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Abstract 

 Predictions of the mechanical response of structural elements are conditioned by the 

accuracy of constitutive models used at the engineering length-scale. In this regard, a prospect of 

mechanistic crystal-plasticity-based constitutive models is that they could be used for extrapolation 

beyond regimes in which they are calibrated. However, their use for assessing the performance of 

a component is computationally onerous. To address this limitation, a new approach is proposed 

whereby a surrogate constitutive model (SM) of the inelastic response of 316H steel is derived 

from a mechanistic crystal plasticity-based polycrystal model tracking the evolution of dislocation 

densities on all slip systems. The latter is used to generate a database of the expected plastic 

response and dislocation content evolution associated with several instances of creep loading. 

From the database, a SM is developed. It relies on the use of orthogonal polynomial regression to 

describe the evolution of the dislocation content. The SM is then validated against predictions of 

the dead load creep response given by the polycrystal model across a range of temperatures and 

stresses. When the SM is used to predict the response of 316H during complex non monotonic 

loading, extrapolating to new loading conditions, it is found that predictions compare particularly 

well against those from the physics based polycrystal model. 

 

Keywords: Crystal Plasticity, Reduced Order Modeling 

1. Introduction 

Structural design and certification of metallic components subjected to extreme 

environments (e.g. high stress, temperature, irradiation) necessarily relies on predictions of the 

evolution of stresses, elastic strains and inelastic strains during service. This is usually achieved 

via the use of finite element (FE)-based mechanical and thermal solvers in which the elastic and 



 3 

inelastic response of the polycrystalline metal is described by a constitutive model [1–6]. Ideally, 

this constitutive model should predict not only the monotonic response of the medium, but also its 

response under complex loading conditions (e.g. cycling loading, creep-fatigue) over a wide range 

of imposed stresses, strain rates and temperatures. In practice, multiple deformation mechanisms 

can simultaneously contribute to the inelastic response of metals [7–11]. For example, the relative 

contributions of dislocation glide, climb and Coble creep mechanisms to the creep response of 

HT9 alloy was studied for a wide range of imposed stress and temperature conditions [12]. This 

study shows that the dislocation-mediated deformation diminishes from the primary to the 

secondary creep regimes to the benefit of diffusion mediated plasticity. Further, the onset of 

transition from one mechanism to another is found to have a complex dependence on temperature, 

stress, and microstructure state [12]. Ideally, a constitutive model should capture these transitions. 

A key difficulty is that experimental data are usually scarce, particularly for high temperature creep 

applications [13–16]. Further, the mathematical form of the constitutive model must be simple in 

order to reduce computational costs. As a result, achieving both predictiveness and computational 

efficiency is challenging.  

In general, two approaches have been employed to derive constitutive models: (i) 

phenomenological/empirical and (ii) crystal plasticity-based (CP) mechanistic models. The former 

approach does not describe the plastic deformation occurring in each individual crystal but rather 

proposes to directly describe the response of the polycrystal [17–25]. These methods are 

numerically efficient and have successfully been used to predict the deformation behavior of 

metals under monotonic loading, creep conditions [17,20,26–28], and cyclic loading [18,19,21,29–

32]. As previously mentioned, the relative contribution of deformation mechanisms changes with 

stress and temperature, and so the phenomenological/empirical model calibration will also change. 
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For example, in the case of creep described with a simple power law, the coefficients and power 

law creep exponents may have to be changed from one stress-temperature regime to the other [33]. 

Absent any experimental data, it is unclear how accurate such approach would be in regimes far 

removed from the regime in which a model is calibrated.  

In mechanistic constitutive model, the relative activation of distinct deformation 

mechanisms and the state of microstructure are tracked [12,34–44]. In principle, these methods 

should allow predicting the creep responses of metals for a range of stresses and temperatures 

going beyond the calibrated domain. Clearly the predictiveness in these regimes will necessarily 

be conditioned by that of the models describing each deformation mechanism [45,46]. However, 

the direct use of these CP based mechanistic constitutive models within the FE solver at every 

integration point of a structural component [47] is computationally cost-prohibitive [48–52].  

Among others, surrogate models (SM) have been proposed as an alternative to 

computationally expensive high-fidelity models for a wide range of applications including process 

design and material modeling [53,54]. SMs are typically derived from databases of expected 

responses. Here, the expected response is the visco-plastic behavior of metals as a function of 

imposed stress and temperature, and microstructure. A SM can take the form of a simple look-up 

table, a simpler constitutive model calibrated against a high-fidelity model [55] or, as proposed in 

works of Kalidindi et al. [56,57], of a spectral Fourier series representation. These SMs have thus 

far been applied successfully to the prediction of plasticity and plastically induced texture changes 

in polycrystalline metals. As shown by Zecevic et al. [58], the use of spectral methods can lead to 

an acceleration of up to 100 times vis a vis numerically integrated schemes. While in strain-driven 

plastic deformation the load conditions drive the microstructure evolution, in the case of creep the 

initial and the evolving microstructure play a key role on the resulting strain response. As a 
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consequence, creep predictions are very sensitive to details of the model used, and pose a more 

stringent benchmark on the model. To our knowledge, these SMs have not been developed to 

capture the response of structural materials under constant imposed stress and at high temperature.  

In this work, we aim to develop a computationally efficient SM to predict the visco-plastic 

creep response of 316H for wide range of stresses and temperature. The primary objective of the 

work is to assess whether such a SM can predict the response of a polycrystal subjected to non-

monotonic loading. In this work, we employ recently developed CP-based mechanistic constitutive 

model [12] to generate a synthetic database of expected mechanical response which complements 

the experimentally reported data [13,14]. The synthetic database is critical to generating enough 

data from which a SM can be derived. The database is generated using a recently proposed CP-

based constitutive model based on the Visco-Plastic Self Consistent (VPSC) framework, which is 

calibrated and validated using experimental data of 316H alloy. A database of plastic response and 

dislocation content evolution resolved over time during 11,674 simulations of creep loading across 

temperatures and stresses ranging from 800 to 1000 K and 120 to 300 MPa is developed. Data 

reduction is performed to simplify the database to homogenized polycrystal response. The SM is 

developed from this database using orthogonal polynomial regression [59] to derive the data-

driven constitutive equations and evolution equations for homogenized dislocation densities, and 

through these equations accurately capture deformation during plastic loading.  

First, as a validation, the SM is applied to predict creep responses for a new set of stresses 

and temperatures and is compared with the mechanistic CP model predictions. Then, the model is 

applied to simulate three complex loading scenarios: (i) sudden stress jump during relaxation, (ii) 

stress cycling, (iii) thermal cycling. In all cases it is found that, despite the fact that the surrogate 

model was trained against monotonic dead load creep simulations, it can acceptably predict the 
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response of 316H in non-monotonic loading. Discussions of the connection between the surrogate 

model and phenomenological models helps rationalize these findings. 

 

2 Methods 

The following steps are considered to derive the SM. First, a CP-based constitutive model is 

selected, calibrated and validated against experimental data to predict the creep behavior of 316H 

alloy. For the sake of completeness, the CP-model is briefly presented in Sec. 2.1. The calibration 

and validation of the model against experimental creep data of 316H alloy is presented in Sec. 2.2. 

Then, a synthetic database of homogenized creep responses of the polycrystal and state of 

microstructure is generated as a function of imposed stress and temperature in Sec. 2.3. Last, a 

predictive SM framework based on Legendre polynomial expansion is derived from the synthetic 

database in Sec. 2.4. 

2.1  Mechanistic constitutive model 

  Creep and microstructure evolution data for SM development is generated using a crystal 

plasticity based constitutive model in a Visco-Plastic Self Consistent (VPSC) framework. The 

physics based constitutive model used was originally proposed by Wang et al. [60] and applied to 

face centered cubic [46], body centered cubic [12,61] and hexagonal close packed metals [62,63]. 

In this work, the polycrystalline aggregate is homogenized using the affine formulation [64,65]. 

For the sake of completeness this constitutive model will be summarized in what follows. 

 The total creep rate is expressed as: 

 

𝜀𝜀̇𝑝𝑝 =  𝜀𝜀̇𝑑𝑑 +  𝜀𝜀̇𝑐𝑐 +  𝜀𝜀̇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (1) 
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𝜀𝜀̇𝑑𝑑, 𝜀𝜀̇𝑐𝑐 and 𝜀𝜀̇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 refer to the plastic deformation accumulated through dislocation glide, climb and 

Coble creep, respectively. The strain rate due to dislocation motion is written as the sum of the 

mean shear/climb rates contributed by all active slip systems in a given grain.  

