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Abstract 

The human conceptual system comprises simulated information of sensorimotor experience and 

linguistic distributional information of how words are used in language. Moreover, the linguistic shortcut 

hypothesis predicts that people will use computationally cheaper linguistic distributional information 

where it is sufficient to inform a task response. In a pre-registered category production study, we asked 

participants to verbally name members of concrete and abstract categories, and tested whether 

performance could be predicted by a novel measure of sensorimotor similarity (based on an 11-

dimensional representation of sensorimotor strength) and linguistic proximity (based on word co-

occurrence derived from a large corpus). As predicted, both measures predicted the order and 

frequency of category production but, critically, linguistic proximity had an effect above and beyond 

sensorimotor similarity. A follow-up study using typicality ratings as an additional predictor found that 

typicality was often the strongest predictor of category production variables, but it did not subsume 

sensorimotor and linguistic effects. Finally, we created a novel, fully grounded computational model of 

conceptual activation during category production, which best approximated typical human performance 

when conceptual activation was allowed to spread indirectly between concepts, and when candidate 

category members came from both sensorimotor and linguistic distributional representations. Critically, 

model performance was indistinguishable from typical human performance. Results support the 

linguistic shortcut hypothesis in semantic processing, and provide strong evidence that both linguistic 

and grounded representations are inherent to the functioning of the conceptual system. All materials, 

data, and code are available at https://osf.io/vaq56/. 
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Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category 

Production 

1. Introduction 

The ability to carve up the world into categories – to group like with like and treat distinct 

entities as equivalent – is arguably the most fundamental process in cognition (Harnad, 2006). It allows 

us to infer similarities based on category membership, and hence make predictions about objects and 

events in the world around us. Critically, categories lend structure to our conceptual system (i.e., 

semantic memory), and so a proper understanding of categories rests on understanding how concepts 

are represented in the conceptual system. 

Current theories of the human conceptual system hold that both simulated information (i.e., 

partial replays of sensorimotor, affective, and other experience) and linguistic distributional information 

(i.e., statistical relationships of how words and phrases co-occur in language) are critical to conceptual 

representation and processing (Barsalou et al., 2008; Connell, 2018; Connell & Lynott, 2014b; Louwerse 

& Jeuniaux, 2008; Vigliocco et al., 2009). Our knowledge of concepts in long-term semantic memory 

(e.g., “what is a cat?”) is largely formed through sensorimotor experience of the world (e.g., seeing, 

hearing or stroking a cat; Barsalou, 1999), which provides grounding to both abstract and concrete 

concepts (Connell et al., 2018; Connell & Lynott, 2012). This modality-specific experience can then later 

be simulated during conceptual processing. For instance, neural regions active during perception in a 

particular modality (e.g., auditory cortex for processing sounds) are also recruited for processing words 

whose meaning relates to that modality (e.g., thunder: Bonner & Grossman, 2012; see also Hauk et al., 

2004). Behavioral studies have further demonstrated complex interactions between the sensorimotor 

information that is processed during perception/action and that simulated during conceptual processing 

(Connell et al., 2012; Connell & Lynott, 2010, 2014a; Dils & Boroditsky, 2010; Zwaan & Taylor, 2006). For 

example, when people passively hold a ball between their hands, judgments about object size are faster 

for manipulable compared to non-manipulable objects (Connell et al., 2012), suggesting a functional role 

for perceptual systems in conceptual processing of objects that is consistent with sensorimotor 

experience of those objects. It is critical to note that sensorimotor information is not restricted to 

concrete concepts like cat, but also underpins the representation and processing of abstract concepts 

like justice (e.g., Connell & Lynott, 2012; Lynott et al., 2020). Indeed, some forms of perceptual 

experience – particularly interoception (i.e., sensations inside the body) – are demonstrably more 

important to the representation of abstract concepts than concrete (Connell et al., 2018). 
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However, concepts are also formed through our experience with language. Linguistic 

distributional knowledge comprises the words and phrases that label concepts and the statistical 

distributions of how they occur together, and is critical to conceptual representation and processing 

(Connell, 2018; Louwerse, 2011). Linguistic distributional information about “cat”, for example, includes 

other words that appear in the same or similar contexts, such as “kitten”, “mouse” and “food”. The role 

of linguistic distributional information has been demonstrated in a wide range of semantic tasks 

(Goodhew et al., 2014; Louwerse & Connell, 2011; Louwerse & Jeuniaux, 2010;  see Wingfield & Connell, 

2020 for a review). For instance, the frequency with which two words co-occur in the same context 

predicts how quickly they can be understood as a novel conceptual combination, as well as how often 

the conceptual combination process is likely to succeed (Connell & Lynott, 2013). Even semantic 

decision – that is, the classification of a given word as abstract or concrete – can be predicted by how 

closely the context of the target word resembles the contexts of the decision options (e.g., whether the 

contexts of “cat” and “concrete” are more similar than the contexts of “cat” and “abstract”; Wingfield & 

Connell, 2020).  

Both sensorimotor and linguistic distributional information typically interact to drive conceptual 

processing, depending on the exact context or cognitive task (Connell, 2018). Although sensorimotor 

simulation can provide a more detailed, precise conceptual representation when required, linguistic 

distributional information may provide a quicker and more efficient way of processing concepts 

compared to sensorimotor simulation (Barsalou et al., 2008; Connell & Lynott, 2014b; Louwerse, 2011). 

In certain circumstances, linguistic distributional information could therefore be used as a response 

heuristic – that is, a linguistic shortcut – when rapid representation of a concept in the form of its 

linguistic label is sufficient for the task in question (Connell, 2018; see also Connell & Lynott, 2013, 

2014b; Lynott & Connell, 2010). Hence, although concept labels are ultimately grounded in 

sensorimotor simulation, a given label does not have to be grounded every time it is processed 

(Louwerse & Connell, 2011). 

1.1. Category Production 

A common way of testing how concepts are structured and accessed from long-term memory is 

with a category production task (also called semantic or verbal fluency), whereby a participant is 
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presented with a category label such as ANIMAL1, and asked to name concepts belonging to that 

category (Battig & Montague, 1969; Cohen et al., 1957; McEvoy & Nelson, 1982; Van Overschelde et al., 

2004). Despite such frequent use in cognitive research, as well as in neuropsychological settings as a 

clinical tool (e.g., Cerhan et al., 2002), the mechanisms driving responses in category production tasks 

are not well understood. Traditionally, the process of listing members of a given category is assumed to 

reflect access to taxonomic categorical structures in semantic memory (e.g., Rosch et al., 1976; 

Warrington & McCarthy, 1987). There is also some evidence that the process involves using a controlled 

search that relies on executive function and working memory (Baddeley et al., 1984; Rosen & Engle, 

1997; Unsworth et al., 2013). However, these accounts do not fully explain how or why particular 

concepts are accessed and selected over others. 

Sensorimotor and linguistic distributional information may offer such an explanation, as they 

contain useful categorical information which could dynamically drive responses in category production. 

In terms of linguistic distributional information, there is already some evidence that the relationship 

between category members and category labels (e.g., between cat and ANIMAL) in corpus-derived 

linguistic space is an effective predictor of category membership (Connell & Ramscar, 2001; Riordan & 

Jones, 2011)2. That is, because the words “cat” and “animal” share more linguistic contexts than do 

“bat” and “animal”, cat may be named as a member of the category ANIMAL more readily than bat. 

In terms of sensorimotor information, many theories of conceptual structure favor a process 

whereby categorical distinctions emerge from commonalities in the way we perceive and interact with 

the world around us. For instance, because our experience with cats and dogs tends to involve haptic 

experience of fur, visuo-haptic experience of a four-legged body shape etc., they and other similar 

                                                      

 
1 For clarity throughout this paper, we follow the convention of reporting category names in uppercase 
(e.g., ANIMAL) and category members in lowercase italics (e.g., cat, dog, aardvark). 

2 Hills, Jones, and Todd’s (2012) optimal foraging model is also based on a corpus-derived linguistic 
distributional space, but it focuses on member-to-member relationships (e.g., dog → cat) rather than 
the category-to-member (e.g., ANIMAL → cat) relationships we describe here. Similarly, Taler et al. 
(2020) examined the role of neighbourhood density in a corpus-derived linguistic distributional space, 
but this measure concerns the member concept alone (e.g., neighbourhood density of cat) rather than 
the category-to-member (e.g., ANIMAL → cat) relationships we describe here. Nonetheless, both of 
these models support the general utility of linguistic distributional information in modelling category 
production.  
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concepts tend to group together to form the category of ANIMAL. Some of the strongest evidence for 

such emergent structure comes from computational models that define concepts in terms of abstracted 

feature sets, such as cat [has_fur, miaows, is_independent] (McRae et al., 1997; Tyler et al., 2000). 

However, such models tend to include features that are too abstract to have a clear sensorimotor 

correspondence (e.g., clock [used_to_tell_time]). Thus, even though concepts may group together 

according to the similarity of their featural representations, there is currently a lack of evidence that 

sensorimotor experience alone (i.e., without abstracted features) is enough to accomplish it. 

Nonetheless, because the sensorimotor experience of cats tends to be quite similar to that of animals, 

or at least moreso than bats and animals, we propose that is why cat may be named as a member of the 

category ANIMAL more readily than bat. 

1.2. The Current Study 

In the present paper, we report a two-part study that investigated the role of linguistic 

distributional and sensorimotor information in predicting the rank order, frequency, and timecourse of 

responses in a category production task. To do so, we used a corpus-based measure of linguistic 

distributional information, based on co-occurrence frequencies in a large corpus of English, to create a 

measure of linguistic proximity between category name and member name (e.g., between ANIMAL and 

cat). We also used a novel measure of sensorimotor similarity, based on ratings of sensorimotor 

strength across 11 different dimensions (six perceptual modalities and five action effectors) from Lynott 

et al. (2020), to create a measure of sensorimotor similarity between a category and member concept 

(e.g., between ANIMAL and cat). We hypothesized that, when presented with a category name (e.g., 

ANIMAL), people would name member concepts (e.g., dog, cat, horse…) more often and earlier in a list 

when they were (a) more similar in sensorimotor experience to the category concept, and (b) more 

often encountered in close proximity to the category name in linguistic contexts. We first report a pre-

registered behavioral experiment of category production and a follow-up pre-registered examination of 

typicality ratings based on these category production responses, and subsequently report a novel 

computational model to test the importance of indirect (spreading) activation across sensorimotor and 

linguistic distributional representations in fitting human performance. 

2. Experiment 1a: Category Production 

In this pre-registered experiment (pre-registration, data, analysis code, and results are available 

at https://osf.io/vaq56/), we predicted that both sensorimotor similarity and linguistic proximity would 

contribute to explicit and implicit measures of category production (i.e., how often each member 

https://osf.io/vaq56/
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concept is listed for a particular category, how early in a list each member is named, how often each 

member is listed first, and how quickly the first member is listed). In addition, following predictions of 

the linguistic shortcut hypothesis that people will make use of word-to-word distributional information 

when it is sufficient for the task in question, we expected linguistic proximity would dominate, uniquely 

predicting responses over and above sensorimotor similarity.  

2.1. Method 

2.1.1. Participants  

Sixty-four participants recruited from Lancaster University took part for payment of £3.50 GBP. 

Three participants were excluded as they were non-native speakers of English (i.e., after debriefing 

revealed that they had misunderstood the screening criteria), and one was excluded for providing too 

few responses (M < 2 responses per category). Of the remaining 60 participants, all had English as their 

native language, 46 were female, mean age was 21.72 years (SD = 5.73), and 52 were right-handed. The 

sample size was determined by sequential hypothesis testing with Bayes Factors (Schönbrodt et al., 

2017; see pre-registration) in JASP (version 0.14; JASP Team, 2020) using the default JZS prior with a 

scale parameter of r = 1 for the effect size prior. We stopped data collection at Nmin = 60 when our Step 

3 models for two of the three item-level dependent variables cleared the specified grade of evidence 

(BF10 > 5). For details of variables and models, please see section 2.1.5., Statistical Analyses; full statistics 

of sequential analysis are available as supplemental materials at https://osf.io/vaq56/. 

2.1.2. Materials 

We selected 117 categories that encompassed a range of specificity, such as basic level (e.g. 

