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We study gated field effect transistors (FETs) with an eccentric Corbino-disk geometry, such that
the drain spans its circumference while the off-center inner ring acts as a source. An AC THz
potential difference is applied between source and gate while a static source-drain voltage, rectified
by the nonlinearities of FET electrons, is measured. When a magnetic field is applied perpendicular
to the device, a strong resonance appears at the cyclotron frequency. The strength of the resonance
can be tuned by changing the eccentricity of the disk. We show that there is an optimum value of
the eccentricity that maximizes the responsivity of the FET.

I. INTRODUCTION

Electromagnetic radiation is one of the prime tools to
investigate matter and its properties. This is made possi-
ble by the existence of efficient and compact sources and
detectors in the whole spectrum, with the crucial excep-
tion of the low-THz range (between 0.1 and 30 THz).
This fact, commonly referred to as the “terahertz gap”,
has slowed down technological developments in, e.g., non-
destructive imaging, biosensing, and spectroscopy of ma-
terials [1–3]. In modern optoelectronics there is a deep
need for efficient and tunable photodetectors that oper-
ate in this range [1–6]. Dyakonov and Shur, in 1996, pre-
dicted that a field effect transistor (FET), or any gated
two-dimensional (2D) electron liquid, could be used to
generate and detect THz radiation [7–9].

The device in their seminal work consists of a square
semiconductor quantum-well cavity, hosting a 2D elec-
tron gas, connected to a source and a drain and in close
proximity to a metal gate. When a THz AC source-
gate voltage is applied, typically from incoming THz ra-
diation impinging on an antenna, asymmetric boundary
conditions and intrinsic nonlinearities of the electron fluid
produce a rectified DC source-drain voltage. Resonances
are observed in the rectified (photo)voltage at frequencies
that allow plasmons (collective long-wavelength charge
density fluctuations [10]) to undergo constructive inter-
ference. This phenomenon has been experimentally veri-
fied in semiconductor quantum wells at room [11–13] and
low temperatures [14] and in graphene-based FETs [15–
19].

Recently, it has been shown that the responsivity of
Dyakonov-Shur THz detectors can be greatly enhanced
by shaping them as Corbino disks [20]. In such geome-
try, the electric field becomes singular at the inner con-
tact ring (the source), and the field enhancement results
in a strong nonlinear rectification at the outer ring (the
drain). Motivated by such findings, here we study sim-
ilar photodetectors in a uniform magnetic field perpen-
dicular to the electron liquid, previously performed in
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other geometries and shown to enhance photodetection
[21 and 22]. Under this condition, the spectrum of plas-
mon modes, labelled by their “winding number” η, i.e.
the number of oscillations of the electric field in the angu-
lar direction, is recontructed. Notably, the plasmon spec-
trum splits into two parts, revealing both bulk and edge
modes. Edge magnetoplasmons have frequencies below
the cyclotron frequency for values of η that are not too
large. Bulk-plasmons’ frequencies are instead “pushed”
above the cyclotron frequency.

As shown in what follows, the energy of magnetoplas-
mons depends on the sign of η, with edge modes ap-
pearing only at positive winding numbers (for magnetic
fields along the direction orthogonal to the disk). Fur-
thermore, depending on device parameters and at odds
with Corbino disks characterized by symmetric boundary
conditions [23–25], the dispersion of bulk modes can ex-
hibit a nearly-flat band close to the cyclotron frequency.
When the radii of the source and drain rings are compa-
rable, modes characterized by different winding numbers
appear to have all very similar frequencies. Because of
this feature, we would expect the response of the sys-
tem to be greatly enhanced when the frequency of the
external field is close to the cyclotron one, if we would
be able to excite plasmon modes with different winding
numbers at once. Since the cyclotron frequency can be
tuned with the external magnetic field, the Corbino pho-
todetector could be capable of selectively detecting fre-
quencies deep in the THz gap with a high responsivity.
Unfortunately, in the Corbino geometry this would re-
quire a careful fine-tuning of the potential profile at the
source (inner) ring, which is highly unlikely to be realized
experimentally with a simple circular contact connected
to an antenna. The circular symmetry of the Corbino
disk indeed forbids the mixing of modes of different wind-
ing numbers, and therefore a homogeneous potential at
the source would only excite non-winding plasmons with
η = 0.

