:2), as Sneddon et al. do not give a

causative example with –i.

(4.52) Wanita itu men-cuci pakai-an saya
Female that ACV-wash wear-NOMZR 1s

‘the woman washed my clothes’

(4.53) Saya men-cuci-kan pakai-an pada wanita itu.

1s ACV-wash-CAUS wear-NOMZR to female that

‘I have that woman wash my clothes (Sneddon et al. 2010:79)

(4.54) lantai itu basah

floor that wet

‘that floor is wet’

(4.55) Dia mem-basah-i lantai
3s ACV-wet-CAUS floor

‘she made the floor wet’ (Arka 1996:2)

peR- has causative reading (it does not mark applicative). The distribution of causative

peR- is also more restricted; it appears on adjectival roots. peR- also attaches, irregularly, to

certain verb roots, e.g. per-buat ‘do’, from buat ‘make’; these do not have causative meaning. In

this respect, peR- stands in contrast to -kan and -i.

(4.56) Negara-negara Asia men-coba mem-per-canggih
Country-country Asia ACV-try ACV-CAUS-sophisticated

ke-mampu-an militer=nya.

NOMZR-able-NOMZR military=3p/s

‘The Asian countries are trying to make their military capability (more)

sophisticated.’ (Sneddon et al. 2010:104)

As -kan and -i are polysemous, how can we disambiguate them? To identify an

applicative, we need to verify whether or not the verb it forms has an applicativised object, which

requires comparison of the object’s semantic role, and that of any obliques or other arguments, to

those expected by the verb base. To identify a causative, we likewise need to know the

arguments’ semantic roles, in order to know whether a causer and causee are both present.

Disambiguating these categories with purely morphological cues is not completely

possible but is partially doable. I would argue that when -kan and -i are used with adjective or

143

noun roots, these suffixes tend to mark causative, and not applicative constructions. The second

argument is related to verbs with verbal roots and can be described as follows. Suffixes-kan and -

i (in verbs with transitive verbal roots) are likely to mark applicative. When the verbal roots are

intransitive, -kan tends to mark causative, while -i tends to mark applicative constructions.

To test this hypothesis, from the corpus that I have collected, I manually analysed 200

randomly collected sentences whose verbs ending in -kan and -i. These sentences were divided

into two sets, each containing 100 sentences. The roots of the verbs of the sentences in the first

set were adjective and noun roots, while the roots of verbs in the second set were verb roots. I

then contextually examined these sentences to identify which ones are causative and which ones

are applicatives. The results were cross-examined with my above proposal.

My proposed rule of thumb was 95% accurate for verbs with adjective and nooun roots

(first set), and 71% accurate for verbs with verbal roots (second set), in this sample. These results

suggest that this approach is promising, albeit without allowing an exact estimation of

effectiveness. Since applicative and causative can be distinguished morphologically to an extent,

the distinction should be accounted for in this MAS.

I opt not to include Sneddon et al.’s categories of benefactive, locative, instrumental, and

recipient as subcategories of applicative in this MAS. While it could be useful, making the

distinction requires syntactic/semantic analysis, which is beyond morphology.

There are two alternatives to Sneddon et al.’s division into four types of applicative plus

causative. The first is to treat all the applicative and causative functions as one category, that is

the applico-causative, as Malihah & Hardie (2014) do in work on Javanese. The advantage of

using a single applico-causative category would be that the system later does not need to

disambiguate these categories. The second alternative is to maintain causative and applicative as

separate categories, without the four finer applicative categories. Although more natural

(categories are kept separate), it requires the implementation to perform disambiguation.

I adopt this latter alternative, annotating two categories, applicative and causative,

Although using a joint applico-causative category might simplify the implementation, the

investigation reported above suggests that the applicative and causative can be distinguished

morphologically in many contexts. This stands in contrast to the three different types of passive

144

teR-, whose disambiguation requires context beyond morphology. The tags for causative and

applicative are KSF /CAUS and APLI /APPL.

I-Tag E-tag Affix Examples

KAUS CAUS -kan datang-kan
come-CAUS

‘make someone come’

-i panas-i
hot-CAUS

‘heat (i.e.make sth hot)’

peR- per-cantik
CAUS-beautiful

‘beautify’

APLI APPL -i datang-i
come-APPL

‘come at’

-kan beli-kan
buy-APPL

‘buy (someone) sth’

Table 4.20. Analytic categories for causative and applicative within full analyses

 I-tag E-tag

-kan kan,SFS+DER:VER+KAUS kan,SFX+DER:VER+CAUS

-kan kan,SFS+DER:VER+APPL kan,SFX+DER:VER+APPL

-i i,SFS+DER:VER+APPL i,SFX+DER:VER+APPL

-i i,SFS+DER:VER+KAUS i,SFX+DER:VER+CAUS

peR- per,peR,SFS+DER:VER+KAUS per,peR,SFX+DER:VER+CAUS

Table 4.21. Analytic categories for causative and applicative within full analyses

4.2.3.3.2.3. Reflexive and Reciprocal

 In this MAS, reciprocal beR—an and reflexive beR- are each assigned a distinct voice

category. These unproductive categories are worth including because they are criteria by which a

user might want to search a corpus.

Reflexive voice indicates that the patient is the same entity as the agent, expressed as

the subject. While English marks the reflexive with special ‘-self’ pronouns, as in she pushed

145

herself, in Indonesian, beR- can mark reflexive voice. Reflexive beR- is unproductive, limited to a

handful of bases; Kridalaksana (2007:55) gives such examples as ber-cukur ‘shave oneself’, ber-

dandan ‘decorate oneself’, and ber-cermin ‘look at oneself in the mirror’. There is also a

periphrastic reflexive which uses a special reflexive pronoun like those in English. However,

when a root can take both the morphological and the periphrastic reflexive, usually the

morphological construction is used. Compare (4.57) and (4.58).

(4.57) dia sedang ber-cukur

3s PROG RFLX-shave

‘he is shaving himself’ (morphological reflexive with beR-)

(4.58) dia sedang men-cukur diri=nya

3s PROG ACV-shave self=3s

‘he is shaving himself’ (periphrastic reflexive)

Reciprocal voice indicates that multiple people or entities do the same thing to each

other, or that multiple people or entities stand in the same relation to each other. Thus, the

subject of the verb is again both agent and patient. Reciprocal voice in Indonesian can be marked

by circumfix beR—an. In spoken colloquial Indonesian,–an suffices to express the reciprocal. But

since this project focuses on written Indonesian, this spoken feature is not considered further.

Reciprocal beR—an is unproductive and is found exclusively with a specific set of

transitive verbal and nominal bases. So, in examples (4.59) to (4.61), adapted from Sneddon et al.

(2010:111), beR—an co-occurs with tabrak ‘hit’, but new forms of this kind cannot be devised, e.g.

with beri ‘give’ (*ber-beri-an) or makan ‘eat’ (*ber-makan-an). Some specific intransitive bases

can take beR—an, for instance ber-jatuh-an ‘fall randomly’, but a reciprocal reading is not

possible; this pattern is, again, unproductive. Example (4.62) illustrates ber—an with a nominal

base musuh ‘enemy’.

(4.59) Kapal tangki dan kapal barang saling tabrak

ship tank and ship thing each collide

‘The tanker and the cargo ship collided with each other’

(4.60) Kapal tangki dan kapal barang ber-tabrak-an

ship tank and ship thing RECP-collide-RECP

‘The tanker and the cargo ship collided (with each other)’

146

(4.61) Kapal tangki ber-tabrak-an dengan kapal barang.
ship tank RECP-collide-RECP with ship thing

‘The tanker collided (reciprocally) with the cargo ship’

(4.62) mereka bermusuhan

3p RECP-enemy-RECP

‘they make enemies of each other’

The agent-patient argument of a reciprocal can be expressed in two ways: as a single

subject noun phrase as in the periphrastic reciprocal in (4.59) and the morphological reciprocal in

(4.61), with agent and patient roles fused, or with one of the entities as the subject and the other

an oblique nominal, as in (4.62). Another way to obtain reciprocal reading is by using

reduplication, which I will explain in 4.2.4.2.

I-Tag E-tag Examples

RESP RECP ber-peluk-an
RECP-hug-RECP

‘hug each other’

REFL RFLX ber-cukur
RFLX-shave(v.tr)

‘shave oneself’

Table 4.22. Analytic categories for reciprocal and reflexive voices

 I-tag E-tag

ber—an <ber,beR,KFS+A+DER:VER+RESP>
<an,KFS+Z+DER:VER+RESP>

<ber,beR,CFX+A+DER:VER+RECP>

<an,CFX+Z+DER:VER+RECP>

ber- <ber,beR,PFS+DER:VER+REFL> <ber,beR,PFX+DER:VER+RFLX>

Table 4.23. Analytic categories for reciprocals and reflexives within full analyses

4.2.3.3.3. Adjective degree

 There are two adjective degree prefixes in Indonesian: superlative prefix teR-, equivalent

to English -est or most [adjective]; and equative prefix se-, equivalent to the English construction

as [adjective] as . Both teR- and se- have other functions, e.g. passive teR- and collective se-, but

the distribution is distinct for the different functions. Superlative teR- only co-occurs with an

adjective base, and passive teR- only with a verb base, so disambiguation is relatively easy.

Likewise, collective se- precedes noun roots, while equative se- precedes adjective roots. Tags for

147

adjective degree prefixes are presented in Table 4.24 and Table 4.25.

I-Tag E-tag Affix Examples

SUPF SUPV teR- ter-cantik
SUPV-beautiful

‘most beautiful’

EKTF EQTV se- se-cantik
EQTV-beautiful

‘as beautiful as’

Table 4.24. Analytic categories for adjective degree

 I-tag E-tag

ter- <ter,teR,PFS+DER:AJE+SPF> <ter,teR,PFX+DER:ADJ+SUPV>

se- <se,PFS+DER:AJE+EKF> <se,PFX+DER:ADJ+EQTV>

Table 4.25. Analytic categories for adjective degree within full analyses

4.2.3.3.4. Other functional categories

Some affix functions described in 2.1.3.4.2.2 are not included in the MAS, for various

reasons. This may be due to the application of the principles in 4.1.2. For instance, nominaliser

prefixes can be further classified as agentive, instrumental, and so on; but doing so requires

analysis beyond morphology (semantics, syntax, or both). Therefore, only the most generic

function is represented, which for a nominaliser prefix is the outcome POS of noun (DER:NOU).

In other cases, categories are omitted because a similar function is already covered by

another reading. For instance, se can be described as a proclitic numeral or collective prefix. The

word sekampung permits either reading: se-kampung ‘the whole village’ (collective prefix) or

se=kampung ‘one village’. The latter is the clitic version of satu kampung ‘one village’, but in fact

satu kampung can have either reading: ‘one village/the whole village’. Thus, the numeral clitic

can be considered as also covering the meaning of the collective via polysemy, just as the full

form covers both meanings. Thus, the MAS does not include a tag for the collective function of se-

/se=.

148

4.2.3.3.4.1. Definite marker

Definiteness is not usually marked in Indonesian, but there do exist three definite

markers: articles si and sang, and suffix -nya. Each receives an additional tag for the definite

property (+DEF) in addition to its tagging as root or suffix. The last of these is the only bound

definite marker in Indonesian. In some morphological contexts, e.g., suffixed to adverb semua, -

nya can only be a definite suffix. However, in other cases, distinguishing definite -nya from

pronominal enclitic =nya requires context beyond morphology; handling of this is discussed in

4.2.6.

When nya is a non-clitic morpheme, i.e. a suffix, its orthographic and citation form are

identical. Therefore, following principle 4 (see 4.1.4), only one form is presented in the analysis,

as in Table 4.26. Note that the +DEF for definite articles si and sang in 4.2.2.1 are given after the

root’s POS label, that is ROOT+ART+DEF.

I-Tag E-tag Affix Word

DEF -nya buku-nya

book-DEF

‘the book’

Table 4.26. Analytic category for definite suffix

 I-tag E-tag

-nya <nya,SFS+DER:NOM+DEF> <nya,SFX+DER:NOU+DEF>

Table 4.27. Analytic category for definite suffix within full analysis

4.2.3.3.4.2. Iterative

Iterative is the usual term for the aspect that expresses an action being performed

repeatedly. Sneddon et al. (2010:98), however, use the term Repetitive instead of Iterative for

this phenomenon in Indonesian. The affix that marks this action is –i, already discussed as

applicative or causative marker. An analysis of this affix as iterative does not take the place of an

149

analysis of causative/applicative, but rather adds to it, in cases such as example (4.65), in which

mem-(p)ukul-i ‘kiss iteratively’ is an applicative with an additional iterative analysis. This

meaning is only present when the suffix follows a transitive verb base.

(4.63) dia men-(p)ukul anjing=nya
3s ACV-hit dog=3s

‘He hit his dog’

(4.64) dia men-(p)ukul-i anjing=nya
3s ACV-hit-ITRV dog=3s
‘He hit his dog over and over’

(4.65) Dia men-(p)ukul-i anjing=nya dengan tongkat
3s ACV-hit-APPL.ITRV dog=3.poss with cane

‘He hit his dog over and over with a cane’

The restriction to transitive verbal bases can be a useful cue for disambiguation. As (4.66)

and (4.67) show, suffixing –i to adjectival base sakit ‘sick’ and intransitive base jatuh ‘fall’ does

not give the iterative reading.

(4.66) Dia meny-(s)akit-i pacar=nya dengan kata-kata=nya

3s ACV-sick-CAUS girlfriend=3s with word-word=3s

‘He sickened his girlfriend with his words’

(4.67) Dia men-jatuh-i ter-dakwa dengan hukum-an mati
3s ACV-fall-APPL NOMZR.PAT.charge with punish-NOMZR die

‘He punished the defendant (lit. person being charged) with a death sentence’

Iterative aspect is indicated by tags ITRV / ITRV, applied to applicative/causative -i only

after a transitive verb base, as illustrated by its absence in (4.68) (intransitive base) and

presence in (4.69) (transitive base).

(4.68) men-jatuh-i
<men,meN,PFX+DER:VER+ACV>

<jatuh,ROOT+VER>

<i,SFX+DER:VER+APPL>

(4.69) mem-(p)ukul-i
<mem,meN,PFX+DER:VER+ACV>

<ukul,pukul,ROOT+VER>

<i,SFX+DER:VER+APPL+ITRV>

150

I-Tag E-tag Affix Example

ITRF ITRV -i pukul-i
hit-APPL.ITRV

‘hit over and over’

Table 4.28. Analytic category for iterative aspect

 I-tag E-tag

-i <i,SFS+DER:VER+APLI+ITRF> <i,SFX+DER:VER+APPL+ITRV>

Table 4.29. Analytic category for iterative aspect within a full analysis

4.2.3.3.4.3. Random action

The meaning of diversely-directed activity, or random action (Sneddon et al. 2010:113), is

conveyed by beR—an, which as noted in 4.2.3.3.2.3 usually marks reciprocal construction.

However, beR—an with this random-action meaning instead of reciprocal meaning has low

productivity, occurring only with a specific set of intransitive bases (listed by Sneddon et al.

2010:119), such as jatuh ‘fall’ (see Table 4.30). When its function is random action, beR—an is

tagged ACAK / RAND.

I-Tag E-tag Affix Word

ACAK RAND beR—an ber-jatuh-an
RAND-fall-RAND

‘fall randomly’

Table 4.30. Analytic category for random action

 I-tag E-tag

beR—an <ber,beR,KFS+A+DER:VER+ACAK>
<an,KFS+Z+DER:VER+ACAK>

<ber,beR,CFX+A+DER:VER+RAND>

<an,CFX+A+DER:VER+RAND>

Table 4.31. Analytic category for random action within full analyses

151

4.2.4. Reduplication

4.2.4.1. Placement of functional analysis

Each reduplication includes two units: the source and copy (see 2.1.3.4.3). The source unit

is annotated with the analytic categories of the root from which the reduplication is built

(following normal root analysis). The copy is annotated with the analytic categories for the

reduplication itself, as shown in (4.70) and (4.71). For discussion of how reduplication is

tokenised, see section 4.2.1.3.

(4.70) sayur-mayur imitative reduplication
<sayur,ROOT+NOU>

<mayur,sayur,RED:IMTV+DER:NOU+PLUR>

(4.71) buku-buku
<buku,ROOT+NOU+PLUR> source

<buku,RED:FULL+DER:NOU+PLUR> copy

In imitative and partial reduplication, determining which unit is the source and which

the copy is not difficult, as the orthographic form of the copy is obviously distinct from that of the

source (mayur in example (4.70), not sayur). In full reduplication, the source and copy are

identical. In this case, I opted to treat the second unit as the copy, as in (4.71), where the analytic

category for reduplication, RED, is assigned to the second buku not the first.

What if the reduplication applies to a full polymorphemic word, such as compound es

krim ‘ice cream’ composed of es ‘ice’ and krim ‘cream’? When this two-root word is fully

reduplicated, the copy mirrors the full word, giving the impression of two words and two

duplicated morphemes (es krim-es krim ‘ice creams’). Even though the reduplication affects a

whole word, not a morpheme, the duplicated components of the base are annotated separately in

full; the tagging of this example, presented in section 4.2.1.3, is repeated here as (4.72).

(4.72) <es,ROOT+NOU> source

 <krim,ROOT+ADJ> source

<es,RED:FULL+DER:NOU+PLUR> copy

 <krim,RED:FULL+DER:NOU+PLUR > copy

152

Both units in the copy (the second instance of es krim) are annotated with the analytic

label for the reduplication morpheme, RED, while all units in the source are annotated according

to their actual category, in this case as noun roots. While there is actually only one abstract

reduplication morpheme here (the process of full-word reduplication applied to the overall word

es krim), two reduplication morphemes are presented in the system of analysis defined by this

MAS (one reduplication morpheme, i.e. copy, for each root). This is what we can call a useful

fiction. It is indeed incorrect, but is useful in terms of keeping the overall system clear and

simple, and matching up morphemes to analyses. For reasons explained in 4 2 1 3, attempting to

present the reduplication as one rather than two morphemes would lead to a much more

confused layout.

4.2.4.2. Formal and functional analytic categories for reduplication

All the analytic categories for reduplication begin with the formal morphological category

label RED (reduplication). Full, partial, and imitative are dependent subcategories of RED, with

labels FULL, PART and IMTV, respectively. After this formal tag are tags for the outcome POS

of the reduplication, and then other functional tags (if any). For example, in (4.73), buku-buku is

a full reduplication, whose outcome POS is noun, with plural function. Larasati et al.’s (2011)

MAS (see 3.5.2) also applies the category of plural to verbs, but this would seem to be inaccurate

(the meanings in question are in fact reciprocal/iterative, as discussed below). In this MAS, the

analytic category plural is applied exclusively to the copy unit of a noun reduplication.

(4.73) <buku,ROOT+NOU> source

<buku,RED:FULL+DER:NOU+PLUR> copy

The two other functional categories marked by reduplication are reciprocal (RECP) and

iterative (ITRV) (see 4.2.3.3.2.3 and 4.2.3.3.4.2). The reciprocal reading occurs only when active

marker -meN- occurs between the source and copy of a verb root, as in (4.74). In this case, I opt

decide to incorporate this category into the analysis of the copy, rather than the prefix meN- or

the source. This is because the reciprocal reading is only valid in reduplication, particularly this

153

pattern, and nowhere else. For instance, in (4.75) the verb root is fully reduplicated but there is

no meN- between the source and copy, and thus this reduplication must not be analysed as

reciprocal; rather, the correct reading is iterative34.

(4.74) pukul-mem-(p)ukul

<pukul,ROOT+NOU+VER >

<mem,meN,PFX+DER:VER+ACV >

<ukul,pukul,RED:FULL+DER:VER+ITRV+RECP>

(4.75) pukul-pukul

<pukul,ROOT+NOU+VER >

<pukul,RED:FULL+DER:VER+ITRV>

The complete analytic categories for reduplication are given in Table 4.32 to Table 4.34.

I-Tag E-tag Reduplication type Examples

RED:PNH RED:FULL Full buku-buku
book-RED.FULL

‘books’

RED:PARS RED:PART Partial te-tamu
RED.PART-guest

‘guests’

RED:IMTF RED:IMTV Imitative sayur-mayur
vegetable-RED.IMTV

‘vegetables’

Table 4.32. Formal analytic categories of reduplication

I-Tag E-tag Examples

PLUR buku-buku
book-RED.FULL.PLUR

‘books’

ITRF ITRV pukul-pukul
hit-RED.FULL.ITRV

‘neighbour’

RPKL RECP pukul-mem-(p)ukul
hit-RED.FULL.ITRV.RECP

‘hot one and each other’

Table 4.33. Functional analytic categories of reduplication

34 Reciprocal and iterative readings can also be obtained from affixes instead of reduplication; see 3.5.1.1.4.2.3.3.2.3 and

4.2.3.3.4.2.

154

Reduplication I-tag E-tag

Full & plural <buku,RED:PNH+DER:NOM+PLUR> <buku,ROOT+NOU>

<buku,RED:FULL+DER:NOU+PLUR>

Full &

iterative

<pukul,ROOT+NOM+VER>
<pukul,RED:PNH+DER:VER+ITRF>

<pukul,ROOT+NOU+VER>

<pukul,RED:FULL+DER:VER+ITRV>

Full, iterative,

and reciprocal

<pukul,ROOT+NOM+VER>
<mem,meN,PFS+DER:VER+AKF>
<ukul,pukul,RED:FULL+DER:VER+
ITRV+RECP>

<pukul,ROOT+NOU+VER>

<mem,meN,PFX+DER:VER+ACV>

<ukul,pukul,RED:FULL+DER:VER+IT

RV+RECP>

Partial <te,tangga,RED:PNH+DER:NOU>

<te,tangga,RED:PART+DER:NOU>

Imitative <mayur,sayur,RED:IMTF+
DER:NOU+PLUR>

<mayur,sayur,RED:IMTV+

DER:NOU+PLUR>

Table 4.34. Analytic categories for reduplication within full analyses

4.2.5. Compounds

Compounds are analysed as a combination of roots (e.g. kacamata ‘pair of eyeglasses’

from kaca ‘glass’ and mata ‘eye’), tokenised as two morphemes, each receiving an analysis.

Compounds may also occur in combination with affixes, as in per-tanggung-jawab-an

‘implementation of responsibility’, in which the compounded tanggung ‘carry’ and jawab ‘answer’

are circumfixed by peR—an. Likewise, a compound can be reduplicated as in kacamata-kacamata

‘pairs of eyeglasses’, whose annotation is given in Table 4.35.

Kacamata-kacamata actually contains only one instance of reduplication (for the overall

word kacamata), a circumstance already discussed in 4.2.4.1. There is, thus, one abstract

reduplication morpheme, but in the analysis, two tokens are present, one for each root affected by

the word-level reduplication. The four morphs thus collectively represent only three morphemes.

As noted in 4.2.4.1, presenting the word as ha7ving four morphemes is a kind of useful fiction: a

theoretically incorrect analysis which is useful in terms of keeping the overall system clear and

simple and matching up morphemes to annotations.

155

Compound Compound + affixation Compound + reduplication

kaca-mata per-tanggung-jawab-an kacamata-kacamata

<kaca,ROOT+NOU>

<mata,ROOT+NOU>
<per,peR,CFX+A+DER:NOU>

<tanggung,ROOT+VER>

<jawab,ROOT+VER>

<an,CFX+Z+DER:NOU>

<kaca,ROOT+NOU>

<mata,ROOT+NOU>

<kaca,RED:FULL+DER:NOU+PLUR>

<mata, RED:FULL+DER:NOU+PLUR>

Table 4.35. Compounds with and without other morphological processes

4.2.6. The NYA tag

The morpheme nya can be highly ambiguous in terms of functions and forms, and its

disambiguation may require context beyond morphology. It is a homonym of 1) the pronominal

enclitic (object of host verb or possessor of host noun); 2) the definite suffix, and 3) an

adverbialiser suffix (see Table 2.7 in 2.1.3.4.2.2). Given the differences between clitics and

derivational suffixes, for instance the latter having outcome POS annotation, these require

distinct treatment.

In some cases, disambiguation can be implemented using orthographic and lexical cues.

When nya is an anaphor for tuhan ‘God’, the N is always written in uppercase, thus: =Nya.

Capitalised this way, it must be a case of the clitic, not the suffix. The adverbialiser -nya only

occurs with a limited set of adjectives (e.g. biasa ‘usual’, lazim ‘common’, umum ‘general’) and can

be ruled out as the correct reading of nya in other contexts.

Otherwise, the suffix and enclitic readings are quite challenging to disambiguate, but

there are a minority of cases where this can be achieved. First, there is a limited set of roots (e.g.

kata ‘word’, jawab ‘answer’) with which nya is always the pronominal enclitic; see example (4.76).

Second, if the word is marked by certain affixes (e.g. meN-, peR—kan), and the root is a

transitive verb, nya must also be the pronominal enclitic: see example (4.77) . These affixes

indicate that the host word is a transitive verb, and thus, the only possible interpretation of nya

is as a pronominal enclitic for the verb’s object, not a definite suffix.

(4.76) kata=nya
 word=3s

 ‘his/her word’

156

(4.77) men-cari=nya
 ACV-search=3s

 ‘search him/her’

 In other cases, disambiguation requires syntactic or even pragmatic context. Attached to

buku ‘book’, as in (4.78) and (4.79), nya can have either reading. For example, mana bukunya?

can be translated as either ‘where is his/her book?’ or ‘where is the book?’, and only the speaker

and hearer’s shared situational knowledge determines which.

(4.78) buku-nya
 book-DEF

 ‘the book’

(4.79) buku=nya
 book-3s

 ‘his/her book’

Of these two means of disambiguation, one is within the scope of this thesis

(orthographical, lexical, and morphological context), and one falls beyond the scope of this thesis

(syntactic and pragmatic context). Looking forward to the implementation, we may say that the

system should always try its best to disambiguate among the readings, annotated as explained

earlier: enclitic <nya,dia,ROOT+ECLT+PRON> (capital N, if the enclitic is written as Nya, is

preserved in the orthographic form); definite suffix/definite nominaliser suffix

<nya,SFX+DER:NOU+DEF>; adverbialiser suffix <nya,SFX+DER:ADV>. Per principle 4, the

annotation for the clitic includes as its citation form the independent pronoun dia ‘s/he’.

But what happens when the system cannot disambiguate the enclitic and suffix? One

possibility would be to use some statistical approach, perhaps referencing context wider than

adjacent morphemes. To explore this possibility, I asked a number of Indonesian-speaking

linguists to manually disambiguate a few sentences containing ambiguous instances of nya, and

found that their answers were split between enclitic and suffix analyses. This means that even

for human annotators given access to considerable context, this is not an easy problem to resolve.

This makes a statistical approach highly unlikely to succeed, as even the initial step of setting a

gold-standard for testing would pose considerable difficulty.

157

The consequence of this is that many cases of nya will have two analyses in the output of

any system implementing this MAS. But in practical terms, this is highly undesirable. This

morpheme is very productive. Leaving it ambiguous will drastically reduce an annotation

system’s precision-recall scores, and make using annotated data a lot more complicated for the

end-user.

For this reason, a special tag <NYA> is defined, as illustrated in example (4.80), for

instances of nya that a system cannot disambiguate. This tag indicates that nya could be read in

context as either pronominal enclitic <ROOT+ECLT+PRON> or definite/definite nominaliser

suffix <SFX+DER:NOU+DEF>. The reading of nya as adverbialiser is not a possibility, because

those cases can all be identified lexically, as noted previously.

(4.80) <buku,ROOT+NOU>

<nya,NYA>

4.3 A full-sentence morphological analysis

Table 4.36 presents a full morphological analysis, using the complete MAS, of a sample

sentence from an Indonesian national news portal35, which reads:

Presiden Joko Widodo (Jokowi) mengaku sudah selesai menyusun kabinet untuk periode
kedua pemerintahannya.
‘President Joko Widodo (Jokowi) admits that he has finished organising his cabinet for

his second period of governance’.

The analyses are presented vertically. For clarity, only E-tags are provided; in the actual

implementation, both I- and E-tags may be generated.

35https://news.detik.com/berita/d-4744938/jokowi-rampung-susun-kabinet-dahnil-prabowo-siap-jadi-oposisi-atau-koalisi

last accessed 25/03/2021

https://news.detik.com/berita/d-4744938/jokowi-rampung-susun-kabinet-dahnil-prabowo-siap-jadi-oposisi-atau-koalisi

158

Words (with glosses) Annotation

Presiden
‘president’

Joko
‘PN’

Widodo
‘PN’

(Jokowi)
‘PN’

meng-aku
ACV-admit

‘admit’

sudah
‘already’

selesai
‘finish’

meny-(s)usun
ACV-organise

‘organise’

kabinet
‘cabinet’

untuk
‘for’

periode
‘period’

ke-dua
NUM-two

‘second’

pem-(p)erintah-an=nya
NOMZR-order-NOMZR

‘governance’

<presiden,ROOT+NOU>

<Joko,ROOT+NOU>

<Widodo,ROOT+NOU>

<(,PUNC>

<Jokowi,ROOT+NOU>

<),PUNC>

<meng,meN,PFX+DER:VER+ACV>

<aku,ROOT+VER>

<sudah,ROOT+ADV>

<selesai,ROOT+VER>

<meny,meN,PFX+DER:VER+ACV>

<usun,susun,ROOT+VER+LOST>

<kabinet,ROOT+NOU>

<untuk,ROOT+PRE>

<periode,ROOT+NOU>

<ke,PFX+DER:NUM>

<dua,ROOT+NUM>

<pem,peN,CFX+A+DER:NOM>

<erintah,perintah,ROOT+NOM+LOST>

<an,CFX+Z+DER:NOM>

<NYA>

Table 4.36. Full analysis sample

159

4.4 Conclusion

In this section, I have presented a novel MAS for Indonesian. The analytic categories for

roots, affixes and reduplications have been defined and justified, and their use demonstrated

both in isolation and within a full analysis of a single sample sentence. In Chapter 7, we will see

how annotation using this MAS is automatically implemented, and how the results are

evaluated. This evaluation will include a comparison with the existing state-of-the-art

morphological analyser for Indonesian, MorphInd, to which I now turn in Chapter 5.

160

CHAPTER 5

AN EVALUATION OF THE STATE-OF-THE-ART MORPHOLOGICAL ANALYSER FOR

INDONESIAN

5.1 A brief description of MorphInd

MorphInd (Larasati et al. 2011) is a Morphological Analyser (MA) for Indonesian, which

runs on UNIX-like operating systems (such as Linux or macOS). MorphInd utilises the TLM

approach (Koskenniemi 1983), which operates by modelling both lexicon and grammar abstractly

as Finite State Machines, or FSMs (Beesley & Kartunnen 2003), a topic to be discussed in

Chapter 6. The FSM utilised within MorphInd is a model of Indonesian morphology which is able

to recognise affixation, compounding, reduplication, cliticisation, and particle attachment. TLM

systems (including MorphInd) use a compiler tool to create an FSM program or programs from

their linguistic resources, minimally a lexicon and a set of rules describing possible

configurations of morph(eme)s within words. MorphInd accepts an input text and yields an

output text to which morphological annotations are given, based on the recognition of morphemes

within each word by the FSM.

Briefly, MorphInd analyses each input word as follows. Initially, it generates all possible

analyses of the word. If a word has only one analysis across both tokenisation and tagging, this

analysis appears in the final output. If there are multiple possible analyses, MorphInd applies a

sequence of disambiguation procedures. First, it applies rule-based disambiguation. This consists

of applying 16 rules of thumb that reduce the ambiguity without considering neighbouring word

tokens (Larasati et al. 2011:121 refer to this as unigram word context). Subsequently, MorphInd

performs statistical disambiguation, which operates at sentence level. All remaining analyses are

statistically scored according to their probability of correctness; the candidate with the highest

score is generated as the final output.

The programs used to implement MorphInd are as follows. MorphInd itself is

implemented in, and thus requires, the Perl programming language. MorphInd utilises foma

161

(Hulden 2009) as its FSM system. The parameters needed for statistical disambiguation are built

using the KenLM program (Heafield 2011).

5.2 Why MorphInd is the state-of-the-art morphological analyser for Indonesian

There exist two MAs for Indonesian. The earlier was built by Pisceldo et al. (2008); I refer

to this as PMA (Pisceldo et al.’s Morphological Analyser) in this thesis. The more recent is

MorphInd36 (Larasati et al. 2011), which, I argue, is presently the state-of-the-art MA for

Indonesian. MorphInd is presented as an advance upon PMA by Larasati et al. (2011:120-121).

Why should MorphInd be considered state-of-the-art? First, MorphInd is completely

functional and in continuous development. This stands in contrast to PMA, which due to some

technical issue does not run on current systems; I have contacted PMA’s authors regarding this

matter, but to date, not received any response. The webpage from which PMA may be

downloaded was last updated in 2011 and gives no indication that PMA has undergone any

modification since 200837. MorphInd, however, has undergone three modifications since its initial

release in 2011; the current version of MorphInd is v.1.4. In MorphInd v.1.2, the author added a

disambiguation module, which was then improved in version v.1.3. The most recent update

(v.1.4) added a module to handle analysis of compound words.

This may explain why MorphInd, rather than PMA, is used by other Indonesian NLP

systems, as the following non-exhaustive survey illustrates. Rashel et al. (2014) use MorphInd to

build a rule-based POS tagger for Indonesian. Green et al. (2012) use MorphInd to build an

Indonesian dependency treebank. MorphInd has been used to annotate the IDENTIC Corpus,

built by Larasati (2012). It has also been used by Denistia & Bayeen (2019) to analyse a part of

the Indonesian data in Leipzig Corpora Collection (LCC) (Goldhahn et al. 2012); see 2.2.3.

Another likely reason why MorphInd, instead of PMA, is reused in the abovementioned

systems is that MorphInd is freely redistributable. All its software components are released

36 https://septinalarasati.com/morphind/ (accessed 26/04/2021)
37 https://bahasa.cs.ui.ac.id/nlp-resources (accessed 26/04/2021)

https://septinalarasati.com/morphind/

162

under a free licence38. Conversely, PMA’s core NLP program, xfst (Kartunnen & Beesley 2003) is

patent-encumbered, such that full access to all functionality is only available in the commercial

version (according to Larasati et al. 2011:121). This could be another reason why the Indonesian

NLP systems previously mentioned prefer to embed MorphInd rather than PMA. Second,

MorphInd’s annotation scheme represents an improvement relative to PMA in terms of

tokenisation and tagging, as I have discussed in section 3.5.2.

5.3 Larasati et al.’s evaluation

The creators of MorphInd evaluated its performance, as reported in Larasati et al.

(2011:126-128). That evaluation focuses on just one aspect of MorphInd’s performance, that is, its

coverage measured over word types and tokens. Although not spelt out by the authors, it is very

likely that coverage refers to the proportion of words that are not analysed as unknown (tagged

with <x>). This is the most sensible interpretation given the totality of what Larasati et al. say

about coverage. Moreover, the fact that MorphInd does not leave any word untagged (as shown

by Table 5.1) rules out the interpretation that out-of-coverage words are left completely

unanalysed.

Input39 Output

PT KAI melarang aktivitas di sekitar jalur

rel kereta api yang hampir menyebabkan

kecelakaan.

^pt<n>_NSD$ ^kai<x>_X—$

^meN+larang<v>_VSA$ ^aktivitas<n>_NSD$

^di<r>_R—$ ^sekitar<d>_D—$

^jalur<n>_NSD$ ^rel<x>_X—$

^kereta<n>_NSD$ ^api<n>_NSD$ ^.<z>_Z—$

^yang<s>_S—$ ^hampir<d>_D—$

^meN+sebab<n>+kan_VSA$

^ke+celaka<a>+an_NSD$ ^.<z>_Z—$

Hal itu berkaitan dengan acara Jakarta

Mystical Tour

^hal<n>_NSD$ ^itu_B—$

^ber+kait<v>+an_VSA$ ^dengan<r>_R—$

^acara<n>_NSD$ ^jakarta<n>_NSD$

^mystical<x>_X—$ ^tour<f>_F—$

Table 5.1. A sample of MorphInd input and output40

38 Specifically, the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
39 PT = Perseroan Terbatas (state-owned-enterprise), KAI = Kereta Api Indonesian (Indonesian railway system), Foreign

words are written in italic.
40 This text sample is taken from an Indonesian news website: https://news.detik.com/berita/d-4772024/kai-larang-tur-mistis-

datangi-lagi-rel-lokasi-tragedi-bintaro-1987 (last accessed 26/04/2021)

https://news.detik.com/berita/d-4772024/kai-larang-tur-mistis-datangi-lagi-rel-lokasi-tragedi-bintaro-1987
https://news.detik.com/berita/d-4772024/kai-larang-tur-mistis-datangi-lagi-rel-lokasi-tragedi-bintaro-1987

163

Larasati et al. report MorphInd’s coverage in comparison to PMA’s (Table 5.2). Both

MorphInd and PMA have low coverage when measured by either types (below 55%) and tokens

(below 85%). This data suggests that MorphInd is slightly better than PMA in terms of token

coverage, while PMA is better in terms of type coverage.

 Test set # sentences Token coverage Type coverage

MorphInd T5K

T10K

5,000

10,000

84.69±0.28 (highest)

84.61±0.10

50.77±0.70

47.19±0.35

PMA T5K

T10K

5,000

10,000

83.62±0.27

83.46±0.06

54.95±0.76 (highest)

51.39±0.05

Table 5.2. Percentage coverage of word tokens and types for MorphInd and PMA (adapted from

Larasati et al. 2011:128)

Larasati et al. argue that the results are affected by differences in the two systems’

resources. MorphInd utilises a root lexicon (3,000+ entries), whereas PMA utilises a lexicon that

includes both roots (monomorphemic words) and polymorphemic words (29,000+ entries in total).

This is evident from both (a) Larasati et al.’s explanation that PMA’s lexicon contains affixed

forms (i.e. polymorphemic words) as well as roots and (b) direct observation of PMA’s lexicon

(PMA’s resources are openly accessible).

Larasati et al. explain that MorphInd’s better token coverage is because, unlike PMA, its

rules handle clitics and particles. They argue that PMA’s better type coverage is because of the

great difference in lexicon size (an order of magnitude). This is not completely accurate. It seems

clear that PMA’s better type coverage is not only a matter of lexicon size but also lexicon type. As

we have seen, MorphInd’s lexicon contains only roots, while PMA’s lexicon also has

polymorphemic words – forms which must be dealt with by rule-based analysis, rather than

lexical lookup, in MorphInd.

In an effort to demonstrate that MorphInd can outperform PMA on coverage of both types

and tokens, Larasati et al. then report another experiment. This time, they modify PMA’s lexicon

to include only items also in the MorphInd lexicon. The results are shown in Table 5.3.

