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Thesis abstract 

Young children learn words rapidly and amongst substantial environmental variation. How 

they manage to do so, and with relatively consistent results, is the topic of much debate in 

the developmental literature. Recent research has turned to the environmental variation 

surrounding children, and the vital information it may hold to help children to learn words 

more efficiently by way of statistical learning. The responsiveness of caregivers to this 

variation however – and the subsequent effects of the cues that they provide in real time – 

remains under-investigated.  

The first part of this thesis investigates two key questions: 1) do caregivers alter the 

cues they provide in response to variation in the environment during word learning, and 2) 

does both environmental variation and caregiver response affect how their children learn 

words? The results of Study 1 demonstrate not only that caregiver cue use is dependent 

upon the amount of variation present, but also that children can learn more effectively in the 

face of variation. Study 2 then explores how these cues affect learning in real time, 

addressing the following questions: 1) how do adult learners make use of visual cues in 

relation to auditory labels as the learning process unfolds temporally, and 2) does interfering 

with this process affect word learning? This second study shows that it matters most when 

such cues occur in relation to the given label as the word learning process unfolds in time. 

These studies use a multi-disciplinary approach (computational modelling, child and adult 

experimental studies, and eyetracking) to address the multi-factorial process of language 

acquisition, and show how investigating the interaction of cues with environmental variation 

and within-trial learning processes can help us understand how children manage to learn 

words so consistently. 

The multi-factorial process of word learning is then further explored through the lens 

of atypical language development, and offers a longitudinal perspective of word learning. 

Whereas part 1 of the thesis addresses receptive ability in cross-sectional studies, part 2 
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addresses the additional effects that expressive ability have on word learning processes 

over time. Late talkers are children who are developing typically with the exception of 

significant expressive language delay, producing fewer words than approximately 90% of 

their peers. Their unique deficit offers the chance to elucidate the differences between 

receptive and expressive language, and to study how language scaffolds development in 

other domains, such as symbolic understanding of pictures. However, late talking is also 

problematic: it is a risk factor for Developmental Language Delay, yet late talking children 

are notoriously heterogenous as a group, making predicting outcomes difficult. Crucially, 

determining whether or not late talking children utilise word learning mechanisms differently 

to typically developing children can provide an evidence-base for predicting outcomes from a 

clinical perspective.  

The second part of this thesis reports a longitudinal study over 2 years in a cohort of 

late talking and typically developing children. Two research questions are examined: 1) do 

late talkers show deficits in word learning mechanisms as compared to typically developing 

children? 2) do late talking children show an impaired understanding of pictorial symbols as 

a result of their language delay, and how does expressive language affect symbolic 

understanding more generally?  

This longitudinal study is unique in that it takes into account individual variation within 

the sample, and it also provides further evidence that a multiple hit hypothesis may best 

reflect the data, where a deficit in one area of ability does not necessarily lead to poor 

outcomes unless further deficits in other areas are present (i.e. there are multiple hits to 

language development ability). Study 3 shows that late talking children are impaired in some, 

but not all, word learning mechanisms; even when late talking children reach typical 

expressive vocabulary levels, their phonological abilities still lag behind those of their peers 

and they may struggle to retain statistical information, although certain key receptive abilities 

remain intact. Study 4 reports that although late talking children show deficits in symbolic 
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understanding of pictures, their development in this domain follows a delayed trajectory, 

rather than one that is functionally different to typically developing children. The results also 

indicate that expressive and receptive language skills differentially support symbolic 

understanding of pictures, mediated by individual variation in social ability.  

 By examining language acquisition through typical and atypical development, this 

thesis aims to not only advance understanding of word learning as a process that inevitably 

involves, and makes use of, variation that exists in a child’s environment, but also examines 

how expressive language ability – arguably the most clearly observable outcome of word 

learning for caregivers and early years professionals – interacts with how children come to 

understand the world around them. 
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“Helping a tiny baby to learn your language is like building a bonfire with words for twigs. 
Nothing happens for ages. You keep putting the bloody twigs on and trudging back and forth 

in a cold, damp field. You may have a faulty pelvic floor and much rather be watching 
something on the telly with a towel under your bum, but bonfires don’t build themselves, do 

they? 
 

But there’s a problem. No matter how many words you pile on, nothing catches. At first, you 
try to build it properly, sentence by sentence, with full stops and proper pauses, but by the 

end, you’re just flinging random words on top of each other, sweating and slightly mad. You 
stand back. It’s taken more than a year or longer. You now have a huge pile of impressive 
but slightly useless wood. You try singing nursery rhymes to it, but it stares blankly back 

before doing a poo and crying. 
 

You give up and are about to put the kettle on. Then you hear a roar and a crackle behind 
you. The fire has caught. Everything you piled on that bonfire, even the words you thought 
didn’t go in, is playing its part, burning brightly with the sheer exuberance of language. You 
stand back to bask in the heat and the magic and the wildness of the flames, rubbing your 
hands and telling all your neighbours: “Yep, I built that. Oh, it was nothing. Just love and 

patience, really.” 
 

From that moment, the fire burns forever.” 
 

 
 

- Skinner, N. 2016 Jan 9. When kids mangle language we all benefit. The Guardian. 
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1. Chapter 1: Word learning in typical development 

1.1 How do children learn the meaning of words?  

Between 12 – 24-months-old, children show rapid acceleration in their ability to comprehend 

and produce words (Fenson et al., 1994). A typically developing child may progress from 

understanding around 50 words at 12-months-old and saying one or two words, to 

understanding around 370 words and saying approximately 270 by 24-months-old (Hamilton 

et al., 2000).  

By the time children have begun to learn words, they have already acquired a certain 

degree of knowledge around the speech sounds that make up their language and how to 

then extract words from speech streams (Werker & Yeung, 2005). However, in order to learn 

a novel word, the child must attach some meaning to a given label. This is not a trivial task; 

when a child hears a label for the first time, they do not necessarily know which referred-to 

item (referent) in the immediate vicinity is the correct item. This problem is perhaps best 

illustrated by Quine (1960), who described a non-native speaker and a native speaker 

witnessing a rabbit running past, and the native speaker utters ‘gavagai’. The non-native 

speaker is then faced with a problem of referential ambiguity (Markman, 1989): they do not 

know whether ‘gavagai’ refers to the rabbit itself (a small, herbivorous mammal), to what the 

rabbit represents (food, an omen, etc.), to the action the rabbit is performing (bouncing, 

running, etc.), or so on. Children appear to face the same problem when learning a novel 

word – it could refer to innumerable potential referents in their environment – but without a 

native language to build upon.  

Despite this challenge, children show the remarkable ability to accurately learn a new 

word-referent pair in lab-based experiments following minimal exposure, through a process 

known as fast mapping. Carey and Bartlett (1978) demonstrated that 3-year-old children 

were able to quickly map a novel label (‘chromium’) to the correct colour (olive green) simply 

by being asked to retrieve ‘the chromium tray, not the blue one, the chromium one’. Similar 
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studies have demonstrated that when children are shown novel and familiar objects, and 

request children to select both familiar and novel objects (referent selection), toddlers aged 

between 17 – 30-months-old have shown remarkable success in doing so (e.g. Golinkoff et 

al., 1992; Halberda, 2003; Mervis & Bertrand, 1994). 

To explain how children manage to select the correct referent for a novel word so 

quickly, a number of theories have been proposed. These relate to the use of lexical 

principles, which are specific constraints that children appear to apply to a situation when 

learning new words (e.g. Golinkoff et al., 1994; Markman, 1989), and socio-pragmatic 

principles, which refer to more general mechanisms that may predispose children to learn 

words to begin with, such as joint attention and communicative abilities (e.g. Baldwin & 

Tomasello, 1998). More recently, statistical learning has also been proposed as a 

mechanism through which children resolve referential ambiguity. This broadly refers to the 

principle that learning can be driven by accruing data from the environment, for example 

about regularities in the speech steam, and deriving informative patterns (Romberg & 

Saffran, 2010).  

1.2 Lexical principles 

Lexical principles refer to learner-based assumptions that the child applies to a word 

learning situation that leads to them selecting the correct referent for a novel label. One of 

the most well-documented is mutual exclusivity (ME; Markman & Wachtel, 1988). ME 

proposes that every object has one label, and that when there are two objects and the label 

for one is known, children assume that the novel label must refer to the unknown object. 

Some research indicates that children apply this strategy from the early stages of word 

learning (Markman et al., 2003). A similar constraint is the novel name-less category 

constraint (N3C, Golinkoff et al., 1994; Mervis & Bertrand, 1994), which states that children 

will allocate a novel label to a novel object, rather than to an object which already has a 

known label. Others include the whole object assumption, whereby children assume a novel 
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label refers to a whole object rather than just a part of an object, and the taxonomic 

assumption, the assumption that words belong to the same category (Markman & Wachtel, 

1988).  

Some of these constraints may share a common source. For example, the use of ME 

and similar mechanisms could fall under Barrett's (1978) contrastive hypothesis (Merriman 

et al., 1989), which proposes that children contrast negative examples of objects with 

positive ones, e.g. a ‘blue’ car can be identified by contrasting with cars that are not blue, 

such as ‘red’, ‘yellow’, and so on. It could also be argued that these mechanisms are 

derivatives of Clark's (1983; 1987) principle of contrast, which proposes that children 

assume each word holds a different meaning to other words, e.g. ‘blue’ is different to ‘red’.  

However, a problem with lexical constraints is that it is not clear how they may 

interact with one another, nor is it clear how they scale up to the myriad of complexity that 

exists in a lexicon, such as taxonomic hierarchies, the different features of objects shared by 

the same label, synonyms, and so on. Furthermore, they assume that children have 

sufficient prior knowledge in order to apply them, but do not indicate where this prior 

knowledge originates from. By applying specific principles to complex behaviour, the isolated 

use of lexical constraints ignores the natural variability involved in building language, and the 

components that comprise the developmental abilities to apply such constraints (Deák, 

2000).  

Instead, these constraints may be part of a more general-purpose learning 

mechanism, rather than specific principles that only apply to word learning (McMurray et al., 

2012). For example, Halberda (2006) argued that three main mechanisms – ME, contrast, 

and pragmatics – could be explained by a more globally applicable process-of-elimination 

strategy that goes beyond lexical processing (disjunctive syllogism, otherwise described as 

‘A or B; not A, therefore B’). Similar to Barrett (1978), Halberda also proposed that negative 

evidence (e.g. knowing the name of a distractor) should be weighted more than positive (e.g. 
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N3C, or more generally, novelty) during novel word learning. Using eyetracking, Halberda 

showed that when faced with a familiar and novel object and asked to find their respect 

referents, both adults and children aged 3-4-years-old systematically disregard the known 

distractor before selecting the correct referent for a novel label. These results suggest that 

lexical constraints may actually be explained by more general cognitive mechanisms. 

Furthermore, the use of lexical constraints by way of specific mechanisms or a 

general cognitive mechanism only explains how children might solve the referential 

ambiguity problem when one of the objects is already known. It does not explain how 

children manage to build a vocabulary over time, nor how children identify a correct word-

referent pair when there is no familiar object to compare with the unfamiliar object. 

1.2.1 If children use lexical constraints, when do they use them? 

Lexical constraints were described as potential solutions for the referential ambiguity 

problem during fast mapping. However, as Carey and Bartlett (1978) stated, accurate initial 

selection of word-referent pairs does not necessarily reflect long term learning. Children in 

their study retained some, but not complete, knowledge of ‘chromium’ one week later, 

suggesting their knowledge of the word was fragile as well as subject to individual variation: 

63% correctly identified the word-referent mapping, whereas some knew the referent had its 

own colour, but could not recall its unique label. Thus, fast mapping may only show the 

ability of children to correctly identify word-referent pairs, rather than the ability to learn them. 

When testing 24-month-olds, Horst and Samuelson (2008) found that children were able to 

correctly fast map novel words to referents , but did not retain the correct mappings just 5 

minutes later. Similarly, Bion et al. (2013) found that 24-month-olds were able to correctly 

select referents during fast mapping tasks but could retain them, and  retention of novel 

words was still fragile at 30 months. Vlach and Sandhofer (2012, 2014) have further 

demonstrated that both children (36 – 48-month-olds) and adults show poor retention of 

novel words when tested after delays of 1 week and 1 month. Thus, fast mapping does not 
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necessarily equate to longer term learning, and lexical constraints alone cannot explain how 

children build vocabularies over time.  

Rather, lexical constraints may be just one part of a much larger model of word 

learning. For example, some conceptualise learner-based constraints as prior probabilities 

that inform and interact with the present situation, as well as stored knowledge, to highlight 

the most likely solution (Xu & Tenenbaum, 2007). Alternatively, McMurray et al. (2012) in the 

dynamic associative model proposed that fast mapping reflects initial problem solving by the 

learner only, where selecting the correct word-referent pairs under referential ambiguity 

occurs as a ‘fast’, in-moment process. By contrast, longer term learning and retention of 

those words occurs as a ‘slow’ gradual process, where multiple instances are used to 

strength or weaken word-referent associations over time.  

McMurray et al.’s (2012) model proposes that, during referent selection, lexical 

principles help to identify the relevant information. This process does not involve learning, 

but rather involves activating potential word-referent pair candidates that then compete for 

relevancy. This process can be modulated by paying attention to some candidates over 

others, e.g. through highlighting one particular pair over another. Over time and repeated 

exposures to word-referent pairs, the associations between words and lexical concepts are 

weighted using Hebbian learning (if a word and lexical concept are activated closely together 

in time, the connection between the two is strengthened; this can also be summed up by the 

principle: ‘neurons that fire together, wire together’; Hebb, 1949). Over time, spurious 

connections are pruned, whereas others are strengthened, and it is this process that builds 

eventual knowledge. According to McMurray et al.’s model, it is these associative processes 

that lead to longer term learning of correct word-referent pairings.  

In sum, this research demonstrates that constraints may aid referent selection during 

fast mapping of novel words, but also that fast mapping a word is not equivalent to learning 

it. Rather, repeated exposures to word-referent mappings lead to retention and subsequent 
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acquisition of those words. This process is inherent in cross-situational word learning, which 

instead of considering internal constraints, considers the environmental factors that may 

guide word learning. 

1.3 Cross-situational word learning 

Statistical learning has been applied to language acquisition over the last two 

decades, with research demonstrating that infants can apply these principles from a young 

age (Romberg & Saffran, 2010). Cross-situational word learning makes use of this concept. 

During cross-situational word learning, the referent for a word may be ambiguous on a single 

trial, but over several trials, this ambiguity can be narrowed by tracking which words and 

referents co-occur (Yu & Smith, 2007).  

Yu and Smith (2007) were one of the first to apply cross-situational statistics to word 

learning in a lab-based experimental format. Adult learners were given a series of 

referentially ambiguous trials presenting novel objects with novel words, and were instructed 

to learn which words paired with which objects. The number of words and objects presented 

on each trial varied between two, three, or four. Their results showed that adults were able to 

make use of statistical co-occurrences across trials to correctly identify word-object pairs at 

test, even when four pairs were presented per trial, although their accuracy did drop at this 

higher level of referential ambiguity.  

L. B. Smith and Yu (2008) further demonstrated that infants aged 12- and 14-months-

old could also make use of co-occurrences between words and referents to facilitate word 

learning. Across 30 trials, infants saw two objects and heard two words, with each correct 

word-object pair occurring 10 times overall (totaling 6 word-object pairs to be learnt). At test, 

infants looked significantly longer at targets over distractors, indicating that they were able to 

use cross-situational statistics to identify correct word-referent pairs. Following this seminal 

study, both adult and child learners have demonstrated the ability to learn new words from 
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cross-situational statistics (Bunce & Scott, 2017; Fitneva & Christiansen, 2011; Monaghan & 

Mattock, 2012; K. Smith et al., 2009; Yurovsky et al., 2013; Yurovsky & Frank, 2015). 

One perspective is that competition plays a vital role in trial-by-trial learning. Under 

typical circumstances, the presence of several potential referents for a given label results in 

competition between potential word-referent pairs that helps learners to identify correct 

pairings. When each novel object has only one novel word associated with it, competition 

limits the mapping process – i.e. if object A and object B are presented with labels X and Y, 

and prior exposures to object A co-occurring with label X have yielded a robust association, 

label X will be designated to object B. This process therefore involves of the application of 

mutual exclusivity or a similar contrast within trials, but crucially, depends upon multiple 

occurrences across different trials. The use of competition in cross-situational word learning 

is thus both local, where possible word-referent pairs are weighted within a trial against each 

other, and global, where word-referent pairs are weighted across trials based on prior 

knowledge, allowing the stabilisation of word-referent pairings over time (Yurovsky et al., 

2013). In short, whilst learner-based constraints such as the principle of contrast focus on a 

single naming event, cross-situational word learning relies on the aggregation of knowledge 

across multiple naming events.  

Precisely how word learners utilise cross-situational statistics is subject to debate. 

One the one hand, the associative learning theory that where across multiple trials, learners 

assign certain weights to the associations between words and referents to converge upon 

correct word-referent pairs (MacWhinney, 2005; McMurray et al., 2012; Xu & Tenenbaum, 

2007). For example, when testing cross-situational word learning in adults, Yu and Smith 

(2007) tested accuracy at the end of all trials, finding that learners were able to score well 

above chance despite referential ambiguity. They proposed that this must be because 

learners were able to keep track of multiple co-occurrences during learning.  
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Alternatively, the hypothesis testing theory argues that learning is the result of 

confirming or rejecting hypotheses about each word-referent pair on a trial-by-trial basis 

(Halberda, 2006; ‘propose-but-verify’, Medina et al., 2011; Trueswell et al., 2013). Here, 

accuracy of word-referent mappings is not the end result after accumulating all information 

over all instances as in the associative account, but rather, the result of candidate word-

referent mappings that are examined dynamically at each instance. In a cross-situational 

word learning task, adult learners did not show evidence that they were tracking multiple 

hypotheses, but rather, identifying one word-referent mapping on one trial, then on the next, 

either confirming it discarding it (Medina et al., 2011). When using eyetracking, target looks 

only exceeded looks to distractors when they participant had been correct on the previous 

trial; where they were incorrect, the proportion of looking to target and competitors was 

similar (Trueswell et al., 2013).  

Across a series of simulations, Yu and Smith (2012) proposed a model of word 

learning that showed how both hypothesis testing and associative learning could lead to 

correct word-referent pairs. Similar to McMurray et al. (2012), they theorised that lexical 

principles such as ME and the novelty bias could be integrated by constraining initial referent 

selection, but that hypothesis testing and associative learning made use of these constraints 

slightly differently, although with relatively similar results. For example, in Yu and Smith’s 

(2012) hypothesis testing model, ME is added as a constraint to maintain the same level of 

certainty across hypothesised word-referent pairs – i.e. each referent has just one word – 

and pairs are deemed either correct or incorrect. With more and more trials, the model 

converges to confirm correct pairs, and disregard incorrect ones. However, their associative 

model accumulates evidence across many conflicting word-referent associations across 

trials, and therefore allows for effects of referential ambiguity. These potential associations 

are stored, and then at test, the word-referent pair with the strongest association is selected 

(also utilising Hebbian learning).  
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Both Yu and Smith’s (2007) hypothesis testing and associative models were able to 

complete a cross-situational word learning task to a comparable degree of accuracy when 

adding in familiarity and novelty biases. The difference between them was that associative 

learning favoured the amount of information, whereas hypothesis testing favoured the kind of 

information – preferring familiarity over novelty. Thus, where the two differ most appeared to 

be on decision-making based on retrieval of information; whereas hypothesis testing kept 

correct pairs on one list and incorrect on another, associative learning retained more 

information about statistics in the environment that could then be utilised to achieve more 

flexible decision making. Despite a preference for the associative model, they also urged a 

‘deliberate move away from the main theoretical question (…) being to show that one grand 

idea or principle beats another’ (p.34), and instead advocated for considering how 

information is selected on a trial-by-trial basis and how learning alters as a result of the task. 

Overall, cross-situational word learning can offer a flexible model of word learning 

that may account for both short term and longer-term learning. In terms of mechanisms that 

underpin cross-situational word learning, both hypothesis testing and associative learning 

accounts have contributed to theoretical understanding, and increasingly, a dual approach is 

advocated for. Continuing evidence indicates that learners switch between the two strategies 

depending on how difficult the task is (Khoe et al., 2019; K. Smith et al., 2011; Yurovsky & 

Frank, 2015) or even depending upon the types of cues available (MacDonald et al., 2017). 

For example, Yurovsky and Frank (2015) identified that when there were many potential 

word-referent mappings, learners relied more on a single hypothesis and were not able to 

represent multiple candidates; however, when there were less candidates, learners relied 

more on multiple co-occurrences and were able to represent more potential word-referent 

pairs. They proposed that reliance on either mechanism was secondary to demands of 

attention and memory within the task itself. 
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Rather than splitting contributions to the field into two opposing camps, L. B. Smith et 

al. (2014) recommended examining theoretical commonalities including that word-scene co-

occurrences have extractable structure, that statistical learning requires multiple co-

occurrences, that word-referent pairs compete with one another, and that statistical models 

inherently encompass the process of learning more efficiently over time. Similarly, Roembke 

and McMurray (2016) advocate for an integrative approach to cross-situational statistical 

learning. Across a series of cross-situational word learning experiments with adults, they 

found evidence that learners both track and use associative information such as previous 

target location and gradual accumulation of evidence, but also make use of prior accuracy 

that falls under a hypothesis testing approach.  

In conclusion, cross-situational models of word learning may be able to explain how 

children learn words across varying degrees of referential ambiguity. However, the 

aforementioned mechanisms tests word learning in largely adult populations in stable 

laboratory environments, and thus far have neglected the role of the caregiver and the social 

abilities of children that may also guide word learning. A potential limitation for cross-

situational word learning is thus that it may ignore the context in which real infant word 

learning takes place. 

1.4 Socio-pragmatic principles  

Socio-pragmatic principles guiding word learning follow a more domain-general 

approach than lexical principles. Under socio-pragmatic accounts, children’s success at word 

learning is predicated upon their socio-cognitive development and their interaction with the 

world (Baldwin & Tomasello, 1998; Tomasello, 2003). Tomasello (2003) describes two 

dynamic factors at play: the child’s own developing socio-cognitive skills, and the impact of 

those that provide the socio-cultural context of word learning, such as caregivers. 

A crucial socio-cognitive ksill that can support children’s early word learning is joint 

attention, where caregivers and infants both concurrently attend and engage with the same 
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object from approximately 9-months-old (Tomasello et al., 2005). Akhtar et al. (1991) found 

that joint attention in 13-month-olds correlated with productive vocabulary 9 months later. 

Tomasello and colleagues (Carpenter et al., 1998; Tomasello & Farrar, 1986) have also 

demonstrated that joint attention in infants aged 12-months-old correlated with their 

expressive and receptive vocabulary both concurrently and also three months later. 

Joint attention provides the foundation for infants being able to infer the 

communicative intentions of adults (intention reading). In finding games where adults voice 

their intentions (e.g. ‘I’m going to find the toma’) before searching for a novel object, children 

aged 18- and 24- are able to learn the novel word-object mapping at test by following the 

adult’s communicative intentions (Tomasello et al., 1996; Tomasello & Barton, 1994). 

Likewise, when the presence or absence of adults is manipulated relative to a target event, 

infants appear to take this into account. In Akhtar et al. (1996),  24-month-olds played with 

four objects; the first three were played with whilst the adults were present, and the last 

object – the target – was played with whilst the adults were absent. When all four objects 

were placed together, and the adult said ‘oh look! A modi’, children correctly selected the 

target object, suggesting that they were able to understand that the adult was identifying 

what was novel to them, rather than to the child (indicating that they could understand the 

adult’s intentions; Baldwin & Tomasello, 1998). 

Within the socio-pragmatic account, adults help form the context that allows a child to 

construct meaning. Under this account, referential ambiguity during fast mapping is not really 

a problem at all. Adults are pointing their children towards the correct referent to begin with, 

and providing the relevant word for the child, who is already focused on the referent (Nelson, 

2007). Words are thus acquired through understanding the intentions of others, requiring 

only that caregivers communicate with their infants, and that infants are sensitive to this 

communication (Tomasello, 2003). Relative to retention, this theory does not explicitly 

distinguish between referent selection and retention of words in the way that associative 
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learning models do (e.g. McMurray et al., 2012), but rather contends that common ground by 

way of shared intentions constrains the learning situation, and where common ground does 

not exist, children do not learn new words. Tomasello (2003) argues more generally that it 

cannot be simply that children learn the words they hear the most often, as they hear ‘the’ 

and ‘a’ very frequently but do not learn them early on. Rather, learning words happens as a 

byproduct of social interaction with adults, and develops on a timescale that is dependent on 

children’s developing socio-cognitive skills – children begin to learn words towards the end 

of the first year of life because they develop the skills required to understand intentions at 

this time.   

However, others assert that there may be again more general cognitive mechanisms 

that explain these results without reference to socio-pragmatic theory. These concern basic 

attention and memory processes. Samuelson and Smith (1998) argued that the children in 

Akhtar et al. (1996) chose the correct novel object because the context was novel, not 

because they were able to infer that the adult was seeing the object for the first time. To 

demonstrate this, Samuelson and Smith made the target object contextually novel; the first 

three objects were dropped down a chute, whereas the fourth target object was played with 

in a different location. All four objects were then shown to the child, and the experimenter 

announced ‘there’s a gazzer in there’. Children selected the target object under contextual 

novelty just as frequently as they did in Akhtar et al., suggesting that the key feature for 

children was the saliency of the fourth object being contextually different, which could be 

explained by memory and visual attentional processes, rather than by inferring the speaker’s 

referential intent. 

Furthermore, some contend that it is not joint attention, but rather sustained attention 

– which does not necessarily rely on socio-pragmatic factors – that is responsible for longer 

term learning of words. Using head-mounted eye-tracking for both infants and adults, Yu et 

al. (2019) measured eye gaze to determine joint and sustained attention during toy play with 
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9-month-olds and their caregivers, measuring vocabulary at 12- and 15-months old. Their 

results showed that children’s sustained attention to an object, rather than joint attention with 

caregivers, predicted larger vocabularies. They suggested that previous work has conflated 

the two, as they are correlated with one another, but that joint attention supported sustained 

attention to objects, rather than the other way around.  This would indicate that intention 

reading on the part of the infant is not the key factor in labelling objects correctly, but rather, 

the infant maintaining attention on objects, supported by caregivers being able to read 

infants intentions to provide the right label at the right time, is the most important factor. 

Finally, both infants who have not yet developed joint attention or intention reading 

abilities, and children with autism who typically have trouble with socio-pragmatic skills, are 

still able to learn words and to communicate. This indicates that there cannot be just one 

route to language. For example, infants as young as 6-months-old are able to communicate 

using gestures to represent items before they are able to utilise joint attention mechanisms, 

which typically start at around 9-months-old (Johnston et al., 2005), and even show evidence 

of fast-mapping (Friedrich & Friederici, 2011). Children with autism spectrum disorder, 

despite struggling with language, are also still able to learn words and in some cases have 

not shown functional differences in how they use word learning mechanisms such as 

referent selection and the formation of cross-situational associations (e.g. Hartley et al., 

2020; Luyster & Lord, 2009). Thus, socio-pragmatic accounts alone cannot provide a 

comprehensive explanation for children’s language acquisition. Furthermore, they do not 

provide a detailed account of how children retain words they have learnt over time. 

1.5 Multiple cue models of word learning 

Ultimately, it would seem logical that if single accounts cannot comprehensively 

explain word learning, then combining multiple accounts might represent a solution. 

However, fitting these accounts together is difficult. For example, if we accept McMurray et 

al.'s (2012) conception of word learning as being distinctly split into referent selection (that 
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occurs through online competition of candidate word-referent pairs) and retention (aided by 

cross-situational word learning and association over time), then how might socio-cognitive 

principles fit in? Even if socio-pragmatic theories cannot explain every instance of word 

learning, Tomasello and colleagues (2003) have demonstrated that children are sensitive to 

social cues from an early age and do use them to learn. How might these social cues 

interact with statistical learning? Additionally, when there is very high referential ambiguity – 

such as multiple referents for a given word, or even multiple words with multiple referents – 

how can a learner identify the correct word-referent pair based on general purpose learning 

strategies or purely associative learning alone? 

Hollich et al. (2000) were amongst the first to describe language acquisition as the 

result of multiple sources of information that included attention, social, and linguistic factors 

in the Emergent Coalition Model (ECM). They argued that humans as learners are adaptive 

and resourceful, and likely to make use of multiple cues in multiple ways. In a series of 

experiments, 12–24-month-olds were exposed to novel words and objects and tested on 

word-referent mapping, manipulating perceptual salience (testing preferences for an 

exciting, brightly-coloured object, or a dull object) and social cues (testing preferences for 

one of the two objects depending on which the experimenter was looking at). Crucially, 

infants of all ages showed an awareness of attentional, social, and linguistic cues even when 

they did not use them to directly map a label to an object, indicating that even as early as 12-

months, children are sensitive to multiple cues in their environment. Their preferential use of 

the cues, however, was dependent on their age. Infants aged 12 month relied more on 

perceptual salience, looking longer at the bright object at test even if the dull one was 

labelled, whereas those aged 19- and 24-months-old relied more on social cues (e.g. looking 

longer at the dull object when it was labelled). Thus, Hollich et al. (2000) demonstrated not 

only that different cues could be used, but that the way in which they were used depended 

on the age of the children in question. 
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However, the ECM does not account for statistical information that may be in the 

environment, as Hollich et al. (2000) only accounted for how social cues could be integrated 

with lexical principles, and largely focussed on children aged 12-months-old and above. As 

infants show the ability to extract and learn from statistical regularities in their native 

language from as early as 7 – 8 months (Saffran et al., 1996), this represents a potential 

limitation in how widely the ECM can be applied to word learning.  

In a computational model, Yu and Ballard (2007) combined specific social cues with 

cross-situational word learning. They focused upon joint visual attention and prosodic cues 

(quantified by voice pitch) in child-mother interactions and used them to assign weights to 

words and referents within the framework of a statistical learning model. This combined 

model and a model of statistical learning only were tested on precision (percentage of words 

spotted by the model which were correct) and recall (percentage of correct words that the 

model actually learnt out of all words expected to be learnt). A model combining attention 

and prosodic cues with cross-situational statistics outperformed a model of statistical 

learning alone (83% precision and 77% recall, versus 75% precision and 58% recall). These 

results indicate that both attentional and social cues can contribute to facilitate accurate 

cross-situational word learning. 

It is largely accepted that children learn words under variable input, and yet many 

models of word learning consider the environment to be relatively stable. In recognition of 

this, Monaghan (2017) proposed the Multi-modal Integration Model (MIM) as a 

computational approach to integrating multiple cues with cross-situational word learning. 

Unlike previous models, rather than characterising the instability of the child’s environment 

as a barrier to learning, the MIM suggested this variability might actually aid more robust 

learning, with the interplay between different cues being crucial to how we end up with 

relatively consistent results in language. Beginning with the recognition that language otuput 

is broadly similar despite variation in the environment, Monaghan proposed a mechanism 
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borrowed from genetics – canalisation – which posits that greater interaction between 

multiple sources of information (similar to genes) yields narrower and more stable outcomes 

(phenotypes).  

Testing this theory, the MIM investigated the use of gesture, distributional cues 

(grammatical consistencies across the language, such as articles preceding nouns), and 

prosody during cross-situational word learning in a computation model. The MIM 

demonstrated that combination of these cues boosted the model’s learning. The model also 

showed that variability of the cue was important; when cues were always present, the model 

was brittle and prone to error, but when cues were sometimes present and other times 

absent, the model’s learning was far more robust. Similarly, cues do not always occur with 

perfect reliability in natural language learning – sometimes adjectives might precede a noun 

rather than an article, other times the stress of a word may not indicate the target, and so on. 

If a learner only learnt a word-referent mapping when a pointing gesture was there, any 

subsequent situations without the gesture cue would result in errors at test. The model itself 

was tested in an adult word learning study (Monaghan et al., 2017), which found that 

participants scored most accurately at test when a pointing gesture appeared 75% of the 

time during training for novel words.  

Overall, multiple cue models that combine cues that children attend to with statistical 

information gleaned from the environment may go some way to explain how children end up 

with broadly similar language abilities, despite the vast amount of variation in the input. 

However, the way in which these cues interact with cross-situational word learning during 

within-trial learning, and how such principles work in experimental child studies, requires 

further examination. In particular, the first part of this thesis focuses on the role of gestures 

as cues in word learning. The following section presents a brief overview of the role of 

gestures in language development, with a consideration of how and which type of gestures 

work as cues to meaning during word learning. 
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1.6 - The role of gestures in vocabulary development  

Gestures are an integral aspect of how children interact with caregivers and the world 

at large during language acquisition (Iverson & Goldin-Meadow, 2005; Southgate et al., 

2007), aiding effective communication when verbal ability has not yet been fully realized 

(O’Neill, 1996). In particular, gesture use appears to be facilitative of vocabulary 

development, with increased child gesture use predicting larger future vocabulary size 

(Brooks & Meltzoff, 2008; Fenson et al., 1994; Rowe et al., 2008). Caregiver gesture use 

also appears to be predictive of child gesture use (Rowe et al., 2008), and can help highlight 

referents during word learning (Cartmill et al., 2013; Iverson et al., 1999). The quality of 

gesture also contributes to word-referent mappings. In the Human Simulation Paradigm 

(Cartmill et al., 2013; Medina et al., 2011), adult participants are asked to guess words from 

muted videos of parent-child interactions, providing a measure of caregiver input quality. 

Over half of the ‘high quality’ vignettes (where participants guessed words to a high degree 

of accuracy) involved caregivers using gesture close to the onset of the mystery word 

(Cartmill et al., 2013). Children of parents who offered higher quality input at 14-18 months 

of age also had higher receptive vocabulary at 53 months of age. 

Precisely how gesture contributes to vocabulary development in children remains 

uncertain. Children pair gestures with words before they begin to produce two-word 

combinations (Iverson & Goldin-Meadow, 2005). O’Neill (1996) found that in a toy retrieval 

task, 32-month-olds preferred to use gesture to indicate the location of the toy despite being 

able to name the locations. Fenson et al. (1994) postulated that gesture use in infants might 

serve as a bridge between between passive comprehension of words (receptive vocabulary) 

and active participation in producing them (expressive vocabulary) during the process of 

language acquisition. This idea was echoed by Goldin-Meadow (2000, 2007), who described 

gesture as a way to bridge between concepts that cannot be expressed in speech during 

both language acquisition and in learning more generally. This may occur through shifting 
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verbal cognitive load to a visuospatial modality instead (Goldin-Meadow & Wagner, 2005). 

Similarly, in a study that manipulated homonyms (two words that sound the same, but have 

different meanings, e.g. ‘glasses’ meaning both spectacles and drinking receptacles), 

children aged 4-5-years-old used gestures to help distinguish between the two meanings 

under these ambiguous conditions (E. Kidd & Holler, 2009).  

Thus, gesture has a vital role in language acquisition and learning from the child’s 

perspective. However, the nature of the relationship between gesture and vocabulary 

development may derive from the informative role of gestures in word learning during active 

communication between parent and child. Gesture use by caregivers may provide valuable 

information about intended referents during rapid vocabulary development. Some evidence 

indicates that once verbal input is accounted for, parent gesture does not correlate with child 

vocabulary scores, suggesting that the value of caregiver gesture use may be embedded in 

the information it provides simultaneously with speech (Iverson et al., 1999; Pan et al., 2005; 

Rowe et al., 2008). The value of gestures may be in presenting visual information that is not 

present in speech, such as the hand action of a bird’s wings flapping when saying the word 

‘eagle’, or by reinforcing what is said during speech, such as pointing at an intended referent 

whilst naming it (Goldin-Meadow, 2000; Goldin-Meadow & Wagner, 2005). 

Infant gesture appears to predict language development, and gesture use in children 

appears to be related to parental gesture use (although the majority of studies focus on 

infant gesture during language acquisition, rather than parent gesture). A longitudinal 

intervention study with infants aged 11 months to 36 months found significantly higher 

receptive and expressive child vocabulary in a gesture-trained parent group at endpoint 

compared to a control group (Goodwyn et al., 2000), although these results have not been 

replicated when methodological improvements were made (Kirk et al., 2013). LeBarton et al. 

(2015) found that training infants to use gesture in a shorter 8-week intervention study led to 

increased parent gesture use, and that infant gesture correlated with increased child speech 
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during spontaneous interactions with caregivers. However, increased parental gesture did 

not relate to increased child speech. Taken together, these results suggest that although 

caregiver and infant gesture use are linked, enforced caregiver gesture use may not 

correlate with longitudinal vocabulary development. While these studies do not demonstrate 

whether parental gesture has an effect during immediate word learning itself, they do, 

however, suggest that caregiver gesture use can be manipulated.  

Caregiver gesture as a cue for word learning may help delineate correct word-

referent pairs. For example, in Monaghan (2017), pointing gestures were used to highlight 

correct referents for given words. Similarly, although Yu and Ballard (2007) did not use body 

movements such as hand gestures as part of their model, they did envisage these as part of 

their larger model for combining social cues with cross-situational information.  

Gesture itself then appears to be a useful candidate for determining how multiple 

cues may interact with statistical information, being both correlated with – and perhaps even 

underpinning – language development, but also as a way to highlight specific referents 

during word learning itself. 

Deictic gestures as cues for word learning 

Gestures come in many different forms and, subsequently, have a multitude of 

classifications. Very broadly speaking, one convention is to divide gesture into those that are 

deictic (highlighting attention by showing, giving, or pointing) and those that are 

representational (sometimes known as symbolic or iconic; gestures that represent features 

of a referent, e.g. flapping arms to indicate a bird; Capone & McGregor, 2004; Rowe et al., 

2008). Deictic gestures precede the development of representational gestures, with infants 

using them from around 9-months-old, and being able to reliably follow adults’ pointing from 

approximately 12-months-old (Carpenter et al., 1998). 

Deictic gestures such as pointing can serve as a useful cue to disambiguating 

meaning when used by caregivers. Iverson et al. (1999) found that mothers used pointing 
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gestures in 15% of word-learning exchanges with their infants to delineate a target object. 

When coding a corpus of mother-infant interactions for social cues highlighting referents 

within discourse, Frank et al. (2013) found maternal pointing was highly precise in predicting 

object reference, indicating that pointing is a reliable cue to meaning. Goldin-Meadow (2007) 

also emphasise the role of pointing gestures in specifically highlighting referents, describing 

the use of pointing combined with representational gestures in a string of gestures similar to 

spoken sentences in users of home sign language. Within these gesture sentences, pointing 

gestures act as nouns and pronouns referring to specific objects.  

One avenue for debate concerns whether or not the mechanisms that underlie the 

use of pointing gestures as word learning cues are socio-pragmatic or attentional, echoing 

the arguments around the different types of constraints in language acquisition. Although it is 

not the aim of this thesis to advance this debate, a brief overview is presented here. 

Proponents of a socio-pragmatic approach focus on pointing gesture use by infants, 

and argue that children point to influence the mental state of the caregiver (Tomasello et al., 

2007). Under this interpretation, pointing at an object provides a frame of reference for joint 

attention, and is thus linked to understanding the recipient’s intentions. For example, infant 

gesture may be interrogative in nature, acting as a ‘signal’ to caregivers to instigate verbal 

input so the infant may gain critical information about a specific object (Iverson & Goldin-

Meadow, 2005; Southgate et al., 2007). Moreover, caregiver pointing is useful because 

children interpret it as a signal for sharing experience. For example, Liebal et al. (2009) 

tested 18-month-old infants on their ability to respond to an experimenter’s pointing gesture. 

Children played a puzzle game with a first experimenter who, at the end of the game, 

highlighted one puzzle piece was missing (the target) before leaving the room. A second 

experimenter then entered to play a separate ‘clean-up’ game using an identical puzzle with 

the child, placing all pieces into the basket, except for the missing piece. The missing target 

piece was then placed on the floor out of sight of the child. At test, the first experimenter re-
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entered, and either the first or the second experimenter pointed at the target piece saying 

‘oh, look!’. They found that when the first experimenter pointed, children put the target piece 

with the puzzle and completed it, but when the second experimenter pointed, children put 

the target piece in the clean-up basket. This result indicates that children used their previous 

shared experience to interpret the caregivers’ pointing gestures; the first experimenter 

wanted to complete the puzzle, whereas the second wanted to tidy up the puzzle. 

However, others might argue that pointing gestures support word learning in much 

the same way that any non-social cue that increases the attentional saliency of an object. L. 

B. Smith (2000) describes word learning generally as a process that involves associating the 

most perceptually salient object with an auditory label and, using head-mounted cameras, 

has shown that infants tend to restrict their visual field to single objects at a time (Pereira et 

al., 2014). This might indicate that basic perceptual processes are responsible for how cues 

restrict learning. Under this account, pointing would simply highlight the saliency of an object 

without the need for an infant to infer any intentionality behind the point, similar to an arrow 

cue. For example, some literature suggests that arrows and eye-gaze similarly visually orient 

towards objects as a result of general associative or automatic mechanisms that respond to 

directional information, rather than because information is socially relevant (e.g. Brignani et 

al., 2009; G. Kuhn & Kingstone, 2009).  

Others propose that attentional processes are key to highlighting correct word-

referent pairs. For example, Horst and Samuelson (2008) and Axelsson et al. (2012) argue 

that the most important role of cues in word learning is the attentional highlighting of a target 

object during ostensive naming and the simultaneous dampening of competitors, allowing for 

effective encoding of word-referent associations. In Axelsson et al. (2012), children aged 24-

months-old were tested on referent selection and retention. Children were asked to select 

referents in all conditions, but feedback on their selection was given afterwards by 

illuminating the target, covering distractors, or both, as compared to where children’s 
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attention was directed by the use of a pointing gesture. In retention trials, children in the 

pointing condition did not score above chance, whereas they did in other conditions. They 

concluded that attention-directing feedback led to more accurate word learning than pointing 

cues did. 

In sum, there are two main possibilities for why caregiver pointing gestures may be 

useful during word learning: because infants (and caregivers) are socially motivated, or 

because infants are perceptually cued towards things that attract their attention. It is even 

possible that the nature of pointing gesture cues does not have to be mutually exclusive, and 

that a pointing gesture can be both a social cue and an attentional cue. In some cases, 

pointing may tell us something deeply profound about how humans communicate 

(Tomasello et al., 2007); in others, the task at hand may be achieved by using a light 

(Axelsson et al., 2012). Here, the crucial point is that children can and do make use of 

pointing gesture cues to identify referents. What remains to be investigated is how learners 

make use of pointing gestures during within-trial learning as the process unfolds, and 

whether caregivers adapt their gestures to the environment to facilitate their child’s word 

learning.  

1.7 Summary and thesis outline 

Word learning is a multi-facted process, and a wide variety of theories have 

attempted to explain how children manage to learn words with apparent ease within typical 

development. More recent models of word learning suggest an integrative approach may 

best characterise the complexity that stems from not only multiple sources of information, but 

multiple ways in which they may interact with each other, with the surrounding environment, 

and also with the age and general developmental abilities of the child in question.  

However, to understand precisely how such models work in practice, closer attention 

must be paid to, firstly, the nature of interactions between cues and environmental variability 

and the subsequent effect such interactions have on children’s accuracy in word learning 
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and, secondly, how cues are integrated with the information present during in-moment 

learning itself.  

The first part of this thesis makes use of cross-sectional studies across multiple 

methods, combining eye tracking methods that allow for assessing the temporal dynamics of 

learning, with computational methods that allow the precise control of parameters, and also 

experimental methods that highlight the need for any theory to be tested in practice. The first 

two papers focus on gesture as one of multiple cues that can contribute to word learning. 

The first paper reports a computational model of gesture and word learning across 

referential ambiguity (Chapter 2), and tests the model’s predictions in a behavioural study of 

word learning 18-24-month-olds and their caregivers. The second paper (Chapter 3) reports 

three experiments in adult learners, where referential ambiguity and both the timing and 

presence of a pointing gesture cue is manipulated, testing both effects during training using 

an eyetracker and effects at test.  

However, to gain a comprehensive understanding of how children learn words, the 

effects of atypical development must be considered alongside what happens during typical 

development, as well as how word learning mechanisms interact with vocabulary over time. 

The second part of this thesis thus concerns a longitudinal study of late talking and typically 

developing children, beginning with a review of the late talking literature (Chapter 4). The 

third paper (Chapter 5) examines word learning mechanisms in the cohort and tests whether 

performance on different word learning tasks can predict both late talking status and later 

expressive vocabulary outcomes. The fourth paper (Chapter 6) demonstrates how 

expressive delay can affect other areas of development, by testing how language delay can 

affect symbolic understanding through the use of a picture comprehension task.  

To gain a comprehensive understanding of how children learn words requires not 

only a consideration of typical and atypical development, but also requires a multi-

disciplinary approach. Overall, this thesis heeds the words of Hollich et al. (2000, p.14), who 



 

 

43 

state: ‘without recognizing the enormity of the word learning problem a theory cannot support 

the weight of lexical acquisition (…) Just as a one-legged table is inherently unstable, 

scientific explanations of complex process that force either/or decisions are not as powerful 

as those that embrace different perspectives.’ 
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2 Chapter 2: Caregivers use gesture contingently to support word learning 

2.1 Chapter introduction 

The Multimodal Integration Model (MIM, Monaghan, 2017) highlighted how variability in cue 

availability might support word learning, and even lead to more robust learning that is less 

prone to error. In particular, gesture was found to be a useful cue when the MIM was tested 

in adults (Monaghan et al., 2017), and gestures in general support children’s word learning 

and vocabulary development (Rowe et al., 2008). What we do not know is whether 

caregivers are sensitive to how gesture can support word learning, and whether this 

depends on the amount of variation in the environment, such as the number of possible 

referents for a novel word. We also do not know how children might respond to variability in 

both the gestures that caregivers provide during word learning, and the variability in the 

number of potential referents for a given word. 

This paper tests caregiver response to referential ambiguity by first testing the MIM 

with a pointing gesture cue across conditions, where the number of potential referents for a 

word differs. The predictions of this model are then tested in children aged 18–24-months-

old and their parents during a word learning task, tracking the gestures that caregivers make 

during training and children’s subsequent word learning accuracy.  

 

Author contribution for Chapter 2:  Rachael W Cheung: design, data collection 

(behavioural), analysis (behavioural), writing, review. Calum Hartley: design, review. Padraic 

Monaghan: design, analysis (computational modelling), review 

 

Published as: Cheung, R.W., Hartley, C., Monaghan, P. (in press) Caregivers use gesture 

contingently to support word learning. Developmental Science, e13098, 

https://doi.org/10.1111/desc.13098 
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2.2 Abstract 

Children learn words in environments where there is considerable variability, both in terms of 

the number of possible referents for novel words, and the availability of cues to support 

word-referent mappings. How caregivers adapt their gestural cues to referential uncertainty 

has not yet been explored. We tested a computational model of cross-situational word 

learning that examined the value of a variable gesture cue during training across conditions 

of varying referential uncertainty. We found that gesture had a greater benefit for referential 

uncertainty, but unexpectedly also found that learning was best when there was variability in 

both the environment (number of referents) and gestural cue use. We demonstrated that 

these results are reflected behaviourally in an experimental word learning study involving 

children aged 18-24-month-olds and their caregivers. Under similar conditions to the 

computational model, caregivers not only used gesture more when there were more 

potential referents for novel words, but children also learned best when there was some 

referential ambiguity for words. Thus, caregivers are sensitive to referential uncertainty in the 

environment and adapt their gestures accordingly, and children are able to respond to 

environmental variability to learn more robustly. These results imply that training under 

variable circumstances may actually benefit learning, rather than hinder it.  
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2.3 Introduction 

Word learning is a complex process, requiring children to individuate words from continuous 

speech and pair them with intended referents in the environment. However, there are 

multiple possible references within multiword utterances (Monaghan & Mattock, 2012; Yu & 

Ballard, 2007) and multiple potential referents in the environment for each word (Quine, 

1960; Siskind, 1996; L. B. Smith & Yu, 2008). Although internal constraints may aid special 

cases of language acquisition (Carey, 1988; Golinkoff et al., 1992; Markman & Wachtel, 

1988; Mervis, 1987), alternative accounts have explored how constraints present in the 

environment can be utilised by more general purpose learning mechanisms.  

The environment contains multiple sources of information that can help to constrain 

word-object mappings. This includes cross-situational statistics, where possible links 

between words and referents may be resolved by tracking co-occurrences between them 

across multiple situations (Siskind, 1996; L. B. Smith & Yu, 2008). Other cues include 

prosody, such as the referring word having the highest amplitude (Fernald & Mazzie, 1991), 

and distributional information from syntax, such as nouns and verbs being preceded by 

frequently-occurring articles (Fries, 1952; Mintz, 2003; Monaghan et al., 2007). Gestural 

cues also contribute vital information, forming an integral part of communication from early 

infancy (Iverson & Goldin-Meadow, 2005; Southgate et al., 2007), and helping caregivers 

delineate referents during word learning (Cartmill et al., 2013; Iverson et al., 1999). 

Despite huge environmental variation across learning situations, word learning 

studies generally assume a relatively stable environment for children (McMurray et al., 2012; 

Yu et al., 2012). Importantly, this variability may actually be useful. In a computational model 

of word learning, Monaghan (2017) developed the multimodal integration model (MIM; A.C. 

