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Abstract

There currently exist a variety of statistical methods for modelling bivariate ex-

tremes. However, when the dependence between variables is driven by more than one
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latent process, these methods are likely to fail to give reliable inferences. We consider

situations in which the observed dependence at extreme levels is a mixture of a possi-

bly unknown number of much simpler bivariate distributions. For such structures we

demonstrate the limitations of existing methods and propose two new methods: an

extension of the He�ernan-Tawn conditional extreme value model to allow for mix-

tures and an extremal quantile-regression approach. The two methods are examined

in a simulation study and then applied to oceanographic data. Finally, we discuss

extensions including a subasymptotic version of the proposed model, which has the

potential to give more e�cient results by incorporating data that are less extreme.

Both new methods outperform existing approaches when mixtures are present.

Keywords: conditional extremes, multivariate extremes, o�shore wave extremes, mixture
distributions, quantile-regression

1 Introduction

The dependence between multivariate response variables is often driven by their co-dependence

on one or more underlying driving processes. For example, the strength of the relation-

ship between wind speed and wave height depends on a combination of wind direction, land

shadows, atmospheric pressure systems and their underlying driving processes. Often these

driving processes are either unknown or unobserved, or both. If the driving processes are

known, the interaction between them is likely to be highly non-linear and without speci�c

knowledge of the physical processes that drive the response, the dependence structure can

look highly complex. Consequently, building parsimonious statistical models that capture

well the complex, multi-layered data generating mechanisms is di�cult. One possible form

of a complex dependence structure occurs when the joint distribution is a mixture of two

or more simpler jointly distributed random variables. Such situations are the focus of this

paper since the limiting assumptions of standard multivariate extreme value theory do not

hold at non-asymptotic levels for problems of this type.
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We are motivated by an oceanographic application with complex extremal dependence

structures. In the design of o�shore facilities it is crucial - both for safety and reliabil-

ity reasons - to protect against the most extreme storms. Hence, it is necessary that the

extremal dependence structures between the multiple physical hazards that may co-occur

during a storm are well understood. We consider a synthetic response variable (Ross et al.,

2020) that is a function of signi�cant wave height HS and wave period T2, illustrative of the

response of �oating o�shore structures to wave loading. In particular, these synthetic re-

sponse variables increase with increasing HS and for T2 approaching a resonance frequency.

The de�nitions of HS and T2 are given in Holthuijsen (2010).

We consider (T2, HS) data from a location in the northern North Sea, see Figure 1.

There are two di�erent types of waves present - swell waves (relatively large wave pe-

riod compared to signi�cant wave height) and wind-generated waves (relatively small wave

period compared to signi�cant wave height). These correspond to waves generated on a

large spatio-temporal scale and local wind-generated waves, respectively. Without expert

knowledge, we are unable to identify which wave type each observation corresponds to. We

propose and test two novel methods to make inference on data for which the dependence

structure arises in this way, and for which it is either non-trivial or impossible to identify

the process from which each observation has been generated.

It is standard practice in multivariate extreme value analysis to assume that observations

are drawn from a common distribution and to use limit theory as a basis for extrapolation

to give estimates on the probability of rare events. Traditionally, separate classes of ex-

treme value models have been developed for bivariate data that exhibit either asymptotic

dependence or asymptotic independence, see Coles et al. (1999) for an overview. Two ran-

dom variables X and Y are asymptotically dependent if the probability that they are both
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Figure 1: Signi�cant wave height HS and wave period T2 from a northern North Sea

location. Black dots: data for 1957 - 2018; red dots: corresponding storm peak data.

large is of the same magnitude as when one is large, i.e.,

χ := lim
p↑1

P(Y > F−1
Y (p)|X > F−1

X (p))

is such that χ > 0, where FX and FY denote the distribution functions of X and Y . If

this limiting quantity χ = 0, we say that the variables are asymptotically independent.

In a multivariate setting, it is possible that some subsets of variables are asymptotically

dependent and others are asymptotically independent but not completely independent, see

for example Simpson et al. (2020). Many extreme value methods, for instance Coles and

Tawn (1994), Joe (1994), Capéraà et al. (1997), Naveau et al. (2009), and Genest and Segers

(2009) are based on the assumption of multivariate regular variation. This means that they

cannot model the distribution well for parts where some variables are large and others are

not. He�ernan and Tawn (2004) introduced the more �exible conditional extremes model

which can handle this situation. In particular, in the bivariate case their model provides a

description for Y |X (X|Y ) in the region where X (Y ) is large. More precisely, when X and
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Y are transformed marginally to follow standard Laplace distributions this model takes on

the form of heteroscedastic regression, the parameters of which are estimated using only

observations for which X (Y ) is large, see e.g. Keef et al. (2013).

However, despite the �exibility of the He�ernan-Tawn model, the �vanilla� version does

not provide good estimates when the data consists of non-trivial mixture structures such

as that shown in Figure 1, in which we can see that signi�cant wave height conditional

on wave period grows in two di�erent ways as wave period increases. Sometimes both

variables are relatively large (wind-generated waves) at the same time, but at other times

only signi�cant wave period is high and wave height takes on more moderate values (swell

waves). As will be seen in Section 2.2, this is an indication that the vanilla He�ernan-Tawn

model is not likely to be suitable in practice.

Our proposed solution to this limitation is a mixture formulation of the He�ernan-

Tawn model which assumes that, after a suitable transformation, Y |X can be captured

by a mixture of K = 1, 2, 3, . . . regressions each associated with a di�erent probability

weighting. Whilst we takeK to be unknown, it will not be treated as a parameter, rather we

use model selection methods to select the most appropriate value for K, and do not account

for its uncertainty subsequently. A second method comprising a novel quantile-regression-

based mixture approach is also developed. This uses the same parametric form for the

conditional quantiles as proposed in the mixture formulation of the He�ernan-Tawn model.

It di�ers from the He�ernan-Tawn mixture formulation mainly in the sense that it is more

�exible due to its semi-parametric nature. We �nd that for bivariate data both methods

show similar performance in estimating probabilities of extreme sets, i.e., P((X, Y ) ∈ A)

where A is extreme in X or Y or both, with the uncertainty assessed through the use of

a semi-parametric bootstrap. The main advantage of the quantile-regression approach is
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that it leads to more stable �ts, i.e., it gives more consistent results for small sample sizes.

However, unlike the mixture formulation of the He�ernan-Tawn model, it does not extend

naturally beyond bivariate data. We also discuss a subasymptotic version of the He�ernan-

Tawn mixture model motivated by a theoretical example where the mixture probabilities

vary with the level of extremity. However, we �nd that this model does not perform better

in modelling the dependence structure of (T2, HS) than the He�ernan-Tawn mixture model.