To overcome this limitation, we study an “eccentric”
Corbino geometry, whereby the inner source ring is off-
centered and made closer to the outer edge on one side of
the disk. By breaking the circular symmetry, the eccen-
tric geometry enables the excitation of modes character-
ized by different winding numbers with a simple uniform
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source potential. The photoresponse is greatly enhanced
at frequencies near the cyclotron one when the source
is in close proximity of the drain. This requirement is
reminiscent of the condition needed to obtain a plasmon
flat band in concentric Corbino geometries. Therefore,
in eccentric geometries, the photoresponse enhancement
is controlled not only by the size of the inner ring, but
also by its closeness to the drain. We find that, for any
pair of source and drain radii, there is an optimal value
of the eccentricity that maximizes the photoresponse.

In Sect. II we present the model of the electron cav-
ity as a hydrodynamic fluid in the presence of a uniform
perpendicular magnetic field. In Sect. III we apply said
theory to model a Corbino disk. In Sect. IV we study
an eccentric Corbino disk. In Sect. V we report the sum-
mary of our findings and our main conclusions. We note
that the description we use holds for a variety of different
systems [7–9, 18, and 26], and therefore our predictions
have a broad range of applicability.

II. THE MODEL OF THE CAVITY

We consider a general FET, where the active compo-
nent is a 2D electron liquid placed in close proximity to
a metal gate. The geometry used in this paper is that of
a Corbino disk with source and drain electrodes attached
to the inner and outer edges, respectively. It should be
noted, however, that the following applies to general 2D
geometries. A radiation field oscillating at frequency ω
is applied between the source and the gate, typically via
an antenna, while the drain is left fluctuating, i.e. no
current flows through it. We will study rectification of
the oscillating field due to the intrinsic hydrodynamic
nonlinearities of the electron liquid [18, 27–32] (we dis-
cuss below the applicability of such model). A rectified
DC source-drain potential difference, proportional to the
power of the incident radiation, is therefore measured
between source and drain at zero applied bias.

Since we focus on the long-wavelength low-frequency
dynamics of the electron liquid, we model it by means
of hydrodynamic equations [18 and 33]. These govern
the relationship between the density, current and electric
field within the device. We stress that equations for-
mally equivalent to hydrodynamic ones can be derived
by inverting the nonlinear relation between current and
electric field of the electron fluid [18], with no reference to
typical scattering times [34] (i.e. the relations hold true
also for non-interacting electrons). Therefore hydrody-
namic equations should be seen here as an efficient way to
incorporate nonlinearities in the long-wavelength descrip-
tion of the electron liquid. The first of these relations is
the continuity equation, ∂tρ(r, t)+∇· [ρ(r, t)v(r, t)] = 0,
which connects the periodic accumulation of charge den-
sity due to the oscillating radiation field, ρ(r, t), to the
flow velocity, v(r, t). Since electrons are charged, ρ(r, t)
induces a nonlocal Hartree-like electric potential accord-

ing to [18]

U(r, t) =

∫
dr′V (r − r′)ρ(r′, t) , (1)

which in turn acts as the restoring force that sustains
charge oscillations in a feedback loop. In Eq. (1), V (r −
r′) is the Coulomb interaction between two charges at
positions r and r′. The nearby gate, which we assume to
be a perfect conductor, has an important effect: mirror
charges screen the tail of the Coulomb interaction and
make it effectively short-ranged. In view of this fact, and
to simplify the following derivation, we will employ the
so-called “local-gate approximation” [15 and 18]. The
latter consists in assuming a local relation between the
self-induced field and charge density,

U(r, t) = ρ(r, t)/C , (2)

in lieu of the nonlocal one of Eq. (1). This approximation
has been shown [24 and 35] to well reproduce results ob-
tained with Eq. (1) when the gate is explicitly accounted
for. In the specific case under consideration, it allows for
the emergence of edge magnetoplasmons in both semi-
infinite planes and hollow disks. Using the local-gate re-
lation between electric potential and charge density, the
continuity equation becomes

∂tU(r, t) = −∇ · [U(r, t)v(r, t)] . (3)

The equation relating the flow velocity to the self-induced
field is assumed to have the following Euler-like form [18]

e

m
∇U(r, t) = ∂tv(r, t) +

1

τ
v(r, t) + ωcẑ × v(r, t)

+
[
v(r, t) · ∇]v(r, t) + v(r, t)×

[
∇× v(r, t)

]
. (4)

In these equations, −e is the electron charge, m their
effective mass and τ the average time between two suc-
cessive momentum-non-conserving collisions with impu-
rities or phonons. Finally, ωc = eB/m is the cyclotron
frequency and B is the magnetic field applied orthogo-
nal to the 2D electron liquid. The term v(r, t) ×

[
∇ ×

v(r, t)
]
, known as the Lamb vector, represents a nonlin-

ear Lorentz force due to the vortical movement of the
electron fluid itself [36], and can be combined with the
term

[
v(r, t) · ∇]v(r, t) into the single term ∇v2(r, t)/2.