Smith et al. 2017) to explore the role of multiple cues  – distributional, prosodic, and gestural 

– in supporting language acquisition. The model was trained to learn word-object pairings 

when words and objects were presented among multiple possibilities and when cues were 
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present or absent. Although learning benefited from all cues, learning was more efficient and 

more accurate when cues occurred 75% of the time, rather than when they were present 

100% of the time (Monaghan, 2017). This was confirmed in behavioural studies with adults 

(Monaghan et al., 2017). The MIM showed that multiple cues support learning over single 

cues, and that the model learnt most robustly when the cues were individually variable. This 

prevented the model from relying too heavily on single cues in the environment, akin to 

dropout training, in which input units are stochastically dropped to improve model 

generalisation and avoid overfitting (Srivastava et al., 2014). In the MIM, the existence of 

variability within the environment itself circumvents the requirement for this to be 

incorporated into the learner, providing the necessary degree of dropout to maintain the 

learner’s sensitivity to multiple cues in the environment. These results indicate that although 

word learning occurs in noisy contexts with multiple, variable cues, learners are able to make 

use of this variability to benefit learning.  

 However, the MIM did not test the extent to which variability in cues may be 

contingent on the informational content of situations. For instance, when there is only one 

possible referent in the environment, gesture may be redundant. Alternatively, when there 

are many possible referents, gesture may be crucial. Thus, during learning situations, if the 

speaker is sensitive to this environmental ambiguity, we may see cues deployed differently 

according to the situation.   

Speakers adjust their prosody, syntax, word selection, and phonology according to 

context and the listener’s perspective (Brown-Schmidt & Duff, 2016; Gorman et al., 2013), 

and children also adapt speech and gesture according to the perspective of adults (Bahtiyar 

& Küntay, 2009; Bannard et al., 2017; Nadig & Sedivy, 2002; Nilsen & Graham, 2009; 

O’Neill, 1996). In contrast, how caregivers adapt to the environment is less established. 

Caregivers demonstrate patterns of behaviour when labelling objects that align with 

children’s internal constraints, such as naming whole objects rather than parts (Masur, 
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1997), or using one label per object, encouraging mutually exclusive labelling (Callanan & 

Sabbagh, 2004). Caregivers also adjust how they use labels according to their child’s 

knowledge (Luce & Callanan, 2010; Masur, 1997); for example, by placing unfamiliar nouns 

and verbs saliently in an utterance and physically presenting unfamiliar objects more clearly 

(Cleave & Bird, 2006). However, these adaptations depend on perceived levels of familiarity 

in the child, rather than perceived uncertainty in the environment when the level of familiarity 

is consistent (such as when all objects are novel). These studies show that caregivers are 

sensitive to the informational content of cues relative to their child, but whether this 

sensitivity exists when environmental variability itself is manipulated has not yet been tested.  

Gesture offers a prime candidate for further exploration of how caregivers might 

adapt contingently during word learning. Not only is gesture facilitative of vocabulary 

development, with increased early child gesture use predicting larger future vocabulary size 

(Brooks & Meltzoff, 2008; Fenson et al., 1994; L. J. Kuhn et al., 2014), but caregiver gesture 

use can predict early child gesture use (Rowe et al., 2008) and offer highly valuable 

information for word-referent mapping (Cartmill et al. 2013). Caregivers also alter gestures 

according to whether an object is familiar to their child as well as present or absent 

(Vigliocco et al., 2019), and in response to increased task complexity when communicating 

with children with delayed language development (Wray & Norbury, 2018).  

The types of gestures produced by caregivers and children are rich and varied 

(Capone & McGregor, 2004; Özçalışkan & Dimitrova, 2013). They may occur in isolation or 

combined with speech, providing information that may overlap, complement, or even 

mismatch speech content – all of which offer valuable communicative insight (Goldin-

Meadow & Wagner, 2005). Yet, when faced with high referential ambiguity during word 

learning, the most informative caregiver gestures may be those that clearly delineate the 

target of a novel label. Children follow deictic gestures such as pointing from approximately 

12-months-old (Carpenter et al., 1998), and caregivers also use deictic gestures more than 
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other gestures with children under 22-months-old (Özçalişkan & Goldin-Meadow, 2005). 

Whether caregivers alter these useful gestures based on the presence of environmental 

referential ambiguity remains unexplored. 

In this paper, we examined how environmental variability might affect word learning 

by testing the contingency of caregiver gesture use to support word learning under 

referential uncertainty. We first adapted an established computational model of word 

learning (MIM; Monaghan, 2017) to test the benefit of contingent gestural cues for word 

learning when the number of possible referents for speech varies. We then conducted a 

behavioural study to determine whether caregivers varied in their gesture use when teaching 

novel words under different degrees of referential uncertainty, and whether the predictions of 

the computational model for optimal behaviour are exhibited in naturalistic exchanges. We 

thus considered the presence and interaction of two distinct aspects of variability: referential 

uncertainty, conferred by differing numbers of potential referents for a given word, and the 

availability of gestural cues, with their role determined firstly by altering the occurrence of 

such cues systematically in a computational model, and then by examination of naturally-

occurring differences in caregiver cue use during a behavioural study. 

2.4 Computational model 

We adapted Monaghan’s (2017) implementation of the MIM by varying the number of 

possible referents in the visual field during training to test the effect of environmental 

indeterminacy on cue influence. Monaghan’s (2017) implementation is an adaptation of A.C. 

Smith et al. (2017), and simulates word learning via acquiring the correspondence between 

one of several words heard in an utterance and one of several objects in the environment. 

The model is a neural network that learns through backpropagation, operating on principles 

of acquiring associations between representations. The MIM is similar in principle to other 

associative models of word learning (e.g. McMurray et al., 2012; Yu & Smith, 2012), but 

extends these to test multiple cues in the child’s immediate environment that provide 



 

 

50 

information about the intended reference of speech.  Our aim in this paper is to examine how 

such a simple associative learning system might respond to variation in environmental cues 

in terms of how associations between words and objects cohere.  

We trained and tested the MIM (Monaghan, 2017) under three conditions that 

allowed us to investigate the effects of a gestural cue on learning during: 1) a condition with 

no referential ambiguity, where the object presented must be the target (one object); 2) a 

condition with some referential uncertainty, where one object was the target and one was the 

foil (two objects); and 3) a condition with a higher degree of referential uncertainty, where 

one object was the target and there were five foils (six objects). Enumeration tasks suggest 

that observers are able to rapidly report the numbers of objects in a visual display between 

one to four objects with ease; however, above four, they switch to slow counting of individual 

objects (Cowan, 2001; Xu & Chun, 2009). Thus, our aim was to crowd the visual display in 

the six-object condition.  

An increase in potential referents for a given novel word has led to less reliable 

learning in behavioural studies (K. Smith et al., 2011; Trueswell et al., 2013). We therefore 

predicted that the model would learn more quickly from the one-object than the two-object 

condition, which in turn would be learned more quickly than the six-object condition. We also 

predicted that the effect of the gestural cue would be largest when there were two objects 

compared to one, and six objects compared to two: as indeterminacy of the intended 

referent increases, gesture may become more important to support and constrain word-

referent mappings.  

2.4.1 Method  

Architecture 

The model’s architecture is shown in Figure 1. The model had an auditory input, 

comprising 80 units, where sets of spoken words were presented, and an 80-unit visual 

input, where sets of objects were presented. Each unit in the auditory and visual inputs was 
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capable of representing one piece of information (i.e. a phoneme feature within a word, or a 

visual feature of an object). Input from these auditory and visual inputs projected to a central 

integrative layer of 100 units, each of which combined and processed input from the set of 

auditory and visual inputs. This integrative layer was self-connected, and was also 

connected to a semantic output layer comprising 100 units, where the model had to generate 

the meaning representation of the target word-object pairing.  

 For the current simulation, we expanded the number of objects that could appear in 

the visual input from two (as in the original simulation; Monaghan, 2017) to six. For the one-

object condition, the object could appear in any of the six possible object locations. For the 

two-object condition, any two of the six locations presented the objects. For the six-object 

condition, one object appeared in each of the six locations. The model was otherwise 

identical to the original simulations. 

 

Figure 1. Architecture of the multimodal integration model (MIM) for word-object 

mapping (example of two-object training condition with gesture cue present). 

 

 

Representations 

The auditory, visual, and semantic representations for each word-object mapping 

were identical to Monaghan (2017).  
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When the gestural cue was present, the activation of the target object’s location was 

doubled, enhancing the influence that the visual features of the object in that position had on 

the model’s learning. The role of gesture was thus implemented as increasing the salience of 

one position in the visual display of the model, and the effect of gesture is akin to increasing 

attention to a region of visual space, as implemented of visual processing in dynamic 

systems models (Samuelson et al., 2017). Across simulation runs, we varied the availability 

of the gestural cue by altering its presence across individual trials, where the cue was 

present 0%, 33%, 67% or 100% of the time. For example, in the 33% gesture cue availability 

condition, there was a 1/3 chance for each trial that the cue was present. 

For each simulation, there were 100 word-object mappings to be learned, with the 

auditory and visual representation of each word-object mapping randomly generated for 

each simulation run. 

Training 

The model was trained to learn correspondences between 100 spoken words and 

100 visual objects through cross-situational statistics.  

For each training trial, the model was presented with two auditory words – one 

corresponded to a visual object appearing in the visual input, and the other was randomly 

selected from the other 99 words. The model was required to produce the semantic 

representation corresponding to the overlap between the target word and target object at the 

output. 

For the one-object condition, only the target object corresponding to one of the 

spoken words was presented. For the two-object condition, two objects were presented – 

one corresponding to one of the spoken words and the other randomly selected from the 

other 99 objects (but not corresponding to the other, foil word). For the six-object condition, 

five foil objects were selected. In all conditions the positions of objects were randomised. For 

the one-object condition, the target object appeared in one of the six locations, and the other 
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five locations were empty. For the two-object condition, the target and a foil object appeared 

in random locations across the six possible positions. For the six-object condition, the target 

object appeared randomly in one location, and five other foil objects filled the five remaining 

locations. The gestural cue was present for either 0%, 33%, 67%, or 100% of the individual 

trials in each condition.  

 Activation in the model passed between layers for five time steps. At time 1, the 

auditory and visual input was presented to the model. At time 2, the activation from these 

input layers reached the integrative layer. At time steps 3 to 5, the model was required to 

produce the semantic representation for the word-object pairing, with recurrent activation 

cycling through the integrative layer’s self-connections and from the integrative layer to the 

semantic output layer. At the end of each training trial, the model’s error was calculated 

across the semantic output layer as the cross-entropy error of the difference between the 

model’s actual activation of units and the target activations. Connections were adjusted 

between units in the model according to the backpropagation through time learning algorithm 

(Pearlmutter, 1989). The model’s connections were initially randomised in the range [-0.1, 

0.1], and the learning rate was set at 0.01. 

After 1000 learning trials had been presented to the model, its performance on each 

of the 100 word-object mappings was tested. The model was judged to be accurate if it 

produced a semantic representation closer to the target than to any of the other 99 semantic 

representations. The point in training at which the model was able to identify 95% of the 

word-object mappings correctly in four consecutive tests was identified as reflecting the ease 

of the model’s ability to learn the words. If the model failed to learn by the end of training, 

then the end of training was taken to be the length of training time. Training finished after 

100,000 learning trials had been presented to the model, and then the model was tested.  

 We formulated 10 different versions of the training patterns. For each training pattern, 

we ran 12 different versions of the model, with different randomised starting weights, 
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different gesture cue availability, and a different number of objects during training. In total, 

there were 120 simulation runs: 10 versions of pattern x 4 gesture cue availability (0%, 33%, 

67%, and 100%) x 3 numbers of objects (1, 2, and 6). We treated each of the 10 different 

versions of the training patterns as a separate subject during analysis, and treated gesture 

cue availability and number of objects as within-subject variables. 

Testing  

The model’s ability to accurately detect the word-object mapping for each of the 100 

pairings was tested under different conditions than its training: the model was tested instead 

where the target object appeared along with two other foil objects (simulating a three-

alternative forced choice test). To assess the robustness of learning, we also determined 

whether the model could identify the target pairing without any gestural cue being present. 

The model’s accuracy was determined in the same way as during training: if it produced a 

semantic representation closer to the target than to any of the other 99 semantic 

representations. 

Data, code, and models run are available on the Open Science Framework (OSF) 

(http://osf.io/6frcw/?view_only=72344789a6294aa19d63a8bd93a628f3). 

2.4.2 Results and Discussion 

Length of training 

Figure 2A shows the time taken for the model to identify 95% or more of the word-

object patterns in four consecutive tests. Additional simulations that were trained to a lower 

threshold of 90% correct criterion were also run, as some initial simulation runs failed to 

reach the 95% criterion by the end of training (Supporting Information, Appendix A, Figure 

S2). 

We tested linear mixed effects (LME) models on length of training time (lmer and 

lme4; R [v3.6.3, 2020]), with number of objects during training (condition: 1, 2, or 6) as a 

categorical fixed effect (categorical so the difference between each of these contextual 



 

 

55 

conditions on performance could be determined), gesture cue condition (0%, 33%, 67% and 

100%) as a numeric fixed effect, and simulation run (1 to 10) as a random effect. We 

included number of objects during training and gesture condition as random slopes, but 

adding gesture cue condition, or the interaction between number of objects and gesture cue 

condition, resulted in the model not converging. The models were built including one fixed 

effect at a time, and using log-likelihood comparison to compare the contribution to model fit 

of each fixed effect (Barr et al., 2013).  

Cues during training 

Adding number of objects during training resulted in a significant improvement in fit, 

(χ2(2) = 10.10, p = .006). Quicker word learning was achieved with one object than two 

objects (t(106.89) = 5.075, p < .001), and two objects than six objects (t(106.99) = 18.129, p 

< .001). Gesture cue also significantly improved fit (χ2(1) = 45.70, p < .001), with greater cue 

availability resulting in quicker learning. The interaction also significantly improved fit (χ2(2) = 

14.23, p < .001), with increasing availability of gesture cue having a stronger effect on 

learning speed in the two- and six-object conditions compared to the one-object condition 

(t(114) = -3.572, p < .001; t(114) = -2.881, p = .005, respectively). The effect of gesture cue 

on the two- and six-object conditions was not significantly different (t(114) = 0.690, p = .491). 

The resulting model is shown in Table 1 and the mean learning times for each object 

condition is shown in Figure 2A. 

The model could learn word-referent mappings using cross-situational statistics and 

performed better with a cue: the addition of gesture (enhancing input activation from one 

location in the visual input layer) increased the associative learning signal from this region of 

the visual input. The model learned more quickly when there was no referential uncertainty 

about the target object – the one object condition learned faster than when two or six objects 

were present, but as we predicted, the gesture cue had a larger influence on learning under 

conditions of referential uncertainty. This of course makes perfect sense: when there is only 
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one object, the model does not need support for disambiguating the referent. There was also 

a larger effect of gesture cue availability on the two-object than the six-object condition. 

Accuracy at test 

For testing performance, we constructed a series of generalised LME models in a 

similar way to the analyses of training length, with fixed effects of number of objects present 

during training and gesture cue condition, and random effects of simulation, but also an 

additional random effect of test item. Slopes for both fixed effects and their interaction were 

included for each random effect. 

Number of objects present during training contributed significantly to fit (χ2(2) = 

18.43, p < .001), with one object resulting in lower accuracy than two and six objects (z = 

18.77, z = 12.033, both p < .001, respectively), and six objects resulting in lower accuracy 

than two objects (z = -3.34, p < .001). Adding gesture cue did not significantly improve fit 

(χ2(1) = 0.936, p = .333), but the interaction between gesture cue and number of objects 

during training was significant (χ2(2) = 23.54, p < .001). As with the training time analysis, 

the effect of gesture cue availability had a stronger facilitative effect on accuracy for the two- 

and six-object conditions compared to the one-object condition (z = -8.64, z = -5.88; both p < 

.001, respectively), and the effect of gesture cue availability on the two- and six-object 

conditions was not significantly different (z = 1.30, p = .194). The final model is shown in 

Table 1 and Figure 2B. 

 

  



 

 

57 

Table 1.  

Computational model: linear mixed effects model results of the MIM computational 

model’s performance, testing the effects of number of objects during training and 

gesture cue condition on length of training time and accuracy. 

Dependent 
variable 

Independent variables Estimate 
 

SE df t p-value 

Length of 
training time  

(intercept – one object)  68.62 1.49 114 46.05 < .001 
One v. two objects 
One v. six objects 
Two vs. six objects 
Gesture cue 
One v. Two object x Gesture cue 
One v. Six object x Gesture cue 
Two v. Six object x Gesture cue 

13.21 
37.04 
23.84 
-20.39 
-12.06 
-9.73 
2.33 

2.11 
2.11 
2.11 
2.39 
3.38 
3.38 
3.38 

114 
114 
114 
114 
114 
114 
114 

6.27 
17.58 
11.31 
-8.54 
-3.57 
-2.88 
0.69 

< .001 
< .001 
< .001 
< .001 
< .001 
.005 
.491 
 

  Estimate SE  z p-value 
Testing 
accuracy 
after training 
to criterion  

(intercept – one object)  -0.53 0.16  -3.36 < .001 
One v. two objects 
One v. six objects 
Two vs. six objects 
Gesture cue 
One v. two objects x Gesture cue 
One v. six objects x Gesture cue 
Two v. six objects x Gesture cue 

2.67 
1.94 
-0.66 
0.40 
-0.54 
-0.45 
0.07 

0.19 
0.21 
0.20 
0.07 
0.08 
0.09 
0.07 

 13.91 
9.30 
-3.35 
5.58 
-6.80 
-4.98 
0.91 

< .001 
< .001 
< .001 
< .001 
< .001 
< .001 
.365 
 

 
Testing 
accuracy 
after 
extended 
training  

 Estimate SE  z p-value 
(intercept – one object)  -0.70 0.15  -4.51 < .001 
One v. two objects 
One v. six objects 
Two vs. six objects 
Gesture cue 
One v. two objects x Gesture cue 
One v. six objects x Gesture cue 
Two v. six objects x Gesture cue 

2.95 
2.12 
-0.45 
0.48 
-0.66 
-0.55 
0.26 

0.18 
0.21 
0.13 
0.07 
0.08 
0.09 
0.20 

 16.20 
9.93 
-3.50 
6.68 
-8.64 
-5.88 
1.30 

< .001 
< .001 
< .001 
< .001 
< .001 
< .001 
.194 
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Figure 2.  

Mean and standard error bars for results of the MIM and behavioural study. Note that 

for testing accuracy, there were three objects present and no gesture cue. (A) MIM: 

Training length time by number of objects present during training (calculated across 

gesture cue condition);† (B) MIM: Testing accuracy proportion correct by number of 

objects present during training (calculated across gesture cue condition);† (C) 

Behavioural study: Count of caregiver deictic gesture use by number of objects 

present during training; (D) Behavioural study: Child testing accuracy proportion 

correct by number of objects present during training. 

 

†For MIM results by number of objects present during training and by individual gesture cue condition, 
please see Supporting Information, Figure S1.  
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As there was a confound between training length and availability of gestural cues, 

additional simulations were run where the model was trained to the same amount of 

exposure for each of the different levels of availability of gestural cues, with similar accuracy 

results (Supporting Information, Appendix A, Table S1, Figure S2). 

Unexpectedly, the model demonstrated more robust retention of the word-object 

mappings during testing when it had been trained under referential uncertainty; the two- and 

six-object conditions achieved higher accuracy than the one-object condition. In Monaghan 

(2017), the MIM performed best when there was some variability in the cues (when present 

33% or 67% of the time) rather than with no variability (present 0% of the time) or a large 

degree of variability (present 100% of the time). However, in the current simulations, the 

effect of altering the number of potential referents in the environment for a given word also 

affected learning – some, but not a great deal, of referential uncertainty resulted in better 

learning, with the model demonstrating the highest accuracy in the two-object condition.  

 Thus, the computational model confirms our expectations about gesture being more 

important in the presence of referential uncertainty. We predict that if caregivers are 

sensitive to the potential value of a cue, then they ought to use more gestures in word 

learning situations when two unfamiliar referents are present rather than one. We might also 

predict that gestural cue use increases when six potential referents are present, though the 

model learned under these conditions to a similar degree irrespective of gesture cue 

availability.  

However, the model also generated additional predictions that were unexpected: that 

word learning could actually be more successful when learning takes place under conditions 

of referential uncertainty. These results imply that variability in the environment can support 

learning. These hypotheses generated by the MIM were then tested in a behavioural word 

learning study with children aged 18–24-months-old and their caregivers. 
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2.5 Behavioural study 

This experiment examined gesture use when caregivers taught their children novel 

word-object mappings under different degrees of referential uncertainty, and also explored 

whether gesture use under referential uncertainty predicts word learning. During training, 

caregivers taught their child three novel word-object pairs across the same conditions of 

referential uncertainty as simulated in the computational model – one, two, or six novel 

objects with a single target object per condition. Children were then tested on the novel 

word-object pairs taught by their caregiver during training. 

2.5.1 Method 

Participants 

Forty-seven caregiver and child dyads, recruited through Lancaster Babylab, 

completed training (M = 20.5 months, SD = 1.7, male = 27; Table 2). All caregivers gave 

informed consent for the dyad. All dyads were from monolingual English homes, with no 

history of developmental or sensory disorders. The data from an additional six dyads were 

excluded due to child fussiness (Supporting Information, Appendix A, Table S9). Twenty-

seven of the dyads that completed training also completed testing (M = 20.8 months, SD = 

1.6, male = 13), with the remaining dyads excluded due to incomplete trials (16) or child 

fussiness (4). Dyads received a storybook for participation and reimbursement for travel 

expenses. 

Stimuli 

Three novel words were used: darg, noop, and terb (NOUN database; Horst & Hout, 

2016). Nine similarly sized novel objects with different colours and shapes were used as 

stimuli (e.g. Figure 3). Three of these objects were randomly paired with the three novel 

words per participant. The remaining six objects then served as foils.  
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Training 

Caregivers were familiarised with the three novel word-object pairs prior to the 

experiment without the child present. During training, the novel word and a three-word 

description of the target object were visible to the caregiver as a memory aid. Caregivers 

were told to imagine they were in an everyday setting, such as a shop with items on a shelf 

out of reach, and instructed to teach the novel words to their children as if they were real 

words for objects that the child had not seen before. Children then sat on their caregiver’s 

lap and were presented with stimuli on a tray 70 cm away for 30 seconds, during which 

caregivers taught their child the novel word-object mapping (three training trials; 30 seconds 

each; one per novel word-object mapping). During training, dyads could not reach or handle 

the objects. 

Dyads began with a warm-up trial where a red ball was presented on the tray and 

caregivers practised teaching their child the word ‘ball’. All dyads were then administered all 

three conditions where target objects would appear alone (one-object condition), with 

another foil (two-object condition), or with five foils (six-object condition), reflecting the 

computational model’s learning conditions (Figure 3A). A Latin Square was used to 

counterbalance the order in which training conditions were administered, and the position of 

targets per condition was also randomised in the same way as the computational model’s 

training. 

Testing 

After training, children were tested by the experimenter on the three novel word-

object mappings they had just learnt in a three alternative forced choice test, mirroring the 

computational model, with each word tested on separate trials (each word tested twice, six 

test trials in total; Figure 3B).  

For each trial, the tray was arranged out of sight and then made visible. The then 

experimenter asked the child “Where is the [novel word]? Can you see the [novel word]? 
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Point to the [novel word].” The tray was moved forward within the child’s reach, and the child 

pointing towards, reaching for, or touching an object was recorded as a response. If the child 

did not respond, this was repeated; if the child still did not respond, the experimenter 

advanced to the next test trial. A Latin Square was used to counterbalance the order of 

conditions during testing across participants.  

 

Figure 3.  

Behavioural study: (A) Example of training trials; (B) Example of testing trials. 

 

Coding 

Training trials were video-recorded and coded per utterance for total gestures and 

speech co-occurring with gesture by a trained coder (see Supporting Information, Appendix 

A, for details). An independent second rater coded 20% of the videos (randomly selected), 
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with an inter-rater reliability of Cohen’s κ = 0.78 for categorisation of gesture into subtypes 

(deictic, representational, other; N = 284; 85.21% agreement) and Cohen’s κ = 0.86 for 

categorisation of speech with gesture into subtypes (complementary or supplementary; N = 

160; 92.5% agreement). 

An utterance was defined as a string of words or gestures preceded and followed by 

a pause or changes in conversation turn or intonation (Rowe et al., 2008). For gesture 

subtypes, we adapted Rowe et al.'s (2008) coding system: deictic gestures were intentional, 

clear movements that singled out the target, including pointing towards the target (e.g. finger 

points with the arm in extension) and reaches towards the target (e.g. extension of the arm 

with the palmar aspect of the hand exposed, or extension of the arm with the fingers in 

extension). Representational gestures included upper limb or body movements depicting 

object attributes such as shape or size (e.g. indicating a ball is round with two hands cupped 

and fingers flexed) and actions with the object (e.g. cupping the palmar aspect of one hand 

with fingers flexed, followed by arm movement forward from the shoulder joint, to indicate a 

ball rolling). Other gestures included all gestures not directed towards the referent; these 

included both deictic and representational gestures towards foils, to the experimenter, or 

caregiving-related gestures such as a parent hugging a child.  

We adapted Iverson and Goldin-Meadow's (2005) coding system for speech with 

gesture in order to account for the effect of combined gesture and speech on learning as 

either complementary, where speech contained the target label, or as supplementary, where 

speech contained related information about the target referent such as size, colour, or 

function. Deictic gestures and occurrences of complementary speech with gesture 

correspond to the gestural cue conditions of the computational model. We also recorded the 

total number of times the referent label was used.  

Vocabulary measures 
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Caregivers completed a demographics questionnaire that included socioeconomic 

status (SES; determined by parent education level). A parent-report measure of child 

vocabulary, the UK Communicative Development Inventories (CDI; Alcock et al., 2017) was 

also administered. The UK CDI measures expressive, receptive, and gesture vocabulary 

(communicative and symbolic). Communicative gestures include declarative and imperative 

gestures. Symbolic gestures are representational gestures that include actions, games, and 

pretend play.  

2.5.2 Results and Discussion 

Data, code, and models run are available on OSF 

(http://osf.io/6frcw/?view_only=72344789a6294aa19d63a8bd93a628f3). All dyads were from 

similar, mid-high SES backgrounds. Dyads that only completed training and those that 

completed both training and testing, did not yield any significant differences in demographics 

or CDI scores (Table 2).  

 

Table 2.  

Behavioural study: demographics and child vocabulary scores. Measured by the UK-

Communicative Development Inventories with Welch two sample t-tests comparing 

those that completed training only, and those that completed training and testing. 

 Completed 
training  
(total 
sample;  
N = 47) 

Completed 
training + 
testing 
trials  
(n = 27) 

Completed 
training 
only  
(n = 20) 

Welch two sample t-tests 
(completed training + testing,  
v. completed training only) 

Sex (m:f ratio) 27:20 14:13 13:7    
 mean (sd) mean (sd) mean (sd) t (df) 95% CI p-

value 
Age (months) 20.5 (1.7) 20.8 (1.6) 20 (1.8) -2 (38) [-1.85, 0.22] .100 
Receptive vocab. 276 (91.5) 294 (87.9) 251 (92.9) -2 (40) [-96.5, 11.7] .100 
Expressive vocab. 146 (114) 159 (119) 129 (108) -0.9 (43) [-97.2, 36.8] .400 
Comm. gesture  19.9 (3.79) 20.5 (3.9) 19.1 (3.6) -1 (43) [-3.60, 0.83] .200 
Symb. gesture  41.1 (6.9) 41.4 (7.4) 40.5 (6.4) -0.4 (33) [-5.40, 3.58] .700 

comp. = complementary; symb. = symbolic; vocab = vocabulary 
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To compare behavioural results to the computational model prediction that cue 

importance increased with referential ambiguity, we tested whether the number of objects 

during training affected caregiver behavioural cue use; in particular, deictic gesture use. LME 

models (lmer and lme4; R [v3.4.1, 2017]) were constructed to predict caregiver deictic 

gesture use, complementary speech with gesture, and referent label use separately. For 

each analysis, the number of objects during training (condition: 1, 2, or 6) was included as a 

categorical fixed effect, and child vocabulary was included as a numeric fixed effect. Due to 

high correlation between expressive and receptive vocabulary, separate linear mixed effects 

models were carried out – one with fixed effects of expressive, symbolic, and communicative 

gesture vocabulary, and one with receptive, symbolic, and communicative gesture 

vocabulary. Only the latter analysis is included here as the task required children to 

understand, rather than produce, novel words. Analyses with expressive vocabulary resulted 

in similar effects and are reported in the Supporting Information (Appendix A, Tables S3-S4). 

The models also contained random effects of participant, child age, target word, and target 

item. Slopes of condition per participant resulted in the model not converging. As for the 

computational model analysis, we included one fixed effect at a time, and used log-likelihood 

comparison to compare the contribution to model fit for each fixed effect (Barr et al., 2013). 

Separate LME models were also constructed in the same way to predict caregiver and child 

behaviour for each subtype described in our coding scheme to examine the range of 

caregiver communication with their children. We report here complementary speech with 

gesture and referent label use as these also highlight the referent in a similar manner to 

deictic gestures; all other subtypes can be found in Supporting Information (Appendix A, 

Tables S3-S4, Figure S4). 

Cues during training 

Caregiver data demonstrated a significant effect of condition on overall gesture use 

(χ2(2) = 11.73, p = .003). Consistent with the MIM results, this was largely due to deictic 
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gesture cues (χ2(2) = 9.48, p = .009; Table 3, Figure 2C), with caregivers using more deictic 

gesture cues in the two-object (t(90.24)= 2.32, p = .023) and six-object (t(91.79) = 3.08, p = 

.003) conditions when compared to the one-object condition. Caregivers demonstrated no 

significant increase in deictic gesture use between two- and six-object conditions (t(93.35) = 

0.77, p = .445). There were no significant fixed effects of child vocabulary or significant 

interactions found, and representative and other gestures did not yield any significant effects 

or interactions (Supporting Information, Appendix A, Figure S4A).  

 

Table 3.  

Behavioural study: linear mixed effect model (LME) results testing the effects of 

number of objects during training and child vocabulary scores on caregiver deictic 

gesture use during training trials, and generalised estimated equation (GEE) results 

on the effects of number of objects during training and child vocabulary scores on 

child accuracy at test.  

Dependent 
variables 

Independent variables Estimate 
 

SE df t p-value 

Caregiver deictic 
gestures during 
training  
(LME) 

(intercept – one object)  2.99 0.31 12.58 9.76 <.001 
One v. two objects 
One v. six objects 
Two v. six objects 
 

0.57 
0.76 
0.19 
 

0.25 
0.25 
0.25 

90.24 
91.79 
93.35 

2.32 
3.08 
0.77 

.023 

.003 

.445 

  Estimate SE  Wald  p-value 
Child testing 
accuracy 
(GEE) 

(intercept – one object)  -1.76 0.66  7.05 .008 
One v. two objects 
One v. six objects 
Two v. six objects 
Receptive vocabulary 
Caregiver deictic 
gesture 
 

0.90 
0.85 
-0.05 
0.002 
0.03 

0.43 
0.46 
0.50 
0.002 
0.10 

 4.36 
3.32 
0.01 
1.24 
0.10 

.037 

.068 

.921 

.265 

.749 

 
 

When examining caregiver complementary speech with gesture the addition of child 

symbolic gesture vocabulary improved model fit with a main effect of condition (χ2(3) = 0.43, 

p < .001; Table 4). Caregivers used more complementary speech with gesture in the two-
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object than the one-object condition (t(80) = 2.58, p = .012), but there was no significant 

difference between the two-object and six-object conditions (t(80) = -0.89, p = .375). A 

significant effect of condition on their overall use of the novel label was also found (χ2(2) = 

11.90, p = .003, Table 4). The novel label was uttered significantly more by caregivers in the 

two-object compared to the one-object condition (t(89.49) = 2.37, p = .020), but significantly 

less in the six-object compared to the two-object condition (t(89.66) = -3.52, p < .001). No 

other significant effects of child vocabulary or interactions were found. 

Overall, these results were consistent with the MIM model showing the largest effect 

of gesture availability in the two- and six-object conditions.  

 

Table 4. 

Behavioural study: linear mixed effects model results testing the effects of number of 

objects during training and child vocabulary scores on caregiver gesture and speech 

with gesture subtypes during training trials.  

Dependent 
variable 

Independent variables Estimate 
 

SE df t p-
value 

Referent label use  (intercept – one object)  6.49 0.57 8.11 11.44 <.001 
 One v. two objects 

One v. six objects 
Two v. six objects 

0.77 
-0.39 
-1.16 

0.33 
0.33 
0.33 

89.49 
91.12 
89.66 

2.37 
-1.18 
-3.52 

.020 

.242 
<.001 
 

Comp. speech 
with gesture  

(intercept – one object)  0.43 1.04 41.57 0.41 .069 
One v. two objects 
One v. six objects 
Two v. six objects 

0.65 
0.43 
-0.23 

0.25 
0.25 
0.25 

80.00 
80.00 
80.00 

2.58 
1.68 
-0.89 

.012 

.096 

.375 
 Symb. gesture vocab 

 
0.03 0.02 36.27 1.33 .193 

comp. = complementary; symb. = symbolic; vocab = vocabulary 

 

Accuracy at test 

We used Generalised Estimated Equations (GEE; geeglm and geepack; R[v3.4.1, 

2017]) to examine the effect of condition, caregiver behaviour, and child behaviour during 
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training on test trial accuracy.1 Separate GEEs were constructed to examine child 

vocabulary variables, condition, and each training behaviour gesture subtype as 

independent variables; here we report the effect of caregiver deictic gesture use with child 

receptive vocabulary. For all other subtypes and child vocabulary variables, please see 

Supporting Information (Appendix A, Tables S5-S8).  

In line with the computational model results, children performed most accurately in 

the two-object condition (Table 3, Figure 2D), although there was no significant difference in 

accuracy between the two-object and six-object condition (Wald = 0.01, p = .921). However, 

children responded significantly more accurately in the two-object than the one-object 

condition, even when child receptive vocabulary and caregiver deictic gesture use were 

accounted for (Wald = 4.36, p = .037). 

Although the lack of referential ambiguity would suggest that word-object mapping 

should be easier in the one-object condition, a higher success of word learning in the two- 

and six-object conditions was consistent with the MIM computational results. Additionally, 

although children were offered the least amount of gesture information by caregivers in the 

one-object condition, adding caregiver behaviour subtypes during training to the analysis did 

not contribute any significant value to predicting accuracy during testing (Table 3; Supporting 

Information, Appendix A, Tables S5-S8).  

2.6 General Discussion 

Natural language learning environments are noisy and variable, and yet children still 

manage to accurately map words to objects. In this study, we predicted that a computational 

model of word learning (MIM) trained under conditions of varying referential uncertainty 

would learn faster with fewer potential referents. We also predicted that a gestural cue would 

be most helpful to word-referent mapping when there was an increase in potential referents.  

 
1 General linear mixed effects models (glmer package; lme4 in R [v3.4.1, 2017]) were originally used but failed to 
converge, so GEEs were employed. 
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Contrary to our first prediction, but consistent with literature highlighting the value of 

variability during word learning (e.g. Apfelbaum & McMurray, 2011; Monaghan, 2017), the 

computational model predicted the most robust learning when there were several potential 

referents, rather than just one. Although the MIM learnt quickest in the one-object condition, 

there was higher accuracy at test when it had been trained under referential uncertainty 

during the two- and six- object conditions. The addition of a gestural cue during training 

significantly improved learning when there were more potential referents as predicted, but 

the model also benefited from the presence of variability via the availability of gestural cues, 

learning most robustly when cues were presented 33% and 67% of the time.  

This generated two hypotheses for testing in behavioural settings. Firstly, if 

caregivers are sensitive to the role of gestural cues in supporting word learning, they ought 

to use more gestures when there is referential uncertainty, and secondly, children might 

actually learn best when trained under referentially uncertain conditions. The experimental 

study did identify that caregivers adapt their gestural cues to support learning in the face of 

referential uncertainty, but with significant increases only from the one-object to the two-

object or six-object condition, and no significant increase from the two-object to the six-

object condition. Finally, the experimental study also found that children learnt best under 

referential uncertainty, performing most accurately in the two- and six-object conditions, in 

line with the model’s surprising predictions.  

These results were somewhat counterintuitive; one might expect the highest test 

accuracy in the behavioural study for words learnt in the one-object condition. This would be 

consistent with the fast-mapping literature, where children are able to identify a new word 

after a single exposure (Carey & Bartlett, 1978), and with cross-situational word learning in 

adults that indicates increasing the number of potential referents results in less accurate and 

slower learning (K. Smith et al., 2011; Trueswell et al., 2013; Yu & L.B. Smith, 2007). 

Despite this, our task differed in several ways that could have affected performance at test. 
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Firstly, children were not tested on each word after the corresponding training trial as in 

referent selection trials during fast-mapping tasks (Horst & Samuelson, 2008) – they were 

tested after all training trials. Secondly, the co-occurring foils were novel, whereas fast-

mapping tasks involve familiar objects alongside novel objects. Cross-situational word 

learning paradigms also usually offer the opportunity to learn from within- and across-trial 

competition as all objects are named (Yurovsky et al., 2013). In our study, there was no such 

opportunity, as different foils were used within-subject for each condition, and testing trials 

consisted of forced-choice between the three target objects.  

Rather, it is possible that the presence of referential uncertainty in the two- and six-

object conditions might have supported learning through enabling comparison. The role of 

two or more competing alternatives is well established in internal constraint accounts of 

language learning, including mutual exclusivity (Halberda, 2006; Markman & Wachtel, 1988) 

and the novel name-nameless category principle (Golinkoff et al., 1992). Similarly, children’s 

learning of categories is aided by having an alternative, either by using comparison, where 

one object appears with others in the same category, or by contrast, where an object 

appears with a non-category object (Ankowski et al., 2013). Such a beneficial effect may 

also apply in our study where the referent is identified among a range of other unknown 

objects.  

Few studies have examined cross-situational referential ambiguity in infants and 

children, with most limiting referential ambiguity to two potential referents per training trial 

(e.g. L.B. Smith & Yu, 2008; Yu & Smith, 2011). Those that have examined older children 

(5–7-years-old) suggest that they may struggle most when a specific foil, termed a high 

probability competitor, co-occurs with a target more often than other foils (Suanda et al., 

2014). Bunce and Scott (2017) examined 2.5-year-old children with four potential referents 

per trial. Children could identify the correct target using cross-situational statistics with four 

potential referents without exhaustive labelling when all distractors were different (no across-
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trial competition), and even with a high probability competitor – but only if a different foil 

appeared by the last trial, allowing disambiguation at the end of training. This suggests that 

children are able to learn under certain circumstances with increased referential ambiguity, 

subject to limitations in cognitive and memory capacity.  

Another potential explanation for performance in the one-object condition is that 

children were less interested compared to when there were several objects present. Future 

research could use an eye-tracker to measure attention more precisely and determine how 

foils are fixated on alongside targets. Testing immediately after training trials using both 

target and foil objects may also help illuminate whether children process all objects present. 

The present computational model and experimental study also highlighted that some 

variability in both the environment and in the use of cues in communication may facilitate 

learning. We have demonstrated that the former influences the latter, establishing that 

caregiver gesture cue use when teaching their children novel words was contingent on the 

presence of referential uncertainty. This is consistent with the theory that gestures singling 

out target referents are particularly valuable during word-object mapping (Cartmill et al., 

2013; Rader & Zukow-Goldring, 2012). However, although we expected gesture use during 

training to increase from the two- to the six-object condition, this was not the case. Hence, 

caregivers gestured and offered cues according to the presence, rather than the degree, of 

referential uncertainty, and did not offer significantly more cues when referential uncertainty 

was high.  

Taken together, these results indicate that referential uncertainty is perhaps subject 

to some degree of cognitive management by both the caregiver and child, where high 

uncertainty can be reduced to a more tractable sense of ‘this, not that’. The use of gestural 

cues may reduce cognitive load for the infant (Goldin-Meadow, 2000; McGregor et al., 2009; 

McNeil et al., 2000); the key difference in our study seemed to be between having either one 

choice of word-object mapping, or more than one – beyond this, the benefits of gestural cues 
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may begin to decline. Caregivers appeared to be sensitive to this lack of discrimination 

between the two- and six-object conditions, as there was no significant difference in their 

behaviour. A switch to laborious counting during the six-object condition, rather than being 

able to immediately perceive the number of items in the one- and two-object conditions 

(Cowan, 2001; Xu & Chun, 2009), may have affected how the caregiver then packaged 

information for their child. This could potentially lead to the treatment of the two- and six-

objects as analogous by the caregiver, and thus the child. Similarly, gestural cues did not 

have a large effect on speed of learning in the six-object condition in the computational 

model compared to the one- and two-object conditions. 

Studies of how children acquire representations of number additionally indicate that 

children around 20-months-old are not able to comprehend more than three or four objects 

(Feigenson et al., 2004; Le Corre & Carey, 2007; Wynn, 1990), which could also render 

performance across the two- and six-object conditions in our study somewhat analogous. 

Despite this, being able to distinguish only a limited number of stimuli may also help 

constrain word-referent mappings. Head-mounted cameras during toy exploration laboratory 

studies show that, despite having multiple objects in front of them, 20-month-olds tend to 

hold single objects in view at a time (L.B. Smith et al., 2011) and learn the names of objects 

that dominate their view simultaneously with label utterance (Pereira et al., 2014). 

However, we did not test incremental increases in referential uncertainty, opting 

instead for no ambiguity, some ambiguity, and high ambiguity. An interesting avenue for 

future research would be to investigate whether there is a precise ‘tipping point’ in the 

number of potential referents at which caregivers cease to offer more gestural cues to their 

children and whether this then affects children’s learning – although the similar performance 

between the two-object and six-object conditions may suggest that anomalies in behaviour 

and learning are unlikely to occur with intermediate ambiguity between two and six objects. 
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Although cues are useful for supporting learning, they are also individually highly 

variable within naturalistic environments. Caregivers may not gesture towards intended 

referents on 85% of occasions (Iverson et al., 1999), articles may precede adjectives rather 

than nouns (Monaghan et al., 2007), and prosodic cues also are not always consistent 

(Fernald, 1991). The computational MIM simulations also found that the most robust learning 

occurred when gestural cues were present some of the time, rather than when they were 

exclusively present or absent. Why is this? Firstly, it has been established that a system that 

relies on perfectly reliable cues learns quickly, but learning is brittle when those cues are no 

longer reliable (Monaghan, 2017). Secondly, when identifying a target from amongst 

different competitors, the occasional lack of a cue may make the presence of one more 

salient, avoiding potential habituation effects (Veale et al., 2011) and preventing inhibition of 

other useful information (Kamin blocking effect; Shanks, 1985). A system where gestural 

cues vary may then have a higher degree of sensitivity to those cues than one where 

gestural cues are either always there, or always absent. Thus, variability of cues is not only 

more similar to real-world settings, but also benefits learning. This raises the intriguing 

possibility that the variability of cues when children are acquiring vocabulary may not be an 

accident of a noisy environment, but rather the stochasticity of adults’ use of cues may be by 

design. 

In our experimental study, we did not find any effect of training response variables on 

testing data – inclusion of caregiver gesture and speech use did not predict child accuracy 

after controlling for condition. If referential uncertainty and the cues in response to it are so 

vital to learning, why did this not manifest in our data? This may be partly due to our sample 

of mid-to-high SES families who had actively expressed interest in developmental research. 

Families from higher SES backgrounds have been found to use gesture more than those 

from lower SES backgrounds, with an increase in parental gesture correlating with increased 

child gesture and later vocabulary skill (Rowe & Goldin-Meadow, 2009). Our participants 
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may well have been at a ceiling level of caregiver input, resulting in gesture adding very little. 

Gesture may be particularly beneficial to language development in environments with limited 

resources and a diminished quality of parental input (Kirk et al., 2013), and may be useful as 

part of language interventions in low income families (Vallotton, 2012). Consequently, we 

recommend that caution should be exercised when generalising our conclusions across 

different SES backgrounds.  

Additionally, as our sample inclusion criteria precluded developmental delay, our 

findings may not extend to these populations (Hartley et al., 2019, 2020). Our results 

confirmed that caregivers appeared to be sensitive to task demands, and models predicting 

speech with gesture during training were improved with the addition of CDI subscales. 

Although these estimates were very small, the impact of child vocabulary could be more 

prominent in a language delayed sample (Wray & Norbury, 2018). 

An alternative explanation concerning why caregiver behaviour did not predict 

children’s behaviour relates to our sample’s age (20-months-old on average). Previous 

literature links caregiver gesture and early child gesture use at 10–14-months-old  

(Liszkowski et al., 2012; Liszkowski & Tomasello, 2011) and caregiver gesture use in Rowe 

et al. (2008) predicted early child gesture use at 14-months-old, but not expressive 

vocabulary at 42-months-old. Caregiver gesture use appears relatively stable over time, 

whereas child gesture use may take a supportive role to speech once verbal ability is 

established (Goldin-Meadow, 2007; Iverson et al., 1999; Rowe et al., 2008). Subsequently, 

children in our study may have been at a stage where verbal input is weighted more heavily 

than gesture input. Although we examined some of these factors, our primary focus was 

deictic gestures. Future research could consider speech input in greater depth, including 

Mean Length of Utterance and temporal relations of naming events with gesture.  

We also found a higher level of child dropout when testing trials commenced, 

reducing power for GEE analysis (which could also reduce the effect of caregiver gesture on 
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child behaviour; Liszkowski et al., 2012; Liszkowski & Tomasello, 2011). Although we 

observed no significant differences between children that completed testing and those that 

did not, child fussiness may have been caused by objects being out of reach during training, 

resulting in frustration by the time testing commenced. This may mean that differences in 

temperament and attention could be present that were not accounted for. Additionally, 

whereas previous studies enabled children to freely explore an environment, we constrained 

the objects in our study to be out of reach to control for exposure times and interaction with 

the objects. This could have resulted in less gesture, particularly by children, who had no 

immediate receipt of the objects to which they gestured. Studies that compare objects within 

reach across varying environmental referential uncertainty, and that measure broader child 

traits, will usefully address these points. To isolate any effect of referential uncertainty itself 

from caregiver behaviour, future studies could also test children’s word learning across 

referential uncertainty without caregiver interaction.  

In conclusion, we found variability in gesture cue availability combined with referential 

ambiguity produced optimal learning in a computational model of word learning. This was 

supported by an experimental study that demonstrated that: (a) caregivers gestured 

according to the presence, rather than degree, of referential uncertainty, and (b) children 

learnt best in the presence, rather than absence, of referential uncertainty. These results 

advance understanding of communicative exchange during word learning, indicating that 

caregivers contingently adapt their gesture use according to the presence of referential 

uncertainty. 
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3 Chapter 3: Better early than late, and better late than never:  

The temporal dynamics of gesture cues in cross-situational word learning 

3.1 Chapter introduction 

Gesture cues support word learning and often occur in conjunction with spoken words, such 

as pointing at a referent for a novel label. Work by Trueswell et al. (Cartmill et al., 2013; 

Trueswell et al., 2016) and L. B. Smith et al. (Pereira et al., 2014; L. B. Smith et al., 2010) 

indicates that the timing of when a referent is visually highlighted in conjunction with hearing 

an auditory label is important for encoding word-referent pairs. This is consistent with how 

attention may be allocated as a result of endogenous cues, such as arrows (Brignani et al., 

2009; Yoshida & Burlington, 2012), but also with how sustained attention to objects predicts 

vocabulary size (Yu et al., 2019).  

However, we do not know (a) how gesture cues influence referential ambiguity, (b) 

how manipulating the timing of a gesture cue might affect word learning accuracy or (c) how 

the process of highlighting visual referents with gesture cues relative to auditory labels 

temporally unfolds with respect to attention. Addressing these knowledge gaps enables us to 

gain not only a better understanding of gesture cues in cross-situational word learning, but 

may also offer insight into why gestures occur before speech under naturalistic settings. 

In this paper, we examine the influence of a pointing gesture cue in adult word 

learners by firstly altering the amount of referential ambiguity, and then by altering the timing 

of the cue, tracking the progress of learners using an eyetracker. 

 

Author contribution for Chapter 3: Rachael W Cheung: design, data collection, analysis, 

writing, review. Calum Hartley: design, review. Padraic Monaghan: design, review 
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3.2 Abstract 

Gesture cues provide substantial support for language, and gesture frequently accompanies 

child directed speech. How gesture cues integrate temporally with speech information during 

word learning is not yet clear. Across three pre-registered experiments, we investigated how 

the timing of gesture cues interplay with referential ambiguity during cross-situational word 

learning in adults. Experiment 1 showed that referential ambiguity can be reduced with a 

gesture cue to the same level as unambiguous conditions. Experiment 2 tested presentation 

of a gesture cue 1 second before or after a label with referential ambiguity, and showed that 

gesture preceding the label promoted the most accurate learning – although the presence of 

a late gesture aided learning more than having no gesture cue. Finally, Experiment 3 

investigated the time course of learning with gesture cues before and after the label using 

eye tracking. We showed the learning advantage afforded by early gestures was due to how 

participants’ attention was directed during label utterance, and that this advantage was 

apparent even at initial exposures of word-referent pairs. Our findings show gesture cues 

support word learning by reducing referential ambiguity as the learning process unfolds, 

allowing time-coupled integration of visual and auditory information that aids encoding of 

word-referent pairs.   
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3.3 Introduction 

The environment surrounding language learners is busy, with multiple variable sources of 

information present (Holler & Levinson, 2019). In this environment, a learner must accurately 

assign unknown, novel words to the correct objects, concepts, or actions (referent selection) 

in order to acquire language, and further encode these pairings for later retrieval (retention). 