164

 Test set #sentences Tokens Type

MorphInd T5K

T10K

5,000

10,000

84.69±0.28 (highest)

84.61±0.10

50.77±0.70 (highest)

47.19±0.35

modified PMA-

comparable

T5K

T10K

5,000

10,000

81.91±0.18

81.82±0.06

44.60±0.66

40.83±0.31

Table 5.3. Percentage coverage of word tokens and types for MorphInd and modified PMA

(adapted from Larasati et al. 2011:128)

However, I would argue that this comparison is misleading. Using the shared lexicon

means removing PMA’s polymorphemic lexicon entries. This cripples PMA’s performance,

because unlike MorphInd, PMA is designed to use a lexicon of both monomorphemic and

polymorphemic words. Under these conditions, MorphInd indeed exceeds the modified PMA in

both type coverage and token coverage. However, this cannot justify a claim that MorphInd

outperforms PMA, because the comparison is not fair. The result simply demonstrates that

MorphInd and PMA use different approaches to polymorphemic words (rules and lexical entries,

respectively).

5.4 Evaluation of MorphInd’s morphological annotation scheme

The Morphological Annotation Scheme (MAS) proposed by Larasati et al. (2011) and used

in MorphInd was evaluated at length as part of my review of such schemes in section 3.5.2. Here,

I present some advantages and drawbacks of Larasati et al.’s MAS (LM) in abbreviated form as a

prelude to my evaluation of MorphInd’s implementation (in 5.5).

That LM’s morphological analytic labels, along with the word POS labels, are linked to

the whole word token, is characteristic of a morphosyntactic or POS tagger. This means that

MorphInd has the advantage that it can be used for POS tagging purposes, even though it is a

morphological analyser.

MorphInd can tokenise words into different kinds of morphemes (root, affix, clitic,

particle). The earlier PMA does not handle clitics and particles. With its better tokenisation

scheme, MorphInd enables searches for a wider variety of morphological tokens.

165

In LM, not only words but also roots are POS tagged. Therefore, users can perform

searches based on the root’s POS as well as the word’s. MorphInd’s output is unambiguous. With

this kind of output, evaluation is relatively easier, as we never have to evaluate more than one

analysis.

Despite the above-mentioned advantages, I have argued that LM, even if flawlessly

implemented, cannot serve a number of anticipated user needs (see section 3.5.2).

LM indeed tokenises words into morphemes, but there are limitations. First, affixes and

clitics that exhibit allomorphy (e.g. meng-, men-, meny-; see 2.1.2) of a morpheme are presented

only in citation form (in this case meN-). This prevents users from searching the annotation for

morph tokens based on their allomorphic (orthographic) form. Nor does LM distinguish the

tokenisation of a circumfix from that of a combination of prefix and suffix. Moreover, LM

tokenises reduplications identically to the corresponding non-reduplicated morpheme. The

reduplicated morpheme (the copy) is not tokenised or analysed. This prevents users from

searching the annotation for reduplications based on their form.

 Another limitation is that instead of linking affix tags to affix tokens, MorphInd adds

affix tags to the word-level POS tags. Larasati et al. (2011) refer to the combination of word POS

tag and affix tag as a morphological tag. Combining POS and morphological features is a common

characteristic of morphosyntactic tagging.

 LM lacks any tags for formal categories. This means that users cannot search by formal

morphological criteria (e.g. prefix, circumfix, or full/partial/imitative reduplication). Of LM’s

functional tags, a number are over-generalised. For instance, the label plural is given to all

reduplications. This is inaccurate, because reduplication can also mark other functions including

iterative or reciprocal. Similarly, the form nya is always annotated as a third person singular

clitic pronoun. This is inaccurate, as in certain contexts, nya is a definite suffix (see 4.2.3.3.4.1).

Another shortcoming is that certain common morphologically marked functions, such as equative

adjective and causative voice, are absent from LM.

Certain analytic categories, such as determiner, copula, or modal, are treated as POS

categories in LM but not by reference grammars of Indonesian. For instance, modal is a

considered a subcategory of adverb by Alwi et al.’s (1998) grammar. But in LM, modal and

166

adverb are two separate top-level POS categories. This is likely to cause difficulty for users

devising searches searching based on LM tagging, particularly if they rely on knowledge acquired

from reference grammars.

The benefit of MorphInd’s unambiguous output has been discussed earlier. However, on

the negative side, it bears noting that MorphInd actually yields multiple analyses at an

intermediate stage, one of which is correct. Since no ambiguity is allowed, MorphInd has to

choose one analysis at the final stage (output), but it is not guaranteed to be the correct one.

Earlier, advantages of MorphInd providing word-level annotation were discussed.

However, from the perspective of morpheme-level annotation, LM is evidently lacking, not least

because affixes are left untagged (see section 3.5.2.4). This is actually a major disadvantage;

users cannot search the corpus based on annotation which does not exist.

The conclusion of my assessment, previously presented in section 3.5.2, is that for

morphological annotation at morpheme level, a new scheme is required to avoid the

disadvantages of LM. This motivated the creation in Chapter 4 of a new and, I argue, improved

scheme that fulfil this goal. I shall now proceed to evaluate MorphInd’s implementation of the

analysis, independently of these problems.

5.5 Evaluation of MorphInd’s performance

5.5.1 Output format

Understanding MorphInd’s output format is important, not only for computational

processing, but also and particularly for the purpose of the upcoming manual evaluation

exercise. Table 5.4 gives a concise representation of MorphInd’s procedures, and corresponding

output formats, for two primary tasks: tokenisation and tagging. It shows how morphemes are

delineated from one another in MorphInd’s output. It also shows the location and the format of

the analytic tags.

167

Task Procedure Output format

1 Tokenise words to

morphemes

Tokenise all words to the

corresponding morphemes’

citation forms

All morphemes are presented in

lowercase (e.g London > london;

Margaret > margaret; NaCl >

nacl; IELTS > ielts)

Exception: citation forms of

allomorphs, e.g meng > meN,
peng > peN

Set morpheme boundary + symbol

2 Assign tag Roots are assigned coarse POS

tag, but affixes are not tagged

Single letter tag, e.g. <n>, on

roots

Words are assigned

morphosyntactic tags

Mnemonic letter tag (e.g. VSA

for verb singular active)

Table 5.4. MorphInd’s output structure and analysis procedures

 A sample of MorphInd’s tokenisation and tagging mechanism is diagrammed in Figure

5.1. The verb men(t)ulis ‘write’ is annotated as the combination of active prefix meN-, followed by

verb root tulis ‘write’, whose POS is given inside angle brackets. These morphemes are

delineated by +. Subsequent to the final morpheme, an underscore is given followed by the word’s

POS tag, VSA.

Morpheme boundary (+)

meN+tulis<v>_VSA

Root tag <v> Word tag _VSA

Figure 5.1. Example of assignment of morpheme boundaries, root tags and word tags by

MorphInd

5.5.2 Rationale for the evaluation

Even given the problems with LM, evaluation of MorphInd’s performance is still required

for at least two reasons. First, we need to verify whether LM can be implemented in full. This is

very difficult if we rely only on Larasati et al.’s evaluation, because that exercise only measures

coverage. Second, we need to assess whether Larasati et al.’s (2011) evaluation is still up-to-date.

That evaluation utilised the first version of MorphInd. Since then, MorphInd has undergone a

number of important upgrades, which may be expected to have improved performance.

168

5.5.3 Testbed corpus

For a fair comparison, a new evaluation would ideally be performed against the test set of

sentences used by Larasati et al. Unfortunately, this is not possible. Larasati et al.’s test set drew

on two sources: the PAN localisation corpus (Adriani and Hammam 2009) and an archive of

movie subtitles, later released as the IDENTIC Corpus (Larasati 2012). However, the test sets

were created by random selection of sentences. A new randomly selected test set from these

sources would be distinct from Larasati et al.’s previous test set. Another basis for the evaluation

is needed. For this reason, I did not replicate Larasati et al.’s approach to creating a testbed.

Another reason to adopt a different course is to avoid genre homogeneity. Larasati et al.’s testbed

is almost all composed of newspaper data. With such test data, it may legitimately be questioned

to what extent evaluations would reflect system performance on more heterogeneous texts.

As discussed in section 2.2, my 10K-word testbed was created by random selection of

paragraphs from a larger text collection that was balanced by domain. This is an appropriate

replacement for Larasati et al.’s test sets because all the domains in those test sets map to

domains in my balanced text collection (and thus, the testbed), as Table 5.5 shows.

Text domains in

Larasati et al.’s test set

Equivalent domain(s) in testbed

International World affairs

Sport Leisure

Science Applied science, natural or pure science or social science

Economy Commerce and finance

Movie subtitle Imaginative and creative writing

Table 5.5. Mapping Larasati et al.’s domains to testbed domains

The testbed is much smaller than Larasati et al.’s test set, unavoidably, because my

approach to evaluation requires me to manually examine each token in the output. Manual

verification permits an advance on Larasati et al.’s (2011) evaluation, as explained in 2.2.

169

5.5.4 Procedure for evaluation

The eight-step procedure of my evaluation of MorphInd is summarised in Table 5.6, and

will be explained in detail in the remainder of this section.

 Procedure Further detail

1 Run MorphInd on the

testbed

To get authentic output from MorphInd

2 Clean and adapt the output

to vertical format (one

token per line) and transfer

to excel spreadsheet

To enable

1. clarity of manual verification on token level
2. calculation of MorphInd’s performance

3 Define evaluation criteria By identifying MorphInd subsidiary tasks (discussed in steps 5, 6,

7) and primary task (step 8)

4 Examine spelling and

writing convention

correctness

To divide words in the testbed into

1. misspelt (these words will be excluded from the evaluation;

encoded as EXC for exclude)

2. valid words, whose total number, N, is used in the

performance calculation

5 Examine morpheme

boundary correctness

To determine whether morpheme boundaries are correctly

assigned for each token. Possible results are as follows:

1. M = no boundary supplied to correctly analysed

monomorphemic word

2. P = correct morpheme boundaries supplied to polymorphemic

word

3. M/P = monomorphemic words but incorrectly analysed as

polymorphemic

4. P/M = polymorphemic words but incorrectly analysed as

monomorphemic

5. P/P = polymorphemic words, analysed as polymorphemic, but

morpheme boundaries are wrong

6 Examine root tag

correctness

Roots are coded as follows

1. CR = correctly tagged root

2. IR = incorrectly tagged root (including roots tagged as

unknown (X))

7 Examine word tag

correctness

Words coded as follows

1. CW = correctly tagged word

2. IW = incorrectly tagged word (including words tagged as

unknown (X))

8 Calculate aggregate

performance according to

coverage and accuracy

These measures are defined as:

1. Coverage: the proportion of in-coverage tokens assigned tags

other than X, out of N

2. Accuracy: the proportion of words receiving correct root tag,

word tag and morpheme boundary placement (termed as

Correctly Analysed Tokens (CAT)) out of N

Table 5.6. Evaluation procedure

170

First, I ran the current version of MorphInd (v.1.4) over the testbed to generate authentic

MorphInd output to be evaluated. Second, I adapted the output to one-word-per-line format,

which I transferred into a spreadsheet (using Microsoft Excel). This format was optimal because I

manually analysed every word, line by line, based on each word’s local context. For each word, I

assigned a number of evaluation categories relevant to measuring MorphInd’s performance.

Vertical content output Spreadsheet

^periode<n>_NSD$

^selanjutnya<d>_D—$ ^,<z>_Z—$ ^yaitu<o>_O—$

^dasawarsa<n>_NSD$

Table 5.7. Transferring the output to a spreadsheet

Each point of the evaluation was coded in a subsequent column of the spreadsheet row

containing the word token. This allows different aspects of the evaluation (morpheme boundary,

root and word tag) to be separately encoded and conveniently presented using the codes listed in

Table 5.6 and explained in more detail below. For instance, the word periode was correctly

analysed in all respects. MorphInd correctly recognised it as a monomorphemic word (code M). It

supplied the correct root tag <n> (code CR). It also supplied the correct word tag NSD (code CW).

On the other hand, selanjutnya is a polymorphemic word incorrectly analysed as

monomorphemic by MorphInd (code P/M). MorphInd did not identify the root, and therefore its

root tagging is incorrect (code IR). However, the word as a whole may be still be tagged correctly,

and in this case it is (code CW).

171

Figure 5.2. Evaluation categories coded across three columns

Excel’s filtering function makes it possible to focus on one or more categories of interest.

Figure 5.3 shows how the underlying data may be filtered to display only words coded M/P for

morpheme boundary correctness.

Figure 5.3. Using Excel’s filter to select specific sub-categories (here, M/P) from morpheme

boundary correctness

172

Third, I defined criteria for the evaluation. Larasati et al. ’s (2011) evaluation only

considered coverage. Unlike Larasati et al., in addition to coverage, I also evaluated aggregate

token accuracy. An aggregate-accurate token is defined as one given a correct output on all of

MorphInd’s three subsidiary tasks, namely: (a) assigning morpheme boundaries; (b) assigning a

root tag; and (c) assigning a word tag (as explained in section 5.4). The evaluation methods for

each tasks constitute steps 5, 6, and 7. Measuring aggregate token coverage and accuracy is step

8.

 Every word was examined in its local context. For instance, the monomorphemic word

paling may be either an adverb ‘most’ or a verb ‘turn away’. In one instance in the data, paling

modifies an adjective (local context: paling monumental ‘most monumental’), such that the

correct tag is an adverb tag. However, MorphInd produced a verb tag. This word was thus

considered incorrectly tagged.

MorphInd’s performance was evaluated against its annotation scheme as is. For instance,

in a number of instances in the data, the definite marker –nya is incorrectly tagged as the

pronominal enclitic =nya. However, MorphInd tags all uses of nya as pronominal enclitic. This is

clearly by design (see 3.5.2; LM has no tag for the definite marker). The software is fully

complying with the scheme, even though the scheme is not completely correct linguistically.

Cases like these, therefore, do not count as mistakes for the purpose of the evaluation. This

stands in contrast to words such as paling, where the correct tag (verb) does exist within LM but

has not been supplied by MorphInd.

Fourth, I checked the validity of the input tokens as words of standard written

Indonesian. The aim here is to exclude misspelt words (code EXC) from the evaluation, as

MorphInd cannot be expected to produce well-formed output from badly-formed input. The total

number of valid word tokens, N, is used as the denominator value for all calculations of

proportions of accuracy. Invalid words include incorrectly conjoined words and spelling errors.

For example, I found a number of instances of locative preposition di, wrongly written as joined

without space to following demonstratives such as sini ‘here’ (i.e. disini instead of standard di

sini). An example spelling error is sebagainya ‘etc.’ being written as sebagaainya.

173

Fifth, I examined whether or not morpheme boundaries were correctly assigned. I coded

each word token as follows: correctly analysed monomorphemic word, with no morpheme

boundaries assigned (M); polymorphemic word assigned the correct morpheme boundaries (P);

monomorphemic word incorrectly analysed as polymorphemic (M/P); polymorphemic word

incorrectly analysed as monomorphemic (P/M); polymorphemic word analysed as polymorphemic

but assigned incorrect morpheme boundaries (P/P). The percentage evaluation measure for this

tokenisation task (T) is then calculated as follows. The first two codes (M and P) represent

accurate boundaries; thus, the percentage of tokens with these codes is the percentage of all

tokens correctly assigned morpheme boundaries.

𝑇 =
∑(𝑀 + 𝑃)

𝑁
x 100

The sixth and seventh steps in the procedure evaluate correctness of root and word tags.

Roots and words tagged with unknown <X> are considered incorrect. The accuracy measures for

root tagging (RT) and word tagging (WT) are then respectively the percentages of correct roots

(CR) and correct words (CW) out of N.

𝑅𝑇 =
∑𝐶𝑅

𝑁
x 100

𝑊𝑇 =
∑𝑊𝑅

𝑁
x 100

At the eighth step, two further measures are calculated: token coverage and token

accuracy. As noted earlier (see 5.3), I deduced that Larasati et al.’s coverage is defined as the

proportion of word tokens not analysed as unknown <X>, and I follow this definition. Thus,

coverage (C) is obtained through the following calculation:

𝐶 =
 𝑁 − ∑ 𝑋

𝑁
x 100

174

Aggregate token Accuracy (A) is calculated as the number of fully correct analyses of

tokens as a percentage of N. To be considered correct on aggregate (code CAT), a word token

must have: (a) correct morpheme boundaries (code M or P), (b) the correct root tag (code CR), and

(b) the correct word tag (code WR). A is then calculated as follows:

𝐴 =
∑ 𝐶𝐴𝑇

𝑁
∗ 100

5.5.5 Morpheme boundary assignment accuracy

MorphInd’s accuracy in assigning morpheme boundaries in this exercise is 96.6 %. The

system correctly identified 1,697 polymorphemic words (P) and 8,188 monomorphemic words (M)

(see Table 5.8). The error rate is only 3.4 %.

Categories Number % %

M = Monomorphemic (correct) 8,188 80.0% 96.6%

correct P = Polymorphemic (correct) 1,697 16.5%

M/P = Monomorphemic analysed as polymorphemic (error) 4 0.1% 3.4%

error

P/M = Polymorphemic analysed as monomorphemic (error) 321 3.1%

P/P = polymorphemic but morpheme boundary is wrong (error) 18 0.1%

Table 5.8. Frequency of codes for morpheme boundary identification

Most errors are of type P/M, polymorphemic words incorrectly analysed as

monomorphemic. There are two possible reasons for this. First, unknown words are always

analysed as monomorphemic. In consequence, MorphInd supplies inaccurate morpheme

boundaries for unknown polymorphemic words. Second, MorphInd’s rule-based disambiguation

prefers monomorphemic analyses over polymorphemic word analyses. The disambiguation rules

in question are not documented in the literature but are viewable in the public source code

175

repository41. I quote some comments on these rules in the code in Table 5.9; Larasati explicitly

mentions a preference for monomorphemic word analyses, phrased as ‘choose the full word’.

If ambiguous between having a foreign word + something or a full word, choose the full word

If ambiguous between having a morpheme + foreign word or a full word, choose the full word

If ambiguous between segmented morpheme and Foreign word, choose foreign word

If ambiguous between 'se+' and a full word, choose a full word

If ambiguous between '+i_' and a full word, choose a full word

If ambiguous between having a clitic and not, choose not

If ambiguous between having a clitic and not, choose not

If ambiguous between '+an_' and a full word, choose a full word

If ambiguous between 'di+' and a full word, choose a full word

If ambiguous between 'peN+' and a full word, choose a full word

If ambiguous between 'ter+' and a full word, choose a full word

Table 5.9. Comments in the MorphInd code on disambiguation rules relevant to tokenisation

5.5.6 Word and root tagging accuracy

Critically, Larasati et al.’s (2011) evaluation does not consider tagging accuracy.

However, MorphInd’s word tagging task is equivalent to POS tagging, and accuracy is

fundamental in judging a POS tagger’s success. MorphInd’s word tagging accuracy is therefore of

high interest.

In the testbed, MorphInd provides 9,179 word tokens with the correct word tag; its word

tagging accuracy is therefore 89.8 % (see Table 5.11). This can be considered low, since POS

tagger accuracy is routinely above 90% (see Table 5.10).

POS tagger Target

language

Reported

accuracy

CLAWS (Garside 1987) English 96.97%

Stanford POS tagger (Toutanova 2003) English 96.86%

HMM POS tagger for Indonesian (Farizki & Purwarianti 2010) Indonesian 99.40%

HMM POS tagger for Malaysian (Mohamed et al. 2011) Malaysian 98.60%

Joint model POS tagger for Korean (Park and Seo 2015) Korean 96.17%

Table 5.10. Some POS taggers’ accuracy rates

41 The repository can be accessed from this link: https://svn.ms.mff.cuni.cz/svn/MorphInd/trunk/MorphInd.v.1.4. Enter

‘public’ for both id and password when requested. The disambiguation rules are in the file MorphInd.pl. (last accessed

26/04/2021)

https://svn.ms.mff.cuni.cz/svn/morphind/trunk/morphind.v.1.4

176

Meanwhile, MorphInd’s root tagging accuracy is similar to word tagging accuracy at

89.5% . This is a novel finding, since Larasati et al. (2011) do not measure root tagging accuracy

at all. Root tagging is a task not commonly performed by POS taggers, but crucial for a

morphological analyser.

 Word tags % Root tags %

Correct 9,179 89.8 9,523 90.3

Incorrect: analysis error 335 3.3 289 2.8

Incorrect: word unknown 714 6.9 714 6.9

Table 5.11. MorphInd’s word tagging and root tagging accuracy

There are at least two reasons for MorphInd’s relatively low tagging accuracy. First, the

rate of unknown, i.e. out-of-coverage, words is quite high. I identified 714 words assigned the

unknown tag X—; this lowers the maximum possible accuracy to 93% for both word and root

tagging, as around 7% of the tokens are unknown (see further section 5.5.8).

Second, MorphInd assigns incorrect analyses to some known words. It seems that

MorphInd struggles at tagging Indonesian proper nouns with foreign-word characteristics. For

instance, Arabic loanwords starting with al-, such as al-quran ‘Quran’ or al-jin ‘lit. the spirits;

name of a chapter in the Quran’, are all tagged by MorphInd as foreign words, even if they are

clearly treated as proper nouns in the context of Indonesian. This seems to be caused by one of

MorphInd’s disambiguation rules, which assigns the foreign word tag (F—) to all words

beginning with al-, an- or el-. This rule seems to be applied with no constraints, as in the testbed,

al-quran and al-jin are tagged as foreign words (F—). But these, and many similar words, are

proper nouns in Indonesian despite the morphological cue al-, which is the Arabic definite prefix

(also transliterated el- or, with allomorphy, an-).

Other instances of words with foreign characteristics in the corpus are Apple and News.

In isolation, these words do seem to be foreign words, but they are actually treated as proper

nouns in Indonesian. This can be deduced from the local contexts of these examples. Apple (with

uppercase A) is a phone brand; News (with uppercase N) is part of the name of an Indonesian

news agency, Antara News. Contextually both clearly operate as normal Indonesian proper

177

nouns. It is common, especially in the modern world, for languages to have many proper nouns

that are loanwords.

MorphInd even inaccurately tags proper names like Steve or Chris as foreign words.

These are very common English personal names, not commonly used to name Indonesians42.

However, that does not change the fact that they are clearly being used as proper nouns, not

foreign words, if some person called Steve or Chris is discussed in a fully Indonesian stretch of

text.

It is noticeable that MorphInd consistently fails to properly analyse reciprocal voice

shown by reduplication plus meN-, as illustrated in Table 5.12. A tag DASH, which is not defined

in LM, is added to the word tag, causing the source and copy of the reduplication to be treated as

distinct word tokens. In consequence, the word tag is also incorrect: the token receives two VSA

tags (singular active verb), whereas there should only be one VPS tag (plural, i.e. reciprocal,

active verb). The same error affects compound word reduplication. For the second example in

Table 5.12, MorphInd generates four NSD tags (singular noun), whereas according to LM, there

should only be one word, tagged NPD (plural noun). Such incorrect splitting-up of tokens will

usually cause the word tag to be incorrect in this way. For instance, following LM, es krim-es

krim should be analysed as es<n>+krim<n>_NPD, but is instead analysed as in Table 5.12.

Word Incorrect analysis

pukul-mem(p)ukul
‘hit one another’

^pukul<v>_VSA$DASH^meN+pukul<v>_VSA$

Es krim-es krim

‘ice creams’

^es<n>_NSD$ ^krim<n>_NSD$DASH^es<n>_NSD$ ^krim<n>

Table 5.12. Incorrect morpheme boundary for compound word reduplication and reciprocal

reduplication with meN-

5.5.7 Aggregate accuracy

As I outlined in 5.5.4, aggregate token accuracy requires all three analyses to be fully

correct: morpheme boundary assignment, root tagging, and word tagging. Tokens to which

42 Likewise, some country names such as Austria and Algeria are tagged as foreign words)

178

MorphInd supplies a partially correct analysis are considered incorrect. Here is an illustration.

The word pen-dahulu-an ‘preview’ is a noun, composed of an adverbial root dahulu ‘previously

(adv)’ and nominaliser pe—an. MorphInd annotates it incorrectly as pendahulu<n>+an_NSD.

Here, pendahulu ‘predecessor’ is analysed as the root, due to incorrect morpheme boundary

detection. The word tag NSD (singular noun) for this token is correct, but because MorphInd

failed to recognise the root’s boundaries, the root tag is necessarily wrong. Therefore, the analysis

is, in aggregate, incorrect.

 Aggregate

token

accuracy

% Aggregate

type

accuracy

%

Correct 8,939 87.3 2,207 73.3

Incorrect: analysis error 575 5.6 226 7.2

Incorrect: word unknown 714 6.9 580 19.2

Table 5.13. Aggregate accuracy evaluation

MorphInd’s aggregate token accuracy is 87.3%. Of the incorrect aggregate analyses,

slightly more than half were unknown words (tagged <X>); the remainder were known (in-

coverage) words. This shows that MorphInd fails to carry out analyses more often than it

incorrectly analyses words. This finding is paralleled in aggregate type accuracy, in that the

number of unknown types is almost three times greater than the number of erroneously analysed

types.

5.5.8 Coverage

MorphInd’s token coverage, the percentage of tokens to which it assigns an analysis other

than <X>, correct or incorrect, is 93.0%. Larasati et al. (2011) report MorphInd’s coverage to be

less than 85% (see 5.3). It is very likely that improvements to MorphInd (see 5.5.2) have

increased its coverage since 2011. Even so, 7.0 % of tokens in the testbed are out of coverage.

179

 Tokens % Types %

Known (in coverage) 9,514 93.0 2,356 82.7

Unknown (out of coverage) 714 7.0 493 17.3

Total 10,228 2,849

Table 5.14. MorphInd’s coverage

Classification Tokens % Types %

Known (in coverage) 9,514 93.0 2,356 82.7

Unknown (out of coverage)

 Foreign words 49 0.5 33 1.2

 Proper nouns

 (including abbreviations, acronyms)

275 2.7 159 5.6

 Others 390 3.8 301 10.5

Total 10,228 2,849

Table 5.15. MorphInd’s coverage, breaking down out-of-coverage items

I grouped the unknown words into three categories: foreign words (e.g. English ideologi

Dutch bestuursdwang ‘legal use of force by government officials’); proper nouns, including

abbreviations and acronyms (e.g. UMY for Universitas Muhammadiyah Yogyakarta); and finally

the category of others, i.e. anything not in the first two categories (e.g. pesisir ‘coastal’, endap-an

‘sediment’). The first two groups in the data are all monomorphemic43, thus segmenting the

category further into polymorphemic and monomorphemic is not possible. However, others

includes polymorphemic words; see breakdown in Table 5.16. This breakdown is useful to further

classify the errors.

Beginning, however, with the three main Unknown categories, we see that MorphInd

does seem to struggle with foreign words, although a large number of English words are correctly

recognised. However, this is the cause of relatively few errors. I notice that MorphInd is not very

good at recognising foreign words from non-English languages, such as Dutch, Chinese, or

Javanese. Therefore, the error rate can be expected to rise if MorphInd is applied to texts with a

larger proportion of non-English foreign words.

Surprisingly, many widely used Indonesian abbreviations and proper nouns are out-of-

coverage, including PNS ‘civil servant’, Yesus ‘Jesus’ or Yogyakarta (name of a city). PNS or

Pegawai Negri Sipil ‘civil servant’ is a very prevalent job in Indonesia, and this abbreviation

frequently occurs in news texts. The name Yesus is frequently found in Christian religious texts;

43 It is possible to create a polymorphemic word containing foreign elements, such as didownload ‘be downloaded’, in

which di- is a passive prefix and download is a loan from English. But in the test data, no such words are found.

180

in Indonesia, Christians are the second largest religious group (after Muslims). Meanwhile,

Yogyakarta is a popular tourist destination (Indonesia’s second most popular in Indonesia after

Bali), and its name appears quite frequently in leisure texts. Yet, all these are unknown to

MorphInd.

Let us now look at the different subcategories of the Unknown third category, others,

given in Table 5.16 (as noted earlier, for present purposes, foreign words, proper nouns,

abbreviations and acronyms, that is everything under the former two Unknown categories, are

considered monomorphemic44).

Word structure Tokens Types

Polymorphemic 85 57

Monomorphemic 305 230

Total 390 287

Table 5.16. Out-of-coverage polymorphemic and monomorphemic words from category others

 The 57 polymorphemic out-of-coverage words include affixed words (e.g. ber-ideologi

‘have an ideology’, me-mungkin-kan ‘make possible’), affixed compound words (ke-tidak-ber-daya-

guna-an ‘thing that is not useful or powerful’) and affixed words with additional cliticisation

(pikir-an=ku ‘my thought’).

What possible explanations are there for these words failing to be analysed? In some

cases, it may be that the word’s root is absent from the lexicon. Then, even if MorphInd uses

rules to correctly recognise the affixes and clitics, the root cannot be recognised; in consequence,

the word as a whole cannot be analysed and is tagged unknown. For example, ideologi is an

unknown root; this explains why MorphInd fails to analyse ber-ideologi ‘have an ideology’

despite having a rule for prefix ber-.

Many of the out-of-coverage monomorphemic words in question are specialised

terminology borrowed from other languages, such as English (delinkuensi ‘delinquence’, feudal

‘feudal’, edukasi ‘education’, ideologi ‘ideology’, epistemologi ‘epistemology’) Dutch (alkoholisme

‘alcoholism’) or Arabic (dakwah ‘preach’, jama’ah ‘followers’). Some of these words have foreign

44 Historically, many proper nouns are polymorphemic – often compound – including Yogya-karta and Yesus from Hebrew
‘Yeho-Shua’. However, I do not consider this diachronic view here and treat such nouns as monomorphemic.

181

morphological cues, such as -logi in ideologi ‘ideology’ or -isme in alkoholisme ‘alcoholism’.

However, the orthography and in some cases the actual phonetic form of the cue, or the whole

word, has been adapted to Indonesian, marking them clearly as loanwords.

 By examining the list of known (in-coverage) words, I found that a handful of words with

-logi and -isme were analysed correctly, including teknologi ‘technology’ and sosialisme

‘socialism’. It seems that these words must be present in MorphInd’s lexicon. This supports the

hypothesis that words like ideologi are out-of-coverage simply because they are absent from

MorphInd’s lexicon. However, not all words affected by this issue are specialised loan-

terminology. Some are fairly common non-technical Indonesian words. For such words to be

outside MorphInd’s coverage is surprising. Some examples are awam ‘common’, majemuk

‘various’, and pidana ‘crime’.

Another kind of case is exemplified by me-mungkin-kan ‘make possible’. The root

mungkin ‘perhaps’ occurs as a within-coverage word, and therefore is likely to be in the lexicon.

So here, there is likely a problem with the rules. Other cases of this type have as roots the in-

coverage words tidak ‘no’, daya ‘power’, guna ‘use(n)’, and pikir ‘think’.

5.6 Summary

In this chapter, I have argued that MorphInd can be considered the state-of-the-art MA

system for Indonesian (see 5.2), being an improvement on a prior MA that remains in continuous

development and is used by many other NLP systems for Indonesian. However, the only

comprehensive evaluation of MorphInd (Larasati et al. 2011) is of its first version. Moreover, that

exercise solely measures MorphInd’s coverage. For this reason, I reassessed MorphInd.

The full results of my evaluation (section 5.5) are gathered in Table 5.17. Points 1 and 2

are comparable to Larasati et al.’s (2011) evaluation. That comparison indicates several

improvements in the present version of MorphInd. The other properties evaluated here (root

tagging, word tagging, and morpheme boundary assignment) were not assessed by Larasati et al.

182

My evaluation by these criteria thus represents a novel contribution to the field of the

computational analysis of Indonesian.

 Evaluation criteria Larasati

et al. (2011) %

Present

evaluation %

1 Token coverage 84.6 93.0

2 Type coverage 50.7 82.7

3 Morpheme boundary assignment accuracy Not measured 96.6

4 Root tagging accuracy Not measured 90.3

5 Word tagging accuracy Not measured 89.8

6 Aggregate accuracy Not measured 87.3

Table 5.17. Full results of the present evaluation compared to Larasati et al.’s (2011) evaluation

MorphInd’s word tagging, which I have argued to be comparable to POS tagging, has

89.8% accuracy, compared to typical POS-tagger accuracy of around 95% (see 5.5.6). Root tagging

and morpheme boundary assignment score higher, respectively around 93% and 96%. Aggregate

accuracy across all tasks is then approximately 87%.

Having manually checked every token in a sample of MorphInd annotation allowed me to

adduce evidence that MorphInd struggles, perhaps surprisingly, with monomorphemic words,

most noticeably loanwords and proper nouns (see 5.5.8). In theoretical morphology, the analysis

of loanwords and proper nouns may be considered marginal and of little relevance to the features

of the language under study. However, an MA system that focuses on handling polymorphemic

words but neglects these two types of elements will be inadequate to deal with unrestricted text,

as loanwords and proper nouns are commonly present in many frequently encountered kinds of

text.

In light of the above, I am confident that I have fulfilled the goal of this chapter, i.e. to

perform an evaluation of MorphInd. The evaluation has underlined that MorphInd, even after

several years of program development, still suffers from multiple implementation problems that

hinder it in its role as a state-of-the-art MA system for Indonesian. This, along with my

evaluation of MorphInd’s annotation scheme (in 3.5.2), makes clear the importance of this PhD

project. Given all these findings, an alternative Indonesian MA system is required, one designed

to address the shortcomings identified in Morphind’s MAS and implementation. Thus, the next

183

chapter moves on to review tagging methodologies, particularly for MA systems. This review

underpins my subsequent choice of system architecture for the MA system to be implemented.

184

CHAPTER 6

REVIEW OF TAGGING SYSTEMS: RESOURCES, FRAMEWORKS, AND TECHNIQUES

6.1 Introduction to the review

In this chapter, I review typical tagging systems, and apply the findings of this review to

my planned system development. I will argue that the general principles of a tagging system

apply to different levels of linguistic analysis, including the morphological, morphosyntactic and

syntactic levels. The outcome of this chapter is a proposed design for my Morphological

Annotation (MA) system. The review in this chapter shall justify my claim that this design is (1)

optimal and, more importantly, (2) feasible to implement.

This review covers the variety of tagging resources and how they are created; the

different techniques for performing automatic morphological analysis; and various frameworks to

implement these techniques. The review centres primarily on specific examples of implemented

tagging systems, but still requires a number of preliminaries, namely a general overview of how

tagging systems work, as well as some theoretical background on the computational linguistic

formalisms that underlie, particularly, MA systems. The first half of this chapter (section 6.2–

6.5) covers these preliminaries.

A number of key terms for Natural Language Processing (NLP) systems in general were

discussed in the Introduction (see 1.2). Among these terms, tokenisation, annotation and

disambiguation are highly relevant to this chapter. In section 6.2, I will show that these three

terms actually correspond to common sub-tasks of standard tagging systems (see van Halteren

1999:109).

The next topic is the prominent Two-Level Morphology (TLM) formalism (Koskenniemi

1983), already discussed briefly in section 3.2.1. TLM is a computational linguistic formalism

that underlies many of today’s MA systems. In sections 6.3 to 6.6, formal grammar, linguistic

185

formalisms, computational morphology prior to TLM, and the emergence of TLM will be

discussed in detail. I separately discuss linguistic (6.4) and computational formalisms (6.5),

considering some key differences between them, and highlighting the challenges of incorporating

linguistic (particularly morphological) expressiveness into automated systems. In section 6.6, I

will show how Koskenniemi’s TLM managed to meet those challenges.

The aim of the second part of this chapter is to survey existing frameworks, techniques,

and resources of possible utility for my new MA system. Section 6.7 considers a number of NLP

resources used by existing MA systems, and how these resources are built. It also reviews the

techniques and frameworks used for the three MA sub-tasks: tokenisation, annotation, and

disambiguation. In section 6.8, evaluation measures to assess the success rate of taggers are

discussed.

In the final part of this chapter, sections 6.9 and 6.10, I will justify the choice of tagging

technique and program to utilise in the new MA system. Section 6.11 concludes the chapter.

6.2 Typical tagging systems

A tagging system usually performs three sub-tasks in order, namely tokenisation,

annotation and disambiguation (van Halteren 1999:109). These subtasks are typical of all

tagging systems, regardless of the language or linguistic level targeted. Examples presented in

this section cover POS tagging (example from English) and morphological tagging (examples

from Arabic and Turkish).

Tokenisation refers to the segmentation of the raw text into analytic units. Annotation

refers to the assignment of analytic codes, or tags, to the tokens. In some cases, tokenisation and

annotation may introduce ambiguities. At the tokenisation and annotation stages, all possible

analyses are usually retained. Disambiguation refers to the removal of contextually incorrect

analyses, or the selection of the contextually correct analysis, from ambiguous tokenisation

and/or annotation output. Example (6.1), reproduced from Voutilanen (1999:14), illustrates the

186

three stages of tagging. Voutilanen’s illustration is of morphosyntactic tagging of English, but the

procedure is typical of all tagging systems including MAs.

(6.1) The ART

man N V

is V

an ART

agent N

First (tokenisation), the system segments the text into tokens (the, man, is, an, agent)

using line breaks; no ambiguity is introduced in this case. Second (annotation), the system

assigns all possible analyses to each token. One token here is ambiguously tagged: man gets two

tags, N and V, to represent the parts of speech it can have in different contexts. Third

(disambiguation), the system chooses the contextually correct analysis. In this example, V on

man would be removed, leaving N as the only tag.

However, in some tagging systems, ambiguities are not always resolved. Example (6.2)45

is output from the well-known Buckwalter Arabic Morphological Analyser or BAMA (Buckwalter

1999; see 3.4.2 for discussion of the tagging scheme). BAMA performs tokenisation and

annotation at morpheme level.

(6.2) INPUT STRING: في

LOOK-UP WORD: fy

SOLUTION 1: (fiy) [fiy_1] fiy/PREP

(GLOSS): + in +

SOLUTION 2: (fiy~a) [fiy_1] fiy/PREP+~a/PRON_1S

(GLOSS): + in + me

SOLUTION 3: (fiy) [fiy_2] Viy/ABBREV

(GLOSS): + V. +

In example (6.2), three solutions (i.e. analyses) are presented. Solutions 1 and 3 tokenise

fy as one morpheme, analysed as PREP in 1 and ABBREV in 3. In solution 2, however, fy is split

into two tokens (fiy and a), tagged PREP and PRON_1S respectively. The three solutions thus

45 Reproduced from the BAMA output sample available online at http://www.qamus.org/30-words.txt (last accessed

26/05/2021)

http://www.qamus.org/30-words.txt

187

exemplify ambiguities of both tokenisation (fy tokenised into 1 or 2 tokens) and annotation

(PREP, PREP plus PRON_1S, or ABBREV). BAMA leaves these ambiguities unresolved.

By contrast, MADAMIRA (Pasha et al. 2014) is an Arabic MA system that performs all

three tasks, including disambiguation. MADAMIRA’s initial (ambiguous) annotations are not

generated by MADAMIRA itself, but rather, obtained from BAMA or the related Standard Arabic

Morphological Analyzer (Graff et al. 2009). To this, MADAMIRA adds statistical disambiguation

(see section 6.8).

