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In spinor Bose-Einstein condensates, spin-changing collisions are a remarkable proxy to coher-
ently realize macroscopic many-body quantum states. These processes have been, e.g., exploited to
generate entanglement, to study dynamical quantum phase transitions, and proposed for realizing
nematic phases in atomic condensates. In the same systems dressed by Raman beams, the coupling
between spin and momentum induces a spin dependence in the scattering processes taking place in
the gas. Here we show that, at weak couplings, such modulation of the collisions leads to an effective
Hamiltonian which is equivalent to the one of an artificial spinor gas with spin-changing collisions
that are tunable with the Raman intensity. By exploiting this dressed-basis description, we propose
a robust protocol to coherently drive the spin-orbit-coupled condensate into the ferromagnetic stripe
phase via crossing a quantum phase transition of the effective low-energy model in an excited state.

Introduction.— Artificial spin-orbit coupling (SOC)
in ultracold-atom gases offers an excellent platform for
studying quantum many-body physics [1–3]. The inter-
play between light dressing induced by Raman coupling
[4] and atom-atom interactions can lead, for instance,
to high-order synthetic partial waves [5], to chiral inter-
actions and density-dependent gauge fields [6] or to the
formation of stripe phases [7]. The latter have gained
significant attention over the past decade [8–13], in great
part due to its supersolid like properties [14–16], that is,
its simultaneous spontaneous breaking of translational
invariance and of U(1) (global) phase symmetry, result-
ing in a crystalline structure that maintains off-diagonal
long-range order.

Accessing the stripe regime of ultracold gases with
SOC remains experimentally challenging, since its sta-
bility relies on the asymmetry between intra- and inter
spin interactions, typically small in common spinor Bose-
Einstein condensates (BECs). The predicted spatial den-
sity modulations have only been unambiguously observed
in [17], using orbital states in a superlattice as pseudo
spin states, and very recently also in metastable states
of a 87Rb spinor gas [18] (for its realization in dipolar
gases, see [19–21]). While sharing many properties with
conventional supersolids, the nature of the stripe phases
in gases with SOC is still debated [22], with current pro-
posals focusing on probing its excitation spectrum. So
far, most protocols to enhance the accessibility of the
phase and the contrast of the stripes pursue an effective
decrease of the intraspin interactions [23, 24]. Alterna-
tively, here we propose an approach to access the stripe
regime of a spin-1 gas with largely symmetric spin in-
teractions, based on the coherent spin-mixing dynamics
induced by Raman dressing.

Several authors have suggested a connection between
spinor gases with spin-changing collisions and SOC BECs
[12, 25–31]. In this work, we show analytically that the
Raman-dressed spin-1 SOC gas at low energy is equiva-
lent, for weak Raman coupling and interactions, and zero

total magnetization, to an artificial spin-1 gas with tun-
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FIG. 1. (Color online) Pseudospin dynamics in SOC
BECs. (a) Dispersion bands of the dressed Hamiltonian
Ĥk with Ω = 0.65Er, δ = 0, and ε = Ω2/16Er. The
color texture indicates the expected value of the spin of the
dressed states. Dashed lines show the undressed dispersion
bands. (b) Schematic representation of resonant collisions
mediated by Raman transitions (represented by wavy lines)
which act as effective spin-changing collisions. For weak Ra-
man coupling and interactions, the dressed-state dynamics
can be captured by the pseudospin Hamiltonian (4). (c i)
Phase diagram of (4), as a function of the Raman Rabi fre-
quency Ω and effective quadratic Zeeman shift ε, for 87Rb
at n = 7.5 × 1013 cm−3. The polar (P), twin-Fock (TF),
and broken-axisymmetry (BA) phases meet at the tricritical
point CF (black dot). (c ii) Corresponding phase diagram for
the highest-excited eigenstate. The upper panel in the inset
shows the energy gap between the two most excited eigen-
states along the red dashed segment for N = 1000. The lower
panel shows the expected value of the collective pseudospin
L̂2 (red dash-dotted line) and tensor magnetization L̂zz (blue
solid line)

.
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able spin-changing collisions. Under these conditions, the
system is well described by a one-axis-twisting Hamil-
tonian [32, 33]. Such a Hamiltonian explains several
quantum many-body phenomena in spinor condensates
[34, 35], including the generation of macroscopic entan-
glement [36–49], with potential metrological applications
[50], and the observation of nonequilibrium phenomena
such as the formation of spin domains and topological
defects [51–61]. Recently, dynamical [62] and excited-
state [63] quantum phase transitions have been theoreti-
cally [64, 65] and experimentally [66, 67] studied in spin-1
BECs with spin-changing collisions. Here we exploit this
map to provide a many-body protocol to access the fer-
romagnetic stripe phase of the SOC gas via crossing a
quantum phase transition of the low-energy Hamiltonian
in an excited state. This preparation enhances the acces-
sibility of the phase, which has as the ground-state phase
a very narrow region of stability [68].
System.— We consider a spin-1 Raman-dressed Bose

gas held in an isotropic harmonic potential Vt = 1
2mω

2
t r

2

with the atoms interacting via two-body s-wave colli-
sions. In a frame corotating and comoving with the
laser beams, the system is described by the Hamiltonian
Ĥ=