Referent selection poses the referential ambiguity problem (Markman, 1989; Quine, 1960; L. 

B. Smith & Yu, 2008): given the many sources of input, and the multiple possible pairings 

between words and referents, how does a language learner successfully arrive at the correct 

word-referent pair?  

A number of learner-based constraints have been proposed to address the referential 

ambiguity problem. These include the novel name-nameless category (e.g. when presented 

with a familiar object with a known name and an unfamiliar object with an unknown name, 

the latter must be the referent of a novel word; Golinkoff et al., 1992), and explicitly 

contrasting an unfamiliar named referent with a familiar named foil (e.g. asking a child to 

retrieve a ‘chromium tray, not the blue one’; Carey & Bartlett, 1978). Another example is 

mutual exclusivity (Markman & Wachtel, 1988), where learners reject one object in favour of 

another by process-of-elimination (disjunctive syllogism; Halberda, 2006): when presented 

with two objects, and one object is already known to be a ‘cup’, then the ‘terb’ must be the 

other object. The use of a contrast (Clark, 1987) in these instances aids referent selection by 

providing a means of prior reference – the familiar object – which reduces referential 

ambiguity. However, these strategies cannot be applied by learners in situations where all 

objects are novel and there are no familiar objects to disambiguate from. 

Other prominent accounts have considered how the environment itself can contribute 

to more general learning processes, such as via the availability and use of cross-situational 

statistics (Siskind, 1996). Cross-situational learning refers to the aggregation of information 

and commonalities across several, rather than single, learning instances (Yu & Smith, 2007). 
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Typically, a cross-situational word learning paradigm presents a series of individually 

ambiguous trials involving two or more novel objects that co-occur with novel words, and the 

learner’s task is to individuate as many correct word-object pairings as possible. These 

objects and labels are presented over many trials with different foils, but no additional 

information is provided to inform the learner which words refer to which objects. Thus, the 

learner must acquire novel label-object pairs simply by tracking the co-occurrence of 

particular words and objects across multiple exposures (e.g. Fitneva & Christiansen, 2011; 

Monaghan & Mattock, 2012; Roembke & McMurray, 2016; K. Smith et al., 2011; Yu & Smith, 

2007; Yurovsky et al., 2013).  Whilst internal bias accounts focus on disambiguating 

meaning within the context of an individual naming event, cross-situational word learning 

relies on the aggregation of knowledge across multiple naming events.  

However, cross-situational statistics are only one source of information for how a 

learner might solve the mapping problem when faced with multiple unknown referents. 

Referential ambiguity may be reduced through other environmental cues. As a result, 

multiple cue models have explored how the use of additional cues such as gaze direction, 

prosody, or gesture (e.g. Hollich et al., 2000) can be combined with cross-situational word 

learning to facilitate mapping of word-referent pairs (Monaghan et al., 2017; Yu & Ballard, 

2007).  

Pointing gestures in particular have a high degree of accuracy when identifying a 

word’s intended referent during parent-infant interactions (Cartmill et al., 2013; Frank et al., 

2013) and also during adult cross-situational word learning (Monaghan, 2017; Monaghan et 

al., 2017). One possible explanation for their beneficial effect is that pointing gestures 

modulate the degree of referential ambiguity by leading participants to utilize single 

hypotheses about word-object pairs, reducing the formation of spurious word-object 

associations (similar to the effect of eye gaze; MacDonald et al., 2017). Therefore, pointing 

gestures may modulate referential ambiguity by reducing any potential conflicting 
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associations between foils and words. However, whether or not external cues – such as 

pointing – can reduce uncertainty to the same level as learning instances with no referential 

ambiguity is currently unknown.  

Understanding how external cues support cross-situational word learning also 

requires the consideration of temporal processing. The use of cues in learning and 

attentional orientation has been well-documented in the attention and memory literature (e.g. 

Hauer & Macleod, 2016), but remains under investigated in language research. Such studies 

distinguish the use of endogenous cues (e.g. arrows or eye-gaze), where attention is 

directed voluntarily to a target, as opposed to exogenous cues (e.g. flashing lights), where 

attention is directed automatically as a result of sudden salient stimuli (Jonides, 1980; 

Posner, 1981).  

Naturalistic social cues during word learning, such as eye-gaze and pointing 

gestures, likely act as endogenous cues similar to those that are examined during attentional 

shifting experiments (Brignani et al., 2009). Pointing gestures may reduce referential 

ambiguity by orienting attention, thus strengthening the encoding of a highlighted word-

referent pair. Similarly, changes in how endogenous and exogenous cues are weighted over 

the course of early development may inform how competition between different cues is 

resolved in language acquisition, with infants utilizing exogenous cues first, followed by 

endogenous cues as they mature (de Diego-Balaguer et al., 2016; Wu and Kirkham, 2010). 

However, despite calls for further examination of attentional cuing in word learning (L. B. 

Smith et al., 2010) and studies that examine infant word learning through attentional 

mechanisms in multi-modal environments (e.g. N. Kirkham et al., 2019; Yoshida & Hanania, 

2007), the means by which attentional cues interact with cross-situational statistical 

information is not yet fully understood.  

Studies that examine use of endogenous cues suggest there is temporal sensitivity to 

the role of these cues. Whereas exogenous cues quickly shift focused attention between a 
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cue and a target at 50ms, shifts of focused attention due to endogenous cues may take up to 

500ms (Berger et al., 2005; Shepherd & Müller, 1989). This indicates that the timing of a cue 

in relation to a label utterance appears crucial to word-referent mapping and to how attention 

is directed: cues may be more useful if they occur before the label in order to allow attention 

to be shifted early, thus allowing attention to be focused on the referent during label 

utterance.  

This effect is reflected in naturalistic studies of gesture and labelling. In the Human 

Simulation Paradigm (HSP; Gillette et al., 1999), adult participants guess ‘missing’ words 

from parent-child interaction videos, where the target word is obscured by an auditory ‘beep’ 

(e.g. ‘where’s the [obscured target word]?’). Scoring participants’ accuracy of guess provides 

a measure of how informative any surrounding cues are when identifying the target word. 

Trueswell et al. (2016) found that the gestures made by parents within parent-child 

interaction videos could be used to predict the accuracy of participants’ guesses relative to 

target word onset. Gestures were time-locked to word utterance in their ability to reduce 

referential ambiguity. Vitally, shifting the obscuring ‘beep’ 2 – 4 seconds away from actual 

word occurrence significantly reduced guessers’ accuracy in identifying the target referent. 

This indicates that the relative timing of gesture and speech events is crucial to identifying 

correct word-referent pairs, where even minimal disruption to the time course can yield 

reductions in accuracy of word-referent pairs. Evidence from head-mounted cameras also 

suggests that the timing of a referent’s appearance is tightly linked to word utterance. When 

parents teach infants novel words, successfully learned referents tend to appear centrally in 

view from -6 seconds to +5 seconds from naming events (Pereira et al., 2014).  

However, there has as yet been no direct demonstration of the learning effects of 

gestural cues at different onsets with respect to word-referent pairings, meaning the early 

cueing effect of gestures relative to labels has not been tested experimentally. Directly 

manipulating different onsets for gestural cues influencing word-referent mappings enables 
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us to unpack why temporal processing matters in word learning, as well as allowing us to 

establish how the timing of gesture interacts with competing potential word-referent pairs 

within cross-situational word learning.   

Finally, although various sources of information may aid accurate referent selection, 

this may not necessarily reflect long-term learning. Initially accurate referent selection under 

referential ambiguity may reflect ‘fast’, in-moment problem-solving by the learner, whereas 

retention of novel words may occur as a ‘slow’ and gradual process, during which multiple 

exposures are used to strengthen or weaken word-referent pairs over time (as in the 

dynamic associative model; McMurray et al., 2012). Whereas mapping novel word-referent 

pairs via cross-situational statistics is possible from 12 months (L. B. Smith & Yu, 2008), 

retaining and retrieving them may occur on a developmentally slower scale (Hartley et al., 

2020; Horst & Samuelson, 2008; Vlach & DeBrock, 2019). However, we do not yet know 

how in the presence of endogenous cues, such as gesture, during cross-situational word 

learning might interact with retention.  

Advancing the extant literature, our study addresses a series of questions concerning 

how a learner can identify a word-referent pairing amongst noise by using environmental 

cues to reduce referential ambiguity, and how this might affect the subsequent retention of 

novel words: 1) Can gestural cues compensate for multiple potential referents in the 

environment, and to what degree? 2) How might cues compensate for referential ambiguity 

as the learning process unfolds temporally? 3) Do the influences of gesture on referent 

selection also apply to retained word-learning?  

In a series of three experiments, we address each of these questions in turn. In 

Experiment 1, we investigated how referential ambiguity might be overcome by manipulating 

the presence of a pointing gesture during conditions that had one object (ambiguity absent) 

versus those that had two (ambiguity present). Experiments 2 and 3 investigated the 

temporal process of how gesture cues are integrated with co-existing auditory and visual 
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information to support accurate cross-situational word learning by manipulating the timing of 

a pointing gesture cue (Experiment 2) and employing an eye-tracker to uncover the 

dynamics of attention and relations to word learning (Experiment 3). Finally, in each of our 

experiments, we also tested how our manipulations might affect both immediate recall and 

retention (after a delay) of novel word-referent mappings. 

All pre-registrations, data, viewing of experimental conditions and testing trials, and 

code for analyses of all experiments in this paper are available on the Open Science 

Framework (OSF): https://osf.io/2m9pe/?view_only=9d64688d03d84704aa5f2e8f8eb34dc9  

3.4 Experiment 1: How do gesture cues interact with referential ambiguity during 

word learning? 

In Experiment 1, we tested whether the presence of a gesture cue can reduce 

referential ambiguity sufficiently to benefit both immediate recall and retention accuracy. 

There were four conditions: 1) one object (the target; no referential ambiguity) with a gesture 

cue; 2) one object without a gesture cue; 3) two objects (one target and one unlabeled foil; 

referential ambiguity present), with a gesture cue, and 4) two objects without a gesture cue.  

If cues aid word learning primarily by reducing referential ambiguity, then participants 

should not exhibit a difference in performance in one-object conditions regardless of whether 

a gesture is present – when there is no referential ambiguity, the information afforded by the 

gesture cue is redundant. However, in the two-object conditions, we hypothesised that 

participants would perform more accurately when trained with a gesture cue, as the cue 

would diminish referential ambiguity, leading to greater intake of highly accurate statistical 

input. If a gestural cue in the two-object condition is sufficient to reduce referential ambiguity, 

then learners should perform on par with the one-object conditions with and without gesture 

cues. Furthermore, if the presence of a gesture cue enables participants to benefit from 

contrasting target and foil objects, the two-object condition with a gesture cue might even 

yield more accurate performance at test than either of the one-object conditions. Finally, we 
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also hypothesised that immediate test accuracy would predict retention accuracy, and that 

retention accuracy would be boosted by the availability of gesture cues in the two-object 

condition. 

3.4.1 Method 

Twenty monolingual English participants (M age = 21.0, SD = 1.53; 5 males, 15 

females) without any sensory deficits were recruited via leaflets and the Lancaster University 

research participation system, which allows all members of the University community to 

partake in research. Informed, written consent was obtained from all individuals prior to 

participation. Participants were either paid £3.50 or received course credit for taking part. 

The number of participants was specified in the pre-registration and based on previous 

studies that test cross-situational word learning using a similar paradigm (e.g. Monaghan et 

al., 2015; Monaghan & Mattock, 2012). 

Materials  

All stimuli used can be found in Supporting Information (Appendix B). Thirty-two 

novel objects and 32 novel two-syllable words were taken from the NOUN database (Horst & 

Hout, 2016). Sound files for each word were made using the Serena system voice 

(Macintosh computer, OS 10.13). Each object and word were paired randomly for each 

participant to produce 32 word-object mappings per participant. Pictures and audio were 

presented on a Macintosh computer (OS 10.13, 21.5-inch monitor, 1920 x 1080 resolution) 

using PsychoPy3 (Pierce & MacAskill, 2018). Participants used closed cup headphones. 

Procedure 

Testing took place in a quiet room. All experiments included two training and test 

conditions and were run using a similar procedure. Participants completed a warm-up with 

two familiar objects and words presented as they would be during training. During the first 

condition, participants undertook the first training block with one set of 16 word-referent 

pairs, followed by an immediate testing block, then a five-minute distractor task (colouring in 
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a geometric picture), before completing a retention testing block. They then repeated this 

process with another set of 16 word- referent pairs for the second condition.  

Each correct word-referent pairing appeared four times per training condition, with 16 

word-referent pairings to be learnt per condition. Screen position of the objects was pseudo-

randomised so that the target appeared an equal number of times on the left and on the 

right. The order of trials within training blocks was pseudo-randomised with the constraint 

that referents appeared no more than twice in a row. The order of conditions was counter-

balanced across all participants. For all experiments involving two objects, target objects 

also acted as foils for their non-associated words and were pseudo-randomised with the 

constraint of appearing an equal number of times across all trials. To ensure participants 

could disambiguate words and referents based on cross-situational information, co-

occurrences of the same targets and foils were minimised across trials. 

Training blocks 

Participants were randomly allocated to either a one-object or a two-object group. 

Within each group, they were exposed to both a no-gesture condition and a with-gesture 

condition, where a picture of a hand pointing to the target appeared simultaneously with the 

referent (Figure 1). The target word in both conditions was played 500 milliseconds after 

referent presentation.  
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Figure 1.  

Experiment 1 training trial examples: a) one object, no cue; b) one object, with cue; c) 

two objects, no cue; d) two objects, with cue (to view experiments on OSF: 

https://osf.io/2m9pe/?view_only=9d64688d03d84704aa5f2e8f8eb34dc9). 

 

a)   

      

b)   

 

 c)  

 

d)   
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Testing blocks 

In order to test learning accuracy for the word-referent pairs, participants were 

administered two testing blocks: immediate, which occurred immediately after training, and 

retention, which occurred after a five-minute distractor task (colouring in a complex picture). 

Each word was tested on one immediate trial and on one retention trial. During test trials, all 

16 referent objects were presented simultaneously on-screen and the learner was asked to 

click on the correct referent for each target word, requested in a random order (‘which is the 

[target word]?’; chance level = 0.0625; Figure 2). The on-screen positions of the referents 

differed for immediate and retention trials.  

 

Figure 2.  

Example of testing trials for all Experiments: participants see all 16 referents for given 

condition, and are asked to click on the corresponding object for novel words (to view 

experiments on OSF: 

https://osf.io/2m9pe/?view_only=9d64688d03d84704aa5f2e8f8eb34dc9). 
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3.4.2 Results and Discussion 

Accuracy of correct word-referent pairs was scored as either 1 (correct) or 0 

(incorrect) and entered into a series of general linear mixed effects models (GLMEs; using 

glmer in R, v1.1.463) as the dependent variable. Separate analyses were conducted for 

immediate testing blocks, retention testing blocks, and all testing blocks combined (i.e. 

immediate and retention testing blocks). This enabled direct comparison between trial types, 

reflecting the discrete word learning processes that may underlie immediate referent 

selection and retention of novel words after a delay. All model sequences began with a 

baseline model that contained only random effects. Subsequent models were then built 

progressively by adding individual fixed effects and comparing each model to the previously 

best-fitting model using log-likelihood comparisons (Barr et al., 2013).  

For models predicting immediate testing accuracy, fixed effects of object condition 

(one object or two objects) and gesture condition (present or absent) were included. For 

models predicting retention accuracy, a fixed effect of accuracy for each word on immediate 

testing trials (1 for ‘correct’ or 0 for ‘incorrect’) was added to the fixed effects of object and 

gesture condition. For models predicting overall accuracy, fixed effects of object condition 

(one object or two objects), gesture condition (present or absent), and trial type (immediate 

or retention) were included. For all models, random effects of participant, target word, and 

target object, and test order (one object or two object condition first) were included and 

random slopes of condition were fitted, unless this prevented the model from converging.  

The final best-fitting models to the data, and results for all three analyses, are 

presented in Table 1 and Figure 3. For all outputs and all model comparisons tested, please 

see OSF (https://osf.io/2m9pe/?view_only=9d64688d03d84704aa5f2e8f8eb34dc9).  

Participants performed above chance in both trial types. For immediate testing trials, 

the best model fit demonstrated a fixed effect of gesture cue condition (χ2(1) = 9.80, p = 

.002). Participants were significantly more likely to achieve higher accuracy at test when a 
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gesture cue was present during training (p < .001). There was no fixed effect of object 

condition. 

For retention trials, a model with fixed effects of immediate testing accuracy, object 

condition, gesture condition, and an interaction between gesture cue and object condition 

provided the best fit (χ2(1) = 8.26, p = .016). This model demonstrated that if participants 

were correct on their immediate testing trial for a given word-referent mapping, they were 

significantly more likely to respond correctly on the corresponding retention trial (p < .001). 

The model also demonstrated a reduction in accuracy at test in the two-object training 

condition overall (p = .026).  The interaction between gesture cue condition and object 

condition demonstrated that, in the two-object condition, the presence of a gesture cue 

during training significantly increased retention accuracy (p = .012).  

Notably, the interaction effect between gesture cue condition and object condition 

was only apparent in the retention data. The GLME model for overall accuracy (immediate 

and retention testing trials together) demonstrated a fixed effect of gesture condition only: 

across both trial types, participants were significantly more likely to respond correctly when 

tested on words that were learnt in conjunction with a gesture cue (p < .001; model fit, χ2(1) 

= 9.27, p = .002). Overall, participants scored similarly across two objects with a cue (M = 

0.72), one object with a cue (M = 0.67), and one object without a cue (M = 0.63), but scored 

least accurately when there were two objects without a cue (M = 0.45). 
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Table 1.  

Experiment 1: general linear mixed effects model results predicting immediate and 

retention trial accuracy and overall accuracy (both immediate and retention trials) by 

gesture condition (cue or no cue) and object condition (one or two) during training. 

Immediate accuracy   

Fixed effects estimate SE z-value  p-value 

(intercept) 0.28 0.37 0.75 .045 

Gesture condition (cue) 1.19 0.36 3.35 <.001 

Retention accuracy     

(intercept) -0.77 0.40 -1.92 .054 

Immediate accuracy (correct) 2.81 0.27 10.36 <.001 

Gesture condition (cue) 0.10 0.43 0.24 .810 

Object condition (two) -1.11 0.50 -2.23 .026 

Gesture (cue): object condition (two) 1.40 0.56 2.51 .012 

Overall accuracy     

(intercept) 0.30 0.44 0.68 .50 

Gesture condition (cue) 1.36 0.40 3.39 <.001 
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Figure 3.  

Experiment 1: mean accuracy at test and standard error bars in immediate and 

retention trials across object condition (one or two objects) and gesture cue condition 

(cue or no cue). 

 

 

These results show that, although the two-object condition contained substantially 

more information per trial, the addition of a gesture cue during training resulted in the same 

degree of learning as when words were learnt in the one-object conditions where there was 

no referential ambiguity. According to associative learning accounts (e.g., MacWhinney, 

2005; McMurray et al., 2012), under conditions of referential ambiguity, learners ordinarily 

form both target-label and foil-label associations and use this information to gradually narrow 

down the correct word-referent pairings. Thus, the benefit of gesture as an endogenous cue 

thus appears to be in the reduction of this referential ambiguity, potentially minimising 

accidental label-foil associations and strengthening label-target associations.  

The results of Experiment 1 thus indicated: (1) immediate testing accuracy is a 

reliable predictor of later retention of novel word-referent mappings, and the benefit of a 
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gesture cue to retention appears secondary to processes that occur during learning; (2) 

higher referential ambiguity produces lower accuracy at test, extending the findings of 

previous studies where greater numbers of referents decreased accuracy under conditions 

where all referents were named (K. Smith et al., 2009; Yu & Smith, 2007), potentially due to 

an increased number of spurious associations being made between labels and non-target 

foils; and (3) the addition of a gesture cue during training may prevent spurious word-

referent associations from being formed, improving accuracy on immediate test and 

subsequent retention trials to the same level as if there was only one referent present during 

training. 

 

3.5 Experiment 2: when are gesture cues in word learning most useful? 

Whilst Experiment 1 demonstrated that the addition of a pointing gesture during 

training can reduce referential ambiguity to improve learning accuracy, it did not unpack how 

gesture might be temporally integrated with a novel label during cross-situational word 

learning. As endogenous cues appear to induce slower attention shifts than exogenous cues 

(Shepherd & Müller, 1989), gesture cues that occur sometime before, rather than after, a 

label may be critical to encoding robust label-target associations and minimising spurious 

label-foil associations. Experiment 2 thus aimed to identify whether cue timing effects apply 

to the use of pointing gestures in cross-situational word learning.   

Experiment 2 fixed the presence of referential ambiguity (two objects) during training 

and manipulated the timing of gesture cues relative to label utterance across two conditions: 

one where the pointing hand gesture appeared before the verbal label, and one where it 

appeared after the label. In the HSP, Trueswell et al. (2016) found that shifting an obscured 

word 2 seconds earlier than the word’s original position was sufficient to reduce the accuracy 

score of those guessing the missing word from ~ 60% to ~ 43%. Shifting the word onset 

earlier, rather than after, actual word onset also had a pronounced effect: if the obscuring 
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‘beep’ was moved too early, guessers did not relate the visual event to the missing word, as 

they were perceived as too temporally discontinuous to be related to one another. However, 

shifting attention during word learning between potential referents can happen very quickly. 

In Halberda’s (2006) mutual exclusivity task that assessed how learners ‘double-check’ their 

novel word-referent mappings, participants shifted their attention from a known, distractor 

object to an unknown, target object within 225 milliseconds. We therefore examined the 

effect of presenting gesture cues by just 1 second before and after a novel label, to see 

whether sensitivity to cue timing can be observed occurred in a smaller window than tested 

by Trueswell et al. (2016) in the HSP.  

Experiment 1 showed that gesture cues were useful because they reduced referential 

ambiguity, and the endogenous cuing literature indicates that attention cued before, rather 

than after, a label will likely be of most use in reducing referential ambiguity to strengthen 

word-referent mappings. We thus hypothesised that participants would respond more 

accurately on both immediate and retention trials when tested on words trained in the early 

gesture condition compared to the late condition. If cues are most useful during learning 

when they occur early, rather than late, this suggests that cues may best support cross-

situational word learning by highlighting the target prior to (or at) label utterance, reducing 

spurious associations between the label and non-target foils. Late gesture cues may thus be 

less useful for word-referent mappings as any attentional shift that occurs due to the pointing 

gesture cue will be after the crucial information (the label) has been uttered, reducing the 

chance to reconcile the auditory label and the visual referent together and robustly encode 

the association. In line with Experiment 1, we also tested participants on both referent 

selection immediately after training, and on retention of novel words tested after a delay of 5 

minutes. 
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3.5.1 Method 

Participants 

Participants were twenty monolingual English adults without any sensory deficits who 

had not partaken in any of the other experiments (age M = 20.9 years, SD = 5.16, 5 male, 15 

female), as specified in the pre-registration. They were recruited and reimbursed as per the 

procedures outlined in Experiment 1. 

Materials and Procedure 

The Materials were the same as Experiment 1, and the Procedure was the same 

except for the following changes. 

Training blocks 

 Training followed the same procedure as Experiment 1 with the following changes: at 

all times, participants saw two objects on screen, and the timing of the gesture cue with the 

novel label was adjusted to ensure an equal amount of time before and after label utterance 

in both conditions. In the ‘early condition’, participants saw the gesture cue 1 second before 

word utterance. In the ‘late condition’, the gesture cue appeared 1 second after word 

utterance. In both conditions, the two referents appeared for the duration of the trial (3 

seconds), label utterance occurred at the same time at the 2 second mark after the referents 

had first appeared, and the cue lasted for 1 second (Figure 4). 

Testing blocks 

These were the same as in Experiment 1 (Figure 2), except that, in addition, 

participants were asked at debrief whether they noticed any differences between the two 

training blocks. If they answered “no”, they were probed specifically about whether they had 

noticed any difference in the gesture cue. 
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Figure 4.  

Experiment 2 and 3: Training trial examples, a) early gesture condition, b) late gesture 

condition. See OSF to view experiments 

(https://osf.io/2m9pe/?view_only=9d64688d03d84704aa5f2e8f8eb34dc9).  

 

a)        

 

 b)  

 
 
3.5.2 Results and discussion 

GLMEs were constructed in the same way as described for Experiment 1; only the 

fixed effects of condition differed. For each model, a fixed effect of gesture condition (early 

vs. late) was included. The results of all three analyses for Experiment 2 are presented in 
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Table 2 and Figure 5. Participants performed above-chance in both conditions on both 

immediate and retention trials.  

The best-fitting model for immediate testing trials demonstrated a fixed effect of 

gesture condition (χ2(1) = 4.21, p = .040). Participants were more likely to respond 

accurately in the early compared to the late gesture condition (p = .029). The best fitting 

model for retention trials demonstrated a fixed effect of immediate accuracy (χ2(1) = 142.11, 

p < .001). In line with Experiment 1, if participants responded correctly on immediate test 

trials for a word-referent pair, they were more likely answer correctly on the corresponding 

retention trial (p <.001).  

Overall, participants had higher accuracy (immediate and retention test trials) in the 

early condition (M = 0.69) compared to the late gesture condition (M = 0.60). For overall 

accuracy, the best-fitting model contained fixed effects of both gesture condition and trial 

type (χ2(1) = 4.47, p = .034), indicating that participants were more likely to respond correctly 

when tested on words learnt in the early gesture condition compared to the late gesture 

condition (p = .008), and had reduced accuracy in retention test trials overall (p = .032).  

At debrief, only four of the 20 participants reported noticing a difference between 

conditions related to the gesture cue. This was unexpected, as the conditions were split into 

two distinct training blocks and the timing differences between words and gestures spanned 

a 1 second interval, which we envisaged would be easily detected. 
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Table 2.  

Experiment 2: general linear mixed effects model results predicting immediate and 

retention trial accuracy and overall accuracy (both immediate and retention trials) by 

training gesture condition (early or late). 

Immediate accuracy   

Fixed effect estimate SE z-value  p-value 

(intercept) 0.79 0.43 1.83 .067 

Gesture condition (early) 0.56 0.26 2.18 .029 

Retention accuracy     

(intercept) -1.19 0.35 -3.44 <.001 

Immediate accuracy (correct) 2.92 0.28 10.59 <.001 

Overall accuracy     

(intercept) 0.78 0.45 1.75 .081 

Gesture condition (early) 0.78 0.29 2.67 .008 

Trial type (retention) -0.30 0.14 -2.14 .032 
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Figure 5.  

Experiment 2: mean accuracy at test and standard error bars in immediate and 

retention trials across gesture cue condition (early or late). 

 

 

The results of Experiment 2 indicate that the temporal ordering of cues with word 

utterance is important when initially establishing word-referent pairs, consistent with the cued 

attention literature (Hauer & Macleod, 2016; Yoshida and Burling, 2012). Our results not only 

confirm the importance of cue timing to referent identification identified by Trueswell et al. 

(2016), but also indicate that the effect of temporal continuity is even more fine-grained than 

-2 to + 2 seconds under certain circumstances. Gesture cues during training that occur just 1 

second before the label utterance significantly improved accuracy at test when compared to 

those that occurred 1 second after word utterance. Further, the effect of temporal contiguity 

of gesture and spoken label during referent selection as demonstrated by Trueswell et al. 

(2016) was also shown to apply to retention of word learning in our cross-situational 

paradigm. Thus, gesture timing affects learning as well as identification of the target referent 

in the moment.  
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Associative models of word learning (MacWhinney, 2005; McMurray et al., 2012; Yu 

& Smith, 2012) indicate that a learner builds up weights on associations between a label and 

both targets and foils. We show that directing attention to the target with a pointing gesture 

cue prior to the word being spoken may prevent the learner from making false associations 

between a foil and the label, limiting any competing associations. However, cues that occur 

after the word is spoken do not appear to prevent some competing false label-foil 

associations from being formed, resulting in reduced accuracy at test relative to the early 

gesture condition. Applying a cue to indicate the target referent after the label has been 

spoken, does not provide the same quality of information as when attention is already drawn 

to the target referent prior to the label being spoken. Therefore, the presence of cues is not 

the only factor that promotes optimal learning – the contiguity of those cues must also be 

effective. 

Interestingly, only four of the 20 participants noticed that the gesture cue appeared at 

different time points within trials across the two conditions. This suggests that the temporal 

synchrony of gestural and spoken information was not consciously available to the majority 

of participants, meaning that strategic use of information was not driving performance, and 

indicating that the difference in accuracy at test between the early and late conditions was 

not due to a conscious manipulation of attention by the learner themselves.  

To summarise, Experiment 2 showed that: 1) immediate referent selection accuracy 

is a predictor of retention accuracy as per Experiment 1; and 2) providing a gesture prior to 

label utterance yielded superior accuracy in comparison to a late gesture. These results, 

however, do not yet indicate precisely how learners’ attention to objects is affected by the 

timing of a gesture cue.  

We hypothesised that the advantage of early gesture cues over late cues was due to 

where attention was allocated during rather than following label utterance. We therefore 

repeated the procedure of Experiment 2, to replicate the behavioural effects, but also with 
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the addition of an eye tracker to monitor participants’ gaze during training trials, allowing us 

to pinpoint where attention is directed during label utterance. We predicted that participants 

would, as for Experiment 2, perform more accurately when tested on words trained in the 

early gesture condition, compared to the late gesture condition, and that immediate testing 

trial performance would significantly predict retention testing trial performance. We made two 

additional predictions relating to the eyetracking data: (1) if the early gesture cue promotes 

attention to the target over the referent, then for the early gesture condition (relative to the 

late gesture condition), participants would have increased overall relative looking time to the 

target compared to the foil during the training trials, particularly during the spoken label, and 

(2) if the early gesture cue advantage for learning is due to where attention is located when 

the word is spoken, then higher accuracy would relate to higher fixations to the target during 

and immediately after the spoken label, but not prior to the spoken label. 

 

3.6 Experiment 3: how do early gestures support more accurate word learning than 

late gestures? 

3.6.1 Method 

Participants 

Participants were twenty monolingual English adults without any sensory deficits who 

had not partaken in any of the other experiments (M age = 19.9, SD = 4.15, 5 male, 15 

female), as specified in the pre-registration. They were recruited and reimbursed as per the 

procedures outlined in Experiment 1. 

Materials 

 The materials remained the same as in Experiment 2 with the following exceptions: a 

Tobii Pro X3-120 eye tracker was used (sampling rate 120Hz) in conjunction with a Windows 

computer (17-inch monitor, screen resolution 1600 x 900) to track binocular participant gaze 
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throughout training trials. Participants were seated at a distance of approximately 60cm from 

the eye tracker.  

Procedure 

 Participants’ eye positions were calibrated using the Tobii Eye Tracker Manager five-

point calibration system before the experiment. The rest of the procedure followed that of 

Experiment 2.  

Processing eye-tracking data 

 An average of binocular data from the left and right eye was taken to give a single (x, 

y) co-ordinate for each gaze point. Where data from one eye was missing, the data from the 

other eye was taken. If data from both eyes were missing, linear interpolation within-

participant and within-trial was used to smooth the data.  

The data were split into time bins of 250 milliseconds, and three distinct areas of 

interest (AOIs; cue, foil, and target object) were identified. Fixations within these AOIs were 

detected using the saccades package in R, allowing for isolation of fixations whilst 

disregarding artifacts such as blinks. All processing code is available on OSF 

(https://osf.io/2m9pe/?view_only=9d64688d03d84704aa5f2e8f8eb34dc9). 

3.6.2 Results and discussion  

Accuracy at test (behavioural results) 

 We first constructed GLMEs analyses in the same way as for Experiment 2 with 

behavioural response data at test only. The results are presented in Table 3 and Figure 6 

and replicated those of Experiment 2. Participants again performed above-chance in all 

conditions.  

In immediate test trials, there was again a significant effect of condition (χ2(1) = 4.28, 

p = .038) – participants performed more accurately at test on words learnt during the early 

gesture condition compared to the late gesture condition (p = .045). Experiment 3 also 

demonstrated an additional effect of condition in retention trials where Experiment 2 did not. 
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A model that included fixed effects of condition and immediate accuracy provided the best fit 

for retention test trial data (χ2(1) = 5.90, p =.015). Participants achieved higher accuracy on 

retention trials for words learned in the early gesture condition (p = .006) and, as per 

Experiments 1 and 2, words that were correctly identified in immediate test trials (p < .001).  

Overall, participants had higher accuracy (immediate and retention test trials) in the 

early condition (M = 0.69) compared to the late gesture condition (M = 0.60). A model 

predicting overall accuracy with fixed effects of gesture condition, trial type, and an 

interaction between gesture condition and trial type provided the best fit (χ2(1) = 4.87, p = 

.027). This model showed that participants performed less accurately in retention test trials 

(p < .001), and the interaction demonstrated that learners were more likely to respond 

accurately in retention trials for words learnt in the early compared to late gesture condition 

(p = .026).  As for Experiment 2, only three of the 20 participants reported noticing a 

difference between conditions related to the gesture cue timing at debrief. 

These behavioural results were very similar to those obtained in Experiment 2. 

Participants were more accurate at test on words learnt when the gesture cue occurred 1 

second before label utterance (rather than 1 second after), they performed worse in retention 

trials in the late gesture condition, and learners were largely unaware of the difference in 

timing of the gesture cue – again demonstrating the difference in performance appeared to 

be independent of any conscious manipulation of attention.   
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Table 3.  

Experiment 3: general linear mixed effects model results predicting immediate and 

retention trial accuracy and overall accuracy (both immediate and retention trials) by 

training gesture condition (early or late). 

Immediate accuracy   

Fixed effect estimate SE z-value  p-value 

(intercept) 0.77 0.34 2.29 .022 

Gesture condition (early) 0.51 0.26 2.00 .045 

Retention accuracy     

(intercept) -1.62 0.43 -3.74 <.001 

Immediate accuracy (correct) 2.58 0.27 9.73 <.001 

Gesture condition (early) 0.94 0.34 2.75 .006 

Overall accuracy     

(intercept) 0.87 0.40 2.19 .029 

Gesture condition (early) 0.46 0.29 1.60 .109 

Trial type (retention) -0.73 0.19 -3.83 <.001 

Gesture (early): trial type (retention) 0.62 0.28 2.23 .026 

 
 
 
  



 

 

104 

Figure 6.  

Experiment 3: mean accuracy at test and standard error bars in immediate and 

retention trials across gesture cue condition (early or late). 

 
 
 
Target fixation proportion during training 

The time course of eyetracking data over training trials is illustrated in Figure 7, which 

shows how mean fixation proportion to target, foil, and cue alters across trial time by 

condition (calculated using the function geom_smooth in the ggplot2 package in R[v1.1.463], 

utilising local polynomial regression fitting). In the early gesture condition, participants looked 

predominantly at the target with a peak around word utterance, but began to look at the foil 

towards the end of the trial. In the late gesture condition, fixations at the beginning of the trial 

were split roughly equally between target and foil, but participants began to discriminate 

between target and foil after word utterance, with fixation to target rising after the gesture 

cue.  
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Figure 7.  

Experiment 3: eye-tracking data time course during training trials, showing mean 

fixation proportion to target, foil, and cue during training by trial time at each 250ms 

time bin, separated by gesture condition (early and late), aggregated across all 

participants and trials. Phase 1 = after gesture cue in early condition and before word 

occurrence in both conditions; Phase 2 = after word onset; Phase 3 = after gesture in 

late condition. 2 

 

 
To examine the effect of gesture cue timing on the learning process during training, 

we employed growth curve analysis (GCA) to analyse target fixation proportion across 

conditions. GCA allows for modelling of differences between participants whilst allowing for 

 
2 Due to technical issues with the eyetracking equipment, some data from the beginning of trials was lost; values 
on the x-axis indicate time bin interval start time. 
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within-participant differences across time (Mirman et al., 2008). We used the best-fitting 

orthogonal polynomials for the time form function, testing up to cubic polynomials.  

GCAs were fitted according to Mirman (2014) using lme4 in R (v1.1.463). A baseline 

model was constructed that predicted mean fixation proportion to target with fixed effects of 

all time terms, and random slopes of all time terms per participant, and random slopes of 

time terms for each participant for each condition. These models failed to converge despite 

applying techniques to retain maximal random effects structure (Barr et al., 2013; Mirman, 

2014), resulting in a baseline model of all time terms with random effects of all time terms 

per participant. Subsequent models were then built up by adding a fixed effect of gesture 

timing condition (early or late) to the intercept only, and then adding a fixed effect of gesture 

timing condition to all time terms.  Each model was compared to a baseline model, or 

previous best-fitting model, using log-likelihood comparisons. For all models, the early 

gesture training condition was used as the reference level. 

The GCA model and data fits are shown in Figure 8,3 with Table 5 showing fixed 

effect parameter estimates and standard error (p-values estimated using normal 

approximation for t-values). The overall time course of mean target fixations was best 

captured with a third-order (cubic) orthogonal polynomial (χ2(1) = 20.22, p < .001). The effect 

of condition on the intercept improved model fit on the intercept and all time terms (all p < 

.001). The GCA analysis indicated that target fixation proportion was significantly different 

between the two conditions, with participants exhibiting a mirrored effect (Figure 9): 

participants in the early condition looked longer at the target at the beginning of trials and 

decreased their fixation over the duration of trials, whilst participants in the late condition 

looked less at the target at the beginning of trials and increased their fixation over the 

duration of trials. To further test where differences between the early and late condition were 

significant, a series of post-hoc independent samples two-tailed t-tests for each time bin 

 
3 The drop in fixation proportion to target at time bin 8 (2000 ms) in the late condition was most likely due to the 
appearance of the cue, but this was not captured by a quartic orthogonal polynomial. 
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were carried out. These reflected the same pattern as the GCAs; the t-tests demonstrated a 

significant difference at all time bins except the time bin at 1750ms (8 out of 11 time bin 

differences were p <.001; Table 6).  

 

Figure 8.  

Experiment 3: growth curve analysis fitting a third-order orthogonal polynomial to 

mean fixation proportion to target by trial time at each 250ms timebin, separated by 

gesture condition (early and late), aggregated across all participants and trials. Data 

points indicate mean and standard error bars for target fixation proportion; lines 

indicate model fit. 
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Table 5.  

Experiment 3: results of growth curve analysis of mean target fixation proportion. 

Estimates of time terms between gesture condition (early or late) and model 

comparison. 

 

  

 Early gesture condition Late gesture condition 

Term estimate SE t-value p-value estimate SE t-value p-value 

(intercept) 0.73 0.02 43.74 <.001 -0.15 0.02 -9.16 <.001 

Linear 

Quadratic 

Cubic 

-0.26 

-0.20 

0.14 

0.06 

0.05 

0.05 

-4.37 

-4.19 

2.99 

<.001 

<.001 

<.001 

0.75 

0.34 

-0.24 

0.05 

0.05 

0.05 

13.95 

6.39 

-4.56 

<.001 

<.001 

<.001 

Model comparisons χ2(df) p-value     

(intercept)  45.49(1) <.001     

Linear  

Quadratic  

Cubic (full) 

 137.74(1)  

36.38(1) 

20.22(1) 

<.001 

<.001 

<.001 
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Table 6.  

Experiment 3: post-hoc t-tests comparing mean fixation proportion to target at each 

250ms time bin across all trials between conditions. 

  Early   Late    Comparison   

Time bin,  
ms  

 
Mean    

 
SE 

 
Mean 

 
SE 

 
t-value(df) 

 
95% CI 

 
p-value 

-750 0.75 0.07 0.82 0.07 -0.72 (25.57) -0.28, 0.13 .048 

-500 0.91 0.01 0.41 0.02 16.16 (29.32) 0.44, 0.57 <.001 

-250 0.86 0.03 0.37 0.03 10.89 (37.90) 0.39, 0.57 <.001 

0 (word onset) 0.81 0.04 0.42 0.04 7.43 (37.89) 0.29, 0.49 <.001 

250 0.85 0.04 0.50 0.03 7.01 (37.39) 0.25, 0.45 <.001 

500 0.84 0.03 0.61 0.03 5.28 (38.00) 0.14, 0.32 <.001 

750 0.69 0.04 0.63 0.04 1.20 (38.00) -0.05, 0.18 .238 

1000 0.71 0.04 0.52 0.04 3.31 (37.16) 0.07, 0.30 .002 

1250 0.63 0.04 0.80 0.02 -3.81 (28.90) -0.27, -0.08 <.001 

1500 0.58 0.04 0.89 0.02 -5.87 (26.25) -0.41, -0.20 <.001 

1750 0.56 0.04 0.80 0.02 -4.93 (29.4) -0.35, -0.14 <.001 

 

In line with our hypothesis, participants were more likely to fixate on the target before 

and during the word utterance in the early compared to the late condition. However, the 

increase in target fixation prior to cue onset over trials in the late gesture condition 

demonstrates that, over multiple exposures to word-referent pairs, participants could identify 

the correct target prior to the cue’s appearance. The cue in the late condition thus appeared 

to act as a confirmation of a referent, whereas in the early gesture condition, the cue 
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appeared to act as a predictor of the referent prior to label occurrence. We then assessed 

how these patterns during training might have affected participants’ performance at test.  

Predicting accuracy at test by target fixation proportion during training 

 To examine the effect of looking behaviour during training on word learning accuracy 

and address our hypothesis that the early gesture cue advantage was secondary to where 

attention was directed during label utterance, two analyses were performed. The first 

assessed when target fixation during training trials might be the most crucial predictor of 

selecting correct word-referent pairs at test, and the second was to assess whether target 

fixation differed across multiple exposures to the word (4 exposures in total per word-

referent pair) during training. An added fixed effect of condition was not included due to a 

high variance inflation factor between condition and target fixation proportion (>3; Zuur et al., 

2010).  

Analysis 1: When does target fixation during training predict word learning accuracy? 

Figure 8 shows diverging fixation proportion to the target across the early and late 

gesture conditions, and we sought to identify when looking behaviour during training trials 

had the biggest effect on accuracy at test. To achieve this, target fixation data were split into 

three distinct training phases that matched specific events within the training trial, each 

comprising four time bins (Figure 8):  

 

a) Phase 1: before the verbal label in both conditions, and after cue occurrence in the early 

gesture condition (-1000 – 0 milliseconds) 

b) Phase 2: after the verbal label in both conditions (0 – 1000 milliseconds) 

c) Phase 3: after the occurrence of the gesture in the late condition (1000–2000 milliseconds) 

 

The first set of GLMEs were constructed with fixed effects of eye-tracking behaviour for 

each of these time periods and built in the same format as for all other experiments. Only the 
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fixed effects differed; instead of a fixed effect of condition, average fixation proportion to 

target for each of the training Phases (per word and per participant; coded as Phase 1, 2, 

and 3) was used. Interactions between time periods were not tested due to high VIF values 

within interaction models. 

There was a significant effect of fixation proportion to target in Phase 2 (Table 7) on 

immediate trial accuracy (χ2(1) = 6.10, p = .014), retention trial accuracy (χ2(1) = 4.17, p = 

.041), and overall accuracy (χ2(1) = 8.47, p = .004). These results indicate that the more 

participants looked to the target immediately after labelling, the more likely they were to 

correctly identify the word-referent relationship when tested immediately after training and 

following a 5-min delay. GLMEs fitted for Phases 1 and 3 did not demonstrate a significant 

effect of fixation proportion to target on accuracy in any of the test trials, indicating that 

looking behaviour during training before the word occurred and after the cue occurred in the 

late gesture condition did not influence performance at test. 
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Table 7.  

Experiment 3: general linear mixed effects model results predicting immediate and 

retention trial accuracy and overall accuracy (both immediate and retention trials), 

with fixed effects of fixation proportion to target during training. Only fixation 

proportion during training Phase 2 (after the label utterance) was a significant 

predictor of accuracy. 

Immediate accuracy   

Fixed effect estimate SE z-value  p-value 

(intercept) 0.09 0.42 0.23 .822 

Target fixation proportion (Phase 2) 1.13 0.45 2.54 .011 

Retention accuracy     

(intercept) -1.68 0.55 -3.05 .002 

Immediate accuracy (correct) 2.56 0.27 9.64 <.001 

Target fixation proportion (Phase 2) 1.13 0.55 2.05 .041 

Overall accuracy     

(intercept) -0.10 0.49 -0.20 .084 

Target fixation proportion (Phase 2) 1.07 0.36 2.97 .003 

Phase 2 = after label utterance. 

 

Analysis 2: Does word-referent exposure influence accuracy? 

 Having identified Phase 2 as the crucial time period in training, we next examined 

whether there was any effect of word-referent exposure. We conducted a further analysis of 

fixation proportion to target during Phase 2, taking into account the number of times 

participants had been exposed to the word-referent pair. Each word-referent pairing had four 

exposures during training, and the expectation of cross-situational word learning is that 

participants successfully learn word-referent pairs after multiple exposures. This was 

reflected in the GCA analysis of eye-tracking data; in the late condition, participants fixated 
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on the target over multiple trials after word occurrence even before the cue appeared (Figure 

8). Figure 9 also illustrates how participants looked less at the target during label utterance 

in the early gesture condition as word-referent exposure increased, whereas they exhibited 

the opposite pattern in the late gesture condition, looking more at the target at label 

utterance with multiple exposures. These profiles likely reflect different learning strategies 

over time between the two conditions.  

 

Figure 9. 

 Experiment 3: Mean fixation proportion to target and standard error bars during label 

utterance (Phase 2; Figure 7) by word-referent exposure (the number of times 

participants were exposed to novel word-referent pair), separated by gesture 

condition (early and late), aggregated across all participants, all words, and all trials. 

 

 

Fixation proportion data were split into the first and second times the word-referent 

pairing occurred (first exposures) and the third and fourth times the word-referent occurred 
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(last exposures) during training. Models were constructed using the same processes as 

described previously, with fixed effects of fixation proportion to target during first and last 

word-referent exposures (as separate fixed effects), immediate accuracy (coded as ‘1’ for 

correct or ‘0’ for incorrect) for retention trial analysis, and trial type (immediate or retention) 

for overall accuracy. 

For immediate accuracy, the best fitting model included a fixed effect of average 

target fixation proportion during first word-referent exposures (χ2(1) = 6.19 p = .013; Table 

8), indicating that the more participants looked at the target during first exposures to word-

referent pairs, the more likely they were to correctly identify word-referent pairs during 

immediate trials (p = .012). However, there was no significant effect of last exposures, or 

added effect of condition. 

For retention data, a model with fixed effects of immediate accuracy and average 

fixation proportion to target during the first exposure to word-referent pairs, proved to be the 

best fit (χ2(1) = 4.82, p = 0.28; Table 8). This indicated that participants were more likely to 

be accurate in retention test trials if they had been correct on the corresponding immediate 

test trial (p  < .001), and fixated longer on the target during the first two exposures to the 

word-referent pair (p = .026).  

For target fixation data predicting overall accuracy, fixed effects of trial type and 

average target fixation proportion during first word-referent exposures were found (χ2(1) = 

8.54, p = .003, Table 8). Participants responded less accurately on retention trials than 

immediate trials (p < .001), and more accurately overall if they fixated longer on the target 

during the first two exposures to the word-referent pairs (p = .003). 
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Table 8.  

Experiment 3: general linear mixed effects model results predicting immediate and 

retention trial accuracy, and overall accuracy (both immediate and retention trials) at 

test with fixed effects of average fixation proportion to target during Phase 2 (after 

label utterance) categorised by word-referent exposure (first exposures or last 

exposures). 

Immediate accuracy   

Fixed effect estimate SE z-value  p-value 

(intercept) 0.43 0.43 1.00 .317 

Target fixation proportion (first exposures) 0.92 0.36 2.52 .012 

Retention accuracy     

(intercept) -1.63 0.53 -3.07 .002 

Target fixation proportion (first exposures) 1.06 0.48 2.23 .026 

Immediate acc. (correct) 2.61 0.30 8.81 <.001 

Overall accuracy     

(intercept) 0.31 0.54 0.58 .559 

Target fixation proportion (first exposures) 0.97 0.32 3.01 .003 

Trial type (retention) -0.52 0.15 -3.42 <.001 

First exposures = first and second exposure to correct word-referent pair 

 

Together with the GCA analysis, these results indicate that participants learned 

words more accurately when the gesture occurred 1 second before the word, rather than 1 

second after, primarily because they exhibited higher target fixation during the period 

surrounding label utterance. Furthermore, on the first exposures to word-referent pairs, 

participants already demonstrated higher target fixation proportion during label utterance in 

the early gesture training condition (Figure 10), which predicted higher accuracy at test.  
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Overall, Experiment 3 demonstrated several key findings: 1) we replicated the results 

of Experiment 2, showing that participants again performed more accurately in a condition 

where gesture occurs before, rather than after, word utterance, 2) participant fixation to 

target immediately after label utterance – within 1 second – resulted in the most accurate 

word learning, 3) participants were more likely to be fixating upon the target at this crucial 

time in the early, rather than late, gesture condition during training, and 4) these effects are 

already apparent during the first exposures to novel words, providing a boost to word 

acquisition at the point where the identity of the referent is uncertain (given the low number 

of occurrences of cross-situational correspondences at the beginning of training). 

3.7 General Discussion 

The role that cross-situational statistics can play in word learning is well documented. 

However, the mechanisms through which environmental cues facilitate cross-situational 

word learning are not well understood. In this paper, we showed how studies of cue use in 

language acquisition are aligned with the long-standing tradition of studies of visual 

attentional cueing. We highlighted how the effectiveness of gesture use in language learning 

is matched to the timing of endogenous cue reorientation, potentially tailored to exploit the 

coordination of attention at the moment that the speaker provides the label in order to 

optimise word learning. 