BIRD), superordinate (e.g. ANIMAL) and subordinate (e.g. WATER BIRD) categories, and a number of 

ways of splitting high-level conceptual domains, including abstract/concrete (e.g., EMOTION/ANIMAL), 

living/non-living (e.g., BIRD/BOAT), animate/inanimate (e.g., FISH/FRUIT), artefact/natural 

(TOOL/FLOWER), and biological/nonbiological (e.g., VEGETABLE/FURNITURE) concepts. Most categories 

(both concrete and abstract) were selected from the categorization literature (e.g., Battig & Montague, 

1969; Capitani et al., 2003; Larochelle et al., 2000; McEvoy & Nelson, 1982; Rosch, 1975; Uyeda & 

Mandler, 1980; Van Overschelde et al., 2004). We selected concrete categories that have been 

frequently investigated in studies of semantic categories (e.g., ANIMAL, FRUIT, MUSICAL INSTRUMENT), 

as well as others from both concrete and abstract domains that have featured less frequently (e.g., BIRD 

OF PREY, ROOM IN A HOUSE, CRIME, EMOTION, MILITARY TITLE). However, as few category production 

https://osf.io/vaq56/
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studies have included a large number of abstract categories, we also added some novel categories that 

(to the authors’ knowledge), have not previously been studied in a category production task. Some of 

these novel abstract categories were subordinate categories (e.g., VIOLENT CRIME, NEGATIVE 

EMOTION) or modified variants (e.g., ROYAL TITLE) of those already selected from the literature, while 

others were created de novo by the authors from categorical distinctions in WordNet for abstract 

entities (e.g., FRACTION, SOCIAL GATHERING, PERSONAL QUALITY). All categories were piloted on 

participants not involved in the main experiment to ensure that they were easily understood. Categories 

were divided into three lists of 39 categories each, counterbalanced as much as possible across the 

categorical distinctions described above. Categories that constituted a subset of another category (e.g. 

WATER BIRD, BIRD) were not included in the same stimulus list. Four categories (BREAD, CIRCUS ACT, 

FOOTWEAR and CONTINENT) which were not featured in the main experiment were used as practice 

items. 

2.1.3. Procedure  

Participants triggered the start of each trial by pressing the space bar on the keyboard. They 

were then presented with a fixation cross for 500 ms followed by the category name presented in 

capital letters in the center of the screen. They were instructed to name aloud as many concepts as 

possible that belonged to each category, within a maximum of 60 seconds. The category name was 

displayed on screen until participants could not name any more concepts and pressed the space bar to 

end the trial, or until the trial timed out automatically after 60 seconds. The words “Press space bar 

when ready” were then displayed on screen until participants triggered the next trial; timing between 

categories was thus self-paced and participants could take a short break between categories if required. 

Participants first carried out four practice trials, and were then randomly assigned to one of the three 

category lists. Each list was presented to 20 participants, and categories from each list were presented in 

a randomized order for each participant. Verbal responses were audio-recorded through a unidirectional 

headset microphone. Verbal responses were transcribed during the task by the experimenter (hidden 

from the participant’s view behind a panel screen) and later verified via audio recordings. The entire 

experimental procedure took approximately 20 minutes, after which participants provided demographic 

information and were debriefed by the experimenter. 



LINGUISTIC–SENSORIMOTOR CATEGORY PRODUCTION 10 

2.1.4. Ethics and Consent  

The study received ethical approval from the Lancaster University Faculty of Science and 

Technology Research Ethics Committee. All participants read information detailing the purpose and 

expectations of the study before giving informed consent to take part. Consent included agreement to 

share publicly all transcribed and alphanumeric data in anonymised form; participants could additionally 

opt-in to sharing publicly their original voice recordings with anonymised filenames (52 out of 60 

participants consented to do so).  

2.1.5. Data Preparation, Design and Analysis  

All transcribed responses used British English spellings, as the linguistic proximity measure was 

based on a British English linguistic corpus (see below). Unintelligible responses were disregarded. 

Idiosyncratic responses (i.e., member concepts named by only one participant) were excluded from 

analysis (22% of the participant-level data; 3890 of 17707 responses), resulting in an average of 6.18 

member concepts per category (SD = 3.90) per individual participant, and a total of 2551 distinct 

category–member pairs. A further 322 pairs were excluded from analysis due to missing values on 

predictor variables (i.e., log word frequency – LgSUBTLWF, sensorimotor similarity, linguistic proximity), 

and one pair was excluded where the member concept comprised a repetition of the category 

(relationship for the category SOCIAL RELATIONSHIP); thus a total of 2228 pairs were analyzed, 

comprising an average of 19.04 member concepts per category (SD = 10.59; range = [5, 64]). Response 

times were measured from the onset of the category name until onset of speech to name the first 

member concept; disfluencies were disregarded and speech onset was calculated in Praat (Boersma & 

Weenink, 2018). 

Linguistic Proximity. To operationalize linguistic distributional information, we calculated a 

measure of linguistic proximity based on word co-occurrence between each category name (e.g., BIRD) 

and each member concept named by participants (e.g., pigeon). Using a corpus of 200 million words of 

British English television and film subtitles3 (see van Heuven et al., 2014), we counted 6-gram co-

                                                      

 
3 Use of a corpus of approximately 200 million words is in line with recommendations regarding 
plausible estimates of lifetime language exposure in adults (Wingfield & Connell, 2020; see also 
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occurrence frequencies for each category–member word pair (e.g., how often the word BIRD appeared 

in the same context as pigeon, with zero, one, two, three, four, and five intervening words), and 

calculated the positive pointwise mutual information score (PPMI; Bullinaria & Levy, 2007) which 

reflects only co-occurrences that are more frequent than expected4. Linguistic proximity is therefore a 

measure of first-order co-occurrence, reflecting the extent to which two words co-occur more often 

than chance, which can capture a complex range of semantic relations (Sahlgren, 2006; Wingfield & 

Connell, 2020). 

For multiword category names (e.g., WATER BIRD, SOCIAL GATHERING), we created a composite 

representation by using a multiplicative function (Mitchell & Lapata, 2010) to combine individual n-gram 

distributions before calculating co-occurrence with member concepts; function words were not included 

in composite representations (e.g., for the category DAY OF THE WEEK, we used DAY and WEEK only). 

The composite representation for the category SOCIAL GATHERING, for example, therefore comprised 

high PPMI scores for words that co-occurred more frequently than expected with both SOCIAL and 

GATHERING; but scores of zero for words that co-occurred frequently with only one of SOCIAL or 

GATHERING or that co-occurred less frequently than expected for both. For multiword member 

concepts, we first minimized distortions in our measure by removing repetitions of the category name 

from any responses that included it (e.g., for the category TREE, the response oak tree was shortened to 

oak), and by removing words that the experimenters judged to be redundant to the core meaning of the 

concept (e.g., for the category SOCIAL GATHERING, the response going to the cinema was shortened to 

cinema). For any remaining multiword member concepts, we measured how well the category name 

cued the individual terms in the member concept by calculating separate co-occurrence frequencies for 

each word in the member name and applying an additive function (e.g., for the category SPORT and the 

                                                      

 

Brysbaert et al., 2016). The subtitles corpus covered 99.5% of words found in category and member 
concepts, with 98.1% occurring at least 10 times. 

4 As recommended by Wingfield & Connell (2020), we based our choice of distributional window size (5 
words around target word = 6-gram) and corpus (subtitles) on the medium-to-high conceptual 
complexity of the task, and used an empirical approach to select the most appropriate linguistic 
distributional model. Our selected PPMI n-gram measure outperformed a range of alternative measures 
derived from count and predict vector models, which is consistent with previous research showing that, 
when trained on adequately large corpora, n-gram measures can successfully capture semantic effects 
previously assumed to require more complex distributional models (Louwerse, 2011).  
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member ice hockey, we summed the 6-gram counts of SPORT–ice and SPORT–hockey). Plural and 

singular responses for the same member concept (e.g., cat, cats) were counted as separate lexical items 

due to their potentially different distributional patterns. As described above, any responses that did not 

appear in the corpus were excluded from analysis; one member concept of bobsledging (sic; listed for 

WINTER SPORT) was replaced with the conventional form bobsledding. The final linguistic proximity 

measure for each category–member pair ranged in theory from 0 to infinity (actual range = [0.00, 

78.03], M = 5.67, SD = 9.70), with higher values indicating greater tendency for the words to appear in 

close proximity to one another (i.e., higher frequency of co-occurrence). For instance, in the category 

ANIMAL, the lowest linguistic proximity score was for ant (0.00) and the highest was for cheetah (5.33). 

Sensorimotor Similarity. To operationalize a measure of sensorimotor similarity that was fully 

grounded in perceptual and action experience alone (i.e., without the use of abstracted features), we 

took the novel approach5 of calculating sensorimotor similarity based on multidimensional ratings of 

sensorimotor strength. We used Lynott et al.’s (2020) Lancaster Sensorimotor Norms for 40,000 

concepts, in which people rated the extent to which they experienced a particular concept via six 

perceptual modalities (auditory, gustatory, haptic, interoceptive, olfactory, visual) and by performing an 

action with five action effectors (foot, hand, head, mouth, torso), where each dimension was separately 

rated along a scale from 0 (not at all) to 5 (greatly). Each concept was therefore represented by an 11-

dimensional vector, and we calculated sensorimotor similarity based on Minkowski distance of 

parameter 3 between the vectors of the category concept (e.g., BIRD) and each member concept (e.g., 

pigeon). Minkowski-3 distance is similar to Euclidean distance (which corresponds to Minkowski 

distance of parameter 2) but places less weight on low-value dimensions; we chose to use it here 

because – when measured from the origin for each concept vector – Lynott et al. (2020) found that it 

represented the best composite measure of sensorimotor strength for predicting semantic facilitation in 

word recognition. To convert the Minkowski-3 distance measure to a more intuitive measure of 

sensorimotor similarity on a 0–1 scale, we divided each distance value x by the maximum possible 

                                                      

 
5 The present experiment was developed in parallel with a separate investigation using a closely related 
measure of sensorimotor similarity (Van Hoef et al., 2020); since both studies used this new measure at 
the same time, we feel both reports can legitimately describe its use as novel.  
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distance between vectors and subtracted it from one: 1 – (x / 11.120). This linear transform did not 

affect statistical inferencing, but did make the results more interpretable. 

As these sensorimotor norms were based on American English, we made a number of 

substitutions to the original British English transcriptions of our category production dataset before 

extracting the relevant sensorimotor vector. British English spellings were substituted with American 

English ones (e.g., COLOUR changed to COLOR), and terms were substituted with alternatives where 

dialectal differences meant that the British English term was absent from the sensorimotor norms and 

we were confident that the alternative term labelled the same referent concept (e.g., courgette changed 

to zucchini; paracetamol changed to acetaminophen). Plural forms were substituted with the singular if 

the plural was absent from the sensorimotor norms (e.g., cats changed to cat). Some multiword terms 

were present in the sensorimotor norms (e.g., CITRUS FRUIT). Where a multiword term was not present, 

we shortened it by removing repetitions and redundancies as per the linguistic proximity measure, and 

also by removing modifiers where the experimenters judged that the sensorimotor experience would be 

indistinguishable (e.g., king cobra changed to cobra; one quarter changed to quarter). For both category 

and member concepts, we then created a composite representation using the same multiplicative 

function as for the linguistic proximity measure. The final sensorimotor similarity measure for each 

category–member pair ranged in theory from 0 to 1 (actual range = [0.48, 0.96], M = 0.81, SD = 0.08, 

with higher values indicating greater similarity of sensorimotor experience (i.e., closer in sensorimotor 

space). For example, in the category ANIMAL, the lowest sensorimotor similarity score occurred for 

butterfly (0.641) and the highest for cat (0.899).  Linguistic proximity and sensorimotor similarity 

correlated only weakly, r = .05. 

Dependent Variables. Four different dependent variables were extracted for analysis. Three 

were explicit item-level measures that are traditionally reported in category production research (e.g., 

Battig & Montague, 1969): production frequency (i.e., the number of participants who name a particular 

member concept within its category); mean rank (i.e., the mean ordinal position of a particular member 

concept within its category); and first rank frequency (i.e., the number of participants who name a 

particular member concept first within its category). The final dependent variable was response time 

(RT) for the first-named member concept per category and participant, which represented an implicit 

measure of processing effort in category production. 

Statistical Analyses. For each item-level dependent variable (production frequency, mean rank, 

and first rank frequency), we carried out Bayesian linear regressions in JASP (version 0.14; JASP Team, 
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2020) using JZS default priors (r scale = .354) and Bayesian adaptive sampling, and their null-hypothesis 

significance test (NHST) counterparts (i.e., ordinary least squares linear regressions), in three 

hierarchical steps. Step 1 comprised a baseline model of log word frequency of the named member 

concept (LgSUBTLWF measure from the English Lexicon Project: Balota et al., 2007), Step 2 added 

sensorimotor similarity of the category–member pair, and Step 3 added linguistic proximity of the 

category–member pair. Although not specified in the pre-registration due to an error of omission, we 

tested whether Step 2 increased model fit over and above Step 1 (i.e., whether sensorimotor similarity 

predicts category production, as hypothesized). As pre-registered, we then tested whether Step 3 

increased model fit over and above Step 2 (i.e., whether linguistic proximity independently predicts 

category production) both via NHST of 𝑅𝑅2-change and via model comparison using Bayes Factors. Due to 

very high Bayes Factor values, we report natural log Bayes Factors throughout for clarity. We report 

parameter estimates from the Step 3 ordinary least squares regression model.  