∫
dr
[
ψ̂
†(
Ĥk+Vt

)
ψ̂ + g0

2 (ψ̂
†
ψ̂)2+ g2

2

∑
j(ψ̂

†
F̂jψ̂)2

]
,

with ψ̂ = (ψ̂−1, ψ̂0, ψ̂1)T the spinor field operator
and {~F̂x, ~F̂y, ~F̂z} the spin-1 matrices. Here g0 =
4π~2(a0 + 2a2)/3m and g2 = 4π~2(a2 − a0)/3m, with
a0 and a2 the scattering lengths in the F = 0 and F = 2
channels, respectively. The dressed kinetic Hamiltonian

reads Ĥk = ~2

2m

(
k − 2krF̂zez

)2

+ Ω√
2
F̂x + δF̂z + εF̂ 2

z ,
where Ω is the Raman coupling strength, δ is the Ra-
man detuning, and ε is the effective quadrupole tensor
field strength. The latter term can be controlled inde-
pendently of δ by employing two different Raman cou-
plings between the two Zeeman pairs {|1, 1〉 , |1, 0〉} and
{|1, 0〉 , |1,−1〉}, and simultaneously adjusting the Ra-
man frequency differences [69]. We label the Raman
single-photon recoil energy and momentum as Er =

~2k2r
2m

and ~kr, respectively. In the weakly coupled regime, the
lowest dispersion band of Ĥk presents a triple-well shape
along the direction of the momentum transfer, which we
arbitrarily set along the ẑ axis. Spin texture is present in
the band, with the spin mixture being the largest at the
vicinity of the avoided crossings (see Fig. 1(a)). While
much smaller, the spin overlap between states located
at the vicinity of adjacent minima is nonzero, and in-
creases linearly with Ω. This overlap allows collision pro-
cesses that exchange large momentum at low energies.
These Raman-mediated processes act as spin-changing
collisions, as illustrated in Fig. 1(b).
Low-energy effective theory.— We now consider the

regime where δ, ε, ~ωt, and the interaction energy per
particle are all much smaller than the recoil energy
Er. Such a low-energy landscape is well captured by
an effective theory in which all the dynamics involves

only the lowest band modes around each band minimum
kj ∼ 2jkrez, with j ∈ {−1, 0, 1}. Under these con-
siderations, we re-express the spinor field ψ̂ in terms of
the lowest-band dressed fields at the vicinity of each kj ,
which we label as ϕ̂j , and set a cut-off Λ � ~kr to the
momentum spread p around them. With this notation,
we can identify the operators acting in the separated re-
gions as a pseudospinor field ϕ̂ = (ϕ̂−1, ϕ̂0, ϕ̂1)T , with[
ϕ̂i(p), ϕ̂†j(p

′)
]

= δ(p − p′)δij . By using perturbation
theory up to second order in Ω, the low-energy Hamil-
tonian can be written as Ĥ ' ĤS + ĤA (see the Sup-
plemental Material for more details [70]). Here ĤS and
ĤA include the pseudospin-symmetric and nonsymmetric
contributions, respectively, given by

ĤS =

∫
dr

[∑
i

ϕ̂†i

(
p2

2m
+ Vt

)
ϕ̂i +

g0
2

∑
ij

ϕ̂†i ϕ̂
†
jϕ̂jϕ̂i

]
(1)

and

ĤA =

∫
dr

[
g2
2

∑
j

(ϕ̂†F̂jϕ̂)2 + g̃2
(
ϕ̂†1ϕ̂1 + ϕ̂†−1ϕ̂−1

)
ϕ̂†0ϕ̂0

+g̃2
(
ϕ̂†1ϕ̂

†
−1ϕ̂0ϕ̂0 + H.c

)
+ ϕ̂†

(
δF̂z + ε̃F̂ 2

z

)
ϕ̂

]
,

(2)

with g̃2 = g0
Ω2

16E2
r
. The coefficient ε̃ includes the correc-

tion to ε, with ε̃ = ε + Ω2

16Er
. In (2) we have excluded

the terms proportional to g2Ω2, since typically |g2| � g0.
Notice that, even in the case of SU(3)-symmetric inter-
actions (i.e. g2 = 0), ĤA includes SOC-induced spin-
changing collision processes with a spin-mixing rate g̃2.
Three-mode model.— We now restrict ourselves to the

case in which ĤA can be treated as a perturbation over
the symmetric part ĤS. We assume that the dynamics is
then well described by a three-mode model. It includes
three eigenmodes of ĤS, labeled as |φ−1〉, |φ0〉, and |φ1〉,
which have a quasi-momentum distribution centered in
the vicinity of k−1, k0, and k1, respectively. By introduc-
ing the associated bosonic operators b̂−1, b̂0, and b̂1, we
truncate the field operators to ϕ̂†i (r) ∼ φ∗i (r)b̂†i . We call
the three modes |φj〉 pseudospin states. Finally, drop-
ping the terms that only depend on the total number of
particles N , we obtain the one-axis-twisting Hamiltonian

Ĥeff =
λ

2N
L̂2 − λ− g2n

2N
L̂2
z + δL̂z + ε̃L̂zz, (3)

where we introduce the collective pseudospin operators
L̂x,y,z =

∑
µν b̂
†
µ(F̂x,y,z)µν b̂ν and L̂zz =

∑
µν b̂
†
µ(F̂ 2

z )µν b̂ν .
Here λ = (g̃2 + g2)n, where n is the mean density of the
gas 1.