We solve the problem posed by the hydrodynamic equa-
tions (3)-(4) in conjunction with the usual Dyakonov-
Shur boundary conditions

U(r, t)|source = Uext(r) cos(ωt) ,

n̂ · v(r, t)|drain = 0 ,
(5)

corresponding to an oscillating gate-source potential from
the antenna output and an open-circuit drain. Here n̂ is
the unit vector normal to the drain surface.

To solve the problem above, we resort to a perturba-
tive treatment of the system of nonlinear equations. We
assume Uext to be a small parameter and calculate the
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rectified nonlinear response as a perturbation to the po-
tential. We then expand

U(r, t) = U0 + U1(r, t) + U2(r, t) +O(U3
ext),

v(r, t) = v1(r, t) + v2(r, t) +O(U3
ext).

(6)

Here U0 < 0 is the equilibrium gate potential (which fixes
the charge density in the FET according to ρ0 = CU0),
and the equilibrium velocity, v0, is zero by definition.
U1(r, t) and v1(r, t), and U2(r, t) and v2(r, t) are the lin-
ear (order Uext) and nonlinear (order U2

ext) contributions
to the potential and velocity, respectively. Note that,
although small, U2(r, t) is responsible for the only non-
trivial DC rectified potential, which can be detected by
measuring an averaged source-to-drain voltage drop [7–
9, 15, and 18].

Plugging the expansions in Eq. (6) into the set of
equations (2)-(5), we collect terms of order Uext and
U2
ext into two systems of differential equations, which

are linear in U1(r, t) and v1(r, t), and U2(r, t) and
v2(r, t), respectively. The former yields the linear re-
sponse of the system which oscillates at the same fre-
quency as the external source-gate perturbation poten-
tial, i.e. U1(r, t) = U1(r)e−iωt+U∗1 (r)eiωt and v1(r, t) =
v1(r)e−iωt + v∗1(r)eiωt. Conversely, the system of equa-
tions for U2(r, t) and v2(r, t) yields solutions oscillating
at ±2ω and a rectified (time-independent) one. To focus
on the latter part of the potential U2(r, t), we average
equations over time by integrating over a period of oscil-
lation, T = 2π/ω. In this way, the time-dependent parts
of U2(r, t) and v2(r, t) vanish.

The details of the derivation are given in App. A. The
linear systems of equations for U1(r, t) and v1(r, t), and
U2(r, t) and v2(r, t) read

[
ω2
c − ω2f2ω

]
U1(r)− s2fω∇2U1(r) = 0

U1(r)
∣∣∣
source

= Uext(r)

n̂ ·
[
iωfω∇U1(r) + ωcẑ ×∇U1(r)

]∣∣∣
drain

= 0

(7)

where s =
√
−eU0/m is the plasma wave velocity, fω =

1 + i/(ωτ), and

1 + (τωc)
2

U0τ
∇ · [U∗1 (r)v1(r) + U1(r)v∗1(r)] = ∇2φ(r)

φ(r)− v∗1(r) · v1(r)
∣∣∣
source

= 0

n̂ ·
[
ωcẑ ×∇φ(r)− 1

τ
∇φ(r)

]∣∣∣
drain

= 0

.

(8)
Here, φ(r) = v∗1(r) · v1(r)− eU2(r)/m and

v1(r) =
s2

U0

iωfω∇U1(r) + ωcẑ ×∇U1(r)

ω2
c − ω2f2ω

. (9)

The Poisson problem in Eqs. (8) admits a unique solution
for φ(r) and therefore for U2(r) = m/e

[
v∗1(r) · v1(r) −
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FIG. 1. Density plots of the real part of the linear potential,
U1(r) for ω = ωc = 5 s/r0. Panel (a) is evaluated at η = 3.
We can observe three complete oscillations of the potential
around the circumference. Panel (b) is evaluated at η = 5.
Similarly, here we observe five complete oscillations. These
are evaluated at τ = 5 r0/s, where r1 = 2 r0.

φ(r)
]
. In the absence of a magnetic field, the photore-

sponse of the system will exhibit resonances at given fre-
quencies dependant on the geometry of the system. The
lowest of these frequencies is denoted as ωB and deter-
mined numerically for any given disk geometry for later
use (see the following sections).