It is worth noting that mixture models have previously been used for multivariate ex-

tremes. Boldi and Davison (2007) focus on a mixture of asymptotically dependent variables.

Simpson et al. (2020), Chiapino et al. (2019), Engelke and Ivanovs (2020) investigate d-

dimensional random variables and describe how to estimate on which of 2d − 1 subspaces

the limiting spectral measure has mass. If we let d = 2 and condition on one variable

being large, the resulting two subspaces correspond to asymptotic dependence and asymp-

totic independence. So, when one mixture component is asymptotically dependent and one

asymptotically independent, there are strong similarities between the problem here and

that considered by these authors, although only Simpson et al. (2020) consider the form

of the asymptotic independence term in the mixture. However, none of the existing work

considers the situation with two or more di�erent levels of asymptotic independence.

The paper is organised as follows. In Section 2, the current conditional extremes mod-

elling framework and its extension incorporating mixture structures are discussed. Section 3

introduces the two inference methods that exploit the framework from Section 2. A sub-

asymptotic version of the conditional extremes mixture model is discussed in Section 4.

Finally, the oceanographic application is presented in Section 5. To conserve space, a sim-

ulation study is found in the supplementary material. Code and data are published at

https://github.com/stantendijck/HTMixtureModel.
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2 Framework

2.1 He�ernan-Tawn model

Let (X, Y ) be a real-valued bivariate random vector on standard Laplace margins. If (X, Y )

do not follow such marginal distributions, transformation to standard Laplace margins is

achieved using the probability integral transform (Keef et al., 2013). The He�ernan-Tawn

(HT) model, from He�ernan and Tawn (2004), extrapolates the joint distribution of (X, Y )

to the region of the sample space where either one, or both, of the variables is extreme.

Without loss of generality, we present the model for the case in which X is extreme; the

full bivariate model requires an equivalent de�nition for the case of Y being extreme.

The underlying principle for the model is that there exist parameters α and β with

|α| ≤ 1, β < 1 such that the normalisation

Zx :=
Y − αX
Xβ

∣∣∣{X = x} (1)

of the conditional random variable Y |{X = x}, converges in distribution to a non-degenerate

random variable Z with distribution function G(z) as x→∞. Under assumptions relating

to convergence and existence of joint densities, He�ernan and Resnick (2007), Resnick and

Zeber (2014), Wadsworth et al. (2017) show that this implies that in the limit the random

variables Z and X − u are independent conditional on X > u, i.e., for x > 0 and z ∈ R

lim
u→∞

P
(
Y − αX
Xβ

≤ z, X − u > x | X > u

)
= G(z)e−x (2)

holds. To ensure identi�ability of α and β, Keef et al. (2013) impose the condition that

limz→∞G(z) = 1, i.e., no mass of Z is at {+∞} but there can be mass at {−∞}. They

also impose additional constraints on α and β such that the implied distribution of Y is

not inconsistent with its marginal distribution. We call these the Keef constraints.
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Inference is performed by assuming that the limiting relation (2) holds above a �nite

threshold level u. Speci�cally,

Y |(X > u)
D
= αX +Xβ(µ+ σZ̃), (3)

where
D
= represents equality in distribution, Z̃ is the standardised residual random vari-

able, i.e., Z̃ = (Z − µ)/σ, with µ the mean of Z and σ > 0 the standard deviation. The

model parameters α and β are typically inferred via assuming that the distribution of Z

is Gaussian. The four HT parameters (α, β, µ, σ) can now be estimated using any method

of statistical inference. Conditional on the estimated parameters, the distribution of the

residual random variable is then estimated non-parametrically using the empirical distri-

bution of Zx when x > u. Finally, u is chosen as low as possible such that estimates for HT

parameters are approximately unchanged at any higher threshold (an analogy of univariate

threshold stability plots) whilst ensuring that X and Z are independent given X > u.

Simple interpretations of the parameters α and β exist: (i) (α, β) = (1, 0) implies

asymptotic dependence between X and Y with χ =
∫∞

0
(1−G(−t)) exp(−t) dt; (ii) α < 1

implies asymptotic independence between X and Y ; (iii) β > 0 implies that the variability

between X and Y grows as X grows; (iv) 0 < α < 1 (or −1 < α < 0) implies positive (or

negative) association between X and Y . In environmental applications, β < 0 is unrealistic,

as this imposes that all the quantiles of Y conditional on X converge to the same value as

X grows to in�nity, so we restrict 0 ≤ β < 1.

We explore a variant of the He�ernan-Tawn model, which is more �exible than the HT

model and in some theoretical examples improves the convergence rates to limit (2), see

Lugrin et al. (2021). Previously, we assumed that relation (3) holds for some �nite level u.

However, it is possible that for u < ∞, inference can be improved if we adjust the model
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form. To that end, we rede�ne Zx from equation (1) to

Zx :=
Y − αX − γ(X)

Xβ
|{X = x}. (4)

By taking γ : R → R to be a function such that γ(x) = o(xβ) for β ≥ 0 as x → ∞, this

is equivalent to the HT model in the limit as x → ∞. For reasons of parsimony, we take

γ(x) = γ ∈ R, and so introduce an intercept in the mean component of the HT regression

model, which is identi�able if β > 0.

2.2 Extreme value distribution with asymmetric logistic depen-

dence structure

We now give an example of a simple bivariate distribution for which the HT model is

inadequate, i.e., it has limit limz→−∞G(z) 6= 0. Here, di�erent choices for α and β also

lead to non-degenerate G(z) but with limz→∞G(z) 6= 1. The �ndings from this example

motivate our developments in Section 2.3. Let (XA, YA) denote a random variable on

Laplace margins following a bivariate extreme value copula with an asymmetric logistic

dependence structure (Tawn, 1988). This distribution has parameters θ1, θ2 ∈ (0, 1), η ∈

(0, 1), and distribution function

P (XA ≤ x, YA ≤ y) = exp
{
−θ1tx − θ2ty −

[
((1− θ1)tx)

1/η + ((1− θ2)ty)
1/η
]η}

(5)

where tx := log 2 − log(2 − exp(−x)) for x ≥ 0 and tx := log 2 − x for x < 0, with ty

similarly de�ned.

In Figure 2, data simulated from this distribution, conditional on XA > 2 with θ1 =

θ2 = η = 0.5, show two arms centred on y = x and y = 0 for di�erent conditional quantiles.

The heterogeneity in the two arms results in two possibly non-degenerate HT limits, each
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of which fully captures the behaviour around one arm whilst treating the behaviour around

the other as degenerate. The �rst limit models the upper arm, and has (α, β) = (1, 0) and

non-degenerate G(z)

G(z) = θ1 + (1− θ1) ·

[
1 +

(
1− θ2

1− θ1

)1/η

· exp

(
−z
η

)]η−1

, z ∈ R.