1 Since the spinor modes |φj〉 are determined through the sym-
metric Hamiltonian (1), we have that |φi(r)| = |φj(r)| for all
i, j = −1, 0, 1. Thus, within the subspace spanned by these
three modes, the mean density of the gas is simply given by
n = N

∫
dr|φ0(r)|4.



3

Since [Ĥeff , L̂z] = 0, the total magnetization is pre-
served by Ĥeff . Within the zero magnetization subspace
(where L̂z = 0), the effective Hamiltonian (3) reduces to

Ĥ0 = λ
L̂2

2N
+ ε̃L̂zz. (4)

The Hamiltonian (4) describes the nonlinear coherent
spin dynamics in a spin-1 BEC, in which the density-
dependent spin-symmetric interaction dominates [33]. In
the SOC-based realization of (4) we propose here, we can
control the spin-mixing parameter λ independently of the
density of the gas by adjusting Ω. That is, SOC BECs
provide an alternative platform for designing entangle-
ment protocols and studying dynamical phase transi-
tions.
Dynamical preparation of stripe states.— The phase di-

agram of the Hamiltonian (4) in the Ω-ε plane is shown
in Fig. 1(c i), where we use the expressions for λ(Ω) and
ε̃(Ω, ε). We consider 87Rb, with g2/g0 = −0.0047 [35]
and density n = 7.5 × 1013 cm−3. We now use this ef-
fective description to design a protocol to prepare dy-
namically the stripe phase of the dressed gas, which we
later test numerically. For Ω > Ωc = 4Er

√
|g2|/g0, the

diagram is equivalent to that of an antiferromagnetic
spinor gas without SOC, λ > 0. The ground state is
then either in a polar (P) phase, where all the atoms
occupy the |φ0〉 state, or in a twin-Fock (TF) phase, in
which the ground state approximates the spin- 1

2 balanced
Dicke state 1

(N/2)! (b̂
†
−1)N/2(b̂†1)N/2 |0〉. The phase transi-

tion between the two phases is found along ε̃(Ω) = 0.
At Ω = Ωc, the effective and the intrinsic spin-mixing
dynamics mutually compensate, with g̃2 = −g2, yielding
λ = 0. For Ω < Ωc, the effective spin dynamics is ferro-
magnetic, λ < 0. Then dressed spin interactions tend to
maximize the total spin, resulting in a ground state with
a nonvanishing transverse magnetization. This sponta-
neous breaking of the SO(2) symmetry of the system
[52] gives rise to the so-called broken-axisymmetry (BA)
phase [71] in between the P and TF phases. The two
transitions take place at ε̃ = ±2λ in the thermodynamic
limit. The three phases meet at the tricritical point CF ,
at Ω = 4Er

√
|g2|/g0 and ε = g2/g0.

Remarkably, the BA phase of the effective model cor-
responds to the super-solid like ferromagnetic stripe (FS)
phase of the spin-1 SOC gas diagram, described in detail
in [68]. The FS phase is characterized by the presence of
spatial density modulations that are proportional to Ω.
When |g2| is small, as in 87Rb, such phase is only favored
in a very narrow region in parameter space, which makes
its experimental realization challenging. Alternatively,
the ferromagnetic landscape can be probed in the most
excited manifold of Ĥ0 in the antiferromagnetic regime,
given that Ĥ0(λ, ε̃) = −Ĥ0(−λ,−ε̃). In Fig. 1(c ii) we
show the phase diagram for the most excited state of
Ĥ0. It displays the same phases as the ground state,
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FIG. 2. (Color online) Crossing quantum phase transi-
tions in an excited state. (a) Plot of Lzz (blue solid line)
and L2 (red dashed line) as a function of ε̃ for a state initially
prepared at b±1 =

√
50 and b0 =

√
N − 100, with N(0) = 104

and ~ωt = 2π × 140Hz.The state is evolved under the GPE
while driving ε̃ from −3λ to 3λ, keeping Ω = 0.65Er, following
the red dashed path in Fig. 1(c ii). The total drive time is set
to τd = 8h/λ. The corresponding results obtained with simu-
lations of the three-mode model (4) are shown in light colors.
(b) Quasi-momentum density |ψ̃(pz)|2 of the driven state at
ε̃ = 0 (dark green solid line) and ε̃ = 3λ (light green dashed
line). (c) Corresponding density profiles at ε̃ = 0 (purple solid
line) and ε̃ = 3λ (pink dashed line).

but with the phase boundaries redefined. In the excited-
state diagram, the predicted BA phase occurs for a much
broader range of parameters. Notably, at the P-BA and
BA-TF transitions, the energy gap between the two most
excited states scales weakly with the total number of par-
ticles as proportional to λN−1/3. This facilitates the
quasi-adiabatic driving through both phase transitions
in workable time scales even when the number of parti-
cles is large. This feature was exploited in [45] and [46]
to generate macroscopic TF and BA states, respectively,
in small 87Rb spinor condensates.