III. CONCENTRIC CORBINO DISK

We first solve Eqs. (7)-(8) for a concentric Corbino disk
akin to the one studied in Ref.[20], whose inner (source)
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and outer (drain) radii are r0 and r1, respectively. In this
geometry, we can readily solve Eqs. (7) analytically and
determine the full spectrum of magnetoplasmon modes,
owing to the inherent rotational symmetry of the sys-
tem. Such symmetry enables the separation of radial
and angular variables within the solution. We note that
our study differs from that of Ref.[20] in two respects.
Firstly, we consider the role of the magnetic field in mod-
ifying the spectrum of magnetoplasmons. Secondly, we
consider the impact of source-to-gate voltages having a
finite (integer) winding number η. We therefore impose
that U1(r) is equal to Ūext cos(ηθ) at the source, where
Ūext is the magnitude of the external potential and θ
is the angle between r and the x̂-axis. Hence the lin-
ear solution will have winding numbers ±η. Defining
k2 = (ω2

c − ω2f2ω)sign(ω2
c − ω2)/(s2fω), the solutions of

the system of linear differential equations (7) takes the

form U1(r) = U
(η)
1 (r, θ) + U

(−η)
1 (r, θ), where

U
(η)
1 (r, θ) =

{ [
AηIη(kr) +BηKη(kr)]eiηθ , if ω2 < ω2

c[
CηJη(kr) +DηYη(kr)]eiηθ , if ω2 > ω2

c

(10)
Here, Jη(x) = J−η(x) [Iη(x) = I−η(x)] and Yη(x) =
Y−η(x) [Kη(x) = K−η(x)] are (modified) Bessel func-
tions of the first and second kind, respectively. The co-
efficients Aη, Bη, Cη and Dη are determined by apply-
ing the boundary conditions. After some lengthy but
straightforward algebra we find, for |ω| < |ωc|,

U
(η)
1 (r, θ) =

Ūext
2

[
Iη(kr)

Iη(kr0)
−
I ′η(kr1)− γηIη(kr1)

Dη(ω)Iη(kr0)

×
(
Kη(kr)

Kη(kr0)
− Iη(kr)

Iη(kr0)

)]
eiθη, (11)

where γη = ωcη/(ωfωkr1), I ′η(x) = dIη(x)/dx, K ′η(x) =
dKη(x)/dx, and

Dη(ω) =
K ′η(kr1)− γηKη(kr1)

Kη(kr0)
−
I ′η(kr1)− γηIη(kr1)

Iη(kr0)
.

(12)

For |ω| > |ωc|, U (η)
1 (r, θ) has the same form of Eqs. (11)-

(12), with Jn(kr) and Yn(kr) in lieu of In(kr) and
Kn(kr), respectively. In Fig. 1 we plot the real part of

the linear potential U
(η)
1 (r). Counting oscillations at the

outer perimeter of the disk (the drain), it can be seen
that the two edge plasmons produced by manual injec-
tion at the source have η = 3 [panel (a)] and η = 5 [panel
(b)], respectively. In this figure we scale the electrical
potential with U0, lengths with the source radius r0 and
times with r0/s.

Bulk and edge magnetoplasmons can be identified as
the zeros of Dη(ω) and its counterpart for |ω| > |ωc|. For
ωc > 0, the frequencies of magnetoplasmon modes as a
function of the winding number η are shown in Fig. 2 (a).
In this figure potential, lengths and times are given in the
same units of Fig. 1. For convenience, frequencies are

scaled with the first resonant frequency at zero magnetic
field, ωB . There, ungapped edge modes are seen to wind

in the +θ̂ direction (as they only exist for positive η) and
are localised at the outer edge of the disk. Winding in
the opposite direction cannot occur as plasmons would
be bound to the inner edge, which is however held at a
fixed potential.

We also observe that bulk modes exhibit a variable de-
gree of asymmetry: in general, the frequencies are higher
for magnetoplasmons characterized by negative winding
numbers. The asymmetry can be traced back to γη de-
fined after Eq. (11), the only parameter that depends on
the sign of η. Physically, this asymmetry arises from the
relative alignment between the Lorentz force induced by
the magnetic field, acting on the plasmons’ constituent
electrons, and the plasmons’ electric field. The splitting
in frequency of bulk modes can be observed in Fig. 2 (b)
where upper branches refer to negative winding num-
bers. In passing, we note that analogous splittings of
frequencies of bulk modes have previously been observed
in conventional disk geometries [23 and 24] as well as
Corbino disks with symmetric boundary conditions [25].
In contrast, the present case, characterized by asymmet-
ric boundary conditions, admits an additional nearly-flat
band of normal modes. In fact, while the lowest branch
of negative-η bulk modes displays an approximately lin-
ear dispersion, positive-η modes oscillate at around the
cyclotron frequency. The latter plasmon nearly-flat band
has no counterpart in conventional disks [23 and 24] or
Corbino disks under symmetric boundary conditions [25].
We stress that the nearly-flat band becomes a clear fea-
ture of the spectrum only when the inner and outer radii
of the Corbino disk are comparable. When this is not
realized, it becomes unstable against the introduction of
a small damping 1/τ , and the conventional disk solution
is recovered [23 and 24].

