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Abstract

Optimisation routines used for demand management in transport systems strongly

depend on accurate forecasts. Outliers caused by systematic shifts in demand cause

erroneous forecasts for both current services and future services whose forecasts are

based on historic demand. Transport service providers often rely on analysts to iden-

tify outlier demand and make adjustments accordingly. However, previous research

on judgemental forecasting shows that such adjustments can be biased and even su-

perfluous. Literature on automated detection and evaluation of outlier demand in

this context is scarce.

To date, most literature on forecasting and optimisation in transport planning does

not account for demand outliers despite the negative impacts it can have. This the-

sis presents a novel methodology, which combines network clustering with functional

data analysis and time series forecasting, to detect outliers in demand for transport

systems. This thesis also contributes a simulation framework for evaluating the per-

formance of the proposed outlier detection procedure and for quantifying the effects

of outlier demand on different optimisation routines. The use of such a method as a

decision support tool for analyst adjusted forecasts, and how the outlier alerts may
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be best communicated, is also considered. Computational studies highlight the bene-

fits of different adjustments that analysts may take after the identification of outlier

demand. Multiple empirical studies will demonstrate how the method can be applied

in practice to different types of transport systems, with analyses of Deutsche Bahn

railway booking data and Capital Bikeshare usage data.
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Chapter 1

Introduction

1.1 Motivation

The rising number of public transport passengers (Buehler and Pucher, 2012) makes

accurate demand management and planning more important than ever. Transport

service providers often utilise a combination of demand forecasting and optimisation to

make decisions on issues such as fare levels, ticket availability, scheduling, and resource

distribution. However, the resulting outputs from the optimisation routines are only

optimal if the forecast is not erroneous. Forecasts can be inaccurate for several reasons

(Cleophas et al., 2017): (i) the unavoidable variance of demand overtime prohibits

perfect forecasts; (ii) Flaws in the chosen forecast model (such as the predictive time

series component or the customer choice model) cause model-based forecast errors;

(iii) Systemic changes in the market can cause short-term, shifts in demand. We term

this final phenomenon as outlier demand.

When outlier demand occurs, it affects the planning process in two ways: (i) in

1
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the forecasting component, as historic outlier demand contaminates future forecasts;

and (ii) current outlier demand causes the output of the optimisation to be non-

optimal. Although approaches such as robust optimisation may help to implicitly

protect against effects from outlier demand, these approaches are often intractable and

not often used in practice. Instead, we propose that outliers be explicitly identified

as they occur and the forecasts corrected.

The use of analysts’ expert judgement to make manual adjustments is an important

aspect of demand forecasting (Banerjee et al., 2020; Currie and Rowley, 2010; Schütze

et al., 2020). Manual adjustments to forecasts can contribute significant improvements

to forecasting, and therefore optimisation Zeni (2003). However, previous research

(Lawrence et al., 2006; De Baets and Harvey, 2020) has shown that such adjustments

can be biased and even unnecessary. To avoid superfluous adjustments, and to make

better use of resources, we propose the use of automated outlier detection as a tool

to aid in identifying when a forecast adjustment is necessary. Such decision support

tools can improve analyst judgement by reducing the complexity of the decisions, as

discussed by Perera et al. (2019).

1.1.1 Outlier detection for transport demand planning

Literature on the detecting demand outliers in transport planning is limited. Talvitie

and Kirshner (1978) consider the effects of outliers on the forecasting of demand for

different modes of urban transport, but implement a simplistic trimming method to

identify outliers. Guo et al. (2015) propose a procedure for identifying road traffic

level outliers in an online setting based on the conditional variance of predictions.
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They find that accounting for such outliers in future forecasts increases the systems

performance. Neumann-Saavedra et al. (2021) show that service levels can be im-

proved when adjustments are made to the optimal redistribution plan in bike-sharing

systems if demand differs from that forecasted. Rashed et al. (2017) discuss exploit-

ing knowledge of detected outliers to convey information about the data generating

process to policy makers, when forecasting container throughput at ports.

1.1.2 Outlier detection for revenue management

Revenue management (RM) solves an optimisation problem (usually revenue maximi-

sation), where firms decide on prices or availability of perishable products based on

a demand forecast. Although the practice of revenue management is not restricted

solely to the transport industry, given the origins of modern RM practices in the air-

line industry, much existing RM literature does focus on transport applications. In

this thesis, we focus on applications of RM by transport providers, specifically railway

service providers. However, the methods and results discussed are generalisable both

to other transport providers (e.g. bike-sharing as discussed in Chapter 4), and other

applications of revenue management (e.g. hospitality).

Demand forecasting for RM is well-documented in the literature Pereira (2016).

Many studies point out the importance of accurate demand forecasts, both from

the perspective of optimising revenue and to improve planning (Banerjee et al., 2020;

Weatherford and Belobaba, 2002). Very little of this literature on forecasting considers

the problem of outliers even though they can have a substantial impact on the outcome

of the RM. The literature also tends to focus on removing outliers from historic data to
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decontaminate future forecasts, rather than detecting outliers in an online setting to

improve optimisation. Weatherford and Kimes (2003) implement a simple trimming

approach to remove outliers caused by atypical events, such as holidays and special

conventions, to improve forecasting. Outside of the transport industry, Liang and Cao

(2018) fit a Normal distribution to detect anomalous observations in hotel booking

data for hospitality RM.

Detecting outliers in demand for transport systems, and quantifying their impact,

is an open problem. Several issues complicate the problem further: (i) capacity

restrictions mean that observed bookings do not necessarily reflect actual demand.

This can cause bookings for different services to follow similar patterns, even when

the underlying demand is different, complicating the process of outlier detection. (ii)

Outlier demand cannot be assumed to be temporally or spatially homogeneous and

uncorrelated - some areas of the transport network are more prone to outlier demand

than others. (iii) The large scale of many transport networks makes investigating

all possible outliers infeasible, and so any detection method is required to prioritise

which outliers are the most critical for further investigation. (iv) There are multiple

decisions that an analyst may take after an outlier has been identified, and it is not

clear which decisions are better than others.

Overall, the significant impacts that outlier demand can have on both forecasting

and optimisation, and the complicated nature of the problem which makes judge-

mental decisions difficult, motivates the need for a semi-automated system which

highlights outliers to support analysts.
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1.2 Contributions

This thesis firstly contributes a novel outlier detection method, which combines func-

tional data analysis and time series forecasting, for use as an automated tool to detect

outlier demand in transport revenue management systems. This includes an extrap-

olation step which allows the method to be applied in the online setting. We provide

a simulation-based framework to evaluate the performance of the method in a con-

trolled environment. Analysis of the impact on revenue from correctly accounting for

such outliers is also provided.

This thesis further contributes a method for extending the application to the

significantly more complex network revenue management setting. Our proposed two-

step approach generalises to any transport setting, and we provide a case study using

Deutsche Bahn booking data. We also provide a simulation study showing improved

performance against various benchmarks, and the revenue benefits under different

actions that may be taken in response.

The third main contribution of this thesis is an extended study of empirical data

from a bike-sharing system in Washington DC, where we evidence how the previously

introduced methods generalise to other transport systems besides railway networks.

This section includes an extended discussion of the temporal and spatial patterns of

detected outliers, and how these may be best communicated to analysts.
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1.3 Outline

In Chapter 2 we introduce a novel method for identifying outlying demand in transport

revenue management systems in the single-leg setting, and include an adaptation for

its application in the online setting. In Chapter 3 we approach the problem of demand

changes in a network setting, and demonstrate a two-stage approach (comprised of

clustering and outlier detection) on railway booking data from Deutsche Bahn. In

Chapter 4, we consider how such a method may be adapted for alternative transport

systems and exemplify the procedure on Capital Bikeshare data. In Chapter 5, the

thesis is concluded with a summary of the contributions made and suggestions of

future research in the area of detecting outlier demand in transport networks.



Chapter 2

Identifying and responding to

outlier demand in revenue

management

Revenue management strongly relies on accurate forecasts. Thus, when extraordinary

events cause outlier demand, revenue management systems need to recognise this and

adapt both forecast and controls. Many passenger transport service providers, such

as railways and airlines, control the sale of tickets through revenue management.

State-of-the-art systems in these industries rely on analyst expertise to identify out-

lier demand both online (within the booking horizon) and offline (in hindsight). So

far, little research focuses on automating and evaluating the detection of outlier de-

mand in this context. To remedy this, we propose a novel approach, which detects

outliers using functional data analysis in combination with time series extrapolation.

We evaluate the approach in a simulation framework, which generates outliers by

7
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varying the demand model. The results show that functional outlier detection yields

better detection rates than alternative approaches for both online and offline analyses.

Depending on the category of outliers, extrapolation further increases online detection

performance. We also apply the procedure to a set of empirical data to demonstrate

its practical implications. By evaluating the full feedback-driven system of forecast

and optimisation, we generate insight on the asymmetric effects of positive and neg-

ative demand outliers. We show that identifying instances of outlier demand and

adjusting the forecast in a timely fashion substantially increases revenue compared to

what is earned when ignoring outliers.

2.1 Introduction

In the last 40 years, revenue management (RM) has become an indispensable business

practice, particularly for transport service providers such as airlines and railways

(Weatherford, 2016b). RM solves an optimisation problem, where firms decide on

offers for perishable products, usually with the objective of maximising revenue. This

optimisation assumes a fixed capacity, low marginal cost, and a given demand forecast.

In that regard, Weatherford and Belobaba (2002) highlight that inaccurate demand

forecasts can significantly diminish the achieved revenue. Banerjee et al. (2020) point

out that detailed demand forecasts also support in further planning steps, such as

network resource and fuel planning.

Cleophas et al. (2017) list several causes for forecast inaccuracies : on the one

hand, the unavoidable variance of day-to-day demand prohibits perfectly accurate
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forecasts. On the other hand, any flaw in the forecast model, including both the

predictive time series component and the customer choice model naturally causes

model-based forecast errors. Finally, sudden shifts in the market may cause short-

term, temporal outliers. For example, when the system does not account for special

events such as a sports championship or a trade fair, these will cause observed demand

to systematically deviate from predictions.

We focus on such demand outliers in the domain of revenue management for pas-

senger transport, specifically railways and airlines. In this domain, RM via capacity

controls optimises booking limits, which specify the number of units that can be sold

per fare class and time in a fixed booking horizon. Accordingly, sold units are also

termed bookings. The distribution of bookings over intervals of the booking horizon

constitutes a booking pattern. Booking patterns may be aggregated across fare classes

and are reported either for single resources, such as flight legs, or for complementary

combinations of resources, such as network itineraries. Here, we focus on aggregated

booking patterns as reported for single resources, such as a single flight or a railway

connection.

Common RM demand forecasting techniques estimate demand from historical

booking patterns and booking limits (Weatherford, 2016b). Accordingly, we let outlier

detection rely on the same data. We follow the definition by Hawkins (1980) and de-

fine an outlier as ‘an observation which deviates so much from the other observations

as to arouse suspicions that it was generated by a different mechanism.’ Detection can

either apply online, within the booking horizon and considering partial booking pat-

terns, or offline, after a booking horizon, when the complete pattern can be analysed.
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Demand outliers affect revenue management systems in two ways: (i) in foresight,

the flawed forecast results in non-optimal capacity allocations; and (ii) in hindsight,

the outlier can contaminate the data that underlies future forecasts. Accordingly, on-

line detection can improve foresight, whereas offline detection can improve hindsight.

To detect outliers, functional data analysis, where each booking pattern is treated

as an observation of a function over time, is a natural place to turn to. Functional

approaches can detect outliers in both magnitude and shape of an observed book-

ing pattern. In other words, they can detect outliers that deviate across the entire

booking horizon and those that deviate in only part of the booking horizon. Effective

detection in online and offline settings has to be capable of identifying both types of

outliers.

By investigating practical RM implementations in the airline and railway industry,

we find that the current process relies on analysts, who manually examine booking

patterns. When analysts perceive demand outliers, they attempt to compensate by ad-

justing the reported data, the forecast, or the booking limits. The decision of whether

an adjustment is necessary and in what form depends on the analysts’ intuition. As

noted by Cleophas et al. (2017) and Banerjee et al. (2020), little existing work system-

atically measures the effect of such interventions. There is even less consideration of

providing systematic analytics support for the related decisions. However, research on

human decision making in general, and judgemental forecasting in particular, clearly

demonstrates fallibility and bias (O’Connor et al., 1993; Lawrence et al., 2000, 2006).

This motivates the need for automated alerts to highlight outliers and thereby support

analysts.
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To our knowledge, we are the first to propose an automated methodology for

outlier detection in the RM domain. Specifically, this chapter makes the following

contributions: (i) proposing a novel outlier detection approach, combining functional

data analysis and time series extrapolation, which improves overall detection perfor-

mance; (ii) providing a simulation-based framework for generating regular and outlier

booking patterns, and evaluating their effect throughout the RM process; (iii) demon-

strating the asymmetric effects of outliers on RM performance; (iv) quantifying the

benefits from successful online or offline outlier detection for RM; and (v) demonstrat-

ing the use of such outlier detection in an application to empirical railway booking

data.

2.2 RM forecasts and forecast evaluation

The importance of accurate forecasts as input to revenue optimisation is well-documented

in the literature. Authors are largely concerned with forecasting customer demand

(Pereira (2016), Weatherford and Belobaba (2002), Talluri and Van Ryzin (2004)),

although forecasting cancellations and no-shows has also been explored (Morales and

Wang, 2010). Weatherford and Belobaba (2002) confirm previous findings that inac-

curate demand estimates can significantly impact revenue. Under the use of optimisa-

tion heuristics such as Expected Marginal Seat Revenue (EMSRb) (Belobaba, 1989),

under- or over-forecasting can even be beneficial. As described by Mukhopadhyay

et al. (2007), most RM systems require forecasts of the actual demand, rather than

the observed demand. The actual demand consists of both observed demand and
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customer requests that were denied due to restrictive booking limits. Actual demand

is difficult to observe in practice, and so must be estimated. To this end, Weatherford

and Belobaba (2002) survey various techniques.

When allowing for inaccurate demand forecasts, much RM research focuses on

rendering the optimisation component more robust or forecast-independent, as de-

tailed in the contributions reviewed in Gönsch (2017). In another review, Cleophas

et al. (2017) point out that there is little research into the effects of manually adjusted

forecasts in RM. Mukhopadhyay et al. (2007) propose a method for measuring the

performance of adjusted and unadjusted forecasts. They find that if analysts can re-

liably improve demand forecasts on critical flights, significantly more revenue can be

generated. Zeni (2003) describe a study at US Airways, which aimed to isolate and

estimate the value of analyst interactions. According to that study, around 3% of the

additional revenue generated within the duration of the study could be attributed to

analyst input.

Given that experiments in a live RM system carry significant risks, the use of

simulation for evaluation is common. Additionally, simulation studies enable a priori

knowledge about the true demand generation process, which can never be known in

a real-world setting. Frank et al. (2008) discuss the use of simulation for RM and

provide guidelines; in a related effort, Kimms and Müller-Bungart (2007) consider

demand modelling for RM simulations. The chapter at hand follows these contribu-

tions in establishing a simulation-based framework to generate outlier observations.

Doreswamy et al. (2015) employ simulation as a tool to analyse the effects of different

RM techniques for different airlines, when switching from leg-based controls to net-
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work controls. Cleophas et al. (2009) focus on an approach to evaluating the quality

of RM forecasts both in terms of revenue and common forecast error measurements.

Another example of using simulation to evaluate the performance of forecast compo-

nents is given in Bartke et al. (2018). Temath et al. (2010) used a simulation-based

approach to evaluate the robustness of a network-based revenue opportunity model

when input data is flawed. In the broader context of demand forecasting, Petropoulos

et al. (2014) evaluate fitting time series forecasts for particular patterns of demand

evaluation by manipulating these patterns in a simulation framework.

2.3 Existing work on outlier detection

To assess the existing methodological contributions to outlier detection, we distinguish

between identifying outlying observations within a time series (Figure 2.3.1a), and

identifying an entire outlying time series (in our case, booking pattern) (Figure 2.3.1b).

In this chapter, we aim for the latter.
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(a) Outlier within a given time series
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(b) Outlying time series within a collection of series

Figure 2.3.1: Different types of outliers in time series data
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Literature on handling outliers in the RM process is scarce, though there is some

discussion in Weatherford and Kimes (2003): the authors consider removing outliers

caused by atypical events, such as holidays and special conventions, to improve future

forecasting. However, they propose only to remove observations outside of the mean

± 3 standard deviations and do not seek to identify outliers online within the booking

horizon.

Beyond RM, a wealth of literature studies outliers (also referred to as anomalies)

in time series, as reviewed by Chandola et al. (2009) and Pimentel et al. (2014). For

example, Hubert et al. (2015) survey various functional outlier detection techniques

for time series data, and apply their methods to multiple real data sets. Barrow and

Kourentzes (2018) consider the effect of functional outliers for call centre workload

management and recommend an artificial neural network to model them as part of

the forecast rather than identifying them. Talagala et al. (2019) propose a sliding

window approach for detecting outlying time series within a set of (nonstationary)

time series, based on the use of extreme value theory for outlier detection. The

authors also distinguish identifying outliers within a time series, and identifying an

outlying series from a set. The remainder of this chapter distinguishes three classes

of approaches to outlier detection: (i) univariate, (ii) multivariate, or (iii) functional.

Further technical details of all outlier detection methods described here are available

in Appendix A.1.

Univariate approaches

Univariate outlier detection techniques identify anomalous observations of a single
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variable, and so can be applied independently at different time points in a time series,

e.g., to the cumulative number of bookings per interval in a booking horizon.

• Nonparametric percentiles: This class of approaches uses lower and upper per-

centiles of the observed empirical distribution at each time point as limits for what

constitutes a regular observation as opposed to an outlier. This type of percentile-

based approach is discussed by Pincus et al. (1995). It can be used as a basic way

to estimate statistics in a more robust manner, by trimming or winsorising the

data (see Dixon and Yuen (1974)). The downside of this approach is that a fixed

percentage of the data will always be classified as outliers, even when there are

fewer or more actual outliers in the data.

• Tolerance intervals: Statistical tolerance intervals contain at least a specified

proportion of observations with a specific confidence level (Hahn and Chandra,

1981). They require two parameters: the coverage proportion, β, and confidence

level, 1 − α. For booking patterns, at each interval of the booking horizon, these

approaches define a tolerance interval for the cumulative number of bookings by

that time. If the number of observed bookings lies outside of this tolerance interval,

the pattern is deemed an outlier. Nonparametric tolerance intervals do not assume

an underlying distribution, and instead are based on the order statistics of the data

(Wilks, 1941). Parametric tolerance intervals assume an underlying distribution

(Hahn and Chandra, 1981). The choice of distribution is not arbitrary, and a bad

choice of distribution will perform poorly. Liang and Cao (2018) choose to fit a

Normal distribution to hotel booking data to detect anomalous observations.
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• Robust Z-score: The Z-score measures where an observation lies in relation to

the mean and standard deviation of the overall data (Iglewicz and Hoaglin, 1993).

The robust Z-score uses the median and the median absolute deviation to provide

a similar measurement. As such, an observation with a robust Z-score above some

threshold is classified as an outlier. This score-based method assumes that the

observations in a given booking interval are approximately normally distributed

based on two justifications: (i) a large proportion of univariate outlier detection

methods rely on distributional assumptions (often normality); and (ii) although

the discrete, non-negative integer nature of booking data suggests the use of a

Poisson distribution, in the presence of trend or seasonal adjustments, the data

may no longer have these properties.

Multivariate approaches

Univariate outlier detection approaches ignore the dependence both within and be-

tween time series. We next turn to multivariate approaches as potential methods for

capturing within (but not between) time series dependence. In this setting, a time

series of length τ , that is, a booking pattern observed over τ intervals, is considered

as a point in a τ -dimensional space. This allows the multivariate approaches to com-

pute the distance between any two booking patterns, but ignores the time ordering

of observations.

• Distance: Each booking pattern (observed over τ intervals) can be characterised

by its τ -dimensional distance to every other booking pattern. Aggregating these

distances transforms the problem into a univariate outlier detection problem, based
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on the mean distances. Depending on the length of the booking pattern, issues re-

lating to sparsity due to high dimensionality may arise. As discussed by Aggarwal

et al. (2001), some distance metrics perform better than others in a high dimen-

sional space. However, in relation to distance metrics, high dimensionality often

refers to at least hundreds of dimensions. The number of booking intervals in RM

applications is often fewer than this, ranging from 20 to 50 in examples known to

the authors. Therefore, we consider the classical Euclidean and Manhattan distance

metrics in our comparative evaluation.

• K-Means clustering: K-means clustering splits the observed booking patterns

into K groups by iteratively minimising the (τ -dimensional) distance between each

booking pattern and the centre of its assigned cluster (see e.g. MacQueen (1967)).

This approach uses a distance threshold to identify booking patterns as outliers

based on their distance to the centre of their cluster (Deb and Dey, 2017). As

in the distance-based approaches, the choice of distance metric is highly relevant

for clustering. Once more, this chapter compares Euclidean and Manhattan dis-

tance metrics. The approach requires as its input parameter a given K to indicate

the number of clusters. Information on the methodology used to determine K is

available in Appendix A.1, including a comparison of performance under different

choices of K, and the distribution of genuine outliers across such clusters.

Functional approaches

There are two main issues with the use of multivariate outlier detection approaches

in this application: (i) the effects of high-dimensionality on distance metrics when
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considering a large number of booking intervals; and (ii) the lack of accounting for

the consecutive, time-ordered, nature of the observations. For such issues, functional

data analysis is an intuitive place to turn. Functional data analysis addresses both

issues by (i) treating booking patterns as functions observed τ times rather than points

in a τ -dimensional space, and (ii) explicitly taking into account the time-ordering of

the observations. We provide further analysis of the importance of time-ordering in

Appendix A.3.4.

The functional analysis setting, as discussed by Febrero et al. (2008), lacks a rig-

orous definition of an outlier. We use the same definition as Febrero et al. (2008): ‘a

curve is an outlier if it has been generated by a stochastic process with a different dis-

tribution than the rest of the curves, which are assumed to be identically distributed’.

We view this as a more specific version of the definition by Hawkins (1980) provided

in our introduction.

A depth function attributes a sensible ordering to observations, such that observa-

tions near the centre should have higher depth and those far from the centre should

have lower depth. In the functional data setting, this idea provides an ordering to a

set of smooth functions observed over discrete time-intervals, with the most central

curve trajectory having highest depth. Functional depth not only accounts for the

magnitude of the observations, but also for the variability in amplitude i.e. the shape

of the curve (Febrero et al., 2008). Given this definition of functional depth, the

degree of abnormality of a curve can be characterised by its functional depth, if its

depth is particularly low (Hubert et al., 2015). Depth-based approaches for detecting

outlying curves are discussed in detail by Hubert et al. (2012). In this chapter, we
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focus on the multivariate halfspace depth described by Claeskens et al. (2014). We

state and explain the mathematical definition of the multivariate halfspace depth in

Appendix A.1.

2.4 Proposed methodology: functional outlier de-

tection with extrapolation

To improve foresight, RM systems need to identify demand outliers online and as early

as possible in the booking horizon. This enables the RM system to update controls

for the remainder of the horizon. We term this problem online outlier detection.

When tasked with online detection at time tτ in the booking horizon, all approaches

discussed in the previous section would exclusively consider the first τ observation

intervals only.

Therefore, in the online setting, only a partial booking pattern is available for

analysis. We propose to supplement the outlier detection by extrapolating the ex-

pected bookings from the current time tτ up to the end of the booking horizon, tT . In

the computational study, we compare simple exponential smoothing (SES, Chatfield

(1975)), autoregressive integrated moving average models (ARIMA, Box and Jenk-

ins (1970)), and integrated generalised autoregressive conditional heteroskedasticity

models (IGARCH, Tsay (2002)). Appendix A.1.2 provides a detailed list of univariate

forecasting methods that can be used for extrapolation.

Algorithm 1 outlines the procedure on a set of N booking patterns observed until

time tτ , where given an entire booking horizon of length tT with t1, . . . , tτ , . . . , tT ,
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then yn(tτ ) is a time series describing the bookings for pattern n up to time tτ :

yn(tτ ) = {yn(t1), yn(t2), . . . , yn(tτ )}.

Algorithm 1: Using extrapolation to improve functional outlier detection

1 At time tτ forecast the accumulation of bookings at each time tτ+1, . . . , tT ,

denoted ŷn(tτ+1), . . . , ŷn(tT ), for each booking pattern n;

2 Calculate Dn(ŷn(tτ )), the functional depth of the observed and extrapolated

booking pattern ŷn(tτ ) = {yn(t1), yn(t2), . . . , yn(tτ ), ŷn(tτ+1), . . . , ŷn(tT )}, for

each booking pattern n at time tτ ;

3 Calculate a threshold, C, for the functional depth;

4 Bootstrap the original booking patterns, with probability proportional

to their functional depths;

5 Smooth the bootstrap samples;

6 Let Cb be the 1st percentile of the depths of the bth bootstrapped

sample;

7 Set C as the median value of the Cb;

8 if Dn(ŷn(tτ )) ≤ C then

9 Define booking pattern n as an outlier. Delete booking pattern n from the

sample of N patterns.

10 end

11 while ∃ n s.t. Dn(ŷn(tτ )) ≤ C do

12 Recalculate functional depths on the new sample, and remove further

outliers.

13 end
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Figure 2.4.1: Example: functional halfspace depth with ARIMA extrapolation outlier

detection

Figure 2.4.1 demonstrates the algorithmic approach; in the extensive simulation

analysis, we apply it to a variety of booking patterns and outliers. Figure 2.4.1a shows

25 booking patterns that have been observed during the first five of thirty intervals

of the booking horizon. The extrapolation step is shown in Figure 2.4.1b, where the

purple lines depict the ARIMA extrapolation of accumulated bookings until the end

of the horizon. The empirical distribution of the functional depths of the extrapolated

sample are shown in Figure 2.4.1c, with the threshold shown in red (computed via
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the bootstrapping routine described in Algorithm 1, lines 3-7). The booking patterns

classified by the algorithm as outliers are highlighted in red in Figure 2.4.1d.

The input parameters relating to the calculation of the threshold includes the num-

ber of bootstrap samples (line 4), the smoothing method (line 5), and the choice of

percentile (line 6). In this chapter, we select parameters as per Febrero et al. (2008) as

these perform well in a wide range of settings. Further details of the threshold calcula-

tion are available in Appendix A.1. The proposed approach could alternatively feature

any of the multivariate or functional approaches reviewed in Section 2.3.1 However, a

functional approach provides more scope for extensions, such as considering season-

ality and increasing the frequency of outlier detection. In addition, the approach can

utilise a variety of methods for extrapolating. Note that the methodology employed

for this extrapolation step is independent of the forecasting methodology to predict

demand for RM.

2.5 Simulation-based framework

To quantify effects from demand outliers and evaluate outlier detection approaches,

we simulate a basic RM system with capacity controls. Such systems are common in

the transport industry, but not limited to that domain (see Talluri and van Ryzin,

2004, Chapter 2.1). The system implemented here is minimal and general and does

not fully mirror a real-world application system. However, the booking patterns our

1This approach is not applicable for univariate outlier detection methods as, in this setting, the

number of bookings at each point in time is considered independently of past or future bookings.
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simulation generates are comparable with those observed in real-world RM systems –

see Appendix A.3.10. Since the simulation renders the process of demand generation

to be explicit, computational experiments can yield truthful detection rates. This is

impossible in empirical data analysis, where the true demand and the distinction of

regular versus outlier demand is never fully certain. Therefore simulation modelling

provides an alternative to the problem of creating reproducible forecasting research,

highlighted for instance by Boylan et al. (2015).

The simulation implements the following steps:

1. Parameterise a demand model to specify both regular and outlier demand.

2. Generate multiple instances of regular and outlier demand from Step 1 in terms

of customer requests (e.g. customers that intend to book a seat on a particular

railway connection) arriving across the booking horizon.

3. From the demand model of regular demand (Step 2), compute the forecast in

terms of the number of expected requests per fare class and time in the booking

horizon.

4. Compute booking limits that maximise expected revenue from bookings based

on the demand forecast from Step 3.

5. Use the booking limits (Step 4) to transform arriving requests (from Step 2)

into booking patterns over the course of multiple consecutive simulated booking

horizons.

6. Analyse booking patterns (from Step 5) to identify booking horizons with outlier
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demand.

7. Compare knowledge of the underlying demand model (Step 2) to identified out-

liers (Step 6) to compute detection rates.

Symbol Definition Regular Demand Value

I The set of customer types {1 = Business, 2 = Tourist}

J The set of fare classes {A, O, J, P, R, S, M}

α, β
Parameters of Gamma distribution
for number arrivals α = 240, β = 1

ai, bi Parameters of Beta distribution, λ́i(t) a1 = 5, b1 = 2, a2 = 2, b2 = 5

Fixed φi

Proportion of total customer arrivals
stemming from type i φ1 = 0.5, φ2 = 0.5

Input pij

Probability of type i being willing-to-pay
at most fare class j

p1j = {0.35, 0.1, 0.25, 0.15, 0.05, 0, 0}
p2j = {0.05, 0.1, 0, 0.05, 0.1, 0.15, 0.5}

rj Average fare for fare class j {400, 300, 280, 240, 200, 185, 175}

C Capacity 200

NS

Number of runs of simulation used
to compute forecasts µ̂j and σ̂2

j 100

Random D Total customer arrivals ∼ Gamma(α, β)

Input λi(t)
Time-dependent rate of the Poisson
process of type i customer arrivals

xn,i,j(t)

nth realisation of Poisson process of
type i customers purchasing
fare class j at time t

Output µ̂j Forecast of mean of fare class j demand

σ̂2
j Forecast of variance of fare class j demand

yn,j(t)
nth realisation of cumulative bookings in
fare class j at time t

Table 2.5.1: Table of notation and parameter values used for simulation

Table 2.5.1 sets out the notation used in the remainder of this section to detail the

demand model, demand forecasting, revenue maximisation heuristics, and booking

limits. In this section, we detail both the models and algorithms, and the parameter
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settings implemented in the computational study.

2.5.1 Generating demand in terms of customer requests

Heterogeneous demand is a frequently stated RM precondition, assuming that cus-

tomer segments differ in value and can be identified through their idiosyncratic book-

ing behaviour. To model this parsimoniously, the simulation features two customer

types but can be easily extended to feature more. We index any parameter that char-

acterises high-value customers with index 1 and any parameter that characterises low-

value customers with index 2. Classical RM assumes that requests from high-value

customers typically arrive later in the booking horizon than those from low-value

customers. High-value customers are more likely to book expensive fare classes when

cheap fare classes are not offered. We follow Weatherford et al. (1993) in modelling re-

quests from either customer type as arriving according to a non-homogeneous Poisson-

Gamma process. Requests from customer type 1 arrive according to a Poisson(λ1(t))

distribution; those from customer type 2 arrive according to a Poisson(λ2(t)) distri-

bution. The total number of customer arrivals D is split between the two segments,

such that

λ1(t)|(D = d) = d× φ1
ta1−1(1− t)b1−1

B(a1, b1)
, (2.5.1)

λ2(t)|(D = d) = d× φ2
ta2−1(1− t)b2−1

B(a2, b2)
, (2.5.2)

where D ∼ Gamma(α, β) with probability density function:

f(d|α, β) =
βα

Γ(α)dα−1eβd
. (2.5.3)
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The constraint φ1+φ2 = 1 ensures that all requests belong to exactly one customer

type. Additionally, we set parameters a1, b1, a2 and b2 such that they follow the

assumption that valuable customers are more likely to request at later stages of the

booking horizon:

a1 − 1

a1 + b1 − 2
>

a2 − 1

a2 + b2 − 2
. (2.5.4)

Figure 2.5.1a illustrates arrival rates λ1(t) and λ2(t) across the booking horizon,

with Figure 2.5.1c showing one realisation of request arrivals in a specific horizon.