For RT, we ran linear mixed effects models in R using the lmerTest package (Kuznetsova et al., 

2017), and calculated marginal R2 using the MuMIn package (Barton, 2017). Standardized coefficients 

were calculated in R by running the relevant analyses using standardized variables. We excluded 31 

individual trials for which response times were >3SD from the participant mean. Step 1 comprised 

crossed random effects of participant and item (category), and fixed effects relating to lexical properties 

of the member concept that can influence time required to speak a word aloud: log word frequency 

(LgSUBTLWF), phonological Levenshtein distance (PLD20; Yarkoni et al., 2008), and number of syllables. 

Step 2 added sensorimotor similarity as a fixed effect, and Step 3 added linguistic proximity. Models 

were compared using NHST likelihood ratio chi-square tests and Bayes Factors calculated via BIC (e.g., 

Wagenmakers, 2007). Descriptive statistics and zero-order correlations for all variables are provided as 

supplementary materials (Table S1). 

2.2. Results and Discussion 

Sample categories, and the list of member concepts produced by participants, can be seen in 

Table 1. While some categories attracted relatively consistent responses across participants (e.g., all 

participants listed milk as a DAIRY PRODUCT, and 19 out of 20 listed it first), most categories had highly 

diverse sets of responses. For example, the most popular BOAT was a ferry (joint with sailing boat and 

yacht), yet only 8 out of 20 participants produced it as a member concept, and only one of those did so 

as a first response. Similarly, while participants produced a total of 64 different member concepts for 

ANIMAL, the average number produced by an individual participant was only 21 (range 6–29).  
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Table 1  

Sample categories and member concepts produced by participants in Experiment 1a.  

Category Member concepts 

ANIMAL cat, dog, giraffe, lion, elephant, horse, cow, rabbit, tiger, pig, sheep, fish, 

guinea pig, hamster, snake, zebra, monkey, mouse, rat, bird, donkey, leopard, 

whale, cheetah, chicken, dolphin, ferret, penguin, shark, badger, deer, duck, 

fox, frog, gorilla, kangaroo, lizard, squirrel, ant, antelope, bat, bear, butterfly, 

camel, cheetahs, ducks, eagle, elephants, flamingo, gazelle, goose, gorillas, 

hedgehog, jaguar, panda, pigeon, pigs, polar bear, raccoon, rhino, seagull, 

swan, whales, wolf 

BOAT ferry, sailing, yacht, canoe, rowing, ship, speedboat, cruise ship, fishing, 

cruise, dinghy, kayak, canal, lifeboat 

CRIME murder, burglary, robbery, fraud, theft, rape, assault, arson, shoplifting, 

manslaughter, stealing, vandalism, embezzlement, hate, knife, possession of 

drugs, violence 

SUPERNATURAL 

BEING 

ghost, vampire, werewolf, ghosts, zombie, spirits, witches, angel, devil, 

poltergeist, vampires, alien, demon, demons, god, spirit, zombies 

TOOL hammer, screwdriver, drill, saw, spanner, wrench, nails, screws, chisel, pliers, 

axe, bolts, crowbar, knife, shovel 

VEGETABLE broccoli, carrot, cabbage, cauliflower, lettuce, cucumber, spinach, aubergine, 

onion, peas, parsnips, swede, beetroot, Brussels sprouts, carrots, courgette, 

green beans, parsnip, pepper, potato, sprouts, asparagus, beans, butternut 

squash, kale, peppers, sweet potato, tomato, turnip, leek, potatoes, pumpkin, 

radish, tomatoes, turnips 
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Note. Member concepts are listed in order of descending production frequency, excluding idiosyncratic 

responses and distinguishing plurals. 

2.2.1. Category Production Frequency 

As predicted, both sensorimotor similarity and linguistic proximity predicted the frequency of 

naming a particular member concept for a category. Bayes Factors (see Table 2) indicated very strong 

evidence both for the inclusion of sensorimotor similarity in Step 2, and the inclusion of linguistic 

proximity in Step 3 (i.e., above and beyond sensorimotor similarity); this pattern was consistent with 

NHST F-tests of change in R2. In the Step 3 model, higher sensorimotor similarity led to higher 

production frequency (i.e., people listed a member concept more often when its sensorimotor profile 

was very similar to the category concept), unstandardized B = 7.46, SE = 1.15, standardized ß = 0.13, t = 

6.50, p < .001. Likewise, higher linguistic proximity led to higher production frequency (i.e., people listed 

a member concept more often when its label co-occurred very frequently with the category label), 

unstandardized B = 0.10, SE = 0.01, standardized ß = 0.21, t = 10.41, p < .001. As shown by the 

standardized coefficients, the effect of linguistic proximity on production frequency was larger than that 

of sensorimotor similarity. 

2.2.2. Mean Rank 

As predicted, both sensorimotor similarity and linguistic proximity predicted the mean ordinal 

rank of a named member concept for its category. Again, evidence was very strong for both Steps 2 and 

3 (see Table 2); this pattern was consistent with NHST F-tests. In the Step 3 model, higher sensorimotor 

similarity led to lower mean rank (i.e., people listed a member concept earlier when its sensorimotor 

profile was very similar to the category concept), unstandardized B = –11.44, SE = 0.89, standardized ß = 

–0.26, t = –12.79, p < .001. Higher linguistic proximity also led to lower mean rank (i.e., people listed a 

member concept earlier when its label co-occurred very frequently with the category label), 

unstandardized B = –0.04, SE = 0.01, standardized ß = –0.12, t = –5.56, p < .001. Although linguistic 

proximity had an effect over and above that of sensorimotor similarity, standardized coefficients 

indicate that sensorimotor similarity had the larger effect on mean rank. 
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Table 2 

Experiment 1a hierarchical linear regressions of each category production measure on sensorimotor and 

linguistic predictors. 

Step Model comparison Total R2 ∆R2 F Log BF 

Category Production Frequency     

1 Baseline (lexical) model vs. empty model (BF10) .023  51.74*** 22.37 

2 Sensorimotor similarity vs. baseline (BF21) .043 .020 46.13*** 19.97 

3 Linguistic proximity + sensorimotor similarity vs. 

sensorimotor similarity only (BF32) 

.087 .044 108.30*** 49.92 

Mean Rank     

1 Baseline (lexical) model vs. empty model (BF10) .001  1.20 -2.45 

2 Sensorimotor similarity vs. baseline (BF21) .071 .070 167.85*** 77.69 

3 Linguistic proximity + sensorimotor similarity vs. 

sensorimotor similarity only (BF32) 

.083 .013 30.95*** 12.66 

First Rank Frequency     

1 Baseline (lexical) model vs. empty model (BF10) .040  28.38*** 11.19 

2 Sensorimotor similarity vs. baseline (BF21) .054 .013 9.40** 2.42 

3 Linguistic proximity + sensorimotor similarity vs. 

sensorimotor similarity only (BF32) 

.090 .036 26.63*** 10.77 

RT   χ2  

1 Baseline (lexical) model vs. random effects model (BF10) .005  8.11* -7.29 

2 Sensorimotor similarity vs. baseline (BF21) .005 .000 0.00 -3.78 

3 Linguistic proximity + sensorimotor similarity vs. 

sensorimotor similarity only (BF32) 

.012 .007 8.39** 0.41 

Note. ∆R2 = change in R2; Log BF = natural log Bayes Factor, where negative values indicate evidence for 

the null model and positive values indicate evidence for the alternative model: log BFs ≥ 3.00 (equivalent 

to BFs ≥ 20) constitute strong evidence; log BFs ≥ 1.10 (equivalent to BFs ≥ 3) constitute positive 

evidence; and log BFs between –1.10 and 1.10 (equivalent to BFs of 0.33 and 3) constitute equivocal 

evidence. 
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* p < .05; ** p < .01; *** p < .001 

 

2.2.3. First Rank Frequency 

Again as predicted, both sensorimotor similarity and linguistic proximity predicted the frequency 

of naming a member concept for a category in first ordinal position, with very strong evidence for both 

Steps 2 and 3 (see Table 2); this pattern was consistent with NHST F-tests. In the Step 3 model, higher 

sensorimotor similarity led to higher first rank frequency (i.e., people listed a member concept in first 

place more often when its sensorimotor profile was very similar to the category concept), 

unstandardized B = 4.70, SE = 1.51, standardized ß = 0.12, t = 3.12, p = .002. Likewise, higher linguistic 

proximity led to higher first rank frequency (i.e., people listed a member concept in first place more 

often when its label co-occurred very frequently with the category label), unstandardized B = 0.06, SE = 

0.01, standardized ß = 0.20, t = 5.16, p < .001. Standardized coefficients indicate that linguistic proximity 

had a larger effect on first rank frequency than did sensorimotor similarity. 

2.2.4. Response Times  

Results for RT were mixed. Against our predictions, and unlike our findings for the explicit 

dependent variables above, sensorimotor similarity did not predict RTs. Model comparisons via Bayes 

Factors showed strong evidence for Step 1 (i.e., the baseline model) over Step 2 with sensorimotor 

similarity, consistent with the non-significant likelihood ratio test (see Table 2). However, results for 

Step 3 were inconsistent: Bayesian model comparison found only equivocal evidence in favor of 

linguistic proximity in Step 3 compared to Step 2, whereas the likelihood ratio test showed that Step 3 

was significantly better than Step 2. In the Step 3 model, sensorimotor similarity had no effect on RT, 

unstandardized B = 0.06, SE = 0.61, standardized ß = 0.00, t = 0.11, p = .917, but higher linguistic 

proximity led to faster RT (i.e., people were faster to list their first category member when its label co-

occurred very frequently with the category label), unstandardized B = –0.01, SE = 0.01, standardized ß = 

-0.09, t = –2.90, p = .004). We interpret this finding cautiously whereby – as predicted – linguistic 

proximity predicted RT, but the effect is relatively small and with equivocal evidence. 

2.2.5. Summary 

Results of our confirmatory analyses strongly supported our hypothesis that both sensorimotor 

similarity and linguistic proximity would independently contribute to explicit measures of category 
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production (i.e., how often each member concept is listed for a particular category, and how early each 

member concept is listed for a particular category). Of the two variables, linguistic distributional 

information dominated production frequency and first-rank frequency, but sensorimotor similarity had 

the larger effect on mean rank6. However, results were equivocal for the implicit measure of category 

production (i.e., RT to name the first member of a category), where sensorimotor similarity had no 

effect but linguistic proximity had a relatively small effect. Overall, member concepts that were very 

similar in sensorimotor experience to their category concept were more likely to be produced early and 

often in a category production task. Likewise, member concepts whose label frequently appeared in 

close proximity to their category label were also more likely to be produced early and often – and to 

some extent, a little faster – in category production. 

Previous work by Taler et al. (2020) found that the density of the linguistic distributional 

neighbourhood around a member concept predicted its production frequency in the category ANIMAL, 

which could be related to the likelihood of the category concept successfully activating that member 

concept (i.e., as activation spreads from the category concept, member concepts with many neighbours 

in close proximity may benefit from many paths of activation in a way that member concepts with few 

close neighbours cannot). In an exploratory analysis7, we examined the contribution of linguistic 

distributional density alongside our existing predictors of linguistic proximity and sensorimotor 

similarity. The best model for all three explicit measures of category production (i.e., production 

frequency, mean rank, first-rank frequency) included all three predictors, although the contribution of 

linguistic distributional density was relatively modest compared to that of linguistic proximity and 

                                                      

 
6 As an exploratory analysis suggested by an anonymous reviewer, we conducted the analyses for Study 
1a (for the three category production measures) separately for abstract and concrete categories. Both 
abstract and concrete categories showed identical patterns of effects to the overall analysis, where 
sensorimotor similarity and linguistic proximity independently contributed to the three measures of 
category production, but neither predictor consistently dominated either type of category. That is, we 
did not observe the pattern that abstract categories relied predominantly on linguistic information 
whereas concrete categories rely predominantly on sensorimotor information (e.g., Crutch & 
Warrington, 2005; Dove et al., 2020; Pecher & Zeelenberg, 2018; Vigliocco et al., 2009). These analyses 
and results are available as supplementary material at https://osf.io/vaq56/.   

 

7 We thank an anonymous reviewer for this suggestion. 

https://osf.io/vaq56/
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sensorimotor similarity (see supplemental materials for full data and results). Nonetheless, this 

exploratory analysis suggests that the density of linguistic distributional neighbours around a member 

concept may help to boost the activation coming from the category concept, though it is the category-

to-member relationship itself (i.e., linguistic proximity and sensorimotor similarity) that remains the 

primary influence on category production. 