The flat plasmon band at ω ' ωc and η > 0 in
Fig. 2 (a) has an important consequence for the nonlin-
ear responsivity of the Corbino disk. For every external
source-to-gate potential Ūext cos(ηθ), we expect the non-
linear rectified potential U2(r) to exhibit a resonance at
ω ' ωc. In fact, U1(r0, θ) can be decomposed into the
sum of two counter-winding potentials, characterized by
winding numbers ±η, one of which (depending on the di-
rection of the magnetic field and the sign of ωc) can excite
a magnetoplasmon mode at the cyclotron frequency. In
turn, such mode produces a rectified voltage U2(r) at
the outer rim of the Corbino disk. We note that such
voltage, thanks to the interference between oppositely-
winding magnetoplasmons, not only is time-independent
but it also contains a non-winding component character-
ized by η = 0 that does not vanish when integrated over
the drain.

In Fig. 3(a) we show U2(r), obtained by numerically
solving Eq. (8), integrated over the outer rim of the
Corbino disk (i.e. the drain) for the first few values of η
and as a function of ω. We clearly recognize a resonance
at ω ' ωc for all values of η. In Fig. 3(b), we show how



5

the maximum of such resonance scales with η.
Such result has an attractive implication. If we would

be able to excite at once magnetoplasmons of frequency
ω ' ωc in a broad range of winding numbers, the result-
ing resonance would grow to become particularly strong,
therefore greatly enhancing the responsivity of the de-
vice. Furthermore, its position could be tuned by chang-
ing the external magnetic field, and it could be made to
span the THz range practically at will. Unfortunately,
the current geometry does not allow to easily achieve such
result: to excite magnetoplasmons with different winding
numbers it is necessary to carefully engineer the poten-
tial applied at the source. This requires superimposing
various harmonics characterized by different values of η,
a fact that is at present experimentally challenging.

For this reason, we will now move to study the experi-
mentally more relevant case of an eccentric Corbino disk.
In fact, while in the Corbino disk circular symmetry leads
to the decoupling of various modes, the lack of symme-
try of the eccentric disc allows their mixing. In turn,
this enables the use of more realistic source potentials
(i.e. uniform along the inner ring) to access the strong
resonance at ω ' ωc, as we proceed to show.

IV. ECCENTRIC CORBINO DISK

The eccentric Corbino FET geometry is shown
schematically in Fig. 4. In this geometry, the inner source
ring is shrunk and placed off-centre. The non-linear
hydrodynamic problem, with the asymmetric boundary
conditions of Eq. (5), can be solved numerically as de-
scribed in Sect. II. First, Eqs. (7) are solved for the linear
potential. Then, by using Eq. (9), Eqs. (8) are solved for
φ(r). From the latter, we can then calculate the non-
linear potential U2(r). Since both Eqs. (7) and (8) are
Poisson problems, they admit unique solutions for a given
set of boundary conditions. We define the eccentricity as
ξ = d/r1 where d is the distance of the centre of the
source from the centre of the disk, and r1 is the outer
radius of the disk. To aid comparison with the previous
section, we keep the drain radius identical to that of the
concentric Corbino disk, and we therefore scale lengths
[times] with r1/2 [r1/(2s)]. Similarly, as in the previ-
ous section, frequencies will be scaled by ωB , the lowest
resonance frequency at zero magnetic field determined
numerically for any given geometry.

We plot the non-linear potential U2(r), integrated
along the drain, as a function of the AC driving frequency
for various magnetic field strengths in Fig. 5 (a). For each
curve, resonances at ω < ωc correspond to edge modes,
while those at ω ≥ ωc can be due to both bulk or edge
ones. Now that the source has been placed off-centre and
close to the drain, we can see that edge plasmons with dif-
fering winding numbers, and hence different frequencies,
can propagate. As an example, for ωc = 7ωB , we can
see three edge modes below the cyclotron frequency (of
frequencies ω/ωB ≈ 1.5, 3.2, 4.8) and one mode above
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FIG. 2. Panel (a) The resonant frequencies of the linear po-

tential, U
(η)
1 (r, θ), obtained from Eq. (11) and plotted against

the winding number η defined before Eq. (10). Bulk mag-
netoplasmon modes are represented by purple squares, while
edge magnetoplasmons are represented by red circles. Panel

(b) The resonant frequencies of the linear potential, U
(η)
1 (r),

against cyclotron frequency, at fixed |η| = 8. Solid (dashed)
lines refer to plasmons propagating in the counterclockwise
(clockwise) direction. The dotted line denotes the edge state.
The purple solid line corresponds to the mode oscillating at
the cyclotron frequency. Units are the same as in Fig. 1. Both
figures are obtained in the limit τ →∞.

it (at ω/ωB ≈ 8.4). As expected from the discussion in
the previous section, for all field strengths the first bulk
mode, fixed around the cyclotron frequency, results in
the largest resonance peak.