Let us now consider the example of morphologically tagged Turkish data in Table 6.1.

Eryiğit’s (2014) ITU Turkish NLP pipeline46 is built on top of many other systems, which he

terms modules47. To perform morphological annotation, Eryiğit uses Oflazer’s TLM model

(Oflazer 1994), implemented in the Helsinki Finite State Transducer (Linden & Pirinnen 2009).

Subsequently, a hybrid morphological disambiguator is used to discard incorrect analyses.

Tokenisation Annotation Disambiguation

Rahat Noun+A3sg+Pnon+Nom Noun+A3sg+Pnon+Nom

Adj Adj

et Adj Adj

Verb+Pos+Imp+A2sg Verb+Pos+Imp+A2sg

musfik Adj Adj

Noun+Prop+A3sg+Pnon+Nom Noun+Prop+A3sg+Pnon+Nom

Kenter Noun+Prop+A3sg+Pnon+Nom Noun+Prop+A3sg+Pnon+Nom

Table 6.1. ITU Turkish NLP Pipeline sample

Table 6.1 shows how the MA initially tokenises the input into four tokens. At the

annotation stage, all tokens except kenter are ambiguously analysed. At the disambiguation

stage, incorrect annotations are removed (indicated by strikethrough in Table 6.1), so that only

the analyses most likely to be correct are presented in the output.

These examples establish the relevance, in typical approaches, of the three sub-tasks to

different types of computational annotation system and to diverse languages.

46 http://tools.nlp.itu.edu.tr/ (Last accessed 26/04/2021)
47 In addition to a morphological analyser and disambiguator, Gulsen’s system includes a named entity recogniser and a

syntactic parser. It also incorporates a normaliser for non-standard Turkish text (such Twitter data). As these programs

are not relevant to present purposes, their output is omitted from Table 6.1.

http://tools.nlp.itu.edu.tr/

188

6.3 Formal languages, grammars, and automata

Three interrelated concepts are discussed in this section: formal languages, formal

grammars, and automata. Their description is drawn from the following sources where not

otherwise specified: Chomsky (1957), Silberztein (2016), Levelt (2008), Wintner (2013) and Linz

(2001, 2012).

6.3.1 Introduction to formal languages

Computers cannot work with human language directly because they are fundamentally

number-manipulating machines, and thus must deal with mathematical representations of

language. For this reason, natural language elements must be mathematically defined prior to

computational analysis. Defining an object mathematically is a process called formalisation

(Silberztein 2016:7). Therefore, the linguistic objects that constitute a language (e.g. letters or

words) must be formalised so that they can be handled by a computer.

 The formalisation of language generates a formal language. Similarly, formalisation of a

language’s grammar yields a formal grammar. The use of either of these terms usually implies

the other, that is, the term formal grammar usually occurs within the study of formal language,

and use of the term formal language implies analysis of language in terms of formal grammar.

Levelt (2008:2), a linguist, states that formal languages can serve as a mathematical model for a

computer, as well as a model for developing linguistic theory. In section 6.4, I will explore how

generative grammar, an influential theory in linguistics, models grammatical descriptions and

explanations using formal grammar.

Some terms, such as word, letter and alphabet, are used in both linguistics and the

computational/mathematical study of formal grammars, but defined slightly differently. The

following definitions of formal grammar terminology follow those of Wintner (2013:11-13), a

computational linguist. Wintner begins by defining the term alphabet, often symbolised by a

189

sigma ∑. In a formal language, an alphabet is a collection of symbols, where each of the symbols

is called a letter.

Letters are the smallest input units that the formal grammar manipulates, while words

are the outcome units or outputs of the manipulations, as illustrated by the examples in Table

6.2. To distinguish letters and words in this discussion, words are delimited by quotation marks,

whereas letters are not. Sets of letters in an alphabet, or words in a language, are enclosed in

braces, with their members separated by commas. Thus, the sets {a,b,c,d}, {my, your, keys}, {the

man, sees, the woman} are all considered alphabets of letters, even though in natural language

{my, your, keys} and {the man, sees, the woman} would be considered words/phrases. Likewise,

the sets of outputs {‘my keys’, ‘your keys’, …} and {‘the man sees the man’, ‘the man sees the

woman’, ‘the woman sees the man’, the woman sees the woman’,…} are considered words of

different formal languages even though in natural language terms they are phrases or clauses.

Formal

language

Letters Words

LA {a,b,c,d} {‘a’, ‘cab’, ‘bad’, …}

LB {my, your, keys} {‘my keys’, ‘your keys’, …}

LC {the man, sees, the woman} {‘the man sees the man’, ‘the man sees the

woman’, ‘the woman sees the man’, the

woman sees the woman’,…}

Table 6.2. Sample letters and words of formal languages.

The alphabet of LA consists of four letters {a, b, c, d}. Let us assume that LA’s formal

grammar allows these units to be combined into at least three words {‘a’, ‘cab’, ‘bad’}. That of LB

consists of three letters, my, your and key; possible output words include ‘my keys’ and ‘your

keys’, but not ‘a key’. This is because a and key are not letters in this language. Even though keys

contains key, key is not a valid letter because keys, as a letter, is one indivisible unit. A formal

language may be defined with English words, but this does not necessarily mean that they

acquire all the rules and internal structure they have in English.

Each set of words in Table 6.2 ends in an ellipsis because there are other possible

outputs. For instance, ‘bda’, ‘my your’, ‘the man the woman’ would be valid words in LA, LB, and

LC respectively. Each language’s grammar would either generate or forbid any possible sequence

of letters.

190

We cannot rely on our natural language intuition to verify the outputs of formal

languages. A formal language may easily be defined using the elements of English as its base

units and yet have very different combinatorial behaviour. Moreover, as noted already, letters

and words in the formal language sense are defined differently than in the context of natural

language.

One of the linguistic objects which must be formalised for computer manipulation is the

language’s grammar or rules. The rules of a formal grammar are mathematically expressed

symbol-manipulation formulae which generate, or validate as correct, the words of the language

(i.e. the sequences that are part of that formal language’s output set). A rule in the formal

grammar sense is different from what that term means in linguistic description, where rule

usually refers to a characterisation by linguists of some consistent behaviour that they observe in

a language under study. The nature of formal grammar rules will be addressed further in 6.3.2

and 6.3.3.

The formalisation of the letters, words and grammar of a language thus generates a

mathematical model of the language. This model can be used by an NLP system to generate, or

verify strings as, words of the language. For instance, a system could use a formal language LX,

with an alphabet of English morphemes and a grammar for their combination modelling the

rules of English morphology, to determine that ‘called’ and ‘calling’ are valid output words

whereas ‘calleding’ and ‘callinged’ are not. A different system could likewise verify that ‘I ate an

apple’ is a valid word at the syntax level whereas ‘apple I an ate’ is not, using a grammar that

formalises the relevant rules of English syntax.

In practice, this generation/verification is performed by a physical computer. However, we

can also model the process using the notion of an automaton (plural: automata), an abstract

model of a digital computer (Linz 2001:25); Levelt (2008:2) refers to automata as accepting

machines. Either way, we conceptualise an automaton as a hypothetical machine that is

presented with an input and can either accept or refuse it. Let us assume that we have an

automaton for LX. If we input ‘called’ into this abstract machine, it would be accepted, as it is a

valid word in LX.

191

6.3.2 The elements of formal grammar

There are four elements of a formal grammar. Linz (2012: 33) introduces the notation G =

(V, T, S, P), for a grammar (G),variable48 symbols (V), terminal symbols (T), production rules 49

(P) and a start symbol (S). That is, a formal grammar is defined to consist of a set of variable

symbols representing sequences of letters, plus a set of terminal symbols which are the letters,

plus a set of production rules defining how the variable symbols are composed, plus the special

start symbol.

To exemplify these different elements, let us discuss a tiny formal grammar called GD

(Table 6.3), with two rules, which generates a single string ‘ab’, the only word of language LD.

Each rule is composed of a symbol on the left-hand side and one or more symbols on the right-

hand side. The sides are separated by an arrow (→) which expresses ‘can be rewritten as’ or ‘can

be composed of’’. Thus, the rule S → aB is a formal expression meaning that ‘S can be rewritten

as a then B’ or ‘S is composed of A then B’.

GD LD

V T P S

{S,B} {a,b} S → aB S {ab}

B → b

Table 6.3. Summary of GD that produces LD

Variables (conventionally represented by uppercase letters) are symbols that can be

rewritten into another symbol(s), such as S (can be rewritten into aB) or B (can be rewritten into

b). Among the variables in a grammar, one is the start symbol, the variable at the top of the

hierarchy created by the grammar; all operations of the grammar are assumed to begin with a

single start symbol and then to continue by applying the rules to that start symbol. Other

symbols are not used as the starting point, but are introduced in the outputs of different rules. In

the case of GD, as the start symbol is S, the application of the grammar begins with the rule S →

aB.

48 Equivalent terms are vocabulary, non-terminals or auxiliary.
49 An equivalent term rewriting rule.

192

The start symbol is often, but need not be, uppercase S. In a formal grammar for human

language syntax, the S is meaningful, as the starting point for the rules is the unit of the

sentence. However, the start symbol (like all symbols) is an algebraic symbol, so strictly the label

is arbitrary. A formal grammar will always declare its start symbol.

In GD, a and b exemplify the other type of symbol, terminals. In a formal grammar, a

terminal is equivalent to a letter of the language, as defined in 6.3.1. A terminal cannot be

further rewritten, and is part of the output. In GD, symbols a and b are terminals, as they cannot

be rewritten (are not on the left side of any rule) and appear directly in the output ‘ab’.

The process of how the rules in GD apply to the start symbol to ultimately generate the

terminal symbols in the final output can be illustrated using a tree diagram. In section 1.1.4.1, I

introduced tree diagram representation for morphological examples; the same principles apply

here. In all tree diagrams that may represent a formal grammar, terminals are always at the

bottom. All other symbols are variables.

Figure 6.1. A tree diagram for formal grammar GD

In natural language examples (such as those in Table 6.4 and Table 6.5) non-terminal

symbols are given labels such as N, NP, or ROOT, devised to be meaningful for linguists

(denoting noun, noun phrase, and root respectively). However, in a formal grammar, non-

terminals are merely variable symbols whose labels have no effect on how the grammar works. In

GE, the terminal symbols (letters) are equivalent to natural language words (Table 6.4), while in

GF (Table 6.5), the terminals are equivalent to natural language morphemes. Regardless, the

terminals are also just symbols in the formal grammar, regardless of their linguistic

classification as morpheme, word, phrase, clause or sentence.

193

GE LE

V T P S

{NP, N} {the, cat} NP → the N NP {‘the cat’}

N → cat

Table 6.4. GE producing LE, representing the English noun phrase composed of words

GF LF

V T P S

{W, ROOT} {sleep, ing} W → ROOT ing W {‘sleep’, ‘sleeping’}

W → ROOT

ROOT → sleep

Table 6.5. GF producing LF, representing English words composed of morphemes

6.3.3 The Chomsky hierarchy

6.3.3.1 Introduction to the Chomsky hierarchy

In linguistics, it is quite common to organise grammars according to the level of linguistic

unit they treat of, such as morphology (how to build words from morphemes) versus syntax (how

to build phrases from words and clauses from phrases). However, regardless of the linguistic

level, the production rules are the basis on which the type of a formal grammar is determined.

The different types of grammar are organised in a hierarchy, called the Chomsky hierarchy

(Chomsky 1957). The account of the hierarchy in this section draws on Chomsky (1957), Levelt

(2008), Wintner (2013), and Silberztein (2016).

GG LG

V T P S

{NP, D, N,

P, PP}

{the, cat, in,

hat, ran}

NP → D N NP {‘the cat’, ‘the cat in the hat’, ‘the hat’,

‘the hat in the hat, … } NP → NP PP

PP → P NP

N → cat

N → hat

P → the

D → in

Table 6.6. GG that produces LG, modelling the English noun phrase (adapted from Wintner

2013:56)

194

 Structure of the rule Rules grouped by structure

 Left hand side Right hand side GD GG

#1 One variable One terminal N → cat N → cat

P → hat

D → the

P → in

#2 One variable One terminal and one variable NP → the N -

#3 One variable Two variables - NP → D N

PP → PP NP

NP → NP PP

Table 6.7. Comparison of production rules of GD and GG

Let us compare the production rules in grammar GG (Table 6.6) with those of grammar

GD (Table 6.3 in the previous section). Table 6.7 lists the two grammars’ production rules sorted

by the structure of each rule. The type of each grammar can be determined by reference to

restrictions on the structure of production rules, proposed by Chomsky and presented in the

formulation of Silberztein (2016:120) in Table 6.8.

Grammar type Restriction

Type 0 Unrestricted/

recursively

enumerable

No restriction: any combination of variable and terminal symbols in

each of the two sides is allowed (as is any Type 1, 2, or 3 rule).

Type 1 Context

sensitive

Type 2 and Type 3 rules can be used. In addition, the rule may be

conditioned by a context, for example the context PLURAL in the rule

PLURAL SENTENCE → PLURAL NP see NP (PLURAL being, in this

example, an abstract representation of verb agreement with a plural

subject).

This rewriting rule does not touch the symbol PLURAL. The context

“activates” the rule and is still there after the rewriting of SENTENCE.

A context can be a variable or terminal symbol and can be located before

or after the main left- and right-hand side parts of the rule.

Type 2 Context free Type 3 rules can be used. In addition, there can be rules where the left-

hand side is a single variable symbol and the right-hand side is any

combination of terminal and variable symbols, e.g. SENTENCE → NP

sees NP, or SENTENCE → NP VP

Type 3 Regular The left-hand side of each rule is one single variable symbol, and the

right-hand side is either a single terminal symbol (e.g. NOUN → cat), or

the empty string (e.g. NP → ∅), also denoted by Greek letter ϵ (epsilon),

or a single terminal symbol followed by a single variable symbol (e.g.

NOUN → cat ADJECTIVE).

Table 6.8. Grammar types defined via restrictions on production rules (adapted from Silberztein

2016:120)

In GD and GG, all rules have one variable on the left-hand side, so we can focus on the

right-hand side. GD (Table 6.3) is a type 3 or regular grammar, because its production rules (in

195

Table 6.7) all comply with the restrictions relevant to regular grammars (type 3 in Table 6.8).

Namely, the single variable on the left-hand side is rewritten on the right-hand side either as a

single terminal (N → cat) or as a terminal followed by a variable (NP → the N).

Conversely, GG (Table 6.6) is not a regular grammar. Some of its rules satisfy the

restrictions of the regular grammar type. But the rules in row #3 are outside what is permitted in

a regular grammar, because they have two variables on the right-hand side. However, these rules

do satisfy the restrictions of context free or type 2 grammars, because context free grammars

allow any combination of terminals and/or variables on the right-hand side. Thus, GG is a context

free grammar.

Seen thus, the types of grammar exemplified by GD and GG are not disjunct but

hierarchical. The type of grammar that GD exemplifies is a subset of the type of grammar that GG

exemplifies. This subset relationship is illustrated in Figure 6.3.

Figure 6.2. Chomsky hierarchy illustration (reproduced from Silberztein 2016:121)

 Figure 6.2 illustrates the organisation of types of grammar from the least powerful type,

regular, to the most powerful, unrestricted, in which no restriction is imposed on the structure of

rules. The further down the hierarchy one goes, the more restrictions apply. As Table 6.8 shows,

the regular grammar type has more restrictions than all other types.

 Types of formal language are named after the types of grammar. Regular grammars

produce regular languages; context free grammars produce context free languages; context

sensitive grammars produce context sensitive languages; and unrestricted grammars produce

196

unrestricted languages. The subset relationship also applies to the types of formal language, so

that they can also be organised in a hierarchy, as shown in Figure 6.3.

Figure 6.3. Hierarchy of formal language types50

In section 6.3.1, I introduced the idea of an abstract computing machine called an

automaton, which can apply a formal grammar and/or verify potential formal language outputs.

Each type of grammar corresponds to a different type of automaton, as listed in Table 6.9.

Grammar Accepting machine/automaton

Type 0 Unrestricted Turing machine (TM)

Type 1 Context sensitive Linear bounded automaton (LBA)

Type 2 Context free Push down automaton (PDA)

Type 3 Regular Finite state automaton (FSA)

Table 6.9. Grammar types and corresponding accepting automata (adapted from Silberztein

2016:121-122)

Just like types of grammars, types of automata can be organised in a hierarchy. Due to

this relationship, grammar types lower on the hierarchy can be processed by automata for

grammar types higher up. For example, the regular grammar type corresponds to the Finite

State Automaton (FSA). However, this type of grammar can also be processed by an automaton

for any type of grammar higher in the hierarchy, that is, a Push Down Automaton (PDA), Linear

Bounded Automaton (LBA) or Turing Machine (TM). A PDA cannot be used to process an

unrestricted grammar or context sensitive grammar, but can process a context free grammar or

regular grammar. An LBA can be used to process a context sensitive grammar, context free

50 Adapted from https://www.tutorialspoint.com/automata_theory/chomsky_classification_of_grammars.htm (last accesed 26/05/2021)

https://www.tutorialspoint.com/automata_theory/chomsky_classification_of_grammars.htm

197

grammar, or regular grammar, but not an unrestricted grammar. The most powerful type of

automaton is the TM. It can process all types of grammar.

Power in this context refers to the capacity of each grammar type for different kinds of

rules. At the high end of the hierarchy, the restrictions on rule structure are relaxed, allowing

more variety of production rules and thus a more capable grammar overall. This power comes at

a cost in terms of the complexity of the automaton needed. To generate or verify words of a

regular language, an FSA refers to the states in its transitions (which will be explained later). To

operate, the FSA only needs to remember its current state. Other automata are more complex.

They must not only remember current state, but also other parameters, to process a sequence of

letters. The concepts of state, transition, and other parameters are discussed in more detail later.

For now, the point is that the more powerful the automaton, the more complex the parameter

information it contains and uses.

FSAs implementing regular grammars serve as building blocks for computational

morphology, as I will show in my review of Koskenniemi’s (1983) seminal TLM, in section 6.6.

Many MA programs use FSAs and regular grammars, even state-of-the-art systems. For this

reason, the discussion of FSAs and regular grammars which follows will be detailed, but other

types of grammar and automaton will be treated briefly, without abandoning formal rigour.

6.3.3.2 Further aspects of regular languages

The simple formal grammars introduced in section 6.3.1 are all of the regular grammar

type; this introduction to regular grammar therefore will not be repeated. Rather, I will now

consider other aspects of the regular languages that such grammars define.

6.3.3.2.1 Regular language operations and regular expressions

The discussion in this section is, where not otherwise specified, a synthesis of information

drawn from Silberztein (2016), Linz (2012), Levelt (2008) and Wintner (2013).

198

Regular languages can undergo a number of operations, namely 1) concatenation, 2)

union and 3) Kleene operation (Silberztein 2016: 120-121; Wintner 2012:13-15; Linz 2012:29-32).

Table 6.10 and Table 6.11 present two regular grammars and the regular languages they

generate.

GH LH

V T P S

{S, B} {a, b} S → aB

B → b

S {‘ab’}

Table 6.10. GH that produces LH

GI LI

V T P S

{S, C} {c, d} S → cD

D → d

S {‘cd’}

Table 6.11. GI that produces LI

(6.3) LH.LI = LJ = {‘ab’}.{‘cd’} = {‘abcd’}

Regular language operations can apply to one or more than one regular language. A

concatenation of two regular languages chains together their outputs. For instance,

concatenation of LH and LI produces {‘abcd’}, as shown in (6.3). The concatenation result is also a

regular language, which I label LJ. The concatenation operation is symbolised by a dot (or

period/full stop) .

 Being regular, the result can be described by a set of rules in a regular grammar. For

instance, LJ can be generated by the regular grammar GJ in Table 6.12.

GJ LJ

V T P S

{S, B, C, D} {a, b, c, d} S → aB

B → bC

C → cD

D → d

S {‘abcd’}

Table 6.12. GJ that produces LJ

The second operation is union. Unlike concatenation, the union operation creates a

collection of separate, or disjunct, outputs. Therefore, this operation is also known as disjunction.

199

For example, the union of LH and LI produces a language with two disjunct outputs {‘ab’, ‘cd’}

instead of a concatenated output {‘abcd’}. The union symbol is ∪. I illustrate this operation in

(6.4); an equivalent list of rules to produce these outputs is given in Table 6.13.

(6.4) LH ∪ LI = LK = {‘ab’}∪ {‘cd’} = {‘ab’, ‘cd’}

GK LK

V T P S

{S, B, C, D} {a, b, c, d} S → aB

S → cD

B → b

D → d

S {‘ab’, ‘cd’}

Table 6.13. GK that produces LK

The third operation is the Kleene operation (Wintner 2010:13), named after Michael

Kleene, an influential figure in mathematics and computer science. Applied to a language, this

operation outputs 1) an empty string (represented by an epsilon), 2) the outputs of the original

language, and 3) an infinite set of repetitions of the original output with different lengths. For

instance, applying the Kleene operation to LH produces { ∊, ‘ab’, ‘abab’, ‘abababab’, …}. A Kleene

operation is indicated by a star (*), as shown in (6.5) (corresponding grammar in Table 6.14.

(6.5) LH* = LL = { ∊, ‘ab’, ‘abab’, ‘abababab’, …}.

GL LL

V T P S

{S, B} {a, b, c, d} S → ∅

S → aB

B → bS

B → b

S {∊, ‘ab’, ‘abab’, ‘abababab’, …}

Table 6.14. GL that produces LL

A regular language can be represented not only by a list of rules, but also by regular

expression notation. Regular expression is a more compact notation than a list of rules, but

equally powerful as a definition of the resulting regular language (Linz 2012:77). It is common to

200

present a formal language’s outputs as a regular expression to take advantage of this

compactness. Table 6.15 compares some regular expressions to the lists of regular grammar rules

used to denote the same regular languages.

Regular expression Language Regular language Regular grammar

abcd LJ {‘abcd’} S → aB

B → bC

C → cD

D → d

ab|cd LK {‘ab’, ‘cd’} S → aB

S → cD

B → b

D → d

(ab)* LL {∊, ‘ab’, ‘abab’, ‘abababab’, …} S → ∅

S → aB

B → bS

B → b

Table 6.15. Comparison of regular expressions to lists of rules

A regular expression is an expression over an alphabet, augmented by special symbols

(Wintner 2012:15). For instance, in the regular expression for LK the vertical bar symbol is used

to denote a disjunction, i.e. union, over two regular languages (this differs from the operation

symbol for disjunction, which as we saw is ∪). The Kleene operation is an asterisk (or Kleene

star) in both regular expression notation and as a regular language operator. The asterisk

operator in the regular expression for LL applies to ‘ab’ as one unit (grouped by brackets) to

produce {∊, ‘ab’, ‘abab’, ‘abababab’, …}, as opposed to {∊, ‘ab’, ‘aabb’, ‘aaabbb’, …}, which would be

the result if it was applied to a and b separately, i.e. ‘a*b*’. Concatenation does not require any

symbol in a regular expression; the things being concatenated are merely placed next to one

another. So the regular expression for LJ ‘abcd’ is equivalent to the concatenation of ‘ab’ and ‘cd’.

The concatenation operator (dot) means something different in regular expressions51.

51 For a list of regular expression symbols and their functions, see Jurafsky (2007:22-30).

201

6.3.3.2.2 Finite state automata

6.3.3.2.2.1 Elements of an FSA

In addition to a list of rules and a regular expression, a regular language can be

characterised by the FSA that would process it. An FSA is an automaton or accepting machine

implementing a regular grammar, which can determine whether strings presented to it are or are

not valid in the corresponding regular language. This machine consists of a finite set of states,

represented by the symbol Q – thus the term FSA. The states are connected by a finite number of

transitions (δ), each of which is labelled by a letter from the language’s alphabet (∑). Processing a

sequence of input letters involves the machine transitioning from being in one state (before the

next input letter is processed) to another state (after that letter is processed).

An FSA begins operating from a start state (q0). For every transition from one state to

another, it prints the label associated with that transition. The term print here does not mean

actual printing to paper. Rather, it is part of the terminology of abstract automata, referring to

the automaton emitting the letters that label the transitions it makes and accumulating the

omitted letters to create the ultimate output. In FSA notation, the transition <q0,c,q1> means

“when the automaton moves from q0 to q1, print c”. This movement from state to state, and the

printing of letters, continues until the system reaches a final state (or accepting state), at which

point the accumulated output is combined into a word. Table 6.16 illustrates the elements of

FSAs using an example labelled FSAA.

Element Nature of element Element in FSAA

Q Set of states q0,q1,q2,q3

Σ Alphabet {c,a,t}

q0 Start state q0

F Final state q3

δ Possible transitions {<q0,c,q1>, <q1,a,q2>, <q2,t,q3>}

Table 6.16. Elements of FSA A (adapted from Wintner 2010:19)

202

Figure 6.4 diagrams FSAA, with states shown as circles. In this customary graphical

representation, the start state is coloured grey, and the final state has two circles. Transitions

between states are indicated by arrows; the letter printed by a transition is above its arrow.

Transitions are the key element of an FSA diagram. The list of transitions shows us that we

must draw lines from q0 to q1 and from q2 to q3, but not, for example, from q2 to q0 or q3 to q1.

These possible transitions determine which letter sequences in the input will and will not be

successfully processed (accepted) by the automaton.

Figure 6.4. Diagram of FSAA (adapted from Wintner 2010:19)

The words accepted52 by FSAA can be figured out by following the arrow. There is only

one transition each from q0 to q1, q1 to q2, and q2 to q3. These transitions print the letters c, a,

and t respectively, and therefore, this FSA accepts one word, ‘cat’. Every set of words accepted by

an FSA is a regular language, so the set {‘cat’} is necessarily a regular language, describable via

regular grammar or regular expression as well as FSA.

6.3.3.2.2.2 The epsilon move and loops in an FSA

What is dubbed the epsilon move in an FSA is a transition that prints no label,

equivalent to a regular grammar production rule A → ∅. As noted in 6.3.3.1, the empty symbol is

epsilon (ϵ). This is illustrated by FSAB in Figure 6.5, which accepts {‘undone’, ‘done’, ‘undo’, ‘do’}.

Accepting the last three words, but not the first, involves epsilon moves. To accept do, first un

must be bypassed by the transition <q0,∊,q2>, which prints epsilon. The FSA then prints ‘do’ as it

52 While I use the term ‘accept’, terms including ‘produce’, and ‘generate’ (Wintner 2010; Jurafsky 2007) are also used in

the literature with the equivalent meaning of generating an output form, according to a set of rules.

203

traverses q2 to q3 to q4. Finally, ‘ne’ is bypassed by the transition <q4,∊,q6>, which prints

another epsilon. The full word is thus ‘∊do∊’, which is equal to ‘do’. The other words, ‘done’ and

‘undo’, are accepted with only one epsilon move each.

Figure 6.5. FSAB with epsilon moves (reproduced from Wintner 2010:18)

A loop is a transition from some state back to itself, following which allows the FSA to

print the same letter over and over again. FSAC in Figure 6.6 has a transition from q2 to q2,

printing letter o <q2,o,q2>. Thus FSAC recognises { ‘meow’, ‘meoow’, ‘meooow’ …}. When it

reaches state q2 in the process of accepting (or attempting to accept) an input string, the next

input letter determines whether this FSA loops to q2 again (if it is o) or follows the transition

from q2 to q3 to break out of the loop (if it is w).

Figure 6.6. FSAC with a loop (reproduced from Wintner 2010:19)

6.3.3.2.2.3 FSAs and regular expressions

Because an FSA describes a regular language, it can implement regular language

operations, for each of which there is an equivalent regular expression. Figure 6.7 presents three

FSAs with equivalent regular expressions, each illustrating a regular language operation (see

204

6.3.3.2.1): concatenation, disjunction, and Kleene operation, respectively.

FSA (and operation exemplified) Regular

expression

Language

Concatenation

cat {‘cat’}

Union (disjunction)

a|b {‘a’,’b’}

Kleene operation

a* {∊, ‘a’, ‘aa’,

‘aaa’, … }

Figure 6.7. FSAs and regular expressions (adapted from Wintner 2010:18-19)

6.3.3.2.3 Regular relations and finite state transducers

The discussion in this section draws on Wintner (2010) and Jurafksy (2007).

6.3.3.2.3.1 The nature of regular relations

If two languages are regular, it is possible to relate them. This means that each word in

one language is paired to a word in the second language. An FSA that accepts a regular language

can either accept or reject inputs. However, when two regular languages are in this kind of

regular relation, the automation has an additional power: an output in the second regular

language can be used as an analysis of the output (that is, any accepted input) of the first regular

language. This is the fundamental principle that underlies any automatic tagger based on formal

205

rules and implemented as an automaton: the linking of words in one language (input tokens) to

words in another language (analytic tags).

Words of LC Words of LD RCD

I PRON-1-sg

{‘I:Pron-1-sg’, ‘know:V-pres’, ‘some:DET-indef’,

‘new:ADJ’, ‘tricks:N-pl’}

know V-pres

some DET-indef

new ADJ

tricks N-pl

Table 6.17. Words and corresponding tags in a regular relation (adapted from Wintner 2010:24)

In Table 6.17, the words of LC are the (linguistic) word types, while the words of LD are

corresponding POS tags. The inventory of the regular relation (symbolised RCD) consists of words

paired to tags, here shown with colon. Thus, a regular relation links two languages, but does not

change either language; nor does it create a new language based on one or both. It is merely a set

of pairings between their vocabularies.

6.3.3.2.3.2 Finite state transducers

FSAs can verify compliance of inputs with a regular language’s grammar by accepting

(and printing) valid words, but rejecting letter sequences that are not valid words. But an FSA

cannot utilise a regular relation, as it is limited to one language. The type of finite state machine

which can use a regular relation is called a Finite State Transducer (FST). An FST has all the

elements of an FSA (see 6.3.3.2.2.1), but also a second alphabet, so that it can utilise a regular

relation between two languages. FSTs’ most striking difference from FSAs is in the labels on

transitions (δ). Rather than one label (i.e. printed letter), there are two, one per language, joined

with a colon, representing a pairing from the regular relation see Figure 6.8 to Figure 6.10.

206

Figure 6.8. FSA that accepts a word ‘goose’ from a language of English singulars (adapted from

Wintner 2010:25)

Figure 6.9. FSA that accepts a word ‘geese’ from a language of English plurals (reproduced from

Wintner 2010:25)

Figure 6.10. FST for the regular relation of goose and geese {‘goose:geese’} from the two

languages, with all pairs of labels shown (reproduced from Wintner 2010:25)

Figure 6.8 and Figure 6.9 present FSAs from two different languages that produce goose

(singular) and geese (plural) respectively. Figure 6.10 presents an FST that utilises the regular

relation between the two languages. Each transition label has a letter from the first and the

second language. For instance, the transition <q1,o:e,q2> leads from q1 to q2; o is some letter of

the first alphabet, e is some letter of second alphabet, and these two letters are associated. This

FST exemplifies a system which, having recognised an English singular noun, outputs the

corresponding plural. In this case, it yields ‘geese’ when it recognises ‘goose’.

The letters linked within an FST transition label may be identical. For example, the first,

fourth and fifth letters of goose and geese are identical (as indicated by transition labels g:g and

207

s:s in Figure 6.10). An alternative notation gives the letter just once when it is the same in both

languages; see Figure 6.11.

Figure 6.11. FST for the regular relation of goose and geese {‘goose:geese’} using an alternative

notation (reproduced from Wintner 2010:26)

The FSTs in Figure 6.10 and Figure 6.11 are equivalent. Words ‘goose’ and ‘geese’

represent the case in which the singular and plural forms have the same word length (five

letters). However, English singular and plural forms may differ in length. For instance, ‘ox’

(singular) is two letters long, while ‘oxen’ (plural) is four letters long. An FST handles this by

printing epsilon to omit one or more letters, as shown in Figure 6.12.

Figure 6.12. The use of epsilon to handle paired words of unequal length in an FST that

pluralises ‘ox’ (reproduced from Wintner 2010:26)

6.3.3.2.3.3 Practical uses of FSTs

Both FSAs and FSTs are of great importance to NLP. For instance, many NLP

applications allow their users to search through text – a function present even in most text

editors – and this can often be done with regular expressions. When we input a regular

expression into the search interface (e.g. a|b, as in Table 6.15), the computer compiles this

regular expression into an FSA using a compiler module present within the application. The text

208

is given as input to the compiled FSA, beginning at each possible start point. When the FSA

accepts the input, a search result has been found, and the program will display it – either by

showing it somewhere on screen, by highlighting it, or by moving the user’s cursor to the result.

Figure 6.13 illustrates all this for one popular text editor.

Figure 6.13. Results of a regular expression search in Notepad++53 (matches highlighted)

Another application of FSTs is linguistic annotation, as previously discussed (6.3.3.2.3.2)

For instance, a morphological annotation system can produce tags using FSTs compiled from

regular expressions. Let us assume a tagging system whose output is laid out on two lines, where

the first line presents the morpheme tokens recognised, and the second line presents the

morphological tags assigned to them, as in the example in Table 6.18. Once a word is split into

morphemes, we can use an FST to annotate the tokens by processing and accepting valid

sequences of morphemes and producing the valid sequence of tags paired with the morphemes as

its second output.

53 https://notepad-plus-plus.org/ (last accessed 26/04/2021)

https://notepad-plus-plus.org/

209

Turkish input
uygarlastıramadıklarımızdanmıssınızcasına

“(behaving) as if you are among those whom we could not civilize”

Morphemes

(1st language)
uygar +las +tır +ama +dık +lar +ımız +dan +mıs¸ +sınız +casına

Tags

(2nd language)
civilized +BEC +CAUS +NABL +PART +PL +P1PL +ABL +PAST +2PL +AsIf

Table 6.18. Turkish morphemes and corresponding tags from a regular relation (adapted from

Jurafsky 2007:52)

6.3.3.3 Context free grammars (CFGs)

Having dealt at length with regular grammars, let us now look more briefly at the other

types of grammar in the Chomsky hierarchy. This account of CFGs is drawn from Levelt (2008)

and Silberztein (2016). The restrictions on a CFG’s production rules are more relaxed than those

that apply to regular grammars. The right-hand side of a CFG’s production rules can consist of

any combination of terminals and variables as per the definition in section 6.3.3.1. One example

CFG commonly seen in the literature is shown in Table 6.19. It generates (or accepts) only words

which consist of a string of ‘a’ followed by a string of ‘b’ where the two strings are exactly equal in

length (Silberztein 2016:165-166).

GM LM

V T P S

{S} {a, b} S → aSb

S → ab

S {ab, aabb, aaabbb, aaaabbbb,…}

Table 6.19. GM that produces LM

The CFG for LM contains a self-referential rule (S → aSb). It is thus able to process

recursion. Recursion is the only way the grammar can ‘remember’ how many a’s have been

produced in order to produce the same number of b’s. A regular grammar cannot have a rule like

S → aSb, and thus has no memory and cannot process recursion.

A natural language example of this phenomenon is Prepositional Phrase (PP) recursion,

as exemplified in Table 6.20. Since an NP can include a PP and a PP can include an NP, Noun

Phrases may have one PP (‘the pen in the box’), two PPs (‘the pen in the box in the drawer’),

three PPs (‘the pen in the box in the drawer under the desk’) and so on theoretically ad infinitum.

210

GN LN

V T P S

{NP, PP,

DET, N, P}

{the, pen, in, box,

drawer, under,

desk}

NP → DET N PP

NP → DET N

PP → P NP

NP { ‘the pen’, ‘the pen in the box’,

‘the pen in the box in the drawer’,

‘the pen in the box in the drawer

under the desk’…}

Table 6.20. GN that produces LN illustrating PP recursion

 A CFG can also capture ambiguity, which is important for syntactic annotation. The

sentence this man sees a chair from his house is syntactically ambiguous in that it could be

interpreted as (1) the chair used to be in his house and the man sees it now somewhere else; or

(2) the man is in his house and sees a chair that is not in the house and never has been. The CFG

in Table 6.21 can represent both interpretations as the outcomes of two different subsets of its

production rules given that sentence as input. The first interpretation begins with the production

rule S → NP V NP, while the second begins with S → NP V NP PP. The linguistic phenomenon

simulated is termed ambiguity of PP attachment.

GO LO

V T P (in two subsets) S

{S, V, NP,

DET, N, P}

{this, man, sees,

a, chair, from,

his, house}

S → NP V NP

NP → DET N

NP → DET N PP

PP → P NP

DET → this

DET → a

DET → his

N → man

N → chair

N → house

V → sees

P → from

S { ‘this man sees a chair

from his house’, …}

S → NP V NP PP

PP → P NPNP → DET N

DET → this

DET → a

DET → his

N → man

N → chair

N → house

V → sees

P → from

Table 6.21. GO that produces LO, able to process PP attachment ambiguity

211

The corresponding automata for CFGs are Push Down Automata (PDA). A PDA must be

able to ‘remember’ a previous state so that it can return to it after implementing a rewriting rule,

to complete earlier production rules left unfinished. Let us illustrate this with a simple rule S →

NP VP. This rule needs to be suspended, its processing incomplete, as first one right-hand side

non-terminal, then the other, is itself fully processed; only then is the initial rule completely

processed. Thus, to process NP, the subsequent variable VP must be ‘pushed’ into a ‘stack’. Once

the PDA has finished processing NP, the VP will be ‘popped’ out from the stack, and itself

processed further. Once variable VP is completely handled, there is nothing more to pop, as no

symbol follows VP in this example, so the rule for S is complete. However, had there been

another symbol following VP, the push and pop process would have applied once more.

CFGs are insufficient for certain phenomena in natural language. The homorganic nasal

assimilation involved in the allomorphy of prefix meN- in Indonesian (discussed at length in

2.1.2) serves to illustrate this. When meN- precedes a base that starts with /p/, the N becomes /m/

(allomorph mem-). This can be expressed by the rule N p → m p. A CFG cannot capture this

phenomenon, as the rule includes a context: an adjacent symbol (here, p) which specifies whether

or not the rule will actually rewrite any given instance of the left-hand side variable symbol

(here, N). Such phenomena require a Context Sensitive Grammar (CSG).

6.3.3.4 Context sensitive grammars (CSGs)

This description of Context Sensitive Grammars (CSGs) draws on Silberztein (2016) and

Levelt (2008). A CSG is more powerful than CFG because it may specify a context around the

symbol on a rule’s left-hand side, and/or around the symbols on the right-hand side. Such rules

are impossible in a CFG due to the restriction that the left-hand side can only consist of a single

variable.

212

GP LP

V T P S

{S, N} {m, ng, n} S → N

N p → m p

N k → ng k

N t → n t

S { ‘m’, ‘ng’, ‘n’}

Table 6.22. GP that produces LP in which N is conditionally rewritten

The rules in Table 6.22 represent part of Indonesian homorganic nasal assimilation

allomorphy, namely the rewriting which determines the place of articulation of the prefix-final

nasal. The three rules for variable N specify three contexts (p, k and t) on both sides of the rule,

following N and following the symbol to which the rule rewrites N (m, ng, or n). Therefore, the

rewriting of N is conditioned by its context.