𝜀𝜀̇𝑑𝑑 =  ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝑠𝑠 𝛾̅̇𝛾𝑠𝑠𝑠𝑠  𝑎𝑎𝑎𝑎𝑎𝑎  𝜀𝜀̇𝑐𝑐 =  ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑠𝑠 𝛽̅̇𝛽𝑠𝑠𝑠𝑠   (2) 

Here 𝒎𝒎𝑠𝑠is the symmetric part of the Schmid tensor. 𝒄𝒄𝒔𝒔 =  (𝒃𝒃𝑠𝑠⨂𝒃𝒃𝑠𝑠) is the climb tensor for edge 

dislocations [46] and 𝛾̅̇𝛾 𝑠𝑠 and 𝛽̅̇𝛽𝑠𝑠 denote the mean shear and climb rates in slip system s of the grain, 

respectively. Coble creep contributes to plastic deformation in polycrystals via migration of point 

defects along the grain boundaries. According to Coble [45], the creep law depends on the grain 

boundary width and grain boundary diffusion coefficient of vacancies or interstitials. In the present 

model, grain boundaries are not represented explicitly, and grain boundary related material 

properties are not known for the steel alloy system considered. Thus, the Coble creep model is 

written in simple form as, 

𝜀𝜀𝑖̇𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝐴𝐴
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜎𝜎𝑖𝑖𝑖𝑖
𝑇𝑇

𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑄𝑄𝑔𝑔𝑔𝑔
𝑘𝑘𝑘𝑘
�  (3) 

where 𝐴𝐴coble and 𝑄𝑄gb are effective parameters accounting for all point defects, which are obtained 

here through the fitting to the experimental data. 𝜎𝜎𝑖𝑖𝑖𝑖 denotes the ij component of the deviatoric 

stress tensor. The hydrostatic component of stress is not included in the VPSC framework.  

 As per Wang et al. [60,62], the model tracks the internal stress distribution in each grain, 

specifically intragranular residual stresses arising from the presence of dislocations (i.e., type III 

stresses). This is accomplished by defining a grain as a material point, in turn consisting of a set 

of sub-material points that reflect the distribution of stress values. The width of the distribution is 
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directly related to dislocation content. Accordingly, the mean shear rate of the slip system 𝑠𝑠 in the 

VPSC grain is expressed as:  

𝛾̅̇𝛾 𝑠𝑠 =  ∫ 𝛾̇𝛾𝑠𝑠(𝜏𝜏𝑠𝑠)∞
−∞  𝑃𝑃(𝜏𝜏𝑠𝑠 − 𝜏𝜏̅𝑠𝑠)𝑑𝑑𝜏𝜏𝑠𝑠  (4) 

where 𝛾̇𝛾𝑠𝑠 is the shear rate of one sub-material point. 𝜏𝜏𝑠𝑠 is the local resolved shear stress. 𝜏𝜏̅𝑠𝑠 =

𝝈𝝈:𝒎𝒎𝑠𝑠 denotes the mean resolved shear stress in one grain (assumed to be the same for all systems), 

where 𝝈𝝈 is the deviatoric stress tensor. Similarly, the mean climb rate on slip system s can be 

written as, 

𝛽̅̇𝛽𝑠𝑠 =  ∫ 𝛽̇𝛽𝑠𝑠(𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 )∞
−∞  𝑃𝑃(𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 −  𝜏𝜏𝑐̅𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 )𝑑𝑑𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠    (5) 

where 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  and 𝜏𝜏𝑐̅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 = 𝝈𝝈 ∶ 𝒄𝒄𝑠𝑠 are the local and global resolved climb stress, respectively. At 

individual sub-material points, the glide and climb rates are explicitly connected to the dislocation 

density. The local shear rate on slip system s  at a sub-material point is expressed using Orowan’s 

equation: 

 𝛾̇𝛾𝑠𝑠 =  𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 𝑏𝑏𝑠𝑠𝑣𝑣𝑠𝑠  sign(𝜏𝜏𝑠𝑠) (6) 

here sign(𝜏𝜏𝑠𝑠) defines the direction of the shear rate to be the same as the direction of glide. 𝑏𝑏𝑠𝑠 is 

the magnitude of the Burgers vector. 𝑣𝑣𝑠𝑠 is the mean dislocation velocity, which is calculated from 

the dislocation mean free path, 𝜆𝜆𝑠𝑠 , and the total time a dislocation spends traveling between 

obstacles, the details of which are contained in the Appendix. Similar to glide, climb rate is also 

expressed as an Orowan type equation: 

 𝛽̇𝛽𝑠𝑠 =  𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 𝑏𝑏𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  (7) 
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here 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  denotes the edge dislocation density. In the present work 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 = 0.1 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  is 

assumed. 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  in Eq. 7 represents the climb velocity, which depends on the net flux of point 

defects Is. The climb velocity 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  depends on the imbalance between vacancies and interstitials 

being trapped by the dislocation, as shown in detail in the Appendix. 

 The probability distribution function 𝑃𝑃(𝜏𝜏𝑠𝑠 − 𝜏𝜏̅𝑠𝑠), representing the volume fraction of sub-

material points with local stress 𝜏𝜏𝑠𝑠, is a Gaussian and written as: 

 𝑃𝑃(𝜏𝜏𝑠𝑠 − 𝜏𝜏̅𝑠𝑠) =  1
√2𝜋𝜋𝜋𝜋

exp �− (𝜏𝜏𝑠𝑠−𝜏𝜏�𝑠𝑠)2

2𝑉𝑉2
� (8) 

where V is the distribution variance. Following Wang et al. [62], the dispersion of intragranular 

stress is expressed in terms of total dislocation density as: 

 𝑉𝑉 =  𝜂𝜂�𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜌𝜌𝑐𝑐𝑐𝑐  (9) 

where 𝜂𝜂~107 MPa/m is an effective scaling coefficient, and 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝜌𝜌𝑐𝑐𝑐𝑐 are the total dislocation 

densities in the cell (subgrain) interior and in the cell walls (subgrain boundaries), respectively. 

The equations defining the evolution of dislocation densities are presented in the Appendix, along 

with additional details of the glide and climb rate equations.  

2.2  Calibration and Validation to Experimental Data 

 Thermal creep simulations of 316H steel are performed using the affine-VPSC formulation 

[65] for three different temperatures, namely, 650°C, 700°C and 750°C. Four different stresses are 

considered for each temperature, as follows. For 650°C: 110MPa, 150MPa, 200MPa and 250MPa; 

for 700°C: 75MPa, 100MPa, 150MPa and 200MPa; and for 750°C: 75MPa, 100MPa, 150MPa, 

200MPa. The polycrystal model parameters are calibrated against the experimental results reported 
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in [13,14]. The following five experimental cases were used for calibration: 650°C and 110MPa, 

650°C and 200MPa, 700°C and 100 MPa, 750°C and 75 MPa, 750°C and 100 MPa. The remaining 

cases, a total of 7, are predicted and validated against the experiment. The model material is 

assumed to be heat-treated; thus, the texture is approximated by 50 randomly oriented grains, as 

shown in Figure 1(a). The initial dislocation densities are not known. We choose the initial values 

of 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  and 𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠   for each system to be 1x1013 m-2 and 5x1011 m-2, respectively. The predicted and 

calibrated model parameters are listed in Table A1, included in the Appendix.  

The creep behavior of 316H steel predicted by the model for the three temperature cases is 

shown in Fig. 1(b)-(d), along with the experimental data. It clearly shows that the polycrystal 

model captures the thermal creep behavior correctly for all stress and temperature cases. The 

success of the model predictions is contingent on correctly capturing the relative contribution of 

glide, climb and Coble creep modes to the overall creep rate. At the early state of creep and for all 

stress and temperature cases, mostly glide alone contributes to the creep rate. After a few hours as 

dislocations are depleted due to annihilation, the contribution of glide decreases rapidly, while the 

Coble creep modes start to dominate. The contribution of the climb mode is relatively low 

compared to glide and Coble creep, although its relative activity increases with increasing 

temperature. Refer to Appendix for more details of the evolution of relative contribution of 

deformation mechanisms.  
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Fig. 1. (a) Pole figure for the initial random texture of 50 grains. VPSC model predicted thermal 

creep behavior of 316H steel as a function of stress at (b) 650°C, (c) 700°C and (d) 750°C. The 

dashed lines represent the experimentally measured steady state creep rate [65,66], whereas the 

solid lines are model predictions. Experimental results of 650°C and 110MPa, 650°C and 

200MPa, 700°C and 100 MPa, 750°C and 75 MPa, 750°C and 100 MPa cases were used for 

model calibration, and the remaining 7 cases are validated against the experiments.  

 

2.3  Material database and data reduction 

 Polycrystal simulations are used to populate a database from which the SM will be derived. 