A set of fare classes, 1, . . . , |J |, differentiates discount levels, r1 ≥ r2 . . . ≥ r|J |.

The simulation implements a random choice model to let customers choose from the

set of currently offered classes. The model assumes all customers book the cheapest

available fare class. At the same time, not all customers can afford to book any fare

class. For every fare class k, the probability that a customer of type i is willing to

pay at most fare class k is pik, as shown in Figure 2.5.1d. Each customer has a single

fare class threshold, which is the most they are willing to pay, such that:

|J |∑
k=1

pik + pi0 = 1, (2.5.5)

where pi0 is the the probability of a type i customer arriving and choosing not to book

based on the classes on offer. Hence, the probability of booking fare class j is:

P (Book fare class j|No availability in classes j + 1, . . . , |J |) =

j∑
k=1

pk,(2.5.6)

P (Book fare class j|Availability in classes j + 1, . . . , |J |) = 0, (2.5.7)

where pk is the weighted average of probabilities of each customer type i being willing
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Figure 2.5.1: Customer arrivals generated by a nonhomogeneous Poisson-Gamma

process

D ∼ Gamma(240, 1), φ1 = φ2 = 0.5, a1 = 5, b1 = 2, a2 = 2, b2 = 5

to pay up to fare class k:

pk =
∑
i∈I

φipik, (2.5.8)

and φi is the proportion of total customer arrivals stemming from type i.
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While demand arrival rates vary across the booking horizon, the simulation models

arrival rates and choice probabilities as stationary between booking horizons. While,

in real-world markets, demand shifts in seasonal patterns and trends, we rely on

random draws from distributions with stationary parameters as when introducing

and detecting outliers, the simplest case lets all regular demand behaviour derive from

the same distribution. When an approach cannot correctly detect abnormal demand

when all regular demand comes from this same distribution, it is highly unlikely that

it will perform better when regular demand is non-stationary.

2.5.2 Outlier generation

We generate outlier demand by parameterising demand generation in a way that

deviates from the regular setting. Combining outlier demand with booking limits

(optimised based on forecasts of regular demand) creates an outlier booking pattern.

Outliers can result from three approaches to adjusting the parameters in Equations

(2.5.1) and (2.5.2), and the probabilities pij:

1. Demand-volume outliers : Increasing or decreasing the volume of demand across

the whole (or partial) booking horizon, by adjusting the parameters α and β in

the Gamma distribution for D, the total demand.

2. Willingness-to-pay outliers : Shifting the proportions of demand across fare

classes, by either adjusting the choice probabilities per customer type or to

the ratio of customer types, φ1, φ2.

3. Arrival-time outliers : Shifting the arrival pattern of customer requests (from a
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subset of customer types) over time by adjusting parameters a1, b1, a2, b2, which

control the time at which requests from each customer type arrive.

2.5.3 Forecasting demand

Most RM approaches to capacity control rely on knowing the number of expected

customer requests per offered product, potentially per set of offered products. The

simulation implements heuristics that rely on the mean and the variance of expected

requests per fare class (see Section 2.5.4).

To avoid interference from arbitrary forecasting errors, we exploit knowledge of the

demand model given in the simulation setting when creating the forecast. We first

draw NS sets of customer arrivals from Equations (2.5.1) and (2.5.2). Let xn,i,j(t)

define the nth realisation of type i customers who booked in fare class j at time t

as drawn from the Poisson arrival process with rate λi(t) and probability pij. Then,

we set the forecast to be the mean demand across all customer types upon departure

from NS simulations for fare class j, µ̂j:

µ̂j =
1

NS

NS∑
n=1

(∑
t∈T

∑
i∈I

xn,i,j(t)

)
. (2.5.9)

Similarly, the simulation forecasts the variance of the demand for fare class j as:

σ̂j
2 =

1

NS − 1

NS∑
n=1


[(∑

t∈T

∑
i∈I

xn,i,j(t)

)
− µ̂j

]2 . (2.5.10)

Here we aggregate across the booking horizon in order to obtain forecasts for the

final demand for each fare class. The resulting sum of customer requests per fare

class across customer types gives the total expected demand per fare class. The mean
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and variance of these NS realisations are taken to be the forecasted parameters of a

Normal distribution for each fare class demand.

Note that this aggregated forecast deliberately prepares the heuristic applied for

revenue optimisation in this case. Applying, for instance, a dynamic program to

optimally control arriving customer requests, would require a forecast of customer

arrival rates and choice probabilities. The consequence of outliers, however, would be

the same, as the arrival rates and choice probabilities deviate for demand outliers.

Last but not least, the simulation forecast assumes stationarity of demand, which

is correct with regard to the demand setting simulated here. Therefore, a single

forecast value is predicted for all future booking periods. Naturally, in a real-world

setting, this stationarity is not given, but instead trends and seasonality complicate

forecasting. Future research featuring such forecast aspects would open the path to

further differentiation with regard to the effects of different types of outliers given

different parameterisations of the non-stationary components.

2.5.4 Heuristic revenue optimisation

The simulation implements two well-known heuristic methods for obtaining booking

controls for a single resource: EMSRb and EMSRb-MR. We pick these heuristics for

their wide acceptance and pervasive use in practice. Furthermore, as opposed to e.g.

exact dynamic programming formulations, these heuristics yield the booking limits

widely implemented in current practice. We expect the nature of these booking limits

and their updates to be a relevant factor for the recognition and compensation of

demand outliers.
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• EMSRb, Expected Marginal Seat Revenue-b, was introduced by Belobaba (1992).

EMSRb calculates joint protection levels for all more expensive classes relative to

the next cheaper fare class, based on the mean expected demand and its variance.

• EMSRb-MR: To make the EMSRb heuristic applicable when demand depends on

the set of offered fare classes, e.g. when customers choose the cheapest available

class, Fiig et al. (2010) introduce this variant. It applies a marginal revenue trans-

formation to demand and fares before calculating the EMSRb protection levels

based on transformed fares and predicted demand.

Booking limits can be implemented in either a partitioned or nested way (Brumelle

and McGill (1993), and Talluri and Van Ryzin (2004), Chapter 2). Partitioned con-

trols assign capacity such that each unit can only be sold in one specific fare class.

Conversely, nested controls let assignments overlap in a hierarchical manner; i.e. units

of capacity assigned to one fare class can also be sold in any more expensive fare class.

Thus, nested booking limits ensure that for any offered class, all more expensive classes

are also offered—as this seems an intuitive goal these booking limits are much more

commonly used. Therefore, our simulations implement nested controls.

2.5.5 Evaluation of outlier detection

We regard outlier detection as a binary classification problem, where the two classes

are regular booking patterns and outlier booking patterns. By definition, for any pattern

generated in the simulation, we know the true class, as we know the underlying

demand model.
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Several indicators evaluate the performance of binary classification outcomes, as

surveyed by Tharwat (2018). Each outcome falls into one of four categories: (i) if a

genuine outlier is correctly classified, it is a true positive (TP); (ii) if a regular obser-

vation is correctly classified, it is a true negative (TN); (iii) if a regular observation is

wrongly classified as an outlier, it is a false positive (FP); and (iv) if a genuine outlier

is wrongly classified as regular, it is a false negative (FN).

To analyse results in this chapter, we implement the Balanced Classification

Rate (BCR) as suggested by Tharwat (2018). This indicator accounts for both the

average of the true positive rate and true negative rate:

BCR =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
. (2.5.11)

The notions of high detection rates (fraction of genuine outliers which are correctly

detected) and low false positive rates (fraction of regular observations which are in-

correctly labelled as outliers) create conflicting objectives. For example, a high true

positive rate does not necessarily indicate a high performing algorithm, if it is accom-

panied by a high false positive rate. Therefore, combining both into a single figure is

useful. Nonetheless, additional results on true positive rates, false positive rates, and

positive likelihood ratios (Habibzadeh and Habibzadeh, 2019) are included in Appen-

dices C.4 and C.5. Typically, the number of outliers is outweighed by the number of

normal observations. This leads to one class being significantly larger than the other.

BCR is robust to this imbalance.

Additionally, we generate a receiver operating characteristic (ROC) curve

by plotting the true positive rate against the false positive rate (McNeil and Hanley,
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1984). This provides an additional diagnostic for binary classifiers. The ROC curve

compares the true positive to false positive ratio as the threshold (at which an outlier

is classified) varies. The optimal ROC curve is that with the combination of highest

true positive rate and the the lowest false positive rate, i.e. with an area under the

ROC curve closest to 1.

2.5.6 Experimental setup

We vary two main elements of the experimental setup for experimental analysis. The

first is the parameter settings used to generate regular and outlier demand. The

second are the settings of outlier detection.

We generate regular demand according to the parameters in Table 2.5.1, which

results in regular total demand with a mean of 240, and a standard deviation of 15.492.

We benchmark detection performance on outlier demand generated in various ways.

Our main focus is on analysing different magnitudes of demand-volume outliers. Our

choice of parameter changes for outlier generation follows Weatherford and Belobaba

(2002), who investigate the effects of inaccurate demand forecasts on revenue. In

particular, they consider cases where forecasts are 12.5% and 25% higher or lower

than the actual demand. We perform a similar analysis on the benefits of detecting

outliers where the overall number of customers deviates from regular demand by ±

12.5% and ± 25%. These four types of demand-volume outliers we consider are

generated by varying the parameters α and β as described in Table 2.5.2. This results

in a change in mean of the desired magnitude and direction, but no change in variance.

In addition, we consider other types of outliers, as outlined in Section 2.6.3.
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Mean Std. Dev α β

Regular Demand 240 15.492 240 1

25% Increase 300 15.492 375 1.25

12.5% Increase 270 15.492 303.75 1.125

12.5% Decrease 210 15.492 183.75 0.875

25% Decrease 180 15.492 135 0.75

Table 2.5.2: Parameter choices used to generate demand-volume outliers

In a wide-ranging computational study, we compared the performance of all out-

lier detection methods described in Section 2.3. Appendix A.2, Table A.2.3 lists the

aggregated results from all experiments carried out. For conciseness, the results dis-

cussed in the next section focus on the best univariate method, parametric (Poisson)

tolerance intervals; the best multivariate method, K-means clustering with Euclidean

distance; the best functional method, functional depth; and the best extrapolation

method, ARIMA extrapolation combined with functional depth.

The settings used for these four methods are as follows:

• Parametric tolerance intervals : The distribution chosen is Poisson, see Ap-

pendix A.1 for details. The coverage proportion is chosen to be β = 0.95,

and the confidence level is α = 0.05 by default.

• K-means clustering : The number of clusters, K, is chosen to be 2, see Appendix

A.1 for reasoning. The default threshold for classifying a booking pattern as an

outlier is half the sum of the maximum and minimum distances of the patterns
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from their cluster centres (Deb and Dey, 2017).

• Functional depth: The number of bootstrap samples for the threshold is chosen

to be 1000. The smoothing method is as suggested by Febrero et al. (2008).

Similarly, the percentile chosen for this analysis is the 1st percentile, as suggested

by Febrero et al. (2008).

• Functional depth + ARIMA extrapolation: Thresholds are calculated as in

functional depth. The orders of the ARIMA extrapolation are selected using

auto.arima in R, based on AICc, with the augmented Dickey-Fuller test used to

choose the order of differencing. The parameters are estimated using maximum

likelihood with starting values chosen by conditional-sum-of-squares.

We provide further details on the extent of the computational study, including aggre-

gated results, in Appendix A.2.

2.6 Simulation results

To investigate different outlier simulation and detection techniques, we follow a four-

step process. We contrast foresight detection performance of different outlier detection

methods in Sections 2.6.1 and 2.6.2. This analysis focuses on detection performance

across the booking horizon, and evaluates the detection approaches’ ability to detect

outliers early in the booking horizon. We also quantify the gain in outlier detection

performance resulting from the inclusion of the extrapolation step proposed in Section

2.4. Subsequently, Section 2.6.3 investigates the effect of different types of outliers on

the performance of the outlier detection method. Additionally, Section 2.6.4 consid-
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ers an empirical data set to demonstrate the practical implications of the approach.

Finally, Section 2.6.5 presents a final set of experiments intended to measure the po-

tential increase in revenue generated by analysts correctly taking actions based on

alerts from the proposed method of outlier detection. Note that all experiments anal-

ysed in this section implement the EMSRb-MR heuristic, which is a better fit with

the given demand model. We have investigated the implications of applying the EM-

SRb heuristic and assessed the revenue generated as well as the effect on identifying

outliers in an ancillary study. The results under EMSRb (found in Appendix A.3.1)

and EMSRb-MR were found to yield similar conclusions, regardless of the outlier

detection method used. Additional results, including those relating to the hindsight

detection of outliers, are available in Appendix A.3.

2.6.1 Benchmarking foresight detection of demand-volume

outliers

To evaluate foresight detection performance, Figure 2.6.1 displays the average BCR

per booking interval. Very early in the booking horizon, all four methods suffer from

poor performance but for different reasons – some suffer from low true positive rates,

others from high false positive rates (see Appendices C.4 and C.5 for details). At

around 21 booking intervals before departure, the average BCR of functional methods

quickly accelerate towards 1, whereas the univariate and multivariate approaches at

best only show mild improvements in classification performance.

Including ARIMA extrapolation markedly accelerates classification performance,
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Figure 2.6.1: Comparison of foresight outlier detection averaged over different mag-

nitudes of demand outliers with 5% outlier frequency

especially between 20 and 10 booking intervals before departure. Note that the aim

of extrapolation is not necessarily to increase the overall BCR, but to achieve peak

performance earlier in the booking horizon to gain time for analyst intervention. The

extrapolation achieves this by increasing the variance of the booking patterns, leading

to an increase in the number classified as outliers. See Appendix A.3.6 for further

details. Additional analysis of Receiver Operating Characteristic (ROC) curves (see

Section 2.6.2), further supports the inclusion of ARIMA extrapolation. In Figure

2.6.1b, we also compare functional depth with IGARCH and SES extrapolation, and

similar improvements are observed as with ARIMA extrapolation. ARIMA provides

overall larger gains in performance compared to SES and IGARCH. This is likely

due to the flexibility of ARIMA in capturing the changing curvature of the booking

pattern, and its ability to encapsulate the autocorrelations induced by censoring from

the booking limits. In the last third of the booking horizon, the extrapolation makes
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up a much smaller part of the pattern, i.e. most of the pattern is now made up of

observed rather than extrapolated data. Hence, the input data to the outlier detection

algorithm with different extrapolations is similar, and so they produce similar results.

Further analysis on the relationship between extrapolation accuracy and the resulting

improvement in outlier detection is available in Appendix A.3.8.

As noted in Section 2.4, extrapolation could also be combined with multivariate

outlier detection methods such as K-means clustering. Given the superior perfor-

mance of functional depth we focus our main results on this combination, but ad-

ditional results regarding combining with multivariate techniques are presented in

Appendix A.3.3.

2.6.2 Receiver Operating Characteristic (ROC) curves

To show that our conclusions in Section 2.6.1 are robust to different parameterisa-

tions of the outlier detection settings, we perform an ROC curve analysis by varying

the thresholds for K-means clustering, functional depth, and functional depth with

extrapolation. Figure 2.6.2 shows the results for two time intervals in the booking

horizon: one early at 20 intervals before departure, and one later at 10 intervals before

departure.
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(e) Functional depth with ARIMA
extrapolation outlier detection at 20
booking intervals before departure
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(f) Functional depth with ARIMA
extrapolation outlier detection at 10
booking intervals before departure

Figure 2.6.2: Receiver operating characteristic (ROC) curves
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There are three main conclusions that can be drawn from the results of the ROC

analysis. (i) The area under the ROC curve is consistently higher for functional

approaches than for K-means. Similarly, the area under the curve is even higher when

we include extrapolation. (ii) For K-means, the area under the ROC curve diminishes

as the number of booking intervals increases, suggesting issues with sparsity caused

by high dimensionality.

Thus, even a better choice of threshold criteria would not result in improved perfor-

mance for K-means. (iii) The improvement between functional depth and functional

depth with extrapolation is smaller towards the end of the booking horizon. This is

due to the fact that, at this point, the extrapolation makes up a smaller part of the

input data and so the two approaches are more similar.

2.6.3 Outlier detection for diverse types of outliers

We next investigate how the average BCR varies depending on the type and magnitude

of outliers. All experiments in this section feature an outlier frequency of 5%. When

we tested the sensitivity of approaches to different frequencies of outliers (ranging

from 1% to 10%, results omitted here), we found little impact on outlier detection

performance across methods, such that the conclusions drawn from this section are

generally robust. Results on the effect of outlier frequency are available in Appendix

A.3.2.

First, we vary the magnitude of demand-volume outliers to ±12.5% and ±25%.

Figure 2.6.3a displays the average BCR over time for parametric (Poisson) tolerance

intervals. We observe that higher magnitudes of outliers are easier to classify, but also
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with ARIMA extrapolation

outlier detection

Figure 2.6.3: Balanced Classification Rate under different magnitudes of outliers with

5% outlier frequency

that demand decreases are easier to classify than increases. The latter observation

is intrinsic to RM systems: an unexpected decrease in demand causes a decrease in

bookings, but an increase in demand does not necessarily result in an increase in

bookings if the booking limit for a fare class has been reached, i.e. if the fare class is

no longer offered. This censoring leads to the phenomenon of observing a constrained

version of demand.

Similar observations arise when testing all other univariate and multivariate out-

lier detection approaches. In contrast, Figure 2.6.3b displays the average BCR over

time with functional halfspace depth and ARIMA extrapolation. Here the average

BCR is very similar for all four magnitudes of outliers considered. This classification

approach therefore appears to be very robust to the magnitude and direction of out-
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liers considered. The robustness to the direction of the outlier demand shift is a result

of the choice of depth measure. Hubert et al. (2012) define the multivariate functional

halfspace depth for the purposes of identifying curves which are only outlying for a

fraction of the time they are observed over. This means that if a booking pattern

is affected by censoring, as long as it has still been an outlier before censoring came

into effect, it can still be detected later in the horizon. In terms of robustness to

magnitude, we hypothesise that much smaller outlier magnitudes would need to be

considered before the average BCR decreases. We further consider demand shifts of

±1%, ±5%, ±10%. The results are as expected - for ±10%, the performance is only

slightly poorer; for ±5%, we see a drop in performance with the algorithm at best

having a BCR of around 0.75; and a level of ±1% performance is particularly poor

with a BCR of close to 0.5. This is behaviour we would expect, given that outliers

caused by such a small deviation in demand are unlikely to be considered outliers in

any real sense. These results are available in Appendix A.3.7.

Figures 2.6.4a and 2.6.4b illustrate effects from willingness-to-pay outliers, where

the ratio of high-value to low-value arrivals changes. The default value in our sim-

ulations is φ1 = φ2 = 0.5 such that there is a 1:1 ratio, but we allow this ratio to

change to create outliers. Here, φ1 < 0.5 creates a higher percentage of total arrivals

from low paying, early arriving customers of type 2. Under functional depth outlier

detection, it is easier to detect this type of outlier when the change in φ1 is larger.

There is a dip in performance around interval 22, as this large number of low-paying

arrivals causes censoring when booking limits render cheaper classes unavailable.

Setting φ1 > 0.5 creates a larger percentage of type 1 customers, who arrive late
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(c) BCR of functional depth outlier

detection for changes in a1, a2, b1, b2
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(d) BCR of functional depth with ARIMA extrapo-

lation outlier detection for changes in a1, a2, b1, b2

Figure 2.6.4: Performance of functional depth (with and without ARIMA extrapola-

tion) for different types of outliers

and are willing to pay more. Again, this is easier to detect under functional depth

when the change in φ1 is larger. Incorporating the ARIMA extrapolation generally

improves performance in the last two-thirds of the horizon. However, early in the
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booking horizon this provides mixed results.

Figures 2.6.4c and 2.6.4d demonstrate the performance of functional depth (with

and without extrapolation) for detecting arrival-time outliers. These outliers are

caused by changes in the parameters a1, a2, b1, b2 (resulting in a subset of customer

types arriving later or earlier than in the regular case), as outlined in Table 2.6.1.

a1 b1 a2 b2 Effect of parameter choices

Regular Demand 5 2 2 5 low value customers arrive before high value customers

Setting 1 5 2 5 2 some low value customers arrive a lot later

Setting 2 2 5 2 5 some high value customers arrive a lot earlier

Setting 3 5 2 2 2 some low value customers arrive a little later

Setting 4 2 2 2 5 some high value customers arrive a little earlier

Table 2.6.1: Parameter choices used to generate arrival time outliers

Outliers in Settings 1, 2 and 3 are easy to detect even early in the booking horizon

using functional depth without extrapolation. This is fairly intuitive - Settings 1 and

3 create almost no bookings early in the horizon, which is very different from regular

behaviour. In contrast, Setting 2 creates far more bookings early in the horizon than

the regular setting. ARIMA extrapolation is not needed nor beneficial in Settings 1-3,

due to the ease of spotting outliers immediately. In contrast, outliers from Setting 4

are more difficult to detect. This is likely due to the fact that for most of the first half

of the horizon, outlier booking patterns and regular booking patterns are similar. In

the later half of the horizon, booking limits render the cheaper fare classes unavailable,

so that arriving customers purchase higher fare classes only slightly earlier in time.
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In Setting 4 extrapolation is found to significantly help the classification performance

in this more challenging setting.

2.6.4 Detecting outliers in railway booking patterns

We demonstrate the proposed outlier detection method by identifying outliers in a

data set of 1387 booking patterns obtained from the main German railway company,

Deutsche Bahn. This preliminary empirical study can be thought of as a guide to

practitioners for how to apply the algorithm. A detailed analysis of the algorithm’s

performance in practice would require a manually annotated data set or, potentially,

a field study. While of significant interest, such an analysis is beyond the scope of

this chapter.
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Figure 2.6.5: Pre-processing of data

We consider booking patterns that were observed for a single departure time every
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day of the week, for one railway leg that directly connects an origin and a destination.

The 1387 booking patterns are observed over 18 booking intervals, where the first

booking interval is observed 91 days before departure. Figure 2.6.5a illustrates 148

of these booking patterns, which relate to trains departing on Mondays. For the

purposes of Figure 2.6.5a, we have rescaled the number of bookings to be between

0 and 1. The booking data is generated from an RM system that implements an

EMSR variant, which sets and updates booking limits based on forecasted demand

and observed bookings.

In order to obtain a homogeneous data set to allow for outlier detection, we must

account for two factors: (i) departure days of the week and (ii) shortened booking

horizons. We compare booking patterns for different days of the week by applying

pairwise functional ANOVA tests (Cuevas et al., 2004). In general, booking patterns

for different days of the week are not directly comparable (see Appendix A.3.10 for

details). In addition, shortened booking horizons are a special characteristic of this

data set that are caused by the railway service provider’s process for implementing

schedule changes. As a consequence, some booking horizons are foreshortened and the

majority of bookings typically arrive much closer to departure (see Appendix A.3.10).

To prepare the data for outlier detection, we transform the booking patterns to

make them more comparable to each other. To account for both shortened booking

horizons and departure days of the week, we apply a functional regression model

(Ramsay et al., 2009). This functional regression model accounts for the way in

which average booking patterns change from day to day, and fits a mean function (see

Appendix A.3.10 for details) to the booking patterns for each day of the week. The



CHAPTER 2. IDENTIFYING AND RESPONDING TO OUTLIER DEMAND 47

model is of the form:

bookingsi(t) = β0(t) + β1(t)IMondayi + β2(t)ITuesdayi + β3(t)IWednesdayi+

β4(t)IThursdayi + β5(t)IFridayi + β6(t)ISaturdayi + β7(t)IShorter Horizoni + ei(t),

(2.6.1)

where the βj(t) are functions of time. Here, IMondayi = 1 if booking pattern i relates

to a departure on a Monday, 0 otherwise, and so on. Since every departure belongs to

a single day of the week, β0(t) represents the average bookings for Sunday departures,

with a non-shortened booking horizon. This means that β1(t) accounts for the change

in average bookings between Sunday and Monday departures. The purpose of allowing

the βj(t) to be functions of time is not to remove the trend from the booking patterns

but rather to allow the relationship between different days of the week to change

over the course of the booking horizon. In this model, IShorter Horizoni = 1 if the

booking horizon has been shortened due to scheduling changes (affecting departures

from mid-December to mid-March), 0 otherwise.

We run the functional depth outlier detection routine on the residuals, as shown in

Figure 2.6.5b, with detected outliers shown in red. We also show these corresponding

outliers in red in Figure 2.6.5a. Of the 1387 booking patterns in the data set, we

classify 66 (≈ 5%) as outliers. Note that the frequency of outliers is not an assumption

provided to the outlier detection routine, and coincides with the frequency of outliers

used in the simulation setup (5%), thus justifying this choice in our earlier simulations.

For validation, we provided the labelled data set back to Deutsche Bahn. The

company’s domain experts have confirmed that the relative proportion of outliers

is appropriate to support analyst work on improving demand forecast and booking

controls. Furthermore, their hindsight analysis has confirmed that most automatically
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identified outliers would have benefitted from such corrections.

In addition, we compared the dates of the booking patterns classified as outliers

with a list of known holidays and events. Of the 66 booking patterns classified as

outliers, 30 could be attributed to known events e.g. public holidays. This leaves 36

outlying booking patterns which would otherwise have gone undetected. However,

we do not aim to solely identify already known events, as there would be little point

to only confirming known information. Therefore, the additionally identified outliers

are not necessarily false positives – they are in fact the very booking patterns we are

attempting to identify.

2.6.5 Revenue improvement under outlier detection of demand-

volume outliers

To evaluate the effect of demand deviating from the forecasts used by EMSRb and

EMSRb-MR, we now introduce a best-case scenario where the RM system antici-

pates outliers and generates accurate demand forecasts (as opposed to implementing

booking controls based on the initial erroneous forecasts). The percentage change

in revenue, when switching from erroneous to correct forecasts, under four demand

changes is shown in Table 2.6.2. Results show the impact of detecting and correct-

ing outliers in demand depends on the demand factor, the choice of booking control

heuristic, and the magnitude of the demand deviation.

Under EMSRb, the effect on revenue is asymmetric across positive and negative

outliers. When the outlier is caused by a decrease in demand, correcting the forecast
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and updating controls leads to significant increases in revenue, particularly at higher

demand factors. Conversely, when the outlier is caused by an increase in demand,

correcting the forecast and updating controls has a negative impact on revenue. Al-

though counter-intuitive at first glance, this agrees with previous findings. EMSRb

is known to be too conservative (Weatherford and Belobaba, 2002) and reserve too

many units of capacity for high fare classes, thereby rejecting an excessive number

of requests from customers with a lower willingness to pay. In consequence, there is

left-over capacity at the end of the booking horizon. Hence, under-forecasting can be

beneficial under EMSRb.

Optimisation Forecasted % Change in Demand from Forecast

Heuristic Demand Factor -25% -12.5% +12.5% +25%

0.90 +0.1% +0.1% -0.9% -3.6%

EMSRb 1.20 +10.2% +6.4% -2.3% -2.3%

1.50 +12.2% +4.4% -4.5% -6.8%

Avg. +7.5% +3.6% -2.5% -4.2%

0.90 +2.3% +1.3% +0.4% +2.9%

EMSRb-MR 1.20 +2.0% +4.1% +4.4% +9.9%

1.50 +16.2% +7.7% +5.0% +9.5%

Avg. +6.9% +4.4% +3.3% +7.4%

Table 2.6.2: % Change in revenue resulting from correcting inaccurate demand fore-

casts
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Under EMSRb-MR booking controls, the results are more symmetric across pos-

itive and negative outliers, in that correctly adjusting forecasts increases revenue

regardless of whether the initial forecast was too high or too low. Under both types

of heuristic, the magnitude of the change in revenue (either positive or negative) is

generally larger when the change in demand from the forecast is larger.
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Figure 2.6.6: Gain in revenue under different magnitudes of outliers using functional

depth with ARIMA extrapolation

Figure 2.6.6 shows the average percentage gain in revenue, at each point in the

booking horizon, from analysts correcting forecasts for those booking patterns iden-

tified as outliers. The percentage gain is in comparison to the analyst making no

changes and using the incorrect forecast for the entirety of the booking horizon.

The outlier detection method of choice in Figure 2.6.6 is functional depth with

ARIMA extrapolation. We consider an idealised scenario, in that when a booking
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pattern is flagged as an outlier, if it is a true positive (genuine outlier) then analysts

adjust the forecast according to the correct distribution. Similarly, if the flagged out-

lier is a false positive, analysts do not make any changes to the forecast. Although

idealised, the results here highlight the potential gains in revenue from analyst inter-

vention, as well as the utility of using functional outlier detection in detecting true

positives and avoiding false negatives (missed outliers).

Results show the use of our method creates a peak early in the booking horizon,

when the potential revenue gain is highest. This peak is caused by a combination

of being far enough into the booking horizon such that some bookings have occurred

and the outlier detection method is able to identify outliers, but being early enough

in the horizon such that any actions taken still have time to make an impact.

2.7 Conclusion and Outlook

In conclusion, the work presented in this chapter gives rise to several insights.

We benchmarked a set of outlier detection techniques and find that the functional

outlier detection approach offers the best performance and the most scope for further

extensions. Our results show that combining functional outlier detection with our

proposed extrapolation step significantly improves performance overall, and acceler-

ates the correct identification of outliers earlier in the booking horizon. We do note

however that all methods perform poorly very early in the booking horizon where

very little data has been gathered, and clearly at this stage analyst expertise or prior

information is needed rather than relying on booking data alone.
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By analysing an empirical railway booking data set, we demonstrated that such

data is similar in shape as the data generated by the simulation model. Furthermore,

the frequency of outliers detected via applying functional outlier detection to the

empirical data was similar to what was observed with simulation data. In contrast

to the simulation setting, the empirical data does not provide information on the

labelling of actual outliers, it was therefore not possible to compute detection rates

for this data. However, we validated our findings by presenting them to domain

experts.

Outliers in demand diminish revenue when they go undetected. The exact effect

depends on the combination of outlier and optimisation method, as shown in Section

2.6.5. Nevertheless, we argue that using a heuristic with an intrinsic bias that is then

compensated by undetected outliers (as observed for EMSRb and undetected positive

demand outliers) cannot be desirable for an automated system.

We have demonstrated that identifying outlier booking curves and adjusting the

demand forecast accurately early in the booking horizon supports revenue optimisa-

tion. Currently, revenue management analysts decide on which booking patterns are

outliers based on their previous experience of observing demand and their knowledge

about special events. Automated outlier detection routines provide another proce-

dure of alerting analysts to unusual patterns. If the detection algorithm identifies a

booking pattern as an outlier, the RM system alerts the responsible analyst. When

the system and the analyst agree that a booking pattern is critical and that it requires

intervention, an analyst must decide which action(s) to take. Specifically, they need

to decide whether to increase or decrease the forecast or inventory controls, and by
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how much. Further work could investigate methods to adjust the initial forecast to

account for outliers.

Within the context of RM, thoroughly examining the effects across further outlier

situations, e.g. outliers affecting only part of the booking pattern, and optimisation

solutions, e.g. dynamic programming, is an interesting area for further research. Fur-

thermore, future research might consider more differentiated forecasting situations,

featuring trends and seasonalities. Beyond RM, other paradigms of offer optimisa-

tion, such as mark-down pricing or the pricing of Veblen products, might offer different

challenges with regards to outlier detection. Given that the resulting sales observa-

tions should also take the format of time series, we consider it interesting to find out

whether the same methods would broadly apply in such different settings.