It should be noted that although Fig. 5 (a) is obtained
by setting the eccentricity ξ = 0.95, this is not the op-
timum value that maximizes the photoresponse. In fact
Fig. 5 (b) shows that for a source of radius r0 = 0.05 r1/2,
with ωc = 7ωB as used in panel (a), the optimum eccen-
tricity is ξ ≈ 0.8. Fig. 5 (b) further shows that the opti-
mum eccentricity is inversely proportional to the source
radius, r0. It can be further shown that it increases with
the drain radius, r1, and cyclotron frequency, ωc. As
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(a)

(b)

FIG. 3. Panel (a) The non-linear potential at the drain, ob-
tained by numerically solving Eqs. (8), plotted against fre-
quency, at ωc = 5ωB . Different curves correspond to different
winding numbers, η, of the source potential. We note that the
first bulk mode remains pinned at ω = ωc and only increases
in intensity with |η|, while all other modes slowly shift to-
wards higher frequencies. The splitting of higher-order bulk
modes becomes more and more evident at larger η: peaks
split in two, as seen for e.g. η = 6. Units are the same as in
Figs. 1 and 2. For all curves we have set the collision time
τ = 5 r0/s, and the outer radius, r1 = 2 r0. Panel (b) The
value of the nonlinear potential at ω = ωc as a function of η.
The dip at η = 1 is due to the fact that, for small values of η,
the peak is slightly shifted to the right.

such the geometry of such a device must be tailored to
the expected frequency of incoming light.

We now wish to briefly comment on the feasibility of
our device. We consider an FET based on doped bi-
layer graphene at relatively small (i.e. non-quantizing)
magnetic fields, with dimensions on the order of a few
micrometers: similar devices have been recently realised
and shown to be significantly tunable via the applica-
tion of gate voltage [26]. Given the lowest bulk plas-
mon frequency of such devices [17, 26, 37, and 38],
ωB = 300 GHz (this is typically dependent on system size

FIG. 4. Schematic of the eccentric Corbino disk FET studied
in this paper. The perimeter of the device acts as the drain
while a finite small source is connected to the top of the cavity.
Ugate is the back gate DC bias voltage, which in our case is
constant in time and used to fix the charge density. The
FET rectifies the AC source-gate voltage, Uac(t), into the DC
source-drain voltage ∆U .

and for graphene can be changed via the gate voltage),
and an effective electron mass [26], m ≈ 0.036me, where
me is the free electron mass, we can estimate the lower
limit for the magnetic field. The lowest observable edge
plasmon frequency is always similar to the lowest bulk
plasmon frequency provided the source radius is small,
thus, by equating the lowest bulk plasmon frequency with
the cyclotron frequency, ωc = eB/m∗, our estimate for
the minimum magnetic field becomes Bmin ≈ 0.06 T.
This magnitude is easily achievable in experiments. In
passing, we mention that alternatives to applying an ex-
ternal magnetic field do exist [33 and 39].

V. CONCLUSIONS

In this paper we have studied Corbino-disk-shaped
photodetectors with sources at the inner ring which os-
cillate at the frequency of the incoming radiation with
respect to metallic back-gates. The design is similar to
that of conventional Dyakonov-Shur devices, in that a
rectified potential is measured at the outer rim of the
disk, which acts as a fluctuating drain. By applying a
magnetic field in the direction perpendicular to the cav-
ity, the rectification of long-wavelength radiation occurs
from the constructive interference of not only bulk plas-
mons, but also edge magnetoplasmons.