Experiment 1 demonstrated that providing an informative gesture cue can effectively 

eliminate referential ambiguity when learning from two objects, leading to performance on 

par with – but not exceeding – the single object conditions. Experiment 2 demonstrated that 

early gesture cues under referential ambiguity yield superior learning to late gesture cues, 

indicating that when cues occur in relation to label utterance has a direct influence on the 

learner’s accurate mapping of word-object associations. Experiment 3 replicated these 

gesture timing results, but also confirmed that this superior learning was due to the cue 

directing attention to the target referent during label utterance. Finally, all experiments 
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demonstrated that immediate referent selection accuracy was a predictor of later retention 

accuracy, and that this effect was a stronger predictor of retention than any manipulation of 

gesture condition – indicating that the dynamics of the referent selection process is vital to 

retention later on (McMurray et al. 2012; Yu and Smith, 2012). 

These results are consistent with studies that examine the time course of how and 

when endogenous cues orient attention to objects (Berger et al., 2005; Yoshida & Burling, 

2012). However, these effects have not previously been merged with studies of word 

learning, and our study investigating cross-situational word learning with different temporal 

arrangements of gesture cues shows how endogenous cueing by a speaker can interplay 

with speech to support learning. 

Studies that examine gesture cues under naturalistic settings also indicate different 

effects of temporal order for cued attention during word learning. When analysing discourse 

during semi-naturalistic mother-infant interactions, Frank et al. (2013) found that pointing 

gestures were used to introduce new topics and tended to be largely used at the beginning 

of discourses about objects. Further, children in this study also looked less at an object as it 

was talked about more, mirroring the pattern of target fixation behaviour in the early gesture 

condition of Experiment 3 (Figures 9 and 10). Relatedly, Griffin and Bock (2000) found that 

words tend to occur 1 second after speakers look at a target object in naturalistic settings, 

and gestures also appear more frequently before, rather than after, speech in these 

naturalistic settings (Bergmann et al., 2011). Coupled with this, novel words are learnt by 

infants most accurately when they are centred in view and largest in size during label 

utterance (Pereira et al., 2014), and children’s attention to referents is highest during, and 

just after, label utterance in naturalistic mother-infant interaction videos (Trueswell et al., 

2016). Taken together, there is sufficient evidence to suggest that the benefit of an early 

gesture cue is consistent with the literature concerning word learning in naturalistic settings, 
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and the endogenous cue literature indicates that this dovetails with how attention is directed 

during the time course of word learning.  

Overall, the benefit of gesture cues to word learning in this context to be mediated by 

quality rather than quantity: it may matter more when, rather than how much, a learner 

fixates upon a target referent. As Experiment 3 demonstrated, simply looking at a target prior 

to label utterance is not sufficient to improve learning. Our analysis of target fixation prior to 

word occurrence during training (Experiment 3, Phase 1) did not predict accuracy at test, 

despite participants in the early gesture condition having more time to fixate on the target 

before label utterance. Rather, the predictive value of early gesture cues leads to a learner 

fixating upon the correct referent as label utterance occurs from the very first exposures to 

novel word-referent relationships, and this may confer an advantage in word-referent 

mapping at test. This difference is apparent even by varying the relative timing of the gesture 

cue to label utterance by only 1 second, as participants performed significantly less 

accurately in the late gesture cue condition across both Experiments 2 and 3. Consistent 

with these findings, MacDonald et al. (2017) found that adult learners still tracked a single 

hypothesis and spent less time on alternative word-referent pairs when a gaze cue to a 

target object was present (as opposed to absent) even after being given the same amount of 

time to visually inspect the objects during cross-situational training in both conditions. The 

authors suggested this was because gaze increased opportunity to maintain attention on the 

target referent.  

When examining adult cross-situational word learning, Yu et al. (2012) found that 

strong and weak learners exhibited a pattern of looking behaviour that only began to differ 

around the middle stages of their training, likely due to the gradual aggregation of statistical 

co-occurrences over time. This is consistent with our results in Experiment 3, where 

participants in the late gesture condition increasingly fixated on the target over trials with 

increased word-referent exposure (Figure 10). However, during the early gesture condition, 
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participants began trials by fixating upon the target because they were cued towards it. In Yu 

et al. (2012), strong learners had increased attention to the referent towards the end of trials, 

rather than the beginning. With an early gesture cue, learners in Experiments 2 and 3 may 

have been provided with a shortcut that enabled them to direct their attention towards the 

target from the very first exposure, resulting in more accurate performance at test. This is in 

line with the eye tracking data that showed that fixations to target in the first exposures to 

word-referent pairs, rather than the last exposures, were predictive of word learning 

accuracy.  

Of further note is that learners performed more accurately with a cue during training 

even when it occurred in the late condition (yielding mean immediate test trial accuracy of 

0.63; Experiments 2 and 3, late gesture condition) than under cross-situational word learning 

without a cue (mean immediate test trial accuracy of 0.48; Experiment 1, two object 

condition, no cue condition) – confirming that additional cues are better than no cues at all. 

Looking to the referent when the label is uttered may provide an advantage through 

longer looking time and attention to the referent. This will increase the strength of 

association between the label and target referent, which builds up gradually over multiple 

learning situations. Additionally, the reduction in looking to the foil object will likely reduce 

occurrence of spurious associations between labels and foils, which can have a further 

beneficial effect in supporting learning the precise word-referent mapping intended by the 

speaker (e.g., Yu & Ballard, 2007; McMurray et al., 2012).  

A further benefit for learning may result from differences in prediction resulting from 

the gesture cue occurring before the label. Ramscar et al. (2010) manipulated the ordering 

of objects and labels during word learning in adults and children (24–30-month-olds) and 

found that, when objects were presented prior to labels, learning was more accurate than 

when labels preceded objects. This was thought to be due to the informativeness of whether 

a label or an object acts as a conditioning cue; the occurrence of objects prior to labels 
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enables learners to process object features as distinctive cues that competed for relevance 

when predicting the label, whereas being exposed to the label first provides a far more 

constrained source of information to predict objects from. Consistent with this, learners in our 

study appeared to use the early gesture cue as a predictor of the referent, whereas in the 

late gesture condition, the gesture may have simply served as a confirmatory check on the 

participant’s assumption, resulting in a weaker prediction for the learner.  

Curiously, only seven out of the 40 participants tested across Experiments 2 and 3 

noticed that the cue differed in timing. This suggests that learners have little meta-

awareness of the context surrounding word learning itself, and consequently likely have little 

explicit control over how gesture, labels, and referents are sequenced in communicative 

situations. Other studies also report that learners are surprised at how they perform at test 

(e.g. Yu & Smith, 2007), and explicit awareness of learning during cross-situational word 

learning can boost performance at test relative to implicit awareness (Kachergis et al., 2014; 

Monaghan et al., 2021). Further studies could further examine meta-awareness in relation to 

different types of cues to assess whether this affects performance. More practically, it is an 

open question as to whether instructing caregivers to gesture before labelling could 

effectively alter their behaviour, potentially creating more optimal learning conditions for their 

child. 

Limitations and future directions  

There are a number of limitations to this study. Firstly, although trial lengths were the 

same across conditions in Experiment 2 and 3, and objects appeared on screen for the 

same amount of time in both conditions, the in-trial duration that learners could make use of 

the gesture was not identical. Due to the nature of the paradigm, learners had the duration of 

the trial to study the correct referent on screen during the early gesture condition, whereas 

learners had far less time during the late gesture condition (where gesture occurred after the 

label utterance). This may have led to more accurate performance in the early gesture 
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condition due to the extra time spent examining the target referent. However, our eye 

tracking analysis indicated the time period around label utterance during training to be the 

crucial point relative to performance at test, suggesting that the quality of time spent (i.e. 

focusing directly on the target when label utterance occurs) is more important than quantity. 

Furthermore, allowing participants to fixate upon target referents for equal amounts of time 

across a cued and non-cued conditions has not influenced word learning accuracy 

elsewhere (MacDonald et al., 2017).  

In our experiments, we used a cutout photograph of a pointing finger and hand to act 

as a gestural cue (Figures 3 and 4). It is possibly debatable whether this could be truly 

considered a pointing cue, with anything approaching a realistic level of social and pragmatic 

engagement. Future studies could address this issue by further examining the role of social 

versus non-social cues under the same conditions of referential ambiguity, or even weigh 

different types of social cues, such as dynamic eye gaze (head turns with accompanying eye 

gaze; e.g. MacDonald et al., 2017) against one another. Similarly, whilst it is possible that an 

arrow might yield the same results, the advantage of using a pointing gesture cue over an 

arrow is simply that they play a more prominent role in naturalistic language acquisition. 

However, whether visual attention grabbers such as lights and arrows outweigh those of 

social cues such as head turn and eye gaze are currently addressed elsewhere (e.g. see 

Axelsson et al., 2012; Hartley et al., 2020; Wu & Kirkham, 2010). By using a pointing gesture 

cue, we are assuming that the learner takes for granted that the cue itself is meant to be 

used, regardless of its origin. Humans as learners are adaptive and resourceful, and are 

likely able to make use of multiple cues in multiple ways. Many models of word learning 

fundamentally rely upon this notion, with research indicating that children and adults adapt 

and weigh different cues according to the task at hand (Hollich et al., 2000; MacDonald et 

al., 2017; Monaghan, 2017; Yu and Ballard, 2007).  
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Of note is that, despite pointing cues being reliable indicators of referents, they 

nonetheless occur relatively rarely in naturalistic learning environments. Frank et al. (2013) 

report that in their semi-naturalistic mother-infant video corpus they had a recall value of 

0.10/1, whereas maternal eye gaze had a recall value of 0.36/1. In Trueswell et al., (2016), 

highly informative vignettes that contained maternal gesture were rare, and in Iverson et al. 

(1999), mothers only used pointing cues during word learning 15% of the time. Pointing cues 

then, as useful as they are, are but one of several cues that can supplement cross-

situational word learning.    

Finally, we did not test during training, opting instead to test all word-referent pairs at 

the end of training. Although testing trial-by-trial would have provided a direct measure of 

choice by learners throughout training, this might have encouraged learners to make trial-by-

trial hypotheses (Kachergis et al., 2014), and it would not have allowed participants to make 

word-referent selections when faced with all objects at test for the first time. Testing during 

training may also increase learning simply by way of forcing participants to choose an object 

after each trial.   

Conclusion 

In conclusion, this series of experiments offers multiple insights into how cues can facilitate 

disambiguation of meaning when the learner is faced with referential ambiguity. The value of 

gesture cues appears to be in compensating for referential ambiguity by providing accurate 

information about referents. Gesture cues are particularly useful when highlighting referents 

prior to labels; when a perfectly disambiguating gesture cue occurs before a novel word is 

spoken, this provides a superior benefit to the learner than when a gesture occurs after a 

novel word – although a late gesture provides more benefit than no gesture at all. These 

temporal effects are consistent with how gestural cues interoperate with speech in 

naturalistic studies, and show how the attention literature around endogenous cues is also 

applicable across cross-situational word learning. The experiments presented here provide a 
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controlled setting that demonstrates how and when gesture can support cross-situational 

statistical learning, and furthermore, translate well-investigated attention and memory effects 

into effects of cueing during word learning.   
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‘By 12 months, Mia had not said a word; no mama or dada, just high-pitched sounds. Nibby, 
Mia's mother, was told all children were different. But Mia was different: she could not 

speak. 
 

At two, Mia was referred to a specialist communication disorder team, but it was a year 
before an appointment was issued. By this time, Nibby remembers Mia as "a screaming 

bundle of frustration". 
 

"At nights sometimes she would sob in my arms," says Nibby, of Pateley Bridge, North 
Yorkshire. "We were lost in a nightmare with a child with terrible difficulties, no support and 
nowhere to go facing a really hard homelife of two-hour-long tantrums, sometimes longer 

(...) 
 

A few days ago, Nibby asked Mia a question. "She answered yes, and it made me feel like 
I've won the lottery," said Nibby. But bad days, Mia hides her mouth behind her hands and 

screams the place down.’ 
 
 
 

- Czernik, A., 2013, Apr 11. Mia, 7, wants to learn and play. The Guardian. 
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4 Chapter 4: Word learning in atypical language development:  

Late talking children 

4.1 Why study late talking children? 

Thus far, this thesis has described word learning in typical development. The previous two 

studies focused on the initial stages of word learning; in the following section word learning 

is approached from the opposite direction by categorising learners through their output and 

vocabulary knowledge, and determining what processes and mechanisms contribute to 

differences in production. 

Late talking (LT) children exhibit a delay in talking without concurrent sensory, 

neurological or cognitive disorders. Identified at approximately 2-years-old, LT children in the 

research literature fall at the 10th percentile or below in expressive vocabulary compared to 

typically developing (TD) peers (Desmarais et al., 2008). They are a heterogenous group 

(Rescorla, 2011) and have a range of receptive vocabulary (Fisher, 2017). For example, 

Wake et al. (2011) report a range of 73 – 103 on the auditory Preschool Language Scale-3 

(standardised score, norm = 100) for 283 LT children aged 2-years-old (identified as LT at 

18-months-old, <20th percentile, expressive CDI). Many LT children appear to recover 

(Rescorla, 2011), but a significant subset are subsequently diagnosed with Developmental 

Language Disorder, a persistent delay in language without biomedical cause (previously 

known as Specific Language Impairment, SLI; Bishop et al., 2017). Early intervention for 

children at risk of developmental delay has shown evidence of improved outcomes (Conyers 

et al., 2003; Winter & Kelley, 2008). As early language difficulties are linked to poor social 

and academic outcomes (Law et al., 2009), employing a ‘wait and see’ approach to LT 

children may run the risk of missing a key intervention period to the detriment of individuals 

later on (Singleton, 2018; Collisson et al., 2016).  

Distinguishing between children who will continue to struggle with language 

development, and those who will not, is an on-going challenge for researchers. Potential risk 
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factors explain only a small proportion of the variance in outcomes and have been 

inconsistent predictors of language ability at best (H. D. Nelson et al., 2006; Reilly et al., 

2010). Furthermore, although some outcome studies have found that most LT children reach 

the normal range of vocabulary by school age, LT children continue to perform worse than 

their TD peers on reading and language tasks, suggesting that the difference between the 

two groups persists. Research investigating mechanisms of LT is still emerging, but 

suggests LT children may rely on different strategies to TD children during word learning 

(Moyle et al., 2007; Weismer et al., 2013). Thus, delineating the mechanisms that underpin 

differences between LT and TD children early on is key to understanding firstly, why this 

difference appears to transcend certain risk factors (such as socioeconomic status (SES) or 

family history of language delay), and secondly, how to identify LT children with persisting 

severe deficits early on with the hope of improving their later outcomes.   

4.2 Epidemiology 

Accurate prevalence is difficult to ascertain, partly due to the different measures used 

to determine LT status. Within research, parent-reported checklists of productive vocabulary 

are the most common. These includes the MacArthur Communicative Development 

Inventories: Words and Sentences (CDI), where LT children fall at or below the 10th 

percentile of the CDI (92/680 words for females and 63/680 for males; Fenson et al., 2007), 

and the Language Development Survey (LDS), where LT children produce fewer than 50 

words or no word combinations (Rescorla, 1989). Although most studies use the 10th 

percentile as a cut-off for language impairment using the CDI (Fisher, 2017), it is worth 

noting that cut-offs can range between the 5th – 30th percentile (Colunga & Sims, 2012; 

Girolametto et al., 2001; MacRoy-Higgins et al., 2013), introducing further variation in LT 

classification. Other measures such as the Reynell Developmental Language Scales (RDLS; 

Clegg et al., 2015) and the Ages-and-Stages Questionnaire (ASQ; Zubrick et al., 2007) are 

also sometimes used. Age at identification and assessment in LT studies ranges from 18–35 
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months (Fisher, 2017; Rescorla, 2011), largely due to the inherent individual differences 

present in early language development (although most studies use 24 months of age as a 

benchmark for defining LT status; Fisher, 2017).  

Large-scale studies, such as the Early Language in Victoria Study (ELVS; Reilly et 

al., 2007, 2010, 2018), offer the best estimates of LT prevalence. In this Australian 

community sample (N = 1741), 19.7% of children were classified as LT at 24 months using 

the CDI criteria of ‘less than or equal to the 10th percentile’ for expressive vocabulary. 

Similarly, the UK-based Avon Longitudinal Study of Parents and Children (ALSPAC; 

Roulstone et al., 2002) found that 18.5% of 1118 children used either single words or 

babbled only at 25 months. However, as Roulstone et al. (2002) did not use any formal 

measure of expressive language skills, instead opting for parent-reported utterances of 3–4 

words, two words together, single words or babble only, it is unclear how many of these 

children would be classed as LT children. Rates elsewhere range from 12.6–24.7% (see 

Table 1). This wide range of prevalence rates, is at odds with the CDI criteria itself – one 

would expect LT prevalence to be closer to 10.0% if LT children are those that fall at the 10th 

percentile of the population in expressive vocabulary. This may suggest that the norms used 

are too high and over-estimate what children can say, thus producing higher numbers of 

those classed as LT children, or that the sample surveyed in certain studies was not 

representative of the larger population. Norms also vary by country – for example, children in 

the UK show lower receptive and expressive vocabulary than American children at the same 

age (Hamilton et al., 2000). 

Variance in prevalence rates may also be attributed to the difficulty in classifying 

individuals within large epidemiological cohort studies. Rescorla (2011) notes that in small-

scale studies, LT children tend to be a well-defined group, but in large-scale studies such as 

the ELVS, they are more heterogeneous. Subsequently, filtering out those who have 

concomitant developmental conditions that compound language delay is difficult. For 
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example, in the Zubrick et al. (2007) study, children who were classed as language delayed 

were also more likely to be delayed in motor and social skills compared to those without 

language delay, suggesting their sample may have included those with developmental 

disorders, such as autism spectrum disorder (ASD). Nonetheless, the most conservative 

prevalence rate (9.6%) comprises a significant proportion of 2-year-olds in the population, 

making the outcomes of LT children of significant concern. 

 

Table 1.  

Variability across prevalence rates in large population-based studies of language 

ability in children aged 18–30 months old. 

Study Proportion of 
study 
population 
classed as 
LT (%) 

Total 
population 
sample 

Country Criteria used Age at 
classification 
(months) 

(E. S. 
Armstrong et 
al., 2007) 
 

24.7 689 USA ≤10th percentile 
of CDI 

24  

Collisson et 
al. (2016) 
 

12.6 1023 Canada ≤10th percentile 
CDI 

24–30  

(Dale et al., 
2003) 
 

9.6% 802 UK ≤15th percentile 
CDI 

24 

Henrichs et 
al. (2011) 
 

14.8 3759 Netherlands ≤10th percentile 
of CDI 

18  

Horwitz et al. 
(2003) 
 

13.5 1189 USA ≤10th percentile 
of CDI 

18–23  

(Rescorla et 
al., 1993) 
 

13.0–15.0 200 USA <50 words using 
LDS 

24 

Zubrick et al. 
(2007) 
 

13.0 1766 Australia ASQ 
Communication 

24 

ASQ = Ages-and-Stages Questionnaire; CDI = Communicative Development Inventories; LDS = 
Language Development Survey; LT = late talking 
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4.3 Outcomes 

Many longitudinal outcome studies suggest that LT children score within the average 

range for their age group by the age of 5 – 7 years (Rescorla, 2011). Despite this, as a 

group, LT children consistently score lower than TD children on many language measures, 

even after recovery. Rescorla (2002, 2005, 2009; Rescorla et al., 1997; Rescorla et al., 

2000) conducted a longitudinal study following 34 LT children from 2–19 years old, 

comparing their progress to a TD control group. Between the ages of 2–4 years, 

approximately 50% of the late talking sample with persistent delays reached typical 

expressive language skills using mean length of utterance. Between the ages of 5–9 years, 

LT children were scoring within normal ranges for their age groups on reading, vocabulary, 

and phonological assessments, but their group averages for these assessments were 

significantly lower than the control group. This difference persisted at the age of 13, and by 

the age of 17, LT children (n = 26 of original group) again performed within the average 

range on language and reading tasks, but significantly worse than TDs on vocabulary and 

grammar tasks (Cohen’s d = 0.92) and verbal memory (Cohen’s d = 0.93), but not on 

reading and writing tasks. Other studies have found similar results – despite scoring within 

the normal range for their age group, LT children show reduced performance compared to 

TD children in a number of language tasks including non-repetition tasks (Thal et al., 2005), 

general language ability, syntax, morphosyntax, speech production (M. L. Rice et al., 2008) 

and sentence complexity during conversation (Domsch et al., 2012).  

Further complicating the matter are LT children who do not recover, and experience 

worsening deficits. The prevalence of language impairment without sensory, neurological or 

intelligence-quotient impairment in the population is roughly 7% (Leonard, 2014). These 

individuals are more recently referred to as having DLD, although DLD itself now has a 

broader criteria of persistent language delay without biomedical cause and without reference 

to intelligence-quotient (Bishop, 2017).  
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The discrepancy between outcome studies suggesting that the majority of LT 

children recover, and those that suggest otherwise, is highlighted when considering children 

who have their language impairment identified later in life. Leonard (2014) notes that if these 

children are originally LT children, then outcome studies should reveal a much higher 

proportion of LT children with poorer outcomes. He argues this discrepancy is a result of 

studies using small homogenous samples that are not representative of larger populations 

and that filter out the most impaired children who meet DLD criteria. Two major population-

based cohorts lend credence to this reasoning. Dale et al. (2003) examined 8,386 twins at 

24-months-old and compared LT with TD children at 4-years-old. By age 4, 40.2% of the LT 

group met the criteria for persistent language difficulties. In the ELVS sample (Reilly et al., 

2010), 19.7% of the original sample (n = 1741) were LT children; by age 4 years, 17.2% of 

all children remaining in the study (n = 1596) met the criteria for SLI and 20.6% had low 

language status on at least one expressive and receptive composite score (Clinical 

Evaluation of Language Fundamentals subscales, CELF; Wiig et al., 2006). The relatively 

high percentages of LT children who have persistent language delays in these studies 

appears to be at odds with small-scale outcome studies that suggest LT children reach the 

normal range for their age group. Of note, however, is that the twin study and the ELVS 

followed children up to the age of 4 years – whereas Rescorla (2002, 2005, 2009; Rescorla 

et al., 1997; Rescorla et al., 2000) previously mentioned found that LT children reach the 

average range of language abilities from the age of 5 years and above. This means it is 

possible that the children in Dale et al. (2003) and Reilly et al. (2010) were not yet at a point 

where recovery to typical age ranges of language measures was visible.  

However, in a smaller study (n = 44), Armstrong et al. (2017) found that 49% of their 

sample who were LT children at age 2 years had persistent language delays at 10-years-old. 

As with prevalence rates, the difference in populations studied in small-scale and large-scale 

outcome studies likely accounts for some of this discrepancy – smaller scale outcome 
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studies of LT children may not capture the sheer heterogeneity found in the wider 

population. 

What is clear from these outcome studies is that a proportion of LT children do not 

recover, and it is extremely difficult to predict who these individuals will be. Rescorla (2009) 

in particular advocates for a spectrum of early language delay, where LT children are further 

divided into those with a less severe delay who largely improve (sometimes called ‘late 

bloomers’), and those who have persistent delays. Armstrong et al. (2007) divided a sample 

of 689 American children into three groups: 1) late talkers with persistent delays in 

expressive language from ages 2–4 years (using the CDI and RDLS); 2) so-called late 

bloomers with initial language delay at 24 months old that resolved to reach the average 

range by the age of 5, and; 3) TD children. LT children performed within the average range 

on vocabulary and verbal memory tasks (picture vocabulary, letter-word identification, 

memory for sentences) but were the worst of the three groups, with gaps between the three 

groups persisting to the age of 10–11 years.  

A dimensional approach thus appears sensible, but to be meaningful for intervention, 

any differences among these groups that are visible from the onset of LT status early on 

must be identified. A number of outcome studies have looked at predictors for language 

delay in the hopes that consistent risk factors in LT children who do not recover might be 

identifiable. 

4.4 Predictors of outcomes 

Potential predictors of language delay are diverse, and include male sex (Collisson et 

al., 2016; Hammer et al., 2017; Henrichs et al., 2011; Reilly et al., 2007, 2010; Schjølberg et 

al., 2011), family history of language delay (Collisson et al., 2016; Dale et al., 2003; Lyytinen 

et al., 2005; Reilly et al., 2007, 2010), low SES (Fisher, 2017; Hammer et al., 2017; Hartas, 

2011; Rescorla et al., 2007), and maternal health factors and birth history (Hammer et al., 

2017; Henrichs et al., 2011; Schjølberg et al., 2011), as well as more specific language-
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related measures, such as low expressive or receptive vocabulary at 18 months old 

(Armstrong et al., 2017; Fisher, 2017). These risk factors are often found to have significant 

but small effects in predicting LT at or before the age of 24-months-old, as well as in 

predicting outcomes later on. Studies that have examined later outcomes of language delay 

are reviewed below, with study characteristics given in the table below for ease of reference 

(Table 2). 

 

Table 2.  

Characteristics of language outcome predictor studies. 

Study authors Proportion of study 
population classed as LT 
at intake (%) 

Total population 
sample (N) 

Language measures used 
and age of administration 

Armstrong et 
al. (2017) 

11.5% 783 2-yo: LDS 
10-yo: CELF-3 
 

Bishop et al., 
(2003); Dale et 
al. (2003) 
 

9.6% 8,386 twins 2-, 3-, 4-yo: short-form 
CDI 

Henrichs et al. 
(2011) 

14.9% 3,759 18-mo: short-form CDI  
30-mo: LDS 
 

Horwitz et al. 
(2003) 

13.5% 870 CDI administered once 
between 18–39 months 
old 
 

Lyytinen et al., 
(2001, 2005) 

17.0% 200 2-yo: CDI and BSID 
expressive score 
2.5-yo: RDLS 
3.5-yo: BNT and PPVT-R 

 
Reilly et al. 
(2007, 2010, 
2018) 
 

 
19.7% 

 
1,741 

 
8-, 12-, 24-mos: CDI  
4-yo: CELF-PS 

    
ASQ = Ages-and-Stages Questionnaire; BNP = Boston Naming Test; BSID = Bayleys Scales of Infant 
Development; CELF = Clinical Evaluation of Language Fundamentals (PS = Preschool; 3 = Third 
Edition); CDI = MacArthur-Bates Communicative Development Inventories; LDS = Language 
Development Survey; LT = late talking; mo = months-old; NJ = New Jersey; NY = New York; PPVT-R 
= Peabody Picture Vocabulary Test-Revised; yo = years-old 
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Male sex 

Reilly et al. (2010) identified male sex as a significant predictor of low language 

status (>1.25 SD below the mean on the CELF) at 4-years (expressive delay, OR = 1.90; 

receptive delay OR = 2.29) and for SLI (now DLD; expressive delay OR = 1.43, receptive 

delay OR =: 2.20) when combined with other risk factors including birth history, SES, and 

maternal vocabulary. Similarly, Hammer et al. (2017) found male sex a significant predictor 

of low receptive vocabulary at 48-months-old (OR = 1.36) when combined with similar risk 

factors.  

Family history of language delay 

Lyytinen found that LT children with a family history of dyslexia have significantly 

lower receptive and expressive language at age 3;6 years (Lyytinen et al., 2001) and at age 

5.5 years (Lyytinen et al., 2005) compared to LT children without a familial risk for dyslexia. 

However, these studies had small subgroups of LT children with and without familial risk (n = 

10-12), making any conclusions about heritability difficult to generalise to a larger population. 

Larger studies have found family history to be a small but significant risk factor for later 

language delay (Reilly et al., 2007, 2010; Zubrick et al., 2007). 

Bishop et al. (2003) found the group heritability of language delay at 24-months-old in 

a large twin study was significant but small regardless of outcome (h2g=0.240; where h2g is 

an index of the extent to which the mean difference between groups is due to genetic 

factors). In particular, heritability was found to be significantly higher in LT children with 

persistent delay when parental concern at 3 years (h2g=0.41) or professional involvement at 

4 years (h2g=0.41) was used as an outcome, as opposed to language-based outcomes such 

as parent-reported expressive vocabulary. However, Fernald and Marchman (2012) suggest 

a drawback of twin studies is that they tend to focus on families with high SES with more 

resources and support, and that SES might well be a moderating factor in the heritability of 

language delay.  
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Socioeconomic status 

Low SES has been found to have a negative effect on language outcome more 

generally (Fernald et al., 2013; Golinkoff et al., 2019; Hartas, 2011). Reilly et al. (2010) also 

found low SES predicted worse language outcomes at age 4-years in addition to LT status at 

2-years-old, but this combined with other predictors (maternal health, materal vocabulary, 

family history of language delay, male gender, child birth history) only moderately 

discriminated between children with and without adverse language outcomes. Hammer et al. 

(2017) identified LT status at 24-months-old as a significant predictor of low vocabulary at 

48-months-old (OR = 2.92), with additional effects of low SES (OR = 3.14). When adding in 

several factors that overlap with SES, such as childcare availability and maternal health, this 

partially explained the effect of SES as a variable in the model, indicating that factors 

overlapping with SES should also be accounted for. Other studies however have found low 

SES to be a non-significant predictor for low language outcomes (Clegg et al., 2015; Horwitz 

et al., 2003).  

Other factors 

Horwitz et al. (2003) found that bilingualism (OR = 2.78), high parental worry about 

language (OR = 5.13), low family expressiveness (direct expression of feelings, OR = 1.95) 

and low social competence (OR = 5.13) all increased the risk of language delay. Bishop et 

al. (2003) also found parental concern to be a significantly positive predictor of language 

outcomes, but deemed it insufficient as a risk factor alone, as it cannot be used to ascertain 

severity of language delay. Additionally, it is worth noting that bilingualism can lead to 

perceived, rather than actual, language delay if only vocabulary for one language is 

assessed (Hoff et al., 2012) and determining directionality between other factors found to be 

significant is problematic, making their use as predictors somewhat limited.  

In a sample of 90 LT children, Armstrong et al. (2017) found that maternal smoking in 

pregnancy increased the risk threefold of persistent language delay in LT children versus LT 
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children who recovered (OR = 3.34). Interestingly, of the wider sample who had no language 

delay at age 2, 26% (182/693) subsequently were found to have low language skills on the 

CELF at age 10 – suggesting their language problems were not adequately detected at age 

2. In this latter group, low SES, lower parental education level, and male gender were 

significant risk factors for lower CELF-3 scores at age 10.  

Can a model of risk factors be used to determine the need for intervention? 

Some clinicians have called for a model of risk factors to help identify LT children at 

risk of further language delay where the more risk factors an individual has, the lower the 

threshold for intervention (Collisson et al., 2016). Determining an appropriate cut-off at which 

the number of risk factors is deemed sufficiently high will be the next stage to this model, 

and has already proved highly difficult, as the effects of risk factors are small (Collisson et 

al., 2016; Reilly et al., 2010), and only explain a small proportion of variance in language 

outcomes. Subsequently, any model of risk factors based purely on epidemiological data to 

determine intervention may not be precise enough to be useful to clinicians. 

In a large Netherlands-based population cohort, Henrichs et al. (2011) split their 

sample using expressive vocabulary outcomes into a reference group without delay, ‘late 

bloomers’ (LT children at 18 months who have normal vocabulary at 30 months), late onset 

delay (TD children with normal vocabulary at 18 months but delayed at 30 months), and 

persistent delay. Receptive vocabulary delay at 18 months old conferred the highest risk of 

language delay – these children were 4 times more likely to be a late bloomer (OR = 4.25), 

almost 4 times as likely to have late onset delay (OR = 3.92) and 9 times more likely to have 

persistent delay (OR = 9.09). Higher maternal age increased the risk of being a late bloomer 

(OR = 1.05). Children from homes with low maternal education were two times more likely to 

have a persistent delay (OR = 2.13). Other studies have also found receptive vocabulary to 

be helpful in distinguishing between LT groups and their outcomes (Lyytinen et al., 2005). 

Overall, in Henrichs et al.’s study, expressive vocabulary at 18 months was the strongest 
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predictor of expressive vocabulary at 30 months, explaining 11.0% of the variance, with 

receptive vocabulary at 18 months explaining an additional 0.5%. Additional demographic 

(gender, age, ethnicity), maternal (parenting stress, educational, age, income) and perinatal 

(birth weight, gestational age, prematurity) factors explained only 6.2% of the variance at 

both 18 and 30 months. Another large population study that looked at child factors such as 

birth order, gender, and birthweight, alongside maternal emotional health and maternal 

education found these factors only explained 4.1 – 6.3% of the variance in a model 

predicting language outcome at 18 months (Schjølberg et al., 2011).  

Similar results were found by the ELVS (Reilly et al., 2007, 2010). The ELVS 

examined at potential risk factors for language delay, including gender, SES, perinatal 

factors (such as maternal parity, prematurity and birth weight), non-native English-speaking 

households, and family history of language delay in 1720 infants recruited at 8 months of 

age and followed up at 12- and 24-months-old, and later at 4 years. However, these risk 

factors at 8-months-old and 12-months-old explained only 7% of the variance at 24 months, 

consistent with findings elsewhere (Henrichs et al., 2011; Zubrick et al., 2007). By 4 years 

old, baseline predictors accounted for 18.9% and 20.9% of the variance in receptive and 

expressive language performance respectively. The addition of LT status at 2 years as a 

predictor increased this to 23.6% and 30.4% respectively, but the authors still concluded that 

this was insufficient to predict language delay in children.  

 Fisher (2017) conducted a meta-analysis of predictors of expressive vocabulary in LT 

children aged 18-28 months to establish an overall effect size across studies. All studies 

were prospective and had at least 5 months’ worth of follow-up after LT status was 

designated. A total of 20 studies were identified (n = 2134) with a range of follow-up from 5 

to 28 months. Expressive vocabulary size (most often assessed by parent-report) receptive 

language, phrase speech, SES, gender, and family history were examined as predictors. Of 

these, only expressive vocabulary size, receptive language and SES yielded significant 
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effect sizes. Receptive language yielded the largest effect size (Pearson’s r = 0.34), whereas 

expressive vocabulary (Pearson’s r = 0.25) and SES (Pearson’s r = 0.11) yielded smaller 

effect sizes.   

The studies discussed above indicate that risk factors associated with parents, 

children, and low expressive and receptive vocabulary contribute as risk factors to language 

outcomes, but not to a sufficient degree to enable accurate prediction of these outcomes, 

nor distinguish between LT children with persistent delay and those who recover. A 

systematic review by Law et al., (2000) designed to evaluate whether the UK needed 

universal screening for speech and language delay concluded that there was insufficient 

evidence to do so. A total of 21 prevalence studies published between 1967–1997 were 

reviewed. The results suggested that the progression of speech and language disorders, 

including late talking, was too heterogeneous to clearly identify risk factors that could be 

used to identify those suitable for intervention. A more recent major US taskforce (H. D. 

Nelson et al., 2006; Siu, 2015) also concluded that the evidence for routine screening of 

children for speech and language delay was insufficient due to the lack of reliable risk factors 

as predictors of language outcomes.  

While it is clear that late talking affects a significant number of children and carries a 

risk of further language delay; what is less clear is what to do with that information. Without 

distinguishing between those who will struggle from those who will not, it remains difficult to 

identify what may cause continued language difficulties in LT children. Subsequently, further 

research is required to elucidate whether LT children are qualitatively, rather than just 

quantitatively, different, and to examine the benefits of taking a dimensional approach to 

language delay that accomodates individual differences. This necessitates an examination of 

how LT children actually learn words, and whether their performance on word learning tasks 

has any predictive value in determining outcomes. 
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4.5 Word learning in late talking children 

This thesis focuses on three candidate word learning mechanisms: nonword 

repetition, fast mapping, and cross-situational word learning. To avoid repetition, previous 

studies that have investigated word learning mechanisms in LT children are reviewed in the 

following chapter (Chapter 5). However, as previously described, LT children may have a 

wide range of receptive vocabulary (Fisher, 2017; Henrichs et al., 2011), and are grouped on 

their expressive output. As a result, understanding the relationship between the stages of 

word learning and expressive vocabulary in particular is key to identifying how word learning 

mechanisms might falter in LT children. The links between word learning and expressive 

vocabulary are thus reviewed here. 

Recall that McMurray et al.’s (2012) model assumes a cognitive approach to word 

learning, where referent selection is an in-the-moment competitive process between visual 

referents and auditory word-forms through a lexical concept layer (decision-making), and 

retention is a Hebbian process that strengthens and prunes word-referent associations 

based upon co-occurrences over time (learning). Applied to LT children and word learning, 

the research question becomes bidirectional: do LT children apply different constraints to the 

decision-making process that affects how new words are later retained in the vocabulary, 

and how do those learnt associations within the vocabulary influence decision-making when 

faced with novel words? 

How do small expressive vocabularies relate to word learning? 

A promising explanation for LT concerns the relationship between phonology and 

vocabulary. Mirak and Rescorla (1998) analysed speech samples from 35 LT children 

(Reynell Expressive Language score <6 months below chronological age) during free play 

with toys and during the administration of standardised tests. They found that LT children 

used fewer consonants than TD children, but that expressive vocabulary did not predict 
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Mean Length of Utterance (MLU) or syntactic complexity at age 3 years. They concluded 

that LT children have delayed, rather than different, phonetic abilities at the time of LT. 

Studies that make use of the phonological elements of words such as phonotactic 

probability (PP) and neighbourhood density (ND) in LT children offer valuable insight into 

how concurrent phonological delays might impact word acquisition. PP refers to how likely it 

is that a sequence of phonemes will occur, with high PP being a high likelihood of co-

occurrence (e.g. mp in ‘bump’) and low PP being a low likelihood (e.g. mt in ‘dreamt’), 

whereas ND is determined by the number of words generated by deleting, adding, or 

substituting a single sound within a given word (Luce & Pisoni, 1998; Vitevitch & Luce, 

1999). Words with high ND have many phonemic neighbours, e.g. ‘sit’ has 36 (including ‘hit’, 

‘lit’) and words with low ND have few neighbours, e.g. ‘these’. In TD, children learn words 

with high PP more rapidly (Storkel, 2001) and are also more likely to have correct phoneme 

awareness for words with high ND (Hogan et al., 2011). 

Using PP and ND, Edwards et al. (2004) proposed that children with smaller 

vocabularies have less support to rely upon for phonological representations of words. They 

tested production and fluency in nonword repetition with low- and high PP words, and also 

measured vocabulary in children aged 3 – 8-years-old. Higher accuracy for low-PP words 

was significantly correlated with higher expressive vocabulary (R2 = .30), and higher 

accuracy for high-PP words significantly correlated with expressive vocabulary, albeit to a 

lesser degree (R2 = .21). In particular, they showed that the effect of PP was largest in 

children aged 3–4-years-old who had less developed lexicons. They suggested that when 

exposed to a novel word with low PP, there was less access to similar words in the lexicon 

that could support the phonological representations involved in producing the new word. 

Crucially, this process was described as dynamic: more experience in phonological patterns 

leads to more generalising over lexical knowledge, and vice versa. Reduced expressive 
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vocabulary in LT children would thus feed into reduced ability to perceive and then produce 

novel words.  

Stokes (2014) took a slightly different approach, examining the structure of LT 

children’s expressive vocabularies. They proposed that LT children struggle to activate the 

correct word form for words that are low in ND. When investigating children’s expressive and 

receptive vocabulary at 1;6- and 2;0-years-old, Stokes identified that smaller lexicons had 

higher ND values than large lexicons for expressive vocabulary, but not receptive 

vocabulary. Under this proposal, low ND words have weaker lexical representations, and 

thus a low ND word can be activated for receptive processing, but not expressive. In 

contrast, those that have high ND have stronger lexical representations, as they are heard 

and used more frequently, and thus more easily accessed when requested to produce them, 

reducing demands on working memory. LT children may then have more fragile phonological 

representations that limit word production, equating to higher ND values of words that LT 

children understand and produce, whereas TD children are able to produce low and high ND 

words.  

How does phonology relate to vocabulary and learning new words during fast 

mapping in LT children? 

Studies that examine PP and ND of stimulus words learnt during fast mapping tasks 

demonstrate that LT children may be extracting phonological information in novel words 

differently to TD children. These test referent selection, and also word production, 

immediately following exposure to word-referent stimuli. For example, Weismer et al. (2013) 

found that LT toddlers (30-month-olds ≤15th percentile on CDI; n = 30) showed no advantage 

for low PP and ND when learning new words, whereas TD toddlers did. Novel word 

production in the fast mapping task also correlated with expressive vocabulary at 30 months 

of age in LT children (Spearman’s Rank r=0.44) and, at 5;6 years , their novel word 

comprehension correlated with receptive language skills (Spearman’s rank r=0.43). In TD 



 

 

141 

children however, receptive vocabulary correlated with novel word production (Spearman’s 

rank r=0.39). These findings suggest that LT children rely on inter-domain processes during 

fast mapping, whereas TD children are able to make cross-domain links. 

MacRoy Higgins et al. (2013) also found that 24-month-old LT children (<15th 

percentile on CDI; n = 12) exhibited no difference in performance for high or low PP/ND 

during fast mapping, but in contrast to Weismer et al. (2013), TD children showed better 

production and more sensitivity to errors for high over low PP/ND words. They did not report 

concurrent relationships with receptive and expressive vocabulary. However, the latter study 

used a preferential looking task at 24 months of age that deliberately probed responses to 

high PP/ND and low PP/ND sequences comprising 12 words (six low PP/ND words, six high 

PP/ND), whereas Weismer et al.’s (2013) study focused on fast mapping with post-hoc tests 

of PP/ND consisting of only two words (one low PP/ND, one high PP/ND). Regardless, both 

studies suggest that LT children may be making use of PP and ND differently to TD children.  

Overall, these studies are consistent with the theory that LT children may have less 

robust phonological representations, secondary to having smaller vocabularies and less 

practice in using them for production. This is also consistent with being less able to 

accurately produce novel words immediately after hearing them in nonword repetition tasks. 

However, as only a handful of studies have examined fast mapping in LT children, how LT 

children perform in fast mapping tasks and links with their nonword repetition performance 

requires further examination. Furthermore, how these mechanisms relate to LT children’s 

expressive vocabulary over time has yet to be fully established. 

How do phonology and fast mapping relate to retention and longer term learning in LT 

children? 

Edwards et al. (2004) and Stokes (2010, 2014) propose that smaller concurrent 

expressive vocabularies limit the amount of abstraction that can take place for the 

phonological make-up of novel words based on existing words in the vocabulary. The results 



 

 

142 

of Weismer et al. (2013) and MacRoy Higgins et al. (2013) suggest that during fast mapping 

referent selection tasks, LT children perform less accurately than TD children as a result of 

extracting different information from high and low PP words. However, this only covers 

referent selection, and does not address mechanisms that are indicative of longer term 

learning, such as retention. 

LT children in MacRoy Higgins et al. (2013) required more exposures to high PP 

words than TD children in order to achieve the same level of accuracy when tested 

immediately after training, raising the possibility that LT children may require a higher 

number of exposures of words in order to make up for deficits in phonological 

representation. Alternatively, M. L. Rice et al. (1994) proposed that in DLD, children rely on 

frequency of input for a longer period of time than TD children. When producing their first 

words, high frequency of input appears to be particularly important for children; however, 

once a sufficient lexicon has been accumulated, children rely on this input much less to 

produce words (Hart, 1991). Continued reliance on input as a result of having smaller 

lexicons may also explain why repeated exposures to words may be more effective for LT 

children.  

Stokes (2010; Stokes et al., 2012) also suggests that LT children are relying on input, 

rather than on existing vocabulary, again in relation to phonological input. LT children may 

rely on statistical learning mechanisms at first to extract relevant auditory information from 

the input, but whereas TD children broaden attunement to statistical regularities of less 

common words (those with low ND), LT children fail to do the same, resulting in reduced 

vocabulary expansion. As a result, Stokes (2014) also suggests that LT children may benefit 

from greater repetition of target words that have high ND to aid longer term learning. 

Repetition of information is inherent in CSWL and in longer term learning of words 

(McMurray et al., 2012). In order to learn a word beyond producing a novel label, or selecting 

the correct referent for a novel label, children must extract information around the co-
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occurrences of words and referents over time to store word-referent mappings for later use. 

However, word learning studies in LT children tend to test immediate comprehension and 

production of novel words, rather than retention after a delay, and no studies to date have 

tested CSWL in LT children.  

Thus, identifying whether or not LT children are able to retain word-referent mappings 

following referent selection may help determine whether they have difficulties encoding novel 

words sufficiently for longer term learning following single exposures. Furthermore, testing 

LT children on referent selection and retention performance on CSWL tasks would not only 

reveal their ability extract statistical information around word-referent mapping, but also test 

their ability to process this information sufficiently for longer term learning. 

Word learning and outcomes  

Studies that examine differences in word learning abilities may also help to predict 

later vocabulary outcomes. For example, Weismer (2007) found novel word comprehension 

and production on a fast mapping task in LT children at 30-months-old (n = 30, <10th 

percentile CDI) predicted their MLU 12 months later. Fernald and Marchman (2012) tested 

LT (n = 32, <20th percentile CDI) and TD children’s performance on a word learning task that 

required the recognition of familiar word-referent pairs. Children’s processing efficiency at 18 

months predicted individual vocabulary growth over the following year. Task performance 

accounted for 4–17% variance in addition to LT status in predicting vocabulary growth 

trajectories and allowed better prediction of those with persistent delay at 30 months (39% of 

original LT group) – LT children who were quicker and more accurate on the task had 

steeper, faster growth trajectories than those who performed slower and less accurately. 

However, studies that use word learning mechanisms to predict outcomes are far less 

plentiful than studies that investigate epidemiological risk factors in late talking. 

Subsequently further research is necessary to identify the predictive value of word learning 

in LT children. 
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Summary 

Understanding how LT children learn words may, firstly, highlight differences in 

comparison to TD children and, secondly, help identify mechanisms that predict later 

language outcomes. This in turn may help predict which LT children will develop more 

severe and persistent language deficits in the future. In order to test this framework. studies 

that examine word learning in LT children over time must relate word learning performance 

to both early and concurrent expressive vocabulary and include measures of short- and 

longer-term word learning mechanisms. This includes phonological perception and 

articulation following single exposures as in nonword repetition, the mapping of referents to 

words and subsequent retention following single exposures in fast mapping, and finally, 

mechanisms such as cross-situational word learning that make use of repeated exposures 

over time to produce longer term learning. If LT children are impaired at each step of this 

outlined process, then this may suggest that they represent a discrete group of children with 

generalised word learning difficulties. If, however, they are impaired on some, but not all, 

mechanisms, then this would indicate a narrower range of difficulties that may be targeted 

for both identification of outcomes and intervention. 
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5 Chapter 5: The mechanisms of word learning in early development:  

A longitudinal study of late talking and typically developing children 

5.1 Chapter introduction 

Studying LT children over time offers the chance to identify, firstly, whether or not LT children 

learn words differently to TD children, and secondly, how later language outcomes differ as a 

result of these mechanisms. Previous research suggests that LT children may have delayed 

phonological abilities that influence how they build, and rely on, their expressive 

vocabularies during word learning (Edwards et al., 2004; Mirak & Rescorla, 1998; Stokes, 

2010, 2014; Stokes et al., 2012). However, any impairment in phonological ability must be 

related not only to processes that test the immediate mapping of words to referents, such as 

in fast mapping tasks, but also to processes that underlie longer term learning, such as the 

extraction of statistical, associative information. 

This Chapter reports a longitudinal study of LT and TD children followed over 18 

months. Children were seen at 2;0 – 2;5-years-old (T1), 3;0 – 3;5-years-old (T2), and 3;6 – 

3;11-years-old (T3). T3 data collection was interrupted by the COVID-19 pandemic; 

subsequently, a further measure was administered remotely at 4;0 – 4;5-years-old. 

Consistent with the majority of the literature (Fisher, 2017), LT children were identified using 

the Oxford CDI (Hamilton et al., 2000) with criterion of <10th percentile on expressive 

vocabulary at 2;0 – 2;5-years-old. Three tasks that examine different aspects of word 

learning (word repetition, fast mapping, and cross-situational word learning) were then tested 

at 3;0 – 3;5-years-old, and at 3;6 – 3;11-years-old, and related to both early and later 

expressive vocabulary. 

 

Author contribution for Chapter 5: Rachael W Cheung: design, data collection, analysis, 

writing, review. Calum Hartley: design, review. Padraic Monaghan: design, review 
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5.2 Abstract 

Late talking (LT) children are a heterogenous group characterised by developmentally 

delayed expressive language at 2;0-years-old in the absence of any other delay. Variability 

in word learning mechanisms in LT children may contribute to linguistic abilities and explain 

why some recover, whilst others do not. In a longitudinal study from age 2;0 – 3;11 years, we 

tested a cohort of TD (n = 40) and LT (n = 21) children across a series of tasks designed to 

isolate different mechanisms involved in word learning: encoding and producing spoken 

forms of words (using a nonword repetition task), identifying referents for words (using a fast 

mapping task), and learning associations between words and referents (using a cross-

situational word learning task).  

We found that LT children had lower accuracy on nonword repetition than TD 

children, despite most reaching TD ranges for expressive vocabulary. We found no between-

group differences in fast mapping and retention accuracy, although both were predicted by 

concurrent expressive vocabulary. LT children performed less accurately than TD children 

on cross-situational word learning retention trials, despite showing no between-group 

differences during referent selection training trials.  