Chapter 3

Detecting outlying demand in

multi-leg bookings for

transportation networks

Network effects complicate demand forecasting in general and outlier detection in

particular. For example, in transportation networks, sudden increases in demand for

a specific destination in a network not only affect the legs arriving at that destination,

but also feeder legs. Network effects are particularly relevant when transport service

providers, such as railway or coach companies, offer many multi-leg itineraries. In this

chapter, we present a novel method for generating automated outlier alerts to support

analysts in adjusting demand forecasts accordingly. To create such alerts, we propose

a two-step method for detecting outlying demand from transportation network book-

ings. The first step clusters network legs to appropriately partition and pool booking

patterns. The second step identifies outliers within each cluster and creates a ranked

54
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alert list of affected legs. We show that this method outperforms analyses that in-

dependently consider each leg without regard for network implications, especially in

highly-connected networks where most passengers book multi-leg itineraries. A simu-

lation study demonstrates the robustness of the approach and quantifies the potential

revenue benefits from adjusting network demand forecasts for offer optimisation. We

illustrate the applicability on empirical data obtained from Deutsche Bahn.

3.1 Introduction and State of the Art

Transport service providers such as railways (Yuan et al., 2018) or long-distance coach

services (Augustin et al., 2014) offer a large number of interconnected legs that let pas-

sengers travel along a multitude of itineraries. Such services require providers to solve

a variety of related planning problems, ranging from service network design to demand

forecasting and offer optimisation across the network. Klein et al. (2020) reviews how

single-leg practices to offer optimisation through revenue management (RM) gener-

alise to the network setting. Weatherford (2016a) surveys RM forecasting methods

and particularly considers itinerary-level forecasting for airlines. Further contribu-

tions, e.g. Weatherford and Belobaba (2002) and Rennie et al. (2021a), demonstrate

the negative effects of inaccurate demand forecasts on revenue performance, but ne-

glect network effects.

Little existing research, however, examines how to account for demand outliers

in revenue management. For historical hotel booking data, Weatherford and Kimes

(2003) discuss a simple method of removing observations that are more than ±3σ
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away from the mean. Rennie et al. (2021a) apply functional analysis to detect out-

liers on the single-leg level. None of these contributions, however, consider outliers

occurring in multiple legs of a network, leaving this challenge as an open problem.

Furthermore, existing work has focused on binary outlier detection without regard for

quantifying how critical an outlier is. This chapter simultaneously addresses both of

these challenges with a novel methodological approach.

Outside the RM domain, Barrow and Kourentzes (2018) propose a functional ap-

proach for outlier detection in call arrival forecasting, also without regard for network

effects. General outlier detection in networks often focuses on identifying outlying

parts of the network. Fawzy et al. (2013) use this approach in wireless sensor net-

works to find faulty nodes. Ranshous et al. (2015) provide an overview of the extension

to identifying outlying nodes in the case where the network changes over time. Most

of these works on dynamic networks concentrate on analysing a single time series

connected to each node, rather than analysing a set of time series, as required when

booking patterns are reported for multiple departures. Hyndman et al. (2016) note

that the problem of identifying unusual time series (within a collection of similar time

series) is not as extensively studied as other outlier detection problems. In this chap-

ter, we shall implement the approach suggested by Hyndman et al. (2016) to identify

outlying time series based on principal component analysis (PCA), as a benchmark

to our newly proposed approach.

For the remainder of this chapter, the term departure indicates a journey that

leaves the origin station at a unique time and date. We term a unit sold as a booking,

and the accumulation of bookings across the booking horizon as a booking pattern.
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Booking patterns may be reported per resource (e.g. per leg), or per product (e.g.

per itinerary).

Network bookings challenge outlier detection in two ways: On the one hand,

demand outliers on the itinerary level affect multiple legs included in the itinerary. On

the other hand, such outliers may not be recognisable given noise from other itineraries

when considering the leg bookings in isolation. Identifying outliers in network revenue

management data and quantifying their impact is an open problem. This chapter

focuses on outliers in terms of short-term systematic changes in demand in multi-

leg bookings. We argue that our proposed method, which jointly considers highly

correlated legs within a network, significantly improves the performance of outlier

detection.

We suggest to aggregate and analyse booking patterns from multiple legs as op-

posed to itineraries based on two considerations. First, when there are many possible

itineraries in a large network, each individual itinerary only receives a small num-

ber of bookings on average, challenging any data analysis. Secondly, when offering a

large number of potential itineraries, providers rarely store all booking patterns on an

itinerary level. When applying capacity-based RM, booking patterns are stored on

the leg level to ensure the availability of capacity on each leg of a requested itinerary.

Practical network RM often relies on manual forecast adjustments (Currie and

Rowley, 2010; Schütze et al., 2020). However, previous research (Lawrence et al., 2006;

De Baets and Harvey, 2020) has shown that the resulting judgemental forecasts can be

biased and even superfluous. To avoid such collateral damages, we contribute a ranked

alert list of outlying departures and affected legs, to help identify the need for further
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analysis and adjustments. Perera et al. (2019) note that such forecasting support

tools can improve user judgement by reducing complexity for the analyst. Analysts’

time is limited and they are unlikely to have the time to investigate every departure

which is flagged as an outlier. For example, Deutsche Bahn experts estimate that

they can reasonably adjust less than 1% of forecasts. This motivates us to aggregate

outlier analysis across multiple legs and to focus analysts’ attention by constructing

a ranked alert list. We consider an outlier as more critical if it indicates a larger

demand shift and if it is identified across multiple legs.In contrast to the single-leg

case discussed in Rennie et al. (2021a), when considering network effects there are

multiple choices of forecast adjustment that an analyst can make. The best choice of

forecast adjustment is not obvious, and this chapter quantifies the impact on revenue

of different potential adjustments in a simulation study.

In summary, this chapter contributes (i) a method for identifying network legs

that will benefit from joint outlier detection; (ii) a method to aggregate outlier de-

tection across any number of legs to create a ranked alert list; (iii) a wide-ranging

simulation study that evaluates the method’s performance on various demand sce-

narios; (iv) simulation results that quantify the potential revenue improvement from

alternative approaches to adjusting the network demand forecast to outlier demand;

(v) a demonstration of applicability on empirical railway booking data from Deutsche

Bahn.
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3.2 Method

In transportation networks, certain legs share common outliers, as a common set of

passengers traverses them. For example, a sudden increase in demand from passengers

travelling from one end of a train line to the other for an event would cause a sudden

increase in demand for each of the legs in between these stations. This raises the

question of which legs to consider jointly for outlier detection. Neither considering

each leg independently, nor jointly considering the network as a whole, will create the

best results when a network spans multiple regions that differ strongly in expected

demand. Therefore, in Section 3.2.1 we propose a method to cluster legs such that

(i) legs in the same cluster share common outliers and can be considered jointly for

outlier detection, and (ii) legs in different clusters experience independent demand

outliers and can be considered separately. Subsequently, in Section 3.2.2 we suggest

a method for aggregating booking information within a cluster of similar legs, and

then ranking identified outliers by severity rather than simply providing a binary

classification.

3.2.1 Correlation-based minimum spanning tree clustering

To cluster legs based on correlations in observed bookings, we first represent the

network as a graph where nodes represent the stations and edges represent the legs

of a journey. We shall illustrate our correlation-based clustering approach on the

simple network shown in Figure 3.2.1a. In this example, two train lines (red and

blue) intersect at two stations (B and C). The red train arrives at stations B and C
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before the blue train, which creates two possible transfer connections for passengers:

(i) switch from red to blue at B, (ii) switch from red to blue at C. Transfers from the

blue to red train are not feasible.

(a) Original graph where nodes represent stations (b) Inverted graph where nodes represent legs

(c) Minimum spanning tree with edge weights (d) Clusters obtained in inverted graph

Figure 3.2.1: Correlation-based minimum spanning tree clustering

Common graph clustering algorithms seek to cluster the nodes of the graph (Scha-

effer, 2007). In contrast, we wish to cluster similar legs, which correspond to edges

in the original graph 3.2.1a. Hence, we invert the graph to make existing clustering
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algorithms applicable. In this inversion (Figure 3.2.1b), the directed edges become

nodes e.g. the edge from A to B becomes node AB. The inverted graph features an

undirected edge between two nodes (two legs of the original graph) when:

• both legs are in the same train line and share a common station, e.g., legs CD

and DE are connected through station D.

• the legs are in different train lines but share a common transfer station where a

connection is possible, e.g., leg FB (red line) and BC (blue line) are connected

through station B. However, AB (blue line) and BC (red line) would not be

connected by an edge as no connection can be made between them (as we have

assumed the red train arrives at B and C before the blue train).

In theory, this transformation could also include an edge between legs that share a

common entry or exit node e.g. FB (red line) and AB (blue line), or CG (red line) and

CD (blue line). However, in clustering both empirical and simulation data, we found

that correlations between these types of legs were not sufficiently high to impact the

outcome. Further, such pairs of legs would never occur in the same itinerary, such

that no itinerary forecast adjustment would apply to both legs.

The algorithm aims to assign legs that experience similar bookings to the same

cluster and legs that experience dissimilar bookings to separate clusters. A corre-

sponding metric only needs to consider similarity between adjacent legs, which share

a connecting station, since edges do not exist in the inverted graph otherwise. We

propose to quantify this similarity via the correlation between booking patterns on

the legs. To that end, we compute the functional dynamical correlation (Dubin and
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Müller, 2005) – see Appendix B.1.1 for details. Unlike more common statistical cor-

relation measures, such as Pearson correlation, functional dynamical correlation does

not assume a specific type of relationship between variables (e.g. linearity). It also

accounts for the time dependency between observations in the booking horizon, in-

cluding the differing length of intervals between observations. For example, in the

empirical data described in Section 3.4, the time between booking intervals decreases

as the departure date approaches. Further, alternative measures for calculating cor-

relations from functional data (such as functional canonical correlation) often make

restrictive assumptions, which real data does not fulfil (He et al., 2003). In Appendix

B.3.1, we benchmark the clustering algorithm under different correlation measures.

To represent the relationship between legs in the network (the nodes in the in-

verted graph), we attach weights to the edges in the inverted graph. These weights

are interpreted as distances: the higher the edge weight, the further apart i.e. more

dissimilar, the connected nodes are. Therefore, an applicable weight function should

be non-negative. Further, the weight function needs to ensure that any negatively

correlated legs are marked as more dissimilar. Even though negative correlation may

imply that outlier demand jointly affects both legs, we expect it to affect negatively

correlated legs in different ways. Therefore, the two legs would require different fore-

cast adjustments, and so should be in different clusters. To satisfy these requirements

we shall define the edge weights as:

w(ij,jk) = 1− ρ(ij, jk), (3.2.1)

where ρ(ij, jk) is the correlation between bookings on legs ij and jk.
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We use a minimum spanning tree-based algorithm to allow for clusters of irregular

shapes. For example, in Figure 3.2.1b, a cluster may include AB and DE because

they are in the same line, rather than clustering AB and FB. Minimum spanning tree

approaches work well for clusters with irregular boundaries (Zahn, 1971). Alternative

approaches (such as k-means), often assume a specific shape of clusters (spherical, for

k-means).

A spanning tree of a graph is a subgraph that includes all vertices in the original

graph and a minimum number of edges, such that the spanning tree is connected.

Then, the minimum spanning tree (MST) is the spanning tree with the minimum

summed edge weights – see Figure 3.2.1c. Since the inverted graph is weighted, we

use Prim’s algorithm (Prim, 1957) to calculate the MST – see Appendix B.1.2 for a

detailed introduction. Any one-to-one transformation of the weight function, w(ij,jk)

will produce an identical minimum spanning tree.

There are two approaches to obtaining clusters from a minimum spanning tree: (i)

pre-defining the number of clusters as k, and removing the k − 1 edges with highest

weight; or (ii) setting a threshold for the edge weights and remove all edges with

weights above some threshold, creating an emergent number of clusters. We imple-

ment the threshold-based approach, as this ensures that each cluster has the same

minimum level of correlation. In contrast, setting the number of clusters in advance

could result in very heterogeneous levels of correlation across clusters. Further, set-

ting k too low may result in legs with dissimilar features being grouped together. We

apply a threshold correlation of 0.5 – the level at which legs are more correlated than

they are not. This corresponds to a transformed edge weight of 0.5. In the example
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given in Figure 3.2.1c, this means removing all legs with a weight above 0.5, resulting

in the three clusters shown in Figure 3.2.1d.

Note that the outlier detection procedure applies to individual clusters, but does

not require a particular clustering approach. Hence, alternative approaches, as re-

viewed in Schaeffer (2007), could be utilised.

3.2.2 Detecting outliers in clusters of legs

We now detail the process of identifying demand outliers within each of the clusters

(as defined in Section 3.2.1) and then quantifying the severity of such outliers. This

procedure returns a ranked alert list of departures.

To identify which departures should be included in the alert list, we consider the

functional depth of their booking patterns. The approach presented here can also

be implemented with other measures of exceedance, including univariate “threshold”

approaches which look at aggregated bookings and ignore the shape of the booking

curve. Here, we use functional depth as previous work has found this to be the most

effective as an outlier detection mechanism (Rennie et al., 2021a).

Consider N departures, observed over L legs. Let ynl = (ynl(t1), . . . , ynl(tT )) be

the booking pattern for the nth departure on leg l, observed over T booking intervals

t1, . . . , tT . Let Yl be the set ofN booking patterns for leg l. For each leg and departure,

we calculate the functional depth (Hubert et al., 2012), with respect to the booking

patterns for that leg – see Appendix B.1.3.

For each leg l, we calculate a threshold for the functional depth using the ap-

proach of Febrero et al. (2008). This method (i) resamples the booking patterns with
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probability proportional to their functional depths (such that any outlying patterns

are less likely to be resampled), (ii) smooths the resampled patterns, and (iii) sets

the threshold Cl as the median of the 1st percentiles of the functional depths of the

resampled patterns. In this chapter, the default setting is to use the 1st percentile of

the depths as the threshold, as ths has been found to work well in practice (Febrero

et al., 2008; Rennie et al., 2021a). Alternative choices of threshold are explored in

Appendix B.3.2. Booking patterns with a functional depth below the threshold Cl

are classed as outliers.

Furthering the approach of Rennie et al. (2021a), we now propose a method for

creating ranked alert lists. First, we define znl to be the normalised difference between

the functional depth and the threshold:

znl =
Cl − dnl
Cl

. (3.2.2)

This transforms the depth measure dnl into a measure of threshold exceedance. Values

of znl greater than zero relate to booking patterns classified as outliers. Normalising

by the threshold, Cl, ensures the values of znl are comparable between different legs.

Next we define the sums of threshold exceedances across legs:

zn =
L∑
l=1

znl1{znl>0}. (3.2.3)

We sum only those values of znl that are greater than zero, to avoid outliers being

masked when they occur only in a subset of legs. This sum implicitly accounts for

both the size of an outlier – larger outliers further exceeding the threshold, resulting

in larger values of znl – and for the number of legs in which a departure is classified as

an outlier (by summing a larger number of non-zero values). To provide an example,
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Figure 3.2.2 shows those values of zn that exceed zero for a four leg section of the

Deutsche Bahn network (to be discussed further in Section 3.4.2). These values of zn

correspond to departures where the booking pattern for at least one leg is identified

as an outlier, whereas all other departures have no detected outliers in any leg such

that zn = 0.
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Figure 3.2.2: zn as defined in equation (3.2.3) for a four leg section of the Deutsche

Bahn network

To create a ranked list of outlier departures, i.e. those with a non-zero sum of

threshold exceedances, we assign a severity, θn. A higher value of θn indicates the

departure is more likely to be affected by extreme outlier demand, and hence should

be targeted first by RM analysts.

To model the threshold exceedances, we turn to extreme value theory (EVT) –

a branch of statistics that deals with modelling rare events i.e. those that occur in

the tails of the distribution. There are two common approaches to EVT: (i) block

maxima, which examines the maximum value in evenly-spaced blocks of time e.g.
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annual maxima, and (ii) peaks over threshold, which examines all observations that

exceed some threshold (Leadbetter, 1991). The generalised Pareto distribution (GPD)

is commonly used to model the tails of distributions in the peaks over threshold

approach (Pickands, 1975). Motivated by this, we fit a generalised Pareto distribution

(GPD) to the sum of threshold exceedances given in equation (3.2.3). The GPD has

three parameters with probability density function:

f(x|µ, σ, ξ) =
1

σ

(
1 +

ξ(x− µ)

σ

(− 1
ξ
−1)
)
, (3.2.4)

for

x ∈


[µ,∞) ξ ≥ 0

[µ, µ− σ
ξ
] ξ < 0.

(3.2.5)

Here, µ specifies the location, σ the scale, and ξ the shape of the distribution. We fit

the parameters using maximum likelihood estimation (Grimshaw, 1993), using the R

package POT (Ribatet and Dutang, 2019). A kernel density estimate of the empirical

distribution of zn > 0 from Figure 3.2.2 is shown in Figure 3.2.3a. The resulting fitted

GPD is shown in Figure 3.2.3b. The GPD fit appears to be reasonable compared to

the empirical distribution; further analysis in Appendix B.4.4 supports this.

Two common issues arise in fitting GPDs: (i) the choice of threshold and (ii) the

independence of the data points. When the threshold is too low, the assumption of

a GPD no longer holds; when it too high, there are too few data points to fit. We

select a threshold of 0, i.e., we fit the GPD to values of zn > 0. Rather than change

the threshold at GPD level, we control the number of observations the GPD is fitted

to by varying the percentile used for the individual leg thresholds, Cl. We choose
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(b) GPD fitted to zn

Figure 3.2.3: Distribution of zn values from Figure 3.2.2

Cl as suggested by Febrero et al. (2008), and found that this choice worked well and

provided sufficient outlying points to fit a GPD both in simulated and empirical data.

To account for the second issue, applications of extreme value theory frequently first

decluster the peaks over the threshold to ensure independence between observations

(Fawcett and Walshaw, 2007). To that end, the analysis may only consider the maxi-

mum of two peaks that occur within some small time window. For mobility departures,

it is theoretically possible that observed outliers may be dependent; e.g., increased

demand caused by Easter not only affects Easter Sunday but also the surrounding

days. However, it also very possible that the outliers are generated by independent

events. As we aim to identify outlying departures rather than the underlying events

themselves, this argument causes us not to decluster here.

We define θn as the non-exceedance probability given by the CDF of the GPD:

θn = F(µ,σ,ξ)(zn) =


1−

(
1 + ξ(zn−µ)

σ

)− 1
ξ

ξ 6= 0

1− exp
(
− (zn−µ)

σ

)
ξ = 0

(3.2.6)
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Formally, θn is the probability that, given an outlier occurs, the sum of threshold

exceedances is at least as large at zn. Thus, it is not the probability that a departure

is an outlier. However, we use this non-exceedance probability as a measure of outlier

severity on a scale of 0 to 1.

Departures with functional depths that do not fall below the threshold on any

legs are given a severity of zero i.e. they are classified as regular departures. It is

conceivable to estimate the uncertainty of θn (Smith, 1985) to determine further levels

of criticality e.g. if there are departures with the same outlier severity, the one with

smaller uncertainty would be targeted first. However, given the continuous nature of

the data, it is unlikely that two departures will have an identical severity. Hence, we

leave uncertainty estimation to future research.

From the severity defined in equation (3.2.6), we construct a ranked alert list

containing all departures with a non-zero outlier severity. Although the functional

depth could be directly used to construct the ranked alert list, the severity provides a

measure of the difference between each rank and is more easily interpreted by analysts.

The top 8 ranked outliers relating to Figure 3.2.2, are shown in Table 3.2.1.

In practice, RM analysts’ time and resources only allow them to examine and

adjust controls or forecasts for a limited number of suspicious booking patterns. Fur-

ther, those departures which (i) exceed the functional depth threshold in only one leg

or (ii) exceed the threshold only to a small degree have lower but strictly non-zero

severity. These outliers are most likely to be false positives and potentially waste

analysts’ time. Hence, we suggest limiting the length of the list used in practice.

There are two approaches to shortening the length of the alert list: (i) only in-
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Ranking Departure Severity Legs with znl > 0

1 11/05/2019 0.985 AB, BC, CD, DE

2 26/10/2019 0.960 AB, BC, CD, DE

3 09/06/2019 0.942 AB, BC, CD, DE

4 01/06/2019 0.922 AB, BC, CD, DE

5 13/07/2019 0.874 AB, BC, CD, DE

6 13/04/2019 0.865 CD, DE

7 02/02/2019 0.864 CD, DE

8 05/10/2019 0.857 AB, BC, CD, DE

...
...

...
...

Table 3.2.1: Ranked alert list for cluster = {AB,BC,CD,DE}

cluding departures in the alert list if their severity is above some threshold, or (ii)

setting a maximum length. Since we wish to control the number of alerts an analyst

will receive, we shall analyse outlier detection performance with respect to the maxi-

mum length of the alert list. Recall that we classify departures as outliers if and only

if their outlier severity exceeds zero. Therefore, if the required length of the alert

list exceeds the number of identified outliers, we do not include further departures.

Appendix B.3.2 presents further results on the performance of the outlier detection

when varying the outlier severity threshold.
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3.3 Computational Study

We implement a simulation study to evaluate the performance of outlier detection

across a cluster of legs and stations. By varying demand for itineraries, we create

outliers that are observable on both the leg and network level. As outliers are delib-

erately generated, we can evaluate detection quality on either level. By simulating

network demand and offer optimisation, we further evaluate revenue implications of

adjusting the forecast to account for outlier demand.

In this section, we first outline the simulation model, the choices of parameter

values, and the setup of the computational experiments in Sections 3.1–3.5. Subse-

quently, we document and analyse the experimental results in Sections 3.6–3.7.

The simulation models a network consisting of 5 stations and 4 legs, mirroring the

structure of the Deutsche Bahn network studied later in Section 3.4 in Figure 3.4.4.

There are 10 possible itineraries represented by setO = {AB,AC,AD,AE,BC,BD,BE,CD,CE,DE}.

On each itinerary, we assume the firm offers seven fare classes. We consider differen-

tiated demand from two customer types represented by the set I = {1, 2}.

3.3.1 Network revenue management system

The simulated RM system controls the offered set of fare classes per itinerary. To that

end, it implements a dynamic program to compute bid prices per leg and sums them

up per itinerary – compare Strauss et al. (2018) and Appendix B.2.1 for technical

details. The bid price describes the marginal difference between the value of selling a

seat in the current time period and that of reserving it to sell in a future time period.
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The RM system only offers fare classes where the revenue from a booking exceeds the

bid price. Bid prices depend on time until departure, unsold capacity, and expected

demand. Booking patterns result from combining customer requests with the set of

offered fare classes to generate bookings. Booking patterns are not reported for each

individual itinerary, but only on the leg level.

Parameterising the dynamic program that computes bid prices requires predicting

the expected demand arrival rates per leg l, fare class j, and time slice t of the booking

horizon. Given that we know the underlying demand model for each itinerary, we can

estimate the arrival rates for each leg l and fare class j by:

Λ̂j,l(t) =
∑
o∈Ol

∑
i∈I

pi,j,o λi,o(t), (3.3.1)

where λi,o(t) is the arrival rate of customers of type i requesting itinerary o, and

Ol is the set of itineraries which include leg l. This creates an artificially accurate

demand forecast. Deriving the demand forecast from the actual demand parameter

values ensures that the estimation of revenue loss caused by undetected outliers is

not affected by flawed forecasts (see Section 3.3.7). In practice, demand parameter

values are not known but are estimated based on previously observed demand and

time series forecasting.

3.3.2 Demand settings

The simulation generates booking requests per customer type i according to a non-

homogeneous Poisson process, where the arrival rate per itinerary o, λi,o(t), at time
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t, is given by:

λi,o(t)|(Do = do) = do × φio
taio−1(1− t)bio−1

B(aio, bio)
. (3.3.2)

Here, φio is the fraction of customers of type i and Do ∼ Gamma(αo, βo) with proba-

bility density function:

f(do|αo, βo) =
βαoo

Γ(αo)dαo−1eβod
. (3.3.3)

We generate demand over a horizon of 3,600 time slices to ensure λio(t) < 1. This

level of detail is required to accurately parameterise the dynamic program for bid

price control. The resulting bookings are aggregated into 18 booking intervals.

Next, we define pijo as the probability that a customer of type i pays up to fare

class j on itinerary o. We assume that customers book the cheapest available fare

class. Combining this demand model with the four-leg-network creates 210 demand

parameters. We set the parameters to mirror common RM assumptions (Weatherford

and Bodily, 1992): (i) valuable customers from type 1 book later than customers

from type 2, (ii) customers book earlier for longer journeys, and (iii) customers are

willing to pay a higher fare class if they are travelling further. The majority of

passengers book tickets boarding at A and leaving at E; this ensures the correlation

between the legs exceeds 0.5 and guarantees that the legs are correctly modelled in

the same cluster. As detailed in Appendix B.4.6, we validated that the functional

dynamical correlation between the four legs for simulated data is comparable to the

Deutsche Bahn data. Appendix B.4.6 also compares the simulated and empirical

booking patterns to validate parameter choices.

We generate all regular demand as described above. The full list of parameter
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values can be found in Appendix B.2.3, Table B.2.1. The simulation excludes trend

and seasonality to evaluate outlier detection approaches in a best-case-scenario. In

other words, if an algorithm fails on observations from stationary demand, it will

likely not perform better given more demand variability.

3.3.3 Outlier generation and evaluation

We focus on demand volume outliers, which we generate by changing the parameters of

the Gamma distribution which governs the level of total demand (see equations (3.3.2)

and (3.3.3)). Previous work found the proportion of outliers had little effect on outlier

detection performance in the single-leg case (Rennie et al., 2021a). Therefore, we

generate booking patterns for 500 departures, with 1% of departures affected by outlier

demand. That is, we generate 495 departures from the regular demand distribution,

and 5 outliers from a set of twelve outlier distributions where the mean has shifted by

±10%, ±20%, ±30%, ±40%, ±50%, and ±60%. For every shift in mean, we reduce

the variance of the outlier demand distribution by 80%. This still results in an overall

increase in variance of total demand in the presence of outliers, but also ensures that

we sample sufficiently outlying demand values.

We differentiate outlier scenarios in terms of the affected network components.

Firstly, we evaluate a scenario where outlier demand affects all network itineraries. We

consider the case where each outlier is randomly drawn from one of the twelve outlier

distributions, resulting in outliers from a mixture of different distributions. This lets

us test whether the ranking of the alert list mirrors the outliers’ underlying degree

of demand deviation. We then considers each of the twelve outlier distributions in
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isolation to assess the sensitivity of detection. Secondly, we evaluate a scenario where

outliers only affect a single itinerary. This evaluates the benefits of clustering multiple

legs. Appendix B.3.2 considers the practically relevant case of outliers affecting a

subset of itineraries. The full extent of simulation experiments is shown in Appendix

B.2.3.

Each combination of outcomes can be classified into one of four categories: (i)

assigning a non-zero outlier severity to a genuine outlier creates a true positive (TP);

(ii) assigning a zero outlier severity to a regular observation creates a true negative

(TN); (iii) assigning a non-zero outlier severity to a regular observation creates a false

positive (FP); (iv) assigning a zero outlier severity to a genuine outlier creates a false

negative (FN). This classification enables us to compute the true positive rate (TPR)

for the top R ranked departures in the alert list:

TPRR =
TPR

TP + FN
, (3.3.4)

where TPR is the number of true positives in the top R departures. The true positive

rate lies between 0 and 1, where 1 means all genuine outliers were identified. We

evaluate performance across 1,000 stochastic simulations.

In an ideal setting, the alert list should feature, from top to bottom, large outliers

and subsequently smaller outliers. Therefore, we also use the distribution of outliers

within the ranked alert list to evaluate how well the method ranks the most critical

outliers.
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3.3.4 Benchmarked outlier detection approaches

We benchmark the newly proposed approach to two alternatives from the literature:

Principal Component Analysis combined with High Density Regions (PCA + HDR)

as inspired by Hyndman et al. (2016), and the leg-based functional depth analysis as

proposed in Rennie et al. (2021a).

PCA + HDR: This benchmark approach (i) computes features (e.g. mean, vari-

ance, curvature) of the booking patterns for the total demand in a cluster; (ii) uses

PCA (Yang and Shahabi, 2004) to identify the first two principle components from

the features; (iii) uses HDR, a density based approach (Hyndman, 1996), to find the

ν points with lowest density in the first two principal components. These points are

classified as outliers. Extended details of the method, including the list of features,

can be found in Appendix B.2.2. This method provides an ordering of the outliers

but not a severity measure, as illustrated by Figure 3.3.2.

Rennie et al. (2021a): Uses functional depth analysis to classify legs as outliers

based on their booking curves. The method we propose in this chapter extends

that suggested in Rennie et al. (2021a) through two features: (i) the use of severity

measures to rank outliers; and (ii) the inclusion of network effects. To isolate the

effects of each of these features, we perform two separate benchmark tests:

We evaluate the effect of ranking outliers by measuring the increase in precision

when ranking outliers. For example, we consider the precision in the top 5 ranked

departures, versus 5 randomly chosen departures with non-zero outlier probabilities.
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The change in precision when considering the top R departures, ∆(Precision)R, is

given by:

∆(Precision)R =
TPR

TPR + FPR
−

TPR(random)

TPR(random) + FPR(random)

, (3.3.5)

where TPR(random) is the number of true positives in a random selection of R depar-

tures with non-zero severity, and FPR(random) is defined analogously for false positives.

Figure 3.3.1b visualises the relevant results.

We quantify the value of accounting for network effects by computing ranked alert

lists for each leg in isolation. We then compare the true positive rates to the ag-

gregated, network-driven approach presented in this chapter. Figure 3.3.4 illustrates

that analysis.

3.3.5 Forecast adjustments for outlier demand

The aim of identifying outlier demand in RM systems is to support analyst interven-

tions. This raises the difficult question of predicting the consequences from analyst

adjustments throughout the network. As a step in this direction, we analyse a best-

case-scenario, assuming that the adjustment is made with foresight, before the start

of the booking horizon. We compare the revenue under three different types of ad-

justment:

• Adjustment 1 (conservative): Adjust only forecasts of affected single-leg

itineraries. E.g., for an outlier creating additional demand for itinerary AC,

increase the forecasts of itineraries AB and BC.
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• Adjustment 2 (aggressive): Adjust forecasts of itineraries that include at

least one of the affected legs. E.g., for additional demand for itinerary AC,

adjust all itineraries including either leg AB or leg BC – i.e., itineraries AB,

AC, AD, AE, BC, BD, and BE.

• Adjustment 3 (balanced): Adjust forecasts of affected single-leg itineraries

and the cluster-spanning itinerary – in this case, AE. E.g., for additional de-

mand for itinerary AC, adjust itineraries AB, BC, and AE. The motivation for

adjusting AE (ahead of other itineraries) is that in general this will be the most

popular itinerary in the cluster.