In this geometry, plasmons can circulate along the
entirety of the disk’s perimeter nearly unimpeded [40].
Plasmons in this configuration are categorised by their
winding number, i.e. the number of complete oscillations
of the electron density that occur over a full revolution
around the disk. In the first part of the paper, we stud-
ied the response of a conventional Corbino-disk photode-
tector with the source-ring located at the centre of the
disk. Said geometry admits an analytic solution. In this
configuration individual plasmon modes can be manually
injected by selecting the winding number of the external
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(a)

(b)

FIG. 5. Panel (a) The nonlinear potential, U2(r) integrated
along the drain, obtained by numerically solving the set of
Eqs. (7)-(8), plotted as a function of the frequency of the
incoming radiation. Different curves correspond to different
values of the magnetic field, i.e. of the cyclotron frequency
ωc. For all curves we have set the collision time τ = 10 r1/2s,
and the inner radius r0 = 0.05 r1/2, and thus the eccentricity
is ξ = d/r1 = 0.95. Additionally Uext = U0. The inset
shows a magnification of the graph for 0 < ω/ωB < 4. Here
it is evident that the peak at ω ≈ 3ωB shifts to the right
as ωc increases. Panel (b) The strength of the peak of the
nonlinear potential at the cyclotron frequency, for ωc = 7ωB ,
plotted against eccentricity for different source radii. The
other parameters are the same of Panel (a).

source-to-gate potential. It is important to note that, as
shown in Sect. III, all modes, and in particular ones at
ω ' ωc (which exist only in the presence of asymmetric
boundary conditions and up to large winding numbers, as
long as inner and outer radii are comparable and damping
is small), produce nonlinear rectified potentials that are
also uniform along the edge. Therefore, all contributions

at ω ' ωc can in principle be summed up, with a careful
choice of the source-to-gate external potential, and re-
sult in a large resonance at the cyclotron frequency that
greatly enhances the responsivity of the device. Since
its frequency depends on the magnetic field, exploiting
such strong resonance can lead to the realization of ef-
ficient and tunable THz photodetectors. Unfortunately,
this programme is difficult to be achieved in practice.

Instead, through breaking the circular symmetry of the
system by placing the source off-center and closer to the
edge of the disk, magnetoplasmons with various wind-
ing numbers can be excited with source-to-gate voltages
easily achievable experimentally (i.e. uniform along the
source perimeter). By tuning the degree of eccentricity
of the system, we are able to excite various magneto-
plasmons at once. Therefore, we are able to enhance
the photodetector responsivity at the frequency range
corresponding to the cyclotron one. The best protocol
for photodetection clearly depends on one’s aims. When
searching for the frequency of incoming radiation, it is
best to fix the luminosity of the radiation, where possible,
and scan over a presumed range of frequencies by chang-
ing the magnetic field strength. When measuring the
luminosity of incoming radiation it is best to adjust the
cyclotron frequency to match the incoming radiation’s
frequency to achieve a high gain.
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Appendix A: Derivation of Eqs. (7)-(8)

Plugging the expansions in Eq. (6) into the set of equa-
tions (2)-(5), we collect terms of order Uext and U2

ext into
two systems of linear differential equations, i.e.

∂tU1(r, t) = −U0∇ · v1(r, t)

e

m
∇U1(r, t) = ∂tv1(r, t) +

1

τ
v1(r, t) + ωcẑ × v1(r, t)

U1(r, t)|source = Uext cos(ωt)

n̂ · v1(r, t)|drain = 0

,

(A1)
and

∂tU2(r, t) = −∇ · [U0v2(r, t) + U1(r, t)v1(r, t)]

−∇φ(r, t) = ∂tv2(r, t) +
1

τ
v2(r, t) + ωcẑ × v2(r, t)

U2(r, t)|source = 0,

n̂ · v2(r, t)|drain = 0.

,

(A2)
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respectively. Here we defined φ(r, t) = v21(r, t)/2 −
eU2(r, t)/m. Eqs. (A1) form a closed set of linear differ-
ential equations that can be solved exactly. Their result
is then substituted into Eqs. (A2), which are themselves
linear in U2(r, t) and v2(r, t) and whose solution yields
the rectified potential. The second order set of equa-
tions (A2) can be simplified further by noting that we
are looking for a time-independent potential, therefore
by integrating over a period of oscillation, T = 2π/ω, the
time-dependent parts of U2(r, t) and v2(r, t) will vanish.
For a generic function of time A(t), we define its time-
average as

〈A(t)〉 =
1

T

∫ T

0

A(t)dt . (A3)

After time averaging, Eq. (A2) becomes

∇ · [U0v2(r) + 〈U1(r, t)v1(r, t)〉] = 0

1

τ
v2(r) + ωcẑ × v2(r) = −∇φ(r)

U2(r)|source = 0

n̂ · v2(r)|drain = 0

, (A4)

where now φ(r, t) = 〈v21(r, t)〉 /2− eU2(r)/m, and U2(r)
and v2(r) denote the time-independent components of
U2(r, t) and v2(r, t), respectively.