These results indicate that LT children continue to have deficits in phonological 

representation that impact their word learning ability and expressive language abilities, but 

do not show difficulties in fast mapping novel words. They also raise the possibility that LT 

children struggle to retain associative information about word-referent mappings. LT children 

may thus use some, but not all, word learning mechanisms differently than TD children. 
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5.4 Introduction 

Late talking (LT) children fall at or below the 10th percentile for expressive vocabulary 

compared to typically developing (TD) children at around 2-years-old, despite the absence of 

concurrent developmental delays or sensory disorders (Desmarais et al., 2008; Fisher, 

2017). Although the majority catch up to their TD peers by school age (Rescorla, 2011), LT 

children are at increased risk of Developmental Language Disorder (DLD; Leonard, 2014; 

Reilly et al., 2010). However, there are few consistent factors across LT children that enable 

practitioners to reliably predict who is at risk of DLD. Expressive vocabulary alone is not a 

clinically useful predictor of language delay (Law & Roy, 2008; Leonard, 2009), and 

demographic predictors such as socioeconomic status, family history, and male gender 

explain only a small amount of variance in outcomes (Dale et al., 2003; Fisher, 2017; 

Hammer et al., 2017; Hartas, 2011; Henrichs et al., 2011; Lyytinen et al., 2005; Reilly et al., 

2010; Rescorla et al., 2007). Furthermore, although most LT children recover, they appear to 

score at the lower end of the TD range across language measures once they reach school 

(Rescorla, 2009; Rescorla, 2002, 2005; Rescorla et al., 2000). Employing a wait-and-see 

approach may thus risk missing out on a key early intervention period (Singleton, 2018; 

Collisson et al., 2016) 

In order to understand how and why outcomes in LT children differ, we must consider 

whether or not they learn words in a qualitatively different way to TD children. When learning 

a word for the first time, children must perceive the phonological elements that make up that 

word and articulate them (as measured by nonword repetition tasks). They must also map 

the word to its correct referents (referent selection, as measured by in-the-moment 

processes during fast mapping tasks), and then develop and retain the word-referent 

association (retention, as measured in cross-situational word learning, CSWL, tasks). These 

processes enable children to be able to both understand (receptive vocabulary) and produce 

(expressive vocabulary) words later on. As children build a lexicon, their existing knowledge 
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of words may also impact on how they learn novel ones (Edwards et al., 2004; Stokes, 2010, 

2014). Thus, any examination of word learning tasks in LT children requires relating 

performance on tasks to both early and later vocabulary.  

We examined LT and TD children’s performances on tasks that probe these different 

mechanisms involved in language learning in a longitudinal study. This allowed us to 

determine which aspects of processing are impacted in LT children as their language skills 

develop over time. We next summarise studies of nonword repetition, fast mapping, and 

CSWL in LT and TD children. 

Nonword repetition tasks in LT children 

 LT children have shown deficits in nonword repetition at the time of identification. 

Nonword repetition tasks require children to repeat a list of novel words immediately after a 

speaker produces them (Coady & Evans, 2008). Stokes and Klee (2009) found that children 

at or below the 16th percentile on the expressive CDI at 2 – 2;6-years-old could be identified 

based on their nonword repetition. Marini et al. (2017) also reported that LT children aged 

~2;6-years-old had impaired nonword repetition performance compared to TD children. 

These studies indicate that LT children are characterised by concurrent delays in the 

immediate perception, storage, and articulation of novel words. 

 However, if children with a history of LT continue to show reduced accuracy in 

nonword repetition after reaching typical vocabulary, this would suggest that early 

expressive delay may also have an enduring impact on children’s ability to encode the 

phonology of novel words, even after they have reached typical levels of vocabulary. For 

example, Marini et al. (2017) found that nonword repetition at ~2;6-years-old correlated with 

articulation (r = .47), naming (r = .33), semantic fluency (r = .34) and lexical comprehension 

(r = .27) approximately 11 months later. Studies that test nonword repetition at older ages 

have found that LT children identified at 2-years-old are also impaired at ~ 2;6- and ~3-

years-old (Rujas et al., 2017), as well as at 4 – 6-years-old (D’odorico et al., 2007). Broader 
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assessments suggest that children with a history of LT still struggle to produce speech when 

tested on their articulation and phonological abilities at 4 – 5-years-old, showing reduced 

accuracy and more errors on standardised speech assessments than TD children (Neam et 

al., 2020). However, none of these studies tested concurrent expressive vocabulary, 

meaning it is impossible to know whether LT children had reached the TD range. 

Conversely, others have found no differences on nonword repetition tasks between TD and 

recovered LT children at 3-years-old (MacRoy-Higgins & Dalton, 2015) and 5-years-old 

(Petruccelli et al., 2012).  

Thus, whilst LT children may have impaired nonword repetition, whether they 

continue to have difficulties once they have recovered remains less certain. Edwards et al. 

(2004) proposed that a smaller expressive vocabulary leads to more fragile phonological 

representations, and a limited ability to abstract over existing knowledge to support novel 

word encoding and articulation.  Despite this, in a review of the literature, Coady and Evans 

(2008) reported that only receptive vocabulary correlates with nonword repetition. 

Conversely, studies by Munson et al. (2005) and Chiat and Roy (2007) involving speech and 

language therapy clinic samples reported that both expressive and receptive vocabulary 

correlate with nonword repetition task performance. Thus, further research is necessary to 

determine how expressive vocabulary correlates with nonword repetition over time, and also 

how nonword repetition ability may tie into other mechanisms of word learning, such as 

referent selection and retention. 

Fast mapping in LT children 

 Fast mapping refers to the early process of word learning where children encounter a 

novel word and its referring object for the first time, and are able to disambiguate the novel 

word correctly (Carey & Bartlett, 1978). Fast mapping tasks assess the ability of children to 

comprehend or produce these novel words immediately after single exposures, but unlike 
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nonword repetition, also require accurate referent selection (selecting the correct object that 

matches the word).  

Proposed strategies for fast mapping include mutual exclusivity, which assumes that 

each object has only one label (Markman & Wachtel, 1988). Thus, when faced with two 

objects – one familiar with a known label and one unfamiliar – children infer that a novel 

label must refer to the unfamiliar object. TD children are able to use this principle to 

constrain their referent selection for novel words (Markman et al., 2003) and respond 

accurately on fast-mapping tasks at around 2-years-old (Bion et al., 2013). However, it is not 

yet clear whether LT children apply the same strategies as TD children when fast mapping 

unfamiliar words. 

Referent selection can be conceptualised as a competitive process between potential 

word-referent pairs, where fast mapping is driven by cognitive constraints like mutual 

exclusivity, rather than by existing associations between known words and lexical concepts 

(Halberda, 2006; McMurray et al., 2012). Based on their nonword repetition task 

performance, we would expect LT children to be less accurate at producing novel words. 

However, if LT children are able to perform above-chance and equivalent to TD children 

when tested purely on comprehension of fast mapped words, this would suggest that the 

initial competitive process involved in referent selection is intact, and that referent selection 

is not necessarily related to early expressive delay. If, however, LT children show reduced 

accuracy compared to TD children, this would suggest that early expressive delay may be 

related to receptive fast mapping abilities during referent selection.  

Only a few studies to date have examined fast mapping in LT children, yielding 

evidence for reduced performance in both comprehension and production of novel words. 

Weismer et al. (2013) found that LT children aged 2;6-years seemed to score above-chance 

(25%) at test for comprehension of familiar and novel words. However, in comparison to TD 

controls, LT children responded less accurately on production of familiar and novel words 
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and on comprehension of novel words, but were equally able to comprehend familiar words. 

In a similar task, MacRoy-Higgins et al. (2013) also found that LT children aged 24-months-

old performed less accurately than TD children on comprehension and production of novel 

words. Rujas et al. (2019) reported that LT children struggled to fast map and extend novel 

words (comprehension) when tested at three timepoints (~2;2-years-old, ~2;9-years-old and 

~3;4-years-old), compared to TD children. However, Rujas et al. did not measure concurrent 

vocabulary throughout their study, meaning it is unclear whether their later timepoints 

included non-recovered and recovered LT children. 

These results hint that referent selection may be related to expressive delay, but 

further investigation is necessary given the scarcity of studies. In addition, fast mapping does 

not necessarily indicate longer term learning and retention of words – TD children aged 2-

years-old who have high accuracy during fast mapping referent selection, show low 

accuracy when tested on retention of the same words just 5 minutes later (Horst & 

Samuelson, 2008). Language acquisition is thus thought to result from the interaction 

between fast mapping processes that identify referent selection during online learning, and 

slower, longer term learning where word-referent associations are gradually strengthened 

and pruned over time (McMurray et al., 2012). Thus far, no prior studies of fast mapping in 

LT children have tested retention after a delay. As TD children show limited ability to retain 

words from fast mapping even at 4-years-old (Vlach & Sandhofer, 2012), we would also 

expect to observe limited retention in LT children. However, if LT children show less 

accurate retention in comparison to TD children, this might indicate that the processes 

underlying retention after fast mapping are related to early expressive delay. 

Cross-situational word learning in LT children 

Statistical learning refers to the ability to extract information from the environment 

and then discern patterns from that information (Romberg & Saffran, 2010). In a typical 

cross-situational word learning (CSWL) task, learners must use statistical information to 
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correctly pair words and referents from trials that contain ambiguous visual objects and 

auditory labels, by noting when labels and objects co-occur (Yu & Smith, 2007). Infants 

(Smith & Yu, 2008) and children (Bunce & Scott, 2017; Vlach & DeBrock, 2019) are able to 

identify correct word-referent pairs during CSWL tasks. A key feature of CSWL is the 

repetition of information across trials that leads to accurate referent selection. Over 

development, the retention of novel mappings through repeated exposure and associative 

learning may contribute to longer term learning (McMurray et al., 2012). 

Some studies have found that LT children require more exposures to learn words. 

When testing fast mapping comprehension, MacRoy-Higgins and Dalton (2015) found that 

children with a history of LT benefitted from more exposures to words with high phonotactic 

probabilities than TD children. Children with DLD also appear to require more exposures 

than TD children to learn words (Gray, 2004, 2006; Kan & Windsor, 2010; Rice et al., 1994). 

Thus, if both LT children and those with DLD require repeated exposures during word 

learning, their novel word learning may be increasingly dependent on repeated statistical 

information than lexical principles that constrain referent selection.  

If LT children rely on statistical information and repeated exposures to word-referent 

mappings, this might result in performance on par with TD children during CSWL, but not in 

fast mapping tasks, where they only have one exposure to a novel word. Studies of CSWL in 

children with autism spectrum disorder (ASD), a population with significant language 

difficulties (Eigsti et al., 2011), have not found any differences in CSWL when compared with 

TD children matched on receptive vocabulary (Hartley et al., 2020; Venker, 2019). These 

findings indicate that there were no qualitative differences between the populations in how 

they utilised statistical information – rather, their language difficulties stemmed from 

elsewhere. 

In the only study to our knowledge that assesses task-based CSWL in DLD, 

Ahufinger et al. (2021) found that although both bilingual children with DLD and TD children 
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(8-years-old) performed above chance at test, the DLD sample scored significantly less 

accurately than TD children. However, they tested word-referent mappings immediately after 

training, rather than referent selection during training, and did not test the retention of words 

after a delay, meaning it is not possible to distinguish between referent selection and 

retention ability for these children.  

No studies to our knowledge have tested task based CSWL in LT children, nor do 

CSWL studies typically relate vocabulary to CSWL task performance. If CSWL reflects a 

general cognitive learning mechanism (the ability to extract statistical information and to use 

process-of-elimination), rather than a language specific mechanism (McMurray et al., 2012; 

Yu & Smith, 2012), the processes involved in CSWL may also be less dependent on existing 

vocabulary than nonword repetition performance. However, if LT children are impaired in 

CSWL as a function of limited ability to extract statistical information, this may help 

characterise why these children appear to have difficulties adding words to their lexicon over 

time.  

Overall, these three tasks – nonword repetition, fast mapping, and CSWL – reflect 

separate mechanisms that apply to word learning. However, they may apply differently to 

children according to their individual language abilities, and to how these change over time. 

The trajectory of language development is a key part of understanding how LT children may 

differ to TD children as they develop, particularly as LT children are a heterogenous 

population (Reilly et al., 2010). For example, Weismer (2007) found combining non-verbal 

IQ, expressive language, and a test of novel word comprehension correctly identified 90% of 

LT children identified at 2-years-old (N = 40), who reached the TD range 12 months later, 

and correctly rejected 91% who did not reach this range. Considering how both early and 

later vocabulary relates to the distinct mechanisms outlined during word learning is thus 

important, and may help highlight LT children who continue to have impairments in 

vocabulary production. 
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The present study 

The extant literature regarding LT children leaves a series of open questions 

concerning their word learning abilities, and where in the process they may struggle. Firstly, 

although research suggests that LT children are impaired concurrently on non-word 

repetition (Marini et al., 2017; Stokes & Klee 2009), the literature reports mixed results on 

whether these children continue to show impairments once recovered (D’Odorico et al., 

2007; Neam et al., 2020). Secondly, studies that examine fast mapping in LT children 

indicate potential deficits in rapid comprehension and production (Weismer et al., 2013). 

However, these are few, do not test retention, and do not always report relationships with 

expressive vocabulary, making it difficult to identify whether LT children continue to struggle 

once reaching the TD vocabulary range. Thirdly, children with DLD show impairments in 

CSWL (Ahufinger et al., 2021), which may also be found in LT children, but this has not yet 

been tested. Finally, despite the heterogeneity of LT children, studies do not always account 

for the trajectory of vocabulary development over time. 

 We used a longitudinal design to study a cohort of TD children and LT children 

recruited at 2 – 2;5-years-old and followed up at 3 – 3;5-years-old and 3;6 – 3;11-years-old. 

We investigated whether LT children make use of the same strategies as TD children during 

different stages of the word learning process, examining how both LT status and concurrent 

expressive vocabulary relate to these stages. Using a repetition task that assesses 

production of real words as well as nonwords (PSRep Test; Chiat & Roy, 2007), we tested 

whether LT children show prolonged deficits in their ability to encode and reproduce novel 

phonological information (nonwords), as well as assessing how intact their phonological 

representations are for familiar information (real words). Using a fast mapping task that 

measures comprehension, we tested whether LT children show intact use of mutual 

exclusivity during referent selection. Using a CSWL task, we tested children’s ability to track 

co-occurrences between words and objects over multiple individually-ambiguous exposures 
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in order to disambiguate correct word-referent associations. We also tested retention 

following both fast mapping and CSWL, allowing us to identify whether LT children show 

deficits in the acquisition of novel word-referent pairs after a short delay.  

We hypothesised that LT children would demonstrate lower accuracy across all tasks 

in comparison to TD children at all time points. We also hypothesised that higher expressive 

vocabulary would correlate with more accurate performance across all tasks.4 By relating 

past and present vocabulary to tasks that test different stages of word learning, we highlight 

which processes relating to word learning in LT children may be atypical, and how the 

trajectory of children’s expressive language development may also be affected by these 

mechanisms. 

5.5 Method 

Participants 

Participants were recruited as part of a longitudinal study that followed-up LT and TD 

children between the ages of 2 – 2;5-years-old to 3;6 – 3;11-years-old. Participants were 

recruited using flyers from Lancaster Babylab, via health visitors, and through nurseries in 

the Lancashire area. Once consent to contact was obtained, parents completed the Oxford-

CDI (Hamilton et al., 2000) and were included if they met one of the following criteria for the 

two groups: TD with an expressive vocabulary score ≥ 25th percentile, or LT with an 

expressive vocabulary score ≤ 10th percentile. These criteria were chosen to ensure two 

distinct groups, with the LT criterion consistent with prior literature (Fisher, 2017). Inclusion 

criteria also included monolingual English, with no history of developmental or sensory 

delays or disorders.  

 
4 We originally hypothesised that LT children who had not recovered would perform less accurately with linguistic 
scaffolding, and that recovered-LT children would perform on par with TD children (see preregistrations). 
However, as all but two LT children recovered at T2 and we could only test half of the original sample due to 
COVID-19, resulting in small subgroups, we utilised concurrent expressive vocabulary across all participants at 
T2 and T3. 
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A total of 85 families completed the CDI; of these, 24 children were excluded due to 

the aforementioned criteria. A total of 61 children (40 TD and 21 LT) comprised the final 

cohort. Visits occurred at 2 – 2;5-years-old -years-old (baseline T1), 12 months from 

baseline at 3 – 3;5-years-old (T2), and 18 months from baseline at 3;6 – 3;11-years-old (T3). 

As a result of the COVID-19 pandemic, data collection during the third timepoint was 

interrupted. For the remaining cohort that had not been tested, the remaining LT children (8) 

were tested online on only expressive and receptive vocabulary questionnaires. An 

additional timepoint (T4) at 4 – 4;6-years-old was added that could be administered remotely 

to gain extra information about the cohort. The progression of the study and sample sizes 

can be seen in Figure 1. 

 

Figure 1. Study diagram showing the progression of longitudinal study and sample 

sizes across timepoints. 

 

Questionnaires 

 The Oxford-CDI (Hamilton et al., 2000) was used at T1 to confirm participants’ 

allocation to either the LT or TD group. This questionnaire asks parents to indicate all of the 

words that their child says and understands (i.e. estimating their total expressive and 

receptive vocabulary sizes).  
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The Expressive and Receptive One Word Picture Vocabulary 4th Edition (EOWPVT-

4/ROWPVT-4; (Martin & Brownell, 2011) were used as measures of expressive and 

receptive vocabulary at T2 and T3, administered by the experimenter. For the EOWPVT-4, 

children are shown a picture of an object and asked to name it, and for the ROWPVT-4, 

children are shown four pictures at a time and asked to point to the picture that shows the 

specific word asked for. 

The Leiter-3 non-verbal Cognitive Battery (Figure Ground, Form Completion, 

Classification Analogies, Sequential Order; Roid et al., 2013) was used as a measure of 

non-verbal IQ at T3.  

The Vineland-3 Domain General Parent-Report questionnaire (Sparrow et al., 2016) 

was used at T4 as a measure of general functioning. 

In addition, at all timepoints, general information concerning access to speech and 

language therapy, sensory or developmental diagnoses, parental concern surrounding 

speech and language skills, and parental socioeconomic status was also recorded. 

Testing session set-up 

 The tasks and questionnaires that were administered at each timepoint can be 

viewed in Table 1. We utilised a mobile testing set-up to maximise retention of participants in 

the study, with data collection occurring within a room at Lancaster Babylab or at the 

participant’s home. Where testing took place in the home setting, care was taken to ensure a 

quiet space and clear environment, with just the child and main caregiver present. During 

testing, the child was seated on one side of a 1 metre fold-out table on a small chair with the 

caregiver sitting next to them on the floor, and the experimenter was seated on the floor on 

the other side.  
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Table 1.  

Measures administered at each timepoint. 

Timepoint Measures 
 

Tasks 

T1: 2 – 2;5-years-old 
(N = 61) 
 

Oxford-CDI  

T2: 3 – 3;5-years-old 
(N = 56) 

EOWPVT-4 
ROWPVT-4 
 

Fast-mapping and retention 
PSRep Test 

T3: 3;6 – 3;11-years-old a 
(N = 29) 

EOWPVT-4 
ROWPVT-4 
Leiter-3 
 

Cross-situational word learning 

T4: 4 – 4;6-years-old 
(N = 46; remote testing) 
 

Vineland-3 
 

 

a An additional 8 LT children were also tested at this time point remotely on only the EOWPVT-4 and 
ROWPVT-4 during COVID-19 
 

Nonword Repetition Task: The Preschool Repetition (PSRep) Test (Chiat & Roy, 2007) 

Stimuli: The PSRep contains 18 word and 18 non-words of varying lengths. Accuracy of 

children’s repetition of the stimuli was recorded.  

Procedure: The PSRep Test is designed to maximise young children’s participation in 

nonword repetition tasks using live presentation (Chiat & Roy, 2007). During the task, the 

experimenter delivered live presentation of real word and non-word stimuli with the use of a 

sock puppet that had a moveable mouth. The puppet was held in front of the experimenter, 

blocking the child’s view, so the puppet ‘said’ the words (Figure 2). The experimenter began 

with four warm-up trials (two real words and two non-words) that were not coded before 

progressing to the test stimuli. The order of real words and non-words was counterbalanced 

across participants, with half of them receiving non-words first, and the other half receiving 

real words first. After the child has made an attempt at repeating the requested item, the 

experimenter progressed to the next trial. Where the child did not make a response, the item 

was repeated up to three times in total. Children’s responses were recorded on a dictaphone 

and written in verbal form on the response sheet, and subsequently coded by the 
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experimenter for total items correct (accuracy; for syllable loss, please see Supporting 

Information, Appendix C) according to the criterion set out by Chiat and Roy (2007). An 

independent second coder coded the responses from the PSRep Test, showing good inter-

rater reliability (Cohen’s k = .89).  

 

Figure 2.  

Preschool Repetition Test set-up. Stimuli are presented live. The puppet is held in 

front of the experimenter blocking the child’s view of the experimenter, giving the 

illusion that the puppet is speaking. 

 

 

Fast-mapping and retention task (Hartley et al., 2019) 

Stimuli: The task was adapted from Hartley et al.’s (2019) fast mapping task. Participants 

had four one-syllable novel words to learn: lep, darg, terb, yok selected from the NOUN 

database (Horst & Hout, 2016). The novel words were randomly paired with four novel 

objects for each participant prior to the task beginning. Novel objects were all different 

colours and shapes, but approximately the same size, and familiar objects were common 

objects that were checked for familiarity with the parent beforehand. All object stimuli for this 

task are presented in Appendix C.  

Procedure: Participants began with three warm-up trials where they were asked to select a 

familiar object from an array of three: ‘Look! Can you get the [object name]?’. If they 

responded correctly, they were told: ‘Great job! That is the [object name]!’ If they responded 
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incorrectly, they were given feedback: ‘Actually, this is the [object name]. Can you get the 

[object name]? Well done, you touched the [object name]!’. 

 Participants then completed eight referent selection trials (Figure 3a) – four Familiar 

and four Unfamiliar. For each trial, the experimenter would say: ‘Let’s look at some new 

things!’ and display a tray with three objects: two familiar and one novel. On Familiar trials, 

children were asked to select a familiar object (‘Can you get the [familiar object]?’. On 

Unfamiliar trials, children were asked to select the novel object (‘Can you get the [novel 

word]?’). Regardless of the selection made, the experimenter only said: ‘Thank you.’ The 

order in which objects were requested was pseudorandomised with the constraint that no 

more than two trial types of the same kind occurred in a row, and the position of the objects 

was counterbalanced using a 3x3 Latin Square across participants. 

 Participants were then given a five-minute break to play with a simple jigsaw puzzle. 

On return to testing, participants completed 8 retention trials (Figure 3b). For each trial, they 

were shown three of the novel objects they had learnt words for in the preceding referent 

selection trials. The experimenter said: ‘Look!’, and after 3 seconds, they requested one of 

the novel objects using the corresponding label for that object (‘Can you get the [novel 

name]?’). This repeated until all novel objects had been requested twice. The position of the 

three objects was pseudorandomised with the constraint that the target did not appear in the 

same position more than twice in a row. The order in which objects were asked for was 

counterbalanced across participants using a 3x3 Latin Square. 
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Figure 3.  

Fast mapping and retention task: example of a) referent selection trials; b) retention 

trials. 

a) 

 

 
b) 

 

 

Cross-situational word learning task (CSWL; Hartley et al., 2020) 

Stimuli: The CSWL task was adapted from Hartley et al. (2020). Stimuli were presented on 

a Windows 10 SurfacePad Pro touchscreen. There were four two-syllable novel words to 

learn over 32 trials: teebu, blicket, fiffin, and verdex from the NOUN Database (Horst & Hout, 

2016). For each participant, novel words were pseudo-randomly paired with one of four 

novel objects with different shapes and colours, but similar sizes (Appendix C).  

Procedure: Participants began with three warm-up trials, that were not scored, where they 

saw two familiar objects and were asked: ‘Which is the [familiar word]? Touch the [familiar 

word]’. The warm-up trials repeated until the participant identified the correct referent for 

each word, before proceeding to the training trials. 
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On each training trial, participants saw two objects on the screen. A female voice 

directed them to: ‘Look!’. After viewing the pictures for 2.5 seconds, the same voice asked: 

‘Which is the [novel word]? Touch the [novel word]’ (Figure 4). Each of the four novel word-

referent mappings were presented four times; there were 32 trials in total. Each object 

appeared four times as a target, and four times as a foil. The target appeared an equal 

number of times on the left and right of the screen, and the order of trials was randomised. 

When children made their choice by touching the screen, their choice was recorded and the 

task automatically advanced to the next trial. If they did not make a choice, the experimenter 

advanced the trial using a hidden asterisk button in the upper right-hand corner of the 

screen.  

The children then had a five-minute break where they played with the examiner using 

a jigsaw puzzle, before commencing the retention trials. They began with three warm-up 

trials where they saw three familiar objects positioned on the left, middle, and right of the 

screen. The target appeared in each of the three possible locations on one trial, and the trial 

order was randomised so that children selected targets in each location before the testing 

trials began. 

Children completed eight retention trials – each novel word-object pair was tested on 

two trials. Three of the objects from the training trials were presented on the screen at a 

time. After viewing the pictures for 2.5 seconds, the female voice asked: ‘Which is the [novel 

word]? Touch the [novel word]’ (Figure 4). All objects were used four times as foils across 

the eight trials. The position order was randomised per participant with the constraints that 

the target object appeared in each position at least twice, and never more than twice in a 

row. The testing order was also randomised per participant.  
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Figure 4.  

Cross-situational word learning task: a) example of two training trials: the learner is 

able to infer that the gasser must be the blue object, based on co-occurrence across 

the trials; b) example of retention trial. 

    

 
 
 

5.6 Results 

We first report the study sample characteristics for each timepoint. We then assess 

the extent to which the mechanisms tested by the nonword repetition test, the fast mapping 

referent selection and retention task, and the CSWL task, show different performance for the 

LT and TD groups. We then report how the trajectory of expressive vocabulary relates both 

predictively and concurrently to these mechanisms of word learning. Data and code from this 

experiment can be viewed on OSF 

(https://osf.io/feg6d/?view_only=26b5bcbe085f4822bbede23a88a87471), alongside pre-

registrations and a document that explains project deviations due to COVID-19.  
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Sample characteristics 

 The final samples for each task can be seen in Tables 2 and 3. All families were from 

mid-socioeconomic status (SES) backgrounds, measured by parental education levels. At 

T1 (2 – 2;5-years-old), there were 61 participants (40 TD; 21 LT). Between T1 and T2, 3 TD 

families dropped out of the study permanently (1 family emergency, 2 uncontactable). One 

TD family and one LT family dropped out for T2 (both due to pregnancy), but returned to 

participate in T3. 

At T2 (3 – 3;5-years-old), 56 children (36 TD; 20 LT) from the T1 sample participated 

(Table 2). All but two LT children were above the 10th percentile on the EOWPVT-4, 

indicating that most of our sample comprised recovered LT children.5 As a result, all tasks 

were analysed with T1 expressive vocabulary as a function of population (TD or LT), and T2 

and T3 expressive vocabulary as continuous variables, rather than comparing TD children 

against a LT group that homogenised recovered and non-recovered children. All 56 

completed the fast-mapping and retention task at T2. A total of 53 were administered the 

PSRep Test (34 TD; 19 LT). Of these, 3 TD children refused to speak nonwords due to 

shyness and only completed real word stimuli. A total of 2 TD children and 1 LT child were 

excluded due to a high number of incomplete trials (completing less than half of the stimuli, 

as specified in the pre-registration). These numbers concerning exclusion and non-

responders for nonwords were consistent with Chiat and Roy’s (2007) results in the same 

age group.  

 At T3 (3;6 – 3;11-years-old), 29 participants (20 TD; 9 LT) were tested before the 

COVID-19 pandemic ceased face-to-face testing (Table 3). All were tested on the Leiter-3; 

Welch two-sample t-tests showed that the TD children and LT children did not differ 

significantly in non-verbal IQ (Table 3). One TD child and one LT child did not complete the 

CSWL task due to fussiness. A total of 27 children completed the training trials in the CSWL 

 
5At T3, one child remained at the 10th percentile, and the other child reached above the 10th percentile. 
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task (19 TD and 8 LT), all of whom had completed the fast-mapping task and the PSRep 

Test at T2. A further 2 LT children did not complete the CSWL retention trials due to fatigue; 

6 LT children and 19 TD children successfully completed the CSWL retention trials. A further 

8 LT children completed the EOWPVT-4 and ROWPVT-4 online at T3; of these, all had 

completed the fast-mapping task and 7 had completed the PSRep Test at T2.  

At T4 (4 – 4;6-years-old), 46 participants (28 TD; 18 LT) completed the Vineland-3 

remotely via video-call or telephone-call during the COVID-19 pandemic. LT children scored 

significantly lower than TD children on the Vineland-3 Adaptive Behaviour Composite (ABC) 

scores, (t(32.39) = -2.17, p = .037; Table 3), but not within thresholds indicative of 

developmental delay (Sparrow et al., 2016). The ABC combines communication, daily living 

skills, and socialisation subscales; when these subscales were examined individually, there 

were no significant differences between groups using Welch two-sample t-tests. There were 

also no significant group differences on the motor subscale or in maladaptive behaviour.  

Due to high VIF (>3; Zuur et al., 2010) for expressive and receptive vocabulary 

scores when entered into the same model, these were analysed separately. As we were 

interested in examining how early classification of LT related to performance in different 

mechanisms of word learning, we report here the predictive effect of expressive vocabulary 

only (see Supporting Information, Appendix C, for analyses of receptive vocabulary). 

Additionally, to allow for capturing the trajectory of vocabulary development over time, we 

also tested the relation between word learning performance with concurrent expressive 

ability. 
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Table 2.  

PSRep Test and fast mapping task: sample demographics and vocabulary at time of 

testing. Note that unless otherwise specified, standardised scores were used. 

Task Fast-mapping and retention 
mean (SD) 

PSRep Test 
mean (SD) 

 TD (n = 36) LT (n = 20) TD (n = 34) LT (n = 19) 

Age (decimal years) 3.20 (1.52) 3.18 (1.54) 3.21 (0.13) 3.19 (0.13) 

Sex (m : f) 16 : 20 14 : 6 15 : 19 13 : 6 

T1 CDI receptive a 381.0 (42.1) 266.0 (88.4) 381.0 (43.2) 273 (84.7) 

T1 CDI expressive a 325.0 (79.6) 61.6 (50.3) 322.0 (80.6) 63.8 (50.7) 

T2 ROWPVT-4 166.03 (10.48) 108.50 (10.16) 115.74 (10.67) 108.95 (10.32) 

T2 EOWPVT-4 120.47 (9.21) 107.75 (13.80) 120.03 (9.29) 108.47 (13.79) 

 TD (n = 19) LT (n = 9) TD (n = 17) LT (n = 9) 

T3 Non-verbal IQ 

(Leiter-3) 

98.6 (6.86) 92.0 (12.8) 98.2 (6.86) 92.0 (12.8) 

 TD (n = 25) LT (n = 17) TD (n = 23) LT (n = 17) 

T4 Vineland ABC b 100.56 (6.34) 94.82 (6.43) 99.87 (6.13) 94.82 (6.43) 

T4 Vineland Com  144.16 (180.54) 103.47 (25.47) 146.70 (188.33) 103.47 (25.47) 

T4 Vineland DLS  96.28 (5.43) 94.76 (7.87) 95.83 (5.41) 94.76 (7.87) 

T4 Vineland Soc 98.48 (7.56) 92.82 (7.94) 97.83 (7.44) 92.82 (7.94) 

T4 Vineland Mot  98.28 (6.01) 95.76 (8.99) 98.22 (5.66) 95.76 (8.99) 

T4 Vineland MB a  6.00 (3.04) 7.12 (4.39) 6.0 (3.05) 7.12 (4.39) 

 
ABC = Adaptive Behaviour Composite; Com = Communication subscale; DLS = Daily Living Score 
subscale; MB = Maladaptive Behaviour subscale; Mot = Motor subscale; LT = late talking; PSRep = 
Preschool Repetition;  TD = typically developing; vocab = vocabulary 
 
a Raw scores used 

b This is a composite of Communication, Daily Living Skills, and Socialisation subscales 
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Table 3.  

Cross-situational word learning task: sample demographics and vocabulary at time of 

testing. Unless otherwise specified, standardised scores were used. 

Task                   
 

Cross-situational word learning task 
mean (SD) 

 TD (n = 19) LT (n = 8) 

Age (years) 3.76 (0.12) 3.71 (0.15) 

Sex (m : f) 7 :12 6: 2 

T1 CDI receptive a 394.32 (23.41) 275.38 (58.60) 

T1 CDI expressive a 350.11 (67.95) 74.38 (57.95) 

T3 ROWPVT-4 111.68 (5.39) 111.88 (7.68) 

T3 EOPVT-4 122.53 (8.60) 108.38 (13.73) 

T3 Non-verbal IQ (Leiter-3) 98.84 (6.74) 93.75 (12.49) 

 TD (n = 15) LT (n = 8) 

T4 Vineland ABC b 102.07 (6.32) 97.63 (6.42) 

T4 Vineland Com  110.2 (6.20) 113.0 (34.61) 

T4 Vineland DLS  97.80 (4.54) 97.25 (6.36) 

T4 Vineland Soc  98.27 (8.97) 96.25 (7.74) 

T4 Vineland Mot  99.13 (6.31) 100.13 (9.37) 

T4 Vineland MB a 6.00 (3.34) 6.25 (5.28) 

ABC = Adaptive Behaviour Composite; Com = Communication; DLS = Daily Living Score; MB = 
Maladaptive Behaviour; Mot = Motor subscale; LT = late talking; PSRep = Preschool Repetition; TD = 
typically developing 
 
a Raw scores used 

b This is a composite of Communication, Daily Living Skills, and Socialisation subscales 
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Differences in word learning mechanisms between LT and TD children 

For analyses between groups and examining the relationships between expressive 

vocabulary and task performance, general linear mixed effects (GLME) models were 

employed using the functions glmer from the package lme4 in R [v1.1.463]. Across all 

models, we tested fixed effects of population at T1 to determine how LT status related to 

task accuracy, and also effects of concurrent vocabulary to determine how this relation might 

change with vocabulary development. These models were built up progressively, starting 

with a null model that contained random effects of participant and target word. Fixed effects 

were then added sequentially, with each model compared to the previous best-fitting model 

using log likelihood comparisons (Barr et al., 2013). Fixed effects tested are detailed 

underneath each task section.  

Are LT children impaired on nonword repetition? 

To examine whether children’s performance on the PSRep Test differed according to 

expressive vocabulary, we predicted accuracy (item correct: incorrect = 0, correct = 1) using 

two GLME analyses, with: 1) population (determined at T1 using CDI; TD = 0, LT = 1), and 

2) concurrent vocabulary as fixed effects. These models were tested alongside fixed effects 

of word length (number of syllables) and word type (word = 0, non-word = 1), with random 

effects of participant and target word. Random slopes of participant per word did not 

converge and so were omitted from the model. 

The best-fitting model contained fixed effects of population and word length (χ2(2) = 

12.73, p = .003; Table 4): LT children scored significantly less accurately (M = 0.48, SE = 

0.02) than TD children (M = 0.81, SE = 0.01; p < .001). All children scored less accurately 

as word length increased (2-syllables: p = .007; 3-syllables: p <.001). There was no 

interaction between population and word length, and no effect of word type. 

There was also a predictive effect of concurrent expressive vocabulary (T2, 

EOWPVT-4) on task accuracy. The best-fitting model to the data contained fixed effects of 
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concurrent expressive vocabulary and word length (χ2(2) = 12.79, p = .002; Table 4): 

accuracy increased with higher expressive vocabulary (p < .001), and all children scored 

less accurately as word length increased (2-syllables: p = .007; 3-syllables: p < .001). Again, 

there was no interaction between expressive and word length, and no effect of word type. 

 

Table 4.  

Preschool Repetition Test: general linear mixed effects model results predicting item 

correct by fixed effects of T1 and T2 expressive vocabulary. 

 
Relation with early expressive vocabulary (measured at T1: 2 – 2;5-years-old) 

Fixed effect estimate SE z-value  p-value  

(intercept)a 

T1 population (late talking) 

2-syllable words 

3-syllable words 

2.90 

-2.14 

-1.22 

-1.73 

0.39 

0.36 

0.46 

0.46 

7.39 

-6.03 

-2.68 

-3.78 

< .001 

< .001 

.007 

< .001 

 

Relation with concurrent expressive vocabulary (measured at T2: 3 – 3;5-years-old) 

Fixed effect estimate SE z-value  p-value  

(intercept) 

T2 expressive (EOWPVT-4)a  

2-syllable words 

3-syllable words 

-7.55 

8.32 

-1.22 

-1.73 

1.79 

1.52 

0.46 

0.46 

-4.21 

5.47 

-2.68 

-3.79 

< .001 

< .001 

.007 

< .001 

 

a Rescaled using x/100 to allow model fit 
 
 
Are LT children impaired in fast mapping? To examine whether children’s performance 

on fast mapping differed according to expressive vocabulary, we predicted accuracy (item 

correct: incorrect = 0, correct = 1) on referent selection and then retention trials using GLME 

analyses. These models contained: 1) population (determined at T1 using CDI; TD = 0, LT = 

1), and 2) concurrent vocabulary as fixed effects. For models that tested retention trial 
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accuracy, we also added a fixed effect of referent selection accuracy, to assess whether 

accuracy on referent selection trials affected subsequent retention trials for the same item. 

Random effects of participant and target item were included. As all participants scored at 

ceiling on familiar trials, we tested only unfamiliar referent selection trials. A model with 

random slopes of participant per word did not converge and so were omitted from the final 

model. 

There was no predictive effect of early expressive vocabulary (T1, CDI) on referent 

selection or retention trials. For referent selection, LT children (M = 0.83, SE = 0.09) scored 

on par with TD children (M = 0.87, SE = 0.07). For retention, LT children (M = 0.32, SE = 

0.11) scored slightly less accurately than TD children (M = 0.40, SE = 0.08). 

There was an effect of concurrent expressive vocabulary (T2 EOWPVT-4) on 

referent selection trials. A model with fixed effects of concurrent expressive vocabulary 

provided the best fit to the data (χ2(1) = 15.53(1), p-value < .001; Table 5). This showed that 

participants’ accuracy during referent selection trials for unfamiliar words increased with 

concurrent expressive vocabulary (p <.001).  

There was also an effect of concurrent vocabulary for retention trials. 6 A model with 

fixed effects of concurrent expressive vocabulary, referent selection accuracy, and an 

interaction between expressive vocabulary and referent selection accuracy provided the best 

fit (χ2(3) = 9.20(3), p-value = .027; Table 5). This model indicated that higher expressive 

vocabulary predicted higher accuracy (p = .023), and that responding accurately on a 

referent selection trial significantly increased the likelihood of responding correctly on the 

corresponding retention trial for the same word (p = .043). The interaction also indicated that 

children with higher concurrent expressive vocabulary were more likely to score accurately 

 
6 A possibility is that the difference in the predictive effect of expressive vocabulary at T1 and T2 was due to a 
difference in variable type, as T1 was discrete, and T2 was continuous. An additional analysis was run with T1 
expressive vocabulary used as a continuous variable, which yielded the same results. Thus, this difference was 
not likely to be due to variable type. 
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even if they were incorrect during referent selection. This suggests that not only did higher 

concurrent expressive vocabulary predict higher accuracy on referent selection trials and 

subsequent retention trials, but that it may have also enabled children to map words to 

referents during retention trials even if they had been wrong previously – i.e. children with 

higher expressive vocabulary may have been able to ‘correct’ their previous errors actively 

during testing. However, the effect of this was not significant (p = .051), despite the model 

providing significantly better fit to the data with the interaction than without, so must be 

interpreted cautiously. 

 

Table 5.  

Fast mapping task: results of general linear mixed effects model predicting accuracy 

in referent selection and retention trials by concurrent expressive vocabulary. 

Referent selection trial accuracy     
Fixed effect estimate SE z-value  p-value 

(Intercept) 

T2 expressive vocabulary (EOWPVT)a 

-3.07 

6.36 

2.12 

1.66 

-1.45 

3.83 

.015 

<.001 

Retention trial accuracy     
Fixed effect estimate SE z-value  p-value 

(intercept) 

T2 expressive vocabulary (EOWPVT)a 

Referent selection (correct) 

T2 expressivea * referent selection (correct) 

-8.14 

6.45 

6.96 

-5.86 

3.23 

2.84 

3.43 

3.00 

-2.52 

2.28 

2.03 

-1.96 

.012 

.023 

.042 

.051 

a Rescaled using x/100 to allow model fit 
  

Do LT children show impairments in cross-situational word learning? To examine the 

effect of early and concurrent expressive vocabulary, we used GLMEs to predict task 

accuracy in training (referent selection) trials and then retention trials. We first tested the 

relation of accuracy to early expressive vocabulary (fixed effect: T1 population (TD or LT, 
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determined by CDI), and then tested relations with concurrent expressive vocabulary (fixed 

effect: T3, EOWPVT-4), with a random effect of participant. Models with random effects 

effects of target item, and random slopes of participant per target item, failed to converge so 

were omitted. 

There were no effects of early or concurrent expressive vocabulary on training trials. 

LT children (M = 0.62, SE = 0.19) scored on par with TD children (M = 0.63, SE = 0.12). 

However, there was a significant effect of population on retention trial accuracy (χ2(1) 

= 4.83, p = .028; Table 6), with the best fitting model to the data containing a fixed effect of 

Population (LT or TD). LT children (M = 0.31, SE = 0.21) scored significantly less accurately 

than TD children (M = 0.52, SE = 0.12; p = .025).7  This must be interpreted with caution as 

only 6 LT children completed this part of the task due to the COVID-19 restrictions limiting 

data collection. There was no effect of concurrent expressive vocabulary for retention trials.  

 
Table 6.  

Cross-situational word learning task: results of general linear mixed effects model 

predicting accuracy in retention trials with early expressive vocabulary (T1, CDI). 

Fixed effect estimate SE z-value  p-value  

(intercept) 

T1 population (LT) 

0.09 

-0.90 

0.19 

0.40 

0.45 

-2.24 

.650 

.025 

 

 

Predicting early and later expressive vocabulary from combined mechanisms 

 As an exploratory analysis, we used linear models to test the extent to which 

performance across all tasks combined to relate to early (T1) and later (T3) vocabulary (lm 

base function in R). This enabled us to determine how the child’s developing expressive 

vocabulary related to the mechanisms investigated in the tasks. 

 
7 An additional analysis using T1 as a continuous variable, as for the fast mapping task was not possible, as 
these models failed to converge. 
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Using data from all timepoints (T1, T2, T3) from children who completed all three 

tasks (N = 22; 6 LT, 16 TD), the model significantly predicted 32% of variance in children’s 

T1 vocabulary at 2 – 2;5-years-old (Table 7; adjusted R2 = 0.32; F(5, 16) = 2.04; p = .046). 

However, only the PSRep Test was a significant predictor of children’s past T1 vocabulary at 

2 – 2;5-years-old. When predicting future T3 vocabulary at 3;6 – 3;11-years-old, all three 

tasks combined predicted 45% of the variance (Table 7; adjusted R2 = .45; F(5, 16) = 4.45; p 

= .010). Of the predictor variables, only the PSRep Test predicted children’s future 

vocabulary.  

 

Table 7.  

Predicting early and later vocabulary by task performance (accuracy) using data from 

all timepoints (T1, T2, T3; N = 22). 

Predicting early (T1; CDI) expressive vocabulary at 2;0 – 2;5-years-old 
Variance estimate SE t-value  p-value 

(intercept) -44.56 211.70 -0.21 0.836  

Preschool Repetition Test 4.41 1.49 2.96 .009 

Fast mapping referent selection -0.75 1.60 -0.47 .645 

Fast mapping retention 0.90 1.47 0.61 .549 

Cross-situational word learning referent selection -0.14 3.15 -0.05 .964 

Cross-situational word learning retention 0.86 1.48 0.58 .570 

Predicting later (T3; EOWPVT-4) expressive vocabulary at 3;0 – 3;5-years-old 
Variance estimate SE t-value  p-value 

(intercept) 

Preschool Repetition Test  

Fast mapping referent selection 

Fast mapping retention 

Cross-situational word learning referent selection 

Cross-situational word learning retention 

53.07 

0.32 

0.01 

0.23 

0.52 

-0.03 

19.00 

0.13 

0.14 

0.13 

0.28 

0.13 

2.79 

2.43 

0.04 

1.77 

1.85 

-0.25 

.013 

.027 

.968 

.096 

.083 

.080 
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 As the analysis that contained all three timepoints was considerably smaller due to 

interruption of T3 data collection, we also conducted an additional analysis using data from 

children who completed all tasks at T1 and T2 and for whom we also had T3 data. The 

model (data: N = 53; 19 LT, 34 TD) predicted 40% of the variance in children’s past T1 

vocabulary at 2;0 – 2;5-years-old (Table 8; adjusted R2 = 0.40; F(3, 49) = 12.32; p < .001). 

Only the PSRep Test was significant in relation to children’s early vocabulary. When relating 

to later T3 vocabulary at 3;0 – 3;5-years-old, the model (data: N = 33; 16 LT, 17 TD) 

predicted 47% of the variance (Table 8; adjusted R2 = 0.47; F(3, 29) = 10.28; p < .001). The 

PSRep Test and fast mapping retention accuracy predicted children’s later vocabulary. 

 

Table 8.  

Predicting early and later expressive vocabulary by task performance (accuracy) 

using data from completed timepoints (T1, T2). 

Predicting early expressive vocabulary at 2 – 2;5-years-old (T1, CDI; N = 53) 
Variance estimate SE t-value  p-value  

(intercept) 

Preschool Repetition Test 

Fast mapping referent selection 

Fast mapping retention 

26.75 

4.17 

-1.07 

0.14 

76.30 

0.70 

0.78 

0.80 

0.35 

5.93 

-1.37 

0.18 

.727 

<.001 

.178 

.860 

 

Predicting later expressive vocabulary at 3 – 3;5-years-old (T2, EOWPVT-4, N = 33) 
Variance estimate SE t-value  p-value  

(intercept) 

Preschool Repetition Test 

Fast mapping referent selection 

Fast mapping retention 

85.92 

0.28 

0.04 

0.22 

7.92 

0.07 

0.09 

0.09 

10.84 

3.99 

0.48 

2.53 

<.001 

<.001 

.634 

.017 
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5.7 Discussion 

Studies of word learning mechanisms in LT children offer the chance to unpack how 

early expressive language is delayed and relates to word learning over time. We identified 

three critical tasks that highlight key mechanisms involved in word learning: perception and 

production of phonology, selection and retention of referents, and acquisition of associations 

between words and referents. We further tested LT and TD children’s vocabulary 

development during the study to investigate how vocabulary growth related to these word 

learning mechanisms. 

LT children continue to show impairments in phonology, but are able to select 

referents accurately 

LT children were impaired on the PSRep Test, consistent with the literature (e.g. 

Marini et al., 2017). However, unlike Weismer et al. (2013), LT children did not show 

impaired performance as compared to TD children during referent selection in fast mapping 

or in CSWL. This may have been as a result of our sample containing recovered LT children, 

whereas previous studies have tested non-recovered LT children at a younger age. LT 

children that reach the TD vocabulary range thus appear to be able to fast map unfamiliar 

words on par with TD children. LT children also scored at ceiling for comprehension of 

familiar items during fast mapping on par with TD children, but scored less accurately on the 

PSRep Test for real words as well as for nonwords. This demonstrated that although they 

were able to identify known objects without difficulty, LT children’s ability to produce both 

familiar and unfamiliar words was compromised. 

Recovered LT children show possible deficits in retaining statistical information from 

the environment 

LT children showed evidence of impairment on CSWL retention trials, but not on fast 

mapping retention trials. This suggests that despite reaching TD ranges, LT children may 

have a weaker encoding of links between words and referents that is tapped by tasks which 
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test retention from repeated exposures, such as CSWL, but not by tasks that test only single 

exposures and immediate referent selection, such as fast mapping. Although our CSWL 

results must be interpreted with caution, given the much smaller sample as a result of 

COVID-19, they do suggest fertile ground for future research for testing CSWL in language 

delay.   

As CSWL performance did not relate to concurrent vocabulary across the sample, 

however, these results might also be secondary to more general processes that run parallel 

to vocabulary acquisition, such as working memory, which may also be implicated in 

nonword repetition (Marini et al. 2017). This may be attributed to the reduced sample sizes 

at T3 due to COVID-19, random variability, or could be task-related. Lab-based CSWL tasks 

may well test general purpose learning mechanisms that are of use for initial referent 

selection and competition as outlined by McMurray et al. (2012), but whether or not 

performance on these tasks correlates with children’s longer-term vocabulary remains to be 

further investigated. For example, Vlach and DeBrock (2019) found that receptive 

vocabulary did not predict CSWL task performance in 3-year-olds. 

Although we did not find differences in fast-mapping abilities or in initial CSWL 

referent selection trials, other studies that directly test online learning have found differences 

during the learning process itself, despite no differences in overall accuracy. For example, 

Ellis et al. (2015) tested novel word learning with an eye-tracker (looking-while-listening 

paradigm) in 18-month-olds and found that, although TD and LT children looked equivalently 

at the target, there were between-population differences in looking behaviour during testing. 