An automaton with the power to execute rules conditionally is called a Linear Bounded

Automaton (LBA). While PDAs require a stack for context free rules, the LBA requires a ‘tape’ in

order to implement the more powerful conditional (context sensitive) rules. A tape allows access

to the preceding and following material in the automaton’s input: at any point, the LBA can ‘see’

what is to the left and right. This implements contexts. In the example in Table 6.22, when an N

is being processed, the nature of the material adjacent to N on the tape determines whether N

will be rewritten into m, ng, or k. In this example, the rule is conditioned by a right context.

However, it is also possible for an LBA to make use of a left context, or both. Full details on LBAs

would not be directly relevant here, but for further background the reader is referred to Levelt

(2008:85-96).

6.3.3.5 Unrestricted grammars

This account of unrestricted grammars draws on Silberztein (2016) and Levelt (2008).

Unrestricted (or recursively enumerable) grammars are the most powerful type in the Chomsky

hierarchy, since as the name indicates, there are no restrictions on the rules. However, this type

of grammar is of little interest from the linguistic point of view, as definitionally its procedures

may be completely arbitrary (Levelt 2008:9). Both sides of the production rules may consist of

213

any combination of variables and terminals. Finding natural language examples which can only

be characterised by this type of grammar is difficult, precisely because natural language

grammars tend to be patterned and not to exhibit such arbitrariness. The automaton that

corresponds to an unrestricted grammar is a Turing Machine (TM), named after noted early

computer scientist Alan Turing.

TMs model the abilities of an actual computer or programming language. A computer

may be programmed to read and write arbitrary memory locations, and to follow paths among

states defined, likewise, arbitrarily. Equivalent behaviour is not found in natural language. The

storage of a TM, like that of an LBA, is conceptualised as a tape. However, while a PDA can only

examine the top of its stack, and an LBA can only look immediately ahead or immediately back

on its tape, a TM is not limited to any defined context. Its tape can be moved left or right, and the

content of the tape at any location ‘seen’, without any restriction. The literature on TMs is vast

(see Levelt 2008:108-121), but will not be discussed further here; as Levelt (2008:9) observes,

natural languages are not unrestricted, so the TM is not a good model for natural language.

Other types of automaton are thus theoretically preferable.

6.4 Linguistic and morphological formalisms

6.4.1 Introduction to linguistic formalisms

Linguistic formalisms are systems which apply formal grammar to the description of

natural language. All linguistic formalisms are formal grammars (as defined in 6.3). However,

modified and compact notations specifically tailored to natural language are often used in

linguistic formalisms. These notations are not commonly used in other formal grammars (i.e.

those that describe non-natural language).

One prominent theory centred on formal grammars is generative grammar, pioneered by

Chomsky (1957; 1965; 1968). Generative grammarians develop formalisms by proposing rules

214

that govern the structures either of particular languages or natural languages in general (the

latter being termed universal grammar).

Although the history of generative grammar runs from the 1950s to the present day, the

account of this approach – and particularly of generative morphology — given here addresses

mainly the period through to the early 1980s. The generative morphology of that period is the

model that computational linguists working on morphological analysis utilised prior to

Koskienniemi’s (1983) invention of the Two-Level Morphology (TLM) formalism. Today’s

generative morphology incorporates novel advances such as Optimality Theory (Prince and

Smolensky 2004; Kager 2004; McCarthy 2002). However, such developments have had, as will be

shown, little impact on computational morphology due to the success of TLM. I also restrict the

discussion to three particular matters that will prove relevant to computational morphology (in

6.4.2 to 6.4.4). Generative grammar has also contributed to the development of fields such as

cognitive linguistics and psycholinguistics, but I will pass over this as irrelevant for present

purposes.

Generative morphology became an area of study in the early 1970’s – later than

generative syntax or phonology, which were by then well-established. Important figures in

generative morphology include Morris Halle and Mark Aronoff. Halle, with Chomsky, pioneered

generative phonology (Chomsky & Halle 1968), but to begin with, generative morphology was

understudied. Most generative grammarians argued that it was not needed – it could be covered

by syntax and phonology (Spencer 1991:63). To substantiate the importance of generative

morphology, separate from phonology and syntax, Halle (1973) developed Word Formation Rules

(WFRs). Aronoff (1976) responded to Halle’s work by proposing refined WFRs, with a similar

formal notation but slightly different conceptual framework (see Spencer 1991:73-92). Both

versions of WFRs work within generative grammar, and thus differ little in terms of formalism

(see 6.4.3). Other landmark works in generative morphology in this period include Siegel (1979),

Selkirk (1983), and Scalise (1986).

215

6.4.2 Transformations and underlying and surface forms

A central concept of generative grammar is the transformation. This term predates

generative grammar, having been used by structuralist linguist Zelig Harris, of whom Chomsky

was a student, to refer to the alteration of one observable linguistic form to another (Barsky

2011:132).

Chomsky (1965) uses the term transformation in another sense. In generative grammar,

particularly syntax, a transformation alters what Chomsky dubs Deep Structure (DS) to Surface

Structure (SS). The respective equivalent terms Underlying Form (UF) and Surface Form (SF)

are normally preferred in phonology and morphology. The SF is the phonetic or orthographic

realisation of a linguistic unit that is observable in writing or speech; but the UF is defined by

Chomsky (2015:145) as the abstract underlying grammatical structures and functions that make

up the framework of a sentence into which lexical items are inserted. So, for instance, in

Indonesian orang-orang ‘people’, pluralised by reduplication from orang ‘person’, the SF is clearly

orang-orang. But the UF consists of the root’s UF plus the underlying abstract representation of

the morphological operation of reduplicating a noun to mark plurality. We could represent this

UF in different ways according to the formalism; one example might be <RED.Full>. The

relevant transformations then consist of the formal rules needed to generate SF orang-orang

from UF <orang><RED.Full>.

6.4.3 Word formation rules

Halle’s and Aronoff’s Word Formation Rules (WFR) framework, introduced in 6.4.1, is a

morphological formalism based ultimately in formal grammar. WFRs are rules that describe how

a base concatenates with one or more other morphemes to form a valid word (Aronoff 1976:36).

To capture linguistic features relevant to word formation, the WFR formalism adds labels and

symbols to basic rewrite rules, as exemplified by the WFRs in Table 6.23.

216

WFR 1 WFR 2

∅ V → +ion N

[+transitive]
𝑑 → 𝑠/𝑛_ {

+𝑖𝑣𝑒
+𝑖𝑜𝑛
+𝑎𝑏𝑙

}

Table 6.23. Sample WFRs (adapted from Aronoff 1976:36)

WFR 1’s left-hand side contains epsilon (written as ∅) with subscript V, indicating an

absence (no suffix) at the end of some base which must be a verb. The conditioning of the base as

a verb is called a contextual condition in linguistics (in formal grammar terms, this is an

implementation of a CSG rule; see 6.3.3.4). The [+…] below this symbol is generative grammar

notation indicating a value of some feature. Thus, [+transitive] under the epsilon here indicates a

contextual requirement for the verb base to be transitive.

WFR 1’s right-hand side is composed of suffix -ion with subscript N for noun. The latter is

output information indicating that the output of this suffixation is a noun. Altogether, WFR 1

formalises the generalisation that suffix -ion can be directly concatenated to a transitive verb

base to derive a noun; e.g. UF infect + ion becomes the valid SF infection.

Like other generative formalisms, the WFR model often involves ordered series of

transformations, that is, multiple transformations which must be applied in a particular order to

ensure a well-formed result. This is because (1) the operation of one rule may create or remove

the contextual conditions that trigger some other rule, and (2) the order of transformations

determines the linear order of morphemes in the resulting word. Both points can be illustrated

by considering the application of WFR 1 and WFR 2 to base extend.

It takes both WFRs to transform ‘extend’ to the well-formed noun extension. First, WFR 1

applies to generate intermediate form *extendion (direct concatenation of suffix -ion to the base),

which is not yet well-formed. WFR 2 applies second, and operates on the intermediate form. This

allomorphy rule alters d to s in any context where d’ is preceded by n and followed by -ion (or

other suffix triggering this rule); the conditioning context is given after the slash /, and the

underscore indicates the position of the ‘d’ relative to that context. The intermediate form

extendion meets both conditions, and so WFR 2 alters d to s, transforming extendion to

extension, a well-formed word.

217

If WFR 2 came first, it would not be triggered, as its context (a following -ion) is not

fulfilled. Application of WFR 1 would then generate extendion, but since WFR 2 has already

operated, this form could not be transformed further. Thus, one sequence of these two rule

generates the true English form, whereas the reverse order cannot.

6.4.4 Overgeneration and blocking

Two other pertinent concepts in WFR are overgeneration and blocking. Overgeneration is

a term used by Halle (1973) to refer to anomalous surface forms generated by a language’s WFRs.

In theory, all WFRs ought to apply whenever their contextual conditions are met, generating

well-formed words; but in practice, some of the words thus generated are not well-formed (they

do not actually exist in the vocabulary of the language). For example, the WFR for suffix -tion

applies to verb bases, generating e.g. derivation. It ought, therefore, to apply to the base arrive.

However, the result is the non-existent word *arrivation. Meanwhile, the WFR for suffix -al

accurately generates arrival from the same base. In Halle’s terminology, the incorrect form

*arrivation is overgenerated.

Why do overgenerated words not, in fact, exist in the language? WFR explains this with

the concept of blocking: a word generated by the rules is blocked from entering the vocabulary if

another word already exists with the same function and meaning. In this case, arrival and

*arrivation would have the same meaning (nominalisation of arrive), so the existence of

*arrivation is blocked by the prior existence of arrival; only arrival is a well-formed SF. Another

example is the blocking of the non-existent form childs (formed by adding -s to base child) by

existing, irregular form children.

218

6.5 Computational morphology prior to TLM

6.5.1 Early computational morphology

The content of this section draws extensively on the historical accounts of Koskenniemi

(1983), Roark & Sproat (2001), and Jurafsky & Martin (2007). It explores how the WFR

formalism (discussed in 6.4) was first implemented in real computers, and the non-WFR-based

developments in computational morphology that preceded this step.

For a formal grammar of any kind to be implemented practically, it needs to be

‘translated’ into machine code, a block of non-textual data which the computer can execute as a

program. The proper computing term for this ‘translation’ process is compilation. The compiled

machine code is what generates the actual output of a tagger based on a formal grammar.

Compilation is performed by a program called a compiler.

Let us put this in the context of WFRs. WFRs all have the generic form α→β/γ _ δ (alpha

changes to beta if it is preceded by gamma and followed by delta). In a WFR, each of the four

elements can be defined in terms either of their form or of category/feature labels, as outlined in

section 6.4.3. Because it involves contextual conditions, a WFR is a CSG rule in terms of the

Chomsky hierarchy (see 6.3). The type of automaton corresponding to CSG is the LBA. Therefore,

a computer program implementing the abstract LBA can put the WFR into practice.

However, as we will see, the highly influential MA system of Koskenniemi (1983) in

practice does not use an LBA. To understand why, let us consider earlier work on MAs.

Before Koskenniemi’s MA, a number of NLP tools, namely stemmers and lemmatisers,

were developed. Concerning these tools, we can ask at least two questions. First, what kind of

morphology (sub-)task did each program perform? And second, is the program based on the

aforementioned model of compiling rules (in WFR or some other formalism) to machine code, or

not?

219

6.5.2 Stemmers

Jurafksy & Martin (2007:3) introduce the stemmer as a tool widely used in Information

Retrieval (IR), defining stemming as stripping off ‘ending(s)’ from a word form so that only its

stem remains; ending is not used in the technical linguistic sense in this context. Table 6.24

shows how two early stemmers, those of Lovins (1968) and Porter (1980), handle the word

variations.

Input Output

variations Lovins (1968) Porter (1980)

vari variat

Table 6.24. Sample output from the Lovins and Porter stemmers

As a linguist, I expect the stem output for variations to be variation, its uninflected form.

However, both stemmers under consideration remove much more material than just inflectional

affixes. The task of a stemmer, then, is to render words into reduced forms so that IR systems

can treat alike all related forms, regardless of whether the relationship is through inflection or

derivation.

To determine whether these early stemmers use any morphological formalism, we need to

review how they work. The three I discuss here (Lovins 1968; Dawson 1974; Porter 1980) utilise

the ‘table lookup’ method (King 1961, cited in O’Halloran & Waite 1966:248). Such a stemmer

identifies an ending that matches the final part of some token by searching through a table in

memory which stores all the endings of which the stemmer is aware. The matched part of the

word, if any, is removed.

Lovins’ (1968) stemmer has 294 endings. Her stemming algorithm is based on the longest

matching principle. If a word matches more than one ending, the stemmer removes the longest

(e.g. for absorptions, both -s and -tions match, so the longer –tions ending is removed). Lovins

subsequently applies recoding rules (Lovins 1968:23) to convert the resulting stems into so-

called neutral forms. These rules are more rudimentary than WFRs, or as Koskenniemi (1983:13)

puts it, they are crude rules. For Lovins, the neutral form is that from which any effect of root

220

allomorphy is removed (e.g. for absorptions, the absorb-/absorp- alternation, inherited from

Latin). Table 6.25 illustrates how a rule is applied to convert the rpt in absorpt (after -ion has

been stripped) into rb. The final stem is then absorb, matching what would be produced from

absorbs (also exemplified) or any other word based on the other root allomorph.

 Input rpt > rb Output

1 absorbs -s absorb - absorb

2 absorption -tion absorpt absorb absorb

Table 6.25. Recoding of ‘rpt’ to ‘rb’ (Lovins 1968:26)

 Dawson’s (1974) stemmer does not use recoding, but rather utilises 1,200 endings, more

than Lovins uses. This stemmer improves the speed of lookup relative to Lovins’ stemmer by

organising the endings in memory as a set of branched character trees (Paice 1990). This strategy

produces a significant performance improvement over Lovins’ stemmer.

 Porter’s (1980) stemmer can be considered an advancement on the Lovins and Dawson

stemmers in terms of avoiding words being over-stemmed (e.g. stemming ring > r because ending

ing is known to the stemmer). To achieve this, Porter’s algorithm does not strip the endings in

just one pass, but instead operates across five stages with a different lookup table at each stage;

Lovins’ and Dawson’s stemmers used just one table for all endings.

 We see, then, that early stemmers utilise both rules which recode, i.e. transform, words,

and a lexicon of endings roughly equivalent to suffixes. However, the rules are largely based on

orthography, not formal morphology as in WFRs. Stemmer rules, referring only to concrete form,

are clearly not as complex as WFRs, which can refer to theoretical categories – such as word or

root POS or transitivity – of which stemmers are unaware.

None of Lovins (1968), Dawson (1974) or Porter (1980) provides any explicit discussion of

the formalism their stemmer uses. However, Jurafksy & Martin (2007:74-25) argue that the

cascaded rules used in the Porter stemmer can be modelled with an FST (and are thus provably

equivalent to a regular grammar). Be that as it may, the early stemmers were not originally

based on formal morphology, but on orthography, with only crude or rudimentary rules, if any.

221

While the stems identified by stemmers are not always linguistically accurate, these tools

continue to be widely accepted in the field of NLP for their practical utility in IR. However, for a

working MA system which respects linguistic concepts of stem, root, affix and so on, what a

stemmer does is insufficient.

6.5.3 Lemmatisers

Lemmatisers are programs which supply a word’s lemma – also a (sub-)task for

morphological analysis. When lemmatised, a word is converted into its non-inflected form. This

means that derivational morphemes must be preserved (e.g. absorptions lemmatises to

absorption, not absorb), whereas in stemming, typically both inflectional and derivational affixes

are stripped.

The lemma and stem of a word may be identical (e.g. both lemma and stem of speaks are

speak) but may also differ. For instance, to stem taking to tak is acceptable, but a lemmatiser

must annotate taking as take. Furthermore, words inflected by suppletion such as better must be

analysed correctly, in this case, as part of the lemma good.

Like stemmers, lemmatisers are likely to be equipped with rules. But unlike stemmers,

most lemmatisers rely heavily on a lexicon. A lemmatiser’s lexicon must link word forms to

corresponding lemmas, potentially also taking account of POS tags. Thus, given an input word

form, the system looks it up in the lexicon and returns the corresponding lemma. The lexicon

used in a lemmatiser is likely to include entries for words formed through both regular and

irregular processes. This allows the lemmas of suppletive word forms to be returned despite

being very different in shape (e.g. went to go; better to good).

Of course, many word forms will be absent from the lemmatiser’s lexicon. To such forms,

a lemmatiser applies rules to generate a best guess. If this fails, the last resort is returning the

word form as its own lemma.

Few lemmatisers were developed in the 1970s and early 1980s. Hellberg (1972) creates a

lemmatiser lexicon by reworking a corpus wordlist and adding lemmas to word forms. The same

222

method is used to lemmatise French by Meunier et al. (1976). In some later lemmatisers, e.g.

Krause and Wille’s (1981), the system can make reference to a word’s morphosyntactic context

(its POS, and that of nearby words) to determine the correct lemma for an ambiguous form. So,

for instance, the LDVLIB lemmatiser (Drewek & Erni 1982) uses a lexicon whose entries include

inflectional features such as gender, number, and person.

Do these lemmatisers utilise WFR or any other linguistic formalism? None of the cited

authors say explicitly that they do. Given the points above, I suspect that like stemmers, these

lemmatisers use rules of a simpler kind than WFRs. And, as with stemmers, the lemmatiser

rules exemplified in the literature are mostly based on orthography, not formal morphological

criteria – crude rules in the sense discussed previously.

6.5.4 The origins of TLM

Prior to the 1980s, most computational linguistic systems were ‘toys’ (Roark & Sprout

2001:112). A ‘toy’ system is one that can handle only a limited number of linguistic inputs (as we

may see in demo software today). Prior to Koskenniemi, no researcher had managed to fully

implement generative morphology into a working MA system able to handle unrestricted text.

What issues did work to implement morphological formalism face?

There are two separate tasks in implementing a formalism as an actual program: 1)

writing the rules in some generative grammar formalism; 2) compiling the rules into machine

code that the computer can execute to implement the grammar. Ideally, then, an implementation

of WFR would be able to represent in its formalism, and utilise in its compiled machine code, all

of WFR’s complexities. But when the grammar is complex, the design of the compiler is more

challenging. Moreover, the resulting machine code has greater resource requirements (in terms

of memory and processing time). A complex grammar, such as a large set of WFRs, could easily

be compiled to code that requires more resources to run than were available in most computers of

the 1970s and early 1980s. Therefore, at that time it was preferable for an MA to be based on the

simplest possible grammar, rather than a grammar complex enough to encode any possible WFR.

223

Complexity in the Chomsky hierarchy Grammar type => automaton type

Bottom of hierarchy – simplest grammars

Top of hierarchy – most complex grammars

Regular => FSA

Context free => PDA

Context sensitive = > LBA

Unrestricted => TM

Table 6.26. The complexity of grammars in the Chomsky hierarchy (adapted from Silberztein

2016:121-122).

As mentioned in 6.5.1, WFRs allow reference to contextual conditions, and therefore,

make up a CSG, the second most complex type in the Chomsky hierarchy. But the least complex

formal grammar, and thus the type preferable for computer processing, is the regular grammar.

So how did early researchers model the grammar so as to produce machine code lightweight

enough to execute on 1970s/1980s computers?

The solution to this problem came gradually, and not directly from morphology

(Kartunnen 1993). The generative phonologist Johnson (1972), drawing on earlier theoretical

work by Schutzenberger (1961), argues that the contextual conditions in phonological rewrite

rules can be modelled by FSMs. This is because these rules are not applied recursively to their

own output. In generative phonology’s use of the generic CSG rule α→β/γ _ δ, once α→β is

completed, the same rule is never applied again to β. While CSG (and CFG) allows such

recursion, formalist phonology does not use it. Consequently, Johnson argues, the input-output

pairs of a phonological CSG-type grammar behave like a regular relation, which can be modelled

by FSTs (Kartunnen 1993: 183). Thus, generative phonology does not need to be implemented as

a complex LBA; a much simpler FSM is enough.

Kaplan & Kay (1981) were unaware of Johnson’s proposal, but made a proposal parallel

to Johnson’s theoretical insight: that rules with contextual conditions can be implemented with

FSMs rather than LBAs. Their project aimed to build a compiler for generative phonology rules.

Kaplan and Kay explore the practical implication of what Johnson briefly discussed, that is, the

nature of sequential transformation rules in relation to FSMs. Thus, they implement their

phonological grammar formalism using an FSM.

Kaplan and Kay’s approach compiles a sequence of phonological rules into a single large

FSM (Figure 6.14). As Karttunen (1993:181) observes, this approach does not need any

224

intermediate forms as typically required in generative grammar. This is because any system of

ordered phonological rules applying in sequence also describes a regular relation, regardless of

how many rules are involved. The single large FSM only recognises two levels: underlying level

and surface level (this two-level approach was inherited, and significantly improved on, by

Koskenniemi 1983:14, as he acknowledges). This transducer would theoretically be able to

generate an underlying-to-surface form lexicon which contains all underlying forms and their

corresponding surface forms.

Figure 6.14. The composition of sequential rules into a single rule FST (reproduced from

Kartunnen 1993)

In sum, the system Kaplan & Kay (1981) suggest can be described as follows.

Phonological rules written in some generative grammar formalism are compiled and combined

into a single large transducer. This single transducer is applied to the underlying forms,

generating the corresponding surface forms. Paired underlying and surface forms are then

collected into a full lexicon.

Kaplan and Kay’s effort to implement this plan was successful in compiling a complete

formal grammar of the phonological rules of Finnish into a single large transducer. However,

their system failed to run when applied to underlying forms in the lexicon, because a lot of

memory is required to execute such large FSTs, and in 1980, computer memory was limited. Only

later would Koskenniemi (1983) find the solution to this problem.

What is important from Johnson’s and Kaplan and Kay’s (and later Koskenniemi’s)

findings is (1) that computational phonology and morphology based on generative theory has

225

been able to presume that FSM-based systems will be able to implement the rules used in these

fields; and thus (2) that there is no need to implement the rules using more complex automata.

This remains true even as of 2021; the majority of MA systems today are based on FSMs (see

further 6.7).

6.6 Two-Level Morphology

6.6.1 An overview of Koskenniemi’s system

The overview of TLM given in this section draws extensively on Koskenniemi (1983). I

focus on Koskenniemi’s formalism rather than his software, as the TLM formalism remains in

current use despite many developments in the implementation. Since the inception of

Koskenniemi’s system in 1983, a number of well-known FSM-based programs which adhere to

the TLM formalism have been devised, including PC-Kimmo (Antworth, 1990), Fintwol

(Koskenniemi 1995), xfst (Kartunnen & Beesley 2003), and foma (Hulden 2009). The TLM

formalism guides the creation of the core lexicon for any MA system based on Koskenniemi’s

approach. That core lexicon determines what output is assigned for each input. The user

interface and output format of one current TLM-based system, Fintwol, is illustrated in Figure

6.15.

226

Figure 6.15. Analysis of ketun by Fintwol (http://www2.lingsoft.fi/cgi-bin/fintwol)

To summarise Fintwol’s operation concisely: Fintwol queries its database, i.e. lexicon, to

retrieve the underlying form or forms corresponding to the input form (here, ketun). Each lexicon

entry contains three pieces of information: 1) root, 2) ending, and 3) analysis (expressed as a

string of tags). The system then produces output containing the root (in this case kettu) and the

tags (N GEN SG) that correspond to the input. The lexicon itself has been created by applying

TLM rules to the system’s linguistic resources, as discussed above.

At this point it is necessary to must introduce some key terms in TLM. The lexical string

(LS) and surface string (SS) are the TLM terms equivalent to underlying form (UF) and surface

form (SF) respectively (see 6.4.2). A relation between an LS and an SS is termed a

correspondence, rather than a transformation as in generative morphology. The letters (in the

sense of formal grammar) of the TLM alphabet are called TLM characters.

6.6.2 TLM alphabet, lexical and surface strings

The characters of the TLM alphabet can be grouped into three subsets (see Table 6.27).

The first subset (SS) are the surface characters (such as a, b, c, etc.). These are always written in

lowercase and represent characters used to write Finnish in actual text, including characters

227

with diacritics. There is also an epsilon/null character, which has no actual surface

representation, as usual in formal grammars (see 6.3). Despite their name, surface characters

appear in both LS and SS.

Code Characters Example

SS Surface characters (LS +

SS)

e.g. a, b, d, e, f … ∅

SM Morphophonemic

characters (LS)

e.g. A (represents a subject to vowel harmony),

T (represents t subject to consonant gradation),

D (represents infinitive suffix)

SF Feature characters (LS) e.g. = (wildcard), # (word boundary), $ (ending that

requires weak vowel), …

Table 6.27. Character subsets used in TLM (adapted from Koskenniemi 1983:23-27)

Morphophonemic characters (SM) are only used in LS and represent phonemes subject to

morphophonemic alternation. The result of the alternation is what appears in the SS. So for

instance, character K in LS may correspond to either k or null in the SS, depending on the

morphophonemic context. Feature characters (SF), also known as morphological feature

characters, include wildcards, morpheme boundaries and characters that trigger changes in

correspondences.

Table 6.28 presents actual examples relevant to the word analysed in Figure 6.15.

Example 1 illustrates the LS-SS pair for ketun ‘fox’ (genitive singular), and the correspondence of

T to ∅ (T:∅); example 2 shows the LS-SS pair of kettu ‘fox’ (nominative singular) and

correspondence of T:t A character-to-character correspondence like T:∅ or T:t is termed a

character pair (CP).

 Example 1 Example 2

Lexical string (LS) k e t T u $ n k e t T u

 | | | | | | |

| | | | | | |

| | | | |

| | | | |

Surface string (SS) k e t ∅ u ∅ n k e t t u

Table 6.28. TLM implementation of alternation from strong to weak grade consonant due to

genitive suffix -n (adapted from Koskenniemi 1983:17)

228

Whether T corresponds to t or ∅ depends on the context. Strong consonant gradation (T:t)

(in kettu) applies when there is no suffix; in the presence of suffix -n, weak consonant gradation

(T: ∅) applies. This is indicated in the TLM LS for this suffix, $n, including the consonant

gradation trigger $, which does not have any surface representation itself.

From these examples, we observe two basic principles of TLM. First, TLM does not view

the SS as a result of transformation. Both LS and SS are simultaneously available and for this

reason, an LS and its corresponding SS are viewed as a pair, termed a concrete pair set (CPS).

The rules that create the SS are applied all-at-once rather than sequentially. As a result,

intermediate forms are not required. Second, TLM is a symbol-to-symbol formalism. We see in

the examples that each symbol in the LS must be paired to exactly one symbol in its SS, even if it

is a null.

6.6.3 The TLM lexicon system

In TLM, all roots and endings (the latter being a cover term for suffixes, clitics, and

particles; Finnish lacks prefixes) and their tags are included in a lexicon file, in LS form. The

overall lexicon is composed of multiple sublexicons, each containing roots and/or various endings.

Roots and endings in these sublexicons are combined to form full-word LSs; later, the LS-SS

correspondences are created. These processes are automatically performed by TLM transducers

(to be discussed in 6.6.4).

Each file containing a sublexicon has a unique name. Figure 6.16 shows part of a

sublexicon named Root. As its name suggests, this lexicon file contains root entries (LS). A line in

the lexicon contains three elements: entry (column 1), continuation class (column 2) and

information (column 3).

229

Figure 6.16. Example root lexicon entries (reproduced from Koskenniemi 1983:155)

There are two types of information. For a root entry, this column contains the English

gloss of the root followed by its POS tag. For instance, “Roof S” associated with katTo means that

katTo ‘roof’ is a noun root. “Genuine A” associated with aiTo means that aiTo ‘genuine’ is an

adjective root. For non-root entries, the information column contains analytic tags (see examples

in Figure 6.18).

Continuation classes encode restrictions on root-ending combinations. In English, for

example, the root great can occur with suffix -er (greater) but not -ion (*greation). These codes

behave like variables (see 6.3.2); each continuation class is a super-category for a group of entries

or other continuation classes. The definitions of the continuation classes, and their encoding in

lexicon entries, capture the morphotactics of the language (here, Finnish).

For instance, a root in continuation class /S (e.g. katTo and kaTo in Figure 6.16) can be

followed by an ending in lexicon /S (where /S actually indicates any one of S0, S1, S2). But roots

with /A (such as aiTo and tunnetTu) can only be followed by endings in lexicon /A. The definition

of /S via subordinate continuation classes S0, S1, and S2 is illustrated in Figure 6.17; Figure 6.18

illustrates some entries for endings in S3.

Figure 6.17. Subcategorisation of a continuation class (reproduced from Koskenniemi 1983:46)

230

Figure 6.18. Example S3 lexicon entries (reproduced from Koskenniemi 1983:28)

1+tA, the first entry in lexicon S3, is an ending entry. Its information is not a gloss but an

analysis, two tags indicating partitive singular (PTV SG). The definition of the form, 1+tA,

consists of four characters. The first is a selector feature; it conditions application of this entry on

some phonetic feature of the foregoing stem (selector feature 1 is defined in Koskenniemi

1983:85). The second character + is a morpheme boundary. The third is a surface character, and

the last a morphophonemic character. That is, this entry characterises a partitive singular suffix

consisting of t plus some variant of A, according to Finnish vowel harmony, which can only follow

stems with the given phonetic feature. The entry’s continuation class indicates that this ending

can be followed by another ending if that ending is in class P. Thus, the rules permit a three-

morpheme sequence <root S> <ending S3> <ending P>, as long as all other conditions are

fulfilled. Figure 6.19 shows some endings from lexicon P. All have continuation class K, allowing

them to be followed by some unit from lexicon K. The continuation class sequence continues as

long as the morphotactics of the language requires. Karttunen (1993) built lexc, a finite-state

lexicon compiler, which is still currently in use.

Figure 6.19. Examples of P lexicon entries (adapted from Koskenniemi 1983:154)

231

6.6.4 TLM rules and their FSTs

As established above, a TLM lexicon determines all the possible root-ending combinations

on the LS level. The SS level, on the other hand, is defined automatically by TLM rules. TLM

rules not only define all proper LS-SS correspondences, but also prohibit certain combinations

(Koskenniemi 1983:30). This is reflected by the use of operators in TLM, an element not present

in generative grammar formalism. A basic context sensitive rewrite rule in TLM has the form

a:b => LC_RC, meaning “a corresponds to b in the context after LC and before RC”, equivalent to

a → b / LC _ RC in generative morphology. Some examples, plus alternative TLM notations used

in settings other than actual lexicon files, are given in Table 6.29. But => is only one of four

operators that define four types of TLM rule, as shown in Table 6.30.

 Two level rules Alternative notations

1 a:b => LC_RC a
b

=> 𝐿𝐶_𝑅𝐶

2 a:a => LC_RC a => LC_RC

3 a:b => LC_RC

c:d => LC_RC

[a:b | c:d] => LC_RC

Table 6.29. Alternative notations in TLM

 Rule type a:b is allowed

in context

LC_RC

a:b is only

allowed in

context LC_RC

Must a always

correspond to b in

context LC_RC?

1 a:b => LC_RC Yes Yes No

2 a:b <= LC_RC Yes No Yes

3 a:b <=> LC_RC Yes Yes Yes

4 a:b \<= LC_RC No NA NA

Table 6.30. Two level rule types (reproduced from Oflazer 1999:194)

Let us now observe an actual rule, which implements Finnish vowel doubling, from

Koskenniemi (1983:40), presented in Table 6.31. The main rule begins with a correspondence

pair (CP). This CP states a correspondence between two characters, : in the LS and Vs in the SS.

232

Rule TLM notation

Main rule: Vowel doubling

Sub-rule: Doubling of ‘a’

Table 6.31. Finnish vowel doubling as a TLM rule

The colon at LS is a TLM wildcard symbols (not, as in Table 6.30, the correspondence

symbol), and means vowel doubling. Vs is a variable that represents a set of terminal characters,

namely the eight different vowels to which the rule applies, the sub-rule for one of which, a, is

also given in Table 6.31.

The main rule’s contextual condition states that the CP occurs when the preceding CP is

= paired with Vs followed by an optional h. The = is another wildcard; optionality is indicated by

brackets. This is the complete required left context. The right context, after the underscore, is

empty. The operator is =>. This means that CPs other than the CP of this rule can occur in the

context given after =>. The machine-code version of this rule (i.e. the compiled transducer) is

shown in Figure 6.20.

Figure 6.20. Machine code of the FST for the Finnish vowel duplication rule (reproduced from

Koskenniemi 1983:145)

In total, Koskenniemi (1983:41) lists 22 TLM rules for Finnish. Koskenniemi compiled

these rules to machine code by hand, but later TLM systems used compiler programs not

available in 1983 to build FSTs from the rules.

233

The compiled transducer is applied to all lexicons to obtain CPs (pairs of actual LS and

SS for particular words; see 6.6.1). The resulting CPSs are stored in a new lexicon, which I will

call the operational lexicon to distinguish it from the lexicons of LS roots and endings discussed

heretofore. When the system receives an SS input, it scans this operational lexicon, and returns

the LS and the tag that corresponds to the SS (see 6.6.1). This operational lexicon is the backbone

of the system and is what allows it to analyse unrestricted text.

TLM is the underlying formalism of the majority of MA systems up to the present day.

But work since Koskenniemi (1983) has added various advances. An early advance and

refinement was the porting of Koskenniemi’s original INTERLISP program to Common Lisp by

Karttunen & Beesley (1992). Already mentioned is the use of an automatic compiler in systems

including PC-KIMMO (Antworth 1990), Fintwol (Koskenniemi 1995), and xfst (Kartunnen &

Beesley 2003), so that hand compilation is not necessary.

xfst (Karttunen & Beesley 2003:81), the latest TLM system, incorporates not only a TLM

compiler but also a regular expression compiler; it follows Koskenniemi’s algorithm but is written

in the C programming language. The lexicon compiler program mentioned earlier, lexc, is a

counterpart to xfst which is capable of fast compilation of lexicons. xfst also has functions to

handle more morphological phenomena than earlier implementations, for instance, a function to

handle reduplication, which was not present in Koskenniemi’s system. While xfst is best known

as a base for MA systems, it can also be used to build POS taggers, syntactic chunkers, and

shallow parsers.

 Overall, TLM has made a significant contribution in two areas, computational linguistics

and generative grammar. Karttunen & Beesley (2001) explain that in computational linguistics,

TLM was quickly accepted as a useful and practical method to overcome the technological

challenges that I reviewed in section 6.5.4. TLM was the first MA able to analyse unrestricted

text; earlier MA systems were merely toys.

Kartunnen & Beesly argue that initially, TLM was not seriously considered by

mainstream linguists, because many arguments had been advanced in the literature to show that

transformations could not be adequately described without sequential rewriting rules. But this

has changed. Karttunen & Beesley argue that Optimality Theory (see 6.4.1), a derivative of

234

generative grammar sharply critical of the tradition of ordered rewrite rules, is in effect a two-

level theory, but with ranked parallel constraints. Thus, the two-level approach to formal

morphology has proven both practical for implementation and theoretically respectable.

6.7 A review of present-day tagging practice

6.7.1 Tokenisation

As outlined in 6.2, prior to analysis and disambiguation, a text must undergo

tokenisation (van Halteren & Voutilanen 1999:110). This is a process in which the sequence of

characters in the text is divided into analytical units or tokens (Grefenstette 1999:117).

For instance, within the character sequence the cat, the combination of t, h, and e is a

word token the; the combination of c, a, and t is another word token cat. A program that

implements tokenisation is called a tokeniser, or sometimes (in NLP) a word segmenter.

Segmentation algorithms usually target unsegmented languages, such as Thai or Chinese, where

adjacent tokens are rarely or never delineated by space characters (see Sproat et al. 1996; Wong

and Chan 1996; Palmer 1997; Meknavin et al. 1997).

By contrast, the term tokenisation is more generic and can apply not only to word tokens

but also to morpheme tokens (or, theoretically, any other unit of analysis). For instance,

MorphInd (see chapter 5) tokenises text into morphemes, whereas IPOS-tagger (Wicaksono &

Purwarianti 2011), a POS tagger for Indonesian, tokenises text into words.

The parameters that define what a token is – in a particular language and for a

particular annotation scheme – must be encoded into the tokeniser, or made available to a

generic tokeniser program as resources. To identify token boundaries, a tokeniser can utilise

orthographic cues in the target language or its writing system

Based on orthographic cues, a separator module in the tokeniser implements the basic

string-splitting task. For word-level tokenisation, spaces and punctuation symbols are likely to

be treated as separation points indicating token breaks. A sophisticated tokeniser can also utilise

235

resources (rules, or combinations of rules and lexicons) to perform better tokenisation than

orthographic cues alone allow. For instance, to tokenise Multi-Word Expressions (MWEs) as

single elements, a lexicon of the MWEs to be treated this way is needed (Grefenstette 1999:119),

so that, for instance, hot dog can be tokenised as a single unit instead of two, even though the

space would normally prompt a token break. Likewise, proper nouns (whose elements may

contain spaces) or abbreviations (whose elements are connected by full stops) that would

otherwise be treated incorrectly can be handled by listing them in a lexicon.

This approach can generate ambiguity in the sense of multiple possible analyses, for

instance between hot dog and hot then dog. To resolve this ambiguity in favour of the MWE

token, a tokeniser will typically give lexicon entries priority over automatic rules such as “every

space indicates a token break”.

The separator module needs to split punctuation marks away from word tokens,

effectively making them word tokens themselves. If this is not done, the token data will be

distorted. Table 6.31 presents frequency lists for a single sentence based on tokenisation that

respectively does not and does split off punctuation. When no split is applied, the system

misunderstands hat. at the end and hat in the middle as two distinct types. In the second

column, when a split is applied, hat at the end is separated from the dot and therefore considered

as a second token of the same type as hat in the middle.

Punctuation not

split off

Punctuation

split off

My (1)

Hat (1)

And (1)

Your (1)

Hat. (1)

My (1)

Hat (2)

And (1)

Your (1)

. (1)

Table 6.32. Two hypothetical frequency lists from my hat and your hat.

Rules for tokenisation typically take the form of regular expressions. Any input sequence

that matches a rule’s regular expression is assigned the tokenisation specified by that rule. An

example of a system like this is the NLTK tokeniser (Bird et al. 2009: 111). Regular expression

236

rules can tokenise whole classes of forms appropriately (e.g. all abbreviations with full stops), so

that the actual forms can be left out of the lexicon.

It is also possible for a tokeniser to use rules in the sense of morphological analysis rules

(including analytic codes), on condition that the tokeniser has access to this resource. In MA

systems, it is typical for tokenisation and annotation to be performed as a single pass through the

text, so the analysis rules are accessible throughout; see Koskenniemi (1983:89-123), Oflazer

(1994:138-146), and Coltekin (2010:821-826), among others.