Note that G(z) puts weight θ1 on {−∞}. The second limit corresponds to the lower arm

with (α, β) = (0, 0) and G(z) = θ1e
−tz for z ∈ R, which puts weight 1− θ1 on {+∞}.

Applying the HT model to this joint distribution directly results in poor extrapola-

tions because at any �nite level the normalised random variable Z cannot capture the two

di�erent growth rates. Figure 2 (right) illustrates simulated data and implied conditional

quantiles from the model we develop in Section 3 when �tted to the data shown in Figure 2

(left). The implied conditional quantiles capture the true behaviour of the top and bottom

quantiles well (matching the true gradients of 1 and 0 respectively) but with a less clear

distinction between the two mixture components than for the true process. This analysis

may be improved by picking a di�erent threshold.

2.3 He�ernan-Tawn mixture model

The He�ernan-Tawn model is applicable to the example from Section 2.2 with limz→−∞G(z) 6=

0. However, no model is imposed for the part of the distribution that corresponds to G

at {−∞}. This may not be a problem if our interest lies in characteristing combinations

of maximum X with associated maximum Y but it might be that the other part of the

distribution also corresponds to extreme scenarios. For example, in the case of HS versus

T2, there might be wave periods corresponding to one or more marine structural resonance

frequencies which is of greater interest than the maximum wave period. Motivated by
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Figure 2: (Left) Data simulated from model (5), conditional on XA > 2 with θ1 = θ2 = η =

0.5 including true conditional quantile functions; (Right) Data simulated from the inferred

model (7), �tted to the data in the left plot, with an identical sample size, including the

implied conditional quantile functions.

these considerations, we introduce the He�ernan-Tawn mixture (HTM) model to better

characterise distributions such as the one discussed in Section 2.2, conditional on one of

the variables being large. We allow for multiple parameter combinations such that all

possible non-degenerate residual distributions are captured simultaneously.

Let K ≥ 1 be an integer and let (X, Y ) have standard Laplace margins such that the

joint distribution is a mixture of K copulas. We assume that for x > u, where u is large,

F (x, y) =
K∑
k=1

pkFk(x, y), (6)

where F is the cumulative distribution function of (X, Y ) and for all k, Fk is a distribution

function on Laplace margins, pk ∈ (0, 1], and
∑K

k=1 pk = 1. We also assume that each Fk

has a copula formulation such that the associated limit (2) holds for a single pair (αk, βk)

with residual distribution Gk placing no mass at {−∞,+∞}. Thus the asymmetric logistic
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copula (5) cannot be Fk. As we assume the distributional form (6) only for x > u, this

condition holds for standard mixture distributions, but can apply for more complex models

which, when in an extremal state (i.e., X > u), approximate to a mixture form.

Central to the HTM model is the assumption that the HT model, with the intercept

extension proposed in equation (4) is applicable to Fk, with parameters γk ∈ R, αk ∈ [−1, 1],

0 ≤ βk < 1, µk ∈ R and σk > 0, for all k. Using the notation of equation (3), we de�ne the

K component HTM model as

Y |(X > u)
D
= γk + αkX +Xβk(µk + σkZ̃k), with probability pk, k = 1, . . . , K, (7)

for large u, where Z̃k, which only exists with probability pk, follows a non-degenerate

distribution for each k. Moreover, we assert that Z̃k is independent of both X and Z̃k̃

for k 6= k̃. We further impose that E[Z̃k] = 0 and Var(Z̃k) = 1, which implies that the

distribution function of Zk := µk + σkZ̃k does not put mass on {±∞}. For identi�ability

reasons, αk > αk′ for all pairs k > k′. A model formulation which allows αk = αk′ (k 6= k′)

is discussed in the supplementary material. We impose the Keef constraints on all pairs

(αk, βk) separately. For k = 1, . . . , K, αk and βk are such that for x > 0 and z ∈ R

lim
u→∞

P
(
Y − γk − αkX

Xβk
≤ z, X − u > x | X > u

)
= Gk(z)e−x,

where Gk(z) =
∑k−1

i=1 pi + pk · Hk(z) and Hk is the distribution function of Zk, so Gk has

mass
∑k−1

i=1 pi at {−∞} and
∑K

i=k+1 pi at {+∞}.

The He�ernan-Tawn model is a special case of this model with K = 1. Distribution (5)

corresponds to the caseK = 2 with (α1, β1, p1, α2, β2, p2) = (1, 0, 1−θ1, 0, 0, θ1). WhenK =

2 other classes of distributions that fall into this mixture formulation with (α1, β1, α2, β2) =

(1, 0, 0, 0) are bivariate max-stable distributions with some mass of the spectral measure
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on the boundaries of the simplex, and max-linear models (De Haan and Ferreira, 2007,

Chapter 6) where di�erent innovation variables control each marginal variable.

2.4 The quantile-regression model

Quantile-regression is used to model the inverse of the distribution function of Y conditional

on X = x, i.e., to �nd qτ (x) := F−1
Y |X=x(τ) for some non-exceedance probability τ ∈ (0, 1)

over a range of x. It is common practice to de�ne a parametric class of functions

{qτ : R→ R : qτ (x) := q(x|ωτ ), ωτ = (ωτ1, . . . , ωτp) ∈ Ω ⊆ Rp}

with p ≥ 1 parameters in the parameter space Ω. We are interested in a parametric form

for q(· | ωτ ), that is motivated by the HT mixture model (7),

q(x|ωτ ) = γ(τ) + α(τ)x+ ζτx
β(τ), (8)

where ωτ = (α(τ), β(τ), γ(τ), ζτ ) such that (α(τ), β(τ)) ∈ [−1, 1] × [0, 1) satisfy the Keef

et al. (2013) constraints, γ(τ), ζτ ∈ R, and ζτ is a one-to-one function of quantiles of all

residual distributions Zk, k = 1, . . . , K.

Let (X, Y ) be a bivariate random variable following model (7) and de�ne Yk, k =

1, . . . , K, as the random variable representing the kth mixture component of the model,

i.e., Yk|(X > u)
D
= γk + αkX +Xβ(µk + σkZ̃k). Further, let Yk ⊥ Yk′ for k 6= k′, then

lim
u→∞

P(Y1 < Y2 < · · · < YK | X > u) = 1, (9)

i.e., the mixture components separate completely in the limit, and as u→∞, we get that

the parameter functions γ(τ), α(τ) and β(τ) in equation (8) are piecewise constant in τ .