They proposed that LTs divided their attention between target and foil equally, being 

uncertain about the target, whereas TD children predominantly focussed on the target. This 

is consistent with Ahufinger et al. (2021), who found children with DLD showed more 

ambivalence when fixating between targets and competitors at test during CSWL, whereas 

TD children showed a rapid increase in looks to target over competitors. As we did not use 
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eye tracking in our study, it is possible that LTs showed a similar pattern of uncertainty 

around the target that was not captured by referent selection, but was captured when testing 

retention trials, which test the robustness of learnt word-referent pairs. It is thus possible that 

even if accuracy between groups does not differ, strategies applied during word learning 

tasks might.   

Understanding the trajectory of vocabulary development through word learning 

mechanisms 

Our results also showed how, across the whole sample, children’s expressive 

abilities may interact with word learning mechanisms as their vocabulary develops over time. 

Firstly, our analyses that showed the higher the concurrent expressive vocabulary of 

children, the more accurately they scored on not only the PSRep Test, but on both referent 

selection and retention fast mapping trials. Secondly, both PSRep Test and fast mapping 

retention predicted expressive vocabulary scores at the last time point, suggesting that 

children’s ability to not only store phonological information, but also their ability to retain fast 

mapped word-referent pairs, appears to influence their ability to add words to their 

expressive vocabulary later on.  

Expressive vocabulary may thus be the result of storing robust semantic and 

phonological representations, where phonological representations are both auditory and 

articulatory. Thus, although recovered LT children were able to recognise stimuli and 

activate semantic representations sufficiently during referent selection in order to 

comprehend novel words in both fast mapping and CSWL, they may have had weaker 

phonological representations stored in their expressive vocabulary as a secondary to their 

early language delay, resulting in a reduced ability to produce both words already in the 

lexicon (real words) and to utilise existing knowledge to produce novel words. Deficits in the 

CSWL retention trials also hint at possible additional deficits in retaining statistical 

information that may compound LT children’s ability to add to their existing lexicon.  
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Overall, these results are consistent with Edwards and colleagues (Edwards et al., 

2004; Munson et al., 2005) and Stokes (2010, 2014; Stokes et al., 2012) who suggest that, 

as a part of a dynamic system between phonology and the lexicon, smaller expressive 

vocabularies result in less support for storing, generating, and using phonological 

representations, which in turn feeds back into further development of the lexicon. Although 

both receptive and expressive vocabulary tests tap both phonological and semantic 

representations, expressive vocabulary places more weight on stored phonological 

representations that connect both auditory processes (involved in recognising words) and 

oromotor processes (involved in articulating words; Edwards et al., 2004). For 

comprehension tasks, phonological representations can be relatively weak – one only needs 

to recognise a given stimulus to activate semantic representation. For production, however, 

both phonological and semantic representations must be sufficiently strong to reproduce a 

stimulus faithfully enough to be recognised by someone else.  

Our results also highlight the benefit of adopting individual differences as part of 

language acquisition studies, as opposed to grouping children into categories. Throughout 

our analyses, we used mixed effects models that allow for random effects of participant. For 

LT children in particular, embracing this heterogeneity may explain a large amount of the 

variance that has yet to be identified. Moves towards this have been made in LT (Fernald & 

Marchman, 2012; Perry & Kucker, 2019) and TD populations (Samuelson, 2021), but are yet 

to be widely adopted as standard. Future studies could also employ the use of mixed effects 

modelling, as well as testing a wide range of vocabulary ability, to better characterise LT 

populations and their subsequent outcomes.  

Limitations and future directions 

One major limitation towards the end of the study was the interruption of testing due 

to the COVID-19 pandemic. This meant that T3 data was incomplete, and non-verbal IQ 

data could not be collected for the whole sample. This also meant that only eight and six LT 
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children took part in the CSWL training and retention trials respectively. Findings from the 

CSWL task must thus be interpreted tentatively, and require replication in a much larger 

sample. The fact that two LT children and one TD child could not tolerate the retention trials 

may also have reflected some individual differences in attention that were not controlled for. 

We also did not test fast mapping production or generalisation, only comprehension. 

Weismer et al. (2013) for example showed that LT children’s vocabulary scores and fast 

mapping performance were inter-domain (expressive vocabulary predicting production, 

receptive predicting comprehension) whereas TDs were cross-domain (both vocabulary 

scores predicting both tasks). This was because the third session was particularly long as a 

result of the Leiter-3, and pilot testing had shown children had trouble tolerating the session 

even with breaks. However, as expressive vocabulary predicted fast mapping 

comprehension across our sample, this suggests the LT children tested here were not 

limited to inter-domain relationships between task and vocabulary.  

Another limitation is that our sample consisted of relatively similar families from mid-

high SES backgrounds who had actively signed up for an 18-month longitudinal study on 

child development. However, although this means our findings may not generalise to 

samples with different demographic features, they do suggest that where similar family 

environments that have resources, time, and interest in child development, LT children may 

have a good chance of catching up to their peers in terms of vocabulary, as all but one of the 

children reached typically developing range by the last timepoint. 

Conclusion 

This study indicates that LT children are impaired across some, but not all, 

mechanisms involved in the different stages of word learning. Despite most LT children 

recovering at time of testing, they still exhibit significant differences in their ability to encode 

and repeat words – making more errors when repeating both real words and non-words– 

even when individual differences are taken into account. This result is also consistent with 
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LT children having weaker phonological representations in models that describe 

phonological and lexical development as dynamic processes that affect one another 

(Edwards et al., 2004; Stokes, 2010; 2014). Furthermore, although LT children do not show 

any impairment in the initial referent selection stage, as tested by fast mapping or CSWL 

tasks, they do show evidence to suggest they may also be less able to retain information 

learnt through CSWL. Overall, our results add to the evidence base surrounding word 

learning mechanisms in LT children by highlighting the interplay between expressive 

vocabulary and word learning mechanisms over time. 
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6 Chapter 6: Receptive and expressive language ability differentially support 

symbolic understanding over time:  

Picture comprehension in late talking and typically developing children 

6.1 Chapter introduction 

A primary focus of the longitudinal study was to investigate word learning in LT children, as 

covered in Chapter 5; however, an additional aim was to examine the wider effects of LT 

status on other areas of development, as the effects of early language delay on domains that 

are heavily tied to language, such as social ability and symbolic development, have not been 

well researched. 

Symbols more generally, and the ability to use them, form a vital part of 

communication throughout life. In particular, because language scaffolds understanding of 

non-linguistic symbols such as pictures before the fourth year (Callaghan, 2000; J. Kirkham 

et al., 2013), any early deficit in language ability could have cascading effects on symbolic 

development more broadly. Although symbolic play has been found to be reduced in children 

with DLD (Casby, 1997; Rescorla & Goossens, 1992) and ASD (Hartley & Allen, 2015, 

2014), and one study of dyslexia showed less symbolic play in a subset of LT children (n = 

14) than TD controls (Lyytinen et al., 2001), no prior studies have examined symbolic 

development in LT children. 

Symbols are described generally as a culturally scaffolded system (Callaghan et al., 

2011), and as a result, heavily overlap with socio-cognitive development (Tomasello et al., 

2005). However, social ability in LT children has been examined mostly only in relation to 

behavioural and emotional outcomes. For example, the ALSPAC study (Clegg et al., 2015) 

examined emotional and behavioural functioning at 6 years of age as an outcome variable 

with expressive vocabulary at 2 years. The results indicated that expressive vocabulary at 

the age of 2 had a mild, but significant, effect. Longobardi et al. (2016) examined the 

relationship between social ability and language in 268 children aged 18–35 months, and 
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found that language ability predicted social competence. Impaired social and emotional 

functioning has also been found in some samples of LT children when compared to TD 

peers. Irwin et al. (2002) examined emotional and behavioural problems in a sample of 14 

LT children (≤10th percentile CDI) and 14 TD matched controls. They found that the LT 

children were more likely to have problem behaviours, including depression/withdrawal, 

competence, compliance, and showed less interest in play. Conversely, Whitehouse et al. 

(2011) found, although LT children (n = 142) had higher concurrent rates of behavioural and 

emotional problems at 2-years-old, there was no association at later follow-up between 5–17 

years of age. 

 Horwitz et al. (2003) followed up a sample of American children from 18-months-old 

to 39-months-old. At 24-29 months of age, children with language delay (n = 47; ≤10th 

percentile CDI) had lower social ability than TD children (n = 293). However, no significant 

differences between the groups in externalising, internalising, or dysregulation behaviours 

were found. At 30–39 months, those with language delay continued to have lower social 

ability and also showed significantly more externalizing behaviours than TD children. Despite 

these findings, it is worth noting that although Horwitz et al. asked parents to report 

developmental delay in their demographics questionnaires, they did not separate LT children 

from those with language delay resulting from developmental disorders (e.g. ASD) in their 

analyses. This methodological limitation is especially important as Rescorla et al. (2007) 

found that correlations between language and internalizing/externalizing behaviour in two US 

samples of children did not remain significant once those with neurodevelopmental delay 

and pervasive development disorder were excluded. They did, however, find that those with 

language delay had higher social withdrawal compared to TD children.  

In sum, any relationship between language delay and social ability will be difficult to 

understand, particularly as these factors are likely to be bidirectional. Despite this, language 

acquisition works in tandem with socio-cognitive mechanisms from an early age (Hollich et 
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al., 2000; Tomasello, 2003, 2010). Given this, differences in social ability related to LT and 

symbolic understanding require further investigation. 

In the following paper, the wider effects of expressive language delay are examined by 

utilising a cross-domain approach, considering how receptive and expressive vocabulary 

alongside social ability can affect children’s symbolic understanding of pictures. 
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6.2 Abstract 

Symbols are a hallmark of human communication, and a key question is how children’s 

emerging language skills relate to their ability to comprehend symbols. In particular, 

receptive and expressive vocabulary may have related, but distinct roles across early 

development. In a longitudinal study of late talking (LT) and typically developing (TD) 

children, we differentiated the extent to which expressive and receptive language skills 

predicted symbolic understanding as reflected in picture comprehension, and how language 

skills inter-related with social skills. LT and TD children were tested on a picture 

comprehension task that manipulated the availability of verbal labels at 2;0 – 2;5 years and 

3;6 – 3;11 years. While all children improved in accuracy over time as expected, TD children 

exhibited an advantage over LT children, despite both groups utilising verbal labels to inform 

their mapping of picture-object relationships. Receptive and expressive vocabulary also 

differed in their contribution at different ages: receptive vocabulary predicted performance at 

~2;0-years-old, and expressive vocabulary predicted performance at ~3;6-years-old. Task 

performance at 3;6-years-old was predicted by earlier receptive vocabulary, but this effect 

was largely mediated by concurrent expressive vocabulary. Social ability across the whole 

sample at ~2;0-years-old also predicted and mediated the effect of receptive vocabulary on 

concurrent task performance. These findings suggest that LT children may have delays in 

developing picture comprehension over time, and also that social ability and language skills 

may differentially relate to symbolic understanding at key moments across development.    
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6.3 Introduction 

The use of symbols is a uniquely human cognitive hallmark and is vital to communication 

(DeLoache, 1995; Tomasello et al., 2005). A symbol is something that someone intends to 

represent something else, and can take many forms, e.g. gestures, graphics, text, words, 

maps, and so on (DeLoache, 2004). Children are immersed in a symbolic world from 

infancy, and the types of symbols children understand are subject to both cultural context 

and social scaffolding (Callaghan et al., 2011; Rakoczy et al., 2005).  

Children in Western societies are exposed to pictures from an early age. Children 

use linguistic labels to scaffold their understanding of pictures (Callaghan, 2000), and the 

development of language and other symbolic domains, such as symbolic play, are closely 

related (Quinn et al., 2018). This means that early language impairments have the potential 

to also affect children’s understanding of non-linguistic symbol systems. Although the 

literature has established that symbolic understanding, language ability, and social context 

interact in typical development (Callaghan & Corbit, 2015), we do not fully understand how 

these domains affect each other over time. Furthermore, their trajectory in atypical 

development is not well defined, and the effect of language delay on how children 

understand pictures remains under-investigated. Examining the effect of language delay on 

picture comprehension is crucial to understanding whether children with these difficulties 

have functional impairments in additional symbolic domains, and also offers an opportunity 

to elucidate how language scaffolds symbolic understanding during development. 

Language and picture comprehension in typical development 

In order for children to understand pictures as symbols, they need to acquire dual 

representation; the understanding that a symbol is not just an object, but also a 

representation of something else (DeLoache, 2004). At 9-months-old, infants manually 

investigate pictures as if they were real objects, grasping and plucking at depicted items 

(DeLoache et al., 1998). By 18-months-old, they begin pointing and talking about pictures 
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rather than handling them, suggesting that they have begun to treat pictures as symbols, 

rather than as objects in themselves (Pierroutsakos & DeLoache, 2003).  

Language can aid children in understanding the representative nature of pictures, as 

verbal labels provide clues about how 2-D visual symbols relate to referents in the world 

(Callaghan, 2000; Ganea et al, 2008). When testing 2-year-olds, Preissler and Bloom (2007) 

demonstrated that labelling a picture of an unfamiliar object (‘this is a wug. Can you show 

me another one?’) directed children to identify the symbolised object 90% of the time, 

whereas children only identified symbolised referents 30% of the time when pictures were 

not labelled (‘look at this. Can you show me another one?’). As children quickly learn that 

verbal labels refer to objects in the world, the act of labelling cues children to view pictures 

as symbolic representations rather than objects. Children aged 15-, 18- and 24-month-olds 

will spontaneously extend a novel label (e.g. ‘whisk’) taught using a picture to its 

corresponding 3-dimensional referent (e.g. an actual whisk; Ganea et al., 2009; Preissler & 

Carey, 2004). These findings show that young children understand that verbal labels paired 

with pictures refer to independently existing referents, and also that the pictures themselves 

are representational and not the exclusive referents for their associated labels.  

However, language itself is a symbol system that caregivers heavily invest in, going 

to considerable lengths to teach their children words. Children may thus learn verbal 

representations for concepts (e.g., understanding how the label ‘dog’ relates to the world) 

before they learn how pictures or other symbols relate to the same concept. Callaghan 

(2000) explicitly demonstrated that children use verbal labels to scaffold their understanding 

of pictures and objects, but also that this differs according to age. Children were shown a 

series of line drawings and asked to choose their referents from pairs of objects. In Control 

trials, linguistic scaffolding was unavailable, as the two objects had the same category label 

(e.g. two types of dog). In Standard trials, linguistic scaffolding could be used, as the two 

objects had distinct category labels (e.g. dog and cat). The study demonstrated that 2;6-
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year-olds only performed above chance when pictures could be unambiguously matched to 

objects using verbal labels, while 3-year-olds performed above chance even without 

linguistic scaffolding. For younger children, whose understanding of the pictorial symbol 

system was relatively fragile, verbal labels were valuable in bridging the gap between 

images and their depicted referents. Older children, however, were able to rely on the 

perceptual similarities between images and their referents to accurately identify picture-

object relationships in the absence of linguistic scaffolding. 

More broadly, language may provide a basis for other symbol systems during 

development (Callaghan, 2020; K. Nelson, 2007; Tomasello, 2003). A meta-analysis of 

symbolic play studies found a significant interaction for symbolic play between age and 

whether expressive or receptive language measures were used (35 studies; p = .006; Quinn 

et al., 2018). This demonstrated that symbolic play was related to concurrent receptive 

measures in children under 3-years-old (r = .41), whereas concurrent expressive measures 

better predicted symbolic play in studies of children over 3-years-old (r = .36). However, this 

interaction was driven by a difference in effect sizes for receptive, rather than expressive 

vocabulary, as the expressive effect size remained stable across ages, making any 

differential effects at different ages hard to clearly identify. As picture comprehension and 

symbolic play skills appear to be closely related (Rochat & Callaghan, 2005), any differential 

effects of emerging language ability on symbolic play may also affect picture comprehension 

at different ages.  

Few studies have assessed how picture comprehension and language skills inter-

relate during early development. Of these studies, some have found different effects of 

receptive and expressive language ability on pictorial understanding and wider symbolic 

ability. Callaghan and Rankin (2002) assessed graphic symbol comprehension and 

production at 28, 36, and 42-month-old and found that graphic comprehension scores 

positively correlated with receptive language and graphic production scores positively 
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correlated with expressive language. J. Kirkham et al. (2013) also assessed the relationship 

between language, graphic symbols and symbolic play. They found that Mean Length of 

Utterance of Five Words at 4 years predicted symbolic play and graphic symbolism at 5 

years, and that receptive and expressive language score combined at age 4 predicted 

symbolic play at age 5. Receptive vocabulary has also been found to correlate with 

performance on scale model search tasks (finding a real hidden object in a room, based on 

the location of a miniature object positioned in a scale model of the same room; Homer & 

Nelson, 2009). 

In summary, cross-sectional and longitudinal evidence show that linguistic and non-

linguistic symbolic domains are developmentally inter-related. Verbal labelling scaffolds 

symbolic understanding of picture-object relationships (Callaghan, 2000; Ganea et al., 2009) 

and expressive and receptive language abilities correlate with pictorial tasks, but may exhibit 

different effects at different ages (Callaghan & Rankin, 2002; J. Kirkham et al., 2013). 

However, we do not know whether early language delays cause deficits in picture 

comprehension over time. Furthermore, in typical development, differential effects of 

expressive and receptive language on symbolic ability have proved difficult to identify (Quinn 

et al., 2018). Studying productive language impairments provides a unique opportunity to 

explore how receptive and expressive language skills interact differentially with pictorial 

understanding over time. 

Language and picture comprehension in atypical development 

Late talking (LT) children are defined as 18–30-month-old children at or below the 

10th percentile of expressive vocabulary compared to other children their age, without 

neurodevelopmental or sensory deficits (Fisher, 2017). The majority of LT children recover 

by approximately age 5 (Rescorla, 2011). However, a minority – between ~12% – 25% 

(Collisson et al., 2016; Henrichs et al., 2011; Reilly et al., 2010; Roulstone et al., 2002; 

Zubrick et al., 2007), develop Developmental Language Disorder (DLD). Although many LT 
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children reach the neurotypical range for expressive vocabulary by school age, they 

consistently score on the lower end of this range across a variety of language measures 

(Domsch et al., 2012; Rescorla, 2002, 2005; Rescorla et al., 2000; Rice et al., 2008).  

LT children are characterised by expressive vocabulary deficits, yet can have varying 

receptive vocabulary skills (Fisher, 2017), whereas in typically developing (TD) children, 

expressive and receptive vocabulary are tightly intertwined. Evidence that expressive and 

receptive vocabulary might exert differential effects on pictorial understanding can be found 

in autism spectrum disorder (ASD) studies, as children with ASD typically exhibit a range of 

language difficulties (Eigsti et al., 2011). Studies that test the extension of words from 

pictures to symbolised referents in minimally verbal children with ASD who are matched with 

TD children on receptive vocabulary have found deficits in the ASD sample (mean receptive 

age ~ 3;6-years-old; Hartley & Allen, 2015; Preissler, 2008). However, when adapting 

Callaghan’s (2000) linguistic scaffolding task for TD and ASD samples that were matched on 

both expressive and receptive language (mean ~ 4;6-years-old), Hartley et al. (2019) found 

that children with ASD and TD children performed identically across all trial types. Both 

samples showed lower accuracy on trials where they could not use verbal labels, relative to 

trials where they could. In the ASD sample, both receptive and expressive language 

predicted task performance; in the TD sample, only receptive language was predictive. 

These studies suggest that children with expressive, but not receptive, deficits might struggle 

utilising verbal scaffolding in pictorial understanding tasks.  

One possible explanation for differential effects of receptive and expressive language 

on pictorial understanding is simply that children who say less, experience fewer 

opportunities to participate in social situations where pictures are utilised. Many accounts of 

symbolic understanding rely on a foundation of socio-cognitive skills, such as imitation and 

intention reading (K. Nelson, 2007; Rakoczy et al., 2005; Rochat & Callaghan, 2005; 

Tomasello, 2003, 2010; Vygotsky, 1980). For example, Rochat and Callaghan (2005) argue 
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that pictures are inherently communicative, and understanding them is driven by a ‘basic 

affiliative need’ to communicate and identify with other humans. They describe pictorial 

understanding development in stages that are built on social factors, beginning from infants 

(12-months-old) who imitate the actions of adults when given pictorial symbols, to toddlers (2 

– 4-years-old) who use social scaffolding through language and imitation to understand 

pictures, and finally to school-aged children (4 – 5-years-old) who begin to understand not 

only symbol-referent relations, but also intentions of the symbol-creator.   

Differences in socio-cognitive ability may contribute towards some of the differences 

in pictorial understanding found in ASD and may also be affected by a delay in expressive 

vocabulary (although directionality in LT is difficult to specify). Expressive delay could 

potentially reduce opportunities to learn from caregivers that verbal labels are used to 

scaffold picture comprehension, and result in LT children having less practice in applying a 

linguistic strategy. Caregivers of children with expressive language delay have been found to 

provide less complex recasts (Conti-Ramsden, 1990), less lexical and prosodic information 

(D’Odorico & Jacob, 2006) and produce fewer expansions, less self-directed speech and 

less general responses (Vigil et al., 2005). Others have found no difference in maternal 

input, but rather found that as LT children simply say less, caregivers have less to expand 

upon (Paul & Elwood, 1991). Outcome studies also suggest that there may be social 

impairments associated with expressive language delay, with some finding lower social 

competency in LT children (Horwitz et al., 2003; Longobardi et al., 2016).  

Overall, despite socio-cognitive skills forming the basis of theoretical accounts of 

symbolic development, we do not know how individual differences in social ability in TD 

populations might interact with pictorial understanding. It is possible that the impact of 

expressive language delay on the availability of social scaffolding, or vice versa, may affect 

pictorial understanding. Equally, social ability may well compensate for deficits in expressive 
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vocabulary; LT children who are more socially orientated may invite more social scaffolding 

behaviour than those who are not.  

The current study 

In sum, there are three distinct areas in which further research is necessary. Firstly, 

although symbols form a key part of communication throughout life, and TD children use 

language before 3 – 4-years-old to scaffold their understanding of pictorial symbols, we do 

not know how early language delay affects picture comprehension in the absence of ASD. 

No studies to date have investigated how linguistic scaffolding of pictorial understanding 

might be affected in LT children, and other research suggests that language delay might be 

related to differences in symbolic play (Lyytinen et al., 2001; Rescorla & Goossens, 1992). 

As symbolic play, pictorial understanding, and language are developmentally inter-related 

(Callaghan & Rankin, 2002; J. Kirkham et al., 2013), LTs may also exhibit deficits in pictorial 

understanding.  

Secondly, despite evidence from typical and atypical populations that expressive and 

receptive vocabulary might have different effects as pictorial understanding develops, very 

few studies have probed this relation directly. This means we do not know how emerging 

language skills interact with pictorial understanding at different ages.  

Thirdly, regardless of theoretical literature maintaining that social scaffolding and 

language are crucial to pictorial understanding, the relationships between individual social 

ability, language delay, and pictorial understanding have not been directly investigated in TD 

populations. 

We address these issues by adapting Callaghan’s (2000) verbal scaffolding picture 

comprehension task in a longitudinal study of LT and TD children. We manipulated the 

availability of verbal labels when asking children to match pictures to real objects and 

assessed their concurrent language skills at 2;0 – 2;5-years-old (timepoint 1; T1) and 3;6 – 
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3;11-years-old (timepoint 2; T2). We also considered the effect of social ability measured at 

2;0 – 2;5-years-old.  

We hypothesised that LT children would respond less accurately than TD children 

when linguistic scaffolding is available, and on par with TD children in conditions when 

linguistic scaffolding is inaccessible. We also hypothesised that expressive vocabulary at 

both T1 and T2 would positively predict picture comprehension accuracy, and that receptive 

vocabulary would be positively correlated with expressive vocabulary.8 As an exploratory 

analysis, we also hypothesised that children with less sophisticated social ability would score 

lower on picture comprehension accuracy. 

6.4 Method 

Participants 

Participants were part of a longitudinal project intended to capture differences 

between LT and TD children for 18 months, between 2;0 – 2;5-years-old to 3;6 – 3;11-years-

old. The picture comprehension task was administered at the first and last time points.  

Participants were recruited using flyers from Lancaster Babylab, via health visitors in 

the Lancashire local authority, and from nurseries in the local area. Once consent to contact 

was obtained, parents completed the Oxford-CDI (Hamilton et al., 2000) and included if they 

met one of the following criteria: TD with productive vocabulary score ≥ 25th percentile, or LT 

with productive vocabulary score ≤ 10th percentile. These criteria were chosen to ensure two 

distinct groups, with the LT criterion consistent with prior literature (Fisher, 2017). Inclusion 

criteria also included monolingual British English, with no history of developmental or 

sensory delays or disorders.  

 
8 We originally hypothesised that LT children who had not recovered would perform less accurately with linguistic 
scaffolding, and that recovered-LT children would perform on par with TD children (see preregistrations). 
However, as we could only test half of the original sample due to COVID-19, resulting in small subgroups, we 
utilised concurrent expressive vocabulary across all participants at T2. 
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A total of 85 families completed the CDI; of these, 24 were excluded due to the 

aforementioned criteria. A total of 61 children (40 TD and 21 LT) took part in the study at the 

first time point aged 2;0 – 2;5-years-old (T1); however, 2 TDs did not complete the pictorial 

understanding task due to fussiness and so were excluded from the final sample of 59 

children (38 TD and 21 LT). At 3;6 – 3;11-years-old (18 months from baseline; T2) a total of 

29 children (20 TD and 9 LT) were tested before the COVID-19 pandemic halted all face-to-

face testing.  

Questionnaires 

Participants completed the Oxford-CDI (Hamilton et al., 2000) at consent-to-contact. 

Caregivers completed a demographics questionnaire and the Preschool Social-

Responsiveness Scale-2 (SRS-2; Constantino & Gruber, 2012) at the T1 test visit. The SRS-

2 was used as a measure of individual social proficiency (raw scores). The experimenter 

conducted the Receptive and Expressive One-Word Picture Vocabulary Tests (ROWPVT-4 

and EOWPVT-4 respectively; Martin & Brownell, 2011) and the Leiter-3 Non-Verbal IQ 4-

subscore scale (Roid et al., 2013) at the T2 test visit.  

Picture comprehension task 

Objects: We used the same criteria as Callaghan (2000) for selecting relevant 

stimuli. There were 32 different objects in total, split into 16 pairs. For each condition, there 

were four trials, one from each of four groups: animals, natural, household/indoor artifacts, 

and vehicles (16 trials in total). For the Control-Familiar condition, pairs of familiar objects 

had the same basic label (e.g. dog) but different subordinate labels (e.g. German Shepherd 

and Burmese Mountain). For the Control-Unfamiliar condition, pairs of unfamiliar objects had 

the same basic label (e.g. coral) but different subordinate labels (e.g. elkhorn coral and 

encrusting coral). For the Standard-Familiar condition, pairs of familiar objects had the same 

global label (e.g. animal) but different basic labels (e.g. cat and rabbit). For the Standard-
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Unfamiliar condition, pairs of unfamiliar objects had the same global label (e.g. vehicle) but 

different subordinate labels (e.g. quadbike and jet ski).  

We ensured that perceptual discriminability of paired objects was similar across trial 

types and stimuli groups.  For sets of animals, different fur colours and poses were chosen 

(sitting vs. standing dogs); for artifacts, different colours, materials and shapes were chosen, 

and so on. All objects were roughly the same size. Caregivers were consulted prior to 

participation on their children’s familiarity with the test objects, and the age-norms for objects 

were checked using Fenson et al. (1994; familiar objects: M age = 13.92 months-old, range 

= 10–16-months-old). Example stimuli can be seen in Figure 1 (Supporting Information, 

Appendix D for all stimuli). 

Pictures: Sixteen black and white laminated cards were used that had a simple black 

pen drawing of one familiar or unfamiliar object.  

Display: Objects were placed on a tray with a deep lid that had a handle and a cut 

out at the back that allowed the experimenter to rearrange objects out of sight of the child. 

The objects remained hidden until the experimenter lifted the lid to reveal the two objects 

sitting on the tray. 

Procedure: We adapted Callaghan's (2000) picture comprehension task that 

manipulates the availability of linguistic scaffolding. We manipulated the label for choice 

objects across conditions where it could not be used (Control trials; two objects with the 

same basic label, e.g. two types of dog) and conditions where it could be (Standard trials; 

two objects with different basic labels, e.g. rabbit and cat). We also manipulated the 

familiarity of objects depending on the child’s knowledge of the labels and objects (Familiar 

and Unfamiliar) within the Control and Standard trials. The order of trial types was 

randomised per participant, with no more than two trial types of the same time presented 

consecutively. 
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The task was administered at T1 and T2. Participants were tested with the same 

mobile set-up for the task, either at the participant’s home or in a designated room at the 

Babylab depending on the family’s preference. Where visits took place at home, care was 

taken to ensure a clear space and a quiet environment with just the experimenter, child, and 

caregiver present. During the task, the child and experimenter were sitting on opposite sides 

of a 1-metre wide, low fold-out table. The experimenter held up the relevant trial picture card 

(e.g. cat) and said “Look!”. The picture was presented for 4 seconds before being removed 

from view. The experimenter then lifted the lid of the box to reveal the two relevant trial 

objects, one of which resembled the picture (e.g. cat), and the other, a paired foil object (e.g. 

rabbit). On displaying the objects, the experimenter asked “Which one is the same as the 

picture?” The trial ended when the child made a response (either by pointing with fingers or 

palm, or picking up the relevant object).  

Figure 1. 

Example of stimuli and trial types used: a) Control-Familiar; b) Control-Unfamiliar; c) 

Standard-Familiar; d) Standard-Unfamiliar. 
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6.5  Results 

All data and code can be found at: 

https://osf.io/ywmx5/?view_only=14f51c730c4c47758893bc684d7cebf5, alongside pre-

registrations with a document that explains deviations due to the COVID-19 pandemic. 

Sample  

Table 1 contains T1 and T2 final sample demographics, questionnaire, and 

vocabulary scores. Due to the COVID-19 pandemic halting all face-to-face testing, only 29 of 

the original 59 children were tested at T2. TD and LT children did not differ in SRS-2 

(t(46.39) = 1.35, p = .183) or Leiter-3 scores (t(10.02) = -1.45, p = .178). 

 

Table 1. 

Mean and standard deviation for demographic, questionnaire, and vocabulary scores 

for samples at first timepoint (T1) and second timepoint (T2). 

Timepoint T1: 2;0 – 2;5-years-old  
(N = 59) 

 

T2: 3;6 – 3;11 years-old  
(N = 29) 

 TD (n = 38) LT (n = 21) TD (n = 20) LT (n = 9) 

Age (years) 2.19 (0.12) 2.19 (0.12) 3.73 (0.12) 3.75 (0.15) 

Gender (ratio, m : f) 16 : 22 14 : 7 7 : 13 7 : 2 

Receptive vocaba 384 (38.00) 258 (93.40) 119.45 (5.35) 111.11 (7.54) 

Expressive vocaba  331 (73.20) 60 (49.50) 122.75 (8.43) 108.11 (12.90) 

Social ability (SRS-2)b 27.9 (12.40) 32.1(10.80)   

Non-verbal IQ (Leiter-3)   98.55 (6.68) 92 (12.80) 

LT = late talker; SRS-2 = Social Responsiveness Scale-2; TD = typically developing 

a T1: Communicative-Development Inventories; T2: Receptive/Expressive One-Word Picture 
Vocabulary Tests 
 
b Higher scores indicate lower responsiveness/ability. 
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Descriptive task results 

We used Welch’s one sample t-tests to compare each population’s overall picture 

comprehension accuracy, and accuracy on each trial type, against chance (50%). At the first 

timepoint (T1), when participants were 2;0 – 2;5-years-old, TD children performed 

significantly above chance overall (M = 0.60; t(37) = 4.64, p < .001). TD children performed 

below chance on the Control-Familiar trials, but above chance in all other trial types: 

Standard-Familiar (p <.001), Control-Unfamiliar (p = .007), and Standard-Unfamiliar (p = 

.004; Table 2, Figure 2). The difference between Control-Familiar (M = 0.42) and Standard-

Familiar (M = 0.72) trials demonstrated that TD children were able to use verbal labels to 

scaffold their understanding of pictures and objects. In line with Callaghan (2000), children 

responded accurately when objects were familiar and had different basic labels, but 

responded inaccurately when familiar objects shared the same basic label. Performance on 

the Unfamiliar trial types indicated that when objects were unfamiliar, children were also able 

to utilise perceptual similarities between pictures and objects to select the correct object. Not 

knowing the basic or subordinate label in these conditions was thus advantageous, as it 

enabled them to utilise perceptual similarity only. 

LT children did not perform significantly above chance overall (M = 0.53; t(20) = 

1.44, p = .083). They performed below or at chance in Control-Familiar, Control-Unfamiliar 

and Standard-Unfamiliar trials (Table 2, Figure 2). They performed above chance on 

Standard-Familiar trials (M = 0.59; p = .021), and at a level similar to TD children in Control-

Familiar trials (M = 0.42). This suggests that LT children were sometimes able to use verbal 

labels when they were available, but did not make use of them to the same degree as TD 

children. Scoring below chance when objects were unfamiliar suggested that LT children 

also struggled to match pictures to unfamiliar objects based upon perceptual similarities 

alone.  
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At the second timepoint (T2), when participants were aged 3;6 – 3;11-years-old, 

both TD and LT children performed above chance overall (Table 2, Figure 2; TD: M = 0.80; 

t(19) = 10.93, p < .001; LT: M = 0.73; t(8) = 4.80, p <.001). Both TD and LT children 

performed at chance in Control-Familiar trials, but significantly above chance in all other trial 

types. These results indicate that LT children were largely able to utilise both perceptual 

information and linguistic labels in the task at T2. 

 

Table 2.  

Mean accuracy and standard error at test at each timepoint per group. Trial types: 

Control = object pairs with the same global label and same basic label, inhibiting 

verbal scaffolding; Standard = object pairs with the same global label and different 

basic labels, allowing verbal scaffolding; Familiar = known objects to the child; 

Unfamiliar = unknown objects to the child. 

 Trial Type Typically Developing Late Talker 

  Mean (SE) Mean (SE) 

Time 1 

(2-2;5-years-old) 

Control Familiar 0.42 (0.04) 0.42 (0.05) 

Control Unfamiliar 0.65 (0.04)*** 0.54 (0.05) 

Standard Familiar 0.72 (0.04)*** 0.59 (0.04)* 

Standard Unfamiliar 0.64 (0.04)*** 0.57 (0.06) 

Time 2 

(3;6 – 3;11-years-old) 

Control Familiar 0.61 (0.07) 0.50 (0.09) 

Control Unfamiliar 0.90 (0.03)*** 0.81 (0.06)*** 

Standard Familiar 0.90 (0.03)*** 0.86 (0.06)*** 

Standard Unfamiliar 0.78 (0.05)*** 0.75 (0.09)* 

*p <.05, ** p <.01, *** p <.001; p-values to 3 decimal places; within-group One-Sample Welch T-Tests 
against chance (50%) 
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Figure 2.  

Mean accuracy and standard error at test across trial types per group over time. Trial 

types: Control = object pairs with the same global label and same basic label, 

inhibiting verbal scaffolding; Standard = object pairs with the same global label and 

different basic labels, allowing verbal scaffolding; Familiar = known objects to the 

child; Unfamiliar = unknown objects to the child.  

 

Task analyses: overview 

 We conducted three analyses to assess our research hypotheses. The first 

tested the longitudinal predictive effect of LT status over time using generalised linear mixed 
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effects modelling (GLME). The second tested whether receptive and expressive vocabulary 

measures could predict performance cross-sectionally at different ages (T1 and T2) using 

GLME analyses and a post-hoc mediation analysis. The third assessed whether social ability 

at T1 had any additive predictive value on accuracy at T1 or T2 by comparing GLME model 

fits to the data with and without social ability, and by using a post-hoc mediation analysis. 

All GLME analyses were undertaken with the same procedure. All models predicted 

child task accuracy as the dependent variable, and were built in R [version 1.1.463] using 

the glmer function in the package lme4 (Bates et al., 2015). Models were built up 

sequentially, adding in one fixed effect at a time and comparing each model to the previous 

best-fitting model using log likelihood tests. Each model was built up from a null model 

containing random effects of participant and target. Random slopes of participant per target 

failed to converge. Where longitudinal data was analysed, we also attempted to fit a random 

slope of timepoint per participant, but this failed to converge. To analyse fixed effects of trial 

type, we coded them as follows: object familiarity: Unfamiliar coded as 0, and Familiar coded 

as 1, and language scaffolding: Control coded as 0, and Standard coded as 1. Due to the 

number of analyses conducted, only results from best-fitting models that found significant 

effects of variables of interest are reported here.9 All models run can be viewed on the Open 

Science Framework 

(https://osf.io/ywmx5/?view_only=14f51c730c4c47758893bc684d7cebf5).  

All post-hoc mediation analyses were undertaken using the mediation package in R 

[version 1.1.463] (Tingley et al., 2014). For each analysis, 1000 simulations were used to 

estimate model effects using the quasi-Bayesian Monte Carlo method (Imai et al., 2010). 

Does late talking status predict symbolic picture comprehension over time? 

 
9 Due to the disparate scales utilised for each measure (i.e. accuracy as 0 or 1, and vocabulary as 0 – 416), in 
some cases convergence warnings were issued when fitting GLME analyses. Where this occurred, vocabulary 
measures were scaled by dividing the vocabulary score by 100, so they were on a closer scale to accuracy. This 
is indicated in the Tables reporting GLME result estimates. Please see R code on OSF for more details. 
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We conducted a GLME analysis with added fixed effects of population and 

timepoint to trial type. The best-fitting model to the data contained fixed effects of timepoint, 

population, language scaffolding and object familiarity, with an interaction between language 

scaffolding and object familiarity, and random effects of participant and target (Table 3; c2(3) 

= 13.51, p = .004).  

The pattern of accuracy for each trial type was consistent over both timepoints: 

relative to Control-Unfamiliar trials where objects were unfamiliar and had the same basic 

category label, children performed significantly less accurately in the Control-Familiar 

condition where they could not use verbal scaffolding (p < .001) to match pictures to familiar 

objects. The significant two-way interaction was caused by a significant difference between 

trial types involving familiar, but not unfamiliar, objects: participants performed significantly 

more accurately in the Standard-Familiar condition where verbal scaffolding could assist 

children’s mapping of pictures to familiar objects (p < .001). Performance was highest in 

Standard-Familiar trials and least accurate in Control-Familiar trials (Figure 2), consistent 

with Callaghan (2000). Children performed similarly to Control-Unfamiliar trials in the 

Standard-Unfamiliar trials (when objects were unfamiliar but had different basic category 

labels; p = .603).  

The added effect of timepoint indicated that participants performed significantly 

more accurately at age 3;6– 3;11-years-old as compared to 2;0 – 2;5-years-old (p < .001), 

and the effect of population indicated TD children performed significantly more accurately 

than LT children when data from both timepoints were combined (p = .022). 

Thus, the longitudinal analysis indicated that there was a predictive effect of late-

talking status on performance across time, with LT children attaining lower accuracy scores 

overall when total performance was assessed across both timepoints. However, as there 

were no interactions between trial type and population, the results also suggested that the 

facilitative effect of linguistic scaffolding was stable across both populations.  
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Table 3.  

Longitudinal analysis of task accuracy over time: general linear mixed effect model 

results predicting accuracy over time, using fixed effects of trial type, population and 

timepoint.  

Fixed effect estimate SE z-value  p-value 

(intercept)a 

Familiar 

Standard 

Familiar * Standard  

Timepoint (T2: 3;6 – 3;11-years-old) 

Population (TD) 

0.34 

-0.97 

-0.13 

1.34 

0.99 

0.34 

0.20 

0.24 

0.25 

0.35 

0.14 

0.15 

1.67 

-3.96 

-0.52 

3.82 

7.04 

2.28 

.094 

<.001 

.603 

<.001 

<.001 

.022 

LT = late talker; TD = typically developing 
 
aIntercept corresponds to no language scaffolding (0) and object unfamiliar (0), population LT, and 
timepoint T1 (2;0 – 2;5-years-old). 
 
 
 
How do concurrent receptive and expressive vocabulary contribute to picture 

comprehension at different ages? 

Receptive vocabulary: We conducted three separate GLME analyses to identify the effects 

of receptive vocabulary on cross-sectional task performance at T1 and T2, collapsing across 

LT and TD data. For all analyses, fixed effects of trial type were used; only fixed effects of 

receptive vocabulary differed. When predicting T1 task performance, T1 receptive 

vocabulary (CDI) was used. When predicting T2 task performance, one model tested the 

effect of prior T1 receptive vocabulary (CDI), and the other tested the effect of T2 receptive 

vocabulary (ROWPVT-4). 

 At T1, there was an added effect of concurrent receptive vocabulary to that of trial 

type predicting task performance (Table 4; model comparison: c2(2) = 9.14, p = .010). This 
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indicated that children with higher concurrent receptive vocabularies performed significantly 

more accurately at 2;0 – 2;5-years-old (p = .038). 

 At T2, there was no added predictive effect of concurrent receptive vocabulary 

(ROWPVT-4) to that of trial type, and no interactions were found. However, prior receptive 

vocabulary at T1 did predict accuracy in addition to the effect of trial type (Table 4; model 

comparison: c2(3) = 10.11, p = .018), showing that children with higher receptive 

vocabularies at 2;0 – 2;5-years-old, performed more accurately on the picture 

comprehension task when they were 3;6 – 3;11-years-old (p = 0.18). 
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Table 4.  

Cross-sectional analyses of predictive effect of receptive vocabulary on task 

accuracy. General linear mixed effect model results predicting T1 and T2 accuracy as 

dependent variables (cross-sectional) with fixed effects of trial type (familiarity of 

objects and availability of labels) and T1 receptive vocabulary.  

T1: age 2;0 – 2;5-years-old  

Fixed effect estimate SE z-value  p-value 

(intercept)a 

Familiar 

Standard  

Familiar * Standard 

T1 receptive vocabulary (CDI)b 

-0.13 

-0.75 

0.06 

0.97 

0.16 

0.31 

0.21 

0.21 

0.30 

0.08 

-0.42 

-3.51 

0.28 

3.24 

2.07 

.674 

<.001 

.776 

.001 

.038 

T2: age 3;6 – 3;11-years-old  

Fixed effect estimate SE z-value  p-value 

(intercept)a 

Familiar  

Standard 

Familiar * Standard  

T1 receptive vocabulary (CDI)b 

0.12 

-1.78 

-0.76 

2.84 

0.57 

0.96 

0.62 

0.63 

0.90 

0.24 

0.12 

-2.87 

-1.20 

3.14 

2.37 

.904 

.004 

.229 

.002 

.018 

CDI = Oxford Communicative Development Inventories; ROWPVT-4 = Receptive One Word Picture 
Vocabulary Test 
 
aIntercept corresponds to Control (no language scaffolding; 0) and Unfamiliar (object familiarity; 0) 

bRescaled using x/100 to allow model fit 
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Expressive vocabulary: We conducted three separate GLME analyses to identify the 

effects of expressive vocabulary on cross-sectional task performance at T1 and T2, 

collapsing across LT and TD data. For all analyses, fixed effects of trial type were used; only 

fixed effects of expressive vocabulary differed. When predicting T1 task performance, T1 

population (TD vs LT) was used. When predicting T2 task performance, one model tested 

the effect of T1 population and the other tested the effect of T2 expressive vocabulary 

(EOWPVT-4). 

 At T1, the GLME analysis did not find a predictive effect of population above that of 

trial type, and no interactions were found. The lack of a population effect suggested that at 

2;0 – 2;5-years-old, expressive vocabulary was not predictive of pictorial understanding 

performance.  

At T2, population at T1 did not predict accuracy. However, T2 expressive vocabulary 

(EOWPVT-4) did predict accuracy in addition to the effect of trial type (Table 5; model 

comparison: c2(3) = 10.12, p = .018). The best fitting model to the data demonstrated that as 

children’s concurrent expressive vocabulary at 3;6 – 3;11-years-old increased, so did their 

picture comprehension accuracy (p <.001). 
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Table 5.  

Cross-sectional analyses of predictive effect of expressive vocabulary on task 

accuracy: general linear mixed effect model results predicting T2 accuracy as 

dependent variable (cross-sectional) with fixed effects of trial type (familiarity of 

objects and availability of labels) and T2 expressive vocabulary. 

T2: age 3;6 – 3;11-years-old 

Fixed effect estimate SE z-value  p-value 

(intercept)a 

Familiar 

Standard 

Familiar * Standard  

T2 expressive vocabulary (EOWPVT-4)  

-2.93 

-1.79 

-0.76 

2.85 

0.04 

1.56 

0.62 

0.63 

0.91 

0.01 

-1.88 

-2.87 

-1.20 

3.14 

3.32 

.060 

.004 

.229 

.002 

<.001 

EOWPVT-4 = Expressive One Word Picture Vocabulary Test 

aIntercept corresponds to no language scaffolding (0) and object unfamiliar (0) 

 

Relationship between receptive and expressive vocabulary in predicting task 

accuracy: The cross-sectional analyses indicated that early receptive vocabulary at ~2-

years-old predicted both concurrent and later task accuracy at ~3;6-years-old, and later 

expressive vocabulary at ~3;6-years-old predicted concurrent task accuracy at ~3;6-years-

old.  

To tease apart the relative contribution of T1 receptive vocabulary and T2 expressive 

vocabulary to T2 task accuracy, we conducted a further post-hoc mediation analysis (Figure 

4). The effect of T1 receptive vocabulary on T2 picture task accuracy was significantly 

mediated through T2 expressive vocabulary (Average Casual Mediation Effects: 0.07; 95% 

CI: [0.01, 0.12]; p = .016). The results indicated that of the estimated increase in probability 

of task accuracy at ~ 3;6-years-old (total effect: 0.10) due to earlier receptive vocabulary at 

2;0 – 2;5-years-old, 0.07 was estimated to be mediated through later expressive vocabulary 
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at 3;6 – 3;11-years-old, and 0.03 was estimated to be from earlier receptive vocabulary at 

2;0 – 2;5-years-old.  

 

Figure 4.  

Results of mediation analysis assessing indirect effect of T1 receptive vocabulary on 

T2 task accuracy through T2 expressive vocabulary. The value in parentheses 

indicates the direct effect of receptive vocabulary when the mediator is included.  

 

*p < .05; ** p = .01 

 

Is the differential effect of expressive and receptive language in picture 

comprehension tasks mediated by social ability? 

  To test whether there was any effect of T1 social ability on task accuracy, we fitted 

an additional GLME model with SRS-2 as an additional fixed effect, and compared it to the 

original best-fitting model for each time point. 

For T1, adding SRS-2 to the best-fitting model with fixed effects of trial type and T1 

receptive vocabulary was beneficial. Adding SRS-2 was a better fit to the data than a model 

without SRS-2 (Table 6; model comparison: c2(1) = 5.40, p = .020), suggesting that children 

with less social responsiveness were less accurate at matching pictures to symbolised 

objects (p = .023) regardless of language ability. 

 For T2, a GLME model with SRS-score as an additional fixed effect was not a better 

fit to the data when compared to the original models. 
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 We conducted a post-hoc mediation analysis to assess whether the effect of T1 

receptive vocabulary on T1 task accuracy was mediated through concurrent T1 social ability 

(Figure 5). This demonstrated a significant mediating effect of social ability (Average Casual 

Mediation Effects: 0.02; 95% CI: [0.002, 0.03]; p = .020). The results indicated that of the 

estimated increase in probability of task accuracy at 2;0 – 2;5-years-old (total effect: 0.04) 

due to concurrent receptive vocabulary, 0.02 was estimated to be mediated through 

concurrent social responsiveness, and 0.02 was estimated to be from concurrent receptive 

vocabulary. 

 

Table 6.  

Cross-sectional analyses of added effect of social ability to predicting task accuracy. 

General linear mixed effect model results predicting T1 accuracy as dependent 

variable (cross-sectional) with fixed effects of trial type (familiarity of objects and 

availability of labels), T1 receptive vocabulary, and T1 social ability. 

T1: age 2;0 – 2;5-years-old 
 
Fixed effect estimate SE z-value  p-value 

(intercept)a 

Familiar 

Standard  

Familiar*Standard  

T1 receptive vocabulary (CDI) 

T1 social ability (SRS-2)b 

0.54 

-0.75 

0.06 

0.98 

0.09 

-1.45 

0.42 

0.21 

0.21 

0.30 

0.09 

0.63 

1.28 

-3.54 

0.32 

3.14 

1.11 

-2.27 

.200 

<.001 

.790 

.001 

.265 

.020 

CDI = Communicative Development Inventories; SRS-2 = Social-Responsiveness Scale-2 

aIntercept corresponds to no language scaffolding (0) and object unfamiliar (0) 

bRescaled using x/100 to allow model fit. Higher scores indicate less social responsiveness. 
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Figure 5. Results of mediation analysis assessing indirect effect of T1 receptive 

vocabulary on T1 task accuracy through T1 social ability. Note that the SRS-2 is 

scored as such that higher scores indicate lower ability, and that the value in 

parentheses indicates the direct effect of receptive vocabulary when the mediator is 

included.  

 

*p <.05 

 

6.6  Discussion 

Developmental theories propose that language scaffolds children’s acquisition and 

understanding of the pictorial symbol system (Callaghan, 2000; Tomasello, 2003, 2010). Our 

results indicate not only that language ability affects the developmental trajectory of picture 

comprehension, but also that receptive and expressive skills may differ in their contribution 

at different ages, subject to mediating effects of social ability. 