These simulations provide a significant amount of data (e.g. dislocation densities inside cells on 

each slip system and in each grain, etc.). Similarly to all viscoplastic constitutive models predicting 

material hardening or softening, the SM uses internal state variables (ISVs) to effectively quantify 

the materials state and history. The choice of the ISVs which can be extracted from polycrystal 

simulations is largely motivated by seminal work of Kocks and Mecking [25], in which macroscale 
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flow stress is linked to dislocation density, taken as an effective value for the polycrystal. As such, 

homogenized dislocation densities are used to describe the evolving dislocation densities in the 

cells and cell walls contained in the crystal plasticity formulation. Two ISVs are included in the 

SM in this fashion, i.e., 

 

𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ��
𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑔𝑔,𝑠𝑠 

𝑁𝑁𝑔𝑔𝑁𝑁𝑠𝑠

𝑁𝑁𝑠𝑠

𝑠𝑠

𝑁𝑁𝑔𝑔

𝑔𝑔

 (10) 

where 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑔𝑔,𝑠𝑠  is the dislocation density in the cell of grain 𝑔𝑔 of 𝑁𝑁𝑔𝑔 grains, on slip system 𝑠𝑠 of 𝑁𝑁𝑠𝑠 slip 

systems, and 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the homogenized dislocation density representing all cells in the polycrystal. 

A similar definition holds for the homogenized dislocation density within cell walls 𝜌̅𝜌𝑊𝑊. Finally 

as per Kocks and Mecking [25] the accumulated Von Mises effective strain, 𝜀𝜀𝑣̅𝑣𝑣𝑣, is used as a 

history tracking variable to account for strain hardening. Importantly, the material is assumed to 

be an annealed sample with random texture such that one expects the macroscale response of the 

material to be isotropic. Thus, rather than including individual tensor stress components, the Von 

Mises effective stress is recorded in the database and a Prandtl-Reuss flow rule is assumed. With 

this the database effectively tracks the evolution of 𝜀𝜀𝑣̅𝑣𝑣𝑣 , 𝜌̅𝜌𝑊𝑊 , 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑇𝑇, and 𝜎𝜎�𝑣𝑣𝑣𝑣  following load 

increments.  

 A Prandtl-Reuss flow rule enforces an isotropic plastic response and ensures the 

homogenized behavior abides by the normality condition of Hill [66] and Rice [67]. Adherence to 

a maximal plastic work rate can be addressed in two parts: by enforcing an associated strain rate 

direction given a flow potential and by evaluating a scalar plastic multiplier proportional to the 

flow potential. With this the direction of plastic flow is determined by the deviatoric stress state. 

The magnitude of the plastic multiplier is estimated using interpolations between predicted values. 
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Thus, while the homogenized data preserves the normality condition, the scalar rate of plastic flow 

may be subject to inaccuracies.  

 Given that the primary application of the SM will focus on predictions of creep response 

of the material, the database will be built from these types of simulations. Therefore, a fixed Von 

Mises stress and temperature are imposed and the evolution of 𝜀𝜀𝑣̅𝑣𝑣𝑣, 𝜌̅𝜌𝑊𝑊, 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are tracked as a 

function of time during each simulation. Information at each timestep is used to populate the 

database. Simulations are performed using different initial values of 𝜌̅𝜌𝑊𝑊, 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑇𝑇, and 𝜎𝜎𝑣𝑣𝑣𝑣 taken 

from within target ranges of those inputs. The target ranges are used to limit the collection of data. 

The evolution of 𝜀𝜀𝑣̅𝑣𝑣𝑣, 𝜌̅𝜌𝑊𝑊, and 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 leads to data which are not contained by these target ranges. 

The surrogate model will operate on data normalized from the observation ranges. As such, the 

ranges used are larger than the target ranges to include all data within the normalized range. These 

are shown in Table 1.   

 

Table 1 The ranges of the training and testing databases. The initial range corresponds to the 
values assigned at 𝑡𝑡 = 0 to the creep test simulations. The final range corresponds to the values 
obtained from considering each timestep of all the simulations 

 𝜀𝜀𝑣𝑣𝑣𝑣 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚−2

× 1012) 
𝜌𝜌𝑊𝑊 (𝑚𝑚−2

× 1012) 
𝜎𝜎𝑣𝑣𝑣𝑣(MPa) 𝑇𝑇 (K) 

Initial 
[𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚] [0, 0] [5, 10] [0.3,1] [120, 300] [800, 1000] 

Final 
[𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚] [0, 0.169] [2.73,10] [0.282 , 1] [120, 300] [800, 1000] 

 

Importantly, it must be noted that with the choice of dead load creep simulations, the SM 

is trained only using monotonic loading conditions, and it is not known if evolution under complex 

loading can be addressed by the training data. Section 3 will therefore assess whether the SM can 

also be used under more complex loading. 
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The dataset generated includes 9669 VPSC simulations for training and 2005 simulations 

for testing. The VPSC simulations are initialized with equal dislocation densities in all grains and 

slip systems. The densities (𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝜌𝜌𝑊𝑊) used at 𝑡𝑡 = 0 and the temperature and applied 𝜎𝜎𝑣𝑣𝑣𝑣 are 

sampled from within the ranges shown in Table 1 labelled ‘initial’. The simulations are run with 

549 predetermined timesteps, for a total 58.5 hours. The timestep is initially small (1 second) and 

is increased incrementally as steady-state is approached. The SM uses the stress, temperature, and 

ISV values at timestep 𝑖𝑖 as inputs to predict the rates 𝜀𝜀𝑣̇𝑣𝑣𝑣, 𝜌̇̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 𝜌̇̅𝜌𝑤𝑤 at that timestep. Because 

the SM makes predictions in terms of individual time steps, the SM is trained on 9669 × 𝑁𝑁𝑡𝑡𝑡𝑡 

observations, where 𝑁𝑁𝑡𝑡𝑡𝑡 = 549 is the number of timesteps in a simulation. Thus, more than 5.3 

million training data are used. 

The scheme with which the CP simulations are sampled within the domain (i.e. the design 

of computer experiments) must cover all areas within the target ranges without gaps. Space-filling 

designs [68,69] minimize these gaps, but may introduce some bias due to regularity in spacing 

between samples. To avoid these issues, an approach giving similar results to orthogonal array-

based Latin hypercube sampling (LHS) [70] called LHS with multidimensional uniformity 

(LHSMDU) [71] is employed. This sampling design avoids the bias of a regularly-spaced grid 

design while still reducing the risk of large gaps in the database. Essentially, a random sampling 

is taken, from which points are removed to result in maximal distance between the remaining 

points. The strata selection in a LHS is used to match the rank ordering of the points within the 

first sample, in terms of each dimension. As a result, the average distance between points is slightly 

greater than for random sampling. An example with 5 strata is shown in the Appendix. The 

implementation of LHSMDU used here is obtained from published code [72]. To limit 

computation cost, the sampling scheme is used with an array of at most 100 strata (bins) in each 
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dimension (e.g. 2 K per strata in T). Sample sets larger than 100 include multiple iterations of the 

LHSMDU procedure with different random seeds. 

2.4  Surrogate modeling of 316H 

 The mathematical form of a SM will necessarily impact computational cost and the trends 

which can be captured. The choice of model depends on consideration of two types of 

computational costs which are incurred in SM procedures. Training time costs take place as the 

mathematical form of the SM is made to fit the training database, and are incurred by once. 

Prediction time refers to the amount of operations involved in making use of the model. For the 

intended application of this work, it is critical to keep prediction time as small as possible.  