Following the dressed-spinor description, we propose to
prepare the FS phase in the most excited phase diagram
of the effective model by driving an initially polarized
state across the P-BA quantum phase transition therein.
The loading can be easily achieved from an undressed
condensate in the mf = 0 spin state by adiabatically
turning up Ω, while setting ε̃ < −2λ. The excited phase
diagram can then be probed by varying ε and Ω. Since
here the stripe phase occurs at larger Ω, it exhibits a
larger contrast of the density modulations, when com-
pared to its ground-state counterpart.

To derive our protocol, we assume the validity of the
three-mode truncation that leads to the Hamiltonian
(4). To assess the extent of such truncation, which is



4

equivalent to the single-spatial-mode approximation in
spinor condensates [72], we simulate the protocol with
the Gross–Pitaevskii equation (GPE) for the full dressed
gas, i~ψ̇j = δE/δψ∗j , with E =ψ∗

(
Ĥk+Vt

)
ψ + g0

2 |ψ|
4
+

g2
2

∑
j(ψ

∗F̂jψ)2, using the XMDS2 library [73] (see the
Supplemental Material [70] for more details). We label
the three self-consistent modes around kj as φj , which
are calculated via imaginary-time evolution of the GPE,
and define bj =

∫
drφ∗j (r) ·ψ(r). As a reference, we con-

sider conditions similar to those described in [46], with
small 87Rb condensates in the F = 1 hyperfine manifold
at n ∼ 7.5 × 1013 cm−3, and take Er/~ = 2π × 3680Hz,
kr = 7.95 × 106 m−1 and g0k

3
r = 1.066Er. Note that

in the proposed protocol, the state is initially prepared
in the Fock state 1√

N !
(b̂†0)N |0〉. In these conditions, the

dynamics is dominated by quantum fluctuations [74, 75]
and the mean field description is expected to be inaccu-
rate. Instead, we set the initial state to a coherent state
with 0 < b±1 � N .

In Fig. 2 we show the results for a drive along the
red dashed path drawn in the excited state diagram
from Fig. 1(c ii). The drive is obtained with δ = 0,
ωt = 2π × 140Hz and N = 104. We set Ω =
0.65Er, and the initial state to b±1 =

√
50 and b0 =√

N − 100. In Fig. 2(a) we plot the collective pseudospin
L2 =

∑
j [
∑
µν b
∗
µ(F̂j)µνbν ]2 and the tensor magnetiza-

tion Lzz =
∑
µν b
∗
µ(F̂ 2

z )µνbν as a function of ε̃/λ. The
state is time evolved following the linear ramp ε̃(t) =
3λ(2t/τd − 1), with τd = 8h/λ, which crosses both tran-
sitions at ε̃ ∼ ±2λ. In the BA phase, the tensor magne-
tization L̂zz increases homogeneously with ε̃/|λ| and the
total spin L̂ peaks at ε̃ = 0, in agreement with the ef-
fective model (see Fig.1(c)). For comparison, the results
obtained from the direct simulation of the three-mode
Hamiltonian (4) are shown in light colors. In Fig. 2(b)
we plot the momentum-space density at the middle and
at the end of the drive, in which the state approaches a
BA state and a TF state, respectively. The correspond-
ing density profiles are shown in Fig. 2(c). As expected,
the excited BA phase exhibits large density modulations
along the direction of the Raman beams.
Experimental considerations.— Finally, we assess the

robustness of the preparation by incorporating atom loss
and heating mechanisms into the simulations of the GPE.
We naively model the noise in δ and ε with sinusoidal
signals of frequency 50Hz and amplitudes 300Hz and
2.5Hz, respectively. We consider Ω to be stable dur-
ing the drive, but to have a calibration uncertainty of
125Hz in each realization. These amplitudes are com-
patible with a magnetic bias field instability of approxi-
mately 0.5 mG and a relative uncertainty of ±5% in Ω,
within the stabilities reached in experiments with 87Rb
[7, 69, 76]. At the same time we consider a 10% uncer-
tainty in the number of atoms initially in the condensate
and the population to decay as N(t) = N(0) exp(−γt),
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FIG. 3. (Color online) Robust preparation of FS states.
(a) Plot of Lzz (blue solid line), L2 (red dashed line), and
f3M (green dash-dotted line) as a function of time for a state
initially prepared at b±1 =

√
10 and b0 =

√
N − 20, with

N(0) = 104 and ~ωt = 2π × 140Hz. The state is evolved
under the GPE while driving ε̃ from −3λ to 0 by linearly
increasing Ω from 0.65Er to 0.767Er, following the blue dash-
dotted path in Fig. 1(c ii). The parameters of the GPE are
subject to random fluctuations that simulate experimental
noise, as described in the text, and the values depicted are
averaged over 20 realizations. The shadowed regions indicate
the associated standard deviations. (b) Longitudinal density
|ψ|2 (blue solid line), spin density Fx (red dashed line), and
nematic density Nxx (green dash-dotted line) at t = 150 ms
from a single realization of the drive.

with γ = 3.33 s−1, which is compatible with the lifetime
of spin-1 Raman-dressed BECs for Ω < Er [69, 77].