The use of linguistic scaffolding in the picture comprehension task requires children 

to generate labels (albeit subvocally). When viewing the picture, children can either generate 

a label for the depicted object internally or store its visual features if the label is unknown, 

and then use that information to match the picture to the referent object. There are two 

opportunities to generate a label: when the target is cued (i.e. a picture of a cat) and when 

the target object is selected (i.e. a plastic cat and a plastic rabbit on the tray). In Standard-

Familiar trials, if the participant generated a label when the target was cued, they could 

achieve a correct response by identifying the target object based on its matching label rather 
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than responding based on perceptual similarity (however, this strategy is unavailable when 

both referent objects share the same label as the picture, or labels are unknown). At an 

earlier age, receptive vocabulary skills might enable children to understand the task and, to 

some extent, use linguistic information to activate associated concepts that can be used to 

help scaffold picture comprehension. However, being more proficient in expressive 

vocabulary may facilitate children’s ability to explicitly generate the label internally and 

activate associated concepts both when the target is cued and when the object is selected, 

and thus directly utilise that linguistic information to select the correct object.  

More generally, our results suggest that at an earlier age, children rely on 

understanding linguistic information and concurrent social ability, but at a later age, they shift 

to using their expressive vocabulary skills to scaffold picture comprehension. We now outline 

the implications of these results for LT children, typical development, and future 

considerations. 

Implications for late talking children 

 At both time points, LT children scored lower than TD children on the picture 

comprehension task. This was reflected in the longitudinal analysis that showed a general 

effect of population on task accuracy across both timepoints. One possibility is that the 

smaller expressive vocabularies of LT children might have meant they were less able to 

retrieve the words (e.g. ‘cat’) and subsequent representations of the real object (e.g. the 

concept of a cat) when seeing the picture (i.e. a picture of a cat), resulting in more errors 

when identifying the depicted object. Similarly, Rescorla and Goossens (1992) suggested 

that reduced symbolic play in LT toddlers might be secondary to less fluent and less 

spontaneous retrieval and encoding of lexical entries for semantic representations across 

both referents and play scripts. However, as no significant effects of population were found 

cross-sectionally, any differences between the populations in our study were subtle. 

Furthermore, as there was no significant interaction between population or vocabulary 
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measures with trial type in either the longitudinal or cross-sectional analyses, this suggests 

that the developmental trajectory for picture comprehension in LT children is not atypical, 

just delayed. The results also indicated that the effect of language in scaffolding pictures is 

stable, even in early expressive language delay. 

These findings are in line with outcome studies in LT children showing that the 

majority of children reach the same range as TD children in language skills by school-age, 

but fall on the lower end of this range (Rescorla, 2002; 2005). The predictive effect of 

receptive vocabulary at age 2;0 – 2;5 years on picture comprehension in our study was also 

consistent with early receptive vocabulary being a better predictor of later outcomes than 

early expressive vocabulary in LT children (Fisher, 2017). Overall, although expressive 

language mediates linguistic scaffolding of picture comprehension at an older age, 

categorising our participants using a dichotomous variable at an earlier age did not 

accurately represent the fine-grained detail contained in our sample as they grew older. This 

is also consistent with prominent theories which suggest that language ability, in LT children 

and DLD, falls upon a spectrum (Bishop, 2017; Leonard, 2014).  

We did not find any differences in SRS-2 scores in LT and TD children, indicating that 

early expressive language delay in our sample did not appear to coincide with reduced 

social proficiency. However, we did find that social ability at age 2;0 – 2;5 years predicted 

task performance at the same age across the whole sample. The implications for this in 

typical development are discussed below, but of note is that social ability may actually help 

mitigate delays that occur alongside, or as a result of, expressive language deficits. This 

adds to the evidence base for interventions for LT children that make use of social 

scaffolding to improve language outcomes (e.g. Alt et al., 2014; Cable & Domsch, 2010; 

Robertson & Weismer, 1999). More pro-social toddlers may benefit from social scaffolding 

during interactions involving pictures at an early age, even if their expressive vocabulary is 

less well developed. Children with higher social skills may also receive more exposure to 
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pictures, and thus more exposure to adults labelling pictures, accelerating their acquisition of 

a linguistic strategy in pictorial understanding.  

Implications for typical development 

Across both timepoints, children struggled most with the Control-Familiar trials where 

access to verbal scaffolding was blocked. In theory, linguistic scaffolding was only available 

in Standard-Familiar tasks, and selecting the correct referent object in all other trial types 

required children to attend to the pictures’ perceptual features. While TD children applied this 

strategy successfully in trials involving unfamiliar objects, the consistently lower performance 

in Control-Familiar trials suggests that generating labels for pictures may not always be a 

beneficial strategy – the familiar linguistic label in these trials (e.g. ‘dog’ when there are two 

types of dog to choose from) seemingly impeded comprehension of the picture based on 

perceptual resemblance. Moreover, children’s accuracy on Unfamiliar trial types improved 

over time, indicating their developing ability to quickly encode mental representations of 

perceptual features when determining picture-object relationships. 

The function that language plays in aiding pictorial understanding may be in creating 

‘cognitive distance’ (p.132, Homer & Nelson, 2009). By enabling children to treat pictures as 

distinct to real objects through labels, the salience of the picture itself as an object is 

reduced, and its status as a symbolic representation is increased. This abstraction afforded 

by language is also found in category learning (Waxman & Markow, 1995). Children’s 

language ability predicted performance across all trial types in our study, including those that 

relied on perceptual discrimination, indicating a robust relationship between pictorial 

understanding and language domains.  

The ability to use language in this manner may depend on where in the trajectory of 

symbolic understanding children are located. At an earlier age, performance in the picture 

comprehension task was not dependent on being able to talk about pictures, but rather on 

language comprehension ability and social ability. Social ability both predicted task 
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performance at age 2;0 – 2;5 and mediated the effect of receptive vocabulary on task 

performance. The lack of interaction between condition and receptive vocabulary also 

suggests that language not only scaffolds picture comprehension – as evidenced by the 

highest accuracy scores being in Standard-Familiar trials – but also that receptive 

vocabulary alongside social ability may mediate pictorial understanding more generally.  

These results are consistent with a socio-cognitive framework of symbolic 

understanding, where children at an earlier age rely more heavily on social scaffolding to 

interact with the world than children at later ages (Callaghan et al., 2004). Striano et al. 

(2001) found that when given uninteresting or ambiguous objects (e.g., a stapler), 2 – 3-

year-olds did not perform symbolic actions spontaneously and largely declined to play at all 

without an experimenter modelling symbolic actions or actively engaging the child. However, 

4-year-olds were better able to play with the items independently. In a longitudinal study, 

Callaghan and Rankin (2002) also found that cultural scaffolding, consisting of explicitly 

highlighting the relationship between objects and pictures, improved children’s graphic 

symbol comprehension and production in 28-month-olds. Our results also indicate that 

children may be more vulnerable to interference of pictorial understanding when faced with 

more social difficulties early on, although none of our sample reached clinically significant 

levels of impairment using the SRS-2. Rather, the results reflected individual differences in 

social proficiency. Future studies that examine significant social impairment and dual 

representation tasks in populations that are otherwise typical, or manipulate social cues 

directly within the task, will help elucidate these mechanisms. 

At an older age, expressive, rather than receptive vocabulary, predicted children’s 

picture comprehension. This may reflect the shifting role of expressive vocabulary in 

facilitating symbolic understanding more generally at an older age. At ~3;6-years-old, 

language again forms a central component of how representations of the world are 

understood, but the ability to actively talk about symbols and partake in social discourse 
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about them may actually afford a stronger abstraction of pictures from referring objects than 

simply understanding what others say. Tomasello and colleagues (Rakoczy et al., 2005; 

Tomasello et al., 2005) describe language as a means through which children are able to 

develop other symbolic functions, such as pretend play. With advancing linguistic ability from 

3 – 4 years of age, children are able to engage in meta-representational discourse – and it is 

this use of expressive discourse that affords them an appropriate vehicle to interpret mental 

states and broader symbols as referring to real-world concepts and objects. Nelson (2007) 

also describes an approach where children’s external representations of meaning advance 

from non-intentional imitation of meaning as infants (such as copying gestures or early 

words), to intentional representation and sharing of meaning as school-aged children (such 

as using conventional symbolic systems like discourse). This process is facilitated by 

externalisation of meaning within a social system, such as by using words and gestures with 

caregivers. 

Overall, our results indicate not only that pictorial understanding and language ability 

are developmentally inter-related, but also that the importance of receptive and expressive 

vocabulary ability may be weighted differently as children develop symbolic understanding 

within a social context. 

Limitations and future directions 

There are a number of considerations that limit our findings. Our study was restricted 

by smaller sample sizes at T2 as a result of the COVID-19 pandemic. As our task was 

designed to test children’s understanding of symbolic relations between pictures and 3-D 

objects, data collection could not be completed online, as perceiving all stimuli via a 2-D 

screen would fundamentally change the nature of the task (Troseth & DeLoache, 1998). 

When face-to-face testing resumes, future directions include testing a larger sample to 

assess the links between social ability and picture comprehension. 
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 We also did not have IQ data for the whole sample due to the interruption of testing – 

the Leiter-3 was to be collected at the oldest timepoint due to the increasing stability of IQ 

constructs with age (Gottfried et al., 2009; Schneider et al., 2014). However, the data we do 

have indicated no significant differences between populations. Furthermore, a mismatch 

between verbal and non-verbal ability is not sufficient evidence for diagnosis of DLD (Bishop, 

2017), and non-verbal IQ may not predict symbolic or graphic understanding (Kirkham, 

2013). However, it is possible that individual differences in attention and executive 

functioning were not fully accounted for. 

 Our sample also consisted of families from mid to high income backgrounds. 

Consequently, although we can be confident that any differences between the children in our 

sample were less likely to be due to socioeconomic or environmental causes, we cannot 

extend these findings without further testing. Furthermore, the use of pictures and symbols 

are subject to cultural differences – for example, Western cultures adopt a different 

pedagogical approach that entails more social scaffolding around pictorial understanding 

than non-Western cultures (Callaghan et al., 2011). Thus, our findings are applicable to a 

specific population where pictures and language have a privileged position in dual 

representation and broader symbolic understanding. 

We also utilised a parent-report measure for vocabulary at T1 rather than an 

experimenter-administered measure. However, as we used two distinct cut-offs for the two 

groups, it is unlikely that parent-report measures were so inaccurate as to incorrectly 

characterise group status at T1. Furthermore, the ROWPVT-4 and EOWPVT-4 are, to some 

extent, measures of pictorial understanding in themselves that children might struggle with 

before the age of 3. Parent-reported CDIs, on the other hand, can capture a broader 

assessment of how children utilise language in their everyday lives during the earlier stages 

of language development. 
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Conclusions 

Our study has implications for both TD and LT children. Through a longitudinal study, 

we demonstrate firstly that LT children show evidence of less accurate picture 

comprehension skills over time when compared to a TD sample and, secondly, that these 

differences are subtle and subject to effects of participant heterogeneity. These findings 

suggest that late talking (in line with DLD) and its effects on pictorial understanding may be 

best considered on a dimensional scale, rather than a categorical one. Crucially, as the 

trajectory of development for LT children resembled that of earlier typical development, albeit 

developmentally delayed, this also suggests that a significant early deficit in expressive 

language does not appear to cause any qualitative differences between domains – language 

still appears to be an important mediating factor across groups and ages. Thus, language 

appears to scaffold pictorial understanding not only in typical development, but also in early 

expressive language delay.  

We also demonstrate that the relationship between language and picture 

comprehension may be partly explained by differences in how receptive and expressive 

language ability help scaffold picture comprehension over time, with receptive vocabulary 

predicting picture comprehension at 2;0-years-old, and expressive vocabulary predicting 

picture comprehension at 3;6-years-old. This differential weighting may be secondary to the 

interplay of symbolic understanding and language with social ability and social scaffolding. 

At an earlier age, children may rely on social scaffolding as well as language comprehension 

skills to understand pictures, but at an older age, this may be superseded by the ability to 

talk about pictures to others. Overall, these findings advance understanding of both atypical 

and typical development, and demonstrate how language ability, social ability, and pictorial 

understanding may inter-relate over time. 
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7 Chapter 7: General discussion 

The contribution of this thesis to the literature is discussed in two parts, focusing on 

typical development, and then atypical development. The gaps in the literature and the 

results of the relevant papers are summarised first in each section. The implications of these 

findings are then discussed with limitations and future directions for the relevant research 

field. 

7.1 What does this thesis add to the typically developing literature? 

The first part of this thesis aimed to identify how and when gesture cues, as part of a 

multiple cue model, interact with variability in the environment to affect word learning in 

typical development. 

Gaps in the typical development literature 

In typical development, how gesture cues interact with the environment to affect word 

learning remains uncertain. Whilst we know that caregivers adapt their labels and gestures 

to accommodate their child’s perspective (e.g. Masur, 1997; Vigliocco et al., 2019), whether 

or not they adapt their gestures to the degree of referential ambiguity in the environment, 

and the impact this may have on children’s word learning accuracy, have not yet been 

tested. Furthermore, despite calls to identify the contextual cues within- and across-trial 

learning as the process unfolds (L. B. Smith et al., 2010), and naturalistic studies 

demonstrating that labels and gestures are tightly woven together in time (Trueswell et al., 

2016), few studies of cues and cross-situational word learning directly test the temporal 

unfolding of how visual and auditory cues interact with each other. Investigating these topics 

is vital to understanding how cues can be integrated into multiple cue models of word 

learning, but also allows us to observe how cues interact with the variability that naturally 

accompanies child language acquisition.  

The gaps in the typically developing literature were addressed by Chapter 2 and 3 

(first and second papers). Chapter 2 utilised a computational model and a behavioural study 
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that examined the effect of referential ambiguity on caregiver gesture use and child word 

learning. Chapter 3 reported a series of behavioural experiments in adults, with and without 

eye-tracking, to test the effects of manipulating the timing of a pointing gesture cue in 

relation to label utterance on cross-situational word learning.  

Summary of results: Chapter 2 and 3 

In Chapter 2, a computational model (Multi-Modal Integration Model, MIM; Monaghan 

et al., 2017) was adapted to test the influence of a pointing gesture cue during a cross-

situational word learning task across three referential ambiguity conditions. These were: 1) 

one referent only (no ambiguity), 2) two referents (some ambiguity), and 3) six referents 

(high ambiguity). The variability of the gesture cue within each referential ambiguity condition 

was also manipulated across four conditions, occurring: 1) 0% of the time, 2) 33% of the 

time, 3) 67% of the time, and 4) 100% of the time. The model learnt most robustly when 

cues were present 33% or 67% of the time, and when there was more than one referent. 

This model was tested in a behavioural study of 18 – 24-month-olds and their caregivers. 

Children learnt three words under the same referential ambiguity conditions as the model, 

and caregivers’ gesture and speech use when teaching their children words was video-

coded. Children were then tested on their word learning accuracy. The results showed that 

caregivers used more deictic gestures in the two- and six-referent conditions as compared to 

the one-referent condition, but there was no difference in deictic gesture use between the 

two- and six-referent conditions, despite the higher referential ambiguity in the six-referent 

condition. Children also learnt most accurately in the two- and six-referent conditions, rather 

than in the one-referent condition. These results were consistent with the computational 

model.  

In Chapter 3, the role of deictic gesture cues during cross-situational word learning 

was examined in a study of adult learners across three experiments. The first experiment 

tested the presence and absence of a pointing gesture cue across two conditions, one with 
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two referents (referential ambiguity), and one with only one referent (no referential 

ambiguity). Learners performed equivalently in conditions with no referential ambiguity (one-

referent, with and without gesture cue) and two referents with a gesture cue. This suggested 

that the benefit of gesture cues was due to reduction of referential ambiguity to the same 

level as no ambiguity. The second experiment fixed the presence of referential ambiguity to 

two referents, and tested the effect of altering the timing of a gesture cue, shifting the 

gesture cue one second before (early condition) and one second after (later) the auditory 

label. This showed a learning advantage for the early condition. The third experiment tested 

the same conditions but with an eye-tracker to examine the time course of learning. This 

revealed that participants’ looking behaviour just after label utterance was the critical time 

period during training that predicted their learning accuracy, and they were more likely to 

fixate on the target object in the early, rather than late, gesture cue condition from even the 

first exposures to novel words. 

Implications: how do deictic gestures help noisy language learning? 

The role of gesture in vocabulary development is relatively well established; we know 

that infant gesture is tied to vocabulary development, and parent gesture is positively 

correlated with infant gesture (Rowe et al., 2008). However, Chapters 2 and 3 advance 

understanding of how gesture can support word-referent mappings within caregiver-child 

interactions.  

In Chapter 2, we showed that computational modelling and behavioural experiments 

can be combined to provide evidence for how gesture cues can interact with referential 

ambiguity to affect learning. Crucially, by showing that the modulation of gesture cues by 

caregivers is dependent on the number of referents in the environment, and that infants are 

able to learn more accurately in conditions with more than one referent, we highlighted how 

language outcomes can be robust even in the face of referential ambiguity. This advances 

the literature around variability in language learning, showing how some variability may 
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actually benefit learning. This is important, as the availability of cues provided by caregivers 

and information provided by the environment is not always consistent, and yet children still 

manage to learn words despite this variation. Gesture cues are thus useful tools employed 

by caregivers in the face of referential ambiguity during word learning exchanges, and their 

use is contingent on the environmental context. 

In Chapter 3, we examined how gesture cues influence the accuracy of word-referent 

mappings, asking whether their benefit was in the reduction of referential ambiguity, or 

whether having two objects during training might enable a comparison and contrast strategy. 

Experiment 1 of this study showed that the benefit of gesture cues was in reducing the 

amount of referential ambiguity, as the addition of a gesture cue to a two-referent condition 

yielded word learning accuracy on par with a one-referent condition where there was no 

referential ambiguity. Gesture cues thus support cross-situational word learning through 

reducing referential ambiguity. 

Together, Chapters 2 and 3 demonstrated that deictic gestures not only serve an 

important function in managing referential ambiguity during word learning exchanges 

between caregivers and infants, but that pointing gestures also provide a clear cue to 

meaning that can be manipulated during learning itself. The beauty of deictic gestures more 

generally is that they can potentially serve the dual process of referring to a desired object 

from a socio-pragmatic sense, and also as an attentional cue, without lessening the 

contribution towards a desired goal of identifying which referent a label refers to. In line with 

multiple cue models of word learning, an integrative approach between socio-pragmatic and 

attentional cues may also help further understanding of how children use these cues to learn 

words. For example, socio-pragmatic principles may underscore the later use of attentional 

cues. Wu, N. Kirkham, and colleagues (Wu et al., 2014; Wu & Kirkham, 2010) have shown 

that infants as young as 8-months-old are able to associate ostensive cues such as faces 

addressing infants with novel attention cues such as flashing lights. They suggest that 
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ostensive signals such as eye gaze are relied on earlier in life, but infants may learn to use 

other cues such as pointing and arrows later on when they are paired first with 

communicative cues. Deictic gesture cues are thus prime candidates for further examination 

during language acquisition as they occur naturally during speech, unlike other potential 

endogenous cues such as arrows, and can be studied during caregiver-infant interactions. 

As such, they are useful and valuable signals that can help relate multiple cue models of 

word learning to naturalistic settings. 

Implications: when are deictic gesture cues most useful? 

Chapters 2 and 3 also provide evidence concerning when gesture cues are most 

useful. Contrary to our predictions, but consistent with the computational model, Chapter 2 

showed that caregivers did not gesture significantly more when there were six-referents 

compared to two; the presence, rather than degree, of referential ambiguity was most 

influential on caregivers. Thus, deictic gesture cues were most useful in the presence of 

referential ambiguity irrespective of the amount. This raises the possibility that caregivers 

may utilise deictic gesture cues to reduce cognitive load, for example, by reducing the choice 

between potential referents to one, or more than one. In other words, conditions with more 

than one referent may be equivalent to one another; here, the role of the gesture may have 

been to highlight the intended referent from an array of non-target competitors, effectively 

communicating to the infant “look at this, not that/those.” This also suggests that caregivers 

may constrain the input for infants through gesture during real-world word learning, which 

might affect infant attention to objects, and subsequent word-referent mappings (Pereira et 

al., 2014). 

The way in which the temporal process of word learning unfolds is also highly 

important to understanding how predictions about word-referent mappings are actively made 

in real time. In Chapter 3, we highlighted how cues preceding an auditory label for a visual 

object conferred a learning advantage to cues that came after the label, theorising that this 
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was due to the higher predictive value of early cues, and potentially weaker associations 

between the target label and non-referent distractors. As naturalistic data shows, caregiver 

gestures in natural language learning exchanges with infants tend to occur before, rather 

than after, labels for objects (Frank et al., 2013). Early and late gestures may therefore also 

serve different purposes within language learning. Whereas an early gesture points a learner 

to an intended referent prior to label exposure, enabling effective learning through better 

prediction of novel word-referent mappings, or reducing spurious associations, late gestures 

may be less effective due to an increased period of referential ambiguity prior to word 

exposure. However, where late gestures do occur, our results indicated this is better than no 

gesture at all, as learners in Experiments 2 and 3 in the late gesture condition (two referents, 

gesture after the word) learnt better than those in Experiment 1 (two referents, no gesture). 

Late gestures thus might serve a feedback role for learners; where cross-situational statistics 

are utilised to converge upon word-referent pairs, late gestures may confirm specific 

candidates, and in some cases, correct inaccurate ones.  

7.2 Limitations and future directions for typical development 

The use of adult populations for insights into child language acquisition 

Chapter 3 utilised an adult population to assess in-the-moment learning within a 

constrained setting. Although this enabled us to precisely manipulate and measure the 

effects of timing, the use of an adult population does limit our capacity to generalise findings 

to a developmental population. During word learning, children appear to reason differently to 

adults, valuing informative context over deductive logic (Ramscar et al., 2013), and have 

different visual experiences compared to adults, with one object centred in view at a time, 

rather than several potential referents at once (Pereira et al., 2014; Yurovsky, Smith, et al., 

2013). Children also have different memory and attention capacities that change over 

development (Gathercole et al., 1994). Whilst there is considerable value to understanding 

temporal processes through adult learners, and cross-situational word learning studies 
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frequently use adults participants to identify developmental learning mechanisms (e.g. 

Fitneva & Christiansen, 2011; MacDonald et al., 2017; Monaghan et al., 2017; Yu et al., 

2012; Yurovsky, Yu, et al., 2013; Yurovsky & Frank, 2015), findings from adult studies must 

not be generalised to developmental populations without further testing in younger age 

groups. Future directions thus include adapting the task for preschool aged children. 

Additionally, as Chapter 3 utilised highly controlled conditions, any adaptations to the task 

would need to take into account a more naturalistic word learning context. 

Beyond deictic gesture cues: what’s next for multiple cue models? 

In Chapter 2, we evaluated different types of caregiver gesture but focused on deictic 

gestures in particular as they were the most frequent, and in Chapter 3, we focused on 

pointing gestures as a type of deictic gesture. However, other types of gestures can also 

provide supplementary information not contained in speech (Goldin-Meadow (2000; Goldin-

Meadow & Wagner, 2005). Different gestures can play different roles during multimodal word 

learning; for example, Vigliocco et al. (2019) showed that caregivers use representational 

gestures to support their children’s understanding of novel objects and labels when objects 

are absent.  

More broadly, one avenue for advancing multiple cue models of word learning lies in 

disambiguating the contribution of other individual cues within an integrative framework in 

typical language learning. Other cues that have been examined include prosody (Monaghan 

et al., 2017), eye gaze (MacDonald et al., 2017), iconic and representational gestures 

(Vigliocco et al., 2019), and grammar (Monaghan et al., 2015). The interpretation of social 

and non-social cues in cross-situational word learning by populations with autism spectrum 

disorder has also proved to be insightful (Hartley et al., 2020). In addition, the use of head 

mounted cameras has offered a unique insight into the perspective of children as learners, 

and may provide another way of integrating naturalistic studies with cross-situational word 

learning tasks (Pereira et al., 2014; Yurovsky, Smith, et al., 2013), opening up possibilities 
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for future research to integrate multiple cues under more dynamic and ecologically valid 

conditions. 

Summary of implications for typical development 

Combined, Chapters 2 and 3 highlight the interactive nature of how cues can be used 

by the caregiver, and how they interact with variability to support word learning. They also 

highlight the use of gesture cues by the learner themselves. Chapter 2 demonstrated that 

infants themselves appear to be adaptive to variability, learning more robustly when there 

were two- or six- referents as opposed to one. Chapter 3 revealed that learners make use of 

early gestures to accurately identify associations between novel word-referent pairs during 

learning. A key direction for future research thus concerns why infants track co-occurrences 

within statistical learning. Saffran (2020) suggests that this is partly motivated by the need 

and desire to communicate with caregivers, but argues that the primary incentive is to 

generate predictions about the environment, as ‘learning itself is motivating, and infants are 

driven to attempt to reduce uncertainty’ (p.4). An alternative explanation is curiosity-driven 

learning, which proposes that infants are driven to pursue the most novel stimuli for 

themselves, utilising past experience to shift between novelty-seeking and novelty-reducing 

strategies accordingly (Twomey & Westermann, 2018).  

Future research must therefore uncover not only how multiple cues interact, but also 

how they are integrated by both caregivers as teachers and by infants as learners, over 

different timescales. Chapters 2 and 3 documented the dynamic processes that take place 

during word learning itself. However, subsequent research must also investigate how such 

processes develop over a much longer timeframe – over days, weeks, and months. 

Cross-situational word learning offers a chance to identify how cues, such as deictic 

gestures, interact with cognitive processes such as hypothesis testing and associative 

learning. It also provides a framework that allows for statistical regularities in the 

environment to influence the subsequent mapping of words and referents. However, relating 
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statistical learning studies that utilise artificial languages in controlled and uncluttered 

laboratory conditions to languages in real world contexts that are messy and contain a great 

deal of noise and signal, has been a significant challenge for the field (Romberg & Saffran, 

2010; L. B. Smith et al., 2014). Although quantifying and understanding the amount of noise 

– for example, determining the level of uncertainty – can help to identify how statistical 

learning relates to real world contexts (e.g. Trueswell et al., 2016), L. B. Smith et al. (2014) 

argue that the separation of input into ‘signal’ and ‘noise’ itself is counterproductive, as they 

may be one and the same. Rather, they advocate for identifying how various sources of 

apparent environmental noise integrate with sensory, attentional, and memory processes 

within the learner to map words to referents and build semantic networks.  

Multiple cues are of key importance as sources of that input. Models such as Hollich 

et al. (2000) and Yu and Ballard (2007) provide frameworks for how multiple cues can 

contribute to word learning. However, identifying how cues interact with each other, with the 

variability of the environment, and with the robustness of learning itself, is an important 

barrier to scale for identifying how multiple cues and cross-situational word learning can 

relate to real world learning. Chapters 2 and 3 offer vital evidence for gesture cues in word 

learning that help to bridge this gap. 

7.3 What does this thesis add to the atypical development literature? 

The second part of this thesis investigated whether late talking (LT) children learn 

words differently to typically developing children, and whether their early expressive delay 

impacts on their symbolic understanding of pictures. 

Gaps in the literature 

LT children are at risk of Developmental Language Disorder. Large cohort studies 

from the UK (Boyd et al., 2013; Clegg et al., 2015; Dale et al., 2003; Hartas, 2011), the 

Netherlands (Henrichs et al., 2011), Finland (Lyytinen et al., 2005), Australia (Reilly et al., 

2007, 2010, 2018), and the USA (Armstrong et al., 2017; Hammer et al., 2017; Horwitz et al., 
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2003) have identified a number of consistent demographic predictors of later language delay 

(e.g. male gender, low socioeconomic status, maternal health, family history), but these 

explain only a small amount of variance in outcomes and have limited predictive use (Reilly 

et al., 2010).  

Studies examining mechanisms underlying LT that utilise mixed effects models, 

rather than measures of central tendency, offer a chance to identify whether or not LT 

children are qualitatively different to TD children in how they learn words. Deficits in 

grammar (Moyle et al., 2007), speech processing (Fernald & Marchman, 2012), fast 

mapping (Weismer et al., 2013), and nonword repetition (MacRoy-Higgins & Dalton, 2015) 

have been found in late talking children, but these studies are relatively few in number 

compared to those examining DLD. Additionally, using statistical analyses that allow for 

individual variation is not yet the norm (Perry & Kucker, 2019). Furthermore, although 

language facilitates and interacts with development (Callaghan & Rankin, 2002; J. Kirkham 

et al., 2013), the interaction between early expressive delay and other developmental 

domains such as social ability and symbolic understanding has not been investigated 

previously. 

The gaps in the late talking literature were addressed by Chapters 5 and 6 (third and 

fourth papers) concerning a longitudinal study of LT and TD children. These Chapters 

examined late talking children’s proficiency across different stages of word learning, and the 

effects of receptive and expressive vocabulary and social ability on picture comprehension, 

making use of mixed effects models to do so. 

Summary of results: Chapter 5 and 6 

In Chapter 5, a longitudinal study was presented where a cohort of LT and TD 

children (identified at 2;0 – 2;5-years –old) were administered tasks that assessed different 

stages of word learning at 3;0 – 3;5-years-old. Children were tested on two mechanisms of 

word learning: phonological ability and fast mapping.  
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The phonological ability task involved immediately repeating real known words and 

unknown nonwords. Despite all but two LT children reaching typical expressive vocabulary, 

the LT children showed a significantly impaired ability to repeat both real words and 

nonwords at 3-years-old as compared to TD children. Concurrent expressive vocabulary 

also related to task performance.  

The cohort were also tested on their ability to accurately select referents for novel 

words following single exposures to them and retain the novel word-referent mappings after 

5 minutes during a fast mapping task. At a group level, LT children did not differ from TD 

children on either measure. Concurrent expressive vocabulary across the sample related to 

task performance. Pre-COVID-19, half of the cohort were also tested on a cross-situational 

word learning task, where children had to accurately select referents for target words by 

tracking co-occurrences of words and referents across trials. They were then tested on their 

retention of these words after a 5-minute delay. LT children showed no differences to TD 

children on referent selection, but did show less accurate performance on retention trials. 

Across the sample, nonword repetition and fast mapping retention predicted LT status at the 

first timepoint, and also predicted expressive vocabulary at the last time point. CSWL did not 

relate to early or later expressive vocabulary. 

Finally, in Chapter 6, a longitudinal study was presented involving the same cohort as 

in Chapter 5. LT and TD children were tested on their picture comprehension at 2;0 – 2;5-

years and again at 3;6 – 3;11-years-old. Children were asked to match simple line drawings 

of an object to one of two 3D referents across four conditions that manipulated the 

availability of verbal labels and the familiarity of the objects. These conditions included: 1) 

familiar objects with different labels (e.g. a cat and a rabbit), 2) familiar objects with the same 

label (e.g. a tabby cat and a calico cat), 3) unfamiliar objects with different labels (e.g. a 

narwhal and a manatee), and 4) unfamiliar objects with the same label (e.g. elkhorn coral 

and encrusted coral). This meant that children could use linguistic scaffolding only where 
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labels were different and known. All children were able to use verbal labelling to match 

pictures of objects to their referents at both age 2;0 – 2;5-years and 3;6 – 3;11-years-old, but 

LT children showed delayed performance overall when both timepoints were combined. 

Furthermore, receptive and expressive ability differentially predicted task performance over 

time; at ~ age 2-years, receptive vocabulary predicted accuracy, whereas at ~age 3;6-years, 

expressive vocabulary predicted accuracy. The effects of receptive vocabulary on task 

performance were also mediated by social ability measured at 2;0 – 2;5-years-old. 

Implications: late talking: one factor of many in word learning 

A somewhat implicit characterisation of LT children is that they represent a separate 

category of children to those who are typically developing; even where studies highlight 

heterogeneity, statistical analyses often test for categorical between-group differences. This 

highlights difficulties in linking a clearly observable factor (i.e., how much children say) with 

the more nuanced processes that make up language acquisition. As models of typical 

development have demonstrated, word learning is a complex, multi-stage process (Hollich et 

al., 2000; McMurray et al., 2012), and as such, multiple things may go wrong with this 

system.  

Our analysis of word learning (Chapter 5) indicated that LT children are impaired in 

some, but not all, word learning mechanisms. Chapter 5 indicated that LT children show 

intact receptive word learning mechanisms. However, even once reaching typically 

developing range, they struggled with phonological and articulatory processes, showing 

impaired production of familiar and novel words. Our results also suggested that LT children 

may exhibit broader problems in extracting statistical information from the environment for 

later retention. Future studies of language delay thus could recruit from across different 

percentiles and test expressive vocabulary as a continuous predictor from the outset. For the 

whole sample, the predictive effect of concurrent expressive vocabulary for nonword 

repetition and fast mapping, and the overall predictive effect of nonword repetition and fast 
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mapping retention on later vocabulary, is also consistent with theories that conceptualise 

phonological and lexical development as dynamic and interrelated throughout development 

(e.g. Edwards et al., 2004; Stokes, 2010; 2014) – and suggest that weaker phonological 

representation may impede novel word learning.  

The necessity of using expressive vocabulary to identify children at risk of further 

problems must be tempered with, not only the recognition that late talking remains a 

symptom of language delay rather than a diagnosis in itself (Leonard, 2009), but also the 

appreciation that methods which allow for individual variation and trajectories are likely to 

provide a better characterisation of this population. For example, our analysis of picture 

comprehension (Chapter 6) showed that whilst there were some between group differences 

between LT and TD children, these differences were somewhat mitigated by allowing for 

random effects of participant when assessing main effects, and that LT children were able to 

make use of verbal labels to scaffold their understanding of pictures even despite their 

concurrent expressive language delay. The study also demonstrated how and why 

expressive vocabulary may interact with social ability and picture comprehension more 

broadly, indicating that language and symbolic understanding are subject to variation by 

different social abilities in children. The results also suggested that children may rely on 

more social scaffolding in the initial stages of symbolic development, then shift to utilising the 

capacity to talk about pictures as their symbolic development advances over time. 

Furthermore, as LT children showed a delay in picture comprehension across both 

timepoints, Chapter 6 indicated that cross-domain relationships can be affected by 

expressive language delay over time, even if LT children are able to use verbal labels to 

scaffold picture comprehension. This might indicate that although LT children were not 

understanding pictures in a qualitatively different way to TD children and were still able to 

use language, they might have a more general symbolic delay in non-linguistic domains as a 

result of their delay in linguistic abilities. The results of Chapter 6 therefore demonstrate why 
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it is important to identify other processes that may be affected as a result of language 

delays, rather than fixating only on vocabulary, and call for more research into cross-domain 

links between language, socio-cognitive skills, and symbolic understanding in atypical 

development 

Implications: interventions for late talking children 

Interventions for LT children can involve enriching the general environment around 

children, addressing specific problems such as learning particular words, and structured 

teaching with models and prompts; additionally, it may be clinician or parent based 

(DeVeney et al., 2017). 

Chapter 5 indicated that phonological representation was particularly difficult for LT 

children even after reaching TD ranges of vocabulary. This may provide a good target for 

intervention. For example, Buschmann et al. (2015) tested the effectiveness of the 

Heidelberg Parent-Based Language Intervention on LT children (expressive vocabulary < 1 

SD below the age-related mean on SETK-2; Grimm, 2000) recruited at 2-years-old. At 4-

years-old, there was no difference between the intervention (n = 23) and control group (n = 

20) on expressive vocabulary, but the intervention group outperformed the control group on 

phonological memory (nonword repetition, word span, number recall, word order). Over the 

whole sample, LT children who reached typical ranges for vocabulary, scored significantly 

better on the phonological memory measures. 

In Chapter 5, data from the CSWL task also suggested that LT children may struggle 

with retention of word-referent pairs acquired through statistical learning mechanisms – 

although due to the much smaller sample, this must be interpreted very cautiously. This 

might potentially reduce the effectiveness of interventions based on statistical learning; 

however, equally, increasing exposure in a supported fashion might give LT children more 

opportunity to identify multiple sources of input. The broader concept of variable input in 

language development may also play a protective role in language delay. Collisson et al. 
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(2016) identified protective factors for LT in an epidemiological cohort study that included 

book reading, the provision of informal play opportunities, and attendance at childcare 

centres, theorising that the benefit of these came from the wide range of different contexts 

and communicative partners. Future intervention studies could potentially make use of 

variability within randomised controlled trials to potentially promote gains in vocabulary.  

In Chapter 6, the mediating factor of social ability on pictorial understanding also 

indicates a fruitful area for intervention. For example, Robertson and Weismer (1999) tested 

the effect of a 12-week clinician-implemented programme for LT children at 24 months that 

used social scaffolding. They found significant gains across socio-communicative and 

language skills in the intervention (n = 11) versus the control group (n = 10) after the 

intervention, as well as a reduction in parental stress. Combined with our results, these 

results suggest that benefits from a social scaffolding intervention might also extend beyond 

the linguistic symbolic domain to the non-linguistic. However, robust studies that examine 

the efficacy of targeting social skills in LT children are few. 

In sum, our longitudinal study adds to the evidence base for intervention in LT 

children. However, given our limited sample, alongside the lack of studies that examine word 

learning and the lack of studies that examine the interaction of socio-cognitive skills and 

symbolic development in LT children, further research is necessary. Particularly, broader 

issues around interventions must be taken into account. In a systematic literature review of 

interventions for LT children, DeVeney et al. (2017) noted that parent-implemented 

interventions may be more effective than clinician-implemented interventions, but also 

identified a lack of studies with robust data reporting and rigorous research design. Only 

eight studies were included in the review, some of which did not report important baseline 

information, such as receptive language ability and SES. Similar limitations were noted by 

Cable and Domsch (2010) in a separate systematic review. Methodologically rigorous 

studies that examine low intensity parent-implemented interventions report good feasibility 
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and acceptability, but little evidence of improvement in language both immediately and at 3-

years-old (Wake et al., 2011). A more recent retrospective study (Kwok et al., 2020) 

identified gains in vocabulary and general communication following a parent-implemented 

intervention, but did not have a control group. Subsequently, future research directions 

include, (1) examining the effectiveness of focusing on potential areas of weakness related 

to word learning in LT children, such as phonological memory, (2) exploring the possibility of 

promoting protective factors, such as socio-communicative skills and variability, in language-

learning environments, and (3) utilising rigorous analyses and methods, such as randomised 

controlled trials, where possible. 

7.4 Limitations and future directions for atypical development 

Several limitations were highlighted within Chapters 5 and 6. However, three key 

limitations are expanded upon here: (1) the interruption of testing, (2) relevant abilities, such 

as attention and memory, not being tested in the longitudinal study, and (3) the homogeneity 

of the LT and TD sample itself limiting generalisation of findings. 

The interruption of testing due to the COVID-19 pandemic 

A major limitation of the longitudinal study was caused by the COVID-19 pandemic. 

This occurred during the final timepoint of data collection, and resulted in a reduced sample 

size, as well as the inability to identify whether all LT children who participated in the first 

time point recovered by the last. There was a good uptake of participation at the second 

timepoint that was a full 12 months after the first visit (~ 91%). All participants at this 

timepoint had agreed to participate again 6 months later, including all LT children, indicating 

good motivation to continue. Although 75% of our sample was able to continue with at least 

part of the study remotely, this was largely due to their goodwill and personal circumstances 

that afforded their participation in the study during a global pandemic. This means our 

research is limited by our smaller sample size, albeit beyond our immediate control. 
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The pandemic has forced the field to identify innovative ideas for collecting 

developmental data. From as early as March 2020, several developmental research labs 

rapidly began to test the effect of the pandemic on parent-reported CDI data (Kartushina et 

al., 2021). Others have advocated for increasing online data collection in developmental 

science (e.g. Lourenco & Tasimi, 2020; Sheskin et al., 2020). The broader implications of the 

pandemic, however, highlight the subsequent need to focus on speech and language in the 

early years, due to increased pressure on parents working from home or made redundant, 

and reduced access to childcare and schooling. For example, Bowyer-Crane et al. (2021) 

reported an increase in 4 – 5-year-olds starting school in the UK who were perceived to 

need help with language skills. Of the 58 schools surveyed, 76% of schools reported that 

children needed more support than previous cohorts, with 96% highlighting communication 

and language concerns. 

The effects of the ongoing pandemic on language development and school readiness 

will become apparent over time. From a more optimistic standpoint, some efforts to mitigate 

the effects of the pandemic are underway in the UK, and offer hope for recovery. For 

example, two-fifths of English primary schools will take part in the Nuffield Early Language 

Intervention in the upcoming 2021 academic year, which provides specialised individual and 

small-group language teaching for 4-year-olds starting school (Nuffield Foundation, 2021). 

Other processes in the late talking sample 

The inability to test the whole cohort on nonverbal IQ as a result of COVID-19 has 

been mentioned previously. However, we also did not test attention or memory due to time 

constraints within testing sessions. This means that differences within the sample that relate 

to these mechanisms were not captured. For example, the nonword repetition test has been 

considered largely a test of phonological working memory, and research in DLD has 

identified poorer working memory as being related to language ability (e.g. Jackson et al., 

2016, 2019). However, Petruccelli et al. (2012) found that the working memory of 5-year-olds 
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did not differ between recovered LT children and TD children, but children with DLD had 

lower scores in comparison to both groups. Similarly, D’odorico et al. (2007) found that 

although LT children had significantly poorer nonword repetition ability, they showed no 

difference to TD children in attention, impulsivity, or in short term memory. Thus, the 

mechanisms that underlie DLD may be different to those implicated in LT children. 

Nevertheless, future studies could potentially test parallel cognitive abilities that are 

nonverbal, such as the Attention and Memory Battery in the Leiter-3 (Roid et al., 2013), to 

assess whether concurrent attention and memory deficits in LT children could contribute to 

outcomes. 

The homogeneity of the late talking sample 

Our sample of LT and TD children was particularly homogenous in SES and parental 

education. This had the advantage of excluding the possibility of results being influenced by 

similar environmental factors which have been highlighted as contributory factors to LT 

outcomes by cohort studies (e.g. Reilly et al., 2010). However, this does mean that our 

findings cannot be readily extended to other populations. As evidence suggests that poorer 

language outcomes are related to lower SES (e.g. Fernald et al., 2013; Hirsh-Pasek et al., 

2015; Locke et al., 2002; Tomalski et al., 2013), the reasons for our homogenous sample 

and potential solutions for future recruitment require consideration. 

From a practical perspective, the limitations of conducting a complete longitudinal 

study within the time, space, and funds allocated to a doctoral project make the barriers to 

testing a more diverse sample of participants particularly challenging. Engaging participants 

with more diverse backgrounds proved difficult when recruiting for the longitudinal study in 

particular. Recruitment took place through flyers and actively promoting the study across 

local nurseries and pre-schools in Lancashire (Manchester, Lancaster, Preston), the local 

health visiting service for West Lancashire, and through the Lancaster University Babylab. 

Despite equal distribution across geographical areas, those who got in contact were 
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consistently from similar, mid-SES backgrounds, had an interest in child development, and 

were often involved in the National Health Service (NHS) itself. A collaboration with a 

specific local opportunity area in Derby was attempted to recruit a more diverse sample, but 

had no uptake by would-be participants.  

Recruiting through a national public health service that often serves as a backdrop for 

fluctuations in society and politics (British Medical Association, 2021) also affected our 

recruitment. For example, the public NHS health visiting service utilised for recruitment was 

undergoing a takeover by a private healthcare company following a financial bidding 

competition with the local NHS Trust (Matthews-King, 2017). This brought significant 

restructuring and uncertainty over how much capacity health visitors had for additional work, 

such as recruiting for studies. The service itself was overstretched, with a small team 

allocated to large parts of the Lancashire county. The national Early Years Foundation Stage 

progress check is typically recommended at age 2 years, with a designated range of 24 – 

36-months-old (Department of Health and NCB, 2015). However, as a result of heavily 

strained public services, this check often occurred at the upper limit of this range, meaning 

many households were not eligible to take part according to our inclusion criteria – which 

was already expanded prior to the study commencing (from 22 – 26-months-old to 24 – 29-

months-old), following consultation with the health visiting service. The frequently delayed 2-

year-check in the local service used in this study may, in part, also point to practical barriers 

for potential language screening and intervention before school-age (The Bercow Report: 10 

Years On, 2018). 

Potential solutions to widening participation in word learning studies include 

incentivising participation, studies of broad, national cohorts, and studies in specific, under-

represented populations. These are briefly examined in turn.  

Incentivising participation in child studies is somewhat fraught with ethical 

complications. Smaller forms of reimbursement, such as stickers, books, and reimbursement 
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for travel costs (as in our study), may not be strong enough motivators for all populations to 

take part, particularly when a long-term study may take up time and resources. More 

significant financial reimbursement is seen as appropriate by some, whereas others fear 

exploitation or coercion (for a review, see M. Rice & Broome, 2004; Zutlevics, 2016). More 

broadly, some report financial incentives in child health initiatives do not show strong 

evidence for encouraging better health outcomes (Bassani et al., 2013), raising further 

ethical issues. 

The large cohort studies that have examined early language delay described 

previously (e.g. Clegg et al., 2015; Hartas, 2011) are broader representations of LT children 

within the UK. However, the practicality of studying word learning mechanisms in large 

numbers of children is of course, limited. An alternative is to examine specific populations 

with poorer language outcomes using a wide range of research methods, and borrow from 

public health initiatives that allow for heterogeneity. Law et al. (2013) argue that language 

and communication services deal with aberrant outcomes rather than preventative factors, 

and that reconceptualising speech and language needs as a public health issue, rather than 

a clinical one, would benefit both prevention and intervention. Using public health principles 

prior to implementation of programmes, such as examining community readiness and 

providing integrated community support (Dickerson et al., 2019; Islam et al., 2019), may also 

help improve diversity of word learning studies. To provide a solid evidence base for 

populations most in need of an evidence base for expressive language delay, ambitious 

future projects could potentially embed short word learning tasks within larger scale projects 

that target speech and language initiatives in diverse populations such as birth cohorts or 

epidemiological studies. This would ideally require the qualifier that systemic issues that 

prevent research participation are examined and accounted for prior to study 

commencement.  
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For example, LT children’s impairments in nonword repetition may be a good 

candidate for testing in larger cohort studies. One of the problems with traditional nonword 

repetition measures is the limited ability of very young children to tolerate the task (Roy & 

Chiat, 2004). Measures of nonword repetition were originally administered to children aged 

4-years and above, and require the child to sit and dutifully repeat auditory stimuli from a 

recording (Gathercole et al., 1994). However, the PSRep Test (Chiat & Roy, 2007) assesses 

the phonological representation of real words and nonwords using live presentation, has 

good compliance in 2-year-olds, most children in our study managed to complete the task at 

~3-years-old without difficulty, and it takes only a matter of minutes to administer. 

Administration at 2;6-years-old elsewhere also predicted language outcomes 18 months 

later in 163 LT children (≤ 15th percentile, CDI) when combined with receptive and 

expressive vocabulary, morphosyntactic ability, and socio-cognitive skills (Chiat & Roy, 

2008). This means that nonword repetition could be a viable option for including alongside 

epidemiological and demographic factors in large cohort studies – although for children 

whose expressive output is severely limited or younger than 2, this is less practical.  

Fast mapping tasks similarly take a short amount of time to administer, and again, 

compliance in our sample was good. Weismer (2007) found that a model combining non-

verbal IQ, expressive vocabulary, and novel word comprehension at 2;6 years in 40 LT 

children (2-years-old, ≤10th percentile CDI) provided good sensitivity for predicting TD 

language skills 12 months later, correctly identifying 90% of recovered LT children, and 

correctly rejecting 91% of those who continued to show significant impairments. However, 

only fast mapping retention predicted expressive vocabulary at T3 in our study, indicating 

that further studies that examine retention and memory abilities, as well as referent 

selection, are necessary.  
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Summary of implications for atypical development 

This thesis offers evidence not only for testing word learning mechanisms in children 

with expressive language delay, but also for the reconceptualisation of LT as a consequence 

of individual variation and a spectrum of language ability. Chapter 5 demonstrates the 

potential value of identifying candidate word learning mechanisms that provide a better 

characterisation of LT children, highlighting deficits in phonological representation, and 

potentially around the retention of statistical associative information. Chapter 6 highlights 

how language can interact with multiple other non-linguistic domains during child 

development, and the necessity of characterising these effects in atypical populations. 

Of interest is that all of the LT children in our sample, except for two, were above the 

30th percentile for expressive language by 3 – 3.4-years-old (T2). Both of the children who 

showed enduring deficits had additional factors that likely impacted their language skills. 

One child had intermittent otitis media (repeated ear infections that can lead to conductive 

hearing impairment) diagnosed between study visits at T2 and T3, which self-resolved 

without intervention. This child reached above the 30th percentile at the last timepoint (T3). 

The other child, who remained around the 10th percentile at T2 and at T3, developed an 

overjet across the latter part of the study (a malocclusion where the upper teeth protrude 

over the lower, typically not corrected under the age of 12-years-old; National Health 

Service, 2020). Dental malocclusion can impede speech (e.g. Inukai et al., 2006; Laine, 

1992) and poor oral motor skills are related to language difficulties (Alcock, 2006). Thus, this 

particular child’s reduced expressive vocabulary was likely a result of longer-term articulation 

difficulties, and potentially less practice during the course of language acquisition.  