  

3. Experiment 1b: Typicality in Category Production 

Experiment 1a demonstrated that semantic category production relies on sensorimotor and 

linguistic distributional information. However, producing members of a category may also be influenced 

by the perceived typicality of semantic concepts (e.g., Hampton & Gardiner, 1983; Mervis et al., 1976) – 

that is, how good an example a particular concept is of its category. To some extent, these measures are 

theoretically circular: dog might be the first ANIMAL that comes to mind because it is the best example 

of an ANIMAL; and dog might be the best example of an ANIMAL because it is the first example that 

comes to mind. Nonetheless, since linguistic distributional information has previously been shown to 

correlate with typicality ratings (Connell & Ramscar, 2001), it was possible that our linguistic–

sensorimotor measures in Experiment 1a could outperform typicality in predicting explicit and implicit 

measures of category production. 

In a second experiment (pre-registration, data, analysis code, and results are available at 

https://osf.io/vaq56/), we therefore collected typicality ratings for all category production responses in 

Experiment 1a, and tested whether category production performance relies on sensorimotor and 

linguistic distributional information to a greater extent than on typicality. We predicted that typicality 

ratings would predict category production responses from Experiment 1a, such that more typical 

members of a category would be named more frequently and earlier than atypical members. However, 

we also predicted that including word frequency in our baseline model would reduce the magnitude of 

the typicality effect (as word frequency is correlated with typicality: e.g., Moreno-Martínez et al., 2014; 

Navarrete et al., 2019; Schröder et al., 2012). Further, while typicality correlates strongly with category 

production measures for natural categories (e.g., ANIMAL, FRUIT, TOOL), it tends to be much weaker 

when a wider range of category types are examined (e.g., Casey, 1992). Thus, we hypothesised that 

category production would be better predicted by linguistic and sensorimotor information combined 

(Experiment 1a) than by typicality (the present experiment). 

https://osf.io/vaq56/
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3.1. Method 

3.1.1. Participants 

141 native speakers of English (88 female, mean age = 31.23 years (SD = 10.34), 111 right-

handed) took part in this study via the research crowdsourcing tool Prolific, and received £1.75 GBP for 

participation. In order to recruit a sample with similar linguistic experience to Experiment 1a (i.e., British 

English, as opposed to other dialects), we restricted recruitment to native speakers of English who were 

UK nationals using Prolific’s screening criteria. Fourteen participants’ submissions were rejected because 

their ratings did not pass our quality control checks (i.e. they were not paid, their data was not included 

in the main analysis, and they were not permitted to participate further in the study; see Data 

Preparation and Analysis for details). New participants were recruited via Prolific until we reached N=12 

for all stimulus lists. 127 participants’ data were included in the final analysis, as participants were able 

to rate multiple lists if they wished. 

3.1.2. Materials 

We used all category–member word pairs from the final analysis for Study 1a as stimuli for 

typicality rating. Most member concepts were presented verbatim (e.g., singular and plural forms of the 

same word were treated as separate items), but in some cases we added the category name if the 

member name on its own would be ambiguous as a referent (e.g., straw hat was used instead of straw 

for the category HAT).  

The full item set for typicality rating comprised 2228 category–member stimuli from Experiment 

1a, plus a further 6 stimuli included due to an initial error in data preparation of that experiment, and an 

additional 46 stimuli (with identical format) that were rated for use in a separate study (these latter 

items did not form part of the present experiment and will not be discussed further), leading to a total 

of 2280 items. Category–member pairs were pseudo-randomly divided into 20 stimulus lists with a 

number of constraints. Each category was distributed across lists as equally as possible (given the 

varying number of members listed for each category), and member concepts that appeared with more 

than one category (e.g. eagle was listed for both categories BIRD and BIRD OF PREY) were allocated to 

separate lists. In addition, production frequency (from Study 1a) and word frequency (LgSUBTLWF; 

Balota et al., 2007) were counterbalanced across lists (mean Production Frequency per list = 5.73 (SD = 

4.65) ranging from 5.24 to 6.05, with no significant difference between lists, F(19) = 0.28, p = .999; mean 
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LgSUBTLWF per list = 2.59 (SD = 0.87) ranging from 2.48 to 2.74, with no significant difference between 

lists, F(19) = 0.98, p = .485).  

We selected 80 category–member pairs from our stimulus set to enable quality control checks in 

online data collection. These control items were selected based on their typicality ratings in previous 

studies (Armstrong et al., 1983; Rosch, 1975; Uyeda & Mandler, 1980), where half had high typicality 

ratings (i.e., <1.6 on a scale of 1–7, 1 being high typicality and 7 being low typicality; mean ‘high’ 

typicality = 1.34, SD = 0.19) and half had low typicality ratings (i.e., >3.7, mean ‘low’ typicality rating = 

4.39, SD = 0.54). Each control category–member pair appeared in two different stimulus lists so that, 

overall, each stimulus list contained four high-typicality and four low-typicality control items. Two 

further category–member pairs (selected from previous studies but not featured in our stimuli), one 

high typicality (TOY: doll) and one low typicality (VEHICLE: surfboard), were chosen to act as scale 

calibrators, and were presented at the start of each stimulus list; these items were not included in the 

reported analyses. Each stimulus list therefore comprised 120 items (category–member word pairs), 

including the two calibrator and eight control items. 

3.1.3. Procedure 

Each stimulus list was presented in a randomised order in an online questionnaire via Qualtrics. 

Participants were instructed to rate each category member based on how good an example of the 

category they thought it was, on a scale from 1–5, with 1 being a “very poor” example, and 5 being a 

“very good” example. Participants were asked to base these ratings on their own judgements, and not 

to worry about the responses that other people might give. For each item, the category name was 

presented in capital letters in a text box in the centre of the screen; underneath was the framing 

question “How good an example of this category is/are a/an X(s)?”, and the rating scale (e.g., for the 

category ANIMAL, “How good an example of this category is a CAT?”). Participants indicated their rating 

by selecting the appropriate radio button and only one response per item was allowed. They could also 

indicate if they did not know the meaning of the category or the category member; no ratings were 

recorded for such trials. The entire ratings procedure took approximately 15 minutes. At the end of the 

stimulus list, participants provided demographic information and read a study debrief.  

3.1.4. Ethics and Consent  

The study received ethical approval from the Lancaster University Faculty of Science and 

Technology Research Ethics Committee. All participants read online information detailing the purpose 
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and expectations of the study, including the caveat that data had to pass quality checks before payment 

would be awarded, before giving informed consent to take part. Consent included agreement to share 

publicly all alphanumeric data in anonymised form.  

3.1.5. Data Preparation, Design and Analysis 

To check the quality of the online data we had collected, each participant’s ratings for the 

control items were correlated with ratings gained from previous studies. If the Pearson’s correlation 

coefficient was r < .30, and the variance of that participant’s data was close to zero, then the participant 

was excluded for failing to adequately attend to and/or understood the task and their submission was 

rejected. Fourteen participants were excluded on this basis (see section 3.1.1). 

Typicality Ratings. We calculated the mean typicality rating per category–member pair to act as 

the critical predictor in the analysis below.  

Dependent Variables. From Experiment 1a, we took production frequency, mean rank, first rank 

frequency, and RT. 

Statistical Analyses. As in Experiment 1a, and as per the pre-registration, we carried out 

Bayesian linear hierarchical regressions in JASP (version 0.14; JASP Team, 2020) for each dependent 

variable using JZS default priors (r scale = .354) and Bayesian adaptive sampling, and their NHST 

counterparts (i.e., ordinary least squares linear regressions), in two hierarchical steps. Step 1 comprised 

a baseline model of log word frequency of the named member concept (LgSUBTLWF: Balota et al., 

2007), and Step 2 added mean typicality rating of the category–member pair. We tested whether Step 2 

increased model fit over and above Step 1 (i.e., whether typicality rating predicts category production) 

both via NHST of R2-change and via model comparison using Bayes Factors. In a non-nested model 

comparison, we then compared the Step 2 typicality model against a sensorimotor–linguistic model 

containing word frequency, sensorimotor similarity and linguistic proximity (i.e., the Step 3 model from 

Experiment 1a analyses) using Bayes Factors. 

For RT, we ran linear mixed effects models in R using the lmerTest package (Kuznetsova et al., 

2017), and calculated marginal R2 using the MuMIn package (Barton, 2017). Standardized coefficients 

were calculated in R by running the relevant analyses using standardized variables. As in Experiment 1a, 

Step 1 comprised crossed random effects of participant and item (category) and fixed effects of log word 

frequency (LgSUBTLWF; Balota et al., 2007), phonological Levenshtein distance (PLD20; Yarkoni, Balota, 

& Yap, 2008), and number of syllables. Step 2 added typicality rating as a fixed effect and was compared 
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to Step 1 using NHST likelihood ratio chi-square tests and Bayes Factors calculated via BIC. As above, the 

Step 2 typicality model was then compared to a sensorimotor–linguistic model (i.e., the Step 3 model 

from Experiment 1a analyses), using Bayes Factors. 

Descriptive statistics and zero-order correlations for all variables are provided as supplementary 

materials (Table S1).  

3.2. Results and Discussion 

3.2.1. Category Production Frequency  

Typicality ratings predicted the frequency of naming a particular member concept for a 

category. Bayes Factors and NHST F-tests (see Table 3) in the Step 2 model indicated strong evidence 

that the more typical a concept was of its category, the more frequently it was produced as a member of 

that category (unstandardized B = 2.95, SE = 0.13, standardized ß = 0.42, t = 22.14, p < .001). Contrary to 

our predictions, however, Bayes Factors indicated stronger evidence for the typicality model compared 

to the sensorimotor-linguistic model; that is, typicality ratings predicted the frequency of naming a 

particular member concept better than sensorimotor and linguistic distributional information. 
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Table 3 

Experiment 1b hierarchical linear regressions of category production measures on typicality ratings, and 

non-nested model comparison of typicality with Experiment 1a sensorimotor–linguistic predictors. 

Step Model comparison Total R2 ∆R2 F Log BF 

Category Production Frequency     

1 Baseline (lexical) model vs. empty model (BF10) .023 - 51.74*** 22.37 

2 Typicality rating vs. baseline (BF21) .199 .176 489.98*** 217.56 

Exp1a Sensorimotor + linguistic (Exp 1a) vs. baseline (BFExp1a-1) .087 .064 78.33*** 69.89 

Exp1a Sensorimotor + linguistic (Exp 1a) vs. typicality rating (BFExp 1a-2) - - - –147.67 

Mean Rank     

1 Baseline (lexical) model vs. empty model (BF10) .001 - 1.20 –2.45 

2 Typicality rating vs. baseline (BF21) .051 .051 118.88*** 54.84 

Exp1a Sensorimotor + linguistic (Exp 1a) vs. baseline (BFExp1a-1) .083 .083 100.53*** 90.35 

Exp1a Sensorimotor + linguistic (Exp 1a) vs. typicality rating (BFExp 1a-2) - -  35.51 

First Rank Frequency     

1 Baseline (lexical) model vs. empty model (BF10) .040 - 28.38*** 11.19 

2 Typicality rating vs. baseline (BF21) .129 .088 68.31*** 29.76 

Exp1a Sensorimotor + linguistic (Exp 1a) vs. baseline (BFExp1a-1) .090 .049 18.20*** 13.18 

Exp1a Sensorimotor + linguistic (Exp 1a) vs. typicality rating (BFExp1a-2) - - - –16.58 

RT   χ2  

1 Baseline (lexical) model vs. random effects model (BF10) .005 - 8.11* -7.29 

2 Typicality rating vs. baseline (BF21) .018 .013 30.27*** 11.35 

Exp1a Sensorimotor + linguistic (Exp 1a) vs. baseline (BFExp1a-1) .012 .007 8.39* –3.38 
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Exp1a Sensorimotor + linguistic (Exp 1a) vs. typicality rating (BFExp1a-2) - - - –14.72 

Note. ∆R2 = change in R2; Log BF = natural log Bayes Factor, where negative values indicate evidence for 

the null model and positive values indicate evidence for the alternative model: log BFs ≥ 3.00 (equivalent 

to BFs ≥ 20) constitute strong evidence; log BFs ≥ 1.10 (equivalent to BFs ≥ 3) constitute positive 

evidence; and log BFs between –1.10 and 1.10 (equivalent to BFs of 0.33 and 3) constitute equivocal 

evidence. 

* p < .05; ** p < .01; *** p < .001 

 

3.2.2. Mean Rank 

Typicality ratings predicted the mean ordinal rank of a named member concept for its category. 

Bayes Factors and NHST F-tests in the Step 2 model (see Table 3) indicated strong evidence that the 

more typical a concept was of its category, the higher its mean rank within that category; that is, more 

typical concepts were named earlier than less typical concepts (unstandardized B = -1.23, SE = 0.11, 

standardized ß = -0.23, t = -10.90, p < .001). Moreover, a large Bayes Factor indicated very strong 

evidence for a sensorimotor-linguistic model compared to the typicality model. As predicted, 

sensorimotor and linguistic distributional information did better than typicality ratings in predicting how 

early people named a member concept. 