These three adjustments are not the only choices available to analysts. However, they

represent options that stretch across the spectrum of how fully network effects are

to be taken into account in the adjustment. Adjustments 1 (conservative, leg-based

adjustments only) and 2 (aggressive, all potential network effects) are the two extremes

of accounting for network effects in the forecast adjustments. Adjustment 3 (balanced)

is a compromise between the two previous adjustments, which is more conservative

than Adjustment 2 but still identifies the itinerary most likely to be the source of

outlier demand. Further options would be to include more than just the cluster-

spanning itinerary in an alternative to Adjustment 3, but this leaves another choice

of which itineraries to prioritise. As a lower bound, we compute the revenue when no

adjustment is made. As an upper bound, we implement an oracle adjustment,

i.e., only adjusting the forecasts of affected itineraries. We compare the revenue as the

level of outlier demand ranges from -60% to +60% of the average leg level demand.
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3.3.6 Experimental results on detecting outliers in multiple

legs

As a first experiment, we consider the scenario where outlier demand equally affects

all itineraries and legs within the cluster. For this scenario, Figure 3.3.1a illustrates

how the true positive rate (TPR) increases when increasing the length of alert list.

In this figure, the red line indicates the number of genuine outliers. The true positive

rates are promising, with a TPR of around 0.2 for a list length of 1. Since there are

five genuine outliers, this indicates that a genuine outlier is almost always ranked top.

Results under different functional depth thresholds are found in Appendix B.3.2.
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Figure 3.3.1: Performance for demand-volume outliers in all itineraries

Figure 3.3.1b shows the distribution of each magnitude of outlier in the alert lists.

Under the proposed method, the modes of the distributions generally fall where they

should, as larger outliers are ranked higher. The smaller variance in the ranking of the

larger magnitude outliers indicates that they are easier to detect. The higher variance

of the medium sized outliers can be explained as the ranking of a medium sized outlier
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is dependent on which other types of outliers occur: if there is a large and a medium

outlier, the medium outlier is ranked lower; if there is a small and a medium outlier,

the medium outlier is ranked higher. Appendix B.3.2 further analyses the distribution

of identified outliers across different legs.

PCA+HDR benchmark results. The PCA+HDR approach requires a given

number of outliers to detect (rather than a threshold), ν, as input . Therefore, Figure

3.3.2 compares the performance of the benchmark method under different numbers of

outliers to our method (denoted as FD+Agg).
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Figure 3.3.2: Performance comparison with PCA+HDR benchmark for demand-

volume outliers in all itineraries

Figure 3.3.2a shows that the true positive rate achieved by our proposed approach,

FD+Agg, consistently exceeds that achieved by PCA+HDR. In order to achieve the

same level of true positive rate, PCA+HDR would need to classify around 250 depar-

tures (i.e. 50%) as outliers. In comparison, FD+Agg achieves this rate after about 30

classified outliers. The distribution of PCA+HDR shown in Figure 3.3.2b also returns
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the modes in the correct order. However, there is much more overlap between the

distributions, showing its inability to correctly rank the outliers.

Non-ranked Rennie et al. (2021a) benchmark results. Figure 3.3.3a high-

lights how the precision improves when ranking outliers as opposed to listing them

in random order. Ranking particularly improves precision when the alert list covers

only a small number of departures. As domain experts indicate that analysts cannot

target more than 1% of departures, ranking focuses resources and thereby provides

large benefits in practice. Nevertheless, Figure 3.3.3a (when contrasted with Figure

3.3.1a) also highlights the trade-off between reducing the number of false alerts and

identifying all outliers. A shorter length of alert list increases precision, but reduces

the true positive rate.
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Figure 3.3.3: Change in precision from ranking detected outliers

The increase in precision from applying our method compared to the PCA+HDR

benchmark is similar to the increase in precision from the inclusion of the ranking (see

Figure 3.3.3b). This suggests that the PCA+HDR benchmark performs reasonably
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well in terms of outlier detection, but poorly in terms of ranking the outliers.

Leg-based Rennie et al. (2021a) benchmark results. Figure 3.3.4 shows the

true positive rate when a ranked alert lest is computed for each leg in isolation versus

in the proposed aggregated manner. Here, we consider outlier demand generated by

a 50% increase in the affected legs as an illustrative example. We analyse detection

performance by breaking down results in terms of which itinerary the outlier demand

is generated in. We show only the results relating to itineraries AB, AC, AD, and

AE. Figure B.3.9 in Appendix B.3.2 details results for the further itineraries yielding

similar conclusions. For results when outlier demand is generated across combinations

of itineraries, see Appendix B.3.2.

In all cases, the true positive rate for clusters is higher than in any of the individual

legs. This is because when considering the leg’s bookings in isolation for outlier

demand that affects multiple legs, the noise from other itineraries prevents detecting

the outlier in every leg. However, clustering increases the number of detected genuine

outliers.

Clustering is most beneficial when the outlier demand affects the most legs i.e.

itinerary AE, as shown in Figure 3.3.4a. The lower true positive rates in legs AB

and DE are due to different combinations of itineraries also utilising these legs. The

aggregation is less beneficial when outlier demand affects an itinerary consisting of

only one or two legs, since we aggregate the analysis across legs that are actually not

affected by outlier demand. However, there is a modest gain in true positive rate

even in this case. This is due to the knock-on effects of decreased capacity on the
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Figure 3.3.4: True positive rate for single itinerary outliers

affected legs, impacting the bid prices for any itineraries which include these legs.

For some lengths of alert list, the leg-level true positive rates are higher than the

aggregated approach, due to false positives from unaffected legs being included in

the list. However, even for itinerary AB (Figure 3.3.4d), where false positives from

unaffected legs are most likely, the difference is small and cancelled out by the overall

increase in true positive rate.

Different magnitudes of outliers. To better understand outlier detection perfor-

mance of our method, we break down the results by magnitude of outliers in Figure
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3.3.5. When outliers are generated by minor changes in demand levels, they are dif-
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Figure 3.3.5: True positive rate for homogeneous demand-volume outliers by magni-

tude

ficult to detect, resulting in low true positive rates. Given the significant overlap

between the distribution of outlier demand with a 10% change in magnitude and that

of regular demand, this is to be expected. Therefore, 10% demand changes effectively

provide a lower bound on how big an outlier needs to be in order to be detected.

As the magnitude of the outliers increases, they become easier to detect and true

positive rates are higher, with peak rates reached with shorter alert lists. Thus,

genuine outliers are more likely to be ranked higher when they are caused by larger

demand changes. For demand decreases of at least 50%, the true positive rate is

very close to the optimal detection rate. Negative demand outliers are slightly easier

to detect than positive demand outliers, meaning shorter alert lists are required.

This is due to the demand censoring imposed by the booking controls and capacity

restrictions.
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Figure 3.3.6: Increase in precision for homogeneous demand-volume outliers by mag-

nitude

Figure 3.3.6 shows the precision gap over randomly ordered lists. Once more,

larger magnitude outliers result in larger precision improvements from ranking, while

detecting minor outliers gains little over random selection. Similarly, we observe that

detecting negative demand outliers gains slightly more precision in comparison to

detecting positive outliers of the same magnitude. Additional results regarding false

discovery rates are available in Appendix B.3.2.

3.3.7 Revenue benefits from forecast adjustments for outlier

demand

Figure 3.3.7 shows the revenue generated by outlier demand for each of the three

possible choices of adjustment described in Section 3.3.5. We show the results for

four of ten itineraries contained within these four legs. The results for the other six

itineraries are similar to those presented here for the same corresponding leg length.
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Appendix B.3.3 details these results as well as further results on adjustments after

outlier detection.

When outlier demand affects all four legs in the cluster (Figure 3.3.7a), any type of

adjustment is always better than no adjustment. Besides the oracle, the best choice is

adjustment 3, i.e., the balanced approach where the forecasts of the cluster-spanning

itinerary and the individual leg are adjusted. Adjustment 3 is able to obtain, on

average, 87% of the additional revenue gained under the oracle adjustment. Similar

results are obtained when the outlier demand affects three legs (Figure 3.3.7b).

When outlier demand affects only a single-leg itinerary (Figure 3.3.7d), adjustment

1 (the conservative adjustment) and the oracle adjustment coincide. The aggressive

approach of making an adjustment to all itineraries which include the affected leg

yields less revenue than no adjustment. For example, although leg AB is correctly

adjusted, the erroneous adjustment to itineraries AC, AD, and AE results in incorrect

forecasts for legs BC, CD, and DE. The asymmetry between adjustment to positive

and negative outlier demand is due to the level of demand being bounded below by

0.

Similar results emerge when the outlier affects only two of the affected legs (Figure

3.3.7c), though the negative consequences of over-adjusting all potentially affected

itineraries are less severe, as this causes fewer superfluous adjustments.

The negative impact of adjusting unaffected itineraries highlights the importance

of correctly clustering legs ahead of outlier detection. The closer the outlier demand

itinerary is to the cluster spanning itinerary, the less risky it is to adjust all affected

itineraries within a cluster, and the more benefit can be gained from doing so. From
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Figure 3.3.7: Revenue generated under different itinerary-level forecast adjustments,

where the subtitle indicates the location of the outlier

a managerial perspective, the best adjustment (other than the oracle) depends on the

transport provider’s objective. To maximise revenue when the most common outlier

(e.g. itinerary AE) occurs, the conservative approach of adjustment 3 is preferable.

Conversely, if the objective is to minimise risk to revenue even in the more unlikely

scenarios (e.g. an outlier in itinerary AB), adjustment 1 should be preferred. Overall,

however, there are clear benefits from forecast adjustment.
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3.4 Empirical study of Deutsche Bahn booking data

To demonstrate practical applicability of the proposed clustering and outlier detection,

we apply it to a set of empirical data obtained from Deutsche Bahn. The Deutsche

Bahn long-distance network consists of over 1,000 train stations, letting the provider

offer more than 110,000 origin-destination combinations. The numbers grow further

when accounting for alternative transfer itineraries and for multiple departures per

day. Figure 3.4.1 shows the empirical distribution of the number of legs included in

itineraries that passengers booked with Deutsche Bahn in November 2019. Only 7% of

passengers booked single-leg itineraries, whereas almost half of all booked itineraries

span five or more legs.
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Figure 3.4.1: Distribution of number of legs per booked itinerary

3.4.1 Clustering legs in the Deutsche Bahn network

We consider a section of the Deutsche Bahn railway network that consists of two

intersecting train lines over a total of 27 stations – see Figure 3.4.2. The red train
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arrives at the connecting stations before the blue train. Hence, the network offers three

transfer connections: changing from red to blue at either Fulda, Kassel-Wilhelmshöhe,

or Göttingen. This creates 240 potential travel itineraries.

For each leg in this network section, Deutsche Bahn provided 359 booking patterns

for departures between December 2018 and December 2019. Each booking pattern

ranges over 19 booking intervals; the first observation occurs 91 days before departure.

We firstly apply the correlation-based clustering approach of Section 3.2.1, using

a threshold of 0.5, such that only legs with a minimum correlation of 0.5 can be in the

same cluster. In Figure 3.4.2a, coloured bubbles indicate the four resulting clusters:

Each train line splits into one large and one small cluster.

To evaluate clustering on real data, where the true underlying demand for each

itinerary is unknown, we use the network topology to check whether resulting clusters

are plausible. To that end, we propose the following set of rules:

• Different train lines must be in different clusters. Even when passengers can

transfer between lines, we expect relatively few passengers to make the same

connection. Further, for forecasting and analyst interventions, it makes sense

to consider train lines separately.

• Train lines are further split into different clusters on either side of a major sta-

tion. As many passengers leave the train at a major station and many different

passengers board, we shall assume a relatively small proportion of passengers

book itineraries that pass a major station. Similarly, given that itinerary de-

mand share is driven by which journeys are most common, and passengers often
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(a) Correlation-based clustering, ρ ≥ 0.5 

(b) Rule-based cluster

Figure 3.4.2: Comparison of correlation-based and rule-based clustering of Deutsche

Bahn network

either board or alight at a major station, it is intuitive to have a cluster that

contains the legs between major stations.
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Deutsche Bahn assigns an ordinal indicator of importance to each station, ranging

from from 1 to 7. We define a major station to be in Category 1. The entire Deutsche

Bahn network includes 21 major stations, where the considered network section in-

cludes 9. Figure 3.4.2b highlights major stations in grey and shows the clusters

resulting from the rules listed above.

Whereas the correlation-based clustering returns four clusters, the rule-based clus-

tering returns nine. Nevertheless, the resulting clusters share similar features. Firstly,

the two distinct train lines end up in different clusters in either approach. For legs in

distinct train lines, correlation tends to be higher between legs that share a transfer

station, but not to a convincing extent – correlation is at most 0.22. A correlation

threshold of 0.27 creates two clusters (one for each train line). Secondly, the break

points for the correlation-based approach are a subset of the break points, i.e., major

stations, in the rule-based approach. We conclude that the correlation-based approach

achieves similar results as the rule-based approach without expert input - relying only

on booking data.

We can formally compare clustering results using the Normalised Mutual In-

formation (NMI) (Amelio and Pizzuti, 2015). The NMI is 1 if two clusterings are

identical, and 0 if they are completely different (see Appendix B.1.4 for details). Fig-

ure 3.4.3a shows the NMI between the correlation- and rule-based approaches while

varying the threshold in the correlation-based approach from 0 to 1. This shows that

both approaches achieve similar results, with an NMI reaching 0.899. The approaches

are generally more similar at higher correlation thresholds (around 0.7), since the rule-

based approach generally creates more clusters. Figure 3.4.3b compares the number
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of clusters of the two approaches – as the correlation threshold changes, the number

of clusters ranges from 1 (everything in a single cluster) to 28 (each leg in its own

cluster), demonstrating the flexibility of the correlation-based approach.
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Figure 3.4.3: Comparison of rule-based and correlation-based clustering

Here, we applied rule-based clustering only to evaluate the plausibility of the

results from correlation-based clustering. We do not advocate for it as a method

in itself. A rule-based approach, where the clusters are based on domain experts’

categorisations, would not be able to respond to the evolving importance of stations

across different train lines and departure times. Notably, the correlation-based method

is not simply a data-driven method for uncovering major stations, but rather for

identifying legs where multi-leg itineraries cause similar booking patterns, and thus

could change and adapt over time. We further evaluate clustering performance in a

simulation study, where the itinerary-level demand is known, in Appendix B.3.1. The

results in the remainder of the chapter rely on correlation-based clustering.
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3.4.2 Detecting outliers in multiple legs

Demonstrating the proposed outlier detection approach on empirical data cannot

precisely judge detection accuracy, given there is no labelled data on genuine outliers.

However, this analysis illustrates the full process of outlier detection on empirical data

including, e.g., seasonality and underlines practical implications.

For this analysis, we consider a cluster of four legs from the Deutsche Bahn network

with stations anonymised and denoted by A, B, C, D, and E. This cluster results

from applying the correlation-based clustering to a new section of the Deutsche Bahn

network to Figure 3.4.2.

Figure 3.4.4: Four leg cluster within the Deutsche Bahn network

Figure 3.4.5 shows the booking patterns for each of the four legs; bookings are

scaled to be between 0 and 1. From initial visual inspection, the structure of the

booking patterns appears similar, with some obvious outliers appearing across multi-

ple legs.

To pre-process the data for outlier detection, we transform the booking patterns

by applying a functional regression model (Ramsay and Silverman, 1997). We then

apply the outlier detection to the residual booking patterns. In this pre-processing,

we correct for three factors: (i) departure day of the week; (ii) departure month of

the year; and (iii) the length of the booking horizon.1

1Deutsche Bahn offer a regular booking horizon of 6 months, with the first observation of bookings
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Figure 3.4.5: Booking patterns for each leg

The functional regression fits a mean function to the booking patterns for each dif-

ferent factor in the model. Table B.4.1 in Appendix B.4.1 compares models including

different factors. Let ynl(t) be the nth booking pattern for leg l. Then:

ynl(t) = β0l(t) + β1l(t)1Monnl + β2l(t)1Tuenl + β3l(t)1Wednl+

β4l(t)1Thunl + β5l(t)1Frinl + β6l(t)1Satnl+︸ ︷︷ ︸
Departure Day of the Week

β7l(t)1Jannl + β8l(t)1Febnl + β9l(t)1Marnl+

β10l(t)1Aprnl + β11l(t)1Maynl + β12l(t)1Junnl + β13l(t)1Julnl+

β14l(t)1Augnl + β15l(t)1Sepnl + β16l(t)1Octnl + β17l(t)1Novnl+︸ ︷︷ ︸
Departure Month of the Year

β18l(t)1Shorter Horizonnl︸ ︷︷ ︸
Length of Booking Horizon

+enl(t).

(3.4.1)

where e.g., 1Monnl = 1 if departure n relates to a Monday, 0 otherwise. In this model,

β0l(t) represents the average bookings for Sunday departures in December, with a

regular length of booking horizon, and βpl(t) for p > 0 represent deviations from

occurring around 3 months before departure. Due to schedule changes, shorter booking horizons of

3 months apply for departures from mid-December to mid-March.
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this mean pattern. The βpl(t) are functions of time, which allows for relationships

between factors to evolve over the booking horizon. Given that functional depths are

calculated independently for each leg, we apply the regression model independently

for each leg. The resulting residuals are shown in Appendix B.4.2, Figure B.4.1.
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Figure 3.4.6: Threshold exceedances per leg, znl

Functional regression preserves the correlation between different legs, as verified

in Appendix B.4.6, Table B.4.2b. The clustering approach can consider either the

correlations between the booking patterns or the residual booking patterns. Given

that the functional depths (the basis for the outlier detection) are calculated on the

residuals, we suggest using correlation between residual patterns to define the clusters.

For this data set, the same clusters resulted in either case.

We calculate the functional depth of each booking pattern and compute the thresh-

old as described in Section 3.2.2. We then transform the depths as per equation (3.2.2)

to obtain znl, as shown in Figure 3.4.6. The sums of threshold exceedances, zn, were

shown earlier in Figure 3.2.2, with the empirical distribution and fitted generalised

Pareto distribution shown in Figures 3.2.3a and 3.2.3b, respectively.

Figure 3.4.7 highlights the outliers detected in each leg in pink, while depicting



CHAPTER 3. OUTLYING DEMAND IN TRANSPORTATION NETWORKS 96

outliers detected in other legs but not in that leg in blue. Regular patterns are grey.
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Figure 3.4.7: Outliers detected in booking patterns

Of the 40 outliers (11% of departures) detected across all legs, 23 outliers (almost

60%) could be attributed to known events or holidays. When considering only the top

10 outliers, the percentage rose to 70%. A further departure detected as an outlier

had been previously flagged by Deutsche Bahn. The firm implemented a booking

stop to control sales on that departure for multiple connected legs. Appendix B.4.5

provides further details on the distribution of identified outliers across legs.

3.5 Conclusion and outlook

In this chapter, we proposed a two-step method for (i) clustering legs in a mobility

network that are likely to benefit from joint outlier detection, and (ii) detecting outly-

ing demand within such a set of legs. Furthermore, we presented an approach to rank

identified outliers according to their severity, creating an alert list to aid analysts in

prioritising demand forecast adjustments.
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The simulation study demonstrated the robustness of the method in a range of

outlier demand scenarios. It highlighted that aggregating the analysis across clustered

legs that share common outliers improves both detection rate and precision. Further,

the ranked alert list correctly identified the most critical outliers. Last but not least,

we measured the potential revenue benefits of identifying and adjusting for demand

outliers in a network setting by applying a choice of forecast adjustments and gauging

the resulting revenue. We show that taking into account the similarity of the legs can

improve revenue in most scenarios. In the less likely scenario where only one or two

legs of a cluster are affected by outlier demand, risk-averse firms may prefer leg-level

adjustments.

By applying the proposed approach to empirical booking data, we demonstrated

the type of data observed in practice and showed how to account for additional prac-

tical considerations, such as trend and seasonality. Based on insights from analysing

empirical data, we constructed a simulation to evaluate how successfully our method

detects outliers under laboratory conditions.

Further research is needed to consider the practical aspects of outlier detection

in live revenue management systems from the perspective of decision support. Such

research should particularly focus on effective ways to visualise outliers in networks

and to communicate the ranked alert list to RM analysts. An interesting avenue of

further research would be to incorporate a feedback element whereby analysts mark

outlier alerts as useful or not useful. A supervised learning approach e.g. one-class-

classifiers, could then be combined with our proposed outlier detection routine to filter

out false alerts.
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Another research opportunity would be to consider how the aggregated outlier

detection may be adapted for other areas of network revenue management, e.g., in

hotels, where correlation is induced by bookings for multiple consecutive nights. In

particular, investigating the use of alternative clustering approaches is of interest -

especially where the clusters are likely to be of different structures compared to the rail

industry e.g. in the airline industry where hub and spoke networks are more common

than lines. Whilst this chapter relied on clustering to improve outlier detection, we

believe that the clustering approach is a useful contribution in and of itself. For

example, clustering presents additional research avenues such as its application to

improving network-level forecasting; supporting the planning for future new stations;

evaluating how the transport network structure is changing over time; or defining

different travel zones.



Chapter 4

Analysing and visualising

bike-sharing demand with outliers

Bike-sharing is a popular component of sustainable urban mobility. It requires an-

ticipatory planning, e.g. of terminal locations and inventory, to balance expected

demand and capacity. However, external factors such as extreme weather or glitches

in public transport, can cause demand to deviate from baseline levels. Identifying

such outliers keeps historic data reliable and improves forecasts. In this chapter we

show how outliers can be identified by clustering terminals and applying a functional

depth analysis. We apply our analysis techniques to the Capital bike-sharing data set

as the running example throughout the chapter, but our methodology is general by

design. Furthermore, we offer an array of meaningful visualisations to communicate

findings and highlight patterns in demand. Last but not least, we formulate man-

agerial recommendations on how to use both the demand forecast and the identified

outliers in the bike-sharing planning process.

99
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4.1 Introduction and Background

As a component of sustainable urban mobility, bike-sharing is on the rise in cities

around the world (Shaheen et al., 2010). However, careful planning is required to

make it more attractive than fuel-based mobility alternatives and thereby maximise its

positive environmental impact. In particular, bike-sharing systems require terminals

to cover relevant locations and balanced inventory levels to ensure adequate service

provision. When, for example, a terminal is mostly used to pick-up bikes, re-balancing

ensures a steady supply and avoids service denials.

Optimisation routines can be used to determine, for example, the best distribu-

tion of terminals across the service area (Ciancio et al., 2017), the best distribution

of bikes across terminals (Zhu, 2021), and the best path for truck drivers to take

when re-distributing bikes each day (Schuijbroek et al., 2017). Optimisation pro-

cedures that determine stock levels per terminal rely on predicted demand. Since

inefficient re-balancing operations are a major cost driver for operators (Schuijbroek

et al., 2017), identifying demand outliers to improve efficiency in bike-sharing systems

is highly important. Unaccounted-for outliers can affect bike-sharing systems in two

ways: (i) outliers in historic data contaminate the forecasts used in future inventory

management, and (ii) on the day demand levels may indicate that the schedule is

non-optimal for the current day and drivers should be re-routed.

We define outlier demand as a short-term systematic change in demand, resulting

in usage levels which deviate from regular usage. In this chapter, we focus on ter-

minals, as these are the target of inventory rebalancing efforts. In contrast to other
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classical mobility problems, such as those related to buses or trains, bike-sharing

capacity is on the vertices of the transport network, rather than on the edges.

As an example of existing work in this area, Neumann-Saavedra et al. (2021)

discuss the problem of variability in bike-sharing demand and propose a rule-based

method to adjust the redistribution plan when demand differs from the forecast. In

a simulation study, they show that service levels can be improved when adjustments

are made to the optimal redistribution plan. Wider literature on outlier detection

in transport planning is scarce – e.g., Rennie et al. (2021b) consider identifying and

correcting for outliers in revenue management systems in railways. Talvitie and Kir-

shner (1978) find that outliers can have a substantial effect on the predictions of usage

of different urban transport modes, but only apply a simplistic trimming method to

identify outliers. In the road traffic domain, Guo et al. (2015) suggest a procedure

for identifying outliers in real time based on the conditional variance of predictions,

and determine that incorporating information on such outliers into future predictions

increases the systems performance.

Furthermore, as indicated, e.g., in Basole et al. (2020), to account for demand

outliers and adjust planning, experts require meaningful visualisations. Therefore, we

propose a set of visualisations to help identify and analyse spatial and temporal pat-

terns in the detected outliers. For example, a subset of terminals may be predisposed

to outliers and as such, this area would be a good target for a new terminal, should

one be added.

To combine automated outlier detection, manual analysis, demand forecasts, and

planning, we suggest the following process for analysing bike-sharing demand data (see
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Figure 4.1.1): First, a baseline demand forecast supports anticipative planning, e.g.

of inventory levels. Second, this baseline can be used to normalise observed usage

data. Using the resulting observations, analysts can cluster terminals with similar

usage patterns to support both planning adjustments and outlier detection. When

detecting outliers in a cluster’s usage patterns, these are visualised to enable manual

outlier evaluation. Insights from this analysis can be used to both clean the data that

underlies the baseline forecast and to extend the baseline forecasting model.

Forecast 

baseline 

demand

Normalise 

data 

Cluster 

terminals

Detect 

outliers in 

clusters

Manually 

evaluate 

outliers

Visualise 

and predict 

outliers

Implement 

inventory 

planning

Remove outliers from forecast input to avoid contamination

Improve the forecasting model

Figure 4.1.1: Flowchart of process for analysing bike-sharing demand data

In this chapter, we analyse the Capital Bikeshare data set, which is publicly avail-

able at Capital Bikeshare (2021). This data set is commonly used to test forecasting

approaches for bike-sharing (Ma et al., 2015; Hamilton and Wichman, 2018), yet

these methods typically do not account for outliers. In Section 4.2, we introduce the

data set and perform an exploratory analysis. Sections 4.3 and 4.4 then model the

temporal and spatial patterns in demand for bike-sharing. In Section 4.5, we pro-

vide a methodology for identifying outlying demand for bike-sharing services. The
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results of applying the outlier detection method to the Capital Bikeshare data are

then discussed in Section 4.6.

In summary, this chapter contributes (i) an in-depth analysis of temporal patterns

in usage of Capital Bikeshare services; (ii) a method for spatial clustering of bike-

sharing terminals based on geographic proximity and similarity of usage patterns;

(iii) an investigation of temporal trends in detected outliers and the factors that

may cause them; and (iv) an analysis of spatial patterns of the outliers detected.

Our methodology is data-driven and general by design, and not tailored to specifics

related to Washington D.C., and can thus be readily applied to all bike-sharing data

sets around the world.

4.2 Capital Bikeshare data

The Capital Bikeshare data set spans a three year period, from January 1 2017 to

December 31 2019. It describes every recorded trip by its time of pick-up, time of

drop-off, pick-up terminal location, and drop-off terminal location. The data set

features only those 578 terminals that recorded at least one pick-up or drop-off within

the recorded time frame.

Out of a potential 334,084 unique origin-destination (O-D) pairs, the data set

records 105,735 O-D pairs that customers completed based on pick-ups and drop-offs.

As examples, the times of bike rentals for three different O-D pairs are shown in Figure

4.2.1a, with each dot representing one journey. Note that station 31654 opened in

November 2018, and so data is only available from that date onward for O-D pair
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Figure 4.2.1: Origin-destination (O-D) level data and aggregated daily usage patterns

Data cleansing If the first use of a terminal in the data set was not January 1st

2017, we check historical data from 2016 for any usage to determine if the terminal

was open. If there are no earlier bookings, we consider the terminal as newly opened

from the time of its first recorded trip. Capital Bikeshare pre-process the data to

remove trips that are made by staff for system maintenance and any trips with a

journey time of less than 60 seconds (as these may be false starts).

Data aggregation Given the large number of O-D pairs, very few journeys are

recorded per unique pair on average. This makes it difficult to detect meaningful

patterns, or any deviation from such a pattern, on the O-D level. When numbers are

this small, noise dominates over any trend, as also pointed out in related research

on forecasting slow-moving retail products (Jha et al., 2015). To alleviate the prob-
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lem of small numbers, we aggregate trips as pick-up and drop-off events, considering

usage per terminal rather than O-D pairs. To further reduce the problem of sparse

observations, and to make observations comparable over time, we aggregate usage

by hour of day (Petropoulos and Kourentzes, 2015). Specifically, we define the daily

usage pattern to be a time series of the number of times per hour that a terminal is

used, either pick-up or drop-off – see Figure 4.2.1b. When considering pick-ups and

drop-offs separately, we differentiate the daily pick-up pattern and the daily drop-off

pattern.

0

135,000

(a) Mean annual usage by
terminal

0

50

100

150

200

0 50,000 100,000

Mean annual usage

N
um

be
r 

of
 te

rm
in

al
s

(b) Histogram of mean annual
usage of terminals

Figure 4.2.2: Mean annual usage per terminal

Exploratory analysis: Spatial variation. The total usage varies greatly across

terminals, with those closer to the centre of Washington D.C. being more popular on

average. Figure 4.2.2a visualises this idea by indicating the mean annual usage per

terminal across the region. The most popular terminals observe more than 130,000

uses per year, whereas the least popular terminals observe less than one on average.
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Over half of the terminals (51%) recorded fewer than 5,000 pick-up or drop-off events

per year. To indicate the distribution, Figure 4.2.2b provides the mean annual usage

per terminal in a histogram.

Exploratory analysis: Temporal variation. In addition to daily usage patterns

varying across space, there is also significant temporal variation. Figure 4.2.3 shows

that there are significantly different mean usage patterns and inter-daily variance for

different days, months, and, to some extent, years. Here, we define inter-daily variance

as the daily variability in the usage at a terminal at a given hour of the day.

4.3 Modelling baseline temporal usage patterns

As discussed in Section 4.2, usage patterns vary across time and space. If we do not

first remove temporal patterns observed in baseline demand, any outlier detection

procedure will likely simply detect baseline trend characteristics as outliers. For ex-

ample, there is a much higher level of variability in demand on weekends in summer. If

we failed to account for this before performing the outlier detection procedure, many

of the detected outliers would occur on Saturdays in the summer months. By first

accounting for known temporal patterns, the detected outliers are more likely to be

genuine outliers rather than explainable patterns.

Similarly, if we do not account for spatial baseline variability and instead aggre-

gate data across all terminals then we will simply detect unused or extremely busy

terminals as outliers. Conversely, if we assume all terminals behave independently,

then the increased noise makes it more difficult to detect outlying usage patterns. As
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Figure 4.2.3: Mean usage patterns and inter-daily variance for terminal 31203 by hour

of day, which is a representative pattern as seen across the network

such, before implementing the outlier detection procedure outlined later in Section

4.5, we carry out a two-step process to (i) remove known temporal patterns; and

(ii) spatially cluster terminals which behave similarly. These two steps are key in

identifying meaningful outliers, as we shall show.
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4.3.1 Background: Bike-sharing demand forecasting

Within the bike-sharing literature, a range of techniques have been considered to pre-

dict demand, both spatially and temporally. Zhou et al. (2018) apply a Markov Chain

based model to predict daily pick-ups and drop-offs at each station within the Zhong-

shan City bike-sharing system. The problem of predicting demand in the presence of

spatial heterogeneity is further considered by Gao et al. (2021) who estimate a distance

decay function and then use multiple linear regression to predict temporal demand in

the dockless bike-sharing system in Shanghai. Dockless bike-sharing systems are also

discussed by Xu et al. (2018), who use long short-term memory neural networks to

predict demand, and capture the spatial and temporal imbalance in usage. Sohrabi

and Ermagun (2021) use a combination of pattern recognition on historic data traffic

patterns and K-nearest neighbours to make spatiotemporal demand predictions over

short time horizons (between 15 minutes and 4 hours), for the Capital Bikeshare data.

The choice of forecasting approach will likely affect the outcome of outlier detec-

tion. In the following, we discuss and apply two methods of predicting the baseline

temporal patterns in the data: (i) functional regression to account for changes in

mean; and (ii) temporal partitioning to account for changes in variance.