 Similarly to early efforts in response surface methodology which relied on polynomial 

regression models, the surrogate model uses polynomial regression [73] with Legendre 

polynomials as the orthogonal basis [59,74]. The choice of polynomial regression for this work 

allows data to be gathered as long as necessary, as no cost-scaling occurs as data increases. The 

orthogonal polynomials allow each term to have a solution which does not change if more terms 

are added. The surrogate formulation for 316H predicts rates from the input parameters using a 

regression modified by transformations on the inputs and outputs, i.e., 

𝜀𝜀𝑣̇𝑣𝑣𝑣∗∗ ~ � 𝛼𝛼𝜀𝜀
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖(𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗ )𝑃𝑃𝑗𝑗(𝜌̅𝜌𝑤𝑤∗ )𝑃𝑃𝑘𝑘(𝑇𝑇∗)𝑃𝑃𝑙𝑙(𝜎𝜎𝑣𝑣𝑣𝑣∗ )𝑃𝑃𝑚𝑚(𝜀𝜀𝑣𝑣𝑣𝑣∗ )

0≤ 𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑚𝑚 ≤ 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑

 (11) 

𝜌̇̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗∗ ~ � 𝛼𝛼𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖(𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗ )𝑃𝑃𝑗𝑗(𝜌̅𝜌𝑤𝑤∗ )𝑃𝑃𝑘𝑘(𝑇𝑇∗)𝑃𝑃𝑙𝑙(𝜎𝜎𝑣𝑣𝑣𝑣∗ )𝑃𝑃𝑚𝑚(𝜀𝜀𝑣𝑣𝑣𝑣∗ )

0≤ 𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑚𝑚 ≤ 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑

 (12) 

𝜌̇̅𝜌𝑤𝑤∗∗~ � 𝛼𝛼𝜌𝜌𝑤𝑤
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖(𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗ )𝑃𝑃𝑗𝑗(𝜌̅𝜌𝑤𝑤∗ )𝑃𝑃𝑘𝑘(𝑇𝑇∗)𝑃𝑃𝑙𝑙(𝜎𝜎𝑣𝑣𝑣𝑣∗ )𝑃𝑃𝑚𝑚(𝜀𝜀𝑣𝑣𝑣𝑣∗ )

0≤ 𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙,𝑚𝑚 ≤ 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑

 (13) 
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where each 𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙, and 𝑚𝑚 is an index corresponding to the degree of the Legendre polynomial, 

𝑃𝑃𝑖𝑖 , generated from the transformed input parameter (e.g. 𝑇𝑇∗ ) indicated in the subscript. The 

summation occurs over all five inputs. The coefficients are specific to the output as is denoted in 

superscript. With functional forms so defined, the SM can be fit to VPSC data. 

 The reduced input parameter basis, 𝜀𝜀𝑣̅𝑣𝑣𝑣, 𝜌̅𝜌𝑊𝑊, 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑇𝑇, and 𝜎𝜎𝑣𝑣𝑣𝑣, and the outputs 𝜀𝜀𝑣̇𝑣𝑣𝑣, 𝜌̇̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,

and 𝜌̇̅𝜌𝑊𝑊 are transformed prior to the polynomial regression. The transformations on the inputs 

improve SM performance when non-polynomial (e.g. exponential) dependence is present. The 

output transformations force the solutions of the polynomial to mimic physically observed 

properties of the outputs. For example for 𝜌̇𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, a transformation of 𝜌̇𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗∗ = ln �−𝜌̇𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� prevents 

evolution to negative densities and allows the SM to better fit evolution rates of different orders 

of magnitude. To allow for support of negative and positive rates, a piecewise mapping is used, 

i.e., 

 

 𝑦𝑦 =

⎩
⎨

⎧
     ln(𝑧𝑧 + 𝑚𝑚)    if 𝑧𝑧 > 0,

ln�−
𝑚𝑚

𝑧𝑧
𝑚𝑚 − 1

� if 𝑧𝑧 ≤ 0  (14) 

where y is the SM-native output, z is the engineering output, and m is a constant used to tune the 

mapping. This piecewise mapping is used with multiple variables. A full list of the input and output 

mappings which are used in this application are shown in Table 2. In Table 2, the piecewise 

mapping is denoted as 𝑝𝑝𝑝𝑝(𝑧𝑧,𝑚𝑚). These mappings are applied prior to normalizing to the interval 

[−1,1] for generating Legendre polynomial terms. Outside this interval, the polynomials are not 

orthogonal. The normalization makes the training interval coincident with the orthogonal interval. 
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Table 2 The mappings from engineering units to SM transformed units in the demonstration model  

Inputs 
Outputs 𝜀𝜀𝑣𝑣𝑣𝑣∗  𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗  (𝑚𝑚−2) 𝜌𝜌𝑊𝑊∗  (𝑚𝑚−2) 𝜎𝜎𝑣𝑣𝑣𝑣∗  

(MPa) 𝑇𝑇∗ (K) 

𝜀𝜀𝑣̇𝑣𝑣𝑣∗∗  ln(𝜀𝜀𝑣̇𝑣𝑣𝑣) ln(𝜀𝜀𝑣𝑣𝑣𝑣
+ 10−4) 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ln(𝜌𝜌𝑊𝑊 + 1) ln(𝜎𝜎𝑣𝑣𝑣𝑣

+ 5) 𝑇𝑇 

𝜌̇̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗∗  𝑝𝑝𝑝𝑝 �−
𝜌̇𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

, 10−10� ln(𝜀𝜀𝑣𝑣𝑣𝑣 +
4 × 10−5)  ln(𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1)  ln(𝜌𝜌𝑊𝑊 + 1)  ln(𝜎𝜎𝑣𝑣𝑣𝑣

+ 10) 𝑇𝑇 

𝜌̇̅𝜌𝑤𝑤∗∗ 𝑝𝑝𝑝𝑝 �
𝜌̇𝜌𝑊𝑊
𝜌𝜌𝑊𝑊

, 2 × 10−10� 𝜀𝜀𝑣𝑣𝑣𝑣 exp �
𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1 × 1013
� ln(𝜌𝜌𝑊𝑊 + 1) ln(𝜎𝜎𝑣𝑣𝑣𝑣

+ 10) 
ln(𝑇𝑇
+ 1) 

 

 Fitting the SM to data is a two-step procedure, involving both training and testing. The 

coefficients 𝛼𝛼 are evaluated, or “trained”, by fitting each regression model to data. Training is 

accompanied by testing, where the trained model is applied to additional testing data, and the 

trained model’s testing predictions are “tested” against corresponding “true” testing values.  

 Testing data is compared to the trained regression model predictions to provide an 

indication of performance, via the 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2  value of the trained predictions on the test data. This 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 value is calculated as, 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = 1 −
∑ (𝑦𝑦𝑆𝑆𝑆𝑆 − 𝑦𝑦𝐶𝐶𝐶𝐶)2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

∑ (𝑦𝑦𝑆𝑆𝑆𝑆 − 𝑦𝑦�𝐶𝐶𝐶𝐶)2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (15) 

where 𝑦𝑦𝑆𝑆𝑆𝑆 is a model prediction corresponding to a true testing data point 𝑦𝑦𝐶𝐶𝐶𝐶, and 𝑦𝑦�𝐶𝐶𝐶𝐶 is the mean 

value of the output 𝑦𝑦 across all of the testing data. This 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2  value is used to select the optimal 

value to use for the maximum degree, 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 ; if there is overfitting (which occurs when the 

regression model is able to fit to noise in the data), 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2  scores will decrease (even as training 

performance continues to increase). For the 316H SM, testing performance is best using a 

maximum degree of 3.  
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3 Results and Discussion 

 

3.1 Model validation in dead load creep scenarios 

 In a first application, creep test simulations are used to evaluate the fidelity of the surrogate 

models across the targeted range of applied stresses, temperatures, and initial ISV values. The 

same ranges are used for the validation simulations as for the training and testing simulations. A 

separate LHSMDU-based sampling is used to generate the 301 validation simulations. 

  Importantly, whereas the training data and testing data are provided to the SM as 

individual time-steps, the validation performance is evaluated for each simulation, i.e., 

 

 
𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 = 1 −

∑ �𝜀𝜀𝑣𝑣𝑣𝑣,𝑖𝑖
𝑆𝑆𝑆𝑆 − 𝜀𝜀𝑣𝑣𝑣𝑣,𝑖𝑖

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�
2

𝑖𝑖

∑ �𝜀𝜀𝑣𝑣𝑣𝑣,𝑖𝑖
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝜀𝜀𝑣̅𝑣𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉�

2
𝑖𝑖

 (16) 

where 𝑖𝑖 refers to the 𝑖𝑖-th timestep in the simulation and 𝜀𝜀𝑣̅𝑣𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is the average of the strain values 

over all the timesteps in the simulation.  

 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2  is measured in terms of either creep strain or an ISV (i.e. 𝜌̅𝜌𝑊𝑊 or 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), and the 

closer it is to 1 the better the performance of the SM is. To present data in greater than 3 

dimensions, a scatterplot matrix is employed. For example, the 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2  in terms of the creep 

strain is shown in Fig. 4, with each validation run evaluated by comparing each timestep in the SM 

emulation to the VPSC equivalent. In the scatterplot matrix, each pairwise combination of the 

target dimensions is included, using common axes to align the combinations in a gridded format. 