While lexicon and rule resources are typically used to treat special cases (titles,

abbreviations, MWEs) in word-level tokenisers, they are relied on much more heavily by

morpheme-level tokenisers in MA systems. Space and punctuation symbols do not reliably

delineate morpheme tokens, since polymorphemic words are rarely written with morpheme-

delimiting spaces or symbols (the hyphen being a semi-exception to this).

Maximum Matching (MM), sometimes also called Greedy, is a basic algorithm commonly

used to tokenise words in the previously mentioned unsegmented languages such as Chinese or

Thai (see Sproat et al. 1996; Wong and Chan 1996; Palmer 1997; Meknavin et al. 1997). An MM-

based tokeniser scans the input string trying to find the longest possible tokens, by comparing

different possible candidate substrings to known words in its lexicon – testing long words first,

and then sequentially shorter words. Word segmentation in unsegmented languages addresses a

similar task to morpheme tokenisation, in that both tasks require the tokeniser to detect

invisible token boundaries; thus, the MM algorithm is one possible method for morpheme

tokenisation.

MM is often combined with other approaches for optimal results. These include machine-

learning techniques, statistical or otherwise. In an example of the latter, Palmer (1997:323)

combines MM with Brill’s algorithm (Brill 1995), which learns (and orders) the best

segmentation rules based on a gold-standard corpus. Goh et al. (2005) combine MM with a

probabilistic model, the Support Vector Machine (SVM), to resolve ambiguities; Wong and Chan

(1996) combine MM with an approach that they refer to as binding force. Such algorithmic

experimentation is prominent in the NLP literature on segmentation/tokenisation.

237

6.7.2 Annotation

Annotation is the assignment of potential analyses (tags) to tokens (van Halteren &

Voutilanen 1999:110). The tags may come from various annotation resources such as a lexicon or

rules; there are multiple approaches to using these resources for annotation, which the following

two sections will explore.

6.7.2.1 Lexicons for annotation

The account in this section draws on the explanations of Schiller & Kartunnen (1999:

135-148), Monachini & Calzolari (1999:149-174), and Leech & Wilson (1999: 55-80). Regardless of

the type of system, a lexicon is required for annotation. An annotation lexicon contains forms

linked to analytic codes or tags, according to whatever predefined annotation scheme is in use.

A lexicon can be created in two ways (or, possibly, by combining both methods). First, it is

possible to handcraft a lexicon by manually importing information from observations of texts,

dictionaries, or the author’s introspection. The lexicon author must encode the information in the

entries according to the annotation scheme, and in the target software’s required lexicon format.

The other way to create a lexicon is to compile a frequency list of form/analysis pairings from a

pre-tagged corpus. This results in a corpus-derived lexicon. The frequency of each analysis may

be included in a lexicon; that frequency data is not utilised by rule-based annotation but is of use

to statistical systems when estimating different analyses’ probability. Forms not in the lexicon(s)

must be handled by another annotation resource – most likely, annotation rules.

6.7.2.2 Rules for annotation

 Rule-based annotation is characterised by the use of rules in addition to a lexicon. This

approach is more prominently discussed in the literature on MA systems than in that on POS

taggers, for reasons that will become clear. I will begin by illustrating the use of rules in a

238

‘guesser’ module for a POS tagger, but the same principle applies to an annotation module in an

MA as well.

Lexical lookup can give ambiguous results (Voutilanen 1999:14), but it can also leave a

token unanalysed, if its form is unknown (not in the lexicon). Words being unknown often arise

from a paucity of data when the lexicon was generated (Brill 1999:207). Forms not in the lexicon

can be handled in multiple ways. Unrecognised tokens might be left untagged. Alternatively,

they might receive a specific label indicating ‘unknown’; for instance In MorphInd, the label X—

is used (see 3.5.2). But a system may also use a guesser module, which will try its best to analyse

the token.

Such a module utilises some kind of rule to generate a best-guess valid tag for the

unknown form. According to Bird (2009:181), a variety of cues (affixes, neighbouring tokens,

orthographic cues, etc.) can be used in a POS guesser. Two examples of guessing rules for English

POS might be: (1) label the unknown token as noun if it is preceded by a or the; (2) label the

token as past tense verb if it ends in -ed.

Rules are used to govern what analyses from the lexicon can be accepted for a given

morpheme in the context of the word-form. Nevertheless, the mechanism of rule application may

differ from one system to another. For instance, to appropriately analyse the two morpheme

tokens of English player as play/V and er/NOMZR, multiple possible routes exist. If the lexicon

contains an entry <play,V>, then the first morpheme can receive that analysis. However, many

MA systems implement an additional mechanism which tests whether that analysis is valid

given the token’s context, that is, the complete word it appears in. Only if the analyses the

lexicon provides for play and er are accepted by the rules as a morphologically valid combination

will that full-word analysis be accepted. Alternatively, the lexicon might contain a complete

analysis that would pre-empt the rules, e.g. “play er” => <play/V><er/NOMZR> as a single

lexicon entry.

Practically, the boundary between the roles of lexicon and rules in this process can be

blurred. Koskenniemi’s (1983) original TLM system for Finnish MA (see 6.6) has rules which

mostly account for morphophonemic and morphographemic (orthographic) variation;

morphotactics are handled not in the rules but in the lexicon. The main lexicon in Koskenniemi’s

239

system is the root lexicon. This is connected to ending lexicons by continuation class codes. As

noted in 6.6.3, the continuation class codes implement morphotactic rules – via data stored in a

lexicon file not a rule file.

Thus operationally, the morphotactic component in Koskenniemi’s system is represented

within the lexicon(s). However, on the conceptual level, the morphotactic component is part of the

implementation of word formation rules. Regardless of the technicalities, which vary from one

tool to another, rule-based annotation is the same basic procedure: using lexicon entries and

rules to assign potential tags to the tokens, resulting in an analysis which may or may not be

ambiguous.

Oflazer (1999:193-194) recommends that MA developers prepare the following materials:

1) a list of roots with corresponding analytic codes; 2) a list of other morphemes with

corresponding analytic codes; 3) a morphotactic model; 4) a comprehensive list of

morphographemic phenomena; and 5) a corpus on which to test the MA. These materials should

then be adapted to a format compliant with the software being used to build the MA system.

Without rules, an MA assigns all tags acquired from lexicon lookup matches, regardless

of morphotactic correctness. The hypothetical lexicon in Table 6.33 has entries for two roots and

two affixes. Without morphotactic rules, lexical lookup for either of smaller or player will always

produce ambiguous tagging for -er, namely er/NOMZR and er/SUP. Morphotactic rules are

needed to enforce the restriction that only NOMZR is correct after V, and only SUP after A,

eliminating the ambiguity.

small,A

play,V

er,NOMZR

er,SUP

Table 6.33. A hypothetical mini-lexicon for English

It is common practice to apply the rules of a guesser module only if no match is found by

lexical or rule lookup. As noted above, this can be implemented via a prioritisation system for

different resources and modules.

240

6.7.3 Disambiguation

As outlined in 6.2, disambiguation is the removal of (likely-to-be) incorrect tags from

ambiguously tagged text (Voutilanen 1999:6). Disambiguation may or may not reference context

beyond a single token (contextual or non-contextual disambiguation) and can be rule-based (or

linguistic) or statistical (or data-driven). Taggers with rule-based disambiguation may be

referred to as finite state or syntax-based taggers. These different terms reflect the different

advanced techniques in use; all are conceptually similar. Likewise, statistical approaches utilise

many different techniques or models.

6.7.3.1 Rule-based disambiguation

Rule-based disambiguation may be contextual or non-contextual.

Figure 6.21 exemplifies one of MorphInd’s non-contextual disambiguation rules. This rule

applies at word level and references no neighbouring words.

If ambiguous between '+i_' and a full word, choose a full word

#^astronom<n>+i_VSA/astronomi<n>_NSD$ = ^astronomi<n>_NSD$

Figure 6.21. One of the non-contextual disambiguation rules in MorphInd (reproduced from

MorphInd.pl: see section 5.5.5)

This rule expresses one concrete case of the general principle that when a word is

ambiguously analysed at the annotation stage as monomorphemic and polymorphemic, the

system should preserve the monomorphemic analysis, and remove the polymorphemic analysis.

The word in question, astronomi, is annotated as verb plus verbaliser suffix

(astronom<n>+i_VSA) and as monomorphemic noun (astronomi<n>_NSD). The polymorphemic

analysis is removed, so only the monomorphemic annotation remains in the final output. This

non-contextual disambiguation rule applies regardless of what precedes or follows astronomi in

the input string.

241

Let us now consider application of contextual disambiguation rules, using the following

hypothetical case. The word walk may be a plural verb, or a singular noun. A possible contextual

disambiguation rule would be as follows: if the present word is tagged ambiguously as N-SG

(singular noun) and as V-PL (plural verb), then if the previous word is this or that or the or a,

then remove the tag V-PL. Thus, in the context the walk, the target word walk is correctly

disambiguated as a noun.

This procedure can be implemented in many different formalisms. Moreover, just as

tokenisation or annotation resources can be assigned different priority levels, so can

disambiguation rules, if the software supports this functionality (Silberztein 2003: 150-154). We

will return to this issue later on in 7.4.4.

6.7.3.2 Statistical disambiguation

Statistical disambiguation selects the most probable analysis for each ambiguous token

(and deletes less probable analyses) from among those assigned in the annotation stage.

Different systems apply a variety of statistical or machine learning models to this task. Any such

model is made up of a (typically large) collection of statistical parameters. These statistical

parameters are acquired (or learned) from a pre-tagged corpus, often called a training corpus or

gold-standard corpus.

In its learning or training stage, the system processes the pre-tagged corpus to extract

statistical information, which is then saved. The type of statistical information varies depending

on the choice of statistical model or machine-learning technique. Common models include Hidden

Markov Models (see El-Beze & Merialdo 1999), data-driven local rules, inductive learning, case-

based learning, decision tree induction, and neural networks. Daelemans (1999) discusses many

of these at length.

The result of training is a set of numeric parameters, forming a model as noted above.

The disambiguation module or system can then use this statistical information to compute

probabilities for alternative analyses of ambiguously annotated (sequences of) tokens. The

242

system then resolves the ambiguity by selecting the analysis, or sequence of analyses, with the

highest probability – removing the rest.

6.8 Measures for evaluation of tagging systems

6.8.1 Evaluating tagging systems

A number of concepts related to tagging system evaluation have been discussed earlier.

The concept of a training corpus was introduced in 6.7.3.2; Bird (2009: 203) shows it is common to

extract a small proportion (e.g. 10%) of the training corpus for use as the testbed (data for use in

evaluation exercises). A non-tagged version of the testbed corpus is created, which the system

than tags. To measure how well the system performs, the re-annotated testbed can directly be

compared to the version of the testbed with gold-standard tags, and the difference in correctness

quantified.

In section 5.5, I presented two evaluation measures: coverage and accuracy. Coverage is

the proportion of tokens the system manages to analyse, regardless of the correctness of the

analyses. Accuracy is the proportion of tokens in unambiguous output that have the correct

analysis. However, some systems do not perform full disambiguation (Voutilanen 1999:18), but

rather, remove as many incorrect analyses as possible and leave the rest. An evaluation of such a

system needs to consider the remaining ambiguity. Hence, rather than accuracy, two evaluation

measures that are sensitive to ambiguities, precision and recall, are used.

6.8.2 Precision, recall and F-measure

Precision and recall are evaluation measures commonly used in IR, but also to evaluate

tagging systems in which ambiguities are reduced but not eliminated (Manning and Schutze

1999:534-536). Precision measures how well the system removes incorrect annotations. It is

243

calculated by dividing the sum of true positives (correct annotations) by the sum of all

annotations (including ambiguities). This can be illustrated by the evaluation of a hypothetical

testbed corpus (Table 6.35) relative to a gold-standard (Table 6.34). The last token in the testbed

has two analyses, one of which is incorrect (false positive). Thus, the precision of the system is

5/6, that is 0.83 or 83%.

 Tag

can V

I PRON

get V

a DET

lighter N

Table 6.34. A hypothetical gold-standard annotation

 Tag

can V (TP)

I PRON (TP)

get V (TP)

a DET (TP)

lighter N (TP) A (FP)

Table 6.35. A hypothetical testbed sentence, annotated by the system (TP = true positive/correct,

FP= false positive/incorrect)

Recall measures to what extent all the correct tags are retained in the output. It is

calculated by dividing the sum of true positives by the sum of all true positives and false

negatives (i.e. total number of correct tags absent from the output). The hypothetical system

discussed above has perfect recall on the sample data (5/(5+0)=1 or 100%) because there are no

false negatives in Table 6.34; the additional incorrect tag on the last token does not affect the

recall.

 In some cases, a combined statistic called F-measure is reported (see Hripsack &

Rothchild 2005). This is the harmonic mean of precision and recall. Its formula is (2 x Precision x

Recall) / (Recall + Precision). Therefore, the F-measure for the above hypothetical is ((2 x 0.83 x

1)/(0.83+1)) = 1.66/1.83 = 0.91 or 91%.

244

6.8.3 Ambiguity rate and error rate

Ambiguity and error rates are the evaluation measures used to evaluate the POS tagging

of the BNC test sample (Leech & Smith 2000 section C). In essence, they are very similar to the

aforementioned measures (precision, recall, accuracy). Ambiguity rate means the proportion of

tokens whose annotations are ambiguous. For the data in Table 6.35, the ambiguity rate is 0.2 or

20%: the total number of annotations, minus the number of tokens, divided by the number of

tokens ((6-5) / 5 = 0.2). The error rate is the proportion of tokens for which no correct tag is

retained: the number of tokens without a correct annotation, divided by the number of tokens.

For the example in Table 6.35, the error rate is 0 or 0% (0/5). These measures will be utilised in

Chapter 7 to evaluate my MA once implemented.

6.9 Choice of approach for a new Indonesian MA

The purpose of the foregoing review is to provide a rationale for the choice of approach for

the new MA system whose implementation will be discussed in chapter 7. I argue that the rule-

based approach is preferable in this project, that is, using rules to perform tokenisation,

annotation, and disambiguation (both contextual and non-contextual). No machine-learning or

statistical techniques will be used. The reasons for this decision are as follows. First, the rule-

based approach is the basis for a number of instances of best practice. This includes

Koskenniemi’s (1983) seminal work, the Constraint Grammar tagger (Karlsson 1990), BAMA

(Buckwalter 1999), and TR-Morph (Coltekin 2010).

Even statistical systems commonly incorporate rule-based subsystems, as exemplified by

MorphInd (Larasati et al. 2011). MorphInd uses morphological rules from the earlier MA of

Pisceldo et al. (2008), and then adds other rules including (non-contextual) disambiguation rules

of thumb (see 5.2). MorphInd’s statistical disambiguation module therefore does not need to

target all ambiguity, but only ambiguity not resolved by the preceding rule-based disambiguation

module.

245

Second, rules are linguistically explicit. Although rules must be written in a format

compliant with the software, they are still relatively ‘readable’ for humans – with several

advantages. This stands in contrast to statistical MA systems, in which linguistic knowledge is

represented by numeric parameters, which are not ‘readable’ in that way. Readable rules allow a

developer to modify or improve the existing rules with ease even if they are not the original

creator. This facilitates continuous development of the system. Moreover, human-readable rules

may be informative for analysts working with system output, for instance, enabling them to

know what analyses are driven by definitive analysis (e.g. morphotactics) as opposed to being

best guesses. In addition, readable rules assist evaluation. In chapter 5, I showed that

MorphInd’s incorrect analysis of polymorphemic words as monomorphemic came from its non-

contextual disambiguation rules. None of this is possible within an approach which centres

statistical parameters.

Third, rules are linguistically meaningful. They are reflections of the grammar of the

language (morphotactic patterns, morphophonemic alternations, syntactic constraints, etc.) and

are typically (not always) written by grammar specialists. Conversely, statistical learning does

not produce linguistically meaningful rules, with the possible exception of the Brill tagger.

Fourth, a rule-based system does not rely on a pre-tagged corpus. Such a corpus might

still be required for evaluation purposes, but not for system implementation. By contrast

statistical disambiguation relies on a pre-tagged training corpus (usually large), from which the

model’s parameters are acquired. There do exist systems which use unsupervised learning, i.e.

training on an untagged corpus. Brill (1995) and El-Beze & Merialdo (1999) both use

unsupervised learning to train a tagger (rule-based and statistical respectively). However as El-

Beze & Merialdo (1999:272) report, unsupervised learning leads to worse results.

Fifth, rule-based systems are not associated with poorer performance than statistical

taggers (Voutilanen 1999: 18-20). Thus, rule-based systems get the aforementioned advantages of

rules without losing correctness.

246

6.10 Choice of software for the new MA system

In section 6.7, I discussed various aspects of the software used for existing rule-based

systems. My choice of program on which to construct a new MA system is based on that review. It

is possible to build a rule-based MA from scratch using a general programming language such as

Perl, Python, Java, or C. For instance, Koskenniemi (1983) wrote his MA system in LISP; the

well-known Arabic MA, BAMA (Buckwalter 1999) is written in Perl. Both Koskenniemi and

Buckwalter wrote, from scratch, both the core morphological analysis program (the FSM module)

and other supplementary functions for their MA systems.

There exists general FSM software specifically equipped to carry out rule-based

morphological analysis. Using such a program eliminates the need to write an FSM system from

scratch. The developer only needs to incorporate morphological resources for the target language

into the system. Such programs include xfst (Kartunnen and Beesley 2003), hfst (Linden 2011),

and foma (Hulden 2009). These FSM programs follow Koskenniemi’s system architecture. Of

these programs, xfst and foma are the platforms that underlie Piscaldo et al.’s (1999) Indonesian

MA and MorphInd, respectively.

Although the primary use of FSMs in MAs is to tokenise and annotate, some FSM

software (xfst, foma) may also be used for disambiguation, often via experimental additional

modules (Oflazer and Gokhan 1997; Pirinnen and Linden 2009). But in practice, in the field to

date, these programs are still largely used for analysis (tokenisation/annotation), rather than

disambiguation. For instance, in MorphInd, the disambiguation rules are implemented in Perl,

even though foma is used for tokenisation and annotation. Of course, it is common for an MA

system to link multiple programs together, but a rule-based MA must have an FSM engine as the

core of the system, with other programs as auxiliaries.

While all the aforementioned FSM programs for morphological analysis follow

Koskenniemi’s TLM, others do not. NooJ (Silberztein 2003) and its predecessor Intex (Silberztein

1993;1997) possess slightly different characteristics. They use an FSM not only for morphological

tokenisation and annotation, but also for rule-based disambiguation. These tools were developed

247

to implement Maurice Gross’s Lexicon-Grammar theory (Gross 1994; 1997)54. This theory centres

the description of idiosyncratic properties of lexical elements. A partial example of a lexicon-

grammar table is given in Figure 6.22; it describes the syntactic and semantic properties of

phrasal verb beam up (N0 and N1 symbolise this verb’s arguments). Before the creation of these

tools, lexicon-grammar tables were compiled by researchers following Gross’s lead, but could not

be applied to automatic text analysis.

A computational implementation of Gross’s Lexicon-Grammar not only requires full table

data, it must also be able to take into account the language’s morphological rules. This is done by

incorporating an FSM system (the same approach used in TLM). The first program to accomplish

this was Intex (Silberztein 1993;1997).

54 Another program designed to implement Gross’s Lexicon-Grammar theory is Unitex (Paumier 2014).

However, some controversy attaches to intellectual property issues around this software.(an outline being given

at http://www.nooj-association.org/intex-and-unitex.html; accessed 28/10/2021). Given this issue, the remainder

of the review here omits mention of Unitex.

http://www.nooj-association.org/intex-and-unitex.html

248

Figure 6.22. Lexicon-grammar table for some phrasal verbs in English (reproduced from

Silberztein 2016:92)

Today’s equivalent to Intex is NooJ (Silberztein 2003). An MA built in NooJ or Intex could

analyse beaming up as <beaming up,V+Progressive>, a word-level analysis, or just as easily as

<beam,V> <ing,Progressive> <up,Particle>, a morpheme-level analysis. This fits exactly both

with a crucial aim of this project, which is to perform annotation at morpheme level, and with the

design of the Morphological Annotation Scheme (MAS) for use in the new system (see,

particularly, 4.1.2).

NooJ, like Intex before it, is widely used, not only for tokenisation and annotation, but

also for disambiguation. It can perform disambiguation using a priority system and

disambiguation rules. Conversely, other FSM-based systems (e.g. xfst) do not standardly permit

use of both forms of FSM during tagging. Some other systems have non-standard extensions for

FSM-based disambiguation; from an abundance of caution, I have opted to avoid such non-

integrated add-ons.

That all the three typical tagging procedures can be carried out by a single program, plus

the disambiguation feature being included in the core program, makes NooJ and Intex ideal

candidates for the software implementation of my MA. By comparison, in MorphInd, the three

procedures are implemented by separate modules (see 5.2). Moreover, the MAS I devised requires

both orthographic and citation forms to be presented and associated with morphological tags.

NooJ and Intex support this feature. Conversely, other FSM-based systems do not standardly

present both forms in the output.

While not directly related to tokenisation, annotation, or disambiguation, certain other

features in NooJ and Intex further advantage them over xfst and foma. Both are completely free

249

to use and download, and available for multiple operating systems. Conversely, according to

Larasati et al. (2011:120-121), xfst’s compile-replace function, used to analyse reduplication, is

patent-encumbered, and only available in a commercial version of xfst. That said, the equivalent

function in foma is not patent-encumbered, so foma’s only disadvantage relative to NooJ or Intex

is that the functionality is not integrated.

 In addition to integrating the three sub-tasks in one system, NooJ, previously Intex, is

also equipped with debugging and corpus query functions (the latter being similar to

concordancers such as LancsBox, AntConc or WordSmith Tools). They also allow users to build

multi-level annotation systems, simultaneously morphological, morphosyntactic and syntactic,

with the potential for levels to interact – using annotation at one level to analyse units at

another level without additional lexicon/rule lookup. In sum, NooJ and Intex are free to use,

possess integrated tokenisation-annotation-disambiguation, and offer built-in debugging and

corpus query functions.

Of the two, I prefer NooJ on grounds specific to this particular project. NooJ has a specific

function (called ‘equality constraint’) for analysing full reduplication; this is required by my MAS

(see 4.2.4). Relative to any other alternatives, NooJ is richer in functionality and more flexible.

6.11 Concluding remarks

In this chapter, I have explored the formal theoretical background that underlies MA

systems. I have also provided a review of the development of MA programs, from the earliest

work to the design of present-day MA systems. The findings of that review then fed through to

the rationale for my choice of approach to implement the system, and my choice of software

platform. The new MA system will use the rule-based approach, and it will be implemented in

NooJ (Silberztein 2003). At this stage, everything needed to commence construction of the new

MA system for Indonesian has been determined: a new MAS plus justified choices of approach

and software. These design decisions ensure that the system shall permit an advance over the

current state-of-the-art MA system (see Chapter 5).

250

CHAPTER 7

IMPLEMENTATION AND EVALUATION

7.1 Introducing SANTI-morf

The name for this thesis’s new automatic morphological analysis system for Indonesian is

SANTI-morf. SANTI is the acronym of Sistem ANalisis Teks Indonesia or in English ‘A System

for the Analysis of Indonesian Texts’. The word Santi is very familiar for Indonesians as it is a

common female name, originally from Sanskrit and meaning ‘peace’. The morf part is clipped

from morfologi ‘morphology’.

SANTI-morf implements the Morphological Annotation Scheme (MAS) I devised in

Chapter 4. As noted in sections 6.9 and 6.10, the system’s foundation is a rule-based architecture,

implemented in a program called NooJ (Silberztein 2003). I introduce NooJ in section Error! R

eference source not found., using English examples for readers’ convenience. SANTI-morf’s

architecture is described in section 7.3. The actual implementation of SANTI-morf for Indonesian

with actual Indonesian resources is reported in section 7.4. An evaluation of its performance on

the same testbed used in my evaluation of MorphInd (see 5.5) is presented in section 7.5.

7.2 NooJ

NooJ is a program for searching and/or annotating text using finite state machines via a

graphical user interface. NooJ allows its users to construct natural language resources in the

form of lexicons and rules (termed dictionaries and grammars in NooJ). NooJ applies these

resources (simultaneously or consecutively/in pipeline) to tag texts at various levels

(morphological, morphosyntactic, syntactic, etc.). The overview of relevant aspects of NooJ in this

section draws on the NooJ manual (Silberztein 2003) and accompanying book (Silberztein 2016).

251

7.2.1 NooJ lexicons

7.2.1.1 Basic format and operation

A NooJ lexicon file consists of lines that encode lexical entries (lines beginning with hash

(#) are comments). A lexical entry consists of a form and tag. The forms may be word forms,

morphemes, or multi-word sequences. A tag is composed of one or more property codes

representing any combination of POS, formal or functional morphological features, and semantic

properties.

Figure 7.1. An example NooJ lexicon

The simplest lexical entries, such as of,PREP in Figure 7.1, consist only of a form (of), a

delimiter (comma), and a tag composed of a single property code (PREP). Because this lexical

entry contains only one form, NooJ treats this as both orthographic and citation form (see

252

definitions in section 3.7.2). Forms may include non-letter symbols such £, $, or punctuation

marks. But in some cases, the same non-letters are meaningful to NooJ. For example, the comma

is used as a delimiter. If we want to include a comma (or another non-letter symbol meaningful to

NooJ) as part of a form or tag, we need to escape the symbol with slash, as in \, instead of just

,. Lexical entries like czar,tsar,N+Human contain two comma-delimited forms. The first is the

orthographic form, the second the citation form. The NooJ terms for the two are word form and

lemma, representing the perspective of POS tagging rather than morphological tagging. This

entry’s tag exemplifies multiple properties, N (noun) and Human, connected with a plus symbol.

The difference between the two forms in this example is one of spelling regularisation, but the

same layout is used for allomorphy.

Property codes can alternatively be written in attribute value style, so that in

France,N+Domain=Geography+Country, Domain is an attribute and Geography is the value

it has for the word France.

NooJ uses the extension .dic (‘DICtionary’) for lexicon text files, and compiles each such

file to a corresponding .nod (‘NooJ Dictionary’) file with same base name. For use in annotation,

.nod lexicon files must be loaded into NooJ. The resource panel interface in NooJ lists all

resources actively in use. It also controls the priorities of these resources (to be discussed later).

There are two resource panels: Lexical Analysis and Syntactic Analysis (see Figure 7.2).

Figure 7.2. Resource panel in NooJ, showing one active lexicon

NooJ files containing textual data for analysis are given the extension .not (‘NooJ Text’).

Figure 7.3 below illustrates the application of a lexicon to a short text.

253

Figure 7.3. Applying a lexicon to a text in NooJ

NooJ processes the text using the FST compiled from the lexicon. When an input

sequence is accepted, the linked annotation is the output. This is the standard operation of an

FST as outlined in 6.6. An illustration of how the NooJ results for the token czar correspond to

the lexical entry components is given in Figure 7.4.

Figure 7.4. A lexical entry in relation to input and annotation

Orthographic forms in lowercase in the lexicon are matched case insensitively; if any

uppercase character is present, the form is matched case sensitively. Thus, France is matched to

the entry France,N+Domain=Geography because the character case matches; france or

FRANCE would not be accepted. Conversely, czar in the lexicon matches Czar in the text.

The lexical entry can't,<can,can,V+Tense=PR><not,ADV> (encoded in the dictionary

file shown in Figure 7.1) exemplifies an analysis which tokenises one space-delimited form, can’t,

254

into two tokens; Figure 7.5 shows the resulting output in NooJ. When this lexical entry is

applied, can’t in the text is analysed as two tokens instead of one. The output, and its links to the

lexical entry, are shown in Figure 7.5.

Figure 7.5. The analysis of can’t into two tokens

7.2.1.2 The application of ‘unambiguous’ lexical entries

NooJ has certain built-in property codes termed special features, which trigger

implementation functions. One such special feature is +UNAMB (‘unambiguous’), which marks an

entry as prioritised: to be checked prior to other entries (and prior to division of the text by

whitespace). Thus, the lexicon in Table 7.1 would always treat United States according to the

first entry with +UNAMB, not according to the general entries for United and States. The code

+UNAMB is omitted in the annotation output (see Figure 7.6).

1 United States,N+UNAMB

2 United,A

3 States,N

Table 7.1. A lexicon with a +UNAMB entry

Figure 7.6. Annotation with the +UNAMB lexical entry United States,N+UNAMB

255

Without +UNAMB, NooJ produces all possible analyses, as shown in Figure 7.7. Here, NooJ

produces an ambiguous annotation. Ambiguous analysis is also the result when two matching

lexical entries are found (and neither is +UNAMB), such as for a word which may be a verb or noun

(entries go,N and go,V in Figure 7.7, for example).

Figure 7.7. Annotation without any priority

7.2.2 NooJ rules

In NooJ, rules are used to generate the FST that processes and tags the text. NooJ

supports three types of rules: inflectional-derivational grammars, morphological grammars, and

syntactic grammars. Of these I use the morphological and syntactic grammars.

7.2.2.1 Morphological grammars

Morphological grammars are saved in files with the .nom extension (NooJ Morphological

grammar). The rules in these files are used for the tokenisation and annotation of words, not for

disambiguation. The input words must be composed of a string of letters only. For example, NooJ

will apply morphological rules to the form going, but not go-ing, because the latter contains a

hyphen, which is a non-letter symbol.

All NooJ rules, not only morphological grammars, are written in a regular grammar

formalism, although the notation is not identical to that discussed in section 6.3. Every rule must

256

have a name, followed by an equals (=) sign; this is equivalent to the FST’s start state, and thus

to a regular grammar’s start symbol.

The first rule in each resource file must be named Main. Other rules can be named

anything, but must be organised under the hierarchy of the Main rule. This is because each rule’s

name is a non-terminal symbol (or variable) in the regular grammar (see 6.3.3). Rules end with a

semi-colon. Non-terminals are marked with a colon (:) preceding the rule name (e.g. :ING for the

rule of -ing suffixation). All other symbols are terminals. NooJ’s notation for epsilon (empty) is

<E>.

The terminals of two grammars are linked in a regular relation as input-output

components (see 6.3.3.2.3). In NooJ notation, the format is input / output . In morphological

rules, the output is written in the format for lexical entries described in 7.2.1.1, and enclosed in

angle brackets. So, for example, the rules go/<go,V> and ing/<ing,SFX>, would pair each of

two terminal nodes in the input language, go and ing from an input going, to the equivalent

terminal node (tag) in the output language.

NooJ compiles rules at runtime, unlike lexicon files, which are compiled in advance.

Unlike basic regular grammars (see 6.3.3.2), NooJ rules do not limit how many terminals and

non-terminals may be present in a single rule.

A rule may be defined abstractly to apply to many lexical items. For this purpose, a NooJ

variable (not in the sense of the regular grammar term) must be used. A NooJ variable

(henceforth just variable) is a string that can match many inputs depending on its constraint,

which can target either lexical properties or forms. In addition to a variable and constraint, an

abstract rule must include an output component; see below.

SAMPLERULE = $(X <L>* $) <E>/<$X=:V> <E>/<$1L,$1C$1S$1F>

rule name variable constraint output

$(X <L>* $) defines a variable named X. This variable will store any string of letters

matching the NooJ regular expression <L>*, in which <L> means any letter, and the Kleene star

(*) means unlimited repetition (Silberztein, 2003:113).

257

Next, a constraint component pairs an epsilon with output <$X=:V>. The :V in

<E>/<$X=:V> indicates a constraint applied to variable X. The equals-colon symbol (=:) limits

this rule to entries in the lexicon whose tag begins with V (verb roots). This limits the string

stored in variable X to verb roots, rather than just any string of letters. A constraint can be made

more stringent by adding further conditions on the lexical entries the rule will apply to, positive

or negative (Table 7.2 gives some examples). This constraint mechanism makes NooJ’s rules as

powerful as a context sensitive grammar (see 6.3.3.4).

Code Constraint on lexical

entries

Examples of matching lexical entries

<$X=:N> Tag begins with N bye,N

czar,tsar,N+Human

France,N+Domain=Geography+Country

<$X=:N+Human> Tag begins with N

and contains

+Human

czar,tsar,N+Human

<$X=:N-Human> Tag begins with N

and does not contain

+Human (thus –

Human)

bye,N

France,N+Domain=Geography+Country

<$X=:ALU> Atomic Linguistic
Unit (ALU) is a NooJ

term for any lexical

entry or rule

of,PREP

bye,N

czar,tsar,N+Human

France,N+Domain=Geography+Country

go,V

to,PREP

<$X=:ALU+Human> Tag contains

+Human

czar,tsar,N+Human

think,V+Human

Table 7.2. Examples of constraint codes and entries they match

The special character hash (#) in a constraint allows a partial match55. Such a constraint

must, however, define the letter(s) to be omitted relative to the string in the variable. For

instance, the constraint <$X#e=:V> allows smil in smiling to match the lexical entry <smile,V>.

The #e means that smil, when stored in variable X, will match any entry for smile as well as smil

(which does not exist). This allows smil in smiling to match the lexical entry <smile,V>.

55 At the beginning of a line, a hash is used to specify comments; see 7.2.1.1. In a morphological grammar, the type under

discussion here, the hash indicates the application of a partial match to a lexical (dictionary) entry; for futher examples

see the explanations of lexical constraints in the NooJ reference documentation (Silberztein 2016:185, 240, 241;

Silberztein 2003:117, 132). Finally, in NooJ syntactic grammars, which I do not make use of here, the hash is a string

concatenation operator (Silberztein 2003:38).

258

Let us now return to $(X <L>* $)/<$X=:V> <E>/<$1L,$1C$1S$1F>. After the

constraint is a pairing of epsilon input with output <$1L,$1C$1S$1F>. This output is composed

using additional variables to represent forms and properties from whatever lexical entry has

been matched. This is termed transfer of features and properties in NooJ.

A rule’s variables ($1, $2, etc.) are numbered in the order in which they were defined.

Subsequent letters specify components from the matched lexicon entry, as follows: L = lemma,

i.e. citation form; C = category (the first property, typically a POS category); S = Syntax (other

properties, not necessarily syntactic); F = inflection (not used in SANTI-morf).

 An output annotation can include additional properties not defined in the matched lexical

entry. Thus, in <$1L,VERB+ROOT>, the property VERB+ROOT is added to the analysis. The $1L

slot here is filled by the citation form of the entry matched by the string stored in the first

variable.

It is also possible to use $X to replace $1L, as in <$X,VERB+ROOT>. This means that

NooJ will directly insert whatever string is stored in variable X, without checking the lexicon.

This is a feature I use for guessing annotation for unknown words (see 7.4.2).

In NooJ, multiple rules can be placed into a single union, indicating that the rules are

alternatives to one another; this is done with the vertical bar symbol (Silberztein 2016:132), the

typical representation of alternation (“or”) in regular expressions (see 6.3.3.2.1). For example, the

peR—an allomorphy rule is defined as a union of two sub-rules, one to handle per—an allomorph

(:NOU_peR-an_per-an) and another to handle pe—an allomorphs (:NOU_peR-an_pe-an).

SAMPLE_peR-an = :peR-an | :pe-an;

7.2.2.2 Syntactic grammars

A syntactic grammar is saved in a file with extension .nog. Syntactic rules can be used to

generate syntactic annotation, and disambiguation, but their functions are actually generic

across different linguistic levels.

259

A syntactic rule’s input can be composed of 1) spaces, letters, and non-letter symbols (e.g.

bye-bye or bye bye); 2) annotations assigned by the lexicon and morphological rules (e.g. <N>

<N>); or 3) a combination of 1 and 2 (e.g. <N> - <N>). If input type 2 or 3 is used, the text must

have previously been tagged by the lexicon and morphological grammar.

In section 6.3.3.2.3, I introduced the Kleene operation (repetition). Silberztein (2016:164-

170) notes that applying the Kleene operation to a multi-token pattern allows recursive

structures (those with one non-terminal of a given type embedded within another of the same

type, not easily represented in regular grammars) to be captured. He uses the fact that left and

right recursions can be removed from a context-free grammar to enable NooJ to compile some

context-free grammars into finite state transducers; thus NooJ, though based on a regular

grammar, supports constructs of context-free grammars (see 6.3.5.3). For instance, the rule PP =

(<PREP> <DET> <N>)* can capture a recursive prepositional phrase such as under the tree in

the box beside the bottle. However, this rule would fail to capture under the tree in the big box

beside the bottle – or rather, it would capture only the first three words. While use of repetition

in a regular grammar can simulate much of the complexity of recursive rules in context-free

grammars, it cannot simulate all of it.

Matching constraints (typically used to check agreement across tokens), equality

constraints (to identify identical tokens), and existence constraints (to check if a token exists) can

be added to syntactic rules. This gives them power equal to a context-sensitive grammar (see

6.3.3.4). The MA implemented in 7.4 uses equality constraints extensively to handle

reduplication, but does not use matching or existence constraints. An equality constraint ensures

that a rule only matches sequences where the forms of two specified tokens in the sequence are

identical, as shown below.

EqualMultipleToken = #56 rule name

<E>/<RED # tag for multiple input (open)

$(A <ITJ> $) - $(B <ITJ> $) # all input tokens

<E>/<$A_=$B_> # equality constraint

 <E>/> ; # tag for multiple input (close)

56 These comments explain the code example. They are not in the actual NooJ code.

260

The two tokens on either side of a hyphen must be stored in different variables, expressed

as $(A <ITJ> $) - $(B <ITJ> $). Then, the equality constraint <E>/<$A_=$B_> pairs

epsilon with an equality assertion. This constraint causes the orthographic/citation forms (_) of

the tokens in variables A and B to be checked for equality (=). Bye-bye satisfies this equality

constraint, for instance.

Annotation output from syntactic rules can be at the same level at or a higher level than

the tokenisation initially given by the lexicon and morphological grammar. To illustrate the

latter, in the EqualTheSameToken rule below, the annotation of reduplication is composed of two

parts, <E>/<RED and <E>/>, that encompass the rest of the rule. This tags bye-bye as one unit

at a level above that at which bye and bye are two separate tokens. This higher-level annotation

has two key features: 1) the output only has properties (no orthographic/citation form); and 2) the

annotation is added as an additional layer, without overriding the initial annotation. In NooJ,

this is termed add annotation. An example of an output at the same level as existing annotation

is given by the rule shown below.

EqualTheSameToken = # rule name

$(A <N> $) – # input (no additional tag to give)

<E>/<$B_,RED # lexical entry output code for the same token (open)

 ($B <N> $) # another input (to which additional output is given)

<E>/> # lexical entry output code for the same token (close)

<E>/<$A_=$B_> ; # equality constraint

In contrast to the previous example, when annotation is added at the same token level, the

output must also be written in standard lexical entry format; therefore $B_,RED is used.

Syntactic rules can also be used for contextual or non-contextual disambiguation, via what

is termed the remove annotation function. Disambiguation rules are based on the select one and

remove others principle (see 6.7.3). For instance, let us consider the ambiguous annotation of go

as either a verb or noun root. When NooJ applies this annotation, both possibilities can be viewed

in the Text Annotation Structure (TAS), a feature of the NooJ interface which visualises

annotation output, as shown in Figure 7.8 and Figure 7.9.