Beyond the model presented here, alternative approaches could be used to account

for trend and seasonality, and establishing a baseline for bike-sharing demand. In

general, any forecasting or modelling approach from which residuals can be obtained

could be used instead. After the temporal patterns have been accounted for and
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Figure 4.3.1: Residual usage patterns for terminal 31005

the residuals obtained, we are then able to analyse the spatial correlations to group

together terminals which deviate from the baseline demand forecast in a similar way,

as we shall discuss later in Section 4.4.

4.3.2 Functional regression.

Mean daily usage patterns differ systematically across days of the week, months, and

years. We apply a functional regression model (Ramsay et al., 2009) to remove the

different mean patterns. We will demonstrate this process on the daily usage patterns
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of terminal 31005 as shown in Figure 4.3.1a.

Let xns(t) be the usage pattern for day n for terminal s. We implement the

following functional regression model:

xn,s(t) = β0,s(t) + β1,s(t)1Monn + β2,s(t)1Tuen + β3,s(t)1Wedn+

β4,s(t)1Thun + β5,s(t)1Frin + β6,s(t)1Satn+︸ ︷︷ ︸
Day

β7,s(t)1Jann + β8,s(t)1Febn + β9,s(t)1Marn+

β10,s(t)1Aprn + β11,s(t)1Mayn + β12,s(t)1Junn+

β13,s(t)1Juln + β14,s(t)1Augnl + β15,s(t)1Sepn+

β16,s(t)1Octn + β17,s(t)1Novn+︸ ︷︷ ︸
Month

β18,s(t)12017n + β19,s(t)12018n︸ ︷︷ ︸
Year

+en,s(t).

(4.3.1)

where e.g., 1Monn = 1 if day n relates to a Monday, 0 otherwise. Here, β0,s(t) rep-

resents the mean usage pattern for a Sunday in December 2019. Appendix C.1.2

contains details of the model selection process where we consider the significance of

each of the factors (day, month, year) for a range of terminals. The vast majority of

terminals select the full model containing all three factors as the best-fitting model.

As Figure 4.3.1b indicates, the core of the distribution of residuals is symmetric

around 0 as desired. The majority of “spikes” in usage are caused by increased

demand, resulting in a slight positive skew to the residual patterns. We note that

the variance of these residuals is clearly not constant over time and we shall discuss

this shortly. Further discussion of the residual distribution is included in Appendix

C.1.3. Other features of the usage patterns including positive skew, and inter-daily
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correlation are discussed in Appendices C.1.4 and C.1.5.

4.3.3 Temporal partitioning.

Our functional regression approach accounts for different mean usage patterns, but

it does not account for the differing inter-daily variances. The simplest option to

obtain a data set with homogeneous inter-daily variance is to temporally partition

the full data set. While we could partition based on each weekday, month, and year,

this would result in around 4 observations per partition - an insufficient number to

inform outlier detection. In deciding how to partition the data, there is a trade-off be-

tween having reasonably constant inter-daily variance within each group and ensuring

there is enough data within each group in order to establish patterns. Therefore, we

group together days, months, and years where the inter-daily variances are sufficiently

similar.

From Figure 4.2.3, it is clear that weekdays (Mon-Fri) are similar to each other,

and weekends (Sat-Sun) are also similar to each other. The differences between the

inter-daily variance across different months is less clear. Defining summer as April

through to October, then months within summer exhibit similar inter-daily variance

patterns, as do months within winter (November to March). Further analysis of

the variance in Appendix C.1.1 supports this partitioning. All years are grouped

together. This results in four partitions: (i) summer weekdays, (ii) winter weekdays,

(iii) summer weekends, and (iv) winter weekends, as displayed in Figure 4.3.1c–f. Note

that we do not attempt to remove the intra-daily variability of these residuals with

further parametric modelling, as instead we turn to functional data analysis to detect
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outlying curves from these residual daily usage patterns.

The choice of partition is important and should reflect the choices made in the

planning process, e.g. with regard to inventory redistribution. If the increased inter-

daily variance on weekends, for example, is already known and accounted for in plan-

ning, such that there are different schedules for redistribution, then partitioning as

we propose would be appropriate. However, if the general planning process (including

demand forecast and inventory optimisation) assumes uniformity across all days of

the week, it would then be informative to do the same in the outlier detection to flag

the weekend effect when it occurs.

4.4 Clustering terminals by spatial usage patterns

When outlier demand is driven by factors such as regional events or weather, we

expect it to affect more than a single, isolated terminal. At the same time, we cannot

assume that all terminals experience outlier demand at the same time and in the same

way. Therefore, we first cluster the terminals such that those in the same cluster are

likely to experience similar effects from demand outliers.

We propose a two-stage process to determine which terminals should be clustered.

First, we construct a graph based on the geographic co-ordinates of the terminals to

determine which terminals are permitted to be in the same cluster based on geographic

distance. Secondly, we follow an idea from Zahn (1971) who suggests the removal of

edges from a graph’s minimum spanning tree (MST) as a method of finding clusters

of nodes.
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The first step of constructing the graph is non-trivial. Graph construction in the

bike-sharing setting is more open-ended than in situations where mobility networks

rely on established legs, as, e.g., in the railway application studied in Rennie et al.

(2021b). For bike-sharing, direct journeys between any two terminals are possible, so

that in theory, all terminals could be vertices in a fully connected graph. Although

we could simply add edges between every node i.e. a complete graph, there are two

reasons for not doing so: (i) For the purposes of aiding planning, we do not want two

terminals which are geographically far apart to be in the same cluster if no terminals

in between are similar to both. (ii) The algorithm used to compute the MST is slowed

down by an increased number of edges, and due to the greedy nature of it, we are

more likely to end up at a non-optimal solution if we add in extraneous edges.

4.4.1 Graph construction from geographical distance.

We first construct a graph where the nodes represent the terminals and the edges

indicate which terminals are permitted to be in the same cluster. This approach

implicitly assumes that similarity of usage is driven by the terminals’ geographical

proximity. That is, if two terminals are close together, potential customers are more

likely to treat them as interchangeable, causing similar usage patterns. In the Capital

Bikeshare data set, terminals are more densely distributed in the centre of D.C., so

that customers can choose from a large variety of terminals. We expect this to render

them more sensitive to distance, such that they are less willing to travel to a more

distant terminal. Therefore, we use different criteria to add an edge between terminals

depending on how close to the centre of D.C. those terminals are.
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(a) Radius for defining edges

< 500m
< 1,000m

(b) Construction of graph

Figure 4.4.1: Graph construction when R = 5000m, Dinner = 500m, and Douter =

1, 000m.

To identify the dense city-centre, we establish a circle around the centre of D.C.

of radius R, with the median co-ordinates of all terminals as the centre, as shown in

Figure 4.4.1a with R = 5000m. We add an edge between terminals i and j if: (i)

both terminals lie inside the radius, and are less than Dinner apart; or (ii) one or both

terminals lie outside the radius R, and are less than Douter apart.

Not all terminals that are geographically close exhibit similar usage patterns e.g.

due to proximity to railway stations. Therefore, to quantify how similar the usage

patterns of two terminals are, we add weights to the edges of the graph. For each

edge between terminals i and j, we also compute an edge weight representing the

dissimilarity between the usage patterns for those terminals. The edge weights are

given by:

w(i, j) = 1− ρ(i, j), (4.4.1)
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where ρ(i, j) is the average functional dynamical correlation (Dubin and Müller, 2005)

between the daily usage patterns for terminals i and j. Here, the average correlation

is based on the correlations between daily usage patterns across the entire time period

considered (2017 - 2019), as there is no evidence of the clusters changing over time.

However, if the correlations (and therefore clusters) are changing over time, a moving

window approach could be used to update the average correlation and clusters over

time.

4.4.2 Minimum spanning tree clustering.

We apply a minimum spanning tree approach to cluster terminals that are connected

in the geographical proximity graph. A graph’s spanning tree is a subgraph that

includes all vertices in the original graph and a minimum number of edges, such that

the spanning tree is connected. If the original graph is disconnected, we compute a

spanning tree for each component – termed a spanning forest. A minimum spanning

tree (MST) is the spanning tree with the minimum sum of edge weights. Since the

graph is weighted, we use Prim’s algorithm (Prim, 1957) to calculate the MST.

To obtain the clusters from the MST, we set a threshold, ρτ , for the correlation

and remove all edges with weights above 1− ρτ .

4.4.3 Clustering results: daily usage patterns

Figure 4.4.2 visualises the outcome from four different values of ρτ . These values of ρτ

are chosen to illustrate the clustering for two reasons: (i) ρτ = −1 indicates that all
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(i) rt  = -1, 505

edges, 73 clusters

(ii) rt  = 0, 500

edges, 78 clusters

(iii) rt  = 0.15, 383

edges, 195 clusters

(iv) rt  = 0.3, 205

edges, 373 clusters

0

250

Cluster
size

(a) rt  = -1

 

(ii) rt  = 0

 

(iii) rt  = 0.15

 

(iv) rt  = 0.3

 

(a) Number of clusters and edges for different thresholds

(b) Cluster sizes for different thresholds

Figure 4.4.2: Clustering of terminals under different values of ρτ .

initially connected edges stay in place. In fact, the minimum correlation observed is -

0.57, and any threshold between -1 and -0.57 results in all edges of the MST remaining

in place. (ii) 90% of the observed correlations lie between 0 and 0.3, therefore the

values of ρτ = 0, 0.15, and 0.3 demonstrate the clustering when the threshold is close

to the minimum, mean, and maximum correlations.

Figure 4.4.2 can be used by analysts to determine the most appropriate threshold,

depending on which aspect of planning they are considering. Figure 4.4.2a shows

which terminals are clustered together. If an analyst has expert knowledge regarding

which terminals are likely to behave similarly, they can cross-check with the cluster-

ing and choose the threshold which supports this decision. Figure 4.4.2b visualises
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the sizes the clusters that each terminal belongs to, demonstrating the non-uniform

distribution of cluster size across the geographic area. This can also be used to deter-

mine an appropriate threshold. For example, if an analyst is interested in the general

demand patterns of central D.C., they can choose a threshold that highlights all of

central D.C. in a single large cluster e.g. ρτ=0. In contrast, if the analyst is more

interested in obtaining clusters of similar size, Figure 4.4.2b(iv) would guide them

towards a higher threshold.

Across all thresholds, the terminals closer to the centre of D.C. form a larger clus-

ter, with those further away from the centre branching into smaller clusters. Clearly,

the choice of threshold values ρτ impacts the precise clustering results.

The distance parameters, {R,Dinner, Douter}, also affect clustering. The number

of clusters increases as ρτ or R is increased, whereas increasing Dinner or Douter has

the opposite effect. There is an inverse relationship between the number of clusters

and the uniformity of cluster size. As the number of clusters increases, individual

terminals tend to split off to form their own cluster whilst the majority of terminals

remain in the large central cluster, resulting in decreased uniformity of cluster size.

For decision-making, clusters of similar sizes are often more informative (compared

to a large cluster consisting of most terminals, and the remaining terminals each in

their own cluster).

We leave the choice of parameters to analyst input, such that analysts may use

their expertise to select appropriate values based on the visualisation and their busi-

ness case (Vock et al., 2021). For the remainder of this chapter, unless otherwise

specified, we set the parameter values as ρτ = 0.15, R = 5000m, Dinner = 500m,
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and Douter = 1000m. These values are chosen to balance the number of clusters with

more similar cluster sizes. Appendix C.2.1 includes further details on the reasoning

for these choices.

4.4.4 Clustering results: daily pick-up and drop-off patterns

So far, we have focused on clustering terminals based on the similarity of their daily

usage patterns. However, when considering forecasting for inventory rebalancing, dif-

ferentiating pick-ups and drop-offs is highly important. Depending on the aggregation

level of forecasting, it may be desirable to consider separate clusterings for drop-off

and pick-up patterns.

MARYLAND

VIRGINIA

(a) Pick-up pattern
terminal clustering

resulting in 320 clusters

MARYLAND

VIRGINIA

(b) Drop-off pattern
terminal clustering

resulting in 168 clusters

Figure 4.4.3: Comparison of clustering terminals based on pick-up and drop-off pat-

terns for ρτ=0.15, R = 5000m, Dinner = 500m, and Douter = 1000m.

Figure 4.4.4a shows that this increased homogeneity of drop-off patterns is con-
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Figure 4.4.4: Comparison of pick-up and drop-off terminal clustering

sistent across all values of the correlation threshold, ρτ . Although the number of

clusters resulting from both pick-up and drop-off terminal clustering follows a similar

relationship with the correlation threshold – increasing steeply between 0 and 0.4 –

the drop-off clustering consistently results in fewer clusters.

To formally compare the output of these two clusterings, we use the Normalised

Mutual Information (NMI) (Amelio and Pizzuti, 2015). The NMI is 1 if two clus-

terings are identical, and 0 if they are completely different (see Appendix C.2.2 for

details). Figure 4.4.4b shows that the similarity of the pick-up and drop-off clusterings

are highly dependent on the correlation threshold. When a low threshold is used, the

clusterings are completely different. However, as the correlation threshold increases

above 0.25, the clusterings become more similar, achieving an NMI of around 0.75.

This evidence that pick-ups and drop-offs are not spatially homogeneous moti-

vates the need for separate forecasting of the two. The differences across the varying
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threshold also indicates that the need for separate forecasting is more critical when

considering a larger area i.e. when considering total demand, but is less critical over

smaller areas closer to the terminal level. Monitoring the difference in the number of

clusters and the similarity of the two clusterings can help analysts to decide on the

level of forecasting. Analysts could also examine changes in the NMI over time for a

given correlation threshold. For example, if the pick-up and drop-off clusterings are

becoming more similar to each other over time, this could indicate increasing levels

of homogeneity in pick-up patterns.

4.5 Detecting outliers within a cluster of terminals

To demonstrate the outlier detection procedure, we focus on one of the resulting

clusters. The nine terminals in the cluster we consider are highlighted in green in

Figure 4.5.1.

Figure 4.5.1 demonstrates how the currently analysed cluster may be highlighted

for analysts. On the one hand, the location of the cluster within the D.C. area can

provide contextual information for analysts in the search for an explanation of outlier

demand. On the other hand, the zoomed in section on the right shows how the

terminals relate to one another within the cluster. This could be useful if the outlier

demand is not detected in all terminals. For example, all but one of the green cluster

terminals lie in a relatively straight line. If the terminal which lies to the North East

of the main group of terminals in the cluster behaves differently, analysts can look to

nearby clusters for further information.
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Figure 4.5.1: Cluster chosen for further investigation

To identify outlier demand in usage patterns, we use the notion of statistical depth.

In statistics, depth provides an ordering of observations, where those near the centre

of the distribution have higher depth and those far from the centre have lower depth.

In the case where each observation is a time series of usage throughout the day, the

functional depth can measure how close to the central trajectory, i.e. median usage

pattern, each daily usage pattern is. Therefore, to measure the outlyingness of each

daily usage pattern, we calculate its functional depth (with respect to other daily

usage patterns that lie in the same partition of data). Days whose usage pattern has

lower functional depth are more outlying. In particular, if the depth is below some

threshold, we classify the day as an outlier.

For each partition of data, p, and for each terminal s, we calculate a threshold, Cs,p,

for the functional depth as per Febrero et al. (2008). To calculate the threshold, we

(i) resample the daily usage patterns with probability proportional to their functional
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depths (such that any usage patterns affected by outlier demand are less likely to be

resampled), (ii) smooth the resampled patterns, and (iii) sets the threshold Cs,p as

the median of the 1st percentile of the functional depths of the resampled patterns.
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Figure 4.5.2: Normalisation of the functional depths, exemplified for terminal 31316

where there are two partitions of data (summer/winter)

Let dn,s,p be the functional depth for day n (which occurs in partition p) for

terminal s. We then transform the functional depths to lie between 0 and 1 such that

they are comparable between different terminals and aggregated over the different

partitions of data. Define zn,s to be the normalised functional depth on day n for

terminal s:

zn,s =
P∑
p=1

(
1n∈p

(
Cs,p − dn,s,p

Cs,p

))
. (4.5.1)

The functional depths for terminal 31303 are shown in Figure 4.5.2a, and their nor-

malised counterparts in Figure 4.5.2b. Figure 4.5.2a provides a way to check for

unaccounted for trend and seasonality in the usage patterns. However, much like
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univariate regression residuals which can be used to visually identify residuals pat-

terns, the functional depths should appear random with no obvious patterns. If an

analyst can identify a pattern in the functional depths, this would suggest that the

forecasting model may need to be reconsidered. Weekdays could be highlighted in

different colours to help identify temporal patterns on a smaller scale. Figure 4.5.2b

can also be used by analysts to check how many non-outlier days are close to, but

do not exceed, the threshold. Analysts can use this information to manually vary the

threshold to detect further outliers they perceive to be false negatives.
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Figure 4.5.3: Sum of threshold exceedances, zn

We then define the sum of threshold exceedances across all S terminals in the

cluster to be:

zn =
S∑
s=1

zn,s1{zns>0}. (4.5.2)

The values of zn for this cluster are shown in Figure 4.5.3. The value of zn is only

positive for days which have been classified as an outlier.



CHAPTER 4. VISUALISING BIKE-SHARING DEMAND 124

4.5.1 Computing outlier severity

Although the values of zn give an indication of how severe the outlier is (with zn

being larger if the magnitude of the outlier demand is larger, or if it affects a larger

number of terminals), we wish to make the severity easier to interpret across different

clusters. Therefore, we fit a distribution to the sum of threshold exceedances and use

the non-exceedance probability given by the CDF of the distribution as a measure of

severity.

In contrast to Rennie et al. (2021b) who fit a generalised Pareto distribution (GPD)

to the sum of threshold exceedances, here we fit a four-parameter Beta distribution

(Carpenter and Mishra, 2001). For a GPD, assuming the shape parameter is non-

negative, the support has no upper bound. In this application the upper bound is

finite and known to be equal to the number of terminals within the cluster. Since zn,s

lies between 0 and 1, the sum across S terminals must lie between 0 and S. Therefore,

a four parameter Beta distribution, bounded on (0, S) is likely to provide a better fit

– see Figure 4.5.4.

The severity of an outlier on day n, θn, is therefore given by the CDF of the four

parameter Beta distribution:

θn = F(α,β,a,c)(zn) =

∫ zn

0

(q)α−1(S − q)β−1

B(α, β)Sα+β+1
dq, (4.5.3)

where B(α, β) is the Beta function. This results in an outlier severity, between 0 and

1, for each cluster on each day, as exemplified in Table 4.5.1.

We differentiate positive and negative outliers. Positive outliers are primarily

caused by increased usage i.e. where the sum of the functional residual is greater
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Figure 4.5.4: Comparison of fitted distributions

than zero, whereas negative outliers indicate a shortfall in usage.

Date Cluster 1 Cluster 2 Cluster 3 . . .

11/01/2017 0.033 ↓ - - . . .

12/01/2017 0.852 ↑ 0.720 ↑ - . . .

...
...

...
...

. . .

Table 4.5.1: Examples of outlier severities for different days, where arrows indicate

positive or negative outliers

4.5.2 Visualising detected outliers for analysts

There are multiple different visualisations that could be used to present the informa-

tion from Table 4.5.1 to analysts.

To support on-the-day forecast adjustments, the simplest approach is as a ranked
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alert list, as exemplified by Table 4.5.2. By presenting the alert list as a table rather

than a visualisation, this gives a clear, prioritised list of tasks to complete. Here,

the different colours show where the outlier was detected: red showing the terminals

where the outlier was detected, and blue showing other terminals in the same cluster

likely to be affected. By displaying the severity alongside the ranking, analysts are

better able to prioritise their adjustments. For example, an analyst may choose to

only adjust the forecasts for the top two outliers in Table 4.5.2, as the third has a

much lower severity in comparison.

Rank Severity Direction of change Cluster

1 0.892 ↑ 31104, 31115, 31129, 31217, 31219, 31222, . . .

2 0.828 ↑ 32008, 32048

3 0.347 ↑ 31000, 31001, 31002, 31003, 31004, 31005, . . .

...
...

...
...

Table 4.5.2: Example of ranked alert list for 30/03/2018

To give a wider view of how outliers have occurred and to account for them in

the historic data, the severities can be visualised in a spatiotemporal heatmap as

exemplified in Figure 4.5.5. This figure shows the severity of detected outliers over

time for every cluster, where clusters are arranged from left to right by nearest to

furthest from the centre of Washington D.C. The order of the clusters along the x-

axis could also be arranged to highlight further spatial patterns e.g. from North

to South. This type of visualisation can help to identify large-scale patterns in the
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outliers. For example, knowing for which times of year or days of the week outliers

are more likely to be detected can help determining the number of required analysts.

Similarly, different analysts may be assigned to monitor different clusters, and this

helps to identify which clusters may need more input from analysts.

2017

2018

2019

2020

Closer to center of D.C. ¬        Clusters        ®Further from center of D.C.

0.5

Outlier
severity

Figure 4.5.5: Outlier severity for each cluster between 2017 and 2019

4.6 Discussion

In this section, we discuss patterns in the outliers detected in the Capital Bikeshare

data, and suggest potential explanations for their causes.

Figure 4.6.1 visualises the number of positive and negative outliers over the days

of the time span recorded in the data set. By visualising the positive and negative

outliers jointly, analysts can immediately see that (i) negative outliers typically affect
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far fewer clusters than positive outliers; (ii) the spikes where outlier demand affects

a large number of clusters do not occur at the same time for positive and negative

outliers; and (iii) the seasonal patterns in the detected outliers are not the same for

positive and negative outliers. This can aid analysts in their predictions of outliers: if

an outlier is detected in winter – it is more likely to be negative, if detected in summer

– more likely to be positive.
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Figure 4.6.1: Positive and negative outliers

Outliers occur independently in different clusters. In fact, only four days observe

outliers in more than 125 of the 195 clusters – one negative and three positive. The

three positive outliers occur on 25 March 2017, 3 December 2018, and 30 March 2019.

Explanations from events arise for two of these dates: 3 December 2018 relates to the

funeral of George H. W. Bush, and a NATO protest occurred in Washington D.C. on

30 March 2019. 25 March 2017 and 30 March 2019 were both warm days, and the

last Saturday in March - perhaps suggesting that the definition of summer should be

from the last Saturday in March, rather than April 1.
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It is interesting to note that the next most widespread positive outlier relates to

Independence Day in 2017. Independence Day was detected as a positive outlier in

123, 80, and 35 clusters in 2017, 2018, and 2019. However it was detected as a negative

outlier in 46, 47, and 57 terminals respectively. The date of the widespread negative

outlier is 21 July 2018 which relates to one of the worst storms Washington D.C. has

seen. Further discussion of how weather is related to outliers can be found in Section

4.6.2.

4.6.1 Spatiotemporal patterns in detected outliers

In this section, we analyse the detected outliers and consider spatial and temporal

patterns within the outliers.

Temporal patterns. Even after accounting for the lower means and reduced inter-

daily variance of the winter months, we detect fewer outliers in winter (indicated by

the two horizontal white bars in Figure 4.5.5). Otherwise, we find no clear system-

atic temporal patterns to the detected outliers. Appendix C.3.1 provides additional

discussion on the temporal aspects of the detected outliers, including the visible tem-

poral patterns in the outliers when we fail to account for temporal patterns in the

forecasting step.

However, Figure 4.6.2 shows that although outliers can sometimes occur as one-off

events, they are also quite likely to occur in temporal clusters. Therefore, once an

outlier has been identified, the information can be used to support adjustments to

planning in the subsequent days.
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Figure 4.6.2: Exemplified severity for outliers detected in one cluster, showing tem-

poral clustering of outliers

Spatial patterns. Next, we discuss spatial patterns in the detected outliers and

consider the relationship between outliers in pick-up and drop-off usage patterns.

Figure 4.5.5 shows that the cluster which is formed around the centre of Washington

D.C. (indicated by the first column on the left) experiences more frequent and higher

probability outliers. Otherwise, there is little geographic pattern to how often outliers

occur in terms of distance from the centre.

Two other clusters besides the central D.C. cluster exhibit a higher number of

outliers with higher severity than other clusters. Figure 4.5.5 indicates these by

darker vertical lines. These clusters are highlighted in Figure 4.6.3. These clusters

are both fairly close to the centre of Washington D.C., and are close by the two main

bridges across the Potomac River into the centre. The terminals in these clusters

are also situated close to The Pentagon, Arlington National Cemetery, and Ronald
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Reagan Washington National Airport. Therefore these clusters are likely to experience

business commuter demand, tourist demand, and potentially also airport travellers

i.e. have multiple sources of outlier demand.

MARYLAND

VIRGINIA

MARYLAND

VIRGINIA

Figure 4.6.3: Two (non-central D.C.) clusters which exhibit higher numbers of outliers.

We also consider the frequency of outliers on the terminal level. Figure 4.6.4 shows

the number of days that each individual terminal was classified as an outlier between

2017 and 2019. Terminals where no outliers were detected are not shown. Outliers

are more commonly detected in terminals nearer the centre of D.C.

We analyse the differences in the spatial patterns of the outliers detected in pick-up

and drop-off usage patterns. For this, we use the clustering based on the overall usage

patterns as it allows direct comparison of outliers in different clusters. Subsequently,

we apply the outlier detection procedure separately to the pick-up and drop-off usage

patterns. This enables us to isolate how the detected outliers and their severities
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Figure 4.6.4: Number of days each terminal was classified as an outlier between 2017-

2019

change when the terminals in each cluster remain constant.

To formally compare the output of the outlier detection procedure for pick-up

and drop-off usage patterns, we use cosine similarity (Leydesdorff, 2005). That is, the

cosine of the angle between two vectors, where 0 represents complete dissimilarity, and

1 complete similarity. Figure 4.6.5a provides the cosine similarity between clusters

i.e. the cosine similarity of the vector of outlier severities for those detected in pick-up

terminals over the three year period, and that for drop-off terminals.

Figure 4.6.5a shows that outliers detected in pick-up and drop-off terminals are

fairly similar, although this changes depending on the correlation threshold used in

the clustering step. As the correlation threshold ranges from 0 to 0.3, the average

cosine similarity ranges from 0.69 to 0.44. As the correlation threshold increases, the
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Closer to center of D.C. ¬  Clusters ® Further from center of D.C.
(a) Cosine similarity when rt  = 0, 78 clusters

Closer to center of D.C. ¬  Clusters ® Further from center of D.C.
(b) Cosine similarity when rt  = 0.15, 195 clusters
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(c) Cosine similarity when rt  = 0.3, 373 clusters
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Figure 4.6.5: Cosine similarity between outliers detected in pick-up and drop-off usage

patterns under different correlation thresholds

number of clusters increases. Therefore, when we look at outliers on a small cluster

or terminal level, there is less similarity between pick-ups and drop-offs. However,

when the clusters are larger and the outliers aggregated, there is a clearer pattern

between pick-ups and drop-offs. Further, this similarity is not uniform across the

different clusters - those closer to the centre of D.C. have a higher cosine similarity.

That is, the closer a cluster is to the centre of D.C., the more likely it is that if a day

is a pick-up terminal cluster outlier, it will also be a corresponding drop-off terminal

cluster outlier. We did not find any temporal patterns in the comparison of pick-up

and drop-off outliers.
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4.6.2 Weather as an explanatory factor for demand outliers

It is widely acknowledged that weather can be used as a predictor for average bike

rental demand (Lin et al., 2020). Therefore, we examine whether extreme temperature

or rainfall drive extreme changes in demand i.e. outliers. To that end, we analyse

weather data obtained from Visual Crossing (2021) and investigate whether weather

can be used to explain and eventually predict the outliers in demand. The data is

included in Appendix C.3.2.
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Figure 4.6.6: Severity of outliers at different temperatures and precipitation levels

Figure 4.6.6a shows the proportion of days in each temperature range that have a

maximum outlier severity within each severity range. Higher temperatures (between

70 and 90 °F) result in higher severity outliers, indicated by the red region in the top

right of Figure 4.6.6a. The red region in the bottom left shows that a high proportion

of days with a very low average daily temperatures (≤ 25 °F) are classified as outliers.
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However, these outliers typically have a low severity. This can be explained by these

outliers being negative demand outliers – and low temperatures typically occur in

winter, when demand is already low.

In addition to temperature, we also expect precipitation levels to affect demand

for bike-sharing. As we expect increased rainfall to have a negative impact of usage,

we consider only the severity of negative demand outliers here. Figure 4.6.6b shows

the proportion of days with a minimal level of precipitation which were classified as

outliers with some severity. Higher rainfall generally results in higher likelihood of

the day being classed as a negative demand outlier. When precipitation levels are

especially high, the outliers that are detected also tend to have higher severities.

There are likely many other factors which cause and influence outlier demand

in the Capital Bikeshare network. For example, Ma et al. (2015) have previously

linked usage of bike-sharing terminals to usage of Metrorail services. We anticipate

that cancellations, or short-term changes to Metrorail services may also generate

outlier demand for bike-sharing. However, due to lack of available of data on such

cancellations, we leave this to future research.

4.7 Conclusion

In this chapter, we identified temporal patterns in the Capital Bikeshare data set

and applied a combination of functional regression and temporal partitioning to re-

move such trends and obtain a homogeneous data set. We also accounted for spatial

patterns in temporal usage by clustering together similar terminals. By basing our
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clustering algorithm on a combination of geographical knowledge, and similarity of

usage patterns, we were able to identify how usage changes as terminals get further

away from the city centre. Throughout this chapter, we have presented visualisations

to illustrate our findings and provided detailed descriptions of how such visualisations

may be used by analysts to aid in their decision making.

Our in-depth study of detected outliers showed that not all terminals are equally

prone to outliers - those closest to the centre of D.C. exhibit far more outlying de-

mand. This is also true for known outlier days e.g. national holidays such as July 4,

where some clusters of terminals exhibit increased demand and others decreased. For

forecasting and planning purposes, this knowledge is highly important since outlier

demand changes not only the magnitude of demand, but also the spatial distribution

of where customers go. In terms of rebalancing bikes at terminals, this could have a

large impact on the efficiency of the schedule. Further, we also showed that outliers

are more likely to occur in the summer months (even after accounting for increased

usage and usage variability), suggesting rebalancing needs to be more reactive in the

summer months.

Our analysis of weather patterns showed that outliers are more likely to occur

when the weather conditions are more extreme. Both temperature and precipitation

were found to have an impact on demand - with excessively high precipitation or very

low temperatures causing negative demand outliers, and high temperatures causing

positive demand outliers.

Further research is needed to evaluate the effects that identifying and correcting for

outliers may have on revenue and planning in the bike-sharing domain. The method
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outlined in this chapter could be used to generate an outlier alert, to notify Capital

Bikeshare when the rebalancing policy for a given day is non-optimal. Further analysis

of how these alerts could be deployed in an automated system, and how they may

affect the complexity of the routing problem, is needed.



Chapter 5

Conclusion

In this chapter the thesis is concluded by summarising the contributions it has made

to the area of outlier demand detection and quantification in transport systems. Sug-

gestions of further research are also discussed.

5.1 Contributions

The main focus of this thesis was to develop new methods to detect demand outliers

in transport networks. As discussed in previous chapters, not accounting for such

outliers can have significant impacts on both forecasting and optimisation in demand

planning for transport systems. The first contribution of this thesis was a novel outlier

detection method, which combines functional data analysis and time series forecasting,

to detect outlier demand in bookings for transport systems. This method incorporated

an extrapolation step to allow its application in an online setting, where the analysed

demand patterns have only been observed over part of the booking horizon. This
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chapter also contributed the design of a simulation-based framework to evaluate the

effects of outliers in revenue management systems and the performance of the outlier

detection method in a controlled environment.