In these conditions, we simulate a drive following the
blue dash-dotted path drawn in the excited-state dia-
gram from Fig. 1(c ii). Along the path, ε is kept fixed
while Ω is linearly ramped up. In this way, λ is increased
as ε̃ approaches 0. Such tunability of the SOC-mediated
spin mixing allows one to reduce the preparation time
while retaining a high robustness. At the same time,
at larger Ω, the contrast of the stripes is further en-
hanced. In Fig. 3(a), we plot Lzz, L2, and the fraction
of atoms that remain within the three-mode subspace,
f3M = 1

N2

∑
j |bj |

2, averaged over 20 of drives. The P-
BA transition is well captured, with f3M ∼ 0.99 by the
end of the drives. Finally, in Fig. 3(b) we plot the lon-
gitudinal density |ψ|2, the spin density Fx = ψ∗F̂xψ,
and the nematic density Nxx = ψ∗( 2

3 − F̂
2
x )ψ at ε̃ = 0

for a single realization of the drive. As predicted by the
effective model, the prepared state exhibits the charac-
teristic properties of FS states, with large spatial modu-
lations along the direction of the Raman beams. The FS
phase can be distinguished from antiferromagnetic stripe
phases from the periodicity of the modulations, with the
particle density and the spin densities having periodicity
2π/|k1| and the nematic densities containing harmonic
components both with period 2π/|k1| and π/|k1|. As
a final remark, we note that the preparation could be
optimized further by employing reinforcement learning
techniques, as recently demonstrated in [78].
Conclusions.— In summary, we have shown that, for

weak Raman coupling and interactions, a Raman-dressed
spin-1 BEC is equivalent to an artificial spinor BEC with
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tunable nonsymmetric spin interactions. A ferromagnetic
gas like 87Rb can be turned to antiferromagnetic by light
dressing, and the stability of the FS phase is understood
in these terms. We have used such insight to propose
the preparation of FS phases by driving an initially po-
larized state through a quantum phase transition in an
excited state of the Raman-dressed gas. In the excited-
state phase diagram, the FS phase is broader and both
the energy gap and the density modulation contrast are
larger. These features enable a robust preparation of the
state and ease the detection of its supersolid properties,
e.g., by probing its spectrum of excitations [11, 24].

Our dressed-base description of Raman-coupled spinor
gases suggests different directions for probing nonequilib-
rium phenomena, as in [57, 61], with light-dressed spinor
gases of alkali-metal and non-alkali-metal [79] atoms. Re-
markably, the FS phase corresponds to the BA entangled
phase of the artificial spinor gas: Its preparation may
thus lead to the generation of macroscopic entanglement
in momentum space (cf. [80]). Likewise, the map in-
troduces SOC gases as an alternative platform to study
dynamical and excited-state quantum phase transitions.
The FS phase of the spin-1 gas can be understood as
an excited-state quantum phase through its connection
with undressed collisional spin dynamics [65]. This pre-
cise connection will be explored elsewhere [81].
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Supplemental Material
In this supplementary document we include the detailed derivation of the low-energy Hamiltonian introduced in the

main text. We also provide additional insights on the approach taken to assess the validity of the three-state model
derived, and on its robustness.

EFFECTIVE LOW-ENERGY THEORY

Here we detail the derivation of the effective low-energy theory presented in the main text for weakly-coupled
Raman-dressed spin-1 BECs, with Rabi frequency Ω < 1 (in units of recoil energy). We restrict ourselves to a regime
in which the linear and quadratic Zeeman terms, denoted by δ and ε respectively, are also small, and set |δ|, |ε| � 1.
In this regime, the low-energy landscape only involves the dressed states located around the three minima of the
dispersion band. Thus, we set a cut-off Λ� 1 (in units of kr) to the momentum spread p around each minimum, so
that |p| < Λ. Under these conditions, we use second order perturbation theory to express the bare fields ψ̂i in terms
of the lowest-band dressed-state fields ϕ̂j around the center band minimum

ψ̂0(p) =

(
1− Ω2

64

(
1− ε

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂0(p) +O

(
(

Ω

8(1− Λ)
)3

)
,

ψ̂±1(p) = −Ω

8

(
1− ε± δ ∓ 4p

4
+O((Λ +

ε+ δ

4
)2)