Overall, a multiple hit hypothesis may provide the most reasonable fit to our data. In 

other words, children in our study did not show prolonged severe expressive delay at time of 

follow-up unless another aspect of their language was also affected beyond their expressive 

vocabulary. Bishop (2006) writes that research has not identified distinctive subgroups of 
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DLD, but rather, that children with a single deficit are less likely to have DLD than those with 

multiple deficits, thus recommending a dimensional approach to conceptualising DLD. LT 

children are similarly heterogenous, and cohort studies have shown that variability in data 

cannot be well accounted for by epidemiological factors alone (Reilly et al., 2010). Our 

longitudinal study indicates that a dimensional approach is equally sensible for LT as 

Rescorla (2011) describes, and also highlights how evaluating mechanisms at each stage of 

word learning, using methods that allow for individual variation, and examining deficits in 

other domains may better characterise the LT population and their outcomes. 

7.5 Conclusions 

This thesis has argued that word learning research must be accommodated into a 

theory that makes use of multiple cues, as well as multiple mechanisms, for language 

learning. The first part of this thesis identified how and when gesture cues support word 

learning within TD populations as part of a multiple cue model. Chapter 2 demonstrated that 

caregiver use gestures based on the presence of referential ambiguity to help teach their 

infants new words, and that infants were able to learn more accurately in conditions with 

referential ambiguity. Chapter 3 demonstrated that deictic gestures not only direct attention 

as word learning unfolds in real-time, but that the temporal dynamics of how gesture and 

speech co-occur directly affect the accuracy of word learning. The results showed more 

accurate word-referent mappings with early, rather than late gestures, and more accurate 

mappings with late, rather than no gestures. Together, these findings demonstrate how two 

sources of information – gesture cues and environmental variability – can affect language 

learning, but also show how they may interact with other processes during word learning, 

such as attentional cueing.  

The second part of this thesis identified how word learning mechanisms might be 

affected in atypical development, and also identified how subsequent effects of expressive 

vocabulary delay might affect non-linguistic domains. Chapter 5 highlighted how different 
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impaired mechanisms of word learning can impact vocabulary acquisition in LT children and 

vice versa. LT children showed impairments across expressive, but not receptive, domains – 

but also showed potential impairments in retention of statistical information. This showed 

that as word learning comprises multiple processes, impairment in one does not necessarily 

mean impairment in another. Chapter 6 identified that LT children show delayed, but not 

functionally different, picture comprehension as compared to TD children, and also that 

receptive and expressive vocabulary differentially support picture comprehension over time. 

This demonstrated how a broader perspective of symbolic development is necessary to 

enrich and effectively position theories of language acquisition related to how children come 

to understand the world around them. 

It is possible that the wider sphere of research has historically encouraged a divisive 

approach to understanding scientific concepts (Kaiser, 2012; T. Kuhn, 1970). However, 

given the wealth of information that different models of word learning have brought to the 

field of language acquisition, it seems unwise to pit one against the other. Each model – 

linguistic constraints (Markman, 1989), socio-pragmatic theory (Tomasello, 2003), and 

cross-situational word learning (Smith & Yu, 2008; Yu & Smith, 2007) – has contributed 

meaningfully and substantially to advancing language acquisition theory. This was 

recognised twenty years ago by integrative models, such as the Emergent Coalition Model 

(combining socio-pragmatic cues and lexical constraints; Hollich et al., 2000), then again 

some years later in Yu and Ballard's (2007) unified model (combining socio-pragmatic cues 

and statistical learning), and more recently, by the MIM (combining linguistic input, socio-

pragmatic cues and statistical learning; Monaghan, 2017). Models that examine cross-

situational word learning (McMurray et al., 2012; Yurovsky & Frank, 2015) also provide a 

framework for different stages of word learning during development that can integrate lexical 

constraints with statistical learning. 
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Now may be a particularly fitting time to continue the advancement of integrative 

models of word learning due to two relatively recent developments: firstly, the advances in 

computing technology that allow us to not only model multiple inputs on an outcome 

simultaneously, but also allow for a more dynamic interaction of these via the use of 

machine learning (L. B. Smith & Slone, 2017); and secondly, a degree of openness around 

data sharing and multi-lab collaborations afforded by the mass connectivity of the Internet 

and by Open Science initiatives (Munafò et al., 2017). Both of these developments recognise 

the contribution of, and provide the capacity for, multi-disciplinary approaches to research 

that make use of multiple theories of word learning. 

Part of understanding integrative theories of word learning comprises the need to 

identify what happens in atypical development. Although LT children offer a unique 

opportunity to study the effects of expressive language delay, whether or not they are 

qualitatively different to TD children requires further investigation through the use of word 

learning mechanisms and synergistic developmental domains, such as symbolic 

understanding and socio-cognitive skills. Overall, expressive language delay may be 

succinctly summarised by Bishop’s (2006) description of more general language delay, ‘… 

there may be multiple routes to effective language acquisition, and if one route is blocked, 

another can usually be found. However, if two or more routes are blocked, then language 

learning will be compromised’ (p. 220).  

More broadly, research can no longer exist in a vacuum. With the advent of newer 

and more technologically advanced methods of communication, and a greater awareness of 

social responsibility than ever before, research must appeal to greater numbers and must 

represent all populations. This is particularly important when studying language delay and 

identifying children at risk of further problems. However, this is only attainable through good 

communication outside of the academic community, and broadening testing beyond specific 

populations. For example, a consistent feature in the longitudinal study was that no clear 
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standard for LT children was known to those outside of the academic community, and that 

referrals to speech and language services were not always made consistently. Addressing 

language delay in a public health context, as Law et al. (2013) describe, may not only 

improve prevention, detection, and intervention for early language delay, but may also 

promote better communication between researchers, practitioners, and the communities that 

they serve. Raising awareness more generally in the wider community may also be viable 

supplement to providing intensive programmes whilst services are already stretched. 
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Appendix A: Chapter 2 Supporting information  
(supplementary analyses from computational model and behavioural study) 

 

The following information complements the paper Cheung et al. (in press), ‘Caregivers use 

gesture contingently during word learning’, Developmental Science, e13098, 

https://doi.org/10.1111/desc.13098. Data and code repository: 

https://osf.io/6frcw/?view_only=72344789a6294aa19d63a8bd93a628f3  

 
Computational model: additional figure 

For the main analysis (main manuscript, Table 1 and Figure 2A & 2B), we collapsed 

across availability of gesture cue conditions to allow for easier comparison between the 

model and the behavioural study. Figure S1 shows the breakdown of each gesture 

availability condition (0%, 33%, 67%, 100%) for training length and for performance during 

testing. 
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Figure S1.  

Multimodal integration model (MIM) results, where model is run to 95% criterion/100 epochs, 

showing breakdown by availability of gesture cue: effect of number of objects present during 

training and gesture cue reliability on (A) length of training required; (B) testing accuracy.  

 
(A)        

   

 

(B) 
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Computational model: supplementary analyses  

Controlling for quantity of exposure 

As the original model (main manuscript, Computational Model) learned to criterion 

more quickly in the one- compared to two- and six-referent conditions, there was also a 

potential confound in the model’s performance affected by referential ambiguity and quantity 

of exposure. To control for quantity of exposure, we tested also this model on its accuracy 

when it had been trained to 100 epochs. The results were largely similar to those reported in 

the main paper, with the exception that the effect of gesture reliability was now not 

significantly different between the two and six-referent condition. The results are shown in 

Figure S2 and Table S1. 

 

Table S1.  

Linear mixed effects model results of the MIM computational model’s performance after 

training to 100 epochs, to control for exposure time across the one-, two-, and six-referent 

conditions. 

Dependent variable Independent variables Estimate 
 

SE z p 

Testing accuracy 
after training to 
criterion  

(intercept – one object)  -0.16 0.16 -1.00    .317 
One v. two objects 
One v. six objects 
Two vs. six objects 
Gesture cue 
One v. two objects x Gesture cue 
One v. six objects x Gesture cue 
Two v. six objects x Gesture cue 

3.32 
1.36 
-1.93 
2.49 
-1.87 
-2.08 
-0.19 

0.20 
0.20 
0.15 
0.33 
0.40 
0.37 
0.27 

16.90 
  6.80 
-13.10 
7.56 
-4.72 
-5.56 
-0.69 

< .001 
< .001 
< .001 
< .001 
< .001 
< .001 
   .493 
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Figure S2.  

Mean and standard error bars for results of the multimodal integration model (MIM) for 

testing accuracy proportion correct after training to 100 epochs, by number of objects 

present during training (calculated across gesture cue condition). 

 

 

Additional simulations 

The original model with six objects during training failed in many cases to learn to 

criterion. We thus conducted a supplementary analysis where we repeated the simulations 

but increased the number of units in the integrative layer from 100 to 200, reduced the 

learning criterion from 95% to 90% of the patterns correct on four consecutive blocks of 

training, and increased the maximum number of training iterations from 100,000 to 200,000. 

 For training time, the results of the model are shown in Figure S3A. When the 

gesture cue was low in availability, the model with 6 objects present during training failed to 

learn to criterion in all cases, but did reach criterion when cue reliability was higher. In the 

linear effects model, there was a significant effect of number of objects during training on 

model fit, (χ2(2) = 99.59, p < .001), with one object during training resulting in quicker 

learning than six objects (t(116) = 11.017, p < .001), and quicker learning for two than six 

objects (t(116) = 10.340, p < .001), but no significant difference between one and two 

objects (t(116) = .682, p = .497). There was a significant effect of cue availability (χ2(1) = 

71.75, p < .001), with quicker learning when cues were available more often. The interaction 
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also significantly improved fit (χ2(2) = 205.79, p < .001), with no significantly different effect 

of cue reliability for one than two objects (t(113) = -1.53, p - .127), but a larger effect of 

gesture reliability for six than one and two objects (t(113) = -20.617, t(113) = -19.096, both p 

< .001). The final model is shown in Table S2. 

For performance during testing, results are shown in Figure S3B. Generalised linear 

mixed effects analyses demonstrated a significant effect of number of objects present during 

training, (χ2(2) = 8.42, p = .015), with one object resulting in lower accuracy than two and six 

objects (z = 23.50, z = 19.93, both p < .001), but accuracy from two and six objects was not 

significantly different (z = .075, p = .399). For cue reliability, the effect was also significant, 

(χ2(1) = 7.81, p = .005), with increasing availability increasing accuracy. The interaction was 

also significant, (χ2(2) = 29.5, p < .001), with a greater effect of cue availability on six objects 

than two objects (z = -4.50, p < .001), and a greater effect of gesture on two objects than 

one object (z = -8.89, p < .001). The final model is shown in Table S3. 
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Table S2.  

Linear mixed effects model results of the MIM computational model’s performance after 

training to 90% correct or 200 epochs of training. Results show model fit for the effects of 

number of objects during training and gesture cue condition on length of training time and 

accuracy. 

Dependent variable Independent variables Estimate 
 

SE df t p 

Length of training 
time  

(intercept – one object)  47.35 3.23 113 14.67 < .001 
One v. two objects 
One v. six objects 
Two vs. six objects 
Gesture cue 
One v. Two object x Gesture cue 
One v. Six object x Gesture cue 
Two v. Six object x Gesture cue 

11.53 
174.39 
162.86 
-15.99 
-11.25 
-152.60 
-141.34 

4.56 
4.65 
4.65 
5.17 
7.31 
7.40 
7.40 

113 
113 
113 
113 
113 
113 
113 

2.53 
37.51 
35.03 
-3.09 
-1.54 
-20.62 
-19.10 

.013 
< .001 
< .001 
.003 
.127 
< .001 
< .001 
 

  Estimate SE  z p 
Testing accuracy 
after training to 
criterion  

(intercept – one object)  -0.97 0.13  -7.50 < .001 
One v. two objects 
One v. six objects 
Two vs. six objects 
Gesture cue 
One v. two objects x Gesture cue 
One v. six objects x Gesture cue 
Two v. six objects x Gesture cue 

2.91 
3.58 
0.70 
0.54 
-0.62 
-.090 
-0.29 

0.17 
0.23 
0.20 
0.06 
0.07 
0.08 
0.06 

 17.35 
15.81 
3.51 
9.87 
-9.08 
-11.18 
-4.50 

< .001 
< .001 
< .001 
< .001 
< .001 
< .001 
< .001 
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Table S3.  

Linear mixed effects model results of the behavioural study demonstrating the effects of 

number of objects during training and child vocabulary scores† on caregiver gesture and 

speech with gesture subtypes during training trials.  

Dependent 
variable 

Independent variables Estimate 
 

SE df t-value p-
value 

χ2 (df) p-
value 

All 
gestures 

(intercept – one object)  3.66 0.36 12.56 10.07 <.001 11.73(2) .003 
One v. two objects 
One v. six objects 
Two v. six objects 
 

0.74 
1.23 
0.49 

0.35 
0.35 
0.35 

94.00 
94.00 
94.00 

2.12 
3.51 
1.39 

.037 
<.001 
0.167 

  

 Supp. 
speech 
with 
gesture 
(receptive 
vocab) 

(intercept)  -1.90 2.24 37.21 -0.85 .400 8.09 (3) .044 
Receptive vocab 
Symb. gesture vocab 
Receptive*Symb. 
vocab 
 

0.02 
0.08 
-<0.01 

0.01 
0.06 
<0.01 

36.20 
36.56 
36.27 

2.51 
1.38 
-2.33 

.017 

.177 

.026 

  

Supp. 
speech 
with 
gesture 
(expressive 
vocab) 

(intercept) 
Expressive vocab 
One v. two objects 
One v. six objects 
Two v. six objects 
Expressive*One obj. 
Expressive*Two obj. 
Expressive*Six obj. 
 

1.66 
-0.0005 
-0.13 
1.10 
1.22 
-0.0008 
-0.0008 
-0.005 

0.35 
0.001 
0.34 
0.34 
0.34 
0.002 
0.002 
0.002 

21.67 
116.40 
94.17 
92.53 
94.24 
94.25 
94.25 
93.59 
 

4.76 
-0.34 
-0.37 
3.25 
3.62 
-0.45 
0.45 
-2.88 
 

<.001 
.73 
.71 
.002 
<.001 
.657 
.657 
.005 
 

18.04(5) .003 

obj. = object; supp. = supplementary; symb. = symbolic; vocab = vocabulary 
 

†Analyses where separate expressive and receptive vocabulary model fits gave different 
best-fitting model results for the dependent variable are been indicated in the table. 
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Figure S3.  
 
Multimodal integration model (MIM) results where model is run to 90% criterion/200 epochs: 

effect of number of objects present during training and gesture cue reliability on (A) length of 

training required and (B) testing accuracy.  

 
(A)        

  

 

(B) 
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Behavioural study: additional figures 

 For the main analysis (main manuscript, Table 3 and Figure 2C & 2D), we focused 

on deictic gesture use. Figure S4 shows a breakdown of the effect of the number of objects 

present on training for caregiver subtypes of gesture, and also shows the effect of condition 

on other caregiver subtypes of speech and gesture. 

 

Figure S4.  

Mean and standard error bars for results of the behavioural study demonstrating the effect of 

number of objects present during training on: (A) caregiver use of subtypes of gesture; (B) 

caregiver use of subtypes of speech and gesture; (C) caregiver use of the referent label. 

 
(A)                
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(B) 
        

 

   

 

(C) 
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Behavioural study: supplementary analyses 

Part of the difficulty in determining the mechanisms through which gesture might aid 

language acquisition lies in distinguishing effects due to gesture alone, and those that are 

the result of gesture co-occurring with speech. Some studies have indicated that once verbal 

input is accounted for, parent gesture does not correlate with child vocabulary scores, 

suggesting that much of gesture’s value may well be imbedded in the information it provides 

simultaneously with speech (Iverson et al., 1999; Pan et al., 2005; Rowe et al., 2008). For 

example, it may be that gestures provide visual information that is not present in speech, 

such as the hand action of a bird’s wings flapping when saying the word ‘eagle’, or by 

reinforcing what is said during speech, such as pointing at an intended referent whilst 

naming it (Goldin-Meadow, 2000; Goldin-Meadow & Wagner, 2005). We thus conducted 

several further analyses for the behavioural data to examine the range of caregiver 

communication with their children in the different conditions, and to also investigate the 

effect of these on child accuracy at test. We also explored how child speech and gesture 

cues might be affected by referential uncertainty during training. 

Cues during training 

Separate linear mixed effects models were also constructed to predict caregiver and 

child gesture speech for each subtype described in Rowe et al.’s (2008) and Iverson and 

Goldin-Meadow's (2005) coding scheme. These were constructed in the same way as linear 

mixed effects models described in the main manuscript (Behavioural study). For full details 

of all models run, please see R code and data files on OSF: 

(https://osf.io/6frcw/?view_only=72344789a6294aa19d63a8bd93a628f3). 

Caregiver supplementary speech and gesture cues during training  

Due to high correlation between CDI expressive and receptive vocabulary subscales, 

separate linear mixed effects models were carried out, one with fixed effects of expressive, 

symbolic gesture, and communicative gesture vocabulary, and one with receptive, symbolic 



 

 

293 

gesture, and communicative gesture vocabulary. The final results of these models can be 

found in Table S3. 

In the expressive vocabulary linear mixed effect model, there was a main effect of 

condition and expressive vocabulary (χ2(5) = 18.04, p = .003). However, this was largely 

driven by effects of condition, with increased supplementary speech and gesture from one to 

six objects (t(92.53) = 3.25, p = .002), and from two to six objects (t(94.24) = 3.62, p < .001). 

The interaction between expressive vocabulary and the six-object condition was significant 

(t(93.59) = -2.88, p = .005), but this estimate was very small.   

In the receptive vocabulary linear mixed effect model, there was also marginal 

interaction between receptive vocabulary and child gesture vocabulary without a fixed effect 

of condition (χ2(3) = 8.09, p = .044) that suggested caregivers of children with higher 

receptive and gesture vocabulary gave less supplementary speech with gesture overall, but 

these estimates were very low.  

For overall gesture, only an effect of condition was found χ2(2) = 11.73, p = .003) 

without any additional effects of child vocabulary. This demonstrated similar results to those 

in the main manuscript (Behavioural study), with an increase in overall gesture from one to 

two objects (t(94) = 2.12, p = .037), and from one to six objects (t(94) = 3.51, p < .001), but 

no significant difference from two to six objects (t(94) = 1.39, p = .167). 

Child use of novel label during training 

Models of child data examining the use of referent label demonstrated no fixed effect 

of condition, but there was an effect of child receptive, symbolic gesture, and communicative 

gesture vocabulary (χ2(3) = 8.86, p = .036, Table S4) indicating that higher receptive 

vocabulary with lower gesture vocabulary predicted more frequent child use of the novel 

word overall – although these estimates were very small. Similarly, examining a fixed effect 

of expressive vocabulary demonstrated an effect without condition or other gesture 

subscales (χ2(1) = 5.33, p = .012, Table S4); again, this estimate was very small. 
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Child gesture and speech use during training 

Models of child data revealed a significant effect of condition on overall gesture use 

(χ2(2) = 9.09, p = .011, Table S4), which differed from the way in which caregivers used 

gestures. Children gestured significantly more in the six-object condition (t(90) = 3.09, p = 

.003) compared to the one-object condition, but showed no significant difference between 

the one- and two-object conditions (t(89) = 1.60, p = .113), or between the two- and six-

object conditions (t(92) = 1.49, p = .139). When examining gesture subtypes, no significant 

fixed effects were found in predicting deictic or representational gestures related to the 

referent. A significant effect of condition was found when predicting other gestures which 

appeared to drive the effect of condition on overall gesture use (χ2(2) = 13.86, p < .001). 

When examining the other gesture subtypes post-hoc, the vast majority of other gestures 

were deictic gestures aimed at non-referent items. Models of child data for co-occurrence of 

speech (supplementary and complementary) with gesture did not reveal any significant fixed 

effects or interactions. 

Children gestured far less frequently during training than caregivers and spoke very 

little, which could explain the lack of significant differences in speech and gesture co-

occurrence between conditions. However, they gestured more often in the six-object 

condition than the one-object condition, although this comprised primarily gestures towards 

non-target items. The obvious difference between knowledge states of caregiver and child 

may play a role here – caregivers knew what the target was, and so pointed at it more often. 

Children did not have the benefit of prior knowledge, and subsequently may have pointed 

more than their parents at the other novel objects on the tray in the six-object condition 

simply because there were more of them compared to the one-object condition.  
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Table S4.  

Linear mixed effects model results of the behavioural study demonstrating the effects of 

number of objects during training and child vocabulary scores† on child gesture and speech 

with gesture subtypes during training trials. 

Dependent 
variable 

Independent variables Estimate 
 

SE df t-value p-
value 

χ2 (df) p-
value 

All 
gestures  

(intercept – one object)  1.27 0.32 35.95 4.00 <.001 9.09 (2)  .011 
One v. two objects 
One v. six objects 
Two v. six objects 
 

0.52 
1.02 
0.49 
 

0.33 
0.33 
0.33 

88.64 
90.39 
92.31 

1.60 
3.09 
1.49 

.113 

.003 

.139 

  

Other 
gestures 

(intercept – one object)  0.53 0.21 46.59 2.54 .014 13.86(2) <.00
1 

One v. two objects 
One v. six objects 
Two v. six objects 
 

0.63 
0.97 
0.35 

0.25 
0.26 
0.26 

90.06 
92.19 
93.96 

2.46 
3.81 
1.35 

.012 
<.001 
.0179 

  

Referent 
label use 
(receptive 
vocab) 

(intercept)  1.00 0.73 39.99 1.37 .177 8.56 (3) .036 
Receptive vocab 
Symb. gesture vocab 
Comm. gesture vocab 

0.01 
-0.01 
-0.06 

0.002 
0.02 
0.04 

39.78 
39.89 
39.98 

2.90 
-0.50 
-1.68 

.006 

.622 

.101 

  

         
Referent 
label use 
(expressive 
vocab) 

(intercept) 
Expressive vocab 

0.26 
0.002 

0.19 
0.001 

33.93 
46.91 

1.36 
2.60 

.181 

.012 
6.33(1) .012 

         
comm. = communicative; symb. = symbolic; vocab = vocabulary 
 

†Analyses where separate expressive and receptive vocabulary model fits gave different 
best-fitting model results for the dependent variable are been indicated in the table. 
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Accuracy at test 

We used Generalised Estimated Equations (GEE; geeglm package; geepack in 

R[v3.4.1, 2017]) to examine the effect of condition, caregiver behaviour and child vocabulary 

during training on test trial accuracy. Separate GEEs were constructed to examine child 

vocabulary variables, condition, and each training behaviour gesture subtype as 

independent variables. For full details of all models run, please see R code and data files on 

OSF: (https://osf.io/6frcw/?view_only=72344789a6294aa19d63a8bd93a628f3). 

Caregiver behaviour on accuracy at test  

 When entered as independent variables alongside that of condition and other child 

vocabulary subscales (receptive, expressive, symbolic, and communicative subscales), 

caregiver deictic gesture use, novel label use, complementary speech and gesture, and 

supplementary speech and gesture were not a significant predictors of child accuracy at test 

(Tables S5-S8).  These results are similar to that of the original manuscript that examined 

caregiver deictic gesture use and receptive child vocabulary (main manuscript, Table 3; see 

also General Discussion). 
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Table S5.  

Generalised estimated equations results of the behavioural study predicting effect of 

caregiver deictic gesture cues during training and child vocabulary scores† (UK-

Communicative Development Inventories) on child accuracy at test. 

GEE model Independent variables Estimate 
 

SE Wald p-value 

1 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Expressive vocab 
Caregiver deictic gesture 

-1.33 
0.90 
0.85 
-0.05 
0.001 
0.03 

0.53 
0.43 
0.46 
0.49 
0.001 
0.10 

6.24 
4.41 
3.36 
0.01 
1.23 
0.11 

.012 

.036 

.067 

.923 

.267 

.745 
     

2 (intercept – one object)  -1.72 1.19 2.08 .149 
One v. two objects 
One v. six objects 
Two v. six objects 
Symb. gesture vocab 
Caregiver deictic gesture 
 

0.88 
0.71 
-0.18 
0.02 
-0.001 

0.45 
0.71 
0.50 
0.03 
0.10 

3.86 
2.24 
0.12 
0.59 
0.00 

.049 

.134 

.726 

.443 

.989 

3  (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Comm. gesture vocab 
Caregiver deictic gesture 

-2.53 
0.89 
0.84 
-0.05 
0.07 
0.05 

1.15 
0.43 
0.48 
0.05 
0.05 
0.10 

4.83 
4.33 
3.15 
0.01 
1.85 
0.22 

.028 

.038 

.076 

.920 

.173 

.639 
 

comm. = communicative; symb. = symbolic; vocab = vocabulary 
 
† Receptive vocabulary was reported in the main manuscript 
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Table S6.  

Generalised estimated equations results of behavioural study predicting effect of caregiver 

referent label use during training and child vocabulary scores (UK-Communicative 

Development Inventories) on child accuracy at test. 

GEE model Independent variables Estimate 
 

SE Wald p-value 

1 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Receptive vocab 
Caregiver referent label use  

-0.92 
0.99 
0.80 
-0.19 
0.002 
-0.11 

0.72 
0.46 
0.50 
0.50 
0.002 
0.08 

1.64 
4.70 
2.52 
0.16 
1.41 
2.19 

.20 

.03 

.11 

.69 

.24 

.14 
 

2 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Expressive vocab 
Caregiver referent label use 

-0.50 
0.99 
0.80 
-0.19 
0.0009 
-0.11 

0.57 
0.46 
0.50 
0.50 
0.001 
0.08 

0.75 
4.69 
2.55 
0.14 
0.77 
1.84 

.39 

.03 

.11 

.70 

.38 

.17 
     

3 (intercept – one object)  -1.26 0.93 1.83 .176 
One v. two objects 
One v. six objects 
Two v. six objects 
Symb. gesture vocab 
Caregiver referent label use  
 

0.98 
0.67 
-0.31 
0.02 
-0.10 

0.49 
0.51 
0.51 
0.02 
1.08 

3.03 
1.72 
0.36 
0.99 
1.43 

.044 

.19 

.548 

.319 

.232 

4 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Comm. gesture vocab 
Caregiver referent label use 
 

-1.70 
1.01 
0.79 
-0.22 
0.07 
-0.13 

1.02 
0.46 
0.51 
0.51 
0.05 
0.07 

2.80 
4.74 
2.39 
0.18 
2.42 
2.87 

.094 

.029 

.122 

.669 

.12 

.09 

comm. = communicative; symb. = symbolic; vocab = vocabulary 
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Table S7.  

Generalised estimated equations results of the behavioural study predicting effect of 

caregiver complementary speech with gesture cues during training and child vocabulary 

scores (UK-Communicative Development Inventories) on child accuracy at test. 

GEE model Independent variables Estimate 
 

SE Wald p-value 

1 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Receptive vocab 
Caregiver complementary 
speech + gesture 
 

-1.73 
0.88 
0.84 
-0.04 
0.002 
0.06 

0.61 
0.42 
0.48 
0.50 
0.002 
0.12 

8.11 
4.32 
3.06 
0.01 
1.15 
0.28 

.004 

.038 

.08 

.938 

.284 

.6 

2 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Expressive vocab 
Caregiver complementary 
speech + gesture 

-1.35 
0.88 
0.84 
-0.03 
0.001 
0.07 

0.44 
0.42 
0.48 
0.50 
0.001 
0.12 

9.20 
4.29 
3.02 
0.00 
1.31 
0.38 

.002 

.038 

.082 

.945 

.252 

.535 

     
3 (intercept – one object)  -1.70 1.10 2.37 .123 

One v. two objects 
One v. six objects 
Two v. six objects 
Symb. gesture vocab 
Caregiver complementary 
speech + gesture  
 

0.85 
0.69 
-0.16 
0.02 
0.05 

0.44 
0.48 
0.50 
0.02 
0.12 

3.68 
2.07 
0.10 
0.48 
0.16 

.055 

.151 

.749 

.489 

.693 

4 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Comm. gesture vocab 
Caregiver complementary 
speech + gesture 

-2.39 
0.89 
0.85 
-0.04 
0.06 
0.05 

1.05 
0.43 
0.49 
0.50 
0.05 
0.11 

5.16 
4.39 
3.03 
0.01 
1.62 
0.22 

.023 

.036 

.082 

.932 

.203 

.642 

comm. = communicative; symb. = symbolic; vocab = vocabulary 
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Table S8.  

Generalised estimated equations results of the behavioural study predicting effect of 

caregiver supplementary speech with gesture cues during training and child vocabulary 

scores (UK-Communicative Development Inventories) on child accuracy at test. 

GEE model Independent variables Estimate 
 

SE Wald p-value 

1 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Receptive vocab 
Caregiver supplementary 
speech + gesture 
 

-1.91 
0.91 
0.84 
-0.08 
0.002 
0.11 

0.65 
0.44 
0.49 
0.51 
0.002 
0.12 

8.63 
4.27 
2.91 
0.02 
1.41 
0.90 

.003 

.039 

.088 

.876 

.236 

.343 

2 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Expressive vocab 
Caregiver supplementary 
speech + gesture 

-1.44 
0.92 
0.84 
0.08 
0.05 
0.11 

0.43 
0.44 
0.49 
0.50 
0.001 
0.12 

11.18 
4.29 
2.90 
0.02 
1.51 
0.87 

<.001 
.038 
.089 
.878 
.22 
.35 

     
3 (intercept – one object)  -2.08 1.20 2.98 .084 

One v. two objects 
One v. six objects 
Two v. six objects 
Symb. gesture vocab 
Caregiver supplementary 
speech + gesture  
 

0.89 
0.69 
-0.20 
0.02 
0.12 

0.47 
0.50 
0.51 
0.03 
0.12 

3.64 
1.91 
0.15 
0.78 
1.00 

.056 

.167 

.697 

.376 

.316 

4 (intercept – one object)  
One v. two objects 
One v. six objects 
Two v. six objects 
Comm. gesture vocab 
Caregiver supplementary 
speech + gesture 
 

-2.79 
0.92 
0.83 
-0.09 
0.07 
0.14 

1.16 
0.44 
0.50 
0.51 
0.05 
0.12 

5.77 
4.26 
2.78 
0.03 
2.13 
1.48 

.016 

.039 

.095 

.865 

.144 

.224 

comm. = communicative; symb. = symbolic; vocab = vocabulary 
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Behavioural study: training of coders 

Pilot data was used as training data. Four parent-dyads were run through the training 

procedure only to examine whether children could tolerate the paradigm, but their results 

were not analysed. Different video clips of each subtype of gesture and speech with gesture 

were isolated as training examples by an experienced coder, e.g. for deictic gestures, 

showing gestures such as extending the arm and presenting the palmar surface of the hand, 

or an index point. These were then used to train an independent coder (who had previous 

experience in video coding) on this specific coding system. Full videos of complete pilot 

training sessions were coded by the experienced coder. The independent coder then coded 

the same videos separately, and received feedback on the quality of their coding until 

percent agreement for categorisation into subtypes was above 80% (Hallgren, 2012).  

 

Behavioural study: excluded participants 

 Table S9 shows the demographics and CDI subscores of participants who were 

excluded from both training and testing. Of the six children who were excluded, n = 1 was 

unwell (not disclosed until training began); n = 1 child needed the bathroom during a training 

trial; n = 4 were excluded due to ‘typical’ child fussiness, e.g. irritability or excessive 

fidgeting. 

 

Table S9:  

Behavioural study: demographics and child vocabulary scores (UK-Communicative 

Development Inventories) of excluded versus included training sample. 

 Excluded from training (n = 6) Completed training (n = 47) 
 mean (sd) mean (sd) 
Sex (m:f ratio) 3:3 27:20 
Age (months) 20.9 (1.7) 20.5 (1.7) 
Receptive vocab 303.8 (70.5) 276 (91.5) 
Expressive vocab 83.8(66.9) 146 (114) 
Comm. gesture vocab 15.8 (6.4) 19.9 (3.79) 
Symb. gesture vocab 31.7 (13.7) 41.1 (6.9) 
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Appendix B: Chapter 3 Supporting information  

(list of stimuli used in cross-situational word learning task) 

 
Stimuli lists 

All items from: Horst, J. S. & Hout, M. C. (2016). The Novel Object and Unusual Name 

(NOUN) Database: a collection of novel images for use in experimental research. Behavior 

Research Methods 48 (4), 1393-1409. These items and further information around their 

properties can be viewed at the original NOUN Database source: 

http://www.sussex.ac.uk/wordlab/noun. 

 
Novel objects 
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Novel words: sound files created using ‘Serena’ voice in Mac OS X 
 
agen 
akar 
blicket 
boskot 
chatten 
colat 
coodle 
eder 
eget 
fiffin 
gasser 

isot 
jefa 
kaki 
kita 
koba 
manu 
modi 
osip 
pentants 
pizer 
reda 

regli 
tannin 
tanzer 
teebu 
tever 
toma 
tulver 
upos 
virdex 
wiso
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Appendix C: Chapter 5 Supporting information  

(supplementary analyses of nonword repetition task and stimuli for fast mapping and 

CSWL tasks) 

A number of additional analyses were undertaken testing the effect of receptive 

vocabulary across all tasks, the effect of expressive vocabulary on syllable loss in the 

nonword repetition task, and cross-correlations with expressive and receptive vocabulary 

over time. These are listed here. For all linear mixed effects (LME) and general linear mixed 

effects models (GLME) reported, the same procedure was utilised to build models as 

detailed in the main manuscript. 

Preschool Repetition (PSRep) Test (Chiat & Roy, 2007) 

 Table S1 shows a breakdown of accuracy and syllable loss across groups, word 

type, and word length.  

 

Table S1. PSRep Test: accuracy and syllable loss mean and standard error 

n.a. = not applicable 

 

Word length Non words: mean (SE) 
 Late talking (n = 19) Typically developing (n = 31) 
 Accuracy Syllable loss Accuracy Syllable loss 

 
One-syllable words 

Two-syllable words 

Three-syllable words 

0.61 (0.05) 

0.41 (0.05) 

0.31 (0.04) 

n.a. 

0.10 (0.03) 

0.32 (0.05) 

0.91 (0.02) 

0.70 (0.03) 

0.67 (0.03) 

n.a. 

0.06 (0.02) 

0.09 (0.02) 

 Real words: mean (SE) 
 Late talking (n = 19) Typically developing (n = 31) 
 Accuracy Syllable loss Accuracy Syllable loss 

 
One-syllable words 

Two-syllable words 

Three-syllable words 

0.63 (0.05) 

0.49 (0.05) 

0.41 (0.05) 

n.a.  

0.18 (0.05) 

0.40 (0.05) 

0.92 (0.02) 

0.85 (0.03) 

0.76 (0.03) 

n.a. 

0.04 (0.01) 

0.14 (0.03) 
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Expressive vocabulary and PSRep Test syllable loss: For the PSRep Test, expressive 

vocabulary was also tested with regard to syllable loss (only accuracy was reported in the 

main manuscript). 

We predicted syllable loss using two LME analyses, with fixed effects of 1) T1 

Population (0 = TD, 1 = LT) and 2) T2 expressive vocabulary (EOWPVT-4 score). Each 

model also had a fixed effect of word type (real word = 0, nonword = 1) and random effects 

of participant and target item. 

There was an effect of T1 Population on syllable loss (χ2(1) = 16.56, p <.001; Table 

S2), indicating that LT children lost more syllables than TD children (p <.001), with no effect 

of word type. 

There was also an effect of T2 expressive vocabulary on syllable loss. The best-

fitting model to the data contained fixed effects of T2 expressive vocabulary, trial type, and 

an interaction between expressive vocabulary and trial type, with random effects of 

participant and target (χ2(2) = 9.43, p = .009; Table S2). This model indicated that those with 

higher vocabularies lost less syllables (p <.001), that all children lost fewer syllables on non-

word items in comparison to word items (p = .002). The interaction term indicated that 

children who had higher expressive vocabularies lost more syllables in non-word trials as 

compared to word trials (p = .003). 

Children identified as LT at T1 thus lost more syllables, despite all but one having 

recovered using expressive percentile criteria (Table S1). Those with higher concurrent (T2) 

expressive vocabularies also lost fewer syllables. Interestingly, those with higher expressive 

vocabularies lost more syllables in non-word trials, perhaps indicating some reliance on 

existing expressive vocabulary to perform well on word trials. 
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Table S2.  

Nonword repetition task: linear mixed effects results predicting syllable loss by fixed effects 

of T1 and T2 expressive vocabulary. 

Relation with T1 expressive vocabulary at 2;0 – 2;5-years-old  

Fixed effect estimate SE t-value  df p-value 

(intercept – typically developing) 

T1 population (CDI; late talking, 1) 

0.05 

0.11 

0.02 

0.03 

2.28 

4.41 

65.39 

52.13 

.023 

<.001 

Relation with T2 expressive vocabulary at 3;0 – 3;5-years-old 

Fixed effect estimate SE t-value  df p-value 

(intercept) 

T2 expressive vocabulary (EOWPVT-4)a 

Trial type (non-word, 1) 

T2 expressivea * trial type (non-word, 1) 

0.86 

-0.64 

-0.39 

0.32 

0.13 

0.11 

0.13 

0.10 

6.46 

-5.79 

-3.06 

3.01 

90.05 

83.53 

1371.00 

1698.79 

<.001 

<.001 

.002 

.003 

a Rescaled using x/100 to allow model fit 
 

Receptive vocabulary and PSRep Test accuracy: We predicted accuracy (item correct) 

using two GLME analyses, with fixed effects of 1) T1 receptive vocabulary (CDI), and 2) T2 

receptive vocabulary (ROWPVT-4 score). Each model also had fixed effects of word length 

(number of syllables) and word type (word = 0, nonword = 1), and random effects of 

participant and target item. Random slopes of participant per target were attempted but 

caused non-convergence, so were omitted from the model.  

There was a significant effect of T1 receptive vocabulary on accuracy. The best-

fitting model contained an effect of T1 receptive vocabulary (χ2(2) = 12.71, p = .002; Table 

S3), indicating that the higher children’s receptive vocabularies were, the more accurately 

they scored (p < .001), and a fixed effect of word length, indicating that children scored less 

accurately with when words were longer (2-syllable, p = .008; 3-syllable:, p <.001). There 

was no effect of word type. 
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There was also an effect of T2 receptive vocabulary on accuracy. The best-fitting 

model to the data contained fixed effects of receptive vocabulary, word length, word type, 

and one interaction between receptive vocabulary and word type, and another interaction 

between receptive vocabulary and word length (χ2(2) = 6.50, p = .039; Table S4). This model 

indicated that those with higher receptive vocabularies scored more accurately (p = .006). 

The interaction term between receptive vocabulary and word type indicated that children with 

higher receptive vocabularies scored less accurately on nonwords (p = .034), and the 

interaction between receptive vocabulary and word length indicated that children with higher 

receptive vocabularies scored less accurately on 2-syllable words, although this was at 

chance (p = .050). 
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Table S3.  
 
Nonword repetition task: linear mixed effects results predicting syllable loss by fixed effects 

of T1 and T2 receptive vocabulary. 

Relation with T1 receptive vocabulary at 2;0 – 2;5-years-old  

Fixed effect estimate SE z-value   p-value 

(intercept) 

T1 receptive vocabulary (CDI)a 

2-syllable words 

2-syllable words 

-1.43 

1.04 

-1.22 

-1.73 

0.92 

0.25 

0.46 

0.46 

-1.55 

4.18 

-2.67 

-3.78 

 .120 

<.001 

.008 

<.001 

Relation with T2 receptive vocabulary at 3;0 – 3;5-years-old 

Fixed effect estimate SE z-value   p-value 

(intercept) 

T2 receptive vocabulary (ROWPVT-4)a 

2-syllable words 

3-syllable words 

Word type (nonword, 1) 

T2 receptive * 2-syllables 

T2 receptive * 3-syllables 

T2 receptive * word type (nonword, 1)  

-7.71 

8.97 

2.33 

-2.14 

2.52 

-3.17 

0.33 

-2.73 

2.60 

2.29 

1.85 

1.95 

1.49 

1.61 

1.69 

1.29 

-2.97 

3.92 

1.26 

-1.10 

1.69 

-1.96 

0.19 

-2.12 

 .003 

<.001 

.209 

.272 

.091 

.050 

.847 

.034 

a Rescaled using x/100 to allow model fit 
 
 
Receptive vocabulary and PSRep Test syllable loss: We predicted syllable loss using 

GLME analyses with fixed effects of T1 receptive vocabulary (CDI), and T2 receptive 

vocabulary (ROWPVT-4 score), and word type (word or non-word), and random effects of 

participant and target item. Random slopes of participant per target were attempted but 

caused non-convergence, so were omitted from the model.  

There was a significant predictive effect of T1 receptive vocabulary on nonword 

repetition accuracy. The best-fitting model to the data contained fixed effects of receptive 
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vocabulary, with random effects of participant and target word (χ2(1) = 5.05, p = .025; Table 

S4). Children with higher receptive vocabularies scored more accurately on the task (p = 

.025). There was no interaction between receptive vocabulary and word length. 

 There was also a predictive effect of T2 receptive vocabulary on accuracy. The best-

fitting model to the data contained fixed effects of T2 receptive vocabulary and word length, 

with an interaction between receptive vocabulary and word length, and random effects of 

participant and target word (χ2(1) = 9.06, p = .003; Table S4). Nonword repetition accuracy 

increased with higher receptive vocabulary (p .003).  

 

Table S4.  

Nonword repetition task: general linear mixed effects model results predicting accuracy by 

fixed effects of T1 and T2 receptive vocabulary. 

Relation of accuracy with T1 receptive vocabulary at 2;0 – 2;5-years-old 

Fixed effect estimate SE t-value  df p-value  

(intercept) 

T1 receptive vocabulary (CDI)a 

0.23 

-0.04 

0.06 

0.02 

3.67 

-2.31 

60.53 

51.39 

<.001 

.025 

 

Relation of accuracy with T2 receptive vocabulary at 3;0 – 3.5-years-old 

Fixed effect estimate SE t-value  df p-value  

(intercept) 

T2 receptive vocabulary (ROWPVT-4) a 

0.53 

-0.39 

0.14 

0.12 

3.79 

-3.15 

53.19 

52.48 

<.001 

.003 

 

a Rescaled using x/100 to allow model fit 
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Receptive vocabulary and fast mapping and retention task (Hartley et al., 2019) 
 
Referent selection: We predicted referent selection accuracy using two GLME analyses 

with fixed effects of 1) T1 receptive vocabulary (CDI score), and 1) T2 receptive vocabulary 

(ROWPVT-4). These models also had random effects of participant and target item. Random 

slopes of participant per target did not converge, and so were omitted.  

There was no effect of T1 receptive vocabulary on referent selection accuracy. There 

was, however, an effect of T2 receptive vocabulary. A model with fixed effects of T2 

receptive vocabulary provided the best fit to the data (χ2(1) = 17.67(1), p-value <.001; Table 

S5). This showed that the higher participants’ receptive vocabulary, the more accurately they 

scored on referent selection trials (p <.001). 

Retention: We predicted retention accuracy using two GLME analyses with fixed effects of 

1) T1 receptive vocabulary (CDI score), and 1) T2 receptive vocabulary (ROWPVT-4). These 

models also had a fixed effect of previous referent selection accuracy for the same word 

(incorrect = 0, correct = 1), and random effects of participant and target item. Random 

slopes of participant per target did not converge, and so were omitted. There was no effect 

of T1 or T2 receptive vocabulary, yielded no significant improvements in fit over the null 

model.  

 In sum, although receptive vocabulary at T1 did not predict fast mapping proficiency, 

having concurrent higher receptive vocabulary at T2 predicted accuracy on referent selection 

trials. When data from referent selection and retention trials were combined, higher receptive 

vocabulary also predicted performance across the task and within retention trials. The effect 

of concurrent receptive vocabulary on retention trial accuracy was smaller than concurrent 

expressive vocabulary. 
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Table S5.  

Fast mapping task: general linear mixed effects model results predicting accuracy in referent 

selection trials by fixed effects of T2 receptive vocabulary. 

Relation with T2 receptive vocabulary at 3;0 – 3;5-years-old 

Fixed effect estimate SE z-value  p-value  

(intercept) 

T2 receptive vocabulary (ROWPVT-4)a 

-6.81 

7.67 

1.94 

1.78 

-3.51 

4.31 

<.001 

<.001 

 

a Rescaled using x/100 to allow model fit 
 

Receptive vocabulary and cross-situational word learning task (CSWL; Hartley et al., 

2020) 

We predicted training trial accuracy and retention accuracy using two GLME 

analyses with fixed effects of 1) T1 receptive vocabulary (CDI score), and 1) T2 receptive 

vocabulary (ROWPVT-4). These models also had random effects of participant and target 

item. Random slopes of participant per target did not converge, and so were omitted. There 

was no effect of T1 or T2 receptive vocabulary on accuracy. 

 

Correlations between task performance and vocabulary 

We conducted Kendall’s rank correlation tau-b values (one-tailed) to assess the 

relationships between task performance and receptive and expressive vocabulary over time 

(Table S6).  

At T1 (2;0 – 2;5-years-old), receptive and expressive vocabulary significantly 

correlated with PSRep Test accuracy, with expressive vocabulary (τ = 0.49) yielding higher 

correlations than receptive (τ = 0.36).  

At T2 (3;0 – 3;5-years-old), expressive vocabulary had higher significant correlations 

with the tasks than receptive on the PSRep Test (expressive: τ = 0.45; receptive: τ = 0.31) 

and fast mapping referent selection (expressive: τ = 0.31; receptive: τ = 0.35). Expressive 
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vocabulary also predicted fast mapping retention performance (τ = 0.20), whereas receptive 

vocabulary did not.  

At T3 (3;6 – 3;11-years-old), expressive vocabulary yielded higher correlations with 

the tasks than receptive on the PSRep Test (expressive: τ = 0.45; receptive: τ = 0.31) and 

fast mapping retention (expressive: τ = 0.31; receptive: τ = 0.27). Expressive vocabulary 

also predicted fast mapping referent selection performance (τ = 0.31), whereas receptive 

vocabulary did not. 

 
Table S6.  

Kendall’s rank tau correlations between tasks and vocabulary over time. 

Vocabulary PSRep Test Fast mapping CSWL 
 

 Accuracy  Referent 
selection 

Retention Referent 
selection 

Retention 

T1: 2;0 – 2;5-years-old 
Expressive 
(Oxford-CDI) 

τ = 0.49, 
p < .001 

 

τ = 0.06, 
p = n.s. 

τ = 0.11, 
p = n.s 

τ = -0.10, 
p = n.s 

τ = 0.08, 
p = n.s 

 
 

Receptive 
(Oxford-CDI) 

τ = 0.36,  
p <.001 

 

τ = 0.134,  
p = n.s 

  

τ = 0.05,  
p = n.s  

τ = -0.02,  
p = n.s  

τ = 0.05,  
p = n.s  

T2: 3;0 – 3;5-years-old 
Expressive  
(EOWPVT-4) 
 

τ = 0.33, 
p < .001 

  

τ = 0.40, 
p < .001 

τ = 0.20, 
p = .050 

τ = 0.08, 
p = n.s 

τ = 0.09, 
p = n.s 

Receptive  
(ROWPVT-4) 
 

τ = 0.29,  
p = .003 

 

τ = 0.35,  
p = .001 

τ = 0.10,  
p = n.s  

τ = 0.19,  
p = n.s  

τ = 0.18,  
p = n.s  

T3: 3;6 – 3;11-years-old 
Expressive 
(EOWPVT-4) 
 

τ = 0.45, 
p < .001 

 

τ = 0.31, 
p = .023 

τ = 0.31, 
p = .014 

τ = 0.13, 
p = n.s 

τ = 0.29, 
p = n.s 

 
Receptive 
(ROWPVT-4) 

τ = 0.31,  
p = .010 

 
 

τ = 0.20,  
p = n.s  

τ = 0.27,  
p = .035 

 

τ = 0.12,  
p = n.s  

τ = 0.20,  
p = n.s  

CDI = Communicative Development Inventories; CSWL = Cross-situational word learning; EOWPVT-4 = 
Expressive One Word Picture Vocabulary Test 4th Edition; T = timepoint 
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Stimuli used for fast mapping task 

Familiar objects (all toys, none live) 

1. Frog  
2. Grapes  
3. Tomato  
4. Cup 
5. Car  
6. Spoon 
7. Knife 
8. Fish  

 
Unfamiliar objects 

 

Labels (Horst & Hout, 2016) 

1. dax 
2. wug 
3. yok 
4. lep 

 

Stimuli used for cross-situational word learning task 

Stimuli 

                            

Labels (Horst & Hout, 2016) 

1. blicket 
2. teebu 
3. fiffin 
4. virdex 
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Appendix D: Chapter 6 Supporting information  

(list of stimuli used in verbal scaffolding task) 

 
Category Control Familiar Control 

Unfamiliar 
Standard 
Familiar 

Standard 
Unfamiliar 

 
Animal German shepherd 

(sitting) + Burnese 
mountain (standing) 

Grey octopus 
(tentacles spread 
out, bulbous head) 
+ white octopus  
(tentacles close 
together, long 
head) 
 

Ginger cat 
(standing) + black 
and white rabbit 
(sitting) 

Manatee (lying 
down) + narwhal 
(diving arc) 

Vehicle Red/orange boxed 
hatchback car + 
pink/purple flat sports 
car 

Green short 
rounded 
submarine + 
yellow long box 
submarine 
 

Yellow bicycle + 
red motorbike 

Yellow quadbike + 
red jetski 

Natural White jagged 
limestone + black 
smooth pebble 

Orange elkhorn 
coral + purple 
encrusting coral 
 

Carrot + banana Dragonfruit + 
artichoke 

Household/ 
indoor 
artifacts 

White porcelain 
Chinese spoon + 
silver metal Western 
spoon 
 

Metal garlic press 
+ wooden garlic 
press 

Black hairbrush + 
wooden comb 

Binoculars + 
safety science 
glasses 

 

 
 