Chapter 3 then extended the approach described in Chapter 2 to a two-step method

for detecting outlier demand in a network setting, and contributed an evaluation

of its application to railway booking data from Deutsche Bahn. This chapter also

contributed an extensive computational study of outlier detection performance and

the revenue impacts of outlier demand under different forecast adjustments.

The final contribution of this thesis was an application of the previously de-

scribed method to bike-sharing systems, where the generalisability of the approach

was demonstrated, showing it is applicable either in the setting where capacity is

on the edges or vertices of the graph. A particular focus was the communication of

outlier alerts to analysts and how outliers may be visualised, alongside the temporal

and spatial patterns of demand.

Overall, a key finding of this thesis is that methods from functional data analy-

sis prove to be very powerful at revealing outliers, however the raw data must first

be aggregated and modelled appropriately, by e.g. appropriately clustering legs or

accounting for seasonality.

5.2 Further Work

In this section possible extensions to the methodology and ideas for further studies

are described. Firstly, a method to account for the temporal dependence of outliers.
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Secondly, suggestions of further computational studies to further examine the perfor-

mance in different settings and under a wider variety of actions. Finally, a discussion

of issues that may be faced in implementing such a method, and studies that may be

undertaken to further evaluate the method’s performance.

5.2.1 Modelling temporal dependence of outliers

In this thesis we made an assumption that outliers occur independently, and only

allocated an outlier severity to departures which are detected as outliers. As noted in

Chapter 4, outliers sometimes occur in temporal clusters. There may also be knock-on

effects of outliers onto subsequent (or previous departures) that were not detected as

outliers due to the noise in the data. For example, an event may cause an increase

in demand for 09:00 and 10:00 departures, but only the 09:00 departure is detected

as an outlier. By accounting for these knock-on effects, the detection rate may be

improved.

In the approach described in Chapter 3, we set the outlier severity of the nth

departure to be the non-exceedance probability:

θn = F(µ,σ,ξ)(zn). (5.2.1)

A more appropriate approach which considers neighbouring departures, may be of the

form:

θn =
Mu∑

m=Ml

g(m)F(µ,σ,ξ)(zn+m). (5.2.2)

where g(m) is some decaying function centred at zero, Ml and Mu are the limits

on the number of departures either side of the nth departure that may be affected,
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and g(0) = 1. There are multiple elements of this approach which still need to be

explored: (i) how the function g(m) should behave, including how quickly it decays;

(ii) The choice of Ml and Mu which will depend on the specific application and the

time between departures e.g. hourly vs. daily departures; and (iii) The choice of

normalisation. Since this approach may result in values of θn greater than 1, some

further normalisation would be needed such that the outlier severity remains easily

interpreted by analysts.

The temporal dependence of outliers could also be accounted for with spatiotem-

poral clustering. In this thesis, we have primarily focused on clustering legs (or

terminals) which are spatially dependent. However, this could be extended to cluster

together neighbouring departures on the same legs. For example, the aforementioned

09:00 and 10:00 departures could be clustered together, and outliers detected jointly.

5.2.2 Further analysis of forecast adjustments

In Chapter 3, the impact on revenue of different types of forecast adjustment was

analysed. The revenue gained under the discussed adjustments could be described

as a best-case-scenario, since we assumed the correct magnitude of the adjustment is

known. In practice, this correct magnitude of adjustment is not known. Therefore,

there is opportunity to adapt the method to tell the analyst not only where, when,

and how severe an outlier is, but also to give a recommended change to the value of

the forecast.

There is some scope to utilise the extrapolation step discussed in Chapter 2 as a

method of obtaining such a recommendation. However, the aim of the extrapolation
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was to improve the outlier detection performance, rather than to obtain an accurate

prediction of future demand. Therefore, alternative forecasting approaches may be

more appropriate for extrapolating with higher forecast accuracy, without compromis-

ing on outlier detection performance. Further computational studies could be carried

out to consider a wider range of forecasting methods for extrapolation. Further, the

extrapolation currently predicts the number of bookings in the remainder of the hori-

zon. However, most revenue management systems require a demand forecast rather

than a bookings forecast. Therefore, any extrapolation approach with the aim of rec-

ommending a forecast change, would likely need to include an unconstraining step to

estimate the underlying demand from the observed bookings.

There is also the question of whether forecast adjustments to easy to identify

outliers can be fully-automated. For example, outliers with a high severity and a

high confidence in the prediction from the extrapolation could have their forecasts

adjusted without analyst intervention. This would allow analysts to focus their expert

judgement on departures where it is less clear what the adjustment should be.

5.2.3 Implementation and further empirical studies

The main focus of the empirical studies in this thesis has been the identification of

outliers in hindsight. There are some further considerations which should be taken

into account when the methods described in this thesis are implemented in a real

system, and used to guide analysts. Some of these considerations, such as how to

communicate the outlier alerts to analysts, have been discussed in Chapter 4.

Further avenues of future research include how often the clustering procedure de-
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scribed in Chapter 3 should be run, how often the outlier detection procedure should

be run, and whether these choices can be made independently of each other. Ad-

ditionally, the computational aspect of the procedure needs to be considered before

implementation. The current method of calculating the functional depth threshold

described in Chapter 2 is computationally intensive and likely to be a bottleneck in

terms of the time it takes to detect outliers. Further research may consider alter-

native approaches to threshold calculation which are less computationally intensive

e.g. fitting a distribution to the functional depths. Additional computational studies

would be needed to examine the performance on outlier detection before it is used in

an empirical setting.

After the outlier detection method has been implemented as a decision support tool

for analysts, further empirical studies could be carried out to determine its success,

both in terms of (i) how well it supports decision making, and (ii) its impact on

revenue. With regard to the former problem, this may incorporate feedback from

analysts. For example, analysts may rate the usefulness of the outlier alert, or mark

the alert as a false alert. This information could then be incorporated into a more

advanced outlier detection procedure which includes a supervised learning step. With

regard to the second suggested study on analysing the revenue impact, this would

extend the findings in Chapters 2 and 3. The revenue implications of correcting for

outlier demand have been quantified in this thesis. However, these results are a best-

case scenario based on an analyst taking the correct action after an outlier has been

detected. Further work is needed to analyse the impact of the necessarily imperfect

actions that analysts in a real system will take.



Appendix A

Appendix: Identifying and

responding to outlier demand in

revenue management

A.1 Technical Description of Methodologies

A.1.1 Outlier Detection Approaches

Let N be the number of booking patterns. We observe the cumulative number of

bookings for each booking pattern at T time points over a booking horizon of length

tT : t1, . . . , tτ , . . . , tT . Note that t1, . . . , tτ , . . . , tT do not necessarily need to be equally

spaced. Then yn(tτ ) is a time series of bookings for pattern n, up to time tτ : yn(tτ ) =

(yn(t1), yn(t2), . . . , yn(tτ )).
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Nonparametric Percentiles

Let y(tτ ) = (y1(tτ ), . . . , yN(tτ )) be the cumulative number of bookings for patterns

1, . . . , N at time tτ . Find the lower and upper (2.5% and 97.5%) percentiles of the

ordered sample, L and U . For any booking pattern n, if the number of bookings at

time tτ , yn(tτ ) is less than L or greater than U , it is defined as an outlier at time tτ .

Note that an alternative (parametric) approach would be to fit a distribution to the

data and use the lower and upper percentiles of the fitted distribution.

Tolerance Intervals

For Y (tτ )1, . . . , Y (tτ )n, a random sample from a population with distribution

F (Y (tτ )), if:

P (F (U(tτ ))− F (L(tτ )) > β) = 1− α, (A.1.1)

then the interval (L(tτ ), U(tτ )) is called a (β, 1− α) two-sided tolerance interval (Hahn

and Chandra, 1981). At each booking interval, a tolerance interval for the number

of bookings until that point in time, can be defined. If the number of bookings lies

outside of this tolerance interval, the booking pattern can be deemed an outlier.

• Nonparametric Tolerance Intervals: Let Y (tτ )(1), . . . , Y (tτ )(n) be the or-

dered observations of the sample Y (tτ )1, . . . , Y (tτ )n. Wilks (1941) details that

a (β, 1− α) tolerance interval can be calculated as follows:

1. Let B ∼ Binomial(n, β), then let k be the smallest integer such that:

P (B ≤ k − 1) ≥ 1− α (A.1.2)
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2. Letting k = s − r, where 1 ≤ r < s ≤ n, then
(
Y (tτ )(r), Y (tτ )(s)

)
is a

tolerance interval, for any such r and s. It is common to choose:

r =

⌊
n− k + 1

2

⌋
, (A.1.3)

then s = k + r i.e. s = n− r + 1.

• Parametric Tolerance Intervals: Given the discrete, count nature of the

data, an obvious first choice for the number of bookings at time tτ , is a Poisson

distribution. Supposing y(tτ ) is the observed value of a random variable Y (tτ )

which has a Poisson distribution, Po(nλ), a (β, 1− α) tolerance interval based

on y(tτ ) is constructed in two steps, as described by Hahn and Chandra (1981):

1. Calculate a two-sided (1− α)-level confidence interval, (l(tτ ), u(tτ )) for λ,

such as:

(l(tτ ), u(tτ )) =

(
χ2
(α/2;2y(tτ ))

2n
,
χ2
(1−α/2;2y(tτ )+2)

2n

)
(A.1.4)

2. Find the minimum number U(tτ ), and the maximum number L(tτ ) such

that:

P (Y (tτ ) < U(tτ )|λ = u(tτ )) ≥
1 + β

2
(A.1.5)

and P (Y (tτ ) > L(tτ )|λ = l(tτ )) ≥
1 + β

2
. (A.1.6)

Given the desire for a general method, the presence of differing mean-variance

relationships between fare classes and over time, suggests that assuming a Pois-

son distribution may not be appropriate, given the fixed (equal) mean-variance

relationship of this distribution. Alternative distributions which could be tested
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include the Negative Binomial, which has two parameters for mean and vari-

ance (although only allows the variance to be larger than the mean), or the

Generalised Poisson distribution, which has an additional parameter allowing

the variance to change.

Robust Z-Score

Let yn(tτ ) be the cumulative number of bookings for flight n at time tτ . The robust

Z-score can be calculated as (Iglewicz and Hoaglin, 1993):

Z̃n =
0.6745 (yn(tτ )− ỹ(tτ ))

MAD(tτ )
, (A.1.7)

where ỹ(tτ ) is the median number of bookings at time tτ across all booking patterns,

and the Median Absolute Deviation at time tτ , (MAD(tτ )), is given by:

MAD(tτ ) = median {|yn(tτ )− ỹ(tτ )|} (A.1.8)

A booking pattern, n, can be classified as an outlier at time tτ , if the number of

bookings at time tτ , yn(tτ ), has a modified Z-score with magnitude above 3.5, as

described by Iglewicz and Hoaglin (1993).

Distance

Given that a time series of length τ can be thought of as a point in a τ -dimensional

space, the distance between two time series can be calculated and used as a mea-

sure of the difference between them. In particular, for a time series yn(tτ ) =

(yn(t1), yn(t2), . . . , yn(tτ )), we define:

Dn(tτ ) =
1

N − 1

N∑
m=1

D(yn(tτ ),ym(tτ )) (A.1.9)
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where D(yn(tτ ),ym(tτ )) is the distance between two booking patterns, n and m, up

to time tτ , and N is the total number of booking patterns being considered. Here the

distance-based outlier score is given as the mean distance of a point to its k-nearest

neighbours, and we set k = N − 1, all other points. Hence, for some given threshold,

all booking patterns whose mean distance is larger than the threshold can be marked

as an outlier. Booking pattern n can be defined as an outlier, at time tτ , if:

Dn(tτ ) ≥ µd + 3σd (A.1.10)

where µd is the mean of the mean distances, and σd the standard deviation. We

consider both Euclidean and Manhattan distance metrics:

• Euclidean:

DE(yn(tτ ),ym(tτ )) =

(
τ∑
u=1

(yn(tu)− ym(tu))
2

) 1
2

(A.1.11)

• Manhattan:

DM(yn(tτ ),ym(tτ )) =
τ∑
u=1

|yn(tu)− ym(tu)| (A.1.12)

K-Means Clustering

It should be noted that clustering algorithms, such as K-means clustering, are opti-

mised to determine clusters instead of outliers meaning that the success of the outlier

detection relies on an algorithm’s ability to accurately determine the structure of the

clusters. The distance threshold at which a point is classified as an outlier also needs

to be specified. Deb and Dey (2017) describe a global threshold distance, at which

point those observations which are further away from their cluster centre are classed
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Figure A.1.1: Choosing K

as outliers, as being half the sum of the maximum and minimum distances. The

procedure for identifying booking patterns observed up to time tτ as outliers is as

follows:

1. Choose K, the number of clusters.

2. Randomly assign K booking patterns to be the initial cluster centres.

3. Calculate the τ -dimensional distance (Euclidean or Manhattan) from each book-

ing pattern in the data set to each cluster centre, and assign each booking

pattern to the cluster centre from which it is the smallest distance.

4. Recalculate the centre of each cluster based on the booking patterns assigned

to it.

5. Repeat steps (3) and (4) until the assignment of booking patterns to clusters

no longer changes.
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Figure A.1.2: Distribution of Genuine Outliers Across Clusters

K-means clustering relies on specifying the number of clusters in advance. The

optimal number of clusters should seek to minimise the within cluster sum of squares

without overfitting. Choosing k is a difficult problem as it requires fitting k-means

with multiple values of k and choosing the best one. Figure A.1.1a demonstrates the

within cluster sum of squares for multiple values of k, where the optimal number of

clusters is chosen as the elbow of the plot, k = 2. To investigate the impact that

the choice of K has on the outlier detection performance, we compare the balanced

classification for K = 1, 2, and 3. These results are shown in Figure A.1.1b. There is

little difference between the different values of K, suggesting that the choice of K is

not what drives the poor performance of K-means clustering.

It may be surprising that the optimal number of clusters is chosen as 2 rather than

1, given that the regular demand is generated from a single distribution. It raises the

question of whether the algorithm is clustering the booking patterns into regular and
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outlying patterns. This would mean that it would fail to detect the outlying booking

patterns as they have their own cluster and so distance to their cluster centre is small.

However, upon investigation of the distribution of outlying booking patterns across

clusters (shown in Figure A.1.2), it was found not to be the case. It is possible that

the booking limits introduce some element of bi-modality.

Multivariate Functional Halfspace Depth

The general procedure for detecting outliers at time τ using functional depth, as

described by Febrero et al. (2008) and Hubert et al. (2015), is as follows:

1. Define Dn(yn(tτ )) to be the functional depth of the yn(tτ ) =

(yn(t1), yn(t2), . . . , yn(tτ )), booking pattern n at time tτ .

2. Define a threshold, C, for the functional depth.

3. Those booking patterns with functional depths, Dn(yn(tτ )), below the threshold

are classified as outliers, delete them from the sample.

4. Recalculate functional depths on the new sample, and remove further outliers.

Repeat until no more outliers are found.

As described by Febrero et al. (2008), the threshold, C, is ideally chosen such that:

P(Dn(yn(tτ )) ≤ C) = 0.01, n = 1, . . . , N, (A.1.13)

when there are no genuine outliers present in the sample. However, this would require

knowing the distribution of functional depths when there are no outliers. Febrero et al.

(2008) discuss two bootstrapping-based procedures for estimating C. The general
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idea of the bootstrapping method used in this chapter, as described by Febrero et al.

(2008), is to (i) resample the booking patterns, with probability proportional to their

functional depths (such that any outlying patterns are less likely to be resampled),

(ii) smooth the bootstrap samples, then (iii) set C as the median value of the 1%

percentiles of the empirical distributions of the depths of the bootstrapped samples.

More specifically:

1. Calculate the functional depths for each booking pattern,

Dn(y1(tτ )), . . . ,Dn(yn(tτ )).

2. Resample the original booking patterns to obtain B bootstrap samples, where

each booking pattern is sampled with probability proportional to its functional

depth. Denote the nth booking curve in the bth bootstrap sample as xbn.

3. Smooth the bootstrap samples to obtain sbn = xbn + zbn, where zbn =

(zn(t1), zn(t2), . . . , zn(tτ )) is normally distributed with mean 0 and covariance

matrix γΣ. γ is a smoothing parameter, and Σ is the covariance matrix of the

original sample.

4. Calculate the functional depths for the resampled booking patterns in each of

the smoothed bootstrap samples. Let Cb be the empirical 1st percentile of the

distribution of these depths for the bth sample.

5. Choose the threshold C as the median of the values of Cb, for b = 1, . . . , B.

For full details, see Febrero et al. (2008).
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In this chapter, we restrict our attention to halfspace depth. In the case of one-

dimensional random variables, the halfspace depth of a point yn with respect to a

sample y1, . . . , yN drawn from distribution F is:

HD(yn) = min {FN(yn), 1− FN(yn)} (A.1.14)

where FN is the empirical cumulative distribution of the sample y1, . . . , yN (Febrero

et al., 2008). This definition has been extended to the functional data setting, see Hu-

bert et al. (2012) and Claeskens et al. (2014). Let yn(tτ ) = (yn(t1), yn(t2), . . . , yn(tτ ))

be booking pattern n up to time tτ , where n = 1, . . . , N , and each yn(ti) is a K-

variate vector. In the functional setting, the multivariate functional halfspace depth

of a pattern yn(tτ ) = (yn(t1), yn(t2), . . . , yn(tτ )) is given by:

MFHDN,τ (yn(tτ );α) =
τ∑
j=1

wα,N(tj)HDN,j(yn(tj)) (A.1.15)

where, using tτ+1 = tτ +0.5(tτ − tτ−1), the weights, wα,N(tj), are, according to Hubert

et al. (2012):

wα,N(tj) =
(tj+1 − tj)vol

[{
x ∈ Rk : HDN,j(x) ≥ α

}]∑τ
j=1(tj+1 − tj)vol [{x ∈ Rk : HDN,j(x) ≥ α}]

(A.1.16)

and the sample halfspace depth of a K-variate vector x at time tj is given by (Hubert

et al., 2012):

HDN,j(x) =
1

N
min

u,||u||=1
#
{
yn(tj), n = 1, . . . , N : uTyn(tj) ≥ uTx

}
(A.1.17)

In this chapter, we are considering a univariate, K = 1, functional halfspace depth

since we choose to monitor booking patterns only. However, the definition of a mul-

tivariate functional halfspace depth opens up the possibility of jointly monitoring
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booking patterns and revenue patterns, for example. As described by Hubert et al.

(2012), computing the multivariate functional halfspace depth can be done with fast

algorithms, and in this chapter we use the R-package mrfDepth to do so.

A.1.2 Univariate forecasting techniques for extrapolation

Although an important element of a revenue management system is forecasting, there

are multiple reasons why we create new forecasts to extrapolate rather than using the

existing ones generated by the RM system. Three particular reasons are (i) depending

on the optimisation routine used to set booking limits, forecasts of how demand builds

up over time may not have been calculated. Some methods only require forecasts of

final demand, and so the type of forecasts we wish to use for extrapolation may

not exist. (ii) In the event that forecasts of how demand builds up over time do

exist, historical forecasts may not be stored. In terms of identifying critical booking

patterns in historical data, this also means the forecasts used for extrapolation are not

available. (iii) Forecasts for how demand accumulates over time are typically based

on data from similar historical booking patterns. The use of data from other booking

patterns to extrapolate has the potential to mask outliers by normalising behaviour.

Hence, at each time point we wish to create a forecast based solely on the data for

an individual booking pattern, with the goal not being to accurately predict demand,

but rather to amplify the differences between booking patterns.
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Simple Exponential Smoothing (SES)

SES works on the principle of averaging whilst down-weighting older observa-

tions. Further details can be found in Chatfield (1975). Given a time series

yn(t1), yn(t2), . . . , yn(tτ ), a forecast for time tτ+1, ŷn(tτ+1) is given by:

ŷn(tτ+1) = αyn(tτ ) + (1− α)ŷn(tτ ), (A.1.18)

for some smoothing constant, α. Note that this results in a constant forecast for the

bookings from time tτ+1, . . . , tT . Due to the inability of SES to cope with trend, we

apply SES to the time series of demand per booking interval, rather than the time

series of cumulative demand.

Autoregressive Integrated Moving Average (ARIMA)

ARIMA models incorporate a trend component, and assume that future observations

are an additive, weighted combination of previous observations and previous errors.

Let xn(tτ ) be the dth differenced time series relating to yn(tτ ). See Box and Jenkins

(1970) for an overview of differencing procedures, and Chatfield (1975) for a descrip-

tion of ARIMA processes. The one-step ahead forecast x̂n(tτ+1) is given by:

x̂n(tτ+1) = µ+ φ1xn(tτ ) + . . .+ φpxn(tτ−p+1)− θ1ε(tτ )− . . .− θqε(tτ−q+1) (A.1.19)

for some constant mean µ, parameters φ1, . . . , φp, θ1, . . . , θq and white noise process(
εtj
)
. We use AIC and Dickey-Fuller tests, in combination with visual inspection,

to select the orders p, q, and d. See Box and Jenkins (1970), and the R package

forecast.



APPENDIX A. APPENDIX 156

Integrated Generalised Autoregressive Conditional Heteroskedasticity

(IGARCH)

IGARCH models incorporate a trend component and assume that the variance struc-

ture follows an autoregressive moving average model. Again, let xn(tτ ) be the dth

differenced time series relating to yn(tτ ). See Tsay (2002) for further details on

IGARCH processes. IGARCH(1,d,1) models assume the following structure:

xn(tτ+1) = µ+ εn(tτ+1) (A.1.20)

εn(tτ+1) = zn(tτ+1)σn(tτ+1) (A.1.21)

σ2
n(tτ+1) = w + αε2n(tτ+1) + βσ2

n(tτ ) (A.1.22)

We assume that the order of the IGARCH model is (1, d, 1) to reduce computational

time.

A.2 Details of Simulation-based Framework

A.2.1 Forecasts

In terms of choosing the number of replications of the simulation, NS, to use in the

calculations of the forecasts, we consider the standard errors of the estimates. The

standard error of the mean is given by:

se(µ̂j) =
σ̂j√
NS

, (A.2.1)
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Fare Class Fare (e) fD = 0.9 fD = 1.2 fD = 1.5

j rj µ̂j σ̂j
2 µ̂j σ̂j

2 µ̂j σ̂j
2

1 A 400 31.9 23.0 46.2 25.3 52.7 32.2

2 O 300 17.5 14.2 24.2 18.8 28.3 30.5

3 J 280 20.0 14.2 28.6 25.5 33.6 31.8

4 P 240 16.8 16.1 22.9 26.6 26.1 23.8

5 R 200 13.4 11.5 18.5 16.5 21.6 18.8

6 S 185 12.3 14.3 16.9 11.2 21.0 21.1

7 M 175 52.6 19.2 69.8 28.2 81.8 33.8

Table A.2.1: Forecasts of mean and variance of demand for each fare class

such that it is typically in the range of 0.3 - 0.6 when NS = 100. The standard error

of the variance is given by:

se(σ̂2
j ) = σ̂2

j

√
2

NS − 1
, (A.2.2)

and is typically in the range of 2 - 5 when NS = 100. Therefore the number of

simulations provides reasonable estimates of the demand mean and variance forecasts

for each fare class.
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A.2.2 Optimisation Heuristics to Compute Booking Limits

Expected Marginal Seat Revenue-b (EMSRb)

It is assumed that demand for each fare class, di, is independent and normally dis-

tributed:

di ∼ N
(
µi, σ

2
i

)
, (A.2.3)

where µi and σ2
i are forecasted as described above. The protection level for fare class

j is given by (Belobaba, 1992):

PLj = F−1j

(
1− rj+1

r̃j

)
for j = 1, . . . , |J | − 1 (A.2.4)

where Fj is the (Gaussian) distribution of demand for fare class j, and rj is the fare

in fare class j. r̃j is the weighted-average revenue from classes 1, . . . , j:

r̃j =

∑j
k=1 rkµk∑j
k=1 µk

. (A.2.5)

Note that the protection level for all fare classes, PL|J |, is simply equal to the capacity,

C. As stated by Talluri and Van Ryzin (2004), Equation (A.2.4) becomes:

PLj = µ+ Φ−1
(

1− rj+1

r̃j

)
σ for j = 1, . . . , |J | − 1, (A.2.6)

where µ =
∑j

k=1 µk is the mean, and σ2 =
∑j

k=1 σ
2
k is the variance, of the aggregated

demand. Hence, the booking limit for class j is given by the capacity minus the

protection level for classes j − 1 and higher:

BLj = C − PLj−1. (A.2.7)
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Expected Marginal Seat Revenue-b with Marginal Revenue Transforma-

tion (EMSRb-MR)

The following marginal revenue transformation, described by Fiig et al. (2010), as-

sumes that customers only buy the lowest available fare, even if they would be willing

to pay more. In this setting, letting k be the lowest available fare product, the demand

for all other fare products becomes zero:

µj = 0 ∀j 6= k. (A.2.8)

Therefore the adjusted demand for fare class j becomes:

µ
′

j = µj − µj−1. (A.2.9)

The adjusted fares are given by:

r
′

j =
rjµj − rj−1µj−1
µj − µj−1

. (A.2.10)

An alternative method of calculating adjusted fares without explicitly forecasting

demand for each fare class is to assume that:

µj = µnpsupj, (A.2.11)

the demand for a particular fare class is the baseline demand for the lowest fare class,

µn, multiplied by a sell-up probability, psupj. In practice, these sell-up probabilities

can be forecasted instead of the fare class demand assuming an independent model. In

our case, due to comparing EMSRb with EMSRb-MR, we have the fare class forecasts

already. The two methods are equivalent.

The booking controls under EMSRb and EMSRb-MR are shown in Table A.2.2,

where the demand factor, fD, is defined as the ratio of demand, D, to capacity, C.
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Fare Class fD = 0.9 fD = 1.2 fD = 1.5

EMSRb EMSRb-MR EMSRb EMSRb-MR EMSRb EMSRb-MR

A 200 200 200 200 200 200

O 171 165 157 151 151 144

J 155 155 134 134 125 125

P 134 125 105 95 90 79

R 117 109 81 72 62 52

S 104 109 62 72 39 52

M 91 96 45 51 18 24

Table A.2.2: Booking limits under EMSRb and EMSRb-MR

A.3 Additional Results

A.3.1 Comparison of Booking Limit Heuristics

Table A.3.1 shows the resulting revenue under EMSRb and EMSRb-MR booking lim-

its with different demand factors, as compared to accepting bookings on a first-come-

first-served basis (FCFS). Both heuristics offer an improvement over FCFS. Given

the presence of buy-down in the demand model, EMSRb-MR outperforms EMSRb,

particularly in situations that feature a high demand-to-capacity ratio. Given the
significant impact of heuristic choice on revenue, we investigate whether the superior

performance of EMSRb-MR also results in a change in outlier detection performance.

Figure A.3.1 shows the balanced classification rate of functional depth with ARIMA

extrapolation outlier detection, under EMSRb and EMSRb-MR heuristics. There is



APPENDIX A. APPENDIX 161

O
p
ti

m
is

a
ti

o
n

M
a
g
n
it

u
d
e

o
f

O
u
tl

ie
rs

F
re

q
u
e
n
cy

o
f

O
u
tl

ie
rs

N
o
n

p
a
ra

m
et

ri
c

P
er

ce
n
ti

le
s

N
on

p
ar

a
m

et
ri

c

T
ol

er
an

ce
In

te
rv

al
s

P
oi

ss
on

T
ol

er
an

ce

In
te

rv
al

s
R

ob
u

st

Z
-S

co
re

E
u

cl
id

ea
n

D
is

ta
n

ce
M

an
h

at
ta

n

D
is

ta
n

ce
k
-M

ea
n

s
C

lu
st

er
in

g

(E
u

cl
id

ea
n

)
k
-M

ea
n

s
C

lu
st

er
in

g

(M
an

h
at

ta
n

)
F

u
n

ct
io

n
a
l

D
ep

th
F

u
n

ct
io

n
a
l

D
ep

th

+
S

E
S

F
u

n
ct

io
n

a
l

D
ep

th

+
A

R
IM

A
F

u
n

ct
io

n
a
l

D
ep

th

+
IG

A
R

C
H

E
M

S
R

b

-25%

1% 0.73 0.68 0.94 0.93

5% 0.69 0.63 0.74 0.50 0.69 0.68 0.67 0.68 0.93 0.94 0.94 0.93

10% 0.70 0.66 0.93 0.93

-12.5%

1% 0.55 0.58 0.93 0.95

5% 0.56 0.55 0.56 0.50 0.56 0.55 0.57 0.57 0.92 0.92 0.93 0.93

10% 0.54 0.56 0.93 0.93

+12.5%

1% 0.53 0.59 0.92 0.93

5% 0.56 0.55 0.53 0.51 0.53 0.53 0.58 0.56 0.93 0.92 0.93 0.93

10% 0.51 0.59 0.92 0.92

+25%

1% 0.59 0.65 0.94 0.92

5% 0.65 0.60 0.62 0.54 0.61 0.61 0.69 0.68 0.92 0.93 0.94 0.94

10% 0.60 0.68 0.92 0.93

E
M

S
R

b
-M

R

-25%

1% 0.73 0.65 0.92 0.92

5% 0.68 0.62 0.77 0.50 0.68 0.68 0.66 0.67 0.92 0.93 0.93 0.92

10% 0.71 0.67 0.91 0.92

-12.5%

1% 0.55 0.57 0.92 0.92

5% 0.56 0.54 0.57 0.50 0.55 0.55 0.57 0.56 0.93 0.93 0.93 0.92

10% 0.59 0.60 0.93 0.92

+12.5%

1% 0.51 0.56 0.93 0.93

5% 0.56 0.55 0.54 0.51 0.53 0.53 0.57 0.55 0.92 0.93 0.93 0.92

10% 0.51 0.59 0.93 0.92

+25%

1% 0.63 0.68 0.94 0.93

5% 0.66 0.61 0.65 0.54 0.62 0.62 0.69 0.69 0.92 0.93 0.94 0.92

10% 0.61 0.70 0.93 0.92

Table A.2.3: Balanced classification rate (offline) results for extended simulation study
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Demand Factor FCFS Revenue (e)
EMSRb as

Factor of FCFS

EMSRb-MR as

Factor of FCFS

0.90 28948.50 1.03 1.06

1.20 34835.50 1.04 1.08

1.50 35000.00 1.05 1.09

Table A.3.1: Revenue generated under EMSRb vs EMSRb-MR booking controls

no significant impact on outlier detection performance.
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Figure A.3.1: EMSRb vs. EMSRb-MR under functional depth with ARIMA extrap-

olation
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A.3.2 Sensitivity to Frequency of Outliers

We test the sensitivity of the functional depth (with and without extrapolation) to

the different frequencies of outliers i.e. the proportion of booking patterns considered

which are genuine outliers. There is no significant change in performance as the

frequency of outliers changes, shown in Figure A.3.2. This consistent performance of

the functional depth-based methods is down to the fact that it does not classify a

specific proportion of the data as outlying. Given this, our simulation study considers

the case where 5% of the N = 500 booking patterns are genuine outliers.
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Figure A.3.2: Balanced Classification Rate under different frequencies of outliers for

functional depth with ARIMA extrapolation
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A.3.3 K-means clustering with ARIMA extrapolation
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Figure A.3.3: Balanced Classification Rate for K-means clustering with ARIMA ex-

trapolation for 5% outlier frequency over different magnitudes of demand outliers

As noted in Section 2.4, extrapolation could also be used with the multivariate

outlier detection approaches. Although in this chapter we have chosen to focus on

combining the extrapolation with the most promising outlier detection method (func-

tional depth), we also present results here (see Figure A.3.3) on combining extrap-

olation with K-means clustering. As when combining extrapolation with functional

depth (see Appendix C.6), the extrapolation increases the number of booking pat-
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terns classified as outliers. Extrapolation does provide an improvement in outlier

detection performance, though the increase in performance is smaller in comparison

when combined with functional depth. This is unsurprising given the poor perfor-

mance of K-means clustering even when the curves are fully observed. The overall

performance is still not as good as combining extrapolation with functional depth (or

even functional depth without extrapolation).