261

Figure 7.8. Ambiguous annotation of go (case 1: correct annotation is noun)

Figure 7.9. Ambiguous annotation of go (case 2: correct annotation is verb)

A non-contextual disambiguation rule takes an ambiguously tagged token as input and

outputs the correct analysis. An example of a non-contextual disambiguation rule is (7.1).

(7.1) Non-context = <go>/<V>;

This syntactic rule removes annotations other than <V> from tokens of go. This would

cause go in either is going to or on the go to be analysed as a verb – incorrectly, in the latter case.

To correctly disambiguate the two possibilities, contextual disambiguation rules are needed.

A contextual disambiguation rule requires the context to be incorporated into the input.

Examples (7.2) and (7.3) illustrate this.

(7.2) Contextual1 = <go>/<V> <SFX>;

(7.3) Contextual2 = <DET> <go>/<N>;

The rule in (7.2) applies only when go is followed by a suffix, as in going or goes but not

give it a go. The rule in (7.3) applies when go is preceded by any determiner (the, a, etc.). They

select the verb and noun analyses, respectively. This illustrates the importance of studying

262

ambiguities carefully to determine the correct disambiguation rule type (contextual or non-

contextual). This completes my overview of grammar rules as NooJ resources.

7.2.3 Priority configuration for a set of resources

When using a set of multiple resources in NooJ, their priorities must be organised to

specify how they work in sequence. As usual in priority systems, once a match is found by any

resource, processing stops, so resources of lower priority than that resource are never used.

NooJ has two priority sequences: Lexical Analysis (LA) and Syntactic Analysis (SA). By default,

resources loaded to LA are applied first. Within LA resources, lexicons and morphological

grammars can be given different priority codes (see Table 7.3), determining what order they will

be applied in. Syntactic grammar resources are placed into the SA, which means that regardless

of priority level, they apply after the LA resources. The priority codes are alphanumeric, H or L

plus a number. NooJ allows up to 9 different priority codes to be assigned to resources, the

highest being 9 and the lowest 1 for H, and the opposite for L. In the NooJ interface, the LA and

SA resources are configured via the priority control panel tool.

Priority Code (from highest to lowest)

H(igh) H9

H8

H7

H6

H5

H4

H3

H2

H1

Normal No code

L(ow) L1

L2

L3

L4

L5

L6

L7

L8

L9

Table 7.3. NooJ’s priority codes for LA resources

263

 A set of lexicon and grammar resources loaded into the LA and SA, and given priorities,

constitute a NooJ-based annotation system. The configured priorities of the lexicon and grammar

resources can be saved as a .noj configuration file. In this project, SANTI-morf consists of its

resources plus the SANTI-morf.noj configuration file. Thus, users do not have to manually insert

and prioritise the resources one by one. Once the SANTI-morf.noj file is loaded into NooJ, all

resources are automatically loaded with the assigned priorities.

7.3 System architecture

SANTI-morf is composed of four modules, implemented as a pipeline in NooJ. A module is

defined for present purposes as some collection of resources (lexicons and rules) which performs a

particular task(s). The four modules of SANTI-morf implement the tasks of the typical tagging

procedure described in 6.7.

When a text is loaded to NooJ, NooJ initially breaks it up into words at whitespace and

punctuation characters, without annotating it. If any resources have been configured, they are

then applied to the text in order (see 7.2.3).

The first SANTI-morf module to process the text after NooJ’s default tokenisation is

Module 1: the Annotator. This set of resources (lexicons and morphological grammars) carries out

morphological tokenisation and annotation in a single pass (see 7.4.1). All recognised morphemes

are given an analysis at this stage.

The Annotator leaves words without morphological tokenisation/annotation if they are

not recognised by the resources; these unanalysed words are termed unknowns. MorphInd does

nothing with these unknown sexcept simply mark them as <X>, but SANTI-morf takes a

different approach. Specifically, Module 2: the Guesser (see 7.4.2) applies further morphological

grammar resources to make best guesses for all unknowns. This ensures virtually 100% coverage

(see 5.5.8).

264

Some analyses produced by modules 1 and 2 will be incorrect. In particular, they cannot

correctly annotate full reduplication (see 7.2.2.2). For these, we need Module 3: the Improver,

which consists syntactic rules able to recognise sequences of annotated morpheme tokens, and

remove or add an annotation for the sequence, or for a particular token. SANTI-morf uses the

latter kind of rule to contextually identify morphological errors produced by the Annotator, and

to supply the correct annotations.

Module 4: the Disambiguator contains syntactic rules which implement contextual and

non-contextual disambiguation techniques. These utilise the remove annotation function of NooJ

grammars (see 7.2.2.2). The rules in this module are designed to recognise ambiguously

annotated tokens, select the correct annotation, and remove incorrect annotations. Unresolved

ambiguities are retained in the annotation output, which is presented in the Task Annotation

Structure (TAS) interface or saved as a .not file (NooJ Text). How the modules fit together is

shown in Figure 7.10.

Figure 7.10. Overview of SANTI-morf modules

The aim of the pipeline architecture is to minimise ambiguity, even before disambiguation

rules (the Disambiguator) apply. Consider the following illustration. Module 1’s lexicon contains

diam,ROOT+ADJ,57 an adjective root entry. The Guesser has a guessing rule which analyses any

word that begins with di as consisting of passive prefix di- and a verb root. If these two resources

had the same priority, any instance of diam ‘silent’ would be ambiguously analysed as both

monomorphemic (by the Annotator) and polymorphemic (by the Guesser). But because the

57 This is a simplified format. The full format is discussed in 7.4.1.2

NooJ input
tokenisation

Module 1:
Annotator

Module 2:
Guesser

Module 3:
Improver

Module 4:
Disambiguator

NooJ output

265

Annotator has higher priority than the Guesser, the guessing rule is never applied to diam: the

lexicon entry pre-empts the guessing rule, and is the only analysis applied.

7.4 Implementation

7.4.1 Module 1: the Annotator

7.4.1.1 Overview

The Annotator performs morphological tokenisation and annotation. It is the core

component of SANTI-morf, consisting of three lexicons and four morphological grammars applied

in sequence. The resources are named using arbitrary codes that correspond to the resource type.

The lexicon filenames begin with Dyka, followed by A (annotator) and the number (1-3)

that shows the lexicon’s place in the rank order of priority for application. The grammar

filenames begin with Yumi, followed by A (annotator) and the number (1-4) for that grammar’s

rank in the priority order. These resources are listed in Table 7.4, and discussed in detail in

sections 7.4.1.2 to 7.4.1.8, in order of their overall priority (H9 to H3; see 7.3).

NooJ

priority

code

Resource label Resource type

Content Units analysed

H9 DykaA1

Lexicon

Roots; fully analysed

unproductive forms

Monomorphemic

words and

unproductive

polymorphemic

words

H8 DykaA2 Proper nouns

H7 DykaA3 Foreign words

H6 YumiA1

Morphological

grammar

Rules for affixation Polymorphemic

words (non-

compound) H5 YumiA2 Rules for cliticisation

H4 YumiA3

Rules for affixation

for words with two

roots (i.e. compounds)
Compound words

H3 YumiA4

Rules for cliticisation

for words with two

roots

Table 7.4. List of resources making up Module 1: Annotator

Applying lexicons (DykaA1-A3) before rules (YumiA1-A4) is more reliable than vice

versa, because the lexicon contains (among others) those forms that are exceptions to rules. For

266

example, prefix ter- is always a nominaliser in the word ter-dakwa, but this is exceptional; the

analysis only exists for that entry in lexicon DykaA1. By contrast, the rules in YumiA1 would

analyse ter- as a passive marker, which for this word is incorrect. Applying the lexicons first

means that exceptional cases will be handled before any rules are used. DykaA2 precedes

DykaA3 to prevent incorrect analysis of proper nouns such as Apple (brand name) as

monomorphemic foreign words.

The priorities among the grammars are designed to avoid words being overanalysed by

splitting up parts of the word which ought not to be split up. Thus, YumiA1 precedes YumiA2 to

avoid splitting non-cliticised words which coincidentally begin/end in the letters of a clitic; e.g.

kuras-kan ‘have it drained’ must not be analysed as ku=ras-kan ‘I race-CAUS/APPL’, a

nonsensical analysis. Similarly, the rules for compound words without clitics (YumiA3) must be

prioritised over the rules for compound words with clitics (YumiA4).

Likewise, affixed words with one root must not be overanalysed as affixed compound

words with two roots in cases where both are possible (e.g. pen-didik-an ‘education’ must not be

analysed as pen-di-dik-an ‘at younger sibling (nominalised)’, a nonsensical analysis). Thus,

YumiA1 (affixation rules for single-root words) is prioritised over YumiA3 (affixation rules for

compound words). In parallel to all this, the rules for affixation of single-root words with clitics

(YumiA2) are prioritised over the rules for affixation of compound words with clitics (YumiA4).

7.4.1.2 DykaA1.nod (H9): the core lexicon

While I wrote all the rules from scratch during the development of SANTI-morf, I

compiled the lexicons from reformatted versions of various pre-existing resources for Indonesian.

The lexicon DykaA1 (Dyka = arbitrary code for lexicons, A = Annotator, 1 = 1st in order) is the

highest priority resource, not only in the Annotator, but across all SANTI-morf resources. This

lexicon implements tokenisation and annotation of monomorphemic words (11,546 entries) and of

a handful of polymorphemic words (130) which are exceptions to the rules in the lower-priority

grammar resources.

267

The list of roots was initially derived from a lexicon database58 extracted from Kateglo59

an online Indonesian dictionary. Each line in that lexicon contains a single root which can be a

monomorphemic word (fully lowercase), followed by the word’s POS category in Indonesian (fully

uppercase), e.g.:

makan VERBA

minum NOMINA

 Manual inspection of the Kateglo lexicon showed it to include 1) contemporary roots, 2)

archaic roots, 3) polymorphemic words derived by unproductive processes, 4) polymorphemic

words derived by productive processes, and 5) non-Indonesian words. Of these, the contemporary

roots and unproductively-formed words were incorporated into DykaA1. I excluded a number of

archaic roots because their inclusion caused other analyses to be incorrect. For example, when

SANTI-morf scans bad in this is a bad day, it should be analysed as FRG (foreign root). However,

in the Kateglo lexicon, bad is categorised as a noun because it is an archaic root meaning ‘wind’.

If this archaic form along with its POS category were included in DykaA1, SANTI-morf

wouldincorrectly analyse bad as a noun instead of a foreign word. Polymorphemic words formed

by productive processes are also excluded, because they can be analysed by the morphological

rules (see 7.4.1.5). I transferred the selected parts of the Kateglo lexicon to a spreadsheet. To add

the tags of the SANTI-morf MAS, an additional column was inserted and automatically filled

with ROOT as the first property, followed by the POS.

Kateglo lexicon: tabrak Verba

DykaA1: tabrak,ROOT+VER+PS+AT+T1+DykaA1

I mapped the Kateglo POS codes to the corresponding codes in the SANTI-morf MAS (e.g.

adverbia to ADV) using global search-and-replace. Incorrect POS categories (around 150) were

corrected. To the resulting initial SANTI-morf lexicon, I added entries for 396 roots and 58 words

58 https://datahub.io/aps2201/kateglo_scrape#resource-kateglo_scrape_zip (last accessed 24/05/2021)
59 https://kateglo.com/ (last accessed 24/05/2021)

https://datahub.io/aps2201/kateglo_scrape#resource-kateglo_scrape_zip
https://kateglo.com/

268

based on my own observations of Indonesian texts. DykaA1 contains in all 11,546 entries for

roots and 130 for complete words.

Following ROOT and the POS in the entries are a number of implementation properties.

Unless specified otherwise, these were inserted manually. The first implementation property is

syllable. Each root is coded either +MS (monosyllabic) or +PS (polysyllabic). These features are

used to constrain allomorphy rules. For instance, monosyllabic roots co-occur with prefix

allomorphs not used with longer words (e.g. active prefix menge-, agentive/instrumental

nominaliser penge-).

Next, I added a property called first letter, which contains the initial letter of the root.

The format is A (meaning initial), followed by the first letter of the root in uppercase; this

property is added automatically. Thus, the root ramai ‘crowded’ has +AR because ramai begins

with r. Like syllable, this property is also used to constrain allomorphy rules. For example, the

superlative prefix te-, an allomorph of teR-, occurs with roots beginning with r.

The next property is transitivity, also for rule constraints. For instance, circumfix ber—

an typically has reciprocal function when it occurs with transitive verb roots (+T1). Thus, the rule

for the reciprocal circumfix is constrained to apply only with roots that have +T1. Other values

are intransitive (+T0), ambitransitive (+T2), and non-verb (+TX). While I created this property for

implementation purposes (and, therefore, it is not part of the MAS in chapter 4), nothing

prevents end-users from using it for analytic purpose, such as to retrieve verbs on the basis of

their root’s transitivity.

The final property present on entries in DykaA1 is the name of the lexicon, +DykaA1.

This is used for debugging purposes, and is inserted at the end of each entry. In all, the

annotation in the lexical entry for a root in DykaA1 consists of a form followed by seven

properties. Two of the seven are analytic annotation (ROOT and the POS) while the others exist

for sake of the implementation. Lexical entries for polymorphemic words produced by

unproductive processes have no implementation properties, because these entries are exceptions

to the rules which utilise those properties. As exceptions, all entries for polymorphemic words are

269

given +UNAMB at the end of the annotation, which makes them the highest priority in analysis.

The format of entries for non-root morphemes is fully discussed in 7.4.1.5. The analyses for the

morphemes making up one word are laid out following the order of the morphemes, as the

following example for jejaring ‘many webs’ (formed by partial reduplication; see 4.2.4) shows:

jejaring,<je,RED+PART+NOU+DykaA1><jaring,ROOT+NOU+DykaA1>+UNAMB

The format of the analysis depends on the morphological structure of the word. In

addition to root and word forms, the lexicon also includes non-letter symbols. These symbols are

annotated in the lexicon with the POS (DGT for numbers and PNC for non-letter symbols) and

the resource name. This type of entry has no implementation properties, as the entry for the

pound sterling symbol illustrates:

£,PNC+DykaA1

Text Analysis

tabrak tabrak,ROOT+VER+PS+AT+T1+DykaA1

jejaring je,RED:PART+DER:NOU+DykaA1

jaring,ROOT+NOU+DykaA1

sosial sosial,ROOT+NOU+PS+AS+TX+DykaA1

Table 7.5. A sample of words morphologically annotated using DykaA1

7.4.1.3 DykaA2 (H8): the proper noun lexicon

The lexicon DykaA2 (Dyka = lexicon, A = Annotation, 2 = 2nd in order) is designed to

analyse proper nouns. The creation of this lexicon was motivated by MorphInd’s failure to

identify many proper nouns, which was one major factor reducing its coverage (see 5.5.7). I

sourced the lexical entries in DykaA2 from various resources, as detailed in Table 7.6.

270

Data source (number of resulting entries) Origin

BNC wordlist (7,764) Leech and Smith60

(2000)

Names of provinces, cities, districts, and villages in Indonesia

(45,149)

edwardsamuel61

Names of countries and capital cities (266) kata-ai62

Collection of person names in Indonesia (6932) seriously63

Table 7.6. Existing resources used to build DykaA2

The first letter of each entry’s form was changed to uppercase, i.e. apple, blue, moon to

Apple, Blue, Moon. The 544 proper nouns acquired from the BNC wordlist were already in this

format, e.g. James, London, Lancaster. This anticipates use of the words in this lexicon as proper

nouns created from English common nouns such as Apple (name of a company) or Blue and Moon

in Blue Moon (name of a restaurant in Lancaster). This is only the correct analysis if the word

has an initial capital. All words in DykaA2 are analysed as noun roots, e.g.

London,ROOT+NOU+DykaA2, because they are all considered unanalysable proper nouns in

Indonesian. This lexicon is not exhaustive of all possible proper nouns. Proper nouns not matched

in this lexicon will instead be handled by guessing rules, discussed in section 7.4.2.

Text Analysis

restoran restoran,ROOT+NOU+PS+AR+TX+DykaA1

Blue Blue,ROOT+NOU+DykaA2

Moon Moon,ROOT+NOU+DykaA2

Lancaster Lancaster,ROOT+NOU+DykaA2

Table 7.7. Some proper nouns originating as foreign words (in the name Blue Moon Lancaster),

as annotated by DykaA2

7.4.1.4 DykaA3.nod (H7): the foreign word lexicon

Lexicon DykaA3 contains entries for analysis of foreign words. The foreign language data

that I used to compile DykaA3, and their sources, are given in Table 7.8. Regardless of their POS,

all these words are assigned the +FRG (foreign) property. There is, however, no indication of the

60 http://ucrel.lancs.ac.uk/bncfreq (last accessed 26/06/2020)
61 https://github.com/edwardsamuel/Wilayah-Administratif-Indonesia(last accessed 26/06/2020)
62 https://github.com/kata-ai/kawat/blob/master/semantic/country-capitals.txt (last accessed 26/06/2020)
63 https://github.com/seuriously/genderprediction/blob/master/namatraining.txt (last accessed 26/06/2020)

http://ucrel.lancs.ac.uk/bncfreq
https://github.com/kata-ai/kawat/blob/master/semantic/country-capitals.txt
https://github.com/seuriously/genderprediction/blob/master/namatraining.txt

271

original language. An example full entry in this lexicon is copy,ROOT+FRG+DykaA3. No

uppercase conversion is applied.

Foreign language (number of entries) Derived from

English (7,764) BNC wordlist

Javanese (2,394) Javanese Wiktionary64

Dutch (4,617) Dutch Wiktionary65

Table 7.8. Foreign word lexicon sources

Text Analysis

blue blue,ROOT+FRG+DykaA3

line line,ROOT+FRG+DykaA3

Table 7.9. A two-word foreign phrase (blue line) annotated by DykaA3

7.4.1.5 YumiA1 (H7): the rules of affixation

7.4.1.5.1 Preliminaries

YumiA1 (Yumi = arbitrary code for morphological grammar resources, A = Annotation, 1

= 1st in order) is a resource consisting of rules for tokenisation and annotation of single-root

polymorphemic words formed by means of productive affixation.

Unlike the lexicons, where a large proportion of the content was created by reuse from

existing resources, all the SANTI-morf grammar files were written from scratch. Although rules

are available in the code of PMA (Pisceldo et al. 2008) and MorphInd (Larasati et al. 2011), they

do not adhere to the MAS that SANTI-morf implements, and are therefore not re-usable in the

present project.

Just as with the definition of the MAS (Chapter 4), I used two Indonesian reference

grammars (Alwi et al. 1998; Sneddon et al. 2010) as my main sources for writing these rules.

Supplementary resources were Indonesian morphology textbooks (e.g. Kridalaksana 1989;

64 https://id.wiktionary.org/wiki/Lampiran:Kamus_bahasa_Jawa_%E2%80%93_bahasa_Indonesia (last accessed

25/05/2021)
65 https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Dutch_wordlist (last accessed 25/05/2021)

https://id.wiktionary.org/wiki/Lampiran:Kamus_bahasa_Jawa_%E2%80%93_bahasa_Indonesia
https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Dutch_wordlist

272

Kridalaksana 2007; Chaer 2008); my own observation of testbed texts; and my introspection as a

native speaker of Indonesian.

My convention for names of affixation rules is that they combine the output category of

the affixation with the form of the affix in question. For instance, VER_di- is the rule for di-

prefixation, whose outcome is a verb. Names of rules for polysemous affixes (see 4.1.15) end in

(an abbreviation of) the applicable function, yielding for instance VER_-kan_caus

(causative -kan) alongside VER_-kan_appl (applicative -kan). Other rule components will be

covered in 7.4.1.5.2 to 7.4.1.5.4; how they are aggregated into complete rules is discussed in

section 7.4.1.5.5; how the rules are organised within YumiA1 is discussed in 7.4.1.5.6.

7.4.1.5.2 Input-output codes for affixes

The input-output codes for each affix are written directly in the rule, without referring to

the lexicons (see 7.2.1 and 7.2.2). The input is the orthographic form. The output has the

following components; 1) orthographic form, 2) input-output delimiter (slash), 3) formal

morphological criteria, 4) form-property delimiter (comma), 5) citation form (if different from

orthographic form), 6) opening/closing property (only for circumfixes), 7) outcome POS property,

8) other functional and/or implementation properties (if any), 9) rule number in the format RL=n,

and 10) the resource name +YumiA1. Examples are given in Table 7.10.

Not all 10 components must be present. For example, the input-output codes for meng-

and -kan in Table 7.10 lack the opening/closing property, because they are not circumfixes. There

is no citation form for -kan, because it is the same as the orthographic form. There are no rules

for infixation, because infixation is unproductive and so all words with infixes are listed in

lexicon DykaA1.

Input-output codes for circumfixes are in two parts. Although they resemble two separate

affixes, circumfixes should be considered as single discontinuous morphemes (see 2.1.3.4.2.1 and

4.2.3.1). To indicate this, the additional property +A or +Z is added to respectively the opening

and closing part of a discontinuous element.

273

Prefix meng/<meng,PFX+meN+DER:VER+ACV+RL=112304+DykaA1>

Suffix kan/<kan,SFX+DER:VER+CAUS+RL=112200+DykaA1>

Circumfix

(opening)

ke/<ke,CFX+A+DER:NOU+RL=060800+DykaA1>

Circumfix

(closing)

an/<an,CFX+Z+DER:NOU+RL=060800+DykaA1>

Table 7.10. Sample input-output codes from rules for affixes

For a polysemous affix, the input-output codes for all analyses must be present in the

affix’s rule. The input-output codes for the various analyses are joined in a union by the | symbol

(pipe, see 7.2.2.1), which means or. For example, -kan can function as causative (+CAUS) or

applicative (+APPL) and these two possibilities are expressed by the following union within the

rule for -kan:.

(

kan/<kan,SFX+DER:VER+CAUS+RL=112100+YumiA1 >

| kan/<kan,SFX+DER:VER+APPL+RL=112100+YumiA1 >

)

Both analyses from the union will be applied; the Disambiguator module (see 7.4.4) will

later remove the incorrect analysis so that only the most likely to be correct analysis remains.

7.4.1.5.3 Root component: variable and output

I use the term root component to refer to the codes within an affixation rule that define

the slot that the root would have to occupy in a word formed by the rule in question. Technically,

it targets a sequence of letters in a word being processed, which will be treated as the possible

root and be looked up in the list of roots in the lexicon. Once a match is found in the lexicon, the

corresponding lexical entry is used as the annotation output for the root morpheme token. Thus,

in a morphological rule, the root component is not the actual root, but rather a cluster of

information required to identify and annotate the actual root.

The input-output code for each root component includes variable, matching constraint,

and output components. The variable which stores the string to be analysed as the root is always

274

named X. An example of this (given previously in Table 7.2) is the code $(X <L>* $). This

indicates that variable X is defined to be a collection of letters <L>*, and thus will store whatever

root happens to be found within a polymorphemic word being processed by the rule.

Likewise, the output, marked by <E>/<$1L,$1C$1S$1F>, is the same for (nearly) every

rule. Each $ indicates an element of the output to be pulled in from a lexicon entry. $L pulls in

the form in the lexicon to be used as an annotation output, and $C, $S and $F pull in the

annotation properties (category, syntactic and semantic features, and inflectional features

respectively. The prepended digit 1 indicates that the lexicon entry from which material will be

drawn is the one matched by the string stored in the first variable (i.e. variable X). In general,

there is only one variable in eacj rule, except for compounds; since this variable stores the

material at the position where the root is expected, it should in theory match the lexicon entry for

that root.

As these two codes (variable and output) are recurrently re-used, I encapsulate them as

non-terminals varX and out1: varX = $(X <L>* $) and out1 = <E>/<$1L,$1C$1S$1F>.

The actual rules then only contain the names varX and out1. A minor variation on out1, out1L, is

defined for roots that can undergo initial consonant deletion (see discussion and examples at

7.4.1.5.5); its output code is the same as out1’s except for the additional property +LOST.

7.4.1.5.4 Root component: matching constraint

The term constraint was defined in section 7.2.2.1. A constraint affects the lookup of the

variable, usually X, on which that constraint is placed. Unlike the variable and output, the

constraint components (see Table 7.2) vary from one affixation rule to another; thus, they cannot

be simplified in the way used above for the variable and output.

In the YumiA1 rules, all constraints include the property +ROOT, so that the string in the

rule’s variable can only match lexical entries tagged as roots. Otherwise, there are three types.

Lexical property constraints (L) specify lexical properties which matched roots must possess for

the rule overall to apply (e.g. the root’s number of letters or its first letter, or features such as

275

transitivity)66. For example, <$X=:ROOT+ADJ+AR>, a constraint that is part of the te- affixation

rule (given in Table 7.11), ensures that only roots whose first letter is r, such as rendah ‘low’ (cf.

terendah ‘lowest’), are acceptable as matches for the string stored in this rule’s variable.

Partial match constraints (P) restrict the lookup based on orthographic form. Adding

such additional constraints based on (part of) the orthographic form is necessary to handle the

morphophonemic alternation of roots after certain prefixes (see 7.2.2.1). For example, #s in the P

constraint <#s$X=:ROOT> asserts that the variable will match a lexical entry whose form is the

string in the lexicon entry with letter s prepended (as long as that entry is tagged with ROOT).

Thus, when processing the word meny-apu ‘sweep (a floor)’, the affixation rule with this

constraint stores apu in the variable, and the partial match constraint enables the variable to

match the lexical entry for root sapu ‘broom’, whose initial s is lost after meny-. The third type of

constraint combines the former two (L+P). Some examples of constraints are given in Table 7.11;

in this project, I use only constraints of types L and L+P.

66 Constraints of this type can speed up NooJ processing, because they remove the need to process each lexical entry for

every word-token.

276

Constraint Rule using

constraint

Description of constraint and example matching

lexical entries Type Code

L <$X=:ROOT+T1-AR> Reciprocal

circumfix ber—an
Matched entry must be a transitive verb root

which does not begin with r e.g. ber-pukul-an ‘hit

one another’.

pukul,ROOT+FULL+VER+L5+AP+T1+DykaA1

cium,ROOT+FULL+VER+L4+AC+T1+DykaA1

peluk, ROOT+FULL+VER+L5+AP+T1+DykaA1

L <$X=:ROOT+T0-AR> Random action

circumfix ber—an

Matched entry must be an intransitive verb root

which does not begin with r e.g. ber-jatuh-an
‘(multiple things) to fall randomly’.

jatuh,ROOT+FULL+VER+L5+AJ+T0+DykaA1

gugur,ROOT+FULL+VER+L5+AG+T0+DykaA1

lari,ROOT+FULL+VER+L4+AL+T0+DykaA1

L <$X=:ROOT+L3> Active verb

prefix menge-
Matched entry must be a monosyllabic root e.g.

menge-bom

las,ROOT+FULL+VER+L3+AL+TX+DykaA1

bom,ROOT+FULL+NOU+L3+AC+TX+DykaA1

peluk, ROOT+FULL+NOU+L5+AP+TX+DykaA1

L <$X=:ROOT+ADJ+AR> Superlative

adjective prefix te-
Matched entry must be an adjective root that

begins with r e.g. te-ramah ‘friendliest’

ramah,ROOT+FULL+ADJ+L5+AR+TX+DykaA1

rendah,ROOT+FULL+ADJ+L6+AR+TX+DykaA1

L+P <#s$X=:ROOT> Active verb

prefix meny-
Matched entry must be a root that begins with s,
but that s is absent in the orthographic form e.g.

meny-(s)apu ‘sweep (a floor)’

sapu,ROOT+FULL+NOU+L4+AS+T0+DykaA1

sapa,ROOT+FULL+VER+L4+AS+T1+DykaA1

saring,ROOT+FULL+VER+L5+AS+T1+DykaA1

Table 7.11. Some constraints (L = lexical property constraint, P = partial match constraint)

7.4.1.5.5 The rules in full

Each full rule is composed of an affix component and the root component (including the

root’s matching constraint if any) (see 7.4.1.2). Components must be ordered correctly (e.g. a

suffix component must follow a root component, not the other way around) because NooJ

processes components sequentially from left to right. Rules in YumiA1 capture seven patterns of

affix/root combinations (see Table 7.12).

277

 Basic affixation rule pattern Example

1 prefix-root di-ambil ‘be taken

2 root-suffix cuci-kan ‘wash (causative)’

3 prefix-root-suffix di-cuci-kan ‘be washed (causative)’

4 circumfix(open)-root-circumfix(close) ke-merah-an ‘reddish’

5 prefix-circumfix(open)-root-circumfix(close) ber-pe-rasa-an ‘have feelings’

6 circumfix(open)-prefix-root-circumfix(close) ke-pe-muda-an ‘youthhood’

7 prefix-prefix-root di-per-besar ‘be made bigger/magnified’

Table 7.12. Affixation rule patterns (patterns are in true order rather than the order in the

actual code)

The complete rule for circumfix pen—an, NOU_peN-an_pen-an, illustrates the overall

composition, here following pattern 4. After the rule name, the input-output code for the

circumfix consists of two elements: pen/<pen,CFX+A+peN+DER:NOU+RL=060602> and

an/<an,CFX+Z+DER:NOU+RL=060602>. These respectively precede and follow the part of the

rule specifying the possible roots, i.e. :varX (<E>/<$X=:ALU>) :out1 , itself in three parts

(variable, constraint, and output, in that order), yielding:

NOU_peN-an_pen-an =

pen/<pen,peN,CFX+A+DER:NOU+RL=060602>

:varX (<E>/<$X=:ALU>) :out1

an/<an,CFX+Z+DER:NOU+RL=060602> ;

7.4.1.5.6 Organisation of rules

In all, there are 121 rules in YumiA1. The main rule is a union of 10 non-terminals,

named after the possible word-level outcome POSs, e.g. :ADVERBIA and :AJEKTIVA. The list of

relevant POS classes here (see Table 4.7 in 4.2.2) excludes some generally accepted categories,

for instance interjections, which never take affixes and are therefore not affected by any of the

rules.

Each of these non-terminals is itself a union of the non-terminals for the rules that

produce that union’s POS. Then come the rules themselves, before the union for the next outcome

POS begins. Thus, all 121 rules are conceptually grouped based on outcome POS. Over half the

278

rules characterise affixations whose outcome POS is verb (62 rules); next most common are rules

deriving nouns (25).

Main = :ADVERBIA| … |:NOMINA| ….| :VERBA ; # union of rules based on outcome POS

ADVERBIA = ADV_se-an | … # union of adverb outcome rules

VERBA = :VER_beR- | .. | :VER_meN- # union of verb outcome rules

VER_meN- = ….|:VER_meN-_meng-|… # union of allomorphy rules for meN-

VER_meN-meng- # actual rule for meng-

Each output code for an affix includes a rule number (e.g. RL=112304 is the number of

the menge- prefix rule; see 7.4.1.5.2), which reflects the organisation of YumiA1 based on

outcome POS and is used for debugging purposes.

Text Analysis

kesatuan ke,CFX+A+DER:NOU+RL=060800+YumiA1

satu,ROOT+NOU+PS+AS+TX+ +DykaA1

an,CFX+Z+DER:NOU+RL=060800+YumiA1

makna makna,ROOT+NOU+PS+AM+TX+DykaA1

Table 7.13. Annotation of kesatuan as a combination of root satu and circumfix ke—an using

YumiA1

Some rule-based annotation systems operate by attempting to apply rules to the token

under analysis one at a time, in the order that those rules occur in the grammar file. Once such a

system finds a rule that applies to the current token, it stops, and accepts that rule’s analysis as

correct. The remaining rules are not even tested. This means that care must be taken to put the

rules in an order that results in rule conflicts being resolved correctly. Fortunately, this is not a

problem with NooJ. In NooJ, all rules are attempted, and if more than one rule applies to the

token at hand, the token will receive all resulting analyses, and be ambiguously annotated.

While NooJ does support prioritisation of resources relative to one another, this sequencing only

takes effect if the user explicitly and intentionally introduces it to the system configuration (see

7.2.3). Otherwise, rule sequencing in NooJ grammar files does not affect the outcome.

7.4.1.6 YumiA2 (H6): rules for affixation involving clitics

The YumiA1 rules cannot analyse affixed words which also have clitics, e.g. mem-

279

bawa=ku ‘take me’. Such words are handled by YumiA2 (A= Annotation, 2 = 2nd in order), a

morphological grammar containing rules for cliticisation.

Discussing clitics, reference grammars of Indonesian typically focus on whether each

clitic precedes or follows its host, without discussing in detail what constraints might restrict

their combination. By contrast, affix combination is dealt with rigorously in this literature. My

MAS distinguishes numerous categories of clitic (see 4.2.2.2 and 4.2.6). Rules exist for sets of two

proclitics (one pronoun and one numeral, handled by rule PCLT); three enclitics (three pronouns,

handled by rule ECLT1); and four word-final enclitic-like particles (handled by rule ECLT2).

Since clitics are never compulsory for any word-form, they must be specified as optional (by being

in union with epsilon <E>); this is implemented in the Main rule, which specifies all possible

combinations of clitics:

Main = (:PCLT|<E>) :WORD (:ECLT1|<E>) (:ECLT2|<E>);

main rule optional proclitic obligatory host optional enclitic(s)

The non-terminal WORD is a union of a copy of all the rules from YumiA1, so that this

element, representing the ‘host’ of the clitic, may match any recognised affixed word. Affixes and

clitics have the similarity that they are bound in some manner to other units. But their

differences, discussed in 2.1.3.4.2 and 2.1.3.4.5, are reflected in the corresponding rule output

codes. Notably, the output code for a clitic output code does not have an outcome POS property

(see 7.4.1.5.2). Instead, it has a POS, just like a root. This is because a clitic is a monomorphemic

word in itself, attached only phonetically/orthographically. This is clear in the citation forms

defined for clitics, which are identical to the equivalent independent word that has been

cliticised, as Table 7.14 shows. The output codes for clitics include a POS property PRO (pronoun)

instead of an outcome POS property DER:PRO.

Text Analysis

jawaban=ku ‘my answer’ jawab,ROOT+VER+PS+AJ+T1+DykaA1

an,SFX+DER:NOU+RL=060500+YumiA2

ku,aku,ROOT+ECLT+PRO+YumiA2

benar ‘correct’ benar,ROOT+ADJ+PS+AB+TX+DykaA1

Table 7.14. Annotation of enclitic pronoun =ku ‘pronoun’ in jawab-an=ku ‘my answer’ using

YumiA2

280

The input-output code for a clitic consists of 1) orthographic form, 2) citation form, 3)

delimiter, 4) the tag for the morpheme type, which is ROOT plus either proclitic +PCLT or

enclitic +ECLT), 5) POS of the clitic (e.g. PRO), 7) functional tags (if any) and 8) the resource

name, for debugging. A full example is <E>/<ku,aku,ROOT+PCLT+PRO+YumiA2> for proclitic

ku=. As usual, if orthographic and citation forms are identical, the latter is omitted.

The enclitic pronoun =nya is ambiguous with definite suffix -nya; this ambiguity can only

be resolved by pragmatic context (see 4.2.2.2). While it is beyond this project to incorporate

pragmatic context, there do exist some exceptional cases in which disambiguation is possible (see

4.2.6). For this reason, distinct tags for clitic =nya and suffix -nya, and also +NYA tag are

preserved at this stage.

7.4.1.7 YumiA3 (H6): rules for affixation involving two roots

YumiA3 contains rules to analyse compounds (two roots), with or without affixation. It

began as a full copy of YumiA1. I then changed each rule to add input-output codes to match with

the second root of the compound. The variable component for the second root is given the label Y

– not X – thus: $(Y <L>* $). The output component references this variable as 2 instead of 1

because Y is the second variable in the rule. This yields <E>/<$2L,$2C$2S$2F>. The constraint

for the second root is only ROOT, i.e. <E>/<$Y=:ROOT>, since all constraints based in, for

instance, allomorphy, are tested against the form or properties of the first root, not the second.

Because the same input-output codes (variable, constraint, annotation output) are used to

represent second roots as are used for a first or sole root, I defined a reusable non-terminal

named 2root :

2root = $(Y <L>* $) <E>/<$Y=:ROOT> <E>/<$2L,$2C$2S$2F>;

The non-terminal 2root is then added to the YumiA3 version of the per—an affixation

rule (NOU_peR-an_per-an), given below. This allows the rule to analyse the affixed compound

281

word per-tanggung-jawab-an ‘responsibility’, with tanggung ‘carry’ analysed by :varx

<E>/<$X=:ROOT> :out1, and jawab ‘answer’ analysed by :2root.

NOU_peR-an = :NOU_peR-an_per-an | :NOU_peR-an_pe-an;

NOU_peR-an_per-an =

per/<per,peR,CFX+A+per_an+peR_an+DER:NOU+RL=060701A+YumiA1>

:varX <E>/<$X=:ROOT+DykaA1> :out1 :2root an/<an,CFX+Z

+DER:NOU+RL=060701Z+YumiA1>;

 In these rules, affixes are optional, as it is possible for a compound word just to be

composed of two adjacent roots, as in kaca-mata ‘eye glasses’, from kaca ‘glass’ and mata ‘eye’,

whose analysis is shown in Table 7.15.

Text Analysis

jual jual,ROOT+VER+PS+AJ+T1+DykaA1

kacamata kaca,ROOT+NOU+PS+AJ+T1+DykaA1

mata,ROOT+NOU+PS+AM+TX+DykaA1

pria pria,ROOT+NOU+PS+AM+TX+DykaA1+YumiA3

Table 7.15. The annotation of a compound kaca-mata

7.4.1.8 YumiA4 (H6): rules for affixation involving two roots and clitics

Grammar YumiA4 contains rules to analyse affixed two-root compounds which also have

clitics. Its main rule is identical to that of YumiA2, which analyses words with clitics. However,

the non-terminal symbol :WORD, used inside the main rule, is defined differently than in YumiA2.

Here, :WORD is defined as a union of rules copied from YumiA3 (rules for affixation of compounds),

rather than as a union of YumiA1 (rules for affixation of non-compounds). As usual this grammar

adds a distinct resource name property to every rule

282

Text Analysis

pertanggungjawabanmu per,CFX+A+peR+DER:NOU+RL=060701A+YumiA4

tanggung,ROOT+VER+PS+AT+T1+DykaA1

jawab,ROOT+NOU+PS+AJ+T1+DykaA1

an,CFX+Z +DER:NOU+RL=060701Z+YumiA4

mu,ROOT+ENCLT+kamu+PRO+YumiA4

Table 7.16. The annotation of per-tanggung-jawab-an=mu as compound tanggung-jawab plus

circumfix per—an plus enclitic =mu by rules and lexicon entries within the Annotator

7.4.2 Module 2: the Guesser

The Guesser module implements morphological tokenisation and annotation of unknown

words, i.e. all words that were not analysed by the Annotator. Rather than label all unknown

words with a single “unknown” tag, like MorphInd, SANTI-morf always generates a “best guess”.