The corresponding value of 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2  informs the color of the simulation markers. For the vast 

majority of the target domain, the VPSC simulation is emulated at high fidelity. Of all 301 

validation cases, only 6 showed fits to VPSC with R2 values at or below 0.95 for 𝜀𝜀𝑣𝑣𝑣𝑣, which is the 

value of most concern to applications.  
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Fig. 2 Validation of SM in-terms of 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2  value of the 𝜀𝜀𝑣𝑣𝑣𝑣  prediction. The database of 

validation cases is presented using a scatterplot matrix, each pairwise combination of the target 

dimensions is included as a subplot, using common axes to align the combinations in a gridded 

format. Each case appears once in each subplot. Two cases are highlighted in black and grey, 

respectively, with 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2  equal to 0.9977 and 0.844. Note that out of all 301 validation cases, 

only 6 cases present 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 values less than 0.95 

 For the sake of clarity, two predictions of the creep load response of the material are shown 

explicitly. The initial conditions associated with these are shown in Fig. 2 as the black point 

(𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 = 0.9977) and the grey point (𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 = 0.844). For the case with 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2  

equal to 0.9977, the SM predictions are shown in the upper half of Fig. 3. The three isotropic 

outputs, 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝜌̅𝜌𝑤𝑤, and 𝜀𝜀𝑣𝑣𝑣𝑣, are shown in 3(a), 3(b), and 3(c), respectively. The SM predictions are 
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shown in blue, alongside the values calculated from the VPSC simulation in red. As shown, the fit 

of the SM to the VPSC results is excellent as it is difficult to distinguish the two series.  

 

Fig. 3 Two cases of SM and VPSC predicted evolution of creep strain, dislocation density in the 

cell and in the cell-wall. Above, the simulation corresponds to initial values of 𝜎𝜎𝑣𝑣𝑣𝑣 = 250.3 𝑀𝑀𝑀𝑀𝑀𝑀,

𝑇𝑇 = 993.5𝐾𝐾, 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 9.1 × 1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 6.9 × 1011𝑚𝑚−2.  Below, the simulation 

corresponds to 𝜎𝜎𝑣𝑣𝑣𝑣 = 261 𝑀𝑀𝑀𝑀𝑀𝑀,𝑇𝑇 = 977.9 𝐾𝐾,𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 8.779 × 1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎 = 6.714 ×

 1011𝑚𝑚−2. The 𝑅𝑅2 value of the lower case 𝜀𝜀𝑣𝑣𝑣𝑣 prediction compared to the VPSC simulation is 

0.844 

 

 The individual SM predictions for the lowest 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2  case are shown in the lower half 

of Fig. 3. The evolution of 𝜀𝜀𝑣𝑣𝑣𝑣, 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 𝜌̅𝜌𝑤𝑤 is shown as a function of time in Fig. 3(d), 3(e), and 

3(f), respectively, with the SM shown in blue and the CP shown in red. The SM underpredicts 
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strain accumulation by around 15% of the VPSC result. Additionally, the timing of the transition 

from the initial creep strain rate to the steady-state creep rate is consistent between the SM and the 

CP-VPSC. 

 As the surrogate model aims to be integrated within FEM solvers, it is critical to assess 

how the use of Von Mises stresses (as opposed to using the full stress matrix) affects the 

predictions of all plastic strain components in the system. A simulation case is selected, with input 

values 𝜎𝜎𝑣𝑣𝑣𝑣 = 276.6 𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑇𝑇 = 889 𝐾𝐾 , 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 8.683 × 1012 𝑚𝑚−2 , and 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 9.84 ×

 1011𝑚𝑚−2. The J2 plasticity assumption is used to reconstitute the full strain rate tensor, i.e., 

 

𝜀𝜀𝑖̇𝑖𝑖𝑖 =
3
2
𝜎𝜎𝑖𝑖𝑖𝑖

𝜀𝜀𝑣̇𝑣𝑣𝑣
𝜎𝜎𝑣𝑣𝑣𝑣

 (17) 

from the SM prediction of effective strain rate, 𝜀𝜀𝑣̇𝑣𝑣𝑣, where 𝜎𝜎𝑖𝑖𝑖𝑖 is the deviatoric stress tensor. This 

calculated value is compared against the VPSC results, shown in Fig. 4. This strain rate tensor is 

needed in applications of the SM to FEM simulations. With the same color scheme as Fig. 3, the 

axial strain components and the shear strain components are compared in the left and right-hand 

columns, respectively. The VPSC strain components are calculated directly, whereas the SM strain 

components are calculated using the SM-predicted effective strain rate, given by Eq. (11). The 

comparison shows a good match between the strain tensor from VPSC and the J2 approximation 

used to generate the strain tensor components from the SM predictions. This gives support for the 

accuracy maintained with the J2 simplification, with which a reduction of floating-point operations 

of at least 243 times is obtained versus a SM without the simplification.  
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Fig. 4 SM (blue) and VPSC (red) predicted evolution of creep strain in terms of the components 

of the strain tensor. The SM series are recovered from the isotropic rate prediction using a J2 flow 

potential. This simulation corresponds to 𝜎𝜎𝑣𝑣𝑣𝑣 = 276.6 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑇𝑇 = 889 𝐾𝐾, 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 8.683 ×

1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 9.84 ×  1011𝑚𝑚−2.  The J2 simplification results in minimal departure 

from the precise stress tensor obtained with VPSC 

 The speed-up obtained by the SM relative to the VPSC simulation varied from a factor of 

10 to more than 100. This is as expected, as the VPSC model converges at different rates for 

different stresses and temperatures while the cost of the SM is independent of the boundary 

conditions and microstructure state.  

3.2 Complex Loading Histories 

 The developed SM is employed to simulate complex non-monotonic loading histories. 

None of the following tests are used to inform or train the SM. We consider three different loading 

histories: (i) temporary load increase; (ii) creep under cyclic stress; and (iii) creep under thermal 

cycling.  
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 First, to test whether the developed SM can capture the effect of temporary load increase 

on creep transients, a simulation is run with a fixed load of 134.4 MPa for 18.22 hours, an increased 

load of 268.8 MPa for 2.25 hours, followed by another 51.14 hours at 134.4 MPa. Fig. 5(a) shows 

the schematic representation of imposed load history. The predicted evolutions of creep strain, and 

dislocation densities in the cell and in the cell-wall are shown in Fig. 5(b-d). The SM and VPSC 

results are shown in blue and red, respectively. The agreement between SM and VPSC predictions 

is good 𝑅𝑅2 = 0.986. Both models capture the sudden increase in the creep strain-rate and abrupt 

changes in the ISV rates due to elevated loading. To the extent that CP-VPSC modeling can capture 

the transients induced by a period of elevated loading, the SM can as well.   
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Fig. 5 Validation of SM prediction for creep test with temporary elevated loading. a) The imposed 

stress profile which after 18.22 hours suddenly increases the stress from 134.4 MPa to 268.8 MPa 

for 2.25 hours. Other simulation conditions are: 𝑇𝑇 = 910.6𝐾𝐾, 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 8.758 ×

1012 𝑚𝑚−2,𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 6.871 × 1011𝑚𝑚−2. SM and VPSC predicted the evolution of b) creep 

strain, c) dislocation density in the cell, and d) cell-wall. SM correctly captures the impulsive 

loading induced transients 

 

 Second, the response of the SM to creep fatigue loading is investigated. Three cases are 

chosen with different mean stress values, 𝜎𝜎𝑚𝑚 = 150, 210 and 270 MPa , and the same stress 

amplitude, 𝜎𝜎𝑎𝑎 = 30 MPa . The stresses and temperatures were chosen from a region of the 

validation ranges for which the SM exhibits good performance. Schematic representation of the 

imposed stress profile is shown in Fig. 6(a). The three simulations are compared to the results of 

VPSC simulations under the same conditions, as shown in Fig. 6(b). The SM and VPSC results 

are closely matched, much more so at the lower mean stresses. At higher stress, the values of 
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𝜀𝜀𝑣̅𝑣𝑣𝑣, 𝜌̅𝜌𝑊𝑊, and 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 evolve more rapidly. Because the database is obtained from monotonic load 

simulations, the evolution of 𝜀𝜀𝑣̅𝑣𝑣𝑣, 𝜌̅𝜌𝑊𝑊, and 𝜌̅𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in these cycling tests deviates from the bulk of the 

database. Due to this, the 270 MPa SM simulation is less accurate as evolution takes place, 

specifically above a 𝜀𝜀𝑣̅𝑣𝑣𝑣 value of 2 × 10−3. 

 

 

Fig. 6 Prediction of low cycle fatigue creep using SM and VPSC for a) cyclic loading condition, 

using input values for which the SM provides good results in dead load creep. Here 𝜎𝜎𝑚𝑚 and 𝜎𝜎𝑎𝑎 

refer to mean stress and stress amplitude. For all cases, we fix the stress amplitude as 30 MPa. 

