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Abstract: The rapid growth of wind and solar energy penetration has created critical issues, such as 
fluctuation, uncertainty, and intermittence, that influence the power system stability, grid operation, 
and the balance of the power supply. Improving the reliability and accuracy of wind and solar en-
ergy predictions can enhance the power system stability. This study aims to contribute to the issues 
of wind and solar energy fluctuation and intermittence by proposing a high-quality prediction 
model based on neural networks (NNs). The most efficient technology for analyzing the future per-
formance of wind speed and solar irradiance is recurrent neural networks (RNNs). Bidirectional 
RNNs (BRNNs) have the advantages of manipulating the information in two opposing directions 
and providing feedback to the same outputs via two different hidden layers. A BRNN’s output layer 
concurrently receives information from both the backward layers and the forward layers. The bidi-
rectional long short-term memory (BI-LSTM) prediction model was designed to predict wind speed, 
solar irradiance, and ambient temperature for the next 169 h. The solar irradiance data include 
global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradi-
ance (DHI). The historical data collected from Dumat al-Jandal City covers the period from 1 Janu-
ary 1985 to 26 June 2021, as hourly intervals. The findings demonstrate that the BI-LSTM model has 
promising performance in terms of evaluation, with considerable accuracy for all five types of his-
torical data, particularly for wind speed and ambient temperature values. The model can handle 
different sizes of sequential data and generates low error metrics. 
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1. Introduction 
In recent years, artificial intelligence (AI) technologies, such as deep learning (DL), 

have become incredibly influential as a promising branch of machine learning [1], sup-
ported by several advantages, including high generalization capabilities and big data pro-
cessing compared with shallow models, and supervised and unsupervised feature learn-
ing algorithms [2]. The supervised learning algorithms are applied to the original dataset 
that is already labelled. The original dataset has input and output variables and the su-
pervised learning process that employs algorithms for learning the mapping functions [3]. 
The supervised learning algorithms enable the model to relate the signal dataset to an 
activity class [3], while the unsupervised learning algorithms can extract the learning fea-
tures from the original dataset [4] and can reconstruct their patterns. These technologies 
are characterized by multiple linear layers of processing and large-scale hierarchical data 
representation [5]. The large numbers of layers and increased computational complexity 
refer to a more complex architecture of DL. DL can utilize and analyze major issues in big 
data, including the extraction of complex patterns from large volumes, semantic indexing, 
data tagging, the fast retrieval of information, and the simplification of discriminatory 
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tasks. DL has several approaches, such as autoencoder (AE) coding [6], deep belief net-
works (DBNs) [7], deep Boltzmann machines (DBMs) [8], convolutional neural networks 
(CNNs) [9], and recurrent neural networks (RNNs) [10]. DL provides a comprehensive 
solution for various applications in the engineering research area, such as energy predic-
tion and monitoring power systems. In optimal power system operation and planning, 
wind speed and solar energy interval prediction are gaining vital importance. However, 
forecasting efficiency is an arduous process due to the obvious issues of wind speed and 
solar power fluctuation. Therefore, numerous advanced DL-based approaches have been 
developed in previous studies to enhance the prediction accuracy and to foster potential 
innovation in the field. Wang et al. [11] predicted photovoltaic (PV) power using the 
wavelet transformation and a deep CNN. This technique decomposes the input signal into 
multiple frequency sequences. In addition, Piazza et al. [12] used the nonlinear auto-
regressive with exogenous input based on a neural network to predict the hourly intervals 
of solar irradiation and wind speed. The approach required the use of external data, such 
as temperature or wind direction values, to provide the model with more details. Another 
important study was conducted by Wang et al. [13] to predict the short-term solar-irradi-
ance-based artificial neural network (ANN) model. In addition, Sözen et al. [14] employed 
the (ANN) model to predict solar potential energy in Turkey. However, these types of 
models can be improved by increasing the number of the hidden layers. Altan et al. [15] 
developed a long short-term memory (LSTM) neural network with a decomposition tech-
nique and grey wolf estimator to predict short-term wind speed. Moreover, combined 
multiple techniques to develop a hybrid prediction model can improve the model’s per-
formance and prediction accuracy. Hu et al. [16] created a nonlinear hybrid model based 
on LSTM, a differential evolution algorithm, a nonlinear hybrid mechanism, and a hyster-
etic extreme learning machine to enhance wind speed prediction accuracy. The differen-
tial evolution algorithm is utilized to upgrade the model, although it is difficult to balance. 
Alli et al. [17] used the time series model-based LSTM neural network to predict solar 
radiation, wind speed, precipitation, relative humidity, and temperature values. Moreo-
ver, this model is able to cope with different types of weather data. Liu and Lin [18] con-
ducted a study to predict the daily load performance in the UK, during the COVID-19 
pandemic restrictions and lockdown, using a multivariate time series forecasting-based 
BI-LSTM neural network. The prediction model considered solar and wind power, includ-
ing wind speed, biomass, and temperature values. Furthermore, the model recorded high 
values of the root mean square error (RMSE) with obvious overfitting. K.U. and Kovoor 
[19] proposed a wind speed prediction model-based ensemble empirical mode decompo-
sition and BI-LSTM neural network. The model enhanced the accuracy values because of 
data denoising and disintegrating characteristics. Zhen et al. [20] developed a short-term 
prediction model using the BI-LSTM and genetic algorithm to estimate the PV power. The 
model is capable of comprehending the connection between several PV output series. In 
addition to the abovementioned studies, there are numerous studies that present many 
promising ideas in the field of energy prediction. 