3.2.3. First Rank Frequency 

Typicality ratings also predicted the frequency of naming a member concept for a category in 

first ordinal position. Bayes Factors and NHST F-tests in the Step 2 model (see Table 3) indicated strong 

evidence that, for a given category, more typical concepts were named more frequently as a first 

response (unstandardized B = 1.89, SE = 0.23, standardized ß = 0.30, t = 8.27, p < .001). Contrary to our 

expectations, however, Bayes Factors indicated stronger evidence for the typicality model compared to 

the sensorimotor–linguistic model, meaning that typicality ratings could predict how often a member 

concept was named first in a category better than sensorimotor and linguistic distributional information. 

3.2.4. Response Times 

Finally, typicality ratings predicted RTs for first-named category members, whereby more typical 

category members were named faster. Bayes Factors and likelihood ratio tests in the Step 2 model (see 
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Table 3) indicated strong evidence that typicality ratings predicted RT (unstandardized B = -0.49, SE = 

0.09, standardized ß = -0.12, t = -5.58, p < .001). Contrary to our predictions, however, Bayes Factors 

indicated stronger evidence for the typicality model compared to the sensorimotor-linguistic model. In 

other words, the time taken to name the first member of a category was better predicted by typicality 

ratings than by sensorimotor and linguistic distributional information. 

3.2.5. Exploratory Analyses 

Since typicality ratings unexpectedly did better than sensorimotor and linguistic distributional 

information in predicting many category production variables in non-nested model comparisons, it 

raised the question of whether sensorimotor similarity and linguistic proximity are subsumed by, or are 

independent of, the construct of typicality. That is, if sensorimotor–linguistic information merely reflects 

goodness-of-membership within a category, then it is effectively subsumed by typicality ratings, 

meaning that sensorimotor similarity and linguistic proximity would predict no extra variance in 

category production when typicality has already been taken into account. On the other hand, if 

sensorimotor and linguistic distributional information are critical to category production in a way that 

goes beyond goodness-of-membership, then sensorimotor similarity and linguistic proximity will predict 

category production even when typicality has been taken into account. 
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Table 4 

Experiment 1b exploratory analysis of sensorimotor and linguistic distributional effects on category 

production measures above and beyond typicality.  

Step Model comparison Total R2 ∆R2 F Log(BF) 

Category Production Frequency     

3 Sensorimotor similarity + typicality rating vs. 

typicality rating only (BF32) 

.204 .005 14.94*** 4.52 

4 Linguistic proximity + sensorimotor similarity + 

typicality rating vs. sensorimotor similarity + 

typicality rating (BF43) 

.228 .023 67.47*** 30.32 

Mean Rank     

3 Sensorimotor similarity + typicality rating vs. 

typicality rating only (BF32) 

.105 .053 132.57*** 61.35 

4 Linguistic proximity + sensorimotor similarity + 

typicality rating vs. sensorimotor similarity + 

typicality rating (BF43) 

.112 .008 18.80*** 6.77 

First Rank Frequency     

3 Sensorimotor similarity + typicality rating vs. 

typicality rating only (BF32) 

.132 .004 2.84 –0.75 

4 Linguistic proximity + sensorimotor similarity + 

typicality rating vs. sensorimotor similarity + 

typicality rating (BF43) 

.154 .021 16.90*** 6.16 

RT   χ2  

3 Sensorimotor similarity + typicality rating vs. 

typicality rating only (BF32) 

.020 .002 2.48 –2.54 

4 Linguistic proximity + sensorimotor similarity + 

typicality rating vs. sensorimotor similarity + 

typicality rating (BF43) 

.024 .004 3.83 –1.87 

Note. Variables were entered as additional hierarchical steps following the confirmatory regression 

model of typicality ratings reported in Table 3, Step 2. ∆R2 = change in R2; Log BF = natural log Bayes 
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Factor, where negative values indicate evidence for the null model and positive values indicate evidence 

for the alternative model: log BFs ≥ 3.00 (equivalent to BFs ≥ 20) constitute strong evidence; log BFs ≥ 

1.10 (equivalent to BFs ≥ 3) constitute positive evidence; and log BFs between –1.10 and 1.10 

(equivalent to BFs of 0.33 and 3) constitute equivocal evidence. 

* p < .05; ** p < .01; *** p < .001 

 

To test these possibilities, we carried out exploratory analyses to determine the contribution of 

sensorimotor similarity and linguistic proximity to all dependent variables over and above typicality 

ratings. We added two additional steps to the hierarchical regressions conducted for confirmatory 

analyses: Step 3 added sensorimotor similarity of the category–member pair, and Step 4 added linguistic 

proximity. We tested whether Step 3 increased model fit over and above Step 2, and whether Step 4 

increased model fit over Step 3, both via NHST of R2-change for the category production measures and 

likelihood ratio for RTs, and via model comparison using Bayes Factors for all measures. Typicality 

ratings correlated relatively weakly with both sensorimotor similarity (r = .162) and linguistic proximity (r 

= .146). Results for all four category production dependent measures are in Table 4. 

For category production frequency, both the sensorimotor and linguistic variables contributed 

independently; however, standardized coefficients in the Step 4 model suggest these effects 

(sensorimotor similarity unstandardized B = 4.03, SE = 1.07, standardized ß = 0.07, t = 3.77, p < .001; 

linguistic proximity unstandardized B = 0.08, SE = 0.01, standardized ß = 0.16, t = 8.21, p < .001) were 

smaller than the effect of typicality rating (unstandardized B = 2.70, SE = 0.13, standardized ß = 0.39, t = 

20.14, p < .001).  

Both variables also contributed to mean rank, but this time the effect of sensorimotor similarity 

was larger than that of typicality rating (Step 4: sensorimotor similarity unstandardized B = –10.24, SE = 

0.89, standardized ß = –0.23, t = -11.48, p < .001; typicality unstandardized B = –0.95, SE = 0.11, 

standardized ß = –0.17, t = -8.48, p < .001), whereas the effect of linguistic proximity was smaller than 

both (unstandardized B = –0.03, SE = 0.01, standardized ß = –0.09, t = -4.34, p < .001).  

For first rank frequency, model comparisons indicated that only linguistic proximity contributed 

above and beyond typicality. In Step 4, linguistic proximity (unstandardized B = 0.05, SE = 0.01, 

standardized ß = 0.15, t = 4.11, p < .001) had a smaller effect than typicality rating (unstandardized B = 
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1.66, SE = 0.23, standardized ß = 0.26, t = 7.13, p < .001), but sensorimotor similarity had a negligible 

effect (unstandardized B = 2.71, SE = 1.48, standardized ß = 0.07, t = 1.83, p = .068). 

Finally, for RT, model comparisons did not favour including either sensorimotor similarity or 

linguistic proximity as predictors. Coefficients in the Step 4 model showed that neither linguistic 

proximity (unstandardized B = –0.01, SE = 0.01, standardized ß = –0.06, t = –1.96, p = .051) nor 

sensorimotor similarity (unstandardized B = 0.93, SE = 0.62, standardized ß = 0.04, t = 1.52, p = .129) had 

an effect on RT over and above typicality, whereas the effect of typicality remained robust 

(unstandardized B = –0.50, SE = 0.09, standardized ß = –0.12, t = –5.41, p < .001). 

Overall, evidence from our exploratory analyses indicated that sensorimotor similarity and 

linguistic proximity independently predicted explicit measures of category production above and beyond 

typicality ratings, but not implicit measures (RT). When typicality had already been taken into account, 

linguistic proximity still predicted all three explicit measures of category production, and sensorimotor 

similarity predicted two (production frequency and mean rank).  

3.2.6. Summary 

Results of confirmatory analyses provided mixed support for our hypotheses. As predicted, 

typicality was a useful predictor of category production performance that was nonetheless 

outperformed by a combination of sensorimotor similarity and linguistic proximity in predicting mean 

rank. However – against our predictions – typicality was the better predictor (i.e., outperforming 

linguistic–sensorimotor measures) of production frequency, first rank frequency, and RT. In exploratory 

analyses, we then found that sensorimotor and linguistic information predicted additional variance in all 

three explicit category production measures (production frequency, mean rank, and first rank 

frequency, but not RT) when typicality had already been taken into account, which demonstrated that 

linguistic distributional and sensorimotor information cannot be subsumed by typicality ratings, and 

instead are critical to category production in a way that goes beyond goodness-of-membership in a 

category.  

One could view this pattern of typicality and linguistic–sensorimotor effects in terms of 

explaining response popularity versus order of activation, respectively. That is, typicality appeared to be 

most useful in explaining the popularity of a member concept within its category (i.e., production 

frequency and first rank frequency, as well as latency naming this first-ranked concept), which is 

consistent with the idea that the “best” examples of categories come to mind more often (Mervis et al., 
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1976). By contrast, linguistic and sensorimotor measures were most useful in explaining the ordinal 

position in which a member concept is named within its category (i.e., mean rank), which suggests that 

the closer member concepts are to their category concept in terms of sensorimotor and linguistic 

distributional experience, the sooner they are activated. Overall, results of Experiment 1b suggest that, 

while sensorimotor and linguistic distributional information overlap a little with typicality, they reflect a 

distinctly different phenomenon to that of goodness-of-membership within a category (see also Heyman 

& Heyman, 2019, for related findings regarding linguistic distributional information) that relates to the 

order of conceptual activation during category production. 

4. Computational Model of Category Production 

The results of our behavioural experiments strongly supported the idea that both linguistic 

distributional and sensorimotor information independently contribute to category production. When 

presented with a category such as ANIMAL, people named a member concept more often, and earlier in 

rank order, when its label frequently appeared in close proximity to the category label in linguistic 

contexts (e.g., ANIMAL and cat frequently co-occur within a few words of each other) and when its 

referent was more similar in sensorimotor experience to the category concept (e.g., ANIMAL and cat 

share similar sensorimotor profiles).  

Nonetheless, our linguistic and sensorimotor predictors in Experiments 1a–b were limited in one 

critical way: they were based only on direct relationships between category and member concepts (e.g., 

ANIMAL → cat). While direct relationships between concepts are undoubtedly important, linguistic–

simulation theories of the conceptual system have always held that activation also spreads indirectly 

between words and between sensorimotor representations of concepts (Barsalou et al., 2008; Connell, 

2018; Connell & Lynott, 2014b; Louwerse, 2011). That is, it may be the case that people list mouse as a 

kind of animal not because of a strong ANIMAL → mouse relationship (in linguistic and/or sensorimotor 

terms), but rather because it is activated indirectly via one or more intermediate concepts, such as 

ANIMAL → cat → mouse (see also Hills et al., 2012; McKoon & Ratcliff, 1992). We therefore wished to 

test whether linguistic distributional and sensorimotor information would better fit human performance 

in category production if indirect relationships were taken into account. Furthermore, since neither 

linguistic distributional nor sensorimotor information dominated category production when considering 

direct category–member relationships (e.g., linguistic proximity was the stronger predictor of production 

frequency whereas sensorimotor similarity was the stronger predictor of mean rank), we wished to 

examine whether the same would occur when considering indirect relationships or whether linguistic 
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distributional information would primarily drive member–concept responses as originally hypothesised 

in Experiment 1a. 

To this end, we developed a computational model of conceptual processing during category 

production, based on linguistic distributional and sensorimotor information, and examined its fit to 

human data from our behavioural experiments. The model comprised two separate components, 

linguistic and sensorimotor, in a snapshot of the conceptual system (i.e., a time slice at the point of 

commencing an individual category production trial). That is, although we do not attempt to model how 

the nature of conceptual representations changes dynamically with recent experience, task goals, and 

available cognitive resources, we do not assume that conceptual knowledge is invariant or static 

(Connell & Lynott, 2014b). The linguistic component of the model was designed to approximate a 

snapshot of linguistic distributional knowledge (Wingfield & Connell, 2020), and took the form of a 

variant of a spreading-activation network of nodes and edges, where activation of a word node would 

spread out along connected edges and then activate the nodes of distributional neighbours (i.e. words 

that occurred most often in the same linguistic contexts). The sensorimotor component was designed to 

approximate a simplified snapshot of a sensorimotor simulation system (Connell et al., 2018; Connell & 

Lynott, 2014b), and allowed activation to spread uniformly from a concept point to a limited distance in 

an 11-dimensional sensorimotor space and activate any nearby concepts (i.e. with high sensorimotor 

similarity) within that distance. In both components, any activated word/concept could further 

propagate activation to new neighbouring words/concepts.  

We created three different versions of the model for comparison: a control version where 

linguistic and sensorimotor components allowed only direct activations and their outputs were 

evaluated separately; a separate version where linguistic and sensorimotor components allowed 

indirect activations but again their outputs were evaluated separately; and a combined version where 

linguistic and sensorimotor components with indirect activations ran in parallel and their outputs were 

collated and evaluated together as a single model. 