A.3.4 Motivating the Use of Functional Analysis

Importance of Time-Ordered Observations
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Figure A.3.4: Comparison of correct time-ordering vs. random time-ordering

To stress the importance of the time-ordering of the observations, we benchmark
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K-means and functional depth on two cases where (i) the observations per pattern are

correctly ordered, and (ii) the observations are shuffled randomly. As shown in Figure

A.3.4, the performance of K-means clustering is independent of this change, as the

observations stay the same and only their order, which K-means does not consider,

changes. However, Figure A.3.4 shows that the performance of functional depth

improves when the data is ordered, as this method can exploit this characteristic of

the booking patterns. In other words, if the booking patterns were not time-ordered,

multivariate approaches could indeed outperform functional depth. However, this

temporal dependency does exist and motivates our use of functional analysis.

Dealing with High Dimensionality

The ROC analysis in Section 2.6.2 shows that the performance of K-means clustering

becomes poorer as the dimensionality increases. The use of principal component

analysis (PCA) was considered as a method to reduce the dimensionality for both

distance measures and K-means clustering approaches. However, preliminary results

were poor. When selecting the principal components to maximise the proportion of

variance explained, it was deemed best to chose the time points early in the booking

horizon. This is due to the censoring caused by the booking controls, i.e. when no

booking limits have yet been reached, demand is more varied. This means that if

we choose the principal components which best explain the variance, we no longer

take into account the newest information. As such, detection accuracy was inferior to

using the full vector of bookings, despite the dimensionality issue.
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A.3.5 True Positive Rates
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(d) TPR for functional depth
with ARIMA extrapolation

Figure A.3.5: True positive rates for various outlier detection methods
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A.3.6 False Positive Rates
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Figure A.3.6: False positive rates for various outlier detection methods
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We suggest that early in the booking horizon, all methods perform poorly but for

different reasons – some suffer from low true positive rates, others from high false

positive rates. The balanced classification rate (BCR) does not allow us to easily

compare these two situations. In order to test this hypothesis, and investigate the

spike in false positives early in the booking horizon when incorporating extrapola-

tion, we additionally consider the Positive Likelihood Ratio (LR+) (Habibzadeh and

Habibzadeh, 2019). That is, the ratio between the true positive rate, and the false

positive rate:

LR+ =
TP/(TP + FN)

FP/(FP + TN)
(A.3.1)

A higher LR+ (specifically those greater than 1), represents the fact that a booking

pattern classified as an outlier is more likely to be a genuine outlier.
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Figure A.3.7: Positive likelihood ratio for functional depth with and without ARIMA

extrapolation

The results, shown in Figure A.3.7, show that functional depth both with and
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without extrapolation performs poorly early in the horizon – with a LR+ just slightly

above 1. Due to the high false positive rate, functional depth without extrapolation

may even be marginally better early in the horizon. However, outlier detection with

the inclusion of extrapolation reaches its peak LR+ around 16 intervals before depar-

ture, compared to 9 intervals for functional depth alone. This peak in functional depth

with ARIMA extrapolation corresponds to both the sharp increase in true positives

(Figure A.3.5), and sharp drop-off in false positives (Figure A.3.6). A similar impact

was observed when K-means clustering was combined with extrapolation, that is, the

number of booking patterns classified as outliers increased. These results, in addition

with the ROC curves shown in Section 2.6.2, show that, on balance, it is still beneficial

to include extrapolation into the outlier detection, especially in the middle portion

of the booking horizon. However, classification results from all methods should be

treated with caution very early in the booking horizon for the reasons outlined.

Given the superior performance across a range of thresholds (evidence by the

ROC curves in Section 2.6.2), of functional depth with extrapolation, we consider

whether using the same parameters to calculate the threshold across the booking

horizon (following those implemented by Febrero et al. (2008)) is the best approach.

We compare the percentage of booking patterns classified as outliers by functional

depth with and without extrapolation (Figure A.3.8a). In addition, Figure A.3.8b

the variance, across the booking horizon, of the ARIMA extrapolation at time tT .

We see that there is a relationship between the variance of the ARIMA extrapolation

the number of patterns classified as outliers, and therefore the false positives. It

may perhaps be possible to vary the threshold parameters according to the functional
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Figure A.3.8: Variance of ARIMA extrapolation for bookings at departure

variance, as it changes across the booking horizon with extrapolation. We see this as

an opportunity for further work.

In practice, companies have a limited number of analysts to respond to outlier

detection-based alerts. Hence, the threshold would likely be left variable. That is, if

an analyst is receiving too many alerts (caused by the high false positive rate), they

can reduce the threshold. In this case, given the results from the consideration of the

ROC curves (Section 2.6.2) where the threshold changes, extrapolation would still be

preferred.
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A.3.7 Effect of Magnitudes of Outliers
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(a) BCR of functional depth
with ARIMA extrapolation over a

range of (negative) outlier magnitudes
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(b) BCR of functional depth
with ARIMA extrapolation over a
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Figure A.3.9: Effects of magnitude of demand outliers on functional depth with

ARIMA extrapolation outlier detection
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A.3.8 Relationship between extrapolation accuracy and out-

lier detection improvement
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Figure A.3.10: RMSE of different extrapolation methods

To investigate the relationship between the accuracy of the extrapolation and the

improvement in outlier detection from an extrapolation method, we computed the

average root mean square error (RMSE) of each of the extrapolation methods across

the booking horizon – see Figure A.3.10. The RMSE of each individual method means

little on its own. As we have increased data available to input to our forecast and are

forecasting fewer steps ahead, it is of little surprise that the RMSE decreases over time.

However, from the comparison of the RMSE of the different extrapolation methods,

we gain some insight into the performance of the outlier detection when using that

method. Generally, ARIMA forecasts have the lower RMSE of the methods, and
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also provide the largest gain in performance overall when used as the extrapolation

method. The exception to this is the IGARCH model where the RMSE has a slight

increase in the later part of the booking horizon. This is most likely due to the fact

that we have fixed the order of the IGARCH model to be (1,d,1) for computational

reasons and are therefore imposing a variance structure in the forecast that does not

exist in the data. It is interesting to note that despite the poorer performance of

the IGARCH forecast, it still provides a reasonable improvement in outlier detection

performance as an extrapolation method.

A.3.9 Comparison of Methods for Hindsight Detection of

Demand-volume Outliers
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Figure A.3.11: Comparison of hindsight outlier detection under different magnitudes

of demand outliers with 5% outlier frequency
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For hindsight detection performance, we rely on the BCR averaged across all book-

ing intervals. As shown in Figure A.3.11, hindsight detection performance typically

increases as the complexity of the outlier detection method increases across all cate-

gories of outliers tested. These results are consistent with those for foresight detection.

Figure A.3.11 shows that including the extrapolation step induces only a small im-

provement in hindsight detection performance. However, outliers are detected early

in the horizon, meaning any actions taken as a result of their identification will have

a significant positive impact in terms of revenue overall, both within and beyond the

booking horizon.

Within the revenue management process, identifying outliers and adjusting con-

trols as early as possible provides the most benefit. Nevertheless, even detecting

outliers in hindsight promises some advantages over not identifying them at all.

A.3.10 Additional Analysis of Railway Booking Patterns

Here, we compare the simulated booking patterns with those from the railway com-

pany. Note that both the railway and simulated booking patterns in Figure A.3.12

have been rescaled to be between 0 and 1. Therefore, although it may appear that

the variance of the railway booking patterns is much higher than that of the simu-

lated patterns, it is not necessarily significant (given the rescaling only transforms the

mean, not the variance of the booking patterns). The main takeaway from Figure

A.3.12 is the similar shape of the booking patterns – starting with a steep increase,

followed by a slight flattening out, then another increase.

In order to compare the simulated booking patterns with the railway booking
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Figure A.3.12: Railway vs simulated booking patterns

patterns, we analyse the relationship between the mean and standard deviation of

bookings across the horizon. Figure A.3.13a shows the standard deviation divided

by the mean number of bookings in the railway booking data, and Figure A.3.13b

analogously for the simulated booking patterns. The two figures show a similar shape

– higher at the start of the horizon, then quickly flattening out. The values of the

standard deviation / mean are also of a similar magnitude.

As discussed in Section 2.6.4, we compare booking patterns for different days of

the week by applying pairwise functional ANOVA tests (Cuevas et al., 2004). We test

the null hypothesis that, for two different days m and n, their mean functions are

equal:

H0 : µm(t) = µn(t), vs. HA : µm(t) 6= µn(t), (A.3.2)

The p-values are shown in Table A.3.2. The only non-significant p-values are for

comparison between Monday-Wednesday and Friday-Saturday. However, the p-values
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Figure A.3.13: Standard deviation / Mean of railway vs simulated booking patterns

are not overly convincing, especially when considering multiple testing issues, so we

choose to model each departure day separately. A similar comparison can be made

between booking patterns which are affected by the shortened booking horizons (see

Figure A.3.14a), and those of standard length. In that test, all of the p-values were

0.

We account for both the shortened booking horizons and the effect of different

departure days through fitting a functional regression model, as per Equation (12).

Figure A.3.14b shows the regression curves for each day of the week (without shortened

booking horizon effects). The functional regression model works by fitting a linear

regression at each time point. That is a different value of at each booking interval.

In order to make the βj(t) smooth functions, we penalise the integrated square error

such that we seek to minimise (Ramsay et al., 2009):

n∑
i=1

∫
(yi(t)− ŷi(t))2dt+

7∑
j=0

λj

∫
[Ljβj]

2dt, (A.3.3)
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Mon Tue Wed Thu Fri Sat Sun

Mon

Tue 0.001

Wed 0.093 0.000

Thu 0.000 0.000 0.000

Fri 0.000 0.000 0.000 0.000

Sat 0.000 0.000 0.000 0.000 0.122

Sun 0.000 0.000 0.000 0.001 0.000 0.000

Table A.3.2: p-values for functional ANOVA test
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Figure A.3.14: Functional regression to homogenise booking patterns

where

ŷi(t) = β0(t) + β1(t)IMondayi + β2(t)ITuesdayi + β3(t)IWednesdayi+

β4(t)IThursdayi + β5(t)IFridayi + β6(t)ISaturdayi + β7(t)IShorter Horizoni .

(A.3.4)
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and lambdaj a non-negative real number controlling the amount of smoothing, and

Lj is either a non-negative integer or a linear differential operator object. Due to the

relatively short nature of the booking patterns (18 observations), for this data set we

use a smoothing parameter of λj = 0∀j.



Appendix B

Appendix: Detecting outlying

demand in multi-leg bookings for

transportation networks

B.1 Additional details of method

Appendix B.1 provides additional details on the proposed method described in Section

3.2, including the specifics of the correlation-based minimum spanning tree clustering,

and the calculation of the functional depths.

B.1.1 Functional dynamical correlation

Let yn,ij(t) be the total observed bookings for the nth departure on leg ij up to booking

interval t, and similarly for yn,jk(t). The functional dynamical correlation between the

180
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booking patterns yn,ij(t) and yn,jk(t) is:

ρn(ij, jk) = E〈y∗n,ij(t), y∗n,jk(t)〉. (B.1.1)

where

〈y∗n,ij(t), y∗n,jk(t)〉 =

∫
y∗n,ij(t)y

∗
n,jk(t)w(t)dt, (B.1.2)

and w(t) is a weight function that accounts for the time gap between observations.

Here, y∗n,ij(t) is a standardised version of yn,ij(t):

y∗n,ij(t) =
yn,ij(t)−Mij − µij(t)[∫

{yn,ij(t)−Mij − µij(t)}2w(t)dt
]1/2 , (B.1.3)

where µij(t) is a mean function, and:

Mij = 〈yn,ij(t), 1〉. (B.1.4)

The functional dynamical correlation is then the average across all N departures:

ρ(ij, jk) =
1

N

N∑
n=1

ρn(ij, jk). (B.1.5)

B.1.2 Prim’s algorithm

Prim’s algorithm is a greedy algorithm with the following basic steps. Assuming the

original graph G has V (G) vertices.

• Initialise the MST, T , with the edge with minimum weight and the two vertices

it connects. Let V (T ) be the number of edges in T .

• While V (T ) < V (G):
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– go through the remaining edges in G in order from smallest to largest

weights, until one is found that is connected to T , but does not form a

circuit (i.e. the edge does not form a loop such that T is no longer a tree).

– Add this edge (and the vertices it connects) to T .

More computationally efficient algorithms exist but given the reasonable size of the

graphs considered, and more specifically their sparsity (very few stations are adjacent),

computational time is reasonable using Prim’s algorithm.

B.1.3 Functional depth

The functional halfspace depth is given by:

dnl(ynl ∈ Yl;α) =
T∑
j=1

wα(tj)HDj(ynl(tj)), (B.1.6)

where, using tτ+1 = tτ + 0.5(tτ − tτ−1), the weights wα(tj) are, according to Hubert

et al. (2012):

wα(tj) =
(tj+1 − tj)vol

[{
x ∈ Rk : HDj(x) ≥ α

}]∑T
j=1(tj+1 − tj)vol [{x ∈ Rk : HDj(x) ≥ α}]

, (B.1.7)

where α ∈ (0, 0.5], with a default value of α = 1/T . The sample halfspace depth of a

K-variate vector x at time tj is given by (Hubert et al., 2012):

HDj(ynl(tj)) =
1

N
min

u,||u||=1
#
{
ynl(tj), n = 1, . . . , N : uTynl(tj) ≥ uTx

}
(B.1.8)
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B.1.4 Normalised Mutual Information

For a graph containing M legs, the mutual information between two clusterings A

and B of the M nodes in the inverted graph is defined as:

I(A,B) =

|A|∑
a=1

|B|∑
b=1

|A ∩ B|
M

log

(
|A ∩ B| M

MaMb

)
, (B.1.9)

where Ma is the number of nodes in the ath cluster of clustering A, and similarly

for Mb. The normalised mutual information (NMI) between two clusterings is

defined as (Amelio and Pizzuti, 2015):

NMI(A,B) =
2I(A,B)

H(A) +H(B)
, (B.1.10)

where H(A) is the entropy (a measure of uncertainty) defined as:

H(A) = −
|A|∑
a=1

Ma

M
log

(
Ma

M

)
. (B.1.11)

NMI(A,B) = 1 if A and B are identical, and 0 if they are completely different.
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B.2 Details of computational study

Appendix B.2 contains additional details of the simulation set up described in Sec-

tion 3.3, including the computation of the bid prices, and a validation of the chosen

parameter values.

B.2.1 Dynamic programming for bid price control

From Talluri and Van Ryzin (2004), let x be the remaining capacity, and define Vt(x)

denote the value function at time t. Define R(t):

R(t) =


rj if request for fare class j arrives in interval t

0 otherwise

(B.2.1)

where rj denotes the revenue from accepting a request for fare class j. The probability

that R(t) = rj is equal to the arrival rate for fare class j at time t. Note the arrival

rates are such that at most one request arrives in each time period. Define:

u =


1 if request for fare class j arrives and is accepted

0 otherwise

(B.2.2)

We wish to maximise the combined revenue in the current time period, and the revenue

to come in future time periods:

max
u∈{0,1}

(R(t)u+ Vt+1(x− u)) (B.2.3)
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The Bellman equation for Vt(x) is:

Vt(x) = E
[

max
u∈{0,1}

{R(t)u+ Vt+1(x− u)}
]

(B.2.4)

= Vt+1(x) + E
[

max
u∈{0,1}

{(R(t) + ∆Vt+1(x))u}
]

(B.2.5)

Vt(x) =

|J |∑
j=1

λj(t)max {(rj −∆Vt+1(x)), 0} (B.2.6)

where λj(t) is the arrival rate of demand for fare class j in interval t, and ∆Vt+1(x) =

Vt+1(x) − Vt+1(x − 1) is the marginal cost of capacity in the next time period. The

problem is solved with backwards recursion, with the following boundary conditions

apply:

VT+1(x) = 0, x = 0, 1, . . . , C (B.2.7)

Vt(0) = 0, t = 1, . . . , T (B.2.8)

These ensure (i) no revenue can be generated beyond the booking horizon i.e after

departure; and (ii) that no further revenue can be generated if there is no capacity

remaining. The bid price at time t with remaining capacity x is given by ∆Vt(x).
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B.2.2 Details of benchmark method

We use the method proposed by Hyndman et al. (2016) as a benchmark comparison

for our proposed method in Section 3.3. The method works as follows:

• Define the total demand booking patterns as the sum of the demand for each

leg within the cluster.

• Compute f features of the n total demand booking patterns. Features in-

clude: mean, variance, first order autocorrelation, trend, linearity, seasonality,

peak, trough, entropy, lumpiness, spikiness, change in variance, Kullback-Leibler

score, among others. See Hyndman et al. (2016) for a full list.

• Apply principal component analysis (PCA) as per Yang and Shahabi (2004) to

determine the first two principle components i.e. those that explain the most

variance.

• Use a density-based multi-dimensional approach (Hyndman, 1996) to finds

points in the first two principal components with lowest density.

• The nu points with the lowest densities relate to the departures which are clas-

sified as outliers.
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B.2.3 Parameter values for simulation study

Table B.2.1: Regular demand generation parameter values

Parameter Value Effect of parameter

α = {αAB, αAC ,

αAD, αAE, αBC ,

αBD, αBE, αCD,

αCE, αDE}

α = {32, 14, 14,

180, 4, 4, 14, 4,

14, 32}

Parameters of the Gamma

distribution which controls the

level of total demand across all

fare classes and customer types

such that the mean demand for

itinerary o is:

E(Do) = αo
βo

.

β = {βAB, βAC ,

βAD, βAE, βBC ,

βBD, βBE, βCD,

βCE, βDE}

β = {1, 1, 1, 1, 1,

1, 1, 1, 1, 1}

a1 = {a1,AB, a1,AC ,

a1,AD, a1,AE, a1,BC ,

a1,BD, a1,BE, a1,CD,

a1,CE, a1,DE}

a1 = {5, 5, 5, 5, 5,

5, 5, 5, 5, 5}

Parameters of Beta

distribution which controls

the arrival times of type 1

customersb1 = {b1,AB, b1,AC ,

b1,AD, b1,AE, b1,BC ,

b1,BD, b1,BE, b1,CD,

b1,CE, b1,DE}

b1 = {2, 2, 2, 2, 2,

2, 2, 2, 2, 2}
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Parameter Value Effect of parameter

a2 = {a2,AB, a2,AC ,

a2,AD, a2,AE, a2,BC ,

a2,BD, a2,BE, a2,CD,

a2,CE, a2,DE}

a2 = {2, 2, 2, 2, 2,

2, 2, 2, 2, 2}

Parameters of Beta

distribution which controls

the arrival times of type 2

customersb2 = {b2,AB, b2,AC ,

b2,AD, b2,AE, b2,BC ,

b2,BD, b2,BE, b2,CD,

b2,CE, b2,DE}

b2 = {2, 3, 5, 7, 2,

3, 5, 2, 3, 2}

p1jo = {p1Ao, p1Oo,

p1Jo, p1Po, p1Ro,

p1So, p1Mo}

p1jo = {0.30, 0.25,

0.20, 0.15, 0.10,

0, 0}

Probability of purchase for each

customer type. It is assumed these

are constant across itineraries. The

no-purchase probability for customer

type i is equal to 1−
∑

j∈J pijo.

p2jo = {p2Ao, p2Oo,

p2Jo, p2Po, p2Ro,

p2So, p2Mo}

p2jo = {0, 0.05,

0.10, 0.15, 0.20,

0.25, 0.25}

φo = {φ1,o, φ2,o} φo = {0.5, 0.5}∀o

Proportion of total demand from

each customer type for each itinerary.

It is assumed these are

constant across itineraries.
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Outliers considered in computational study

Table B.2.2 shows the different experiments that were carried out as part of the

computational study. We consider cluster outliers in which every itinerary within

the cluster is equally affected; itinerary outliers where only a single itinerary within

the cluster is affected; and station outliers which affect all itineraries that end at a

particular station.
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Experiment Outlier Type Itineraries Affected Magnitudes

1 Cluster All

+10%, +20%, +30%, +40%,

+50%, +60%, -10%, -20%,

-30%, -40%, -50%, -60%

2

Itinerary

AB +50%

3 AC +50%

4 AD +50%

5 AE +50%

6 BC +50%

7 BD +50%

8 BE +50%

9 CD +50%

10 CE +50%

11 DE +50%

12

Station

AB +50%

13 AC, BC +50%

14 AD, BD, CD +50%

15 AE, BE, CE, DE +50%

Table B.2.2: Different types of outliers considered in computational study
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B.3 Computational results

Appendix B.3 includes the extended results from the computational study described

in Section 3.3. Results from additional simulation experiments to test the proposed

clustering approach are also presented here.

B.3.1 Evaluation of network clustering

For the correlation-based clustering to perform well it needs to (i) accurately estimate

similarity between adjacent legs, and (ii) use information about pairwise similarity

between adjacent legs to detect similarity between (potentially) more than two legs

to form clusters. We use the proportion of total demand belonging to each itinerary to

determine a clustering benchmark. For example, in Figure B.3.1a, when all passengers

travel the itinerary from A to E, the resulting bookings in each of the four legs would

be identical. In this case, the correlation between legs would be 1 – giving a single

cluster of four legs.

To evaluate the clustering when the underlying demand is known, we define the

common traffic ratio between two adjacent legs as the proportion of total demand

that relates to itineraries over both legs. That is, for two legs ij and jk, we define

the common traffic ratio, r(ij, jk), to be:

r(ij, jk) =
Dik

Dij +Djk +Dik

, (B.3.1)

where Dij is the demand for itinerary ij, and Dik is the total demand for all itineraries

which include both legs ij and jk. If all passengers book itineraries that traverse both

legs, then r(ij, jk) = 1. Conversely, if no passengers book journeys that traverse both
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legs, then r(ij, jk) = 0.

(a) Case 1 (b) Case 2 (c) Case 3

AB      BC     CD      DE AB      BC     CD      DE AB      BC     CD      DE

Figure B.3.1: Benchmark clustering

We vary the level of demand for each itinerary to generate different benchmark

clusterings. The output of the correlation-based clustering is then compared with

benchmark clustering using the NMI. We consider three cases: the four legs belong

in a single cluster (Figure B.3.1a); they belong in two clusters (Figure B.3.1b); and

they belong in four clusters (Figure B.3.1c).
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Figure B.3.2: Itinerary demand per leg

• Case 1: When itinerary AE accounts for at least 50% of the network demand,

we expect legs AB, BC, CD, and DE to belong to the same cluster, as they

experience mostly the same demand. Remaining demand is calibrated across
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itineraries such that total demand for each leg is reasonably uniformly dis-

tributed. We compare the correlation-based clustering with the benchmark

clustering of all four legs in a single cluster, when the average percentage of

demand on each leg from itinerary AE is 50%, 60%, 70%, 80%, 90%, or 100%.

Figure B.3.2a shows the fraction of total demand on each leg, from each itinerary,

in the case where 60% of demand is for itinerary AE.

• Case 2: We calibrate the majority of demand on leg AB and BC to be for

itinerary AC, and the majority of demand on legs CD and DE to be demand for

itinerary CE. For simplicity, the distribution of demand is symmetric across the

four legs. We compare the performance when the average percentage of demand

on each leg belonging to the clustering benchmark itinerary is 50%, 60%, 70%,

80%, 90%, or 100%. Figure B.3.2b shows the case where 60% of demand on

each leg is for the respective cluster itineraries (AC or CE).

• Case 3: We calibrate the majority of demand on leg AB for itinerary AB, the

majority of demand on leg BC for itinerary BC, and so on. We compare the

performance when the average percentage of demand on each leg belonging to

the leg itinerary is 50%, 60%, 70%, 80%, 90%, or 100%. Figure B.3.2c shows

the case where 60% of demand on each leg is for the itinerary consisting of only

that leg.

The results are shown in Table B.3.1.

In almost all cases, the normalised mutual information between the correlation-

based clustering and the benchmark equals 1, indicating congruence. We now extend
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Fraction of Leg Demand Resulting from Cluster Itinerary Demand

50% 60% 70% 80% 90% 100%

Case 1 0.99 1.00 1.00 1.00 1.00 1.00

Case 2 0.98 0.99 1.00 1.00 1.00 1.00

Case 3 0.94 0.97 0.99 1.00 1.00 1.00

Table B.3.1: Normalised mutual information

the simulation study by comparing the output of the correlation-based clustering

under different correlation measures. In additional to the functional dynamical corre-

lation measure described in Section 3.2.1, we compare Pearson correlation (Pearson,

1895) and Kendall rank correlation (Kendall, 1938). Let yn,ij(t) be the observed

bookings for the nth departure on leg ij, and yn,pq(t) analogous for leg pq.

• Pearson correlation: calculate the Pearson correlation between corresponding

booking patterns, then average across all booking patterns. That is, for the

nth of N booking patterns observed over T booking intervals, we calculate the

Pearson correlation coefficient as:

ρn(ij, pq) =

∑T
t=1(yn,ij(t)− yn,ij)(yn,pq(t)− yn,pq)√∑T

t=1(yn,ij(t)− yn,ij)2
√∑T

t=1(yn,pq(t)− yn,pq)2
(B.3.2)

where yn,ij is the mean number of bookings for the nth booking pattern. Then:

ρ(ij, pq) =
1

n

N∑
n=1

ρn(ij, pq). (B.3.3)

• Kendall rank correlation: observations (yn,ij(s), yn,pq(s)) and

(yn,ij(t), yn,pq(t)) where s < t, are concordant if their ordering agrees,
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and discordant otherwise. The Kendall rank correlation is defined between the

nth booking patterns in legs ij and pq as:

ρn(ij, pq) =
tc − td√

(t0 − t1)(t0 − t2)
(B.3.4)

where tc is the number of concordant pairs, td is the number of discordant pairs,

and t0, t1, and t2 are defined as follows:

t0 =
T (T − 1)

2
, (B.3.5)

t1 =
∑
s

us(us − 1)/2, (B.3.6)

t2 =
∑
t

vt(vt − 1)/2, (B.3.7)

where us is the number of tied values in the sth group of ties for in booking

patterns for leg ij, and vt is analogous for leg pq. Then:

ρ(ij, pq) =
1

n

N∑
n=1

ρn(ij, pq). (B.3.8)

We compare the cases where the correlation measure is (i) applied directly to the book-

ing patterns, and (ii) applied to the differenced booking patterns where the within-

booking pattern relationships e.g. trend have been removed. The normalised mutual

information between the clustering produced by the correlation-based clustering un-

der each of the different correlation measures, and the benchmark clustering is shown

in Table B.3.2.

For case 1, all three correlation measure seem to be performing equally well, with

the normalised mutual information almost always indicating congruence. For cases

2 and 3, the Pearson and Kendall correlation results in extremely poor performance



APPENDIX B. APPENDIX 196

Case Correlation Measure

Fraction of Leg Demand Resulting

from Cluster Itinerary Demand

50% 60% 70% 80% 90% 100%

Case 1

Booking patterns

Functional dynamical correlation 0.99 1.00 1.00 1.00 1.00 1.00

Pearson correlation 1.00 1.00 1.00 1.00 1.00 1.00

Kendall rank correlation 1.00 1.00 1.00 1.00 1.00 1.00

Differenced booking patterns

Functional dynamical correlation 0.99 1.00 1.00 1.00 1.00 1.00

Pearson correlation 0.98 1.00 1.00 1.00 1.00 1.00

Kendall rank correlation 1.00 1.00 1.00 1.00 1.00 1.00

Case 2

Booking patterns

Functional dynamical correlation 0.98 0.99 1.00 1.00 1.00 1.00

Pearson correlation 0.00 0.00 0.00 0.00 0.00 0.00

Kendall rank correlation 0.00 0.00 0.00 0.00 0.00 0.00

Differenced booking patterns

Functional dynamical correlation 0.98 0.99 1.00 1.00 1.00 1.00

Pearson correlation 0.00 0.00 0.00 0.00 0.00 0.00

Kendall rank correlation 0.00 0.00 0.00 0.00 0.00 0.00

Case 3

Booking patterns

Functional dynamical correlation 0.94 0.97 0.99 1.00 1.00 1.00

Pearson correlation 0.00 0.00 0.00 0.00 0.00 0.00

Kendall rank correlation 0.00 0.00 0.00 0.00 0.00 0.00

Differenced booking patterns

Functional dynamical correlation 0.93 0.96 0.99 1.00 1.00 1.00

Pearson correlation 0.00 0.00 0.00 0.00 0.00 0.00

Kendall rank correlation 0.00 0.00 0.00 0.00 0.00 0.00

Table B.3.2: Normalised mutual information under different correlation measures
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in terms of NMI, with the benchmark clustering never being achieved. Functional

dynamical correlation, however, continues to perform well with an NMI close to 1.

In order to determine why the Pearson and Kendall rank correlations initially

appear to perform well in the single cluster case, but fail in the two cluster case, we

also compare the value of the correlation coefficient with the known demand share

in a simple two leg example. Consider the simple two leg network shown in Figure

B.3.3.

Leg AB Leg BC

Figure B.3.3: Network with two legs

The common traffic ratio of legs AB and BC is:

r(AB,BC) =
DAC

DAB +DBC +DAC

, (B.3.9)

If r(AB,BC) = 1, then the number of bookings on leg AB and leg BC are identical,

and the correlation between them is 1. Conversely, if r(AB,BC) = 0, then the

bookings on leg AB and leg BC are independent with correlation 0. Table B.3.3

shows the estimates of the correlation, compared to the true ratio, r(AB,BC).

Functional dynamical correlation, applied directly to the data, performs best in

all cases. In case 1, where the benchmark clustering is a single cluster, poor clustering

performance can only result from under-estimating the demand share. Both Pearson

and Kendall rank correlation over-estimate the correlation between booking patterns,

even when the within-booking pattern effects have been removed. This explains the
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r(AB,BC) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Correlation between booking patterns

Functional dynamical correlation 0.12 0.22 0.35 0.40 0.46 0.55 0.66 0.82 0.86 0.90 1.00

Pearson correlation 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Kendall rank correlation 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

Correlation between differenced booking patterns

Functional dynamical correlation 0.14 0.18 0.29 0.42 0.50 0.53 0.66 0.83 0.88 0.91 1.00

Pearson correlation 0.70 0.71 0.77 0.82 0.85 0.89 0.92 0.95 0.96 0.98 1.00

Kendall rank correlation 0.88 0.90 0.91 0.91 0.92 0.94 0.94 0.95 0.96 0.97 1.00

Table B.3.3: Comparison of correlation measures

good performance of Pearson and Kendall rank correlation in case 1, despite extremely

poor performance in cases 2 and 3.

B.3.2 Detecting outliers in multiple legs

Outlier detection under different functional depth thresholds

We recognise that the percentage of departures that analysts are able to adjust

strongly depends on the ratio of analysts to departures, and that this is likely to

be domain dependent. Therefore, here we consider outlier detection performance as

the functional depth threshold varies.