)
ϕ̂0(p) +O

(
(

Ω

8(1− Λ)
)3

)
,

(S1)

and in right/left band minima

ψ̂±1(±2 + p) =

(
1− 1

2

(
Ω

8

)2(
1 +

ε± δ ∓ 4p

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂±1(p) +O

(
(

Ω

8(1− Λ)
)3

)
,

ψ̂0(±2 + p) = −Ω

8

(
1 +

ε± δ ∓ 4p

4
+O((Λ +

ε+ δ

4
)2)

)
ϕ̂±1(p) +O

(
(

Ω

8(1− Λ)
)3

)
,

ψ̂∓1(±2 + p) =
Ω2/16

((16 + p2 ± δ ± 8p)
(

1− ε∓δ±4p
4

) ϕ̂±1(p) +O

(
(

Ω

8(1− Λ)
)3

)
,

(S2)

respectively. We made explicit only the dependence on momentum along the direction of the recoil momentum transfer.
Notice that the positions of the edge band minima are actually shifted from ±2 by a small amount proportional to
Ω2. Still, up to second order in Ω, these shifts do not contribute to expressions (S2), and hence are not included. Note
that the last term of the above expressions can be neglected since it contributes to the interactions at fourth order in

Ω
8(1−Λ) . As shown below, due to momentum conservation, the nontrivial contributions to the interacting Hamiltonian
involve only the first order terms in the above expressions, while the second order just renormalize the symmetric
interactions.

We adopt the notation short cuts∫ ∫
ψ̂†aψ̂

†
b ψ̂aψ̂b ≡

g

2

∫
dr

∫ 4∏
j=1

d3kj
(2π)3

eir·(k1+k2−k3−k4)ψ̂†a(k1)ψ̂†b(k2)ψ̂a(k3)ψ̂b(k4), (S3)

and ∫ ∫
ϕ̂†aϕ̂

†
bϕ̂aϕ̂b ≡

g

2

∫
dr

∫ Λ

−Λ

4∏
j=1

d3pj
(2π)3

eir·(p1+p2−p3−p4)ϕ̂†a(p1)ϕ̂†b(p2)ϕ̂a(p3)ϕ̂b(p4). (S4)

When the interaction operators are evaluated on the low-energy states, it follows that∫ ∫
ψ̂†±ψ̂

†
±ψ̂±ψ̂± =

∫ ∫ (
1− Ω2

32

(
1 +

ε± δ
2
∓ p1 + p2 + p3 + p4

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂†±ϕ̂

†
±ϕ̂±ϕ̂±

+
Ω2

16

∫ ∫ (
1− ε± δ

2
± (p2 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
0ϕ̂±ϕ̂0,

(S5)



9∫ ∫
ψ̂†0ψ̂

†
0ψ̂0ψ̂0 =

∫ ∫ (
1− Ω2

16

(
1− ε

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂†0ϕ̂

†
0ϕ̂0ϕ̂0

+
Ω2

16

∫ ∫ (
1 +

ε+ δ

2
− (p1 + p3) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†+ϕ̂

†
0ϕ̂+ϕ̂0

+
Ω2

16

∫ ∫ (
1 +

ε− δ
2

+ (p1 + p3) +O((Λ +
ε+ δ

4
)2)

)
ϕ̂†−ϕ̂

†
0ϕ̂−ϕ̂0

+
Ω2

32

∫ ∫ (
1 +

ε

2
− (p1 − p2) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†+ϕ̂

†
−ϕ̂0ϕ̂0

+
Ω2

32

∫ ∫ (
1 +

ε

2
− (p3 − p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
0ϕ̂+ϕ̂−,

(S6)

∫ ∫
ψ̂†±ψ̂

†
0ψ̂±ψ̂0 =

∫ ∫ (
1− Ω2

64

(
3− ε∓ δ

2
∓ (p1 + p3) +O((Λ +

ε+ δ

4
)2)

))
ϕ̂†±ϕ̂

†
0ϕ̂±ϕ̂0

+
Ω2

64

∫ ∫ (
1− ε± δ

2
± (p1 + p3) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
0ϕ̂0ϕ̂0

+
Ω2

64

∫ ∫ (
1± (p1 − p2) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
±ϕ̂±ϕ̂0

+
Ω2

64

∫ ∫ (
1± (p3 − p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
±ϕ̂0ϕ̂±

+
Ω2

64

∫ ∫ (
1 +

ε± δ
2
∓ (p2 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
±ϕ̂±ϕ̂±

+
Ω2

64

∫ ∫ (
1 +

ε∓+δ

2
± (p2 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
∓ϕ̂±ϕ̂∓

+
Ω2

64

(
1∓ δ/2± (p2 + p3) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
∓ϕ̂0ϕ̂0

+
Ω2

64

(
1∓ δ/2± (p1 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
0ϕ̂±ϕ̂∓, (S7)

∫ ∫
ψ̂†±ψ̂

†
∓ψ̂±ψ̂∓ =

∫ ∫ (
1− Ω2

32

(
1 +

ε

2
∓ p1 − p2 + p3 − p4

2
+O((Λ +

ε+ δ

4
)2)