In this study, a prediction model was designed based on bidirectional long short-
term memory (BI-LSTM). The model is able to estimate the future performance of solar 
irradiance, including global horizontal irradiance (GHI), direct normal irradiance (DNI), 
and diffuse horizontal irradiance (DHI), with the wind speed and ambient temperature 
values based on time series. In addition, the model predicts future values for one week 
(169 h) ahead, as hourly intervals. Moreover, the aim of the study is to contribute to the 
issues of wind and solar energy fluctuation and intermittence that can be used to investi-
gate their implications on the stability of conventional power systems influenced by the 
factors of wind and solar energy, along with the ambient temperatures. Analyzing the 
performance of significant quantities of historical data for a specific region can assist in 
understanding the nature of the variability of wind and solar energy in this region. The 
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paper is organized as follows: Section 2 contains an overview of deep learning (DL) ap-
proaches. Section 3 presents the materials and methods. Section 4 consists of the results 
and discussion. Finally, Section 5 outlines the conclusions. 

2. Overview of Deep Learning (DL) Approaches 
Artificial neural networks (ANNs) are designed from hundreds of single units as a 

variety of interconnected processing elements, called neurons, and are connected to coef-
ficients (weights as adjustable parameters), which represent the neural structures and are 
organized in layers [21]. ANNs are designed to simulate specific biological neural pro-
cesses, and act similarly to the human brain [22], in order to solve more complicated prob-
lems. The basic principle of an ANN is to infer and extract knowledge by detecting pat-
terns, analyzing the relationships between the data, and then learning them based on an 
experience, not obtained from programming [21,23], but by using a series of processes that 
are dependent on evaluating the available inputs. Each neuron receives input signals as 
aggregated data from other neurons, or external stimuli from outside the network, which 
are then analyzed and processed locally through transfer functions to generate an output 
signal that is converted to other neurons or classified as external output [22]. Moreover, 
each processing element contains a transfer function, an output, and a weighted sum of 
the inputs, which is the neuron activation function [21]. The processing element is an 
equation that is used to balance the inputs and outputs. The single output of the neuron 
is produced by multiplying the input signals by the connection weights to combine them, 
and then by transferring the activation signal via a transfer function (see Figure 1). The 
transfer function can be calculated by incorporating the time-lagged observations and pre-
dictor variables into an ANN model [22]. The transfer function can specify the relationship 
between a node and a neural network’s inputs and outputs, and it introduces the nonlin-
earity that is necessary for most ANN applications [22]. The transfer functions of the neu-
rons are the basic elements that influence the behavior of the neural network, which de-
pends on its learning rules and architecture [21]. In addition, the neurons are the basic 
components of an ANN and are considered the neural network power that simulates the 
function of biological human neurons, as shown in Figure 1 [21]. The effective prediction 
approaches of ANNs are summarized in the next subsections. 