More precisely, γ(τ) = γk for
∑k−1

i=1 pi < τ ≤
∑k

i=1 pi; α(τ) and β(τ) behave similarly.
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The parameter function ζτ is an increasing function of τ within each interval of τ where

γ(τ), α(τ) and β(τ) remain constant.

To consider multiple conditional quantiles jointly, let m ∈ N and 0 < τ1 < · · · < τm < 1

bem non-exceedance probabilities. We assume that the vector conditional quantile function

(qτ1(x), . . . , qτm(x)) belongs to the following parametric class of functions

{(qτ1 , . . . , qτm) : R→ Rm : qτi(x) = q(x|ωτi) for i = 1, . . . ,m, (ωτ1 , . . . ,ωτm) ∈ Ωm ⊆ Rpm} ,

where Ωm is the parameter space, not necessarily equal to the Cartesian product Ωm. In

particular, we consider models with ωτ = (ϕ, ζτ ) where ϕ is common across ωτ ′ for all τ
′

and ζτ is speci�c to a particular τ . As an illustration, consider model (7) with K = 1, then

ϕ = (γ1, α1, β1) and ζτ = F−1
Z1

(τ) where FZ1 is the distribution function of the residuals Z1.

3 Inference

3.1 The He�ernan-Tawn mixture model

We focus our discussion on �tting the HTM model given a known number of mixture

components K. Inference for K and accounting for its uncertainty are generic in mixture

modelling and a reversible jump MCMC mixture model could be applied, see Richardson

and Green (1997). Instead, we adapt a simple pseudo-Bayesian inference approach. As

the focus of this paper is on the extremal dependence structure, we �rst estimate the

marginal distributions and ignore their inference uncertainty subsequently. We describe a

heuristic to select K, and also examine the sensitivity of inferences to this selection. We

then proceed to make inferences using standard Bayesian methods. Consequently, unlike

in reversible jump MCMC mixture models, we do not account for uncertainty in K in
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subsequent inference. Details of outline code for inference for model parameters and for

the probabilities of extreme events are given in the supplementary material.

For ease of notation, we de�ne θ(k) = (γk, αk, βk, µk, σk, pk) to be the vector of parame-

ters of component 1 ≤ k ≤ K and θ = (θ(1), . . . ,θ(K)) the vector containing all parameters

of the model. Henceforth, we assume that we have data {(xi, yi) : xi > u} of size n

generated by model (7) for some K << n. Moreover, we assume that αi < αj for i < j.

In mixture modelling, it is common to introduce a latent random variable J ∈ {1, 2, . . . , K}

denoting the mixture component associated with the random pair (X, Y ). In performing

Bayesian inference, we need to calculate the likelihood of parameters given the data. So,

we need to make a computationally convenient assumption on the HTM residual distribu-

tions Zk, k = 1, . . . , K. We follow the same arguments as He�ernan and Tawn (2004), and

assume for parameter estimation purposes that all residual distributions are Gaussian, i.e.,

Z̃k ∼ N (0, 1) for all k = 1, . . . , K. This technique based on a (false) assumption is equiva-

lent to estimating equations methods, which are known to yield asymptotically consistent

estimators (Zeger and Liang, 1986). We stress that the Gaussian assumption is discarded

once θ is estimated. So, we get for k = 1, . . . , K

P (J = k|X = x, Y = y,θ) := Pk

(
x, y|θ(k)

)/ K∑
κ=1

Pκ

(
x, y|θ(κ)

)
, (10)

where J = k is the event that random variable (X, Y ) is drawn from component k, where

Pk

(
x, y|θ(k)

)
=

1

σkxβk
√

2π
exp

{
−
(
y − γk − αkx− µkxβk

)2

2σ2
kx

2βk

}
.

We can now simulate index J = ji for each observation (xi, yi) using equation (10), and

calculate the augmented log-likelihood l(a) via

l(a) (θ|{(xi, yi, ji)}ni=1) =
K∑
k=1

lk

(
θ(k)|{(xi, yi, ji)}ni=1

)
,
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where the log-likehood lk for data from mixture component k is given by

lk

(
θ(k)|{(xi, yi, ji)}ni=1

)
=

n∑
i=1

1{ji = k} · logPk

(
xi, yi | θ(k)

)
,

if σk > 0 and (αk, βk) satisfy the Keef constraints (Keef et al., 2013), otherwise lk = −∞.

Since we now have an expression for the likelihood, we can infer the parameters of the model.

In particular, we use an adaptive MCMC algorithm similar to Roberts and Rosenthal

(2009). In this algorithm, we do not estimate the mixture probability parameters pk since

estimates can be inferred from the estimates of the remaining parameters. A uniform prior

over the whole parameter space is used to illustrate performance with no expert knowledge.

Other prior choices may be more appropriate for some applications, see Section 3.2.

For each draw θ̂ from the MCMC chain, we simulate {ji}ni=1 each with probability (10),

and de�ne the residuals of the kth component ẑki := (yi− γ̂k − α̂kxi)/xβ̂ki for all 1 ≤ i ≤ n,

1 ≤ k ≤ K with ji = k. The distribution function Hk(z), de�ned in Section 2.3, is now

estimated using the empirical distribution function of {ẑki : 1 ≤ i ≤ n with ji = k} and

p̂k := nk/n, where nk denotes the number of observations allocated to component k. The

supplementary material details estimation of probabilities of extreme sets for this model.

Selecting an optimal value of K is challenging. In simulation studies discussed in the

supplementary material, rather than attempt to �x K, we explore the sensitivity of our

inference to the value ofK. If an estimate ofK were required, we suggest the following two-

step heuristic: (i) �t the model as described above with K = 1; (ii) The number of modes

of the residual distribution conditional on X > v for some v > u is our heuristic estimator

for K. We use v > u since the mixture components might not yet have separated at u.

Simulations show that when the αis are relatively distinct, this technique is reasonable.
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3.2 Incorporating prior probability on asymptotic dependence

Placing a uniform prior over the parameter space (Section 3.1) implies that the posterior

does not put positive weight on the class of models corresponding to asymptotic dependence

(i.e., αK = 1). This is because the subset of the parameter space which corresponds to

asymptotic dependence is a null set with respect to the uniform prior. Hence, this procedure

consistently under-estimates the risk of extreme events occuring together, see the simulation

study in the supplementary material and discussion in Coles and Pauli (2002).

Here, we show how to sample from the posterior distribution of the parameters of the

He�ernan-Tawn mixture model using a prior which puts mass on both asymptotic depen-

dence and asymptotic independence. We will not discuss how to calculate the likelihood

given a set of parameters as this is similar to before. Instead, we focus on making good

MCMC proposals and calculating the MCMC acceptance probability when the prior puts

a positive mass on the event {αK = 1}. For brevitity, we consider model (7) with K = 1.