4.1. Method 

4.1.1. Model Architecture and Operation 

The model was designed to approximate a full-size conceptual system of an educated, adult 

native speaker of English, comprising linguistic distributional knowledge for 40 thousand words (based 

on a subtitles corpus of contemporary British English) that was grounded in sensorimotor experience 
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from the Lynott et al. (2020) sensorimotor norms' 40 thousand concepts. We first describe the 

architecture of the separate model, which comprised separate linguistic and sensorimotor components 

that allowed indirect activations and had their outputs evaluated separately, before outlining how the 

control and combined models differed.  Fig. 1 shows the key parameters in model operation, while Fig. 2 

illustrates a sample run of the combined model for the category ANIMAL. 

 

 

Figure 1.  

Overview of parameters involved in each component of the computational model. The linguistic 

component spreads activation in a graph from an initial category node along edges to new nodes, where 

both node and edge activation decays with each tick of the model clock, and new nodes fire when their 

accumulated activation clears a firing threshold.  The sensorimotor component spreads activation from 

an initial concept point to other concepts points via an expanding multidimensional sphere up to a 

maximum radius, where concept activation decays with each tick of the model clock, and new concept 

points propagate their own spheres when their accumulated activation clears a propagation threshold; a 

fixed-capacity buffer limits concurrent candidate member concepts.  Note that units of distance in 

linguistic and sensorimotor components are not directly comparable.  
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Figure 2.  

Operation of the combined model, illustrating indirect activation in a simplified run of the sample 

category ANIMAL. Activation for ANIMAL is seeded simultaneously in the linguistic component (panel A) 

and sensorimotor component (panel E; WMB = working memory buffer), which then run in parallel. In 

the linguistic component, activation spreads through the edges of the graph to activate neighboring 

words (B), which in turn spread activation to their neighbors (C–D). In the sensorimotor component, 

activation spreads through an expanding sphere to activate neighbouring concept points (F), which in 
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turn spread their own spheres of activation to further neighbors (G–I). Activation continues to spread 

through both component until the model is halted.  

 

Linguistic component. We implemented a linguistic model similar to a spreading-activation 

model of semantic memory (e.g., Collins & Loftus, 1975), where activation propagates on a graph of 

nodes and edges. As a model of linguistic distributional knowledge, the nodes corresponded to words, 

and edges to distributional relationships between those words, and activation spread from node to node 

along edges.  

Our graph was built from the 40,000 most common words in the subtitles corpus used to create 

the linguistic proximity measures in Experiments 1a–b, with each word represented by a node, providing 

92.6% coverage of the words found in categories and responses. Each edge had a length derived from 

the linguistic proximity score between its two endpoint words; that is, PPMI 6-gram values were 

converted to lengths by a linear rescaling which inverted the global maximum and non-zero minimum, 

so the highest PPMI (i.e., highest frequency of co-occurrence) resulted in the shortest edges. Activation 

propagated incrementally along edges according to a model clock at a fixed propagation speed of 0.1 

PPMI-distance per tick, whereby the shortest edge took 56 increments (ticks) to traverse and the longest 

took 243. Thus, activation would reach closer words (that co-occurred more frequently) faster than 

further ones (that co-occurred less frequently, but still more often than chance). If two words never co-

occurred in the corpus, or otherwise had PPMI of 0 because they co-occurred no more than chance, 

there was no edge between them. The final graph had 26,334,191 edges. 

The category production task was initialised by seeding an activation value of 1.0 at the node 

representing the category label (e.g., ANIMAL), and then allowing activation to propagate throughout 

the network (see Fig. 1). Unlike the classic spreading activation model of Collins & Loftus (1975), the sum 

of activation spreading out from a node was not divided between the incident edges; instead, a concept 

emitted its full activation value into all incident edges. Activation of word nodes decayed exponentially 

over time (node decay rate = 1% per tick), and activation propagating along edges decayed with a 

Gaussian curve (edge decay SD = 15.0; cf. Schweickert & Boruff, 1986) until reaching a floor value of 0.05 

at which point propagation stopped. Incoming activation accumulated in a node, causing that node to 

fire (i.e., propagate its current activation outwards) if a firing threshold (0.45) was reached.  Once a node 

fired, it could not fire again until its activation had decayed below the firing threshold and incoming 
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activation caused it to reach the threshold again. A node had to reach its firing threshold to be 

considered as a candidate category member. In this way, it could be the case that the node for a 

particular member concept (e.g. horse) received insufficient direct activation from the original category 

seed node (e.g. ANIMAL) to reach its firing threshold, and required indirect activation (e.g. via 

husbandry) to reach the threshold and count as an activated category member. The output from the 

linguistic component comprised the list of activated category members, in the order they were first 

activated, along with the time to first activation (tick number of the model clock) for each member.  

Sensorimotor component. We implemented a novel sensorimotor model based on the 11-

dimensional space of the Lynott et al. (2020) Lancaster sensorimotor norms. As a model of sensorimotor 

conceptual knowledge, each concept corresponded to a point in an 11-dimensional sensorimotor space, 

and activation spread within this space so that concepts with similar sensorimotor profiles could activate 

one other.  

Our sensorimotor space was built from the 39,707 items in the Lynott et al. (2020) sensorimotor 

norms used to create the sensorimotor similarity measures in Experiments 1a–b. Each concept was 

represented as a point, or vector, within this sensorimotor space, where coordinates for a particular 

concept equated to the mean strength rating in each of the 11 sensorimotor dimensions. Distances 

within the sensorimotor space were computed as Minkowski-3 distance (see Experiment 1a), so that 

concepts with similar sensorimotor profiles were located close together and dissimilar concepts were far 

apart. The most similar concepts in sensorimotor space were 0.13 units apart in distance (e.g. 

antifeminism and unjust), whereas the most dissimilar concepts were 8.13 units apart (e.g. overhear and 

string cheese). Activation propagated through this sensorimotor space in expanding “spheres” from 

each activated concept point, where the radius of an activation sphere increased at a fixed propagation 

speed of 0.01 Minkowski-3 distance per tick of the model clock until reaching a maximum radius (1.50), 

whereupon it dissipated. 

The category production task was initialised by seeding an activation value of 1.0 at the concept 

point representing the category concept (e.g., ANIMAL), and then allowing a sphere of activation to 

expand throughout sensorimotor space (see Fig. 1). Other concept points that were met by the 

expanding sphere received its activation, attenuated by the prevalence of each concept’s label (i.e., how 

well-known is a particular word amongst native speakers; Brysbaert et al., 2019); in this way, we used 

prevalence of a label to approximate how well-practiced a person might be at simulating its referent 

concept, so that seldom-simulated concepts received weaker activation than oft-simulated concepts. 
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Activation of concept points decayed according to a lognormal curve (median = 500 ticks, σ = 0.9). 

Incoming activation accumulated in a given concept point, and caused that concept to produce its own 

sphere of activation (i.e., propagate its current activation outwards) if it reached a propagation 

threshold (0.15). The continuous structure of sensorimotor space meant that any set of coordinates 

constituted a profile of sensorimotor experience that could theoretically underpin a conceptual 

representation, but only those coordinates defined as concept points (i.e., that had a lexical label and 

formed part of an adult conceptual system in the Lynott et al. (2020) norms) could propagate activation 

outwards. Once a concept point produced its own sphere of activation, it could not do so again until its 

activation had decayed below the propagation threshold and incoming activation caused it to re-reach 

the threshold. In addition, to prevent runaway activation in dense regions of sensorimotor space, 

activation arriving at new concept points was attenuated linearly by the number of concept points 

already above the propagation threshold (e.g., if 10 concepts were already above threshold, then 

attenuation was slight and made little difference to the amount of activation a given concept point 

received; but if the number of concepts above threshold reached a limit of 3000 or more8, then 

incoming activation was attenuated to zero, meaning a given concept received no new activation). 

Finally, in order to identify concepts that were highly activated enough to be considered as 

candidate category members, we implemented a simplified working memory buffer with a fixed capacity 

of 10 concepts (i.e., the estimated capacity of working memory for familiar object concepts: Dymarska 

et al., 2020). Concepts entered the buffer if their activation reached the buffer threshold (0.35), and left 

the buffer if their activation decayed below the buffer threshold. Newly activated concepts displaced 

those with lower activation; in the case of ties, concepts were displaced according to a hierarchy of 

recency of entry to buffer, recency of activation emission from concept point, and finally load order of 

concepts into model (alphabetical; an implementational convenience). A concept had to enter the 

working memory buffer to be considered as a candidate category member. Hence, it could be the case 

that a particular member concept point (e.g. hamster) did not receive any direct activation from the 

original category seed node (e.g. ANIMAL) before its sphere of activation dissipated, or received 

                                                      

 
8 The limit of 3000 concepts was not entirely arbitrary, but rather reflected a very rough approximation 
of the number of concepts in long-term memory that may retain trace activation in the context of an 
ongoing task, such as when maintaining the plot of a novel in a situation model (e.g., Zwaan & Madden, 
2005) or when asked to remember large sets of pictured objects (e.g., Brady et al., 2008). 
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insufficient activation due to having a lesser-known label, and hence could not enter the buffer. Such 

concepts would require indirect activation (e.g., via dog) to clear the buffer threshold and count as an 

activated category member. The output from the sensorimotor component comprised the list of 

activated category members, in the order they were first activated, along with the time to first 

activation (tick number of the model clock) for each member. 

Model versions: control, separate, combined. The above sections describe the architecture and 

processes of the separate model, where the linguistic and sensorimotor components both allowed 

indirect activations but ran independently and produced separate output lists of activated category 

members.  

We created the control model by blocking indirect activations in the separate model, whereby 

newly activated nodes (in the linguistic component) or concept points (in the sensorimotor component) 

could no longer propagate activation outwards under any circumstances. That is, activation spread only 

from the initial seed node/concept point without repropagating, meaning that only direct activation 

from the category concept could cause another concept to be considered as a potential category 

member (i.e., one-hop activation). The output of the control model was two lists, one for each 

component, comprising the set of activated category members and their time to first activation. 

Comparing the control and separate models allowed us to establish the utility of indirect activation in 

category production. 

We then created the combined model by syncing the linguistic and sensorimotor components 

from the separate model, so that they still allowed indirect activations, but this time ran in parallel and 

produced a single, combined output list of activated category members. In order to sync the 

components, we co-registered the speed of propagation in each component so that, over all categories, 

the same number of clock-ticks were required to activate the first three members of a category. That is, 

by ensuring that both components were equally fast to activate their first category members, we put 

them on an equal footing before allowing them to run in parallel. In the combined model, therefore, 

seeding a particular category (e.g., ANIMAL) equated to simultaneously activating the category node in 

the linguistic component and the category concept point in the sensorimotor component, then allowing 

activation to spread across both components: Fig. 2 illustrates the process. The output from the 

combined model was a single list of activated category members, in the order they were first activated 

(regardless of the component responsible), along with the time to first activation (tick number of the 

model clock). Comparing the combined and separate models allowed us to establish whether one or 
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both types of information – linguistic distributional or sensorimotor – was important to category 

production. 

4.1.2. Materials 

We used all 2551 distinct category–member pairs produced by participants in Experiment 1a to 

test the models, which comprised the 2228 pairs that were analyzed in Experiment 1a–b plus a further 

323 pairs that were excluded from analysis in those experiments because they were missing values on 

one or more predictor variables; idiosyncratic responses were excluded. The linguistic component of the 

model operated on the category and member terms used to calculate linguistic proximity in Experiment 

1, and the sensorimotor component operated on the category and member terms used to calculate 

sensorimotor similarity. Multiword items were handled differently depending on whether they were 

category or member concepts. For multiword category names (e.g., WATER BIRD), the initial activation 

level of 1.0 was divided and seeded simultaneously for each constituent word (e.g., WATER and BIRD 

were both given activation of 0.5; function words excluded) in each component, with the exception of a 

few multiword terms that already constituted a single entry in the sensorimotor component and hence 

could be seeded as a single concept point (e.g., CITRUS FRUIT). For multiword member concepts (e.g., 

horse riding as a type of SPORT), we considered the concept to be activated at the point when one of 

the constituent words was first activated (e.g., horse or riding; function words again excluded). Coverage 

of the item set was 92.8% in the linguistic component, 94.4% in the sensorimotor component, and 

97.0% in both components combined).  

4.1.3. Evaluation of Model Performance 

To evaluate model performance, we compared the member concept produced by participants 

for each category to the list of responses the model produced for each category. As noted in Experiment 

1 (section 2.2), participants tended to produce very diverse responses for most categories, whereby it 

was possible for two individual participants to produce entirely non-overlapping lists of member 

concepts for the same category. Such patterns of behavior are to be expected when past experiences, 

and therefore conceptual knowledge, varies enormously from person to person (Connell & Lynott, 

2014b). Therefore, rather than evaluating the model based on how well it approximated average human 

performance – a measure on which many individual participants would score poorly – we opted to 

evaluate how well it fit within the bounds of typical human performance (i.e., M ± 1SD), as 

recommended by Wingfield and Connell (2020) for evaluation of cognitive models. In other words, given 
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that the model approximates the conceptual knowledge of an adult native speaker of English, we 

evaluated whether the model performed about as well as an individual human. 