In terms of true positive rates, the choice of threshold of 0.01, 0.05, or 0.1 produces

similar results, at least near the top of the alert list. Our method ranks the departures

classified as outliers such that genuine outliers are more likely to be at the top of the

ranked list, and false positives at the bottom of the list. Therefore, using a higher
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threshold tends to add more departures to the bottom of the list, and increase the

risk of more false positives. As shown in Section 4 of the manuscript, the outliers that

a threshold of 0.01 fails to detect tend to be small changes in magnitude. It is these

small magnitude outliers that are added to the bottom of the list as the threshold

increases. Notably, a threshold of 0.001 results in reduced performance even at the top

of the list, suggesting this would be too low a threshold. Similar results are seen in the

change in precision (compared to the non ranked method with the same threshold).

A higher threshold does result in higher overall true positive rates as more de-

partures are classified as outliers. However, the maximum true positive rate for a

threshold of 0.05 results in around 1 in 5 departures being classified as outliers. This

is quite a high percentage for them all to be considered outliers.
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Figure B.3.4: Outlier detection performance under different functional depth thresh-

olds
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Distribution of outliers across multiple legs

In the scenario where all itineraries are equally affected, a high proportion of outliers

should be detected in more than one leg. Figure B.3.5a illustrates the proportion of

outliers detected in 1, 2, 3 or 4 legs: More than half were detected in multiple legs.

Figure B.3.5b shows the proportion of true positives (genuine outliers which were

detected), by the number of legs in which they were detected. In contrast with Figure

B.3.5a, a much higher percentage of genuine outliers are detected in all four legs.
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Figure B.3.5: Fraction of outliers detected in 1, 2, 3, or 4 legs

Given the clustering is correct, we expect an approximately equal number of single

leg outliers in each leg, as shown in Figure B.3.6b. If one leg, say DE, had not belonged

in this cluster, we would expect a higher proportion of single leg outliers to have been

detected in leg DE. This could be utilised as a method for checking the clustering,

after the outlier detection.

These results motivate aggregating threshold exceedances across legs in two ways:

(i) since less than 100% of genuine outliers were detected in all legs, if outlier detection
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was carried out only on the leg level, outliers could be missed on some legs. (ii) Given

that a much higher proportion of outliers detected in four legs were genuine outliers,

by ranking booking patterns detected in all legs as more likely to be outliers, we focus

analysts’ attention to those more likely to be genuine outliers.
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in each leg, for outliers detected

in only one leg

Figure B.3.6: Fraction of outliers detected in each leg

False Discovery Rate

The false discovery rate (FDR) is defined as the proportion of booking patterns clas-

sified as outliers which were false positives:

FDR =
FP

TP + FP
(B.3.10)

See Section 3.3.6 for definitions of true and false positives. Figure B.3.7 shows the

FDR for the case where outlier demand affects all itineraries, and the magnitude is

randomly chosen from each of the distributions described in Section 3.3.3.

Figure B.3.8 shows the FDR for each of the magnitudes of outliers considered in

the simulation study. Given that smaller magnitude outliers are more similar to the
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Figure B.3.7: False discovery rate for nonhomogeneous demand-volume outliers

regular demand, these result in higher false discovery rates.
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Figure B.3.8: False discovery rate for homogeneous demand-volume outliers by mag-

nitude

Outliers affecting a single itinerary

Figure B.3.9 shows the true positive rate for the remaining itineraries in Figure 3.3.4

of Section 3.3.6.
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Aggregated Leg AB Leg BC Leg CD Leg DE
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Figure B.3.9: True positive rate for single itinerary outliers (cont.)

Outliers affecting a subset of itineraries

We consider a case where demand outliers affect only a subset of itineraries. Practical

examples for this phenomenon could include trade fairs or conventions as well as
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regional crises. In such situations, demand towards (or from) a specific destination is

most affected. Here, clustering offers additional benefits in guiding analysts towards

those itineraries where they should adjust the forecast or controls.

We differentiate four scenarios based on the four-leg-network described in Section

3.3 , where events affect demand for itineraries travelling to stations B, C, D, and E

respectively. We expect analogous results when customers aim to travel home from

events that happened at stations A, B, C, or D respectively, given the symmetry of

the demand parameters chosen for the computational study.

For each of the four possible events considered, we investigate the case where

this generates 50% increase in average leg demand. For simplicity, we assume these

passengers are equally split between the itineraries which alight at the relevant station.

Table B.3.4 shows the resulting demand increases for each leg.

Event at

Station

Itineraries

Affected

Additional 120 Passengers in Itineraries

Resulting Demand Increase per Leg

Leg AB Leg BC Leg CD Leg DE

B A-B +120 (+50%) - - -

C A-C, B-C +60 (+25%) +120 (+50%) - -

D A-D, B-D, C-D +40 (+16.6%) +80 (+33.3%) +120 (+50%) -

E A-E, B-E, C-E, D-E +30 (12.5%) +60 (+25%) +90 (+37.5%) +120 (+50%)

Table B.3.4: Changes in leg demand resulting from an additional 120 passengers in

itinerary demand

Figure B.3.10a shows the true positive rate for each of the cases. Although the

event at E generates outliers in more legs, it is not the case that it has the highest
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true positive rate. This shows that though the approach aggregates across legs, it

does not ignore outliers only in a subset of those legs, provided they are sufficiently

large. These effects may also be caused by interactions between the booking limits on

different legs. For example, in the case of an event at C, large increases in demand

in legs AB and BC may cause booking limits to be reached earlier for these legs,

which also limits bookings in itineraries such as AD and AE. Hence, an increase in

demand for some legs may caused a decrease in bookings for different legs. By jointly

considering multiple legs for outlier detection, we are able to detect the knock-on

effects of outliers even when the change in demand only affects a subset of legs. The

change in precision can be interpreted similarly, in Figure B.3.10b.

B C D E

0.00

0.25

0.50

0.75

1.00

1 10 100

Maximum length of alert list

T
ru

e 
po

si
ti

ve
 r

at
e

(a) True positive rate

0.0

0.4

0.8

1 10 100

Maximum Length of Alert List

C
ha

ng
e 

in
 P

re
ci

si
on

(b) Change in precision

Figure B.3.10: Performance for demand-volume outliers in a subset of itineraries

caused by an absolute increase in demand

Had we considered outlier detection on a leg-by-leg basis, the outliers were more

likely to be missed in some of the legs. By combining information across legs, we are

better able to determine which itineraries are affecting the volume of demand.
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Using outlier severity threshold to limit alert list length

The results in this chapter focus on limiting the length of the ranked alert list simply

by the number of alerts it contains as this is most relevant to analysts. However,

an alternative approach limits the length of the list by the outlier severity assigned

to each departure. For example, classifying a train as an outlier only if its outlier

severityy is above 80%.

Detection results when outliers affect all itineraries

Figure B.3.11 shows the true positive rate as the outlier severity decreases from
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Figure B.3.11: True positive rate for nonhomogeneous demand-volume outliers as

minimum outlier severity varies

100% to 0%. Results are similar to those shown in Figure 3.3.1a. Figure B.3.12 shows

the true positive rate as the outlier severity decreases from 100% to 0%, for each

magnitude of outlier considered. Results are similar to those shown in Figure 3.3.5.
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Figure B.3.12: True positive rate for homogeneous demand-volume outliers by mag-

nitude
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Detection results when outliers affect a single itinerary
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Figure B.3.13: True positive rate for single itinerary demand-volume outliers as min-

imum outlier severity varies
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B.3.3 Revenue benefits from forecast adjustments for outlier

demand

Figure B.3.14 shows the true positive rate for the remaining itineraries in Figure 3.3.7

of Section 3.3.7.

The analysis in Section 3.3.5 constitutes a best-case scenario in which we assume

that, if outlier demand affects a particular leg, the outlier is detected in that leg.

However, as we show in Section 3.3.6, even when demand outliers affect multiple legs,

the outlier is not always detected in every leg due to noise. Therefore, we additionally

compare different adjustments based on the output of the outlier detection, for an

outlier in itinerary AE.

• Adjustment A: Adjust only the forecasts of the affected single-leg itineraries

for those legs in which the outlier is detected.

• Adjustment B: Adjust the forecasts of the affected single-leg itineraries for

those legs in which the outlier is detected, and the cluster spanning itinerary

(AE).

We compare these both to making no adjustment, and to the oracle adjustment. This

is still a best-case scenario to some extent, given that we assume the correct magnitude

of adjustment is made.

Figure B.3.15 shows the revenue under adjustments A and B (as described in

Section 3.3.5) depending on the output of the outlier detection procedure. Combining

adjustments on the leg-level with those on the cluster level provides superior results



APPENDIX B. APPENDIX 210

No Adjustment Adjustment 1 Adjustment 2 Adjustment 3 Oracle

20K

22K

25K

28K

30K

-60 -30 0 30 60

% Change in demand on affected legs

R
ev

en
ue

(a) Itinerary BC

20K

22K

25K

28K

30K

-60 -30 0 30 60

% Change in demand on affected legs

  

(b) Itinerary BD

20K

22K

25K

28K

30K

-60 -30 0 30 60

% Change in demand on affected legs

R
ev

en
ue

(c) Itinerary BE

20K

22K

25K

28K

30K

-60 -30 0 30 60

% Change in demand on affected legs

  

(d) Itinerary CD

20K

22K

25K

28K

30K

-60 -30 0 30 60

% Change in demand on affected legs

R
ev

en
ue

(e) Itinerary CE

20K

22K

25K

28K

30K

-60 -30 0 30 60

% Change in demand on affected legs

  

(f) Itinerary DE

Figure B.3.14: Revenue generated under different itinerary-level forecast adjustments

(cont.)
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Figure B.3.15: Revenue generated under different forecast adjustments resulting from

the outlier detection for outlier demand in itinerary AE

in contrast to leg level adjustments alone. Though making adjustments to only the

single-leg itineraries may be risk averse in the rare cases where an outlier affects only

a small subset of the legs within a cluster, it may be detrimental to revenue when

outliers affect multiple legs.

B.4 Empirical study of Deutsche Bahn booking

data

Appendix B.4 contains additional analysis of the empirical booking data from

Deutsche Bahn, as described in Section 3.4.
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B.4.1 Model selection for functional regression

Due to the functional nature of the data, in order to determine which of the factors

result in a better fitting model, we use the Cross-Validated Sum Of Integrated

Squared Errors (CV-SSE).

CV -SSE =
N∑
n=1

∫
(ynl(t)− ˆynl(t))dt, (B.4.1)

where ˆynl(t) is the prediction for the nth booking pattern on the leg l, under the

model fitted to all but the nth booking pattern. The model which produces the lowest

CV-SSE is chosen as the best fitting. Note that unlike other model selection criterion

(e.g. AIC), CV-SSE does not take into account the number of parameters. Given that

we are not interested in out of sample prediction, only in obtaining the best fitting

model for our data, over-fitting is not of great concern. The values of the CV-SSE for

each of the 12 models considered are shown in Table B.4.1.

Across all legs, we find that day, month, and shortened booking horizons are all

factors that must be taken into account. The inclusion of the days of the week as

factors significantly reduces the CV-SSE. In comparison, the inclusion of the booking

horizon variable has a smaller, though still positive, effect. We compare two different

approaches to accounting for the shortened booking horizon: (i) an indicator function

(I) equal to 1 if the booking horizon is shorter, and (ii) a continuous variable (C)

between 0 and 1 which gives the length of the shortened horizon as a proportion of

the regular length horizon. Based on the CV-SSE scores, shortened booking horizons

are best represented by the indicator function i.e. it is important to know that it

is shorter but not by how much. The smaller effect of the horizon length variable
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Model Intercept Day Month
Short

Horizon

(I)

Short

Horizon (C)

CV-SSE

Leg AB Leg BC Leg CD Leg DE

Model 1 X 79974160 75034839 79529280 73824611

Model 2 X X 58617546 52622148 52424683 50009080

Model 3 X X 58620898 52863263 52506946 50014984

Model 4 X X 27227350 35376732 32789181 30037659

Model 5 X X X 26551341 33724380 32282900 29989390

Model 6 X X X 26704943 34154782 32439972 30019196

Model 7 X X 58620649 57895619 52638923 50015645

Model 8 X X X 58608640 57865403 52615801 49996331

Model 9 X X X 58878374 57885484 52654330 50033157

Model 10 X X X 24574978 25700166 21691111 21880038

Model 11 X X X X 24519539 25691637 21689686 21878259

Model 12 X X X X 24546715 25697938 21724073 21896889

Table B.4.1: Model comparison for functional regression

may be related to the inclusion of the month variable, which is unsurprising given

the overlap in the definition of these variables. The values of the CV-SSE is similar

for the models 2 and 7, where we only consider one of month or horizon length as a

factor.

B.4.2 Residual booking patterns

Figure B.4.1 shows the residual booking patterns resulting from the functional regres-

sion applied in equation (3.4.1) of Section 3.4.2. Compare with Figure 3.4.5 of Section

3.4.2 – the obvious outliers are preserved.
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Figure B.4.1: Residual booking patterns

B.4.3 Functional depths

Figure B.4.2 shows the functional depths for the empirical residual booking patterns,

before the functional depths are transformed into the znl, as shown in Figure 3.4.6 of

Section 3.4.2.
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Figure B.4.2: Functional depths

B.4.4 Probability plots for GPD and Exponential distribu-

tions

Given that, if both µ = 0 and ξ = 0, the GPD reduces to an exponential distribution,

it is appropriate to compare the fit of the GPD with an exponential distribution to

check if the inclusion of additional parameters is beneficial. Figure B.4.3 shows the P-

P plots, i.e. the fitted theoretical CDF against the empirical CDF for the GPD (Figure
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B.4.3a) and the Exponential distribution (Figure B.4.3b). The GPD provides a closer

fit to the empirical data and the additional parameters better account for the shape of

the distribution. The GPD does not provide a perfect fit, with the probabilities in the
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Figure B.4.3: P-P plots

bottom left of Figure B.4.3a on consistently being underestimated. However, given

that we assume points with very low probability are more likely to be false positives,

under-estimating may actually be beneficial. Further, only the highly-ranked outliers

i.e. those with high probability, are likely to be considered by an analyst due to

time-constraints. The GPD provides a very good fit for those data points. If there is

a sufficiently large number of threshold exceedances, an empirical distribution could

alternatively be used to compute the probabilities.
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B.4.5 Distribution of outliers across multiple legs

The proportion of outliers found in each number of legs is shown in Figure B.4.4, with

over half of the outliers detected in multiple legs. Compared with Figure B.3.5, this

shows a similar proportion of outliers as found in the simulation study.
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Figure B.4.4: Fraction of all outliers detected in 1, 2, 3, or 4 legs

Figure B.4.5a shows the proportion of total outlying booking patterns in terms

of which legs they were detected as outliers in. Figure B.4.5b shows the proportion

in each leg of outlying booking patterns detected in one leg only. The proportions

are fairly evenly split between the different legs. This reassures us that the correct

clustering was chosen - if leg DE did in fact belong to a separate second cluster, we

would expect a higher proportion of single leg outliers to have been found in leg DE

– compare with Figure B.3.6.

B.4.6 Simulation verification

In order to validate the parameter choices used to simulate booking patterns, we com-

pare the resulting simulated booking patterns with the empirical booking patterns.
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Figure B.4.5: Fraction of outliers detected in each leg

We consider the standard deviation and mean of the bookings across the booking

horizon of each in Figure B.4.6. Both the empirical and simulated booking patterns

show a similar shape and magnitude of relationship between the mean and standard

deviation across the booking horizon.
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(b) Simulated booking patterns

Figure B.4.6: Comparison of standard deviation divided by mean of booking patterns

We also compare the correlations between the different legs for both the empirical

and simulated data. Table B.4.2 shows the functional dynamical correlation between
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the empirical booking patterns, and empirical residual booking patterns, for each

leg. Table B.4.3 shows the corresponding correlations between the simulated booking

patterns. The values are similar and the rate of decay between legs as they get further

apart follows a similar pattern.

Leg AB Leg BC Leg CD Leg DE

Leg AB - 0.95 0.83 0.70

Leg BC - - 0.83 0.66

Leg CD - - - 0.78

Leg DE - - - -

(a) Booking patterns

Leg AB Leg BC Leg CD Leg DE

Leg AB - 0.92 0.75 0.58

Leg BC - - 0.88 0.74

Leg CD - - - 0.84

Leg DE - - - -

(b) Residual booking patterns

Table B.4.2: Functional dynamical correlation of empirical booking patterns

Leg AB Leg BC Leg CD Leg DE

Leg AB - 0.81 0.72 0.60

Leg BC - - 0.86 0.68

Leg CD - - - 0.78

Leg DE - - - -

Table B.4.3: Functional dynamical correlation of simulated booking patterns



Appendix C

Appendix: Analysing and

visualising bike-sharing demand

with outliers

C.1 Forecasting baseline demand

C.1.1 Temporal partitioning

In Section 4.3, for the purposes of temporal partitioning of data, we define summer to

be the months April through October. Winter is therefore November through March.

The partitioning is chosen to give constant variance within a partition whilst also

ensuring there is a sufficient number of observations within each partition to make

outlier detection feasible. Figure C.1.1 shows the rolling daily variance for terminal

31203, with the summer months highlighted.

220
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Figure C.1.1: Variance of usage patterns with summer months highlighted in green

The variance of winter is not constant, being slightly higher in the months that

border the summer season. Further partitioning could be carried out e.g. partition

by month. However, this results in much less data within each partition, which

then makes outlier detection more difficult. When applying binary segmentation

changepoint detection (Scott and Knott, 1974) to identify the partitions with different

levels of variance, the algorithm returns 8 changepoints: 24 March 2017, 4 Nov 2017,

6 Dec 2017, 31 Mar 2018, 24 May 2018, 4 Nov 2018, 20 Mar 2019, and 4 Nov 2019.

These are highlighted in Figure C.1.2. These are relatively close to our pre-defined

summer and winter partitions (indicated by red vertical lines in Figure C.1.2.
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Figure C.1.2: Changepoints in variance of rental patterns
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If there are already pre-defined seasons in use for planning purposes, these may

be more appropriate.

C.1.2 Functional regression model comparison

In this section, we perform model comparison for the functional regression model used

to account for different daily trends as detailed in Section 4.3, equation 4.3.1.

We use the Cross-Validated Mean Integrated Squared Error (CV-MSE) to

determine the best-fitting model. The CV-MSE is given by:

CV -MSE =
1

N

N∑
n=1

∫
(xn,s(t)− x̂n,s(t))dt, (C.1.1)

where x̂n,s(t) is the prediction for the nth daily rental pattern at the terminal s, under

the model fitted to all but the nth rental pattern. The model which produces the

lowest CV-MSE is chosen as the best fitting. Unlike other model selection criterion

such AIC, CV-MSE does not take into account the number of parameters. The CV-

MSE for each of the 8 models considered is shown in Table C.1.1, for the terminals

in the cluster discussed in Section 4.5.

In most cases, the model which achieves the minimum mean squared error is model

8, which includes all three factors (day, week, and year). However, model 5 (day and

month) also produces very similar results.

C.1.3 Distribution of residuals

Figure C.1.3 shows the distribution of the residuals for each hour of the day for

terminal 31005 – see also Figure 4.3.1. The core of the distribution is symmetric
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Model
Factors Terminal Number

Day Month Year 31303 31308 31309 31315 31316 31317 31319 32014 32040

1 135.90 72.98 16.04 25.80 15.29 27.96 34.27 52.42 22.75

2 X 120.38 60.17 16.04 25.64 14.29 27.71 33.43 50.80 22.78

3 X 98.01 59.65 12.67 18.82 11.93 19.57 25.78 37.97 17.09

4 X 133.96 71.89 15.49 25.70 14.86 28.03 33.97 48.01 22.63

5 X X 82.40 46.50 12.61 18.65 10.83 19.20 24.80 36.07 17.01

6 X X 96.59 58.52 12.07 18.79 11.52 19.61 25.44 33.34 16.95

7 X X 119.04 59.02 15.47 25.63 13.87 27.77 33.13 46.28 22.66

8 X X X 80.85 45.29 12.00 18.62 10.39 19.23 24.46 31.32 16.87

Table C.1.1: Cross validated mean square error for functional regression model com-

parison applied to unpartitioned data

around zero, but the tails of the distribution are positively skewed.

C.1.4 Accounting for skewness

Figure C.1.5a shows the distribution of the normalised total daily usage for terminal

31235, which exhibits positive skew. Not all terminals exhibit such positively skewed

distributions – see Figure C.1.4.

The distributions of total daily usage have a skewness lying between -0.4 and 15.8,

with the median skewness across all terminals being 0.71. Larger positive skew is more

common in terminals where mean usage is very low, and since demand is bounded

below by zero, only increases in demand are observed. This results in more positive

outliers than negative (see Section sec:discussion). Given that most terminals exhibit
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Figure C.1.3: Distribution of residual usage for each hour of the day for terminal

31005

slight positive skew, it may be desirable to transform the data before perfroming

outlier detection. To account for the skew, the rental patterns can first be transformed

e.g. with a logarithmic transform. However, this is not applicable to all terminals (as

some are already negatively skewed) and can result in a negatively skewed distribution

– Figure C.1.5b.

When applying the outlier detection procedure to the untransformed data, the

fraction of positive outliers is consistently higher than the fraction of negative outliers.

On average, 78% of outliers are positive. That is, outliers are more likely to be

caused by increased demand than decreased. This is easily explained by the fact

that demand is bounded below by zero, and in many cases the mean usage pattern
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Figure C.1.4: Distribution of skewness of distributions of total daily usage across all

terminals
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daily usage for terminal 31235

Figure C.1.5: Distribution of total daily usage for terminal 31235

is close to zero, such that negative demand is unobservable. Applying a logarithmic

transformation before carrying out the outlier detection results in around 60% of

outliers being positive.
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Figure C.1.6: Fraction of outliers that are positive and negative, before and after

applying a logarithmic transformation

C.1.5 Inter-daily autocorrelation

Figure C.1.7 shows the inter-daily autocorrelations between the residual patterns for

different days, at each hour. The early hours of the morning - especially at 04:00 and

06:00 - exhibit some autocorrelation of lag 7 i.e. weekly. A functional ARIMA model

could be fitted to remove the autocorrelation. However, as it only affects a so few

hours of the day, we do not investigate this further here.
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Figure C.1.7: Inter-daily autocorrelations of residuals for terminal 31005

C.2 Using spatial patterns to cluster terminals

C.2.1 Effect of parameter choices on clustering

Our clustering method is tuned using four parameters: the correlation threshold ρ,

as well as distance metrics introduced in Section 4.4. We now evaluate the sensitivity

of changing these parameters on (i) the number of clusters obtained, and (ii) the

standard deviation in cluster sizes (SDCS) (Lin et al., 2019). The SDCS is given by:

SDCS =

√√√√ 1

K − 1

K∑
k=1

(
Sk −

S

K

)2

, (C.2.1)

where S is the number of terminals, K is the number of clusters, Sk is the number of

terminals in cluster k. The SDCS quantifies a measure of the balance of the different

cluster sizes. We do not seek to minimise nor maximise the SDCS – since choosing

extreme parameter values trivially creates clusters of size 1 or one giant cluster.

Figure C.2.1 shows the change in number of clusters and SDCS as we vary pa-
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(b) Radius, R
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(c) Inner distance threshold, Dinner
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(d) Outer distance threshold, Douter

Figure C.2.1: Cluster sensitivity to parameter changes when other parameters remain

fixed at ρτ=0.15, R = 5000m, Dinner = 500m, and Douter = 1000m.

rameter values. There is an inverse relationship between the number of clusters and

the SDCS across all four variables. While an increase in either correlation threshold

or radius results in a decrease of SDCS, increasing either of the distance thresholds

increases the SDCS. In order to achieve a balance between number of clusters and

SDCS, we choose parameter values close to the intersection of the two lines. This

results in a correlation threshold of between 0 and 0.4; a radius between 5,000m
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and 10,000m; an inner distance threshold between 500m and 1,000m, and an outer

distance threshold of approximately 1,000m.

C.2.2 Normalised Mutual Information

For a graph containing M terminals, the mutual information between two clusterings

A and B of the M nodes in the graph is defined as:

I(A,B) =

|A|∑
a=1

|B|∑
b=1

|A ∩ B|
M

log

(
|A ∩ B| M

MaMb

)
, (C.2.2)

where Ma is the number of nodes in the ath cluster of clustering A, and similarly

for Mb. The normalised mutual information (NMI) between two clusterings is

defined as (Amelio and Pizzuti, 2015):

NMI(A,B) =
2I(A,B)

H(A) +H(B)
, (C.2.3)

where H(A) is the entropy (a measure of uncertainty) defined as:

H(A) = −
|A|∑
a=1

Ma

M
log

(
Ma

M

)
. (C.2.4)

NMI(A,B) = 1 if A and B are identical, and 0 if they are completely different.
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C.3 Additional Discussion

C.3.1 Effects of data temporal patterns on outlier detection

In section 4.3, we outlined two steps (functional regression and temporal partitioning)

that could be undertaken to account for different patterns in the data. Here, we

consider how the inclusion of these steps affects the outcome of the outlier detection.

For a homogeneous data set, we would expect approximately equal numbers of outliers

detected on each day of the week, and month of the year. Figure C.3.1 shows the

difference between the mean fraction of outliers per day (or month) and fraction of

outliers which are observed on each day of the week (or month).
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Figure C.3.1: Fraction of outliers occurring on each day of the week and month of the

year, with and without applying functional regression model

The results are shown for the case where the (i) there is no accounting for tem-
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poral patterns; (ii) the regression model is applied with no partitioning; (iii) only

partitioning is applied with no regression, and (iv) both regression and partitioning

is applied. When we do not account for temporal patterns in the data, we detect far

more outliers on weekends and in the summer months. Including the regression step

(without partitioning) improves this imbalance somewhat. When the data has been

partitioned, regression makes little difference to the proportion of outliers detected

on each day or month. Although we partition the data to account for different vari-

ance, this implicitly takes care of differences in mean between the same groups. As

there is little difference in mean trend between days or months in the same groups.

partitioning with or without regression gives similar results.
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C.3.2 Weather as an explanatory factor for demand outliers

Figure C.3.2 shows the weather data used for analysis in Section 4.6.2.
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Figure C.3.2: Weather data obtained from Visual Crossing for 2017 - 2019
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Ting Ma, Chao Liu, and Sevgi Erdoǧan. Bicycle sharing and public transit: Does

capital bikeshare affect metrorail ridership in Washington, D.C.? Transportation

Research Record, 2534(2534):1–9, 2015.

J. MacQueen. Some methods for classification and analysis of multivariate observa-



BIBLIOGRAPHY 241

tions. In Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., volume 1, pages

281–297. University of California Press, 1967.

B. J. McNeil and J. A. Hanley. Statistical Approaches to the Analysis of Receiver

Operating Characteristic (ROC) Curves. Medical Decision Making, 4(2):137–150,

1984.

D. R. Morales and J. Wang. Forecasting cancellation rates for services booking revenue

management using data mining. European Journal of Operational Research, 202

(2010):554–562, 2010.

S. Mukhopadhyay, S. Samaddar, and G. Colville. Improving revenue management

decision making for airlines by evaluating analyst-adjusted passenger demand fore-

casts. Decision Sciences, 38(2):309–327, 2007.

Bruno Albert Neumann-Saavedra, Dirk Christian Mattfeld, and Mike Hewitt. As-

sessing the operational impact of tactical planning models for bike-sharing redistri-

bution. Transportation Research Part A: Policy and Practice, 150(June):216–235,

2021.

M. O’Connor, W. Remus, and K. Griggs. Judgemental forecasting in times of change.

International Journal of Forecasting, 9(2):163–172, 1993.

K. Pearson. VII. Note on regression and inheritance in the case of two parents. Proc.

R. Soc. Lond., 58, 1895.

L. N. Pereira. An introduction to helpful forecasting methods for hotel revenue man-

agement. International Journal of Hospitality Management, 58:13–23, 2016.



BIBLIOGRAPHY 242

H. N. Perera, J. Hurley, B. Fahimnia, and M. Reisi. The human factor in supply chain

forecasting: A systematic review. European Journal of Operational Research, 274

(2):574–600, 2019.

F. Petropoulos, S. Makridakis, V. Assimakopoulos, and K. Nikolopoulos. ‘horses for

courses’ in demand forecasting. European Journal of Operational Research, 237(1):

152–163, 2014.

Fotios Petropoulos and Nikolaos Kourentzes. Forecast combinations for intermittent

demand. Journal of the Operational Research Society, 66(6):914–924, 2015.

J. Pickands. Statistical Inference using Extreme Order Statistics. The Annals of

Statistics, 3(1):119–131, 1975.

M. A.F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko. A review of novelty

detection. Signal Processing, 99:215–249, 2014.

R. Pincus, V. Barnett, and T. Lewis. Outliers in Statistical Data. 3rd Edition. Bio-

metrical Journal, 37(2):256, 1995.

R.C. Prim. Shortest connection networks and some generalizations. Bell Systems

Technology Journal, 36:1389–1401, 1957.

J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, New York,

1997.

J. O. Ramsay, G. Hooker, and S. Graves. Functional Data Analysis in R and Matlab.

Springer, New York, 2009.



BIBLIOGRAPHY 243

S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Samatova.

Anomaly detection in dynamic networks: A survey. WIREs: Computational Statis-

tics, 7(3):223–247, 2015.

Yasmine Rashed, Hilde Meersman, Eddy Van De Voorde, and Thierry Vanelslander.

Short-term forecast of container throughout: An ARIMA-intervention model for

the port of Antwerp oa. Maritime Economics and Logistics, 19(4):749–764, 2017.

N. Rennie, C. Cleophas, A. M. Sykulski, and F. Dost. Identifying and responding to

outlier demand in revenue management. European Journal of Operational Research,

293:1015–1030, 2021a.

N. Rennie, C. Cleophas, A. M. Sykulski, and F. Dost. Detecting outlying demand in

multi-leg bookings for transportation networks. arXiv (pre-print), 2021b.

M. Ribatet and C Dutang. POT: Generalized Pareto Distribution and Peaks Over

Threshold, 2019. URL https://CRAN.R-project.org/package=POT. R package

version 1.1-7.

S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

J. Schuijbroek, R. C. Hampshire, and W. J. van Hoeve. Inventory rebalancing and

vehicle routing in bike sharing systems. European Journal of Operational Research,

257(3):992–1004, 2017.

C. Schütze, C. Cleophas, and M. Tarafdar. Revenue management systems as symbiotic

analytics systems: insights from a field study. Business Research, 13(3):1007–1031,

2020.

https://CRAN.R-project.org/package=POT


BIBLIOGRAPHY 244

Author A J Scott and M Knott. A Cluster Analysis Method for Grouping Means in

the Analysis of Variance. Biometrics, 30(3):507–512, 1974.

Susan Shaheen, Stacey Guzman, and Hua Zhang. Bikesharing in Europe, the Amer-

icas, and Asia. Transportation Research Record, 2143:159–167, 2010.

R. L. Smith. Maximum Likelihood Estimation in a Class of Nonregular Cases.

Biometrika, 72(1):67–90, 1985.

Soheil Sohrabi and Alireza Ermagun. Dynamic bike sharing traffic prediction using

spatiotemporal pattern detection. Transportation Research Part D: Transport and

Environment, 90(December 2020):102647, 2021.

A. K. Strauss, R. Klein, and C. Steinhardt. A review of choice-based revenue man-

agement: Theory and methods. European Journal of Operational Research, 271(2):

375–387, 2018.

P. D. Talagala, R. J. Hyndman, K. Smith-Miles, S. Kandanaarachchi, and M. A.
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