We de�ne the priors of the parameters γ1, β1, µ1 and σ1 to be the (improper) uniform

distribution on the parameter space with independent components. Let δ be the Dirac

delta function, then the density function of the prior on α1 is

fω(x) = ω · δ(1− x) +
1− ω

2
· 1{−1 ≤ x < 1},

i.e., the prior is a mixture which puts weight ω ∈ [0, 1] on {α1 = 1} and weight (1− ω) on

a uniform(−1,1), similar to that in Coles and Pauli (2002).

We choose a Metropolis-Hastings Gaussian random walk update for the parameters γ1,

β1, µ1 and σ1 with some �xed standard deviation h. We specify the proposal distribution

for α1 at iteration t with current value α
(t)
1 to be given by min{1, α(t)

1 + hZ} for standard

Gaussian distribution Z such that there is a positive probability of proposing the asymptotic
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dependent model. The proposal density g(·|α(t)
1 ) is thus given by

g(x|α(t)
1 ) :=

(
1− Φ

(
1− α(t)

1

h

))
· δ(1− x) +

1

h
ϕ

(
x− α(t)

1

h

)

for x ∈ R, where ϕ and Φ are the density and distribution function, respectively, of a

standard Gaussian. The Metropolis-Hastings acceptance ratio αMH given a proposal θ(t+1)

can now be derived using standard techniques, see the supplementary material.

3.3 Inference for the quantile-regression model

We consider two data generating frameworks, namely models (3) and (7), and we show

how to use quantile-regression techniques to infer the parameters without distributional

assumptions. In Section 2.4, we parameterised the conditional quantile function qτ via the

parameter vector ωτ . First consider a single value of τ , then ωτ may be inferred as

ω̂τ := argminωτ∈Ω

{
n∑
i=1

ρτ (yi − q(xi|ωτ ))

}
, (11)

where the check function ρτ : R → R is de�ned as ρτ (z) = z (τ − 1{z < 0}), see Koenker

and Hallock (2001) and Koenker (2005). The check function is locally linear hence the

estimator is robust to outliers.

Now let m ∈ N and 0 < τ1 < · · · < τm < 1. We infer conditional quantile functions qτj ,

j = 1, . . . ,m, jointly using

ω̂ = argmin(ωτ1 ,...,ωτm )∈Ωm

m∑
j=1

cj

n∑
i=1

ρτj(yi − q(xi | ωτj)) (12)

for weights cj > 0 speci�ed by the user, see Bondell et al. (2010). We apply the methodology

to equidistant τj on the range [τ1, τm] ⊂ (0, 1), for which it is natural to let cj := 1 for all
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j = 1, . . . ,m. If τj are not equidistant, then the choice for the weights cj can be adjusted to

re�ect this. If the parameter space Ωm was equal to the Cartesian product of the marginal

parameter spaces Ωm, then the joint estimation procedure would be equivalent to applying

equation (11) separately for each quantile. We only consider models with ωτ = (ϕ, ζτ )

where ϕ is common across ωτ ′ for all τ
′ and ζτ is speci�c to τ .

Now we have jointly estimated conditional quantiles qτ1(x), . . . , qτm(x) for �xed quantile

levels τi for i = 1, . . . ,m, we give an estimator for qτ (x) for any τ ∈ (0, 1) \ {τ1, . . . , τm}.

To do this, we only need to estimate ζτ since ϕ̂ is already available. We estimate ζτ by

ζ̂τ := argminζ∈R

{
n∑
i=1

ρτ (yi − q(xi|(ϕ̂, ζ))) : (ϕ̂, ζ) ∈ Ω

}
(13)

and so q̂τ (x) := q(x|(ϕ̂, ζ̂τ )) for qτ (x).

The above framework requires adjustment for inferring mixture model (7) when the

mixture probabilities are unknown. We discuss this for K = 2 but it generalises for general

K. For τ1 < · · · < τm, we de�nem0 as the index for which τm0 < p1 < τm0+1, where p1 is the

mixture probability corresponding to the �rst component, and separate our presentation

into cases where m0 is known (falsely) and unknown.

If m0 is known, the parameters (ωτ1 , . . . ,ωτm) of the quantile-regression model are:

ωτj = ωτj(m0) =

 (γ1, α1, β1, ζ
1
τj

) if j ≤ m0,

(γ2, α2, β2, ζ
2
τj

) if j > m0,

(14)

where the parameters ζkτj increase over j for k = 1, 2. The parametric form (8) is used for

q(x | ωτ ). To improve stability of parameter estimates, we constrain the medians of Z1

and Z2 to be equal to 0. To impose this constraint, we �x ζ1
τj

= 0 if τj = P̂1/2 and ζ2
τj

= 0

if τj = (1 + P̂1)/2, where P̂1 = (τm0 + τm0+1)/2 is a crude estimator for p1.
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When m0 is unknown, its natural estimator m̂0 minimizes (12) over m0, i.e.,

m̂0 := argmin
k=1,...,m−1

{
min

(ωτ1 (k), ..., ωτm (k))∈Ωm

m∑
j=1

cj

n∑
i=1

ρτj(yi − q(xi | ωτj(k)))

}
,

where ωτj(k) is as in equation (14). The optimisation is over a set ofm−1 possibilities with

a non-convex objective function. The estimated parameters of the model for m̂0 are denoted

by ω̂m̂0 = (γ̂1, α̂1, β̂1, γ̂2, α̂2, β̂2, ζ̂
1
τ1
, . . . , ζ̂1

τm̂0
, ζ̂2
τm̂0+1

, . . . , ζ̂2
τm), where each of (ζ̂1

τ1
, . . . , ζ̂1

τm̂0
)

and (ζ̂2
τm̂0+1

, . . . , ζ̂2
τm) are increasing. Estimation of p1 and probabilities of extreme sets

under this model are discussed in the supplementary material. As speci�ed by our approach,

inferred conditional quantile functions within a mixture component are increasing in τ , since

ζτj have to be ordered. However, this is not necessarily true across di�erent components.

In �tting the model we have chosen not to impose the condition that the inferred

conditional quantile functions are increasing in τ for each x for the following reasons.

Simulation studies showed that conditional quantile functions usually do not cross if there

is little to no overlap of the di�erent components. When they do cross, the intersection is

near the threshold u and not at large values. Hence, if non-crossing is of interest, this can

be achieved by increasing the threshold su�ciently. The trade-o� is that less data will be

used for inference and the variance of the estimates will increase. Moreover, if there exists

a signi�cant amount of overlap, then requiring quantile-functions to not cross whilst also

requiring that they take on the form in equation (8), can result in arbitrarily large biases.