It is crucial not to let the level of ambiguity rise out of control at this early stage. Thus,

the Guesser is designed to produce the minimum ambiguity possible. The Guesser consists of sets

of morphological rules, labelled Yumi like the other grammar resources, followed by G (for

Guesser) and a number (from 1 to 6) that indicates the resource’s relative position in the order of

priority.

The Guesser rules are based on affixation, cliticisation, and orthographic cues. Affixes

and clitics are recognised by position-based rules. For instance, the non-word diaambil is not

recognised by the Annotator, but the Guesser has a rule which analyses words beginning with di

as consisting of di- as a prefix, and whatever comes after it, here aambil, as a root.

 Many affixes (unlike clitics; see 4.2.2.2) are not exclusive to one root POS; for instance,

ter- can appear on an adjective, noun, or verb. In such cases, the Guesser assigns the analysis

with the greatest frequency. This frequency information was extracted from the testbed as

processed by the Annotator only. Ter- is most often a verbal prefix, and so the Guesser’s rule for

ter- only assigns that analysis. The same procedure applies to the root; since ter- is most

frequently followed by a verb root, the rule treats whatever follows ter- as a verb root.

The Guesser’s affixation rules differ from those in the Annotator. First, the rules in the

Guesser do not have any constraints, because no reference needs to be made to the lexicon.

Second, the annotation output is explicitly part of the rule, rather than being a reference to a

283

lexicon entry; two rules with the explicit output code <$X,ROOT+FULL+VER+YumiG1> are

discussed below.

The Guesser also uses orthographic cues. For instance, an unknown word with an initial

uppercase followed by lowercase letters is analysed as a noun (because it is likely to be a proper

name).

The priority of the Guesser resources begins with the more reliable rules, to avoid

ambiguity. Affix-recognising rules are prioritised over rules using orthographic cues, the former

being more reliable. Thus, the orthographic cues resource, YumiG6, is given very low priority

(L4: see Table 7.9). Further, rules that recognise both a prefix and a suffix (or a circumfix) have

priority over rules that recognise just one affix, since an unknown word is less likely to

spuriously match two affixes. Thus, a word that matches the patterns for ber—kan (circumfix),

ber- (prefix), and -kan (suffix) will be handled by the rule for ber—kan, pre-empting the other

two.

The Guesser is designed to recognise the longest possible affix, rather than any substring

which is also a possible affix. For instance, the rule for meng- has priority over the rule for men-.

To implement this prioritisation, NooJ’s +UNAMB feature (see 7.2.1.2) is used, as these rules

illustrate:

VER_meng—kan=

meng/<meng,PFX+DER:VER+YumiG1>

$(X <L>* $)

<E>/<$X,ROOT+FULL+VER+YumiG1>

kan/<kan,SFX+DER:VER+YumiG1>

+UNAMB

;

VER_men—kan=

men/<men,PFX+DER:VER+YumiG1>

$(X <L>* $)

<E>/<$X,ROOT+FULL+VER+YumiG1>

meng/<meng,PFX+DER:VER+YumiG1>

;

Although the +UNAMB feature can be used multiple times within a grammar, it only

expresses a single distinction in priority level. In some cases, however, more than one distinction

is needed (e.g. recognising the allomorphs of meN- requires rules across three priority levels). For

284

this reason, the morphological-cue rules are split across multiple resources to create additional

priority levels (two per resource). The full list of Guesser rules is given in Table 7.17.

Resource YumiG1 YumiG2 YumiG3 YumiG4 YumiG5 YumiG6

NooJ

priority

H2 H1 L1 L2 L3 L4

Affix(es)

or form(s)

recognised

by

resource’s

rules

meng—kan*

meny—kan*

men—kan

mem—kan

me—kan* meng-

meny-

men-

mem-

me- Fully-lowercase

form with clitics

(e.g. kimchi=ku)

Fully-lowercase

form

(e.g. kimchi)

Fully-uppercase

form

(e.g. CHAPTER)

Initial uppercase

form (e.g.

Sensei)

Mixed case (e.g.

EduTainment)

ter—kan*

te—kan

 ber-*

be-

per-*

ter-*

te-

per—kan*

pe—kan

 peng-*

peny-*

pem-

pen-

pe-

 ber—an*

be—an

 peng—an*

peny—an*

pem—an

pen—an

per—an

pe—an

 ke—an

di—kan se—nya

All rules above recognise the following optional clitics

ku=
=ku
=nya
=mu
=lah
=pun
=kah

Table 7.17. Rules and their priorities in the Guesser (* = prioritised using +UNAMB)

The final resource, YumiG6, contains rules based on the aforementioned orthographic

cues, and in addition, rules which analyse all remaining unknown words as either roots (not

prioritised) or roots with clitics (prioritised with +UNAMB). For instance, the remainder of a word

after proclitic ku= is always analysed as a verb root; this is correct in more than 90% of cases in

the Annotator-processed testbed:

285

ku_VER_ROOT =

ku/<ku,ROOT+PCLT+PRO+YumiG6>

$(X <L>* $)

<E>/<$X,ROOT+FULL+VER+YumiG6>

+UNAMB;

The remainder of any word recognised as ending in an enclitic is analysed as a noun root;

this is correct in more than 70% of cases in the Annotator-processed testbed. The remaining

unknown words, lacking clitics, are guessed to be monomorphemic nouns, because more than

70% of monomorphemic words in the testbed are nouns. These final guessing rules are linked to

orthographic cues as discussed above.

YumiG1-YumiG5 YumiG6

Affixation with optional clitics (35) Monomorphemic words with clitics (7)

Monomorphemic nouns with no clitics (4)

Table 7.18. Number of rules in the resources in the Guesser (46 rules)

Text Analysis

Eirlyn Eirlyn,ROOT+NOU+YumiG6

Diinta di,PFX+DER:VER+PSV+YumiG4

inta,ROOT+NOU+YumiG4

mengaweetkan meng,meN,PFX+DER:VER+ACV+YumiG1

aweet,ROOT+NOU+YumiG1

kan,SFX+DER:VER+YumiG1

keju keju,ROOT+NOU+PS+AK+TX+DykaA1

Table 7.19. Some words annotated using the Guesser

7.4.3 Module 3: the Improver

The Improver consists of two resources: DitoR1 and DitoR2 (Dito = arbitrary code for

syntactic grammar resources, R = ‘improveR’, 1 and 2 = 1st and 2nd in order).

NooJ priority code Resource Disambiguation rule type Units targeted

1 DitoR1 Contextual Full root reduplication

2 DitoR2 Contextual Full word reduplication

Special case reduplication

Table 7.20. Improver resources

286

DitoR1 has the exclusive purpose of supplying the correct analysis for full root

reduplication morphemes, which the Annotator inaccurately analyses as lexical roots rather than

realisations of the abstract reduplication morpheme. So, for instance, for the word pukul-pukul

‘hit iteratively’, both elements are given the analysis ROOT+VER, but this is only correct for the

first (source); for the second (copy), RED:FULL+VER+ITRV is the desired analysis.

To adhere to the MAS (see 4.2.4), the code ROOT on the copy token must be converted into

RED:FULL (full reduplication) followed by the POS of the reduplicated root, plus in some cases

functional tags. Since, in NooJ, a syntactic rule cannot replace one analysis with another in a

single pass, this correction involves two steps: adding the correct analysis, and subsequently

removing the incorrect analysis/analyses. In SANTI-morf, the Improver performs the former

step; the latter is left to the Disambiguator (see 7.4.4).

Text Analysis

pukul pukul,ROOT+VER

pukul (pukul,ROOT+VER | pukul,RED:FULL+DER:VER+ITRV+DitoR1)

Table 7.21. Annotation of pukul-pukul by the Improver (added analysis in bold)

Addition of the RED:FULL analysis needs to be sensitive to context; it must only apply

when an instance of a root form is used as a reduplication morpheme and nowhere else (i.e. the

second pukul in pukul-pukul but not the first), since other instances of the same forms are

probably correctly tagged already.

A syntactic rule that analyses reduplication must incorporate variables (e.g. A and B) and

an equality constraint ($A_=$B_), as described in 7.2.2.2, to check whether one token of a pair is

a copy of the other (the source). The analysis must also capture affixes preceding, following, or

encompassing the root (so, not only pukul-pukul ‘hit iteratively’ but also di-pukul-pukul ‘be hit

iteratively’ and di-pukul-pukul-i ‘be hit iteratively (applicative)’).

I address this by incorporating epsilons in union with affixations into the rule (given in

full below). For example, in (<PFX>|<E>) $(A <ROOT+VER> $) (<SFX>|<E>) epsilons are

used in union with a prefix and suffix, enclosing variable A, which stores the source verb root. A

287

similar alternation is used for variable B, which stores the copy root – the location to which the

reduplication analysis is to be added. This makes the affixes optional.

VER_RED =

(<PFX>|<CFX>|<E>)

$(A <ROOT+VER> $)

(<SFX>|<CFX>|<E>)

(<E>|-)

(<PFX>|<CFX>|<E>)

<E>/<$A_,RED

$(B <ROOT+VER> $)

<E>/:FULL+DER:VER+ITRV+DitoR1>

<E>/<$A_=$B_>

(<SFX>|<CFX>|<E>)

;

Some reduplication morphemes may be targeted by multiple rules. For instance, in

pukul-memukul, the reduplication morpheme would be recognised by rule RED_VER supplying

<RED:FULL+DER:VER+ITRV> but also by a more specific rule (VER_RED_ITRV_RECP) which

supplies <RED:FULL+DER:VER+ITRV+RECP>, the difference being the added RECP for reciprocal.

To prevent both rules adding an analysis, the +UNAMB priority code is added to the more specific

rule:

VER_RED_ITRV_RECP=

$(A <ROOT+VER> $)

(<E>|-)

<PFX+meN>

<E>/<$B_,RED

$(B <ROOT+VER> $)

<E>/:FULL+DER:VER+ITRV+RECP+DitoR1>

<E>/<$A_=$B>

+UNAMB

;

Text analysis

pukul pukul,ROOT+VER+PS+AP+T1+DykaA1

memukul mem,PFX+meN+DER:VER+ACV+RL=112302+YumiA1

(pukul,ROOT+VER+PS+AP+T1+DykaA1

|pukul,RED:FULL+DER:VER+ITRV+RECP+DitoR1)

Table 7.22. Annotation of pukul-memukul by the Improver (added analysis in bold).

Full-word reduplication rules are stored in DitoR2. Unlike the rules in DitoR1, which

only target roots, these target all morphemes in a word. Thus, the number of constraints is twice

the number of morphemes copied. An example from compound reduplication (see 2.1.3.4.4 and

288

4.2.4.1) serves to illustrate this. In es krim-es krim ‘ice creams’, the noun-noun compound is

formed from two morphemes, es ‘ice’ and cream ‘krim’, and is then fully reduplicated. Therefore,

the rule that analyses this word uses four variables. Variables A, B, C and D store es, krim, es,

and krim, respectively. There are also two equality constraints (for A and C, and for B and D),

shown in bold in the rule:

NOU_ADJ_RED =

$(A <ROOT+NOU> $)

$(B <ROOT+ADJ> $)

(<E>|-)

<E>/<$A_,RED

$(C <ROOT+NOU> $)

<E>/:FULL+DER:NOU+DitoR1>

<E>/<$A_=$C_>

<E>/<$B_,RED

$(D <ROOT+NOU> $)

<E>/:FULL+DER:ADJ+DitoR1>

<E>/<$B_=$D_>

;

DitoR2 also includes rules to annotate what I term special-case reduplication, where a

single circumfix surrounds a fully reduplicated root. This case is not handled by DitoR1. For

instance, adverbialiser circumfix se—nya applied to reduplicated adjective cepat ‘quick’ in cepat-

cepat ‘quickly’ results in secepat-cepatnya ‘as quickly as possible’. DitoR1 analyses the root

reduplication correctly, but the circumfix remains incorrectly analysed as a combination of prefix

and suffix. DitoR2 contains rules to apply a correct analysis to these cases (more detail on the

method is given in Prihantoro 2021); as previously, the incorrect analysis is left to be removed at

a subsequent stage.

 Overall DitoR1 has 7 reduplication rules. The rule that analyses reduplication with

reciprocal or iterative function is prioritised. DitoR2 has 19 full-word reduplication rules and 9

special-case reduplication rules.

289

7.4.4 Module 4: the Disambiguator

The Disambiguator consists of three syntactic rule resources beginning with DitoD1 (Dito

= arbitrary code, D = disambiguator, 1 =1st in order) (see Table 7.23). The priority level of these

resources starts at 3, so that they take effect after the Improver resource DitoR1.

NooJ priority code Resource name Disambiguation rule type Units disambiguated

3 DitoD1 Non-contextual Reduplication

4 DitoD2 Contextual All units

5 DitoD3 Non-contextual

Table 7.23. Disambiguator resources

7.4.4.1 DitoD1: disambiguating reduplication

The only rule in DitoD1 is Main = <RED>/<RED>, a non-contextual disambiguation rule

that targets all reduplications regardless of context. Whenever a token annotated by <RED> is

found, this rule selects <RED> as the correct annotation and removes any other annotation(s). It

thus removes non-reduplication annotation from reduplication morphemes, preserving only the

annotations added by the Improver (see 7.4.3), as laid out in Table 7.24.

Word Before the Disambiguator module After the Disambiguator module

pukul pukul,ROOT+VER+PS+AP+T1+DykaA1 pukul,ROOT+VER+PS+AP+T1+DykaA1

pukul pukul,ROOT+VER+PS+AP+T1+DykaA1

pukul,RED:FULL+DER:VER+ITRV+DitoR1
pukul,ROOT+VER+PS+AP+T1+DykaA1

pukul,RED:FULL+DER:VER+ITRV+DitoR1

Table 7.24. Effect of DitoD1 on the annotation of reduplication pukul-pukul (change in bold)

7.4.4.2 DitoD2 and DitoD3

Resources DitoD2 and DitoD3 contain disambiguation rules to resolve the remaining

ambiguity. DitoD2 contains rules which test the context to select a particular analysis. DitoD3

contains unconditional rules which apply to the same targets in all other contexts than those

tested in DitoD2. The disambiguation of bisa (noun root bisa ‘poison’, modal adverb root bisa ‘be

290

able to’) illustrates this. Bisa is a noun root when preceded by prefix ber- or followed by ular

‘snake’ or a noun for a type of snake (bisa ular ‘snake venom’; bisa kobra ‘cobra venom’); but it is

likely to be an adverb root in other contexts, e.g. when followed by a passive or active prefix or a

verb root, when preceded or followed by a personal pronoun, and in various other settings. It is

only necessary to define a rule to select the analysis which is correct in the smaller number of

distinct contexts. For bisa, the three noun contexts are written in union in rule nou_bisa:

nou_bisa =

<bisa>/<ROOT+NOU> <ular>

| <bisa>/<ROOT+NOU> :snake

| <ber> <bisa>/<ROOT+NOU>

;

With an analysis selected as correct, NooJ automatically removes the adverb analysis in

those cases. At this point, characterising the contexts where the other analysis is correct is not

necessary; one non-contextual disambiguation rule will suffice if it is lower priority (i.e. in

DitoD3, as opposed to DitoD2). This is more efficient than defining all possible contexts for the

more widespread analysis.

Thus, for bisa, all other cases are dealt with by adv_bisa = <bisa>/<ROOT+ADV>, a

simple rule in DitoD3 which always selects the adverb root analysis if present, and removes other

annotations. DitoD2 contains 56 contextual disambiguation rules targeting individual ambiguous

morphemes like bisa. DitoD3 contains 38 non-contextual disambiguation rules (less than 56 since

some morphemes have more than one rule in DitoD2).

Ambiguity may persist even after the application of DitoD2 and DitoD3, and thus in the

output. For example, Table 7.25 shows analyses arising from three different tokenisations

produced by the Annotator for mengemas ‘pack’, ambiguity not resolved by the Disambiguator.

Three possible tokenisations: meng-(k)emas, meng-emas, menge-mas
meng,meN,PFX+DER:VER+ACV+RL=112304+YumiA1 kemas,ROOT+VER+PS+AK+TX+DykaA1

meng,meN,PFX+DER:VER+ACV+RL=112304+YumiA1 emas,ROOT+NOU+PS+AE+TX+DykaA1

menge,meN,PFX+DER:VER+ACV+RL=112306+YumiA1 mas,ROOT+NOU+MS+AM+TX+DykaA1

Table 7.25. Unresolved ambiguity for mengemas

291

This is a morphophonological ambiguity: any of three different roots could be the one

combined with the active prefix. Phonological context cannot resolve this kind of ambiguity. It

would be possible to ‘guess’ by selecting the most frequent of the three in all cases, as per practice

in the Guesser module, reducing ambiguity at some cost to correctness. However, unlike in the

Guesser, the three analyses are known (not just likely) to include the correct analysis. For

reasons of caution, to minimise rejection of correct analyses, no further action is taken on these

ambiguities.

7.5 Evaluation

7.5.1 The testbed

In chapter 5, I undertook a number of evaluations using a corpus annotated by

MorphInd. I here argue that this testbed may also be appropriately used to evaluate SANTI-

morf. The size of the testbed is approximately 10K words, but (as argued in 2.2) this is sufficient

for evaluation.

One benefit of reusing this testbed is that it allows comparison between MorphInd and

SANTI-morf. While the systems’ MASs differ, a fair comparison can still be made regarding

coverage. MorphInd annotates a considerable proportion of words as ‘unknown’ (see 5.5.8).

Evaluating SANTI-morf’s coverage will reveal whether this aspect of its performance is better or

worse than MorphInd’s.

7.5.2 Procedures for evaluation

After applying SANTI-morf to the testbed, I used NooJ’s export function to transfer the

annotation output from the native NooJ format to a plain-text file. In NooJ, this export function

seems to be optimised for morphosyntactic and syntactic annotation, rather than morpheme-level

292

annotation. In consequence, exporting SANTI-morf output causes data loss, as some

morphemes/annotations are missing. This problem has been reported to NooJ’s author, who

reports that fixing it requires heavy modification of NooJ’s core engine (Silberztein, personal

communication).

To get around this problem, I created the following procedure. First, I added exportable

codes to all lexicons and rules in all modules. These codes are reformatted annotations capable of

passing through the NooJ export tool, albeit in an unconventional format. This unconventional

format is then mapped back to the normal codes, in the format I need for evaluation (see Table

7.26), using a small PHP script. I then transfer the reformatted data to a spreadsheet for

evaluation coding.

In this spreadsheet, the first column contains the word tokens, one per row in vertical

order, as in Table 7.26. The analyses of the morpheme(s) that constitute each word, concatenated

in order of occurrence, are given in the second and subsequent columns. Each morphological

analysis follows the MAS described in Chapter 4. If a morpheme is ambiguously annotated, the

alternative analyses are enclosed in brackets, and separated by pipes, as exemplified for banding

‘ratio’ in Table 7.26.

Word Morpheme 1 analysis Morpheme 2 analysis

mencapai men,meN,PFX+DER:VER+ACV capai,ROOT+VER

1 1,DGT

banding banding,ROOT+NOU|banding,ROOT+VER

4 4,DGT

Table 7.26. Sample output in spreadsheet format for mencapai 1 banding 4 ‘reach 1:4 ratio’

Six columns for evaluation codes are added before the word column (see Table 7.27). The

evaluation categories, based on those introduced in section 5.5.4 but, as will be explained,

adjusted slightly for the present task, are coverage (CV), correct tokenisation (CT), incorrect

tokenisations (IT), number of morphemes (NM), correct analyses (CA), and incorrect analyses

(IA). The evaluation consisted of manually entering a code or number for each category for each

word token. After fully analysing the annotation of the testbed in this way, I used the results to

calculate the following evaluation measures: coverage, precision, recall, F-measure, and

ambiguity rate.

293

CV CT IT NM CA

IA

Word Morpheme 1 Morpheme 2

1 1 0 2 2 0 mencapai men,meN,PFX+DER:VER+ACV capai,ROOT+VER

1 1 0 1 1 0 1 1,DGT

1 1 0 1 1 1 banding banding,ROOT+NOU

|banding,ROOT+VER

1 1 0 1 1 0 4 4,DGT

Table 7.27. Sample evaluation codes with the corresponding output

Coverage (C) is an evaluation measure I introduced in section 5.5.8. If a word has been

analysed (regardless of correctness and ambiguity), I assign code 1 to CV. If the word is left

unanalysed, I assign 0. Coverage is calculated by dividing the sum of CV by the number of word

tokens in the corpus, including punctuation marks and numbers (WT):

𝐶 =
∑CV

WT

SANTI-morf’s MAS does not require full disambiguation of the final output. Thus, rather

than accuracy, a measure commonly used to evaluate unambiguously annotated data (and that I

used in Chapter 5 to evaluate MorphInd), I calculate precision and recall to evaluate SANTI-

morf’s performance. I also calculate the F-Measure, which is the harmonic mean of precision and

recall. The F-measure is required as there is a natural trade-off between precision and recall. The

ambiguity rate is also calculated.

I measure precision and recall for both tokenisation of morphemes and morphological

analysis. The basic datapoints for tokenisation precision and recall are CT and IT. If a word has

no analysis, both are set to 0. If a word is correctly tokenised in any of its analyses, 1 is recorded

under CT (otherwise 0). The number of incorrectly-tokenised analyses is recorded under IT. For

example, if a word is given three analyses, one correctly tokenised and two incorrectly tokenised,

CT is 1 and IT is 2. Tokenisation precision (TP) is then the sum of all CT values divided by the

sum of all CT and IT values. Tokenisation recall (TR) is the sum of all CT values divided by the

number of word tokens in the corpus (WT). The tokenisation Ambiguity rate (TA) is the sum of

294

all tokenisations (CT plus IT) minus WT, divided by WT (i.e. the number of surplus tokenisations

per word token).

𝑇𝑃 =
∑CT

(∑CT + ∑IT)

𝑇𝑅 =
∑CT

WT

𝑇𝐴 =
(∑CT + ∑IT) − 𝑊𝑇

WT

The scores for the correctness of annotation are calculated as follows. NM records the

number of morphemes in each word. CA records the number of correct morpheme-level analyses

and IA the number of incorrect morpheme-level analyses. Due to ambiguity, CA and IA may sum

to more than NM.

Morphological analysis precision (MAP) is then the sum of all CA values, divided by the

sum of all CA and IA values. Morphological analysis recall (MAR) is the sum of all CA values,

divided by the sum of all NM values. Morphological analysis F-measure (MAF) is the harmonic

mean of MAP and MAR. Morphological analysis ambiguity rate (MAA) is the total of all

morphological analyses (sum of CA and IA), minus the sum of NM, divided by the sum of NM.

𝑀𝐴𝑃 =
∑CA

(∑CA + ∑IA)

𝑀𝐴𝑅 =
∑CA

∑NM

𝑀𝐴𝐴 =
(∑CA + ∑IA) − ∑NM

∑NM

295

7.5.3 Coverage

SANTI-morf achieves 100% coverage (C=1). Every word token is given an analysis. By

contrast, MorphInd achieved 93% coverage. Words that MorphInd failed to analyse such as the

place name Yogyakarta ‘Yogyakarta’ and pidana ‘crime’ are analysed by SANTI-morf. Although

the Guesser guarantees an analysis, of the overall tokens, only slightly more than 6% are

annotated by the Guesser; see Table 7.28. This means the coverage provided by the Annotator

alone is more than 94% , which is quite high and still above MorphInd’s 93%.

Analysed by... Word tokens Percentage

Annotator 10,115 93.8%

Guesser 626 6.2%

Total 10,228 100%

Table 7.28. Proportion of words analysed by the Annotator and the Guesser

The breakdown of words dealt with by the Guesser (see Table 7.29) shows that the

majority are proper nouns such as Sayyid, SMKN (abbreviation for Sekolah Menengah Kejuruan

Negri ‘state vocational school’), or Doraemon. Polymorphemic unknown words such as ber-

cengkerama ‘have fun’ or di-elektrolisis ‘be electrolysed’ are in the minority (113 out of 626).

Guesser

resource

Word tokens Example(s)

YumiG1 2 se-baagai-nya ‘etc.’

YumiG2 6 pem-bahagi-an ‘division’, ke-radja-an ‘kingdom’

YumiG3 2 pel-adjar-an ‘lesson’

YumiG4 86 di-elektrolisis ‘be electrolysed’, ber-cengkerama ‘have fun’

YumiG5 7 me-lajoe ‘run’, pegih-nja ‘the leaving’

YumiG6 523 Sayyid, SMKN (proper nouns)

Total 626

Table 7.29. The distribution of words guessed by different resources in the Guesser

7.5.4 Tokenisation

SANTI-morf seems to perform tokenisation well, as indicated by the tokenisation

precision, recall, and F-measure scores; all are 99% or above (Table 7.30). The most

296

polymorphemic word in this corpus, ke-tidak-ber-daya-guna-an ‘the unpowerless-and-

unusefulness’ is among those successfully tokenised.

𝑇𝑃 =
10228

(10160 + 126)
= 0.99

𝑇𝑅 =
10160

10228
= 0.9976

𝑇𝐹 =
2 x 0.9900 x 0.9976

(0.9900 + 0.9976)
= 0.9938

𝑇𝐴 =
(10160 + 126) − 10228

10228
= 0.01

Evaluation Percentage

Tokenisation Precision (TP) 99.0%

Tokenisation Recall (TR) 99.7%

Tokenisation F-Measure (TF) 99.3%

Tokenisation Ambiguity rate (TA) 1.0%

Table 7.30. Evaluation of SANTI-morf tokenisation

 Some incorrect tokenisations are still present, and can be divided into two types. In the

first, a single incorrect tokenisation is given. This occurs for a number of words that are analysed

by the wrong resources. For example, Binus (university name) should have been analysed as a

monomorphemic word by DykaA2 (proper noun lexicon) or DitoG6 (monomorphemic noun

guesser). Instead, it is analysed as a combination of two foreign roots (from English) bin and us

by YumiA3 (compound word rules). This happens because Binus is absent from the DykaA2

lexicon, and YumiA3’s priority is higher than DitoG6’s. Similarly, the abbreviation

Menkopolhukam ‘coordinating minister of law, security, and defence’ is incorrectly tokenised as a

combination of men- and a non-existent root kopolhukam by YumiG4 (affixation rules). It could

have been correctly analysed as a monomorphemic noun using YumiG6, but was not because

YumiG4’s priority is higher. The principle of the “lexicon as a repository of exceptions” would

297

suggest this word needs to be in the lexicon. As explained in 7.4.1.2, these exceptions are given

higher priority than the rules that they go against.

In the second type, alternative tokenisations occur alongside the correct tokenisation

produced by the same rule. This occurs because the constraint(s) in the rule is not rigorous

enough to prevent the alternative tokenisations being found. For instance, in mengemas ‘pack’,

the correct tokenisation (meng-(k)emas) and the alternative tokenisations (meng-emas; menge-

mas) are all given by affixation rules in YumiA1.

However contextually incorrect, these alternatives are morphophonologically valid

because meng- occurs with vowel-initial roots like emas ‘gold’, and menge- occurs with

monosyllabic roots like mas ‘brother’. The word mengemas is thus genuinely ambiguous. This

kind of problem is a major contribution to the ambiguity rate of 1%.

7.5.5 Morphological analysis

This evaluation considers the correctness of each morphological analysis for each

morpheme in every word. SANTI-morf seems to perform well, scoring above 99% in

morphological analysis precision and recall (Table 7.31). Correspondingly the morphological

analysis ambiguity rate is less than 0.5%.

𝑀𝐴𝑃 =
13529

(13406 + 285)
= 0.9954

𝑀𝐴𝑅 =
13406

13529
= 0.9909

𝑀𝐴𝐴 =
(13406 + 185) − 13529

13529
= 0.0045

298

 Evaluation Percentage

1 Morphological Analysis Precision (MAP) 99.54%

2 Morphological Analysis Recall (MAR) 99.09%

3 Morphological Analysis Ambiguity rate (MAA) 0.45%

Table 7.31. Evaluation of SANTI-morf morphological analysis

 There are two types of incorrect morphological analyses. In some, no correct analysis is

given because of incorrect tokenisation. For example, Penangsang, a personal name which should

have been analysed as a monomorphemic noun, is inaccurately tokenised into pen-angsang

(angsang being a non-existent root). In consequence, the analyses for both morphemes are

counted as incorrect, without any correct answer (since the true analysis, monomorphemic noun

root, is not possible given then incorrect tokenisation).

In this case, the reason for the error is that this name is not in the proper noun lexicon

(DykaA2). The Guesser could have analysed this word correctly but was never applied, a match

being made by YumiA1, the affixation rule resource, which has higher priority than the Guesser.

This issue consistently affects proper names with parts that resemble affixes (such as Pen in

Penangsang resembling prefix pen-).

In some other cases, the tokenisation is correct, but the analyses are incorrect. For

instance, verb root kerah in meng-(k)erah-kan is wrongly analysed as a noun (even though active

prefix meng- and verbal suffix -kan are correctly analysed). This is because the DykaA1 lexicon

incorrectly lists kerah as a noun root only. Adding the verb analysis to the lexicon entry for kerah

is the only possible solution.

7.6 Summary and conclusion

In this chapter, I have described SANTI-morf’s architecture, resources, and system

configuration. I have also completed an evaluation of SANTI-morf’s performance using the same

testbed I used to evaluate MorphInd in Chapter 5. The evaluation shows that SANTI-morf

performs well. It outperforms MorphInd in terms of coverage; SANTI-morf has perfect coverage,

whereas MorphInd only covers 93% of the testbed (see Table 7.32).

299

Since SANTI-morf allows ambiguous analyses to be retained, its tokenisation is not

directly comparable to MorphInd’s. Nevertheless, SANTI-morf scores above 99% in precision and

recall. The ambiguity of the tokenisation is quite low, only 1% at maximum.

The evaluations undertaken in Chapter 5 of MorphInd’s word-level tag, root tag, and

overall token accuracy are not applicable to SANTI-Morf. This is due to the characteristics of the

MAS that each system applies. MorphInd leaves affixes untagged and supplies word-level tags.

Conversely, SANTI-morf applies morphological analyses to all morphemes, including affixes, but

does not provide a single word-level tag.

For a rule-based system, the performance of SANTI-morf’s morphological analysis is

quite high. It scores above 99% in precision and recall. The ambiguity level is less than 0.5% .

SANTI-morf cannot be evaluated on aggregate accuracy, as MorphInd was (see 5.5.7), because it

allows ambiguous analyses to be retained in the annotation output. However, SANTI-morf’s more

fine-grained tagset, and its performance as measured by precision and recall, demonstrate it to

be an advancement over the previous state-of-the-art system.

Evaluation MorphInd SANTI-morf

System coverage 93% 100%

Overall token accuracy 89% NA

Tokenisation Precision (TP) NA 99.0%

Tokenisation Recall (TR) 99.7%

Tokenisation Ambiguity rate (TA) 1%

Morphological Analysis Precision (MP) 99.5%

Morphological Analysis Recall (MR) 99%

Morphological Analysis Ambiguity rate (MA) 0.4%

Table 7.32. Summary of SANTI-morf evaluation scores compared to MorphInd

SANTI-morf’s high performance arises from its wide-coverage rules and lexicon and its

system of resource prioritisation. The multi-module pipeline allows SANTI-morf to reduce

ambiguity even before the Disambiguator applies. On the one hand, this makes the design of

rules slightly more complicated, but on the other hand, it contributes to the ultimate low

ambiguity rate and high precision.

Compared to two successful and well-known rule-based taggers for other languages, the

performance of SANTI-morf is not bad (see Table 7.33). SANTI-morf performs slightly better

300

than Oflazer and Kuruoz’s (1994) tagger, as reported in Voutilainen (1999:18). Its recall is lower

than EngCG (Voutilanen 1992), but its precision is higher.

 Evaluation SANTI-morf

(Indonesian)

EngCG

(English)

Oflazer and Kuruoz (1994)

(Turkish)

1 Precision 99% 95% 97%-98%

2 Recall 99% 99.8% 98%-99%

3 Ambiguity rate 1% 4.5% 1-2%

Table 7.33. Cross-language comparison of SANTI-morf with other rule-based taggers

Overall, that SANTI-morf performs at more than 99% precision and recall reconfirms

Voutilanen’s (1999:18-19) argument that rule-based systems do not always perform worse than

data-driven/statistical or hybrid systems. More importantly, these measures demonstrate that

the objective of this chapter, which was to implement SANTI-morf, has successfully been

accomplished.

301

CHAPTER 8

CONCLUSION

8.1 Summary of thesis and aims achieved

In this final chapter, I will first present a summary of this thesis (in section 8.1), showing

a) how I successively completed each required step for the subsidiary aims of this thesis; and b)

what outcome was produced at each step. Next, in 8.2, I will highlight some limitations of this

project and how they were dealt with. I then move on to discuss potential directions for further

research (in 8.3). In 8.4, I conclude by highlighting how this thesis contributes to the field of

Indonesian corpus linguistics.

The primary objective of this thesis, the creation of SANTI-morf, has been accomplished

in three stages as stated in the aims of this thesis (see 1.3): preliminaries, scheme creation, and

implementation. The preliminary aims were: to explain the scope of my study; to introduce

Indonesian; and to prepare a testbed. In Chapter 2, I introduced the structures of standard

Indonesian, particularly morphology. I then reported the purpose, design, and creation of a

testbed.

In Chapter 3, I reviewed Morphological Annotation Schemes (MASs) for a number of

different languages, including that used by MorphInd (Larasati et al. 2011), the state-of-the-art

morphological annotation system for Indonesian. The outcome of this survey, that is, the review

presented in Chapter 3, was a prerequisite to my development of a novel MAS for Indonesian

(scheme creation). From this survey, I deduced the accepted best practices for MASs, which I

used as a guide to devise the new MAS in Chapter 4. I translated the best practices into 15

guiding principles for a MAS which differs substantially from, and is more fine-grained than,

MorphInd’s MAS. The successful creation of my MAS fulfilled the second aim of the thesis.

System implementation involved: a) an evaluation of the present state-of-the-art system

(Chapter 5); b) selection and justification of an approach and software framework, accomplished

via a review of work on morphological annotation (Chapter 6); c) creation of SANTI-morf’s

302

computational language resources (sections 7.2 to 7.4); d) evaluation of SANTI-morf (section 7.5);

and e) a final comparison with the prior state-of-the-art system (section 7.6).

Evaluation of MorphInd as the state-of-the-art morphological analysis system for

Indonesian was undertaken in Chapter 5 and showed that MorphInd covered only 93% of word

tokens in the testbed with an accuracy of only 89%. This evaluation set a benchmark for

subsequent assessment of SANTI-morf.

In Chapter 6, the theoretical foundations of formal grammar and generative morphology,

as well as the historical development of Koskenniemi’s (1983) Two-Level Morphology, were

reviewed as background to my choice of a rule-based approach for SANTI-morf and to my

selection of NooJ (Silberztein 2003) as implementation software. The rule-based approach was

chosen because it does not rely on a large training corpus, as usually required by data-driven or

statistical tagging techniques. Rather it relies on hand-crafted rules and lexicons. Prior work in

the field has shown that adopting the rule-based approach for the aforementioned reasons does

not result in worse performance in comparison to a data-driven or hybrid approach. The rule-

based approach requires a finite-state program for its implementation; among the candidate

systems, I determined that NooJ is a very good fit for the morphology of Indonesian as it has

built in functions to tokenise, annotate, and disambiguate (at morpheme level) all morphological

processes in Indonesian.

In Chapter 7, I reported the process of creating the various modules of SANTI-morf and

the linguistic resources of which they consist, as well as presenting an evaluation of its

performance. The outcomes of this chapter were the aforementioned SANTI-morf language

resources (86,590 lexicon entries and 659 rules across 3 lexicon files and 15 rule files), its system

configuration (as a multi-module pipeline including an Annotator, Guesser, Improver, and

Disambiguator), and a novel technique to export complex annotation data from NooJ to plain-text

format, necessitated by the SANTI-morf MAS’s use of normally non-exportable constructs. The

evaluation of SANTI-morf, performed against the same testbed used earlier to evaluate

MorphInd, showed that SANTI-morf has 100% coverage due to the methods of the Guesser

module, and higher than 99% precision and recall. These findings demonstrate that SANTI-morf

is an advancement relative to MorphInd. With that, the main objective of this study is fulfilled.

303

Also in this chapter, I introduced the evaluation methods used to measure SANTI-morf’s

performance. Coverage, that is, the proportion of word tokens assigned some analysis, was

earlier used in the evaluation of MorphInd, whose coverage was only 89%. To measure the

quality of the analysis, rather than a single accuracy score, I used precision and recall. These

measures are appropriate because SANTI-morf allows some ambiguities to be retained in the

final output (thus, there may be more than one analysis per token).

8.2 Limitations

The problems with SANTI-morf that I identified during the evaluation exercise (Chapter

7) show that there is still much room for improvement. At the moment, SANTI-morf’s text-file

output is an XML document, which cannot be indexed directly by most corpus analysis software.

Further reformatting is required. However, in the XML document, each element of the

morphological analysis is clearly and unambiguously presented with explicit delineators. This

consistency allows easy conversion to formats acceptable to different programs.

In the current MAS, certain actual features of running text (e.g. roman numerals, variant

spellings of proper nouns, date and time expressions) are not fully covered. This did not cause a

significant drop in SANTI-morf’s performance in the evaluation, because these elements are

infrequent in the testbed. Nevertheless, the required fixes remain an urgent need, as from any

given user’s perspective, infrequent features might be of central interest, or might be frequent in

the texts they wish to work with; consider the word organ ‘organ’, which will be fairly infrequent

in most general corpora, but is likely to be of high frequency in a corpus of biomedical documents.

The SANTI-morf MAS, though fine-grained overall, ignores certain distinctions. For

example, peN- and pe- are both currently annotated as nominaliser prefixes. This analysis would

be more fine-grained if they could be differentiated by semantic function as agentive, patientive

or instrumental. Implementing this distinction would require lexical constraints to be added to

the rules. The simple category NYA does not distinguish pronominal clitics from definite suffixes

(see 4.2.2.2), but a more sophisticated disambiguation module might have made this distinction

workable. However, the lack of distinctions like these is an acceptable limitation to the present

304

system because such distinctions can be considered to be semantic or syntactic, rather than

morphological, features. This follows my principle 15 for MAS design (see 4.1.15), which allows

the annotation to dismiss categories whose disambiguation requires linguistic information from

beyond the morphological level (morphosyntactic, syntactic, semantic, or any combination

thereof). Fine-grained semantic and syntactic analyses can therefore be integrated at a

subsequent stage of research; I project future work to develop SANTI-POS (POS tagger), SANTI-

sense (semantic tagger), and/or SANTI-parse (syntactic annotator).

The relatively small size of the testbed is a further limitation; a larger testbed would

arguably have guaranteed a more reliable evaluation. However, as mentioned in section 2.2,

Voutilanen (1999:19) shows that enlarging the EngCG testbed, which was three times smaller

than my testbed, led to essentially similar performance scores. Thus, there is reason to suspect

that testbed size is not a serious limitation on the accuracy of my evaluation. Nevertheless, an

expanded testbed may well prove useful for future work (see below).