Other simulation conditions are:  𝑇𝑇 = 973.0 𝐾𝐾,𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 7.0 × 1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 7.0 ×

 1011𝑚𝑚−2.  b) SM and VPSC predicted creep strain evolution for 500 cycles with 𝜎𝜎𝑚𝑚 =

150, 210 𝑎𝑎𝑎𝑎𝑎𝑎 270 𝑀𝑀𝑀𝑀𝑀𝑀.  SM correctly captures the effect of load cycle on the creep strain 

  Finally, the SM can respond to a fluctuation in temperature within a given simulation. To 

demonstrate this capability, a simulation of creep under thermal cycling is shown in Fig. 8. A 

single five-hour thermal cycle is shown in Fig. 7(a), where temperature is held at 903 K and 803 

K with constant heating and cooling rates in transitions. The applied stress is 250 MPa for all cases. 

The comparison is made between the SM and CP-VPSC. Creep strain is shown as a function of 

time in Fig. 7(b). In addition to the cyclic temperature simulations which are shown in black (CP) 

and red (SM), constant T cases are shown in dotted lines for CP and solid lines for SM, at 803 K 



 26 

in blue and 903 K in green. The SM matches the CP simulations closely in all cases. It can be seen 

that the thermal cycling leads to strain accumulations which fall between the constant temperature 

simulations. In Fig. 7(c), the creep strain rates of these simulations are shown. The approximate 

nature of the SM is more apparent in the plot of creep strain rate, as is discussed in Section 3.3. 

The inaccuracies in the SM predictions are consistent between the constant temperature cases and 

the thermal cycling case. It can be seen in Fig. 7(c) that the presence of thermal cycling can lead 

to higher instantaneous creep rates than constant high temperature creep tests. This is expected, as 

this difference is a result of slower saturation of dislocations in the cycling case.  

 

Fig. 7 Prediction of creep behavior under the thermal cycle shown in a). The simulation is 

performed for 10 cycles. Other simulation conditions are: 𝜎𝜎 = 250.0 𝑀𝑀𝑀𝑀𝑀𝑀,𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 6.0 ×

1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 6.0 ×  1011𝑚𝑚−2. SM and VPSC predicted b) creep strain and c) creep 

rate behaviors for fixed temperature  
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3.3 Surrogate Modeling of Strain Rate 

 The SM predictions of accumulated strain are consistently accurate. However, the strain 

rate predictions highlight some limitations of the SM as currently implemented. The mean squared 

relative error (MSRE) of the strain rate, i.e., 

 

 MSRE =
1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
� �

𝜀𝜀𝑣̇𝑣𝑣𝑣,𝑖𝑖
𝑆𝑆𝑆𝑆 − 𝜀𝜀𝑣̇𝑣𝑣𝑣,𝑖𝑖

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝜀𝜀𝑣̇𝑣𝑣𝑣,𝑖𝑖
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 �

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖

2

 (18) 

in the validation set of creep simulations is shown in Fig. 8. A value of MSRE above 1 indicates 

that the predictions are quite inaccurate, with errors of 100% or more. This can occur even when 

the accumulated strain is predicted accurately, as the strain rate errors can cancel out over the 

course of a creep simulation.  
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Fig. 8 The MSRE of 𝜀𝜀𝑣̇𝑣𝑣𝑣 for the dead load creep simulations used in validation. The database of 

validation cases is presented using a scatterplot matrix, each pairwise combination of the target 

dimensions is included as a subplot, using common axes to align the combinations in a gridded 

format. Each case appears once in each subplot 

 The SM uses the input and output mappings to approximate physics-based model 

responses, even when the response is not suited to a polynomial fit. For example, the SM fits the 

stress dependence of power law creep. A polynomial cannot approximate a power law, however 

the input mapping allows the polynomial to fit the response as if it was linear. When two or more 

mechanisms trade dominance over the target range of stress, one mapping is insufficient. The 

mapping which renders power law stress dependence linear will make the dependence of diffusion 

creep non-linear, and vice-versa. Polynomial fits of these non-linear trends can result in artifacts, 
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and the errors from these artifacts will typically cancel out somewhat when an average is taken. 

Given that the proportion of Coble creep predicted by the VPSC simulations varied from 0 to 100% 

within the target ranges, these issues are likely the primary cause of the observed strain rate errors.  

 The mapping issue can be addressed by applying the SM to smaller subregions. If there is 

less variation in the dominant mechanism, less non-linearity will be left in the mapped responses. 

This approach is shown in Fig. 9. Two subdomains were chosen: one at higher stresses 

(𝜎𝜎𝑣𝑣𝑣𝑣 = [200, 300] MPa, 𝑇𝑇 = [800, 950] K) and one at lower stresses (𝜎𝜎𝑣𝑣𝑣𝑣 = [120, 150] MPa,

𝑇𝑇 = [800, 1000] K). Additional simulations were collected (1682) to supplement the existing data 

for each subdomain, for totals of 5681 and 3341 simulations, respectively. New input mappings 

were identified for each subdomain to optimize a linear fit and are shown in Table 3. Output 

mappings were not adjusted. Fig. 9(a) and 9(d) show the MRSE values for the original validation 

cases using the subdomain SMs for high and low stresses, respectively. The worst cases of the 

subdomain SM are as accurate as the best cases of the original SM. A comparison of 𝜀𝜀𝑣̇𝑣𝑣𝑣 

predictions is shown in detail in Fig. 9(b) and 9(c) for the high stress SM and in Fig. 9(e) and 9(f) 

for the low stress SM. The SM results are shown in blue and the VPSC results are shown red. Fig. 

9(c) and 9(f) are the original SM predictions of 𝜀𝜀𝑣̇𝑣𝑣𝑣 , and Fig. 9(b) and 9(e) show the new 

subdomain SM predictions. 
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Fig. 9 The results of the subdomain SMs in validation. (a), (b), and (c) correspond to the high 

stress subdomain and (d), (e), and (f) correspond to the low stress subdomain. (a) and (d) show 

the MSRE of the SM predictions of 𝜀𝜀𝑣̇𝑣𝑣𝑣 for each validation case which falls in the subdomain. A 

single case is highlighted in (b) and (c), and another case is shown in (e) and (f). (b) and (e) show 

the new SM prediction of 𝜀𝜀𝑣̇𝑣𝑣𝑣(𝑡𝑡) in blue with the VPSC result in red. (c) and (f) show the original 

SM prediction in blue, with the same VPSC results in red. The high stress case had the input values, 

𝜎𝜎𝑣𝑣𝑣𝑣 = 257.8 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑇𝑇 = 845.6 𝐾𝐾, 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 6.473 × 1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 8.996 × 1011𝑚𝑚−2 , 

and the low stress case had the input values, 𝜎𝜎𝑣𝑣𝑣𝑣 = 147.6 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑇𝑇 = 972.3 𝐾𝐾, 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 5.847 ×

1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 5.476 × 1011𝑚𝑚−2 



 31 

Table 3 The optimized input mappings for the 𝜀𝜀𝑣̇𝑣𝑣𝑣 predictions of the subdomain SMs. The output 
mappings are preserved from the original SM 

 Optimized Mappings for High 𝝈𝝈𝒗𝒗𝒗𝒗 

Input: 𝜀𝜀𝑣𝑣𝑣𝑣∗  𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗  (𝑚𝑚−2) 𝜌𝜌𝑊𝑊∗  (𝑚𝑚−2) 𝜎𝜎𝑣𝑣𝑣𝑣∗  (MPa) 𝑇𝑇∗ (K) 

𝜀𝜀𝑣̇𝑣𝑣𝑣∗∗ ( ) 
1

𝜀𝜀𝑣𝑣𝑣𝑣+𝑐𝑐
  𝑒𝑒

𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐  𝑒𝑒

𝜌𝜌𝑤𝑤
𝑐𝑐  𝑒𝑒

𝜎𝜎𝑣𝑣𝑣𝑣
𝑐𝑐  𝑒𝑒

𝑇𝑇
𝑐𝑐  

𝑐𝑐 = 1.91 × 10−3 2.93 × 1012 1.61 × 1011 140.3 263.8 

 Optimized Mappings for Low 𝝈𝝈𝒗𝒗𝒗𝒗 

Input: 𝜀𝜀𝑣𝑣𝑣𝑣∗  𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗  (𝑚𝑚−2) 𝜌𝜌𝑊𝑊∗  (𝑚𝑚−2) 𝜎𝜎𝑣𝑣𝑣𝑣∗  (MPa) 𝑇𝑇∗ (K) 

𝜀𝜀𝑣̇𝑣𝑣𝑣∗∗ ( ) ln 𝜀𝜀𝑣𝑣𝑣𝑣 + 𝑐𝑐 𝑒𝑒
𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐  𝑒𝑒

𝜌𝜌𝑤𝑤
𝑐𝑐  ln𝜎𝜎𝑣𝑣𝑣𝑣 + 𝑐𝑐  𝑒𝑒

𝑇𝑇
𝑐𝑐  

𝑐𝑐 = 10.80 1.78 × 1012 4.51 × 1011 279.8 42.76 

 

 The marked improvement in the subdomain SM predictions of 𝜀𝜀𝑣̇𝑣𝑣𝑣 is promising. It may be 

most effective to segment the target domain into a large number of subdomains. The goal of 

connecting to FEA solvers will require a single model to be used. Therefore, it will be necessary 

to develop a method to combine the results of these subdomain models. The development of this 

method is left for future work.  