))
ϕ̂†±ϕ̂

†
∓ϕ̂±ϕ̂∓

+
Ω2

64

∫ ∫ (
1− ε± δ

2
± (p1 + p3) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
∓ϕ̂0ϕ̂∓

+
Ω2

64

∫ ∫ (
1− ε∓ δ

2
∓ (p2 + p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
0ϕ̂±ϕ̂0

+
Ω2

64

∫ ∫ (
1− ε

2
± (p1 − p2) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†0ϕ̂

†
0ϕ̂±ϕ̂∓

+
Ω2

64

∫ ∫ (
1− ε

2
± (p3 − p4) +O((Λ +

ε+ δ

4
)2)

)
ϕ̂†±ϕ̂

†
∓ϕ̂0ϕ̂0. (S8)
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Inserting (S5)-(S8) into the symmetric contribution to the interacting Hamiltonian V̂s, we get

V̂s =

∫ ∫ ( ∑
a=−1,0,+1

(
ψ̂†aψ̂

†
aψ̂aψ̂a + 2

∑
b>a

ψ̂†aψ̂
†
b ψ̂aψ̂b

))

=

∫ ∫ ( ∑
a=−1,0,+1

(
ϕ̂†aϕ̂

†
aϕ̂aϕ̂a + 2

∑
b>a

ϕ̂†aϕ̂
†
bϕ̂aϕ̂b

))

+
Ω2

8

∫ ∫ ((
ϕ̂†+1ϕ̂+1 + ϕ̂†−1ϕ̂−1

)
ϕ̂†0ϕ̂0 +

(
ϕ̂†+1ϕ̂

†
−1ϕ̂0ϕ̂0 + H.c.

)
+O((Λ +

ε+ δ

4
)2)

)
+

Ω2

16

∫ ∫ (
(p2 − p1 + p4 − p3)

(
ϕ̂†+1ϕ̂

†
0ϕ̂+1ϕ̂0 − ϕ̂†−1ϕ̂

†
0ϕ̂−1ϕ̂0 + (ϕ̂†+1ϕ̂

†
−1ϕ̂0ϕ̂0 + H.c.)

)
+O((Λ +

ε+ δ

4
)2)

)
. (S9)

The last term in (S9) contains a correction to the spin-mixing contribution that depends linearly on the momentum.
However, its value is bounded by the cutoff in the momentum spread around the wells. Since |pi − pj | < 2Λ� 1, for
simplicity we neglect such correction to the interacting Hamiltonian.

Finally, considering that, for |p| > Λ, the fields ϕ̂j(p) vanish when acting on the low energy subspace, we can
formally remove the cut-off in the integration and perform the Fourier transform. By doing so, we obtain the
expression introduced in the main text for the symmetric interacting Hamiltonian in the dressed basis, namely

V̂s =

∫
dr

g0

2

∑
ij

ϕ̂†i ϕ̂
†
jϕ̂jϕ̂i + g̃2

(
ϕ̂†1ϕ̂1 + ϕ̂†−1ϕ̂−1

)
ϕ̂†0ϕ̂0 + g̃2

(
ϕ̂†1ϕ̂

†
−1ϕ̂0ϕ̂0 + ϕ̂1ϕ̂−1ϕ̂

†
0ϕ̂
†
0

) , (S10)

with g̃2 = g0
Ω2

16

(
1 +O((Λ + ε+δ

4 )2)
)
. Proceeding analogously with the nonsymmetric part of the interaction potential,

V̂a = g2
2

∫
dr
∑
j(ψ̂

†
F̂jψ̂)2, yields corrections to Hamiltonian (2) in the main text of the order g2Ω2, which are safely

neglected since |g2| � g0 for 87Rb.

MEAN-FIELD SIMULATIONS OF THE THREE-MODE MODEL

In the protocol described in the main text, the state approaches the Fock states 1√
N !

(b̂†0)N |0〉 and
1

(N/2)! (b̂
†
−1)N/2(b̂†1)N/2 |0〉 while being in the P and TF phases, respectively. The mean field description of the evolu-

tion away from the BA phase is therefore expected to be inaccurate, with the dynamics being dominated by quantum
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FIG. S1. (Color online) Comparison between full quantum and mean-field simulations. A state initially prepared at
|N,α, 0〉 is driven from ε̃ = −3λ to ε̃ = 3λ with τd = 8h/λ. The relative occupation of the state |φ0〉, N0/N , along the drive
is plotted in (a1) and (b1) for α = 0 and α =

√
20, respectively. In both cases N = 1000. The corresponding spinor phase θs

is plotted in (a2) and (b2). Solid blue lines show the results from full quantum simulations of Hamiltonian (S11). Red dashed
lines show the results obtained with the mean-field equations (S12).
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fluctuations. Expressing Hamiltonian (4) in the main text explicitly in terms of the mode operators b̂j yields

Ĥ0 =
λ

N

[
(b̂†−1b̂

†
1b̂0b̂0 + H.c.) + N̂0(N̂1 + N̂−1)

]
− ε̃N̂0. (S11)