Hit Rate Measures. We first established typical human performance in category production by 

transforming two variables from Experiment 1 that covered the entire dataset – production frequency 

and mean rank, and then calculating a participant hit rate measure for each variable. For production 

frequency (i.e., how popular was each member concept per category?), we rank-transformed the 

frequency of each response within its category so that rank = 1 was assigned to the response that had 

the highest production frequency per category (i.e., the most popular member concept for that 

category), rank = 2 was assigned to the response with the second-highest production frequency, and so 

on. As some categories had very large numbers of members that produced a long tail of ranks in 

production frequency that could skew evaluation, we limited the number of ranks we would consider to 

M + 2SD of the most frequently produced member concepts, leading to the maximum ranked 

production frequency = 43, and excluding 59 category–member pairs. For mean rank (i.e., how early in 

the list of responses per category was each member concept named?), we transformed the mean rank 

of each response within its category by rounding down to an integer rank, so that for each category, 

rounded mean rank = 1 was assigned to all responses whose mean rank was less than 2.0, rounded 

mean rank = 2 was assigned to all responses with mean rank greater than or equal to 2.0 but less than 

3.0, and so on. The maximum rounded mean rank = 22. Finally, for each value of ranked production 

frequency and rounded mean rank, we computed the hit rate for each individual participant (i.e., the 

proportion of the categories in which that participant produced the group response): 

participant𝑖𝑖 hit rate(𝑘𝑘) =
# participant𝑖𝑖's responses with rank = 𝑘𝑘

# categories seen by participant𝑖𝑖
 

In this way, hit ratePF(1 … 43) essentially represented how often a given participant produced 

the most frequent (second-most frequent, third-most frequent, etc.) response across categories, and 

hit rateMR(1 … 22) represented how often a given participant produced the earliest (second-earliest, 

third-earliest, etc.) response across categories. Note that, due to tied ranks, it was possible for 

participants to score hit rateMR with values greater than 1.0. Calculating the mean and standard 

deviation of these hit rates (i.e., hit ratePF(𝑘𝑘) or hit rateMR(𝑘𝑘)) then allowed us to see how often 

participants, overall, tended to name member concepts at a given rank k. For example, on average, 

participants named 75.3% (SD = 12.1%) of the top-most popular member concepts in each category (i.e., 

hit ratePF(1)), but only 38.6% (SD = 12.7%) of the fifth-most popular members (i.e., hit ratePF(6)). 
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Similarly, participants named 52.7% (SD = 18.9%) of the member concepts with the earliest ordinal rank 

within its category (i.e., hit rateMR(1), reflecting the fact that categories with diverse responses often 

had no concepts with mean rank < 2), but 94.4% (SD = 18.2%) of the second-earliest concept (i.e., 

hit rateMR(2)). 

Next, we established how often model performance fell within these bounds of typical human 

performance. We calculated model hit rate using a similar formula to above, reflecting the proportion of 

categories for which the model produced the human response at a particular rank k of ranked 

production frequency and rounded mean rank: 

model hit rate(𝑘𝑘) =
# model responses with rank = 𝑘𝑘

# categories
 

We could therefore directly compare the hit rates at a given rank (hit ratePF(𝑘𝑘) and hit rateMR(𝑘𝑘)) of the 

model to those of participants. As with participants, tied ranks meant that it was possible for the model 

to score hit rateMR with values greater than 1.0.  

Finally, to summarize model performance in a single statistic per dependent variable, we 

computed the percentage of model hit rates which fell within 1 SD of the participant mean hit rate (i.e., 

how often did the model perform about as well as a typical participant?). In order to ensure that model 

hit rates of 0 did not artificially boost the model's performance (i.e., even when participants did not 

score well and also had hit rates close to 0), we computed summary percentages using only ranks before 

the human SD region started to include 0. The top ranks used for evaluation were 1–28 for ranked 

production frequency and 1–13 for rounded mean rank. Excluding the trailing ranks meant excluding 

category–member pairs that were produced only occasionally by participants, and reduced the total 

number of category-member pairs by 268 for ranked production frequency (2283 items remaining) and 

by 119 for rounded mean rank (2432 items remaining). Summary statistics computed from the whole 

width of the graph are included in supplementary materials Table S2, with supporting data and results. 

Choosing the Optimal Model. Just as participants were given limited time in which to produce 

their responses, we halted the model's operation after a fixed duration rather than let it run indefinitely. 

We selected a stopping point to maximize the summary hit-rate percentage for the combined model, 

where stopping too early led the model to activate too few category members (i.e., model hit rate below 

participant hit rate M – 1SD) and stopping too late led the model to activate unrealistically large 

numbers of category members (i.e., model hit rate above participant hit rate M + 1SD). The optimal 
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stopping points for hit ratePF and hit rateMR summary measures were close, but the peak of 

performance for both measures did not coincide. We chose to terminate the model at the best 

compromise point which maximized performance for ranked production frequency while still achieving 

near-maximum performance for rounded mean rank (a time of 305 ticks on the model clock; see 

supplemental materials Fig. S1 for plot of performance on each measure across model termination 

times). This stopping point was used for all three model versions, control, separate, and combined, 

although we noted that all direct activations had completed in the control model before this time was 

reached. 

Design and Analysis. We first tested whether allowing indirect activation improved model 

performance by comparing hit rates per rank in the separate model versus the control model (per 

component and measure), using directional signed ranks tests in both NHST and Bayesian form (default 

Cauchy prior distribution with r = 0.707; JASP Team, 2020; van Doorn et al., 2020). Likewise, we tested 

whether combining linguistic and sensorimotor information improved model performance by comparing 

in turn hit rates per rank in the combined model versus separate linguistic and sensorimotor 

components.  

In addition, in the combined model, we tested whether the linguistic component dominated 

model performance by counting whether each activated member concept first originated in the 

linguistic or sensorimotor component and using directional binomial tests in both NHST and Bayesian 

form (beta prior a = b = 1; JASP Team, 2020) to examine whether the proportion of concepts that 

originated in the linguistic component exceeded 50%.  

4.2. Results and Discussion 

4.2.1. Hit Rate Performance per Model Version 

Fig. 3 shows the model hit rates and summary hit-rate percentage for ranked production 

frequency and rounded mean rank, respectively, across each model version (control, separate, 

combined). Overall, a clear improvement in model performance can be seen as models progress 

between versions; Table 5 shows results. 

The control models' performance was below the level of participants’. With only direct category 

→ member activations allowed, model performance on ranked production frequency was 53.6% for the 

linguistic component (i.e., model hit rates fell within 1 SD of the human mean a little more than half the 
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time), and a much worse 3.6% for the sensorimotor component. Control model performance on 

rounded mean ranks was worse, at 23.1% for the linguistic component and 0.0% for the sensorimotor 

component. That is, although the control model produced some relevant member concepts for some 

categories, it activated too few category members overall to come anywhere near the level of human 

performance, particularly for the most important (i.e., top-ranked) member concepts. 

 

Figure 3.  

Hit rates for ranked production frequency (left) and rounded mean rank (right), showing model 

performance (thick red line) compared to human performance (fine grey line per individual participant, 
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fine black line for participant mean, blue shaded region representing 1SD around the participant mean). 

The summary percentage of model performance per panel refers to the proportion of model hit rates 

which fell within 1 SD of the participant mean, calculated for high ranks (orange bar on x-axis) before the 

human SD range spanned zero.  

 

Table 5 

Comparison of different versions of computational model in category production performance. 

Comparison W Log BF 

Ranked Production Frequency   

   Linguistic separate model vs. linguistic control 325.0*** 9.77 

   Sensorimotor separate model vs. sensorimotor control 378.0*** 8.76 

   Combined model vs. linguistic separate model 378.0*** 12.49 

   Combined model vs. sensorimotor separate model 378.0*** 10.01 

Rounded Mean Rank   

   Linguistic separate model vs. linguistic control 78.0** 5.12 

   Sensorimotor separate model vs. sensorimotor control 91.0*** 6.18 

   Combined model vs. linguistic separate model 91.0*** 6.47 

   Combined model vs. sensorimotor separate model 91.0*** 6.63 

Note. Comparisons test whether indirect activations improved performance (separate vs. control) and 

whether a combination of both linguistic and sensorimotor components were better than one 

component alone (combined vs. separate). W = Wilcoxon signed-rank test statistic; Log BF = natural log 

Bayes Factor, where negative values indicate evidence for the null model and positive values indicate 

evidence for the alternative model: log BFs ≥ 3.00 (equivalent to BFs > 20) constitute strong evidence; 

log BFs ≥ 1.10 (equivalent to BFs > 3) constitute positive evidence; and log BFs between –1.10 and 1.10 

(equivalent to BFs of 0.33 and 3) constitute equivocal evidence. 

** p < .01, *** p < .001 
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The separate models, which allowed indirect activation to spread between concepts, performed 

markedly better. Model performance in the separate linguistic component fell within typical human 

bounds 64.3% of the time for ranked production frequency, which was much better than the control 

version in both Bayesian and NHST terms. In the sensorimotor component, performance was 46.4%, 

again much better than the control version. Results were similar for rounded mean rank, where the 

separate linguistic component fell within human bounds 30.8% of the time and performed more 

strongly than the corresponding linguistic control model in both Bayesian and NHST analyses. The 

separate sensorimotor component also achieved performance of 30.8%, which was again much better 

than the corresponding sensorimotor control. These results show that allowing activation to spread 

indirectly between concepts, in both linguistic distributional knowledge and sensorimotor conceptual 

knowledge, critically improves how well the model can approximate human performance in category 

production. 

Finally, the combined model, which synced the linguistic and sensorimotor components to 

produce a single combined list of activated category members, performed best of all. For ranked 

production frequency, the model achieved 82.1% of its hit rates within typical human performance, 

which strongly outperformed the separate models of both the linguistic component and the 

sensorimotor component in Bayesian and NHST analyses. For rounded mean rank, model performance 

was 84.6%9, again strongly outperforming the separate linguistic component and sensorimotor 

component. These results indicate that both forms of information – linguistic and sensorimotor – are 

essential to the model’s ability to capture human performance in category production.  

4.2.2. Dominant Component 

In order to examine whether linguistic or sensorimotor information was primarily responsible 

for the models’ success in category production, we counted whether each activated member concept in 

the combined model’s output list originated in the linguistic or sensorimotor component at the time it 

                                                      

 
9 Note that because the optimal stopping point for the model was not at the maximum performance for 
rounded mean rank (see section "Choosing the Optimal Model"), it meant the model was technically 
capable of better performance on this measure. Peak performance for rounded mean rank occurred 9 
ticks later (314 ticks on the model clock) at 92.3%. 
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was first activated. Of the 575 category-member pairs activated by the optimal stopping point10, more 

member concepts originated in the linguistic component (N = 351: 61.0%) than in the sensorimotor 

component (N = 224: 39.0%), p < .001, log BF10 = 11.86.  This result suggests that – given the excellent fit 

of the model to human performance – linguistic distributional information may be slightly more 

dominant than sensorimotor information in conceptual processing during category production. Finding 

that most member concepts reached threshold activation in the linguistic component before the 

sensorimotor component is consistent with the linguistic shortcut hypothesis (Connell, 2018; Connell & 

Lynott, 2014b), and related theories of the conceptual system which hold that linguistic distributional 

information reaches peak activation before sensorimotor simulation (Barsalou et al., 2008; Louwerse, 

2011).  

4.2.3. Model Versus Individual Human Performance 

Since our aim was to examine whether the combined linguistic–sensorimotor model performed 

about as well as an individual human in approximating typical human performance in category 

production, we compared their performance in a number of ways.  In terms of overall category 

production, the model activated an average of 4.91 member concepts per category by the optimal 

stopping point (i.e., 575 category-member pairs divided by 117 categories), which is well within the 

M±SD range reported for individual participants in Experiment 1a (M = 6.18, SD = 3.90). 

In terms of hit-rate performance, it is useful to compare the summary hit rates of the model 

with that of participants (i.e., how often did participants' individual hit rates fall within 1SD of the group 

mean?).  For ranked production frequency, individual participant hit rates fell in typical (i.e., M ± 1SD) 

bounds between 4%–89% of the time (average 67%), compared to 82.1% for the combined model. For 

rounded mean rank, it was between 15%–100% for participants (average 68%), compared to 84.6% for 

the combined model. The wide range of summary hit rates for humans reflects the diversity of 

responses we saw in Experiment 1a, whereby some participants’ category production behavior was 

relatively eccentric whilst others’ was relatively conventional. Model behavior, in that sense, was more 

conventional in its performance than many participants. Overall, for both ranked production frequency 

                                                      

 
10 A further 861 category-member pairs were activated after the optimal stopping point, bringing the 
total to 1436 member concepts; as noted earlier (see section 4.1.3, Choosing the Optimal Model), this 
level of model performance exceeded typical human bounds and is not examined further. 
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and rounded mean rank, the model was at least as good as an individual participant at approximating 

typical human behavior in category production.  