4 Conclusions 

 In this work a Surrogate Model (SM) for 316H stainless steel was developed for high 

temperature creep applications. The SM utilizes a database of simulation results from a CP-based 

constitutive model embedded in the crystal plasticity code VPSC. The constitutive model uses an 

internal state variable based mechanistic description of the deformation of 316H at high 

temperatures. The SM employs orthogonal polynomial regression to incorporate large volumes of 

data without escalating costs at runtime. Validation of the SM was performed using creep test 
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simulations across a wide range of target operating conditions, and using additional loading cases 

which demonstrate the ability of the SM to capture transient responses. Runtimes for SM and full 

CP simulations typical differ by a factor of at least 10. As a consequence, the SM can be used in 

the future in finite element component-scale creep simulations, at greatly reduced runtimes and 

comparable precision as provided by polycrystal models.  
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Appendix 

Dislocation shear rate:  Given by Eq. 6 from Section 2.1 is: 

 𝛾̇𝛾𝑠𝑠 =  𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 𝑏𝑏𝑠𝑠𝑣𝑣𝑠𝑠  sign(𝜏𝜏𝑠𝑠) (19) 

here sign(𝜏𝜏𝑠𝑠) defines the direction of the shear rate to be the same as the direction of glide. 𝑏𝑏𝑠𝑠 is 

the magnitude of the Burgers vector. 𝑣𝑣𝑠𝑠 is the mean dislocation velocity, which is calculated from 

the dislocation mean free path, 𝜆𝜆𝑠𝑠 , and the total time a dislocation spends traveling between 

obstacles. The total time is the sum of the waiting time at obstacles (𝑡𝑡𝑤𝑤𝑠𝑠 ) and the travel time within 

the interspacing (𝑡𝑡𝑡𝑡𝑠𝑠): 

 𝑣𝑣𝑠𝑠 =  𝜆𝜆𝑠𝑠

𝑡𝑡𝑤𝑤𝑠𝑠 + 𝑡𝑡𝑡𝑡
𝑠𝑠 (20) 
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 The mean dislocation interspacing associated with dislocation-dislocation interactions is 

given as in Franciosi and Zaoui [75,76]: 

 1
 𝜆𝜆𝑠𝑠

=  �∑ 𝛼𝛼�𝑠𝑠𝑠𝑠′𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠′
𝑠𝑠   (21) 

where 𝛼𝛼�𝑠𝑠𝑠𝑠′ refers to the latent hardening matrix. Using the Kocks-type activation enthalpy law 

[77–79], the dislocation waiting time is written as: 

 𝑡𝑡𝑤𝑤𝑠𝑠 =  �
1
𝑣𝑣𝑠𝑠

exp�∆𝐺𝐺0
𝑘𝑘𝑘𝑘
�1 − ��𝜏𝜏eff

𝑠𝑠 �
𝜏𝜏𝑐𝑐𝑠𝑠
�
𝑝𝑝
�
𝑞𝑞
� if |𝜏𝜏𝑠𝑠| < 𝜏𝜏𝑐𝑐𝑠𝑠

0 if |𝜏𝜏𝑠𝑠| ≥ 𝜏𝜏𝑐𝑐𝑠𝑠
 (22) 

here ∆𝐺𝐺0 is the thermal activation energy without any external stress. k is the Boltzmann constant. 

T is absolute temperature. 𝑝𝑝(0 < 𝑝𝑝 ≤ 1) and 𝑞𝑞(0 < 𝑞𝑞 ≤ 2) are the exponent parameters related 

to the shape of the obstacle resistance profile [78]. 𝑣𝑣𝑠𝑠 =  𝜒𝜒𝑒𝑒𝐶𝐶𝑠𝑠/𝜆𝜆𝑠𝑠 is the attack frequency. Here, 

𝐶𝐶𝑠𝑠is the shear wave velocity and 𝜒𝜒𝑒𝑒 is an entropy factor (of the order of 1). 𝜏𝜏𝑐𝑐𝑠𝑠 refers to the Critical 

Resolved Shear Stress (CRSS), which is expressed via use of a non-linear superposition law [79–

81]: 

 𝜏𝜏𝑐𝑐𝑠𝑠 =  𝜏𝜏0𝑠𝑠 +  (𝜏𝜏𝑐𝑐𝑐𝑐𝑛𝑛 + 𝜏𝜏ℎ𝑛𝑛)1/𝑛𝑛  (23) 

where 𝜏𝜏𝑐𝑐𝑐𝑐 =  𝜇𝜇𝑏𝑏𝑠𝑠�∑ 𝛼𝛼�𝑠𝑠𝑠𝑠′𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠′𝑠𝑠  denotes the cell wall-induced hardening and 𝜏𝜏ℎ  denotes the 

strengthening due to solute pinning and precipitates. 𝜏𝜏eff
𝑠𝑠  in Eq. 10 represents the effective driving 

stress acting on dislocations inside the cells and it is expressed as:  

 𝜏𝜏eff
𝑠𝑠 =  𝜏𝜏𝑠𝑠 −  ∆𝜏𝜏𝑚𝑚𝑠𝑠 −  ∆𝜏𝜏𝑙𝑙𝑠𝑠 (24) 
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where 𝜏𝜏𝑠𝑠  denotes the local resolved shear stress. ∆𝜏𝜏𝑚𝑚𝑠𝑠  and ∆𝜏𝜏𝑙𝑙𝑠𝑠  are associated with the local 

reduction in driving force acting on dislocations due to the presence of solutes and due to line 

tension respectively. As per Wen et al. [12], ∆𝜏𝜏𝑚𝑚𝑠𝑠  and ∆𝜏𝜏𝑙𝑙𝑠𝑠 are written as: 

 ∆𝜏𝜏𝑚𝑚𝑠𝑠 �𝑡𝑡𝑎𝑎,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑠𝑠 � =  𝛼𝛼∆𝐸𝐸

core�𝑡𝑡𝑎𝑎,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑠𝑠 �

𝑤𝑤�𝑏𝑏𝑠𝑠
  and  ∆𝜏𝜏𝑙𝑙𝑠𝑠 =  𝜇𝜇𝑏𝑏𝑠𝑠�∑ 𝛼𝛼�𝑠𝑠𝑠𝑠′𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠′

𝑠𝑠  (25) 

𝑡𝑡𝑎𝑎,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑠𝑠  is the local aging time (pinning period). 𝛼𝛼 is associated with the energy variation along the 

core. 𝑤𝑤�  denotes the core width and ∆𝐸𝐸core is the binding energy of the solute to the dislocation.  

 

Dislocation climb rate: Given by Eq. 7 of Section 2.1 is: 

 𝛽̇𝛽𝑠𝑠 =  𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 𝑏𝑏𝑠𝑠𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  (26) 

here 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  denotes the edge dislocation density. In the present work 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠 = 0.1 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  is 

assumed. 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  in Eq. A8 represents the climb velocity, which depends on the net flux of point 

defects Is. The climb velocity 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠  depends on the imbalance between vacancies and interstitials 

being trapped by the dislocation, which can be written using a classic expression of rate theory, 

as: 

 𝑣̅𝑣𝑐𝑐𝑠𝑠 = Ω
𝑏𝑏
�𝑧𝑧𝑣𝑣𝑠𝑠𝐷𝐷𝑣𝑣𝑐𝑐𝑣𝑣𝑡𝑡ℎ �exp �Ω𝜏𝜏�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠

𝑘𝑘𝑘𝑘
� − 1�� (27) 

where 𝐷𝐷𝑣𝑣 = 𝐷𝐷𝑣𝑣0 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐸𝐸𝑚𝑚𝑣𝑣 /𝑘𝑘𝑘𝑘)  denotes the vacancy diffusivity and 𝑧𝑧𝑣𝑣𝑠𝑠  is the rate-theory 

parameter representing the dislocation capture efficiency for vacancies. Ω ≈ 𝑏𝑏3  represents the 

atomic volume and 𝑐𝑐𝑣𝑣𝑡𝑡ℎ is the thermal equilibrium vacancy concentration.  