We will now further simplify Eqs. (A1). We first obtain
two equations by applying the operator ∂t + 1/τ and the
cross product with ẑ to the second of Eqs. (A1). We then
combine the two equations we obtained, and get[(

∂t +
1

τ

)2

+ ω2
c

]
v1(r, t) =

e

m

[(
∂t +

1

τ

)
∇U1(r, t)

− ωcẑ ×∇U1(r, t)

]
. (A5)

The new set of equations is solved by using the Ansatz
(see also the main text, Sect. II)

U1(r, t) = U1(r)e−iωt + U∗1 (r)eiωt,

v1(r, t) = v1(r)e−iωt + v∗1(r)eiωt,
(A6)

from which we obtain the following set of time-
independent linear equations:

− iωU1(r) + U0∇ · v1(r) = 0 , (A7)

and

[ω2f2ω − ω2
c ]v1(r) =

e

m

[
iωfω∇U1(r) + ωcẑ ×∇U1(r)

]
,

(A8)
subject to the boundary conditions

U1(r)|source =
Uext

2
,

n̂ · v1(r)|drain = 0.
(A9)

In these equations we introduced fω = 1 + i/(ωτ). In
addition to Eqs. (A7)-(A9), we have a set of equation
for the quantities U∗1 (r) and v∗1(r). These are obtained
from Eqs. (A7)-(A9) by taking their complex conjugates.
Substituting Eq. (A8) into (A7), results in the following
closed set of equations for U1(r):

[
ω2
c − ω2f2ω

]
U1(r)− s2fω∇2U1(r) = 0

U1(r)
∣∣∣
source

=
Uext

2

n̂ ·
[
iωfω∇U1(r) + ωcẑ ×∇U1(r)

]∣∣∣
drain

= 0

(A10)

Here we define the plasma wave velocity, s =
√
−eU0/m,

where U0, the equilibrium potential, is negative for an
electron fluid. The first of Eqs. (A10) defines a Poisson
problem which, once boundary conditions are specified
as in the second and third of (A10), admits a unique
solution. Such solution is determined analytically for the
case of a concentric Corbino-disk geometry in Sect. III
and numerically for an eccentric disk in Sect. IV.

Once the set of Eqs. (A10) is solved and U1(r) has
been determined, the velocity is given by

v1(r) =
s2

U0

iωfω∇U1(r) + ωcẑ ×∇U1(r)

ω2
c − ω2f2ω

. (A11)

It is then possible to approach the problem posed by
the set of Eqs. (A4) in a similar fashion. Plugging the
definitions in Eqs. (A6) in there, we find

∇ · [U0v2(r) + U∗1 (r)v1(r) + U1(r)v∗1(r)] = 0

1

τ
v2(r) + ωcẑ × v2(r) = −∇φ(r)

U2(r)|source = 0

v2(r)|drain = 0
(A12)

where, explicitly, φ(r) = v∗1(r) · v1(r) − eU2(r)/m. To
further simplify Eq. (A12) and reduce it to a Poisson
problem, we first obtain two equations by taking the di-
vergence and applying the operator ẑ ×∇ to the second
of its equations. We get

1

τ
∇ · v2(r)− ωcẑ · ∇ × v2(r) = ∇2φ(r) , (A13)

and

1

τ
ẑ · ∇ × v2(r) + ωc∇ · v2(r) = 0 . (A14)

Combining such equations with the first of Eqs. (A12)
gives

1 + (τωc)
2

U0τ
∇ · [U∗1 (r)v1(r) + U1(r)v∗1(r)] = ∇2φ(r) .

(A15)
Eq. (A15) has the form of a Poisson equation for φ(r).
Given appropriate boundary conditions, the latter can be



9

solved and yield a unique solution for φ(r) and therefore
for U2(r) = m/e

[
v∗1(r) · v1(r) − φ(r)

]
. To determine

the boundary conditions for φ(r), we first take the cross
product of the second of Eqs. (A12) with ẑ, which yields

1

τ
ẑ × v2(r)− ωcv2(r) = −ẑ ×∇φ(r) . (A16)

Substituting this back into the second of Eqs. (A12) we

get[
1 + (ωcτ)2

]
v2(r) = ωcτ

2ẑ ×∇φ(r)− τ∇φ(r) . (A17)

This leads us to the following solvable set of differential
equations in φ(r):

1 + (τωc)
2

U0τ
∇ · [U∗1 (r)v1(r) + U1(r)v∗1(r)] = ∇2φ(r)

φ(r)− v∗1(r) · v1(r)
∣∣∣
source

= 0

ωcẑ ×∇φ(r)− 1

τ
∇φ(r)

∣∣∣
drain

= 0

.

(A18)
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