4 A subasymptotic conditional mixture model

The extension of the HT model developed in Section 2.3 assumes that mixture probabilities

on the conditional distribution Y |X are constant with respect to X, when X takes an
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extreme value. This model adds signi�cant �exibility over the HT model, however, it does

not include the case where the mixture probabilities pk(x), k = 1, . . . , K are varying with

level x. In particular, if there exists a component k with pk(x) → 0 as x → ∞, then for

model (7) to �t well, the threshold u needs to be raised until pk(x) ≈ 0 for x > u. This is

potentially very ine�cient, given the subsequent loss of data to �t the model. So, here we

extend model (7) to a non-standard subasymptotic version of the He�ernan-Tawn mixture

model, where the mixture probabilities change with the level of extremity of X.

We are motivated by the following theoretical example. Let, λ > 1, 0 < t < 1 and

Z ∼ Bernoulli(p), X ∼

Exp(1) if Z = 0,

Exp(λ) if Z = 1,

Y ∼

 tX if Z = 0,

λX if Z = 1,

(15)

where Exp(λ) denotes the Exponential distribution with rate λ. De�ne XL = F−1
L (FX(X))

and YL = F−1
L (FY (Y )), where F−1

L is the inverse cumulative distribution function of a

standard Laplace, FX and FY are the distribution functions of X and Y . Calculations in

the supplementary material show that for large XL,

YL | XL
D
=

 tXL + [t log(2(1− p))− log(2p)] with probability 1− pλ
2λ−1(1−p)λ · e

−(λ−1)XL

λXL + [λ log(2(1− p))− log(2p)] with probability pλ
2λ−1(1−p)λ · e

−(λ−1)XL .

Thus, for α2 in model (7), α2 = λ > 1, but for x > 0, p2(x) = pλ
2λ−1(1−p)λ · e

−(λ−1)x → 0 as

x→∞ with α2 = 1− limx→∞ log(p2(x))/x, which is explained by Theorem 1 below.

Note that we cannot model the distribution of (XL, YL) well under the framework of

model (7). We extend model (7) by allowing pk to be a function of X, i.e.,

Y |(X > u)
D
= γk +αkX +Xβk(µk + σkZ̃k), with probability pk(X), k = 1, . . . , K, (16)

where α1 < · · · < αK . In contrast with the He�ernan-Tawn mixture model, there could

exist 2 ≤ k0 ≤ K such that αk0−1 < 1 < αk0 , as illustrated in the motivating example,
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where k0 = K = 2. This model is equivalent to (7) if pk(x) is constant for all x > u and

k = 1, . . . , K, but it is di�erent for generic pk(x). With this new model form, we capture

non-constant mixture probability. It is not trivial to determine the valid parameter space

of this new model, however, Theorem 1 provides some insight.

Theorem 1. To ensure that model (16) for Y |(X > u) does not violate the properties of

the marginal distribution of Y , for all k = 1, . . . , K we require

|αk| ≤ lim inf
x→∞

(
− log pk(x)

x

)
+ 1.

The proof can be found in Appendix A. If K = 2 and p2(x) = e−(c−1)x for c ≥ 1, this result

implies that a necessary condition is α2 ≤ c. So α2 can be larger than 1 as long as it is less

than c. More generally, we consider the class of parametric functions

pk(x) =
akx

bke−ckx∑K
j=1 ajx

bje−cjx
, (17)

where ak > 0, bk ∈ R and ck ≥ 0 for all k = 1, . . . , K. For identi�ability reasons, we

de�ne ck for k = 1, . . . , K such that min{ck : k = 1, . . . , K} = 0 without loss of generality.

We consider this class of parametric functions for pk(x) to be �exible as it satis�es the

following four properties: (i) model (7) is a special case when ak = pk, bk = 0 and ck = 0

for all k = 1, . . . , K; (ii) model (15) is also a special case with a1 = 1, b1 = 0, c1 = 0,

a2 = pλ/(2λ−1(1− p)λ), b2 = 0, and c2 = (λ− 1); (iii) Theorem 1 yields

|αk| ≤ lim inf
x→∞

− log
(
akx

bke−ckx
)
− log

(∑K
j=1 ajx

bje−cjx
)

x

+ 1 = ck + 1

for all 1 ≤ k ≤ K. So, |αk| can be larger than 1; (iv) de�ne J := {j = 1, . . . , K : cj = 0},

and J̃ := {j ∈ J : bj = max{bi : i ∈ J }}, then model (16) is asymptotically equivalent

to (7) with K = |J̃ | and pj = aj/
∑

i∈J̃ ai for i ∈ J̃ as u→∞.
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5 Oceanographic data analysis

We investigate the oceanographical variables T2 andHS from the NORA10 hindcast dataset

of Reistad et al. (2011). These variables are 3 hourly summary statistics that characterise

the ocean environment; T2 is the wave period and HS the signi�cant wave height. We

apply the methods introduced above to data from a site in the northern North Sea, see

e.g. Figure 1. from Konzen et al. (2021). This site is scienti�cally interesting as it displays

seasonal and directional variability in the ocean environment.

To avoid issues with temporal and directional dependence in the observed data, we pre-

process the data by combining an established peak-picking method of Randell et al. (2015)

and keeping observations that are associated with storms originating from the Atlantic

ocean, see supplementary material. This method is used to identify a subset of storm peak

observations of HS and associated values of T2 which are approximately temporally inde-

pendent. The main idea behind this method is the underlying assumption that consecutive

storms are independent events. From the preprocessing, we reduce 176, 765 observations

recorded over the period 1957−2018 to 1597, and we denote the observations corresponding

to signi�cant wave height and wave period with the labels HS,peak and T2,ass, respectively.

Figure 1 shows a scatter plot of the original and storm peak samples.

Figure 1 shows that conditional on T2, HS either takes on relatively small or relatively

large values, whereas intermediate values are rare suggesting a mixture model with at least

two components. We compare 4 mixture models applied to these data: the HT(K) and

QR(K) models with K = 1 and K = 2. We de�ne QR(K) and HT(K) to be abbreviations

that correspond to the �ts of the HTM model using the quantile-regression model and the

He�ernan-Tawn mixture model, respectively, with a �xed number K of components.

We also consider two intuitive �partitioning� methods that accommodate the mixture

23



structure by partitioning the data into swell waves and wind-generated waves. We al-

locate observations to either component using wave steepness, a quantity proportional to

HS,peak/T
2
2,ass. This approach is physically well-motivated and often adopted by ocean engi-

neering practitioners. Observations with steepnesses below a threshold value are allocated

to the swell component, the remainder to the wind-generated component. For our data,

the marginal distribution of steepness is bimodal, the lower mode corresponding to swell

and the upper to wind-generated waves. It is therefore natural to choose the threshold as

the value that lies between the modes and has a minimal estimated density. After par-

titioning, we �t single component models to swell and wind wave subsamples using the

quantile-regression and He�ernan-Tawn models. We denote these models as Part-QR(1)

and Part-HT(1), respectively. Finally, the joint distribution is given by a mixture of the

two inferred single component distributions, with mixture weights determined empirically.