5. General Discussion 

The present work provides strong evidence that linguistic distributional knowledge and 

sensorimotor grounding both contribute to the generation of member concepts during a category 

production task. In Experiment 1a, we found that both measures of sensorimotor similarity and linguistic 

proximity independently predicted three direct measures of category production (production frequency, 

mean rank, and first-rank frequency), whereas linguistic proximity alone predicted the implicit measure 

of processing effort in category production (RT; although the effect was weak). Similarly, we found in 

Experiment 1b that sensorimotor similarity and linguistic proximity outperformed typicality ratings as 

predictors of mean rank. Although this pattern did not emerge for the other measures of category 

production, sensorimotor similarity still uniquely contributed to production frequency and mean rank 

over and above typicality ratings, while linguistic proximity contributed to production frequency, mean 

rank, and first rank frequency over and above typicality ratings. Finally, using a novel computational 

model that incorporated both linguistic distributional and sensorimotor information, we found that the 

model best approximated typical human performance in production frequency and mean rank when 

conceptual activation was allowed to spread indirectly between words and between sensorimotor 

representations of concepts, and when candidate category members came from both sensorimotor and 

linguistic distributional representations. That is, both forms of information – linguistic distributional and 

sensorimotor – were critical to how well the model could approximate human performance in category 

production, although linguistic information was responsible for activating the majority of category 

members. When both forms of information were included, the model performed at least as well as a 

typical human. 

These findings support linguistic–simulation theories of the conceptual system (Barsalou et al., 

2008; Connell & Lynott, 2014b; Louwerse, 2011) as the basis for conceptual processing during 

categorisation. As predicted, the more similar a member concept’s sensorimotor profile is to that of its 

category concept (e.g., how much the sensorimotor experience of cat overlaps with the experience of 

ANIMAL), and the more often a member concept’s label co-occurs with its category label (e.g., how 

often the word “cat” shares a context with the word “ANIMAL”), the more often people name it, and the 

earlier in rank order the concept is named. Critically, we used a novel, fully grounded measure of 

sensorimotor experience, based on modality-specific ratings of perceptual strength and effector-specific 
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ratings of action strength. Thus, we ensured that category and member concepts were compared on the 

basis of a pure sensorimotor profile rather than on the basis of a relatively restricted set of features that 

are limited to those attributes that can be easily verbalized (e.g., feature production norms) and/or that 

include abstracted information with unclear grounding (e.g., taxonomic and encyclopaedic features such 

as cat: [baby is a kitten, is domesticated, has 4 legs]). Our findings thus provide some of the first 

evidence that concepts functionally group together according to the similarity of their sensorimotor 

representations, and do not necessarily require abstracted features to accomplish it (cf. McRae et al., 

1997; Tyler et al., 2000). Future work will examine in more detail how the emergent structure of 

categorical distinctions relies on grounded sensorimotor experience. 

More specifically, our findings support the linguistic shortcut hypothesis (Connell, 2018) as the 

process by which people arrive at the most frequently named and first-named members of a category. 

In Experiment 1a, linguistic proximity was a more important predictor of production frequency and first 

rank frequency than was sensorimotor similarity, and in our computational model, the linguistic 

component was responsible for first activating more member concepts than the sensorimotor 

component. These results suggest that participants are able to rely on linguistic distributional 

information as a computationally cheaper response heuristic (i.e., a shortcut) to activate concepts in 

place of full sensorimotor simulation. That is, when retrieving and selecting a suitable category member 

from long term memory, representation of a concept in the form of its linguistic label may be sufficient 

for the task. Since linguistic distributional information tends to reach peak activation (i.e., sufficient 

conceptual activation to inform a response) before sensorimotor simulation (Barsalou et al., 2008; 

Connell & Lynott, 2014b; Louwerse, 2011), it means that responses that originate from label-to-label 

activation tend to occur earlier than those that originate from simulation-to-simulation activation. 

Further support for the linguistic shortcut hypothesis, albeit weaker, came from analysis of RTs for first-

named category members. As predicted, the more often the label of a member concept co-occurs with 

its category label (e.g., how often the word “cat” shares a context with the word “ANIMAL”), the more 

likely and faster people are to name that concept first as a category member; however, the effect was 

relatively small and the evidence equivocal in Bayesian terms. The lack of sensorimotor similarity effects 

on the timecourse of category production was unexpected, as we had initially predicted that 

sensorimotor similarity would still play a role even if linguistic distributional information was dominant, 

and had found such sensorimotor effects in related work (Van Hoef et al., 2020). It is possible that our 

method of eliciting verbal responses led to rather noisier RT data than if (for example) we had required 

participants to press a key as soon as they thought of a category member. For instance, even our lexical 
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predictors (word frequency, number of syllables, and phonological Levenshtein distance) performed 

poorly in predicting RT variance (<1% variance explained), whereas random effects of participant and 

category accounted for around 36% of the variance in RTs. Nonetheless, this pattern of findings is 

consistent with the use of linguistic distributional information as a rapid linguistic shortcut when 

selecting category members, and future work should examine the timecourse of category production in 

more detail.  

Indeed, the only good predictor of RT was typicality (Experiment 1b), where we replicated 

previous findings that typicality ratings predict category production (Hampton & Gardiner, 1983; Mervis 

et al., 1976); that is, the more typical a concept is of its category, the more frequently, the more quickly, 

and the earlier it was named. Typicality ratings have traditionally been assumed to reflect the inherently 

graded nature of semantic categories as part of feature-based theories of category membership  (e.g., 

Osherson & Smith, 1981; Rosch, 1975; Rosch et al., 1976). However, the measure is somewhat 

problematic in that it is unclear precisely what typicality judgements are based on; for example, 

prototypicality effects can be observed in well-defined categories where membership relies on a single 

binary feature (e.g., EVEN NUMBER; Armstrong et al., 1983) and in ad hoc categories that have no 

stored structure in long term memory (e.g., WAYS TO MAKE FRIENDS; Barsalou, 1983), both of which are 

inconsistent with the notion of prototypicality and graded, feature-based category structure. It is thus 

unclear what typicality actually represents in a specific, operationalised sense that goes beyond an 

intuitive appeal to goodness-of-membership, which means – despite its predictive ability – it is also 

unclear precisely how typicality contributes to the process of category production. Nevertheless, 

defining what typicality represents is beyond the scope of the current paper. As our sensorimotor and 

linguistic measures were only weakly correlated with typicality rating, and accounted for category 

production responses beyond this measure, we can be confident that whatever typicality represents, it 

reflects different cognitive processes to sensorimotor similarity and linguistic proximity in the category 

production task. 

Given that category production is an unconstrained, free-response task that produces highly 

variable data amongst participants, it is notable that our measures succeeded in predicting variance in 

all dependent measures. When asked to list as many members of a given category as possible in 60 

seconds, our participants produced highly divergent responses that ranged from commonplace to 

downright eccentric, even when excluding idiosyncratic responses that were produced by only one 

participant. For example, in the categories of BOAT or INFECTIOUS DISEASE, it often happened that two 
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individual participants produced entirely non-overlapping lists of member concepts. Systematic errors 

were also common, as previously found in category production (e.g., Battig & Montague, 1969): for 

instance, our participants produced both chocolate and eggs as members of the category DAIRY 

PRODUCT, and produced both kiwi and pineapple as members of the category CITRUS FRUIT. With such 

variability in the data, it is perhaps unsurprising that the fixed effect sizes in our behavioural 

experiments were relatively modest in terms of explained variance. Overall, the lexical and critical 

predictors in Experiment 1a accounted for only 8% (mean rank) to 9% (production and first-rank 

frequency) of the variance for explicit measures of category production, and even with the addition of 

typicality ratings in Experiment 1b the explained variance ranged from 11% (mean rank) to 23% 

(production frequency). One possible reason is that variables such as typicality tend to correlate with 

production frequency more weakly for ad-hoc categories than for common taxonomic categories 

(Barsalou, 1983), and a large number of our categories were perhaps closer to goal-derived, ad-hoc 

categories (e.g., LIVING ROOM FURNITURE, GARDENING TOOL, POSITIVE PERSONAL QUALITY) than to 

traditional taxonomic categories (e.g., TOOL, FRUIT, EMOTION). Regardless, our computational model 

very successfully replicated the human responses from Experiment 1a, including the errors (e.g., the 

model also activated kiwi and pineapple for CITRUS FRUIT). In other words, even though human 

behaviour in category production tasks is somewhat variable, our model still successfully approximates 

it.  

Our computational model of conceptual activation during category production is novel in a 

number of ways. Like some related models of conceptual processing in other domains (e.g., Andrews et 

al., 2009; Johns & Jones, 2012), it implements a two-component conceptual system: one to reflect 

linguistic distributional knowledge and one to reflect the sensorimotor simulation system. However, 

unlike such earlier work, which implemented the simulation system via discrete abstracted features that 

were only partly perceptual, our model is fully grounded in that each word label (e.g., cat) is linked to a 

multidimensional profile of the strength of sensorimotor experience across a range of perceptual 

modalities and action effectors. In addition, unlike the above and other computational models of 

category production (e.g., Hills et al., 2012; Taler et al., 2020), we did not restrict the search space of the 

model to a few hundred concepts or a single category at a time. Instead, our model comprises some 40 

thousand concepts in both linguistic distributional and sensorimotor form, which approximates a full-

size conceptual system for an educated, adult native speaker of English (Lynott et al., 2020). Even the 

modelling of linguistic distributional information was based on a corpus size of 200 million words, that 

(unlike linguistic distributional models trained on several billion words) approximates the lower bound 
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of lifetime language experience in an adult speaker of English (Wingfield & Connell, 2020). With such 

implementational choices, we believe our model to be one of the most cognitively plausible 

computational cognitive models to date of the human conceptual system.  

One important implication of our model architecture is that its goal was to capture conceptual 

activation during category production, and not to model the entire cognitive process of category 

production. That is, given that the model is based on a full-size conceptual system of 40 thousand 

concepts, it inevitably activates both relevant category members and irrelevant neighbouring concepts 

while spreading activation from the category concept outwards. For example, the category ANIMAL 

activates relevant cat and irrelevant raindrop in the sensorimotor component. In humans, one might 

assume that the nature of the category production task requires some form of top-down filter 

mechanism, whereby each activated concept is evaluated as a candidate category member and those 

candidates like cat that clear a threshold of evidence are named aloud (or, alternatively, those 

candidates like raindrop that fail to clear the threshold are suppressed). It was not a goal of the model to 

capture such a top-down process, and so we evaluated the model using the (relevant) member concepts 

produced by humans for each category. However, another possibility is that a top-down filter 

mechanism may not be necessary if the linguistic and sensorimotor components interacted with each 

other during spreading activation, so that concepts activated in both components (e.g., sensorimotor 

concept point cat and linguistic word node "cat") would mutually boost each other above the level of 

concepts activated only in one component (e.g., sensorimotor concept point raindrop). That is, the 

selection of relevant over irrelevant candidate concepts may emerge spontaneously as a property of 

linguistic and sensorimotor components interacting and mutually reinforcing one another in cycles of 

spreading activation. Such inter-component interaction is a core part of how linguistic-simulation 

theories assume conceptual processing works, where linguistic information can activate simulated 

information, which in turn can activate further linguistic information, and so on (e.g., Barsalou et al., 

2008; Connell & Lynott, 2014b). The computational implementation of such complex interactions is non-

trivial, but we plan to investigate it in future research.    

Conclusion 

In summary, the present paper demonstrates that both linguistic distributional knowledge and 

sensorimotor grounding influences how particular concepts are selected over others during category 

production (a.k.a. semantic fluency). Through behavioural experimental and computational modelling 

work, we show that both sensorimotor information (e.g., how alike in sensorimotor experience is the 
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member concept cat to the category concept ANIMAL?) and linguistic distributional information (e.g., 

how often does the member concept label cat appear in the same contexts as the category concept 

label ANIMAL?) independently contribute to category production measures, supporting the linguistic 

shortcut hypothesis that label-to-label associations can often suffice in conceptual processing instead of 

relying wholly on more intensive sensorimotor simulation. Moreover, our novel, fully grounded 

computational model of conceptual activation during category production – whose performance was 

indistinguishable from that of human participants – shows that spreading activation indirectly between 

word labels, and between sensorimotor concept representations, greatly improves the predictive ability 

of sensorimotor and linguistic distributional information, and suggests that linguistic distributional 

information may play a dominant role in generating candidate member concepts during category 

production. While future work should investigate the timecourse of category production in more detail, 

our findings support recent theories which include both simulated and linguistic distributional 

information as inherent components of semantic processing, providing strong evidence that the 

conceptual system is both grounded and linguistic in nature.  
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