 35 

Dislocation density evolution: A recently developed dislocation density law for Fe-Cr-Mo alloy 

is employed here [61]. As mentioned before, the dislocation content can be divided into two 

populations: dislocations in the cell (subgrain) and in the cell walls (subgrain boundary). The 

evolution of the dislocation density in the cell is expressed as: 

 𝜌̇𝜌cell𝑠𝑠 =  𝜌̇𝜌cell,g
𝑠𝑠,+ −  𝜌̇𝜌cell,a

𝑠𝑠,− −  𝜌̇𝜌cell,trap
𝑠𝑠,−  (28) 

Where 𝜌̇𝜌cell,g
𝑠𝑠,+ , 𝜌̇𝜌cell,a

𝑠𝑠,− , and 𝜌̇𝜌cell,trap
𝑠𝑠,−  denote the dislocation generation, dynamic recovery and 

trapping at the subgrain boundaries. The dislocation generation rate is associated with the area 

swept by the moving dislocations. The term 𝜌̇𝜌cell,g
𝑠𝑠,+  can be expressed as [82]:  

 𝜌̇𝜌cell,g
𝑠𝑠,+ =  𝑘𝑘1

𝑏𝑏𝜆𝜆𝑠𝑠
|𝛾̅̇𝛾 𝑠𝑠| (29) 

Where 𝜆𝜆
𝑠𝑠

𝑘𝑘1
 is the effective mean free path. The dynamic recovery involves several mechanisms, 

such as cross-slip and climb, that allow the dislocation to move to another slip plane and annihilate 

with dislocations with opposite Burger vector. Estrin [83] proposed a general expression of the 

dynamic recovery rate: 

 𝜌̇𝜌cell,a
𝑠𝑠,− =  𝑘𝑘2 �

𝜀̇𝜀0
𝜀̇𝜀
�
1
𝑛𝑛0 𝜌𝜌cell𝑠𝑠 |𝛾̅̇𝛾 𝑠𝑠| (30) 

where 𝜀𝜀0̇ is a reference strain rate. Estrin suggested that the parameter 𝑛𝑛0 should be associated 

with the dominant mechanism and it can vary between 3 and 5 [83]. The dislocation trapping rate 

at the subgrain boundaries is related to the subgrain size 𝜆𝜆sg: 

 𝜌̇𝜌cell,trap
𝑠𝑠,− =  𝑘𝑘3

𝜆𝜆sg
|𝛾̅̇𝛾 𝑠𝑠| (31) 
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The trapped dislocations will essentially become part of the wall structure. Meanwhile, the 

dislocations in the cell wall will also annihilate. Thus, the rate of 𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠  can be written as: 

 𝜌̇𝜌cw𝑠𝑠 =  𝜌̇𝜌cell,trap
𝑠𝑠,− − 𝜌̇𝜌cw,a

𝑠𝑠,−  (32) 

Dislocation annihilation in the subgrain boundaries is complex and for the sake of simplicity, the 

annihilation rate is written as: 

 𝜌̇𝜌cw,a
𝑠𝑠,− =  𝑘𝑘4𝜌𝜌𝑐𝑐𝑐𝑐𝑠𝑠 |𝛾̅̇𝛾 𝑠𝑠| (33) 

The parameters 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3 and 𝑘𝑘4 are material constants calibrated using the experimental data. 

Relative activity of deformation mechanisms: Relative contribution of glide, climb and Coble 

creep modes to the predicted creep responses is shown in Fig. 10 as a function of imposed stress 

for three different temperatures. At the early stages of creep, dislocation glide dominates the 

deformation for all the stress and temperature cases. Within a few hours, contribution of glide 

decreases and, depending on the stress and temperature, climb and Coble creep modes starts to 

activate. The relative activity of climb increases with the temperature and decreases with 

increasing imposed stress. Similarly, the contribution of Coble creep also decreases with imposed 

stress.  
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Fig. 10. Relative contribution of individual deformation mechanisms (glide, climb and Coble 

creep) as a function of imposed stress for (a) 650°C, (b) 700°C and (c) 750°C. Contribution of 

climb increases with temperature. The relative activity of both the climb and Coble creep modes 

are inversely proportional to imposed stress.  

 

 

Table 4. The calibrated constitutive model parameter values for 316H steel. (* parameter 
estimated or back fitted from experimental data). Refer Wen et al. [61] for fitted parameter ranges 
and details for the other parameters.  

Parameters Values Parameters Values 
b (magnitude of Burgers 

vector) 2.546·10-10 m 𝜆𝜆𝑠𝑠𝑠𝑠 (sub-grain size) 0.5·10-7 

μ (shear modulus) 87828 MPa 
−T·36 MPa/K 

n0 (annihilation strain rate 
sensitivity)* 

3.5 

𝜏𝜏0 (friction stress) 0 MPa 𝜀𝜀0̇(reference strain rate) 1 s-1 
𝜏𝜏ℎ (hardening contribution 

from solute pinning and 
precipitation)* 

957 MPa 
 −T·0.6 MPa/K n (superposition power) 2.0 

𝜂𝜂 (scaling parameter)* 3.8·10-6 MPa/m 𝜑𝜑 (power parameter) 1 
∆G0 (zero-stress activation 
energy for dislocations)* 

3 eV 𝑤𝑤�  (width of dislocation core) 1.86 nm 

p (exponent parameter)* 0.7 𝜒𝜒 (pre-factor linking binding 
energy and junction strength) 12 

q (exponent parameter)* 1.4 α (scaling coefficient for Δ𝜏𝜏𝑚𝑚𝑠𝑠  ) 0.38 

𝜒𝜒𝑒𝑒 (entropy factor) 0.5 𝛼𝛼0𝑠𝑠𝑠𝑠′(saturation dislocation-
dislocation interaction) 

0.7 ( s = s ' ); 
0.05 ( s ≠ s ' ) 

𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,0𝑠𝑠   (initial dislocation 
density in the cell) 1·1013 m-2 𝐷𝐷𝑣𝑣0(vacancy diffusion constant) 1.5 ∙ 10−4 m2s−1  

𝜌𝜌𝑊𝑊,0
𝑠𝑠   (initial dislocation 

density in the cell wall) 5·1011 m-2 𝐸𝐸𝑚𝑚𝑣𝑣 (vacancy migration energy) 1.1 eV 

k1 (material constant)* 0.09 𝐸𝐸𝑓𝑓𝑣𝑣(vacancy formation energy) 2.0 eV 
k2 (material constant)* 45 𝑆𝑆𝑓𝑓𝑣𝑣(vacancy formation entropy) 3.6 ∙ 10−4 eV/K 
k3 (material constant)* 1.0·108 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(coble creep parameter)*  5 ∙ 10−8 
k4 (material constant)* 800 𝑄𝑄𝑔𝑔𝑔𝑔 (coble creep parameter)* 0.07 eV 
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LHSMDU Example: The two samples shown below (Fig. 11) portray the effective difference 

in the sampling method employed here and a simple Monte-Carlo random sampling. 

 

Fig. 11. A comparison of a Monte Carlo (random) sampling with a LHSMDU sampling in 2 

dimensions. The average minimum distance between points for the two method examples are 0.25 

and 0.35, respectively 

 

Uncertainty from anisotropy: The error induced with the assumption of an isotropic polycrystal 

is quantified using a batch of 20 CP-VPSC simulations, run with the same von Mises stress, 

temperature, microstructure, and initial dislocation densities ( 𝜎𝜎𝑣𝑣𝑣𝑣 = 300 MPa, 𝑇𝑇 =

973.0 𝐾𝐾,𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 7.0 × 1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 7.0 ×  1011𝑚𝑚−2 ), only varying the relative 

contribution of individual stress tensor components. The results of this set of VPSC simulations 

are shown in Fig. 12. The effective strain of each simulation is shown as a function of time. It can 

be seen that the simulations present variability in the strain rate resulting from the same level of 

stress. The variability would decrease if an increasing number of orientations were considered for 

representing the aggregate (50 orientations were used in the calculation). The low relative scatter 

in the simulations is used to support the J2 assumption.  
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Fig. 12. The CP simulations made to quantify the uncertainty associated with the use of a Prandtl-

Reuss flow rule in the SM formulation in predicted plastic strain. Each solid line reflects a different 

stress direction with respect to a fixed microstructure orientation. Initial parameters are, for all 

runs: 𝜎𝜎𝑣𝑣𝑣𝑣 = 300 MPa, 𝑇𝑇 = 973.0 𝐾𝐾, 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 7.0 × 1012 𝑚𝑚−2 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 7.0 × 1011𝑚𝑚−2 
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