A final limitation of this thesis project is that certain SANTI-morf-related activities that I

had scheduled to take place in Indonesia during 2020 could not be carried out as a result of the

global COVID-19 pandemic. These activities included preliminary work on: seeking input from

Indonesian grammarians on the shape and future development of the MAS; inter-rater

agreement evaluation of the MAS; sample analyses using SANTI-morf-annotated data as

illustrations of its utility; and an initial acceptance or uptake analysis. All these required in-

person work with Indonesian linguists, and had been planned for my trip to the 2020 KIMLI

(Konferensi Ilmiah Masyarakat Linguistik Indonesia) ‘Scientific Conference of the Linguistic

Society of Indonesia’, the largest such event. However, the conference was cancelled due to the

pandemic, with no chance of being rescheduled within the thesis project’s timeline; thus these

activities had to be omitted from the present thesis.

That said, even without the pandemic, there would have been little space for these

elements in my thesis, given the extensive discussion of the detail of MAS and its actual

implementation, which needed major attention. In mitigation of the impact of the absence of

these elements, I would argue that the extensive literature reviews of both MAS creation

(Chapter 3) and system implementation (Chapter 4) have functioned as proxy means by which I

305

have benefitted from the knowledge of other scholars. I also carried out multiple experiments in

the process of creating the SANTI-morf resources and architecture to determine an optimum

approach (see Chapter 7, which for reasons of space could not detail every such experiment or

every possible approach that turned out to be suboptimal). The results of the evaluation show

that SANTI-morf is in any case an improvement upon its predecessors, in spite of these

limitations.

8.3 Directions for future work

In addition to SANTI-morf, which performs annotation at morpheme level, I plan to

develop companion systems for other linguistic levels, as previously mentioned: SANTI-POS for

POS annotation at word level; SANTI-sense for semantic sense annotation at word level; and

SANTI-parse for syntactic analysis/parsing at phrase/clause level. My hope is that, together with

SANTI-morf, these will make up SANTI-ling, a multi-level linguistic annotation system for

Indonesian.

Once these systems are available, extending the SANTI-morf MAS to incorporate

morphological features that intersect with (morpho-)syntactic or semantic features will be

feasible, as SANTI-morf will be able to reuse analyses from other sub-systems for more

sophisticated annotation and disambiguation. Thus, when a SANTI-ling-annotated corpus is

indexed in a suitable analysis program, users will be able to build queries that combine

morphological, POS, semantic, and syntactic criteria.

In other work, I aim to make SANTI-morf (and later SANTI-ling) able to run from a

command prompt or terminal, rather than just the NooJ graphical interface. This will allow other

researchers to use them as support systems for NLP tools such as sentiment analysis, question-

answering, or document summarisation, as well as for corpus annotation for linguistic research.

For less technical end-users, I hope to build a web-based interface for SANTI-morf (and SANTI-

ling) so that Indonesian linguists can annotate their data without any of the installation and

setup steps required to use SANTI-morf in NooJ.

306

Another direction for future work concerns annotation speed. I plan to experiment on

modifying NooJ’s inflectional-derivational grammar affordance, designed to implement

morphosyntactic annotation, to instead implement the morpheme-level annotation which SANTI-

morf currently accomplishes via NooJ lexicons and rules (following Kartunnen et al.’s 1992

lexical transducer approach; see 6.6.4). This would allow speedier text processing. The current

SANTI-morf annotates 60 word-tokens per second. Compared to EngCG, which 20 years ago

could annotate 3,000 words per second (Voutilanen 1999:18), this speed is very poor (50 times

slower), and thus, needs improvement.

Finally, I plan to build a formatter program to convert SANTI-morf output to a format

acceptable to online corpus indexer platforms, such as CQPweb (Hardie 2012). Correctly

formatting the output requires me to combine NooJ with a conversion program. My

recommendation to NooJ’s author (Silberztein, personal communication) is that it ought to be

possible for such formatter programs to be incorporated as NooJ plugins, so that data exported

from NooJ will be ready for CQPweb without any intermediate program at all.

8.4 Contributions of this thesis

This study’s primary contributions to the fields of Indonesian linguistics and

computational morphology are the SANTI-morf MAS and the SANTI-morf system. The SANTI-

morf MAS is the first Indonesian MAS that permits full morphological annotation at morpheme

level (see Chapter 4); MorphInd’s MAS, by contrast, leaves affixes unannotated.

 SANTI-morf outperforms MorphInd in terms of coverage. Its MAS is also more fine-

grained than MorphInd’s. Using a SANTI-morf annotated corpus, users can search for

morphemes with any relevant grammatical property using an actual morphological tagset. This

is made easier by the fact that SANTI-morf lacks the ‘unknown’ category expressed as tag X for

words left unanalysed. SANTI-morf can also search using the actual morph form. Users can

search based on both orthographic and citation forms, and on both formal and functional

categories (whereas MorphInd annotation only allows queries based on citation forms and

functional categories). Affixes, which in MorphInd are left unannotated, are fully annotated in

307

SANTI-morf. The SANTI-morf MAS also incorporates functional analytic categories absent from

the MorphInd MAS, including outcome POS and reciprocal, applicative and causative voice. The

fuller representation of the morphology of Indonesian makes possible more robust searching.

To my knowledge, SANTI-morf is the first system that uses NooJ to implement

morpheme-level annotation for Indonesian. So far, I am the only contributor for Indonesian

language resources to the NooJ language resource repository67. In this way, I have contributed to

the field by bringing use of NooJ use to a language for which it did not previously exist.

Another accomplishment of this thesis is the testbed (see Chapter 2 and Chapter 5). I

have brought into existence a gold-standard morpheme-level annotated corpus, which did not

exist before. This corpus can be reused, for instance as training or testing data for a probabilistic

or a hybrid MA system.

The creation of SANTI-morf has been a small PhD project, not comparable to the projects

that led to well-known corpus annotation software such as EngCG or CLAWS. SANTI-morf is

still in its infancy compared to these programs. This means on the one hand that it still needs

further testing, but on the other that it has much potential for future development, as I have

indicated in this concluding chapter.

Although SANTI-morf has been designed primarily for linguists, it may also have

applications in NL:P. For instance, the morphological information it generates could potentially

be used to improve other annotation programs such as lemmatisers, POS taggers, or syntactic

parsers; or even higher-level NLP applications such as question answering systems, spelling and

grammar checkers, or automatic translation software.

Nonetheless, I am confident that SANTI-morf constitutes a contribution to the field of

Indonesian linguistics, particularly corpus linguistics. Indonesian linguists can now use SANTI-

morf to morphologically analyse texts and corpora, index them (in NooJ or other corpus analysis

programs), and thus search their data by morpheme citation forms and analytic tags as well as

the original orthographic form. Applying corpus methods such as concordance, collocation,

keywords or key tags, tag frequency lists, and various advanced statistical analyses based on

these, is now possible. On this basis, it will become possible to ask new research questions, or

67 http://www.NooJ-association.org/resources.html (last accessed 11/06/2021)

308

answer existing questions in new ways. For instance, one live issue in the study of history of

Indonesian is change in the use of numeral classifiers over time. With a historical corpus tagged

by SANTI-morf, analysed in today’s powerful corpus software, information on the diachronic

frequency distribution of these morphemes can be gathered to bring to bear on this area of

inquiry. Likewise, linguists interested in morphophonology will be able to utilise the corpus

annotation to test their hypotheses. One example of a present debate that this might inform

relates to the citation form of the active voice prefix; some scholars argue that meng- should be

understood to be the underlying (citation) form of this morpheme, instead of meN-, on the basis

of its supposedly greater productivity relative to other allomorphs. Claims about productivity are,

without morphologically annotated corpora, inevitably somewhat speculative; but the

productivity of meng- may easily be measured and quantified using a corpus annotated by

SANTI-morf.

Many publications on the creation of annotation systems foreground the computational or

statistical elements of the system. The linguistic work involved – that is, the tagset as a

reflection of the MAS the system implements – is, by contrast, often downplayed. The

complexities of the MAS and its creation are rarely described in great detail. Indeed, much

annotation software, including for instance xfst (see 6.10), is agnostic of any linguistic knowledge

and implements whatever MAS its language resources define. This underplays the importance of

the linguistic side of creating an annotation system. However, as this thesis has demonstrated (in

Chapters 3), discounting the linguistic work involved in building an annotation system is

misleading, because the backbone of a tagging system is its MAS.

Thus, another contribution of this thesis has been to proportionately expose the linguistic

work, i.e. the creation of the SANTI-morf MAS and its lexicon and rule resources, which

constituted the major part of the SANTI-morf undertaking. Most annotation systems for

Indonesian (across linguistic levels) have been built by programmers rather than linguists (as I

demonstrated in 3.5 and 5.2). I hope that my thesis, and SANTI-morf, will inspire more

Indonesian linguists to contribute to the development of annotation systems, not only for

Indonesian itself but also for other languages of Indonesia such as Javanese, Sundanese, or

Balinese.

309

Moreover, given that corpus linguistics is still fairly new territory for Indonesian

linguistics, I hope that SANTI-morf will offer a new lens for Indonesian linguists to approach

their data, quantitatively or qualitatively, making the large-scale analysis of textual data via

computer-assisted methods an integral part of the toolbox that researchers in many areas of

study can bring to bear.

310

REFERENCES

Alwi, H., Dardjowidjojo, S., Lapoliwa, H., & Moeliono, M. (1998). Tata Bahasa Baku Bahasa

Indonesia (3rd Edition). Jakarta: Balai Pustaka.

Antworth, E. L. (1990). PC-KIMMO: A Two-Level Processor for Morphological Analysis. Dallas:

Summer Institute of Linguistics.

Aranoff, M., & Fudeman, K. (2011). What is Morphology. Cambridge: Cambridge University

Press.

Arka, I. W. (1993). Morpholexical Aspects of Causative -kan in Indonesian. [Unpublished M.Phil

Thesis]. University of Sydney.

Arka, I. W., Dalrymple, M., Mistica, M., Mofu, S., Andrews, A., & Simpson, J. (2009). A Linguistic

and Computational Morphosyntactic Analysis of the Applicative -i in Indonesian. In M.

Butt, & H. T (Eds.), LFG09 Conference (pp. 85-105). Stanford: Stanford University Press.

Aronoff, M. (1976). Word Formation in Generative Grammar. Cambridge, MA: MIT Press.

Aston, G., & Burnard, L. (1998). The BNC handbook: exploring the British National Corpus with

SARA. Birmingham: Birmingham University Press.

Barsky, R. (2011). Zellig Harris: from American Linguistics to Socialist Zionism. Massachusetts:

MIT Press.

Beesley, K. R., & Karttunen, L. (2003). Finite State Morphology. Stanford: CSLI.

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. California:

O'Reilly Publishing.

Booij, G. (2007). The Grammar of Words: An Introduction to Linguistic Moprhology (2nd Edition).

Oxford: Oxford University Press.

Brill, E. (1995). Transformation Based Error Driven Learning and Natural Language Processing.

Computational Linguistics, 21(4), 543-565.

Brill, E. (1999). Corpus Based Rules. In H. van Halteren (Ed.), Syntactic Wordclass Tagging (pp.

247-284). Dordrecht: Kluwer Academic Publishers.

Buckwalter, T. (1999). Morphology Analysis. www.qamus.com.

Buckwalter, T. (2001). Buckwalter Arabic Morphological Analyzer 1.0. Pennsylvania: Linguistic

Data Consortium LDC2004L02.

311

Calzolari, N., McNaught, J., & Zampolli, A. (1996). EAGLES Final Report: EAGLES Editors’

Introduction. Pisa: EAGEB-FR. https://www.issco.unige.ch/downloads/ewg96.pdf.

Carnstair-McCarthy, A. (2002). Introduction to English Morphology: Words and Their Structure.

Edinburgh: Edinburgh University Press.

Chaer, A. (2008). Morfologi Bahasa Indonesia. Bandung: Rhinneka Cipta.

Chomsky, N. (1957). Syntactic Structure. Berlin: Walter de Gruyter.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

Chomsky, N. (2015). The Minimalist Program. Massachussets: MIT Press.

Chomsky, N., & Halle, M. (1968). The Sound Pattern of English. USA: MIT Press.

Chomsky, N., & Schützenberger, M. P. (1963). The Algebraic Theory of Context Free Languages.

In P. Braffort, & D. Hirschberg (Eds.), Computer Programming and Formal Languages

(pp. 118–161). Amsterdam: North Holland.

Chun-Hsien, C., & Honavar, V. (2000). Neural Architecture for Information Retrieval and

Database Query. In R. Dale, H. Moisl, & H. Somers (Eds.), Handbook of Natural

Language Processing (pp. 873-888). New York & Basel: Marcel Dekker.

Cloeren, J. (1999). Standards for Tagsets. In H. van Halteren (Ed.), Syntactic Wordclass Tagging

(pp. 37-54). Dordrecht: Kluwer Academic Publishers.

Coates, S. (1999). Words and Their Structure. New York: Routledge.

Coltekin, C. (2010). A Freely Available Morphological Analyzer for Turkish. In N. Calzolari, K.

Choukri, B. Maegaard, J. Mariani, J. Odijk, & D. Tapias (Eds.), Proceedings of the LREC

2010 (pp. 19-28). Malta: ELRA.

Creutz, M. J., & Linden, B. K. (2004). Morpheme Segmentation Gold Standards for Finnish and

English. Publications in Computer and Information Science Report A77. Helsinki:

Helsinki University of Technology.

Crystal, D. (2008). Dictionary of Linguistics and Phonetics: 6th Edition. Oxford: Blackwell.

Daelemans, W. (1999). Machine Learning Approaches. In H. van Halteren (Ed.), Syntactic

Wordclass Tagging (pp. 285-302). Dordrecht: Kluwer Academic Publishers.

Dawson, J. (1974). Suffix Removal and Word Conflation. Association for Literary and Linguistic

Computing (ALLC) bulletin, 2(3), 33-46.

312

Denistia, K., & Bayeen, H. (2019). The Indonesian prefixes PE-and PEN-: A study in Productivity

and Allomorphy. Morphology 29(3), 385-407.

Djawanai, S. (1999). Diathesis in Indonesian: Active versus Passive Construction as Reflection of

a Worldview. NUCB journal of language culture and communication, 1(2), 27-41.

Drewek, R., & Erni, M. (1982). LDVLIB (LEM): A System for Interactive Lemmatizing and its

Application. In J. Horecky (Ed.), Proceedings of the Ninth International Conference on

Computational Linguistics (pp. 86-89). Prague: Academia Praha.

Dukes, K., & Habash, N. (2010). Morphological Annotation of Quranic Arabic. In N. Calzolari, K.

Choukri, B. Maegaard, J. Mariani, & J. Odijk (Eds.), LREC 2010 (pp. 2530-2536).

Valletta: European Language Resources Association (ELRA).

Durand, J., & Katamba, F. (2014). Frontiers of Phonology: Atoms, Structures and Derivations.

London: Routledge.

El-Beze, M., & Merialdo, M. (1999). Hidden Markov Model. In H. van Halteren (Ed.), Syntactic

Wordclass Tagging (pp. 263-283). Dordrecht: Kluwer Academic Publishers.

Ewing, M. C. (2005). Grammar and Inferences in Conversation: Identifying Clause Structure in

Javanese. Philadelphia: John Benjamins.

Fromkin, V., Rodman, R., & Hymes, N. (2011). An Introduction to Language (9th Edition). New

York: Wadsworth Cengage Learning.

Garside, R. (1987). The CLAWS Word-tagging System. In R. Garside, G. Leech, & G. Sampson

(eds.), The Computational Analysis of English: A Corpus-based Approach (pp. 31-41).

London: Longman.

Goh, C. L., Asahara, M., & Matsumoto, Y. (2005). Chinese word segmentation by Classification of

Characters. International Journal of Computational Linguistics & Chinese Language

Processing, 10 (3), 200-213.

Goksel, A., & Kerslake, C. (2005). Turkish: A Comprehensive Grammar. London and New York:

Routledge.

Goldhahn, D., Eckart, T., & Quasthoff, U. (2012). Building Large Monolingual Dictionaries at the

Leipzig Corpora Collection: From 100 to 200 Languages. In N. Calzolari, K. Choukri, T.

313

Declerck, M. Doğan, B. Maegaard, J. Mariani, & S. Piperidis (Eds.), Proceedings of LREC

Vol. 29 (pp. 31-43). Istambul: European Language Resources Association (ELRA).

Graff, D., Maamourio, M., Bouziri, B., Krouna, S., & Kullick, S. B. (2009). Standard Arabic

Morphological Analyzer (SAMA) Version 3.1. Pennsylvania: Linguistic Data Concortium

LDC2009E73.

Grefenstette, G. (1999). Tokenization. In H. van Halteren (Ed.), Syntactic Wordclass Tagging (pp.

127-134). Dordrecht: Kluwer Academic Publishers.

Gross, M. (1994). Constructing Lexicon-Grammars. In S. Atkins, & A. Zampolli (Eds.),

Computational Approaches to the Lexicon (pp. 213-263). Oxford: Oxford University Press.

Gross, M. (1997). The Construction of Local Grammars. In E. Roche, & Y. Schabes (Eds.), Finite

State Language Processing (pp. 329-354). Massachusetts: MIT Press.

Gulsen, E. (2014). ITU Turkish Web Service. In W. Shuly, & M. B. Tadic (Ed.), Proceedings of the

Demonstrations at the 14th Conference of the European Chapter of the Association for

Computational Linguistics (pp. 1-4). Gothenburg: Association for Computational

Linguistics (ACL).

Habash, N. (2010). Introduction to Arabic Natural Language Processing. Toronto: University of

Toronto.

Habash, N., Rambow, O., & Roth, R. (2009). MADA+ TOKAN: A Toolkit for Arabic Tokenization,

Diacritization, Morphological Disambiguation, POS Tagging, Stemming and

Lemmatization. In K. Choukri, & B. Maegard (Eds.), Proceedings of the 2nd

International Conference on Arabic Language and Tools (MEDAR) Vol 41 (p. 62). Cairo:

The MEDAR consortium.

Halle, M. (1973). Prolegomena to the Theory of Word Formation. Linguistic Inquiry, Vol 4 (1), 3-

16.

Haspelmath, M., & Sims, A. (2013). Understanding Morphology. London and New York:

Routledge.

Heafield, K. (2011). KenLM: Faster and Smaller Language Model Queries. In C. Callison-Burch,

P. Koehn, C. Monz, & O. F. Zaidan (Eds.), Proceedings of the Sixth Workshop on

Statistical Machine Translation (pp. 187-197). Edinburgh: ACL.

314

Hellberg, S. (1972). Computerized Lemmatization Without the Use of A Dictionary: A Case Study

From Swedish Lexicology. Computers and the Humanities, 6(4), 209-212.

Hirschman, L., & Mani, I. (2003). Evaluation. In R. Mitkov (Ed.), The Oxford handbook of

Computational Linguistics (pp. 414-429). Oxford: Oxford University Press.

Hripcsak, G., & Rothschild, A. S. (2005). Agreement, the F-Measure, and Reliability in

Information Retrieval. Journal of the American Medical Informatics Association, 12(3),

296-298.

Hulden, M. (2009). Foma: a Finite-State Compiler and Library. In A. Lascarides (Ed.),

Proceedings of the 12th Conference of the European Chapter of the Association for

Computational Linguistics (EACL ’09) (pp. 29-32). Stroudsburg, PA: EACL.

Johns, Y., & Stokes, R. (1996). Bahasa Indonesia Book 1. Singapore: Periplus.

Johnson, C. D. (1972). Formal Aspects of Phonological Description. [Unpublished PhD Thesis].

University of California Berkeley.

Jurafsky, D., & Martin, J. H. (2007). An Introduction to Natural Language Processing,

Computational Linguistics and Speech Recognition. Cambridge: Pearson.

Kager, R. (2004). Optimality Theory. Cambridge: Cambridge University Press.

Kaplan, R. M., & Kay, M. (1981). Phonological Rules and Finite-State Transducers. Linguistic

Society of America Meeting Handbook, Fifty-Sixth Annual Meeting, (pp. 27-30).

Karlsson, F. (1990). Constraint Grammar as a Framework for Parsing Unrestricted Text. In H.

Karlgren (Ed.), Proceedings of the 13th International Conference of Computational

Linguistics, Vol. 3 (pp. 168-173). Helsinki: ACL.

Karlsson, F. (1999). Finnish: an Essential Grammar. New York: Routledge.

Karttunen, L. (1998). The Proper Treatment of Optimality in Computational Phonology. In L.

Karttunen, & K. Oflazer (Ed.), Proceedings of International Workshop on Finite-State

Methods in Natural Language Processing 1998 (pp. 1-2). Ankara: FSMNLP.

Karttunen, L., & Beesley, K. R. (1992). Two-level Rule Compiler: Technical Report ISTL-92-2.

Palo Alto: Xerox.

Karttunen, L., & Beesley, K. R. (2001). A Short History of Two-Level Morphology. ESSLLI-2001

Special Event titled” Twenty Years of Finite-State Morphology. Helsinki: FoLLI.

315

Retrieved 08 22, 2018, from http://www.helsinki.fi/esslli/evening/20years/twol-

history.html

Karttunen, L., Kaplan, R. M., & Zaenen, A. (1992). Two-Level Morphology with Composition. In

A. Zampolli (Ed.), Proceedings of COLING 92 (pp. 141-148). Nantes: ACL.

Karttunnen, L. (1993). Finite State Constraints. In J. A. Goldsmith (Ed.), The Last Phonological

Rules (pp. 175-193). Chicago: University of Chicago press.

Kartunnen, L. (1993). Finite State Lexicon Compiler: Technical Report. ISTL-92-2. Palo Alto:

Xerox.

Katamba, F. (1993). Morphology. New York: St Martin.

Klein, D., & Manning, C. (2003). Accurate Unlexicalized Parsing. In E. Hinrich, & D. Roth (Ed.),

Proceedings of the 41st Meeting of the Association for Computational Linguistics (pp.

423-430). Sapporo: ACL.

Koskenniemi, K. (1983). Two-Level Morphology: A General Computational Model for Word-Form

Recognition and Production. Helsinki: University of Helsinki.

Krause, W., & Willée, G. (1981). Lemmatizing German Newspaper Texts with the Aid of an

Algorithm. Computers and the Humanities Vol 15 no 2, 101-113.

Kridalaksana, H. (1989). Pembentukan Kata dalam Bahasa Indonesia. Jakarta: Gramedia.

Kridalaksana, H. (2007). Kelas Kata dalam Bahasa Indonesia. Jakarta: Gramedia Pustaka

Utama.

Larasati, S. (2012). IDENTIC CORPUS: Morphologically Enriched Indonesian-English Parallel

Corpus. In N. Calzolari, K. Choukri, T. Declerck, U. Doğan, B. Maegaard, & S. Piperidis

(Eds.), Proceedings of LREC 2012 (pp. 902-906). Istanbul: ELRA.

Larasati, S., Kuboň, V., & Zeman, D. (2011). Indonesian Morphology Tool (MorphInd): Towards

an Indonesian Corpus. In C. Mahlow, & M. Piotorski (Eds.), Systems and Frameworks for

Computational Morphology (pp. 119-129). Berlin: Springer.

Lee, C.-M. (1999). Contrastive topic: A Locus of Interface Evidence from Korean and English. In

K. Turner (Ed.), The Semantics/Pragmatics Interface from Different Points of View (pp.

317-342). Brighton: Elsevier.

316

Leech, G. (1997). Introducing Corpus Annotation. In R. Garside, & G. Leech (Eds.), Corpus

Annotation (pp. 1-18). London: Longman.

Leech, G., & Smith, N. (2000). The British National Corpus (Version 2) with Improved Word-

class Tagging. Lancaster: UCREL.

Leech, G., & Wilson, A. (1999). Standards for Tagsets. In H. van Halteren (Ed.), Syntactic

Wordclass Tagging (pp. 51-80). Dordrecht: Kluwer Academic Publishers.

Lehmann, C. (2004). Interlinear Morphemic Glossing. In G. Booij, J. Mugdan, & S. Skopeteas

(Eds.), Morphologie. Ein internationales Handbuch zur Flexion und Wortbildung (pp.

1834-1857). Berlin & New York: W. de Gruyter.

Levelt, W. (2008). An Introduction to the Theory of Formal Languages and Automata.

Amsterdam: John Benjamins.

Lewis, M. P. (2009). Ethnologue: Languages of the World. Dallas: SIL International.

Linden, K., & Pirinnen, T. (2009). Weighted Finite-State Morphological Analysis of Finnish

Compounding with HFST-LEXC. In K. Jokinen, & E. Bick (Eds.), Proceedings of the 17th

Nordic Conference of Computational Linguistics NODALIDA 2009 (pp. 89-95). Odensk:

Northern European Association for Language Technology (NEALT).

Lindén, K., Axelson, E., Hardwick, S., Silfverberg, M., & Pirinen, T. (2011). HFST Tools for

Morphology–An Efficient Open-Source Package for Construction of Morphological

Analyzers. In C. Mahlow, & M. Piotrowoski (Eds.), Systems and Frameworks for

Computational Morphology (pp. 28-47). Berlin: Springer.

Linz, P. (2001). An Introduction to Formal Languages and Automata. Boston: Jones and Bartlett.

Lipka, L. (1992). An Outline of English Lexicology. Tubingen: Niemeyer.

Litkowsi, K. C. (2005). Computational Lexicons and Dictionaries. In K. Brown (Ed.),

Encyclopedia of Language and Linguistics (pp. 753-761). Michigan: Elsevier.

Lovins, J. B. (1968). Development of a Stemming Algorithm. Mechanical Translation and

Computing 11 (1), 22-31.

Manning, C., & Schutze, H. (1999). Foundations in Statistical Natural Language Processing.

Massachusetts: MIT Press.

317

Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a Large Annotated Corpus

of English: The Penn Treebank. Computational linguistics 19(2), 313–330.

McCarthy, J. J. (2002). A Thematic Guide to Optimality Theory. Cambridge: Cambridge

University Press.

McDonald, R., Nivre, J., Quirmbach-Brundage, Y., Goldberg, Y., Das, D., Ganchev, K., & Bedini,

C. (2013). Universal dependency annotation for multilingual parsing. In H. Schuetze, P.

Fung, & M. Poesio (Eds.), Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics: Vol 2 (pp. 92-97). Sofia, Bulgaria: ACL.

Meknavin, S., Charoenpornsawat, P., & Kijsirikul, B. (1997). Feature-based Thai Word

Segmentation. In A. Kawtrakul, C. Pechsiri, T. Permpool, D. Thamvijit, & P. Sornpraser

(Eds.), Proceedings of Natural Language Processing Pacific Rim Symposium (pp. 41-46).

Phuket: ACL.

Meunier, J., Boisvert, J., & Denis, F. (1976). The Lemmatization of Contemporary French. In A.

Jones, & R. F. Churchhouse (Eds.), Proceedings of the Third International Symposium in

the Computer in Literary and Linguistic Studies (pp. 208-214). Cardiff: ALLC.

Mikheev, A. (2003). Text Segmentation. In R. Mitkov (Ed.), The Oxford Handbook of

Computational Linguistics (pp. 201-218). Oxford: Oxford University Press.

Mille, S., Burga, A., Ferraro, G., & Wanner, L. (2012). How Does the Granularity of an

Annotation Scheme Influence Dependency Parsing Performance? In M. Kay, & C. Boitet

(Eds.), Proceedings of COLING 2012 (pp. 839-852). Mumbai: COLING.

Mistica, M., Andrews, A., Arka, I.-W., & Baldwin, T. (2009). Double-Double, Morphology and

Trouble: Looking into Reduplication in Indonesian. In L. Pizzato, & R. Schwitter (Eds.),

Proceedings of the Australasian Language Technology Association Workshop 2009 (pp.

44-52). Canberra: ALTA.

Monachini, M., & Calzolari. (1999). Standardization in the Lexicon. In. In H. van Halteren (Ed.),

Syntactic Wordclass Tagging (pp. 149-174). Dordrecht: Kluwer Academic Publishers.

Mueller, F. (2007). Indonesian Morphology. In A. Kaye (Ed.), Morphologies of Asia and Africa (pp.

1207-1230). Winnona: Eisenbraums.

318

Neme, A. A. (2011). A Lexicon of Arabic Verbs Constructed on the Basis of Semitic Taxonomy and

Using Finite-State Transducers. In B. Sagot (Ed.), ESSLLI International Workshop on

Lexical Resources (pp. 79-86). Ljublana: WoLeR.

Neme, A., & Laporte, É. (2013). Pattern-and-Root Inflectional Morphology: The Arabic Broken

Plural. Language Sciences vol 40, 221-250.

Nomoto, H. (2013). On the Optionality of Grammatical Markers: A Case Study of Voice Marking

in Malay/Indonesian. NUSA: Linguistic Studies of Languages in and Around Indonesia

Vol.54, 121-143.

Oflazer, K. (1994). Two-level Description of Turkish Morphology. Literary and Linguistic

Computing, 9(2), 137-148.

Oflazer, K. (1999). Morphological Analysis. In H. van Halteren (Ed.), Syntactic Wordclass

Tagging (pp. 175-205). Dordrecht: Kluwer Academic Publishers.

Oflazer, K. (2018). Morphological Processing for Turkish. In K. Oflazer, & M. Saraclar (Eds.),

Turkish Natural Language Processing (pp. 21-52). New York: Springer.

Oflazer, K., & Gokhan, T. (1997). Morphological Disambiguation by Voting Constraints. In P. R.

Cohen, & W. Wahlster (Eds.), Proceedings of the 35th Annual Meeting of the Association

for Computational Linguistics and Eighth Conference of the European Chapter of the

Association for Computational Linguistics (pp. 222-229). Madrid: ACL.

Oflazer, K., & Kuruoz, L. (1994). Tagging and Morphological Disambiguation of Turkish Texts. In

P. Jacobs (Ed.), the Fourth Conference on Applied Natural Language Processing

(ANLP94) (pp. 144-149). Stuttgart: ACL.

Oflazer, K., Yeniterzi, R., & Durgar-El-Kahlout, I. (2018). Statistical Machine Translation and

Turkish. In K. Oflazer, & M. Saraclar (Eds.), Turkish Natural Language Processing (pp.

207-237). New York: Springer.

O'Halloran, M., & Waite, W. M. (1966). Note on Rapid Instruction Analysis by Table Lookup. The

Computer Journal, 9(3), 248-249.

Oztaner, R. M. (1996). A Word Grammar for Turkish with Morphophonemic Rules. Ankara:

Middle East Technical University.

319

Palmer, D. (2000). Tokenisation and Sentence Segmentation. In R. Dale, H. Moisl, & H. Somers

(Eds.), Handbook of Natural Language Processing (pp. 11-36). New York & Basel: Marcel

Dekker.

Palmer, D. D. (1997). A Trainable Rule-Based Algorithm for Word Segmentation. In P. R. Cohen,

& W. Wahlster (Eds.), 35th Annual Meeting of the Association for Computational

Linguistics and 8th Conference of the European Chapter of the Association for

Computational Linguistics (pp. 21-328). Madrid: ACL.

Pasha, A., Al-Badrashiny, M., Diab, M.-T., El Kholy, A., Eskander, R., Habash, N., & Roth, R.

(2014). In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, & D. Tapias (Eds.),

MADAMIRA: A Fast, Comprehensive Tool for Morphological Analysis and

Disambiguation of Arabic (pp. 1094-1101). Rejkavic: European Language Resources

Association (ELRA).

Paumier, S. (2014). Unitex Manual ver 3.1. Paris: Universite Paris Est Marne La Valee & LADL.

Payne, T. E. (1997). Describing morphosyntax: A Guide for Field Linguists. Cambridge:

Cambridge University Press.

Pisceldo, F., Mahendra, R., Manurung, R., & Arka, I. W. (2008). A Two Level Morphological

Analyser for the Indonesian Language. In N. Stokes, & D. Powers (Eds.), Proceedings of

Australasia Technology Association Workshop (pp. 142-150). Hobart: ACL.

Porter, M. (1980). Algorithm for Suffix Stripping. Program 13(3), 130-137.

Prentice, D. J. (1987). Malay (Indonesian and Malaysian). In B. Comrie (Ed.), The Major

Languages of East and Southeast Asia (pp. 185-208). London: Routledge.

Prince, A., & Smolensky, P. (2004). Optimality Theory: Constraint Interaction in Generative

Grammar. Oxford: Blackwell.

Rashel, F., Dinakaraman, A., & Luthfy, A. (2014). In M. Dong, Y. Lu, R. E. Banchs, & B.

Ranaivo-Malancon (Eds.), Building an Indonesian Rule-Based Part-of-Speech Tagger (pp.

70-73). Sarawak: IALP.

Roark, B., & Sproat, M. (2001). Computational Approaches to Morphology and Syntax. Oxford:

Oxford University Press.

320

Ryding, K. C. (2005). A Reference Grammar of Modern Standard Arabic. Cambridge: Cambridge

university press.

Ryding, K. C. (2014). Arabic: A Linguistic Introduction. Cambridge: Cambridge University Press.

Sahin, M., Sulubacak, U., & Eryigit, G. (2013). Redefinition of Turkish morphology using flag

diacritics. Proceedings of The Tenth Symposium on Natural Language Processing.

Phuket: Thammasat University.

Sak, H., Güngör, T., & Saraçlar, M. (2008). Turkish Language Resources: Morphological Parser,

Morphological Disambiguator and Web Corpus. In B. Nordström, & A. Ranta (Eds.),

International Conference on Natural Language Processing (pp. 417-427). Berlin,

Heidelberg: Springer.

Samuelsson, C., & Wiren, M. (2000). Parsing Techniques. In R. Dale, & H. S. Moisl (Eds.),

Handbook of Natural Language Processing (pp. 59-92). New York & Basel: Marcell

Dekker.

Sawalha, M., Atwell, E., & Abushariah, M.-A. (2013). SALMA: Standard Arabic Language

Morphological Analysis. Proceedings of 1st International Conference on Communications,

Signal Processing, and their Applications (ICCSPA) (pp. 1-6). Sharjah: IIEE.

Scalise, S. (1986). Generative Morphology. New York: Walter de Gruyter.

Schiller, A., & Kartunnen, L. (1999). Lexicons for Tagging. In H. Van-Halteren (Ed.), Syntactic

Wordclass Tagging (pp. 135-147). Dordrecht: Kluwer Academic Publishing.

Selkirk, E.-O. (1983). The Syntax of Words. Massachusetts: MIT Press.

Shiohara, A. (2012). Applicatives in Standard Indonesian. In W. Nakamura, & R. Kikusawa

(Eds.), Senri Ethnological Studies 77 (pp. 59-76). Osaka: National Museum of Ethnology.

Siegel, D. (1979). Topics in English morphology. New York: Garland.

Silberztein, M. (1993). Dictionnaires Electroniques et Analyse Automatique de Textes: Le

Systeme INTEX. Paris: Masson.

Silberztein, M. (1997). The INTEX manual, 1997. Université de Franche-Comté: available at:

http://intex.univ-fcomte.fr/.

Silberztein, M. (2003). NooJ Manual. Available at Download: www.nooj-association.org.

Silberztein, M. (2016). Formalizing Natural Languages: Nooj Approach. London: Wiley.

321

Sinclair, J. (1996). EAGLES Preliminary Recommendations on Corpus Typology’. Available at:

http://www.ilc.cnr.it/EAGLES96/corpustyp/corpustyp.html.

Sneddon, J. N. (1996). Indonesian: A Comprehensive Grammar. New York: Routledge.

Sneddon, J. N., Adelaar, A., Djenar, D.-N., & Ewing, M.-C. (2010). Indonesian Reference

Grammar:2nd Edition. New South Wales: Allen & Unwin.

Soderberg, C. D., & Olson, K. S. (2008). Indonesian. Journal of the International Phonetic

Association 38(2), 209-213.

Spencer, A. (1991). Morphological Theory. Oxford: Blackwell.

Sproat, R. (2000). Lexical Analysis. In R. Dale, H. Moisl, & Somers (Eds.), Handbook of Natural

Language Processing (pp. 37-57). New York: Marcell Decker.

Sproat, R. W., Chilin, S., Gale, W., & Chan, N. (1996). A Stochastic Finite-State Word-

Segmentation Algorithm for Chinese. Computational Linguistics, 22(3), 377–404.

Uzawa, H. (2007). A study on the Pragmatic Function of ialah and adalah in Malay. In Y.

Kawaguchi, M. Minegishi, & J. Durand (Eds.), Corpus Analysis and Variation (pp. 315-

338). John Benjamins: Amsterdam.

Van Halteren, H. (1999). Performance of Taggers. In H. Van Halteren (Ed.), Syntactic Wordclass

Tagging (pp. 81-94). Dordrecht: Kluwer Academic Publisher.

Van Halteren, H., & Voutilanen, A. (1999). Automatic Taggers: An Introduction. In H. Van

Halteren (Ed.), Syntactic Wordclass Tagging (pp. 109-116). Dordrecht: Kluwer Academic

Publishers.

Veronis, J., & Khouri, L. (1995). Etiquetage Grammatical Multilingue: Le Projet MULTEXT.

TAL. Traitement Automatique Des Langues 36, 233-248.

Voutilanen, A. (1999). Hand-Crafted Rules. In H. Van Halteren (Ed.), Syntactic wordclass

tagging (pp. 217-247). Dordrecht: Kluwer Academic Publishers.

Voutilanen, A. (1999). Orientation. In H. Van Halteren (ed.), Syntactic Wordclass Tagging (pp. 3-

9). Dodrecht: Kluwer Academic Publishers.

Voutilanen, A. (2003). Part of Speech Tagging. In R. Mitkov (Ed.), The Oxford Handbook of

Computational Linguistics (pp. 219-232). Oxford: Oxford University Press.

322

Voutilanen, A., Heikilla, J., & Antilla, A. (1992). Constraint Grammar of English: A Performance

Oriented Introduction. Helsinki: University of Helsinki.

Voutilanen, A., Purtonen, T., & Muhonen, K. (2012). FinnTreeBank2 Manual. Helsinki:

University of Helsinki.

Wilcox, G. (2009). Introduction to Linguistic Annotation. Helsinki: Morgan & Claypool.

Wintner, S. (2013). Formal Language Theory. In A. Clark, C. Fox, & S. Lappin (Eds.), The

Handbook of Computational Linguistics and Natural Language Processing. (pp. 11-42).

Oxford: Blackwell.

Wissler, L., Almashraee, M., Díaz, D.-M., & Paschke, A. (2014). The Gold Standard in Corpus

Annotation. IIEE Graduate Student Conference (GSC). Passau: IIEE.

Wong, P.-K., & Chan, C. (1996). Chinese Word Segmentation Based on Maximum Matching and

Word Binding Force. In J. Tsujii (Ed.), COLING 1996 Volume 1: The 16th International

Conference on Computational (pp. 200-203). Copenhagen: Coling.