Here, the context of the data allows us to undertake this method of partitioning. In general,

this method is application dependent and requires expert knowledge.

Since the models introduced in this paper assume data on standard Laplace margins,

we transform the data to standard Laplace scale using standard extreme value techniques

(Coles and Tawn, 1994). Speci�cally, we proceed as follows: (i) select a marginal threshold;

(ii) below the threshold, transform using the empirical probability integral transform; (iii)

above the threshold, use the generalised Pareto distribution. Here we take the 70% quantiles

of the marginal distributions of T2,ass and HS,peak although the �tted generalised Pareto

distribution was found not to be overly sensitive to the choice of threshold. Both estimated

generalised Pareto shape parameters were negative, implying �nite upper endpoints of the

marginal distributions of T2,ass (95% con�dence interval [15.4s, 21.3s]) and HS,peak (95%

con�dence interval [16.8m, 24.4m]) for our data. We also took a threshold u for the HT
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model as the 80% quantile of the standard Laplace distribution. Inferences were found to

be relatively insensitive with respect to this choice. Similarly to the simulation studies, we

set γk = 0 for all k = 1, . . . , K in the HT mixture model. For trace plots of the model �ts,

we refer to the supplementary material.

We �x the originally �tted marginal models to avoid introducing further marginal un-

certainty into inferences considering dependence. The uncertainty within the procedures is

estimated via the following semi-parametric bootstrap procedure. We simulate a dataset of

the same size as the original data using the inferred HT(2) model, see the supplementary

material for details. Next, we �t the HT(K) and QR(K) models for di�erent values of k

and estimate the distribution of the response variable by simulating a large number of ob-

servations from the inferred models. Then, we transform the generated sample to original

margins using the original inferred �xed marginal models.

One of the assumptions of the HTM model is that the mixture probability is constant

as a function of the conditioning random variable although Section 4 shows this need not

be the case. So, we design a goodness-of-�t diagnostic, see Figure 3, in which we plot

estimates for the mixture probability p2 as function of x. Both estimators in this plot

are calculated using a sliding window approach with a �xed number of 30 observations per

sliding window. The estimator p̂2(x) is de�ned as the average of the allocation probabilities,

see equation (10), over its corresponding bin. Additionally, we plot Part-p̂2(x), estimated

under the partitioning method, for which allocation to groups is deterministic. Finally, we

obtain con�dence bounds for both estimators using a semi-parametric bootstrap. From

Figure 3, we argue that both estimators provide enough evidence to assume that the true

mixture probability is constant as a function of x for x > u. Moreover, there is no evidence

to assume that limx→∞ p2(x) = 0. Hence, the HTM model should be a reasonable approach
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Figure 3: Estimates p̂2(x) (left) and Part-p̂2(x) (right) of p2(x) for the data. 95% con�dence

bounds are visualized with dashed lines.

in modelling the dependence structure of signi�cant wave height and wave period, and there

is no need to use the subasymptotic extension of the HTM model.

We compare the di�erent model �ts via the inferred joint distribution functions and

the distributions of synthetic structure response variable R, illustrative of the response of

�oating o�shore structures to wave loading, considered by Ross et al. (2020),

R :=
aHS,peak

1 + b(T2,ass − c)2
, (18)

where a, b and c are structure-speci�c parameters with c being a resonant frequency.

We take one response variable that is parameterised using equation (18) with (a, b, c) =

(2, 1, 16). This choice corresponds to structural responses with resonant frequencies in the

near and far tail of the distribution of wave period.

Results are summarised in Figures 4 and 5 and parameter estimates are given in Tables 1

and 2. In Figure 4, we plot the inferred joint probabilities, see supplementary material
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Model α̂ β̂

HT(1) 0.42 (0.03, 0.69) 0.39 (0.23, 0.53)

HT1(2) 0.39 (0.16, 0.62) 0.05 (0.00, 0.25)

HT2(2) 0.84 (0.21, 0.96) 0.24 (0.12, 0.58)

Part-HT(1)-Sea 0.74 (0.53, 0.85) 0.40 (0.31, 0.52)

Part-HT(1)-Swell 0.77 (0.24, 0.97) 0.13 (0.01, 0.45)

Table 1: Posterior median parameter estimates for the �tted HT(K) (K = 1, 2) and

Part-HT(1) models including 95% credible intervals. We write HTi(2) to denote the ith

component of the HT(2) model, where i ∈ {1, 2}.

for details, for each rectangle on a discrete grid of rectangles covering the (T2,ass, HS,peak)

domain [12, 16.5]×[3.1, 15.1]. The partitioning methods, QR(2) and HT(2) models generate

similar estimates showing two distinct arms in the dependency structure with increasing

T2,ass. In contrast, the HT(1) and QR(1) models do not capture the mixture structure as

well. However, closer inspection of the HT(1) and QR(1) estimates also provides evidence

for two arms in the dependency structure. This is due to the fact that the corresponding

residual distributions are bimodal, itself suggesting the need for a two component mixture

model, i.e., K ≥ 2, see the end of Section 3.1.

We plot the results of the analysis for R in Figure 5. The top left corner gives esti-

mated return levels using the 6 inference methods. The remaining panels show the semi-

parametric bootstrap uncertainty of these estimates. We note that for a return period less

than 1, 000, 000 years, the one component models estimate a smaller return level of the

response R compared to the two component models; and higher return level for a larger

return period. Moreover, the one component models tend to have wider con�dence bounds.
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Model γ̂ α̂ β̂

QR(1) 0.69 ( 0.37, 1.07) 0.56 (0.31, 0.75) 0.48 (0.31, 0.55)

QR1(2) 0.16 (−0.99, 1.03) 0.25 (0.10, 0.59) 0.00 (0.00, 0.45)

QR2(2) 0.90 ( 0.68, 1.19) 0.85 (0.55, 1.00) 0.24 (0.00, 0.46)

Part-QR(1)-Sea 0.27 ( 0.08, 0.46) 0.81 (0.70, 0.95) 0.36 (0.11, 0.47)

Part-QR(1)-Swell −0.09 (−0.58, 0.49) 0.91 (0.54, 1.00) 0.16 (0.00, 0.43)

Table 2: Parameter estimates for the �tted QR(K) (K = 1, 2) and Part-QR(1) models

including 95% con�dence intervals calculated via bootstrap. We write QRi(2) to denote

the ith component of the QR(2) model, where i ∈ {1, 2}.