From eq. (S11), the corresponding three-mode mean-field equations read

i~ḃ1 =
λ

N

[
b∗−1b0b0 + b∗0b0b1

]
,

i~ḃ0 =
λ

N

[
2b1b−1b

∗
0 + b∗1b1b0 + b∗−1b−1b0

]
− ε̃b0,

i~ḃ−1 =
λ

N
[b∗1b0b0 + b∗0b0b−1] , (S12)

where we have identified 〈b̂±1,0〉 = b±1,0. Initially setting b±1 = 0 or b0 = 0 into eqs. (S12) results in a stationary
state, independently of ε̃, in contradiction with the dynamics predicted by Hamiltonian (S11). To address this issue,
we test the effective model with the GPE of the full gas by simulating an analogous drive across the P-TF-BA excited
diagram in a slightly lower lying family of excited states. As shown in [65], the properties of the excited phases of
Hamiltonian (4) in the main text vary smoothly across the energy spectrum. Therefore, we instead prepare the initial
state in a coherent state |N,α, θs〉 = 1√

N !
(αe−iθs/2b̂†−1 +

√
1− 2α2b̂†0 + αe−iθs/2b̂†1)N |0〉, averaging α2 > 0 atoms in

the pseudospin ±1 states. In these conditions, mean-field computations quickly converge to full quantum simulations
as α is increased, as exemplified in Fig. S1, while the energy gap and the location of the phase boundaries do not vary
significantly as long as α2 � N .

VALIDITY OF THE THREE-MODE APPROXIMATION

The realization of stripe phases in an excited state permits to access the phase in regimes where it is experimentally
more feasible. Notably, for nearly spin-symmetric BECs, the approach enhances the contrast of the spatial modulations
in gas, which is proportional to Ω. Since the protocol presented in the main text relies on the effective description of
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FIG. S2. (Color online) Validity of the three-mode approximation. (a1) Expected value of L̂zz as a function of ε̃ for a
state initially prepared at ψ =

√
α(φ−1 +φ1) +

√
N − 2αφ0, with N = 104, α = 25 and ~ωt = 2π ·140Hz. The state is evolved

under the GPE while driving ε̃ from −3λ to 3λ, and keeping Ω = 0.65Er (red dashed line), Ω = 0.75Er (green dash-dotted
line) and Ω = 0.85Er (solid blue). The total drive time is set to τd = 8h/λ. (a2) Relative occupation of the three self-consistent
modes φ−1, φ0 and φ1, along the drive depicted in (a1). (b1) Expected value of L̂zz as a function of ε̃ for a state initially
prepared at ψ = α(φ−1 +φ1) +

√
N − 2α2φ0, with α =

√
10−3N and N = 2 · 104 (dashed-red), N = 5 · 104 (green dash-dotted

line) and N = 8 · 104 (solid blue). The state is evolved under the GPE, driving ε̃ from −3λ to 3λ, while keeping Ω = 0.5Er

and adjusting ωt so that n = 10−14 cm−3. The total drive time is set to τd = 8h/λ. (b2) Corresponding relative occupation of
the modes φ−1, φ0 and φ1 along the drive depicted in (b1).
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Hamiltonian (4) in the main text, we discuss here its validity. Hamiltonian (4) follows from a three-mode truncation
of the Hilbert space, and it predicts the energy gap that is exploited in the quasi-adiabatic protocol to drive the
state through a quantum phase transition. Qualitatively, the approximation is expected to be accurate for small
condensates when |λ|, |ε̃| � g0n, ~ωt. Nonetheless, it is difficult to quantitatively estimate its accuracy. To this end,
we use the GPE of the full dressed and trapped spinor gas, and quantifies the accuracy of the approximation by
computing the projection of the time-evolved states on to the subspace spanned by the three self-consistent mode,
f3M = 1

N2

∑
j

∣∣∫ drφ∗j ·ψ∣∣2, previously computed via imaginary time evolution.
In the main text, we exemplify the realization of the protocol with simulated drives along two different trajectories

in the Ω− ε plane of the most excited phase diagram of the effective three-mode model. In both cases, the trajectories
start at Ω = 0.65, and we set N(0) = 104. In general, with g̃2 ∝ Ω2, the energy scale of the effective model is
enhanced at larger Ω, which reduces the preparation time and the relative impact of the heating mechanisms and
of photon scattering loss. However, the validity of the three-mode model is progressively more challenged as Ω is
increased. Similarly, at any given density, the robustness of the protocol strongly depends on the number of particles,
as exemplified in Fig. S2.

Note that different physical quantities are affected differently by the value of f3M. For instance, macroscopic
entanglement preparation is expected to be very sensitive to the full quantum structure of the prepared state. Thus,
even tiny reduction of f3M are expected to result in considerable reduction of entanglement. On the contrary, the
macroscopic spin transfer is less sensitive to the the leakage of probability amplitude out of the three-mode description,
as exemplified in Fig. S2. As a consequence, the optimal experimental parameters will be strongly dependent on the
physical observables of interest.
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