Finally, the grey curve (representing the distribution calculated using the data-generating

HT(2) model) lies within the 95% con�dence bounds of all of the methods.

From Tables 1 and 2, we note that the parameter estimates for the HT(K) and QR(K)

models are similar across the di�erent methods. The con�dence intervals tend to be wider

for the one component models which is explained by a combination of model misspeci�ca-

tion and the Keef constraints. The model parameters for the Part-QR(1) and Part-HT(1)

models are signi�cantly di�erent from the QR(2) and HT(2) models. This is an expected

feature due to the separate marginal transformations of the partitioned dataset. These

parameter estimates for α and γ are strongly negatively correlated, so representations to

obtain orthogonality of these parameters may be helpful.

We conclude that the two component models should be used when applicable since

the con�dence bounds on the return level estimates are tighter. There seems to be little

di�erence between QR(2) and HT(2), hence either could be used. The estimates that

are generated using the partitioning methods, especially Part-QR(1), have an even smaller
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Figure 4: Estimates of probabilities of extreme sets on original margins using models:

QR(1) (top left), HT(1) (top right), the partitioning method using two QR(1) models

(middle left), the partitioning model using two HT(1) models (middle right), QR(2) (bot-

tom left), and HT(2) (bottom right). Axis labels and scales are identical.

variance when compared to QR(2). However, the partitioning methods rely on considerable

prior understanding of the underlying physical processes.
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Figure 5: Top left: return level estimates of the synthetic response R in years using 6

approaches to inference. Other panels: uncertainty analysis for all six methods, similar to

Figure 4. The solid lines are median estimates of the bootstrap ensemble and the dashed

lines are the 2.5% and 97.5% quantiles. The light grey line shows the originally inferred

HT(2) model and is common across all subplots. Axes are identical over plots.
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SUPPLEMENTARY MATERIAL

Supplementary material: includes results of simulation studies, code and data, and

other supporting material as referred to in the main text (.zip �le)

A Proof of Theorem 1

Let X, Y ∼ Laplace(1). We consider the following simpli�ed version of model (16)

Y |X ∼ αkX, with probability pk(X) (19)

with 0 ≤ αk < αk′ for all 1 ≤ k ≤ k′ ≤ K, and where pk : R → [0, 1] are functions such

that for all x
∑K

k=1 pk(x) = 1. We will �nd a necessary condition on αk given pk such

that the model formulation for Y does not contradict the assumption that Y is marginally

distributed as a standard Laplace random variable. We need 2 · P(Y > y) = e−y for all

y > 0 as this implies that for all u ∈ R and y > 0, P(Y > y,X > u) ≤ 1
2
e−y.

Using model (16), we simplify this probability as follows

P(Y >y,X > u) =
K∑
k=1

P(Y > y, X > u, J = k) =
K∑
k=1

P(αkX > y, X > u, J = k)

=
K∑
k=1

P(X > max{y/αk, u}, J = k) =
K∑
k=1

∫ ∞
max{y/αk,u}

P(J = k|X = x)fX(x) dx

=
1

2

K∑
k=1

∫ ∞
max{y/αk,u}

pk(x)e−x dx

=
1

2
e−max(y/α1,u) +

1

2

K∑
k=2

∫ max{y/αk−1,u}

max{y/αk,u}

(
K∑
i=k

pi(x)

)
e−x dx, (20)

from writing p1(x) = 1 −
∑K

i=2 pi(x). We note that if αk ≤ 1 for all 1 ≤ k ≤ K, then

by bounding pk(x) ≤ 1, we get P(Y > y,X > u) ≤ e−y/2. Moreover, if α1 > 1, then we
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trivially have P(Y > y,X > u) ≥ e−y/2. We will assume from here onwards that we have

an index 1 ≤ j < K such that α1 < α2 < · · · < αj ≤ 1 < αj+1 < · · · < αK .

We are now in a position to prove the theorem by contradiction. To that end, assume

that there exists an 1 ≤ i0 ≤ K such that

αi0 = lim inf
x→∞

− log pi0(x)

x
+ 1 + ε (21)

for some ε > 0. Note that this expression excludes i0 ≤ j as lim infx→∞−
log pi0 (x)

x
+1+ε > 1.

Hence, we deduce that i0 > j. Now, de�ne Ai0(x) = pi0(x)e(αi0−1)x. Equation (21) implies

lim inf
x→∞

Ai0(x) = lim inf
x→∞

pi0(x)e

(
−

log pi0
(x)

x
+1+ε−1

)
x

= lim inf
x→∞

eεx =∞.

Hence, there exists an x′ such that for all x > x′, Ai0(x) > αi0 . For y > max{αKx′, αKu},

we get that equation (20) simpli�es as follows

P(Y > y,X > u) (22)

=
1

2
e−y/α1 +

1

2

K∑
k=2

∫ y/αk−1

y/αk

(
K∑
i=k

pi(x)

)
e−x dx ≥ 1

2
e−y/α1 +

1

2

i0∑
k=2

∫ y/αk−1

y/αk

(
K∑
i=k

pi(x)

)
e−x dx

≥ 1

2
e−y/α1 +

1

2

i0∑
k=2

∫ y/αk−1

y/αk

pi0(x)e−x dx =
1

2
e−y/α1 +

1

2

i0∑
k=2

∫ y/αk−1

y/αk

(
Ai0(x)e−(αi0−1)x

)
e−x dx

>
1

2
e−y/α1 +

1

2

∫ y/α1

y/αi0

αi0e
−αi0x dx =

1

2

(
e−y/α1 − e−αi0 ·y/α1

)
+

1

2
e−y,

(23)

where in the last line we used thatAi0(x) > αi0 and
⋃i0
k=2

[
y
αk
, y
αk−1

]
=
[
y
αi0
, y
α1

]
. Since αi0 >

1 there exists a y′ > max{αKx′, αKu} such that for all y > y′, we have e−y/α1−e−αi0 ·y/α1 > 0.

Then for all y > y′ and u ∈ R, P(Y > y,X > u) > 1
2
e−y. Thus, lim infx→∞Ai0(x) > αi0
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contradicts with the marginal distribution of Y . We conclude that for all i ≥ j + 1, we

need to have lim infx→∞ pi(x)e(αi−1)x ≤ αi, which rearranged gives

αi ≤ lim inf
x→∞

− log pi(x)− logαi
x

+ 1 = lim inf
x→∞

− log pi(x)

x
+ 1.

A symmetrical argument gives the same bound for −αi, concluding the proof.
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