 
Figure 1. Basic components for ANN neuron model. Copyright © 2021 Elsevier [21]. 

2.1. Autoencoder (AE) 
The AE is an unsupervised learning [23] feed-forward neural network approach that 

is trained to replicate its inputs to its outputs via the hidden layers [24,25]. An AE can be 
stackable units to create a deep and complex structure that forms a multilayer neural net-
work. The stacked autoencoder produces fewer reconstruction errors compared to the 
shallow models [26]. The AE consists of four major components: the encoder, decoder, 
reconstruction loss, and bottleneck [23]. There are two advantages of the AE: (i) applying 
latent representations of features can improve model efficiency, and (ii) the reduction in 
dimensionality decreases training time [27]. 
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2.2. The Restricted Boltzmann Machine (RBM) 
The RBM is a commonly used as a deep probabilistic model and represents undi-

rected probabilistic approaches with two basic layers, called the Boolean visible neuron 
layer, and the binary valued hidden layer [2,25]. The first layer consists of visible inputs 
(v), and the second layer consists of hidden variables (h). Figure 2 represents the configu-
ration of an RBM, where W stands for weight, and a and b both stand for biases. The layers 
of the RBM are stacked one on top of the other to make it deeper [25]. The RBM is used 
for learning the distribution of probability through its data input space to demonstrate the 
desirable potential in its configuration [28]. The distribution is learned by reducing the 
model that developed as a feature of the thermodynamic-based network parameters [2]. 
The assumption procedure includes the definition of reconstructed data driving probabil-
ities through both visible layers and the hidden layer. 

 
Figure 2. The configuration of the RBM for two layers. Copyright © 2021 Elsevier [29]. 

2.3. Deep Belief Network (DBN) 
The DBN is considered a type of neural network that consists of multiple hidden 

layer units [30]. The DBN acts as a stacked RBM, composed of several hidden layers, 
which employs the backpropagation algorithm for training [25,31]. Each DBN layer con-
tains an RBM; however, the RBM can be used with one hidden layer only. In the DBN 
architecture, there is no interconnection used to link the units in each layer [7]. The con-
nections link each unit in a layer to the next layer’s units [25]. Figure 3 illustrates the con-
figuration of the DBN for four layers: three hidden layers and one visible layer are utilized, 
with the top three layers remaining undirected, while all of the intermediate layers’ con-
nections are oriented toward the data layer. The DBN can be trained with unsupervised 
learning to extract discriminant features [7] by contrastive ramification, and the DBN al-
gorithm can decrease the dimensionality of the input dataset [32]. Two steps must be car-
ried out to perform DBN training for regression: First, training the DBN, which learns by 
divergence in an unsupervised method, leads to a reduced set of features from the data 
[32,33]. Then, appending the ANN as a single layer for fully linked neurons to the pre-
trained architecture is the second training step [32,33]. To perform forecasting, the new 
attached layers must train for the desired target [32]. 
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Figure 3. The configuration of the DBN consists of three mains stacked RBMs with an output layer. 
Copyright © 2021 Elsevier [29]. 

2.4. Deep Boltzmann Machine (DBM) 
The DBM is a type of deep structure neural network approach that has a similar de-

sign to the RBM. The DBM has more hidden layers, with variables compared to the RMB 
[25], and the DBM’s hidden units are organized into a layer hierarchy rather than a single 
layer [8]. The connectivity restriction of the RMB enables complete connectivity between 
subsequent layers, while there are no connections between the layers or between non-
neighboring layers [8]. A DBM consists of undirected connections to connect all layers 
between the variables, including the visible layer and multiple hidden layers. Higher or-
der correlations can be captured by each layer between the hidden features in the lower 
layer (see Figure 4) [8]. Along with a bottom-up pass, the approximate inference method 
can integrate top-down feedback that allows the DBM to spread ambiguity and interact 
with uncertain information more robustly. The DBM can learn more complicated internal 
representations, which is known to be a promising method of overcoming problems [8]. 
The DBM is trained as a joint model and represents a graphical model that is absolutely 
undirected, while the DBN can be a directed and undirected model and trained appropri-
ately in layers [8]. In terms of computing, DBM training is costlier than DBN training. 

 
Figure 4. The configuration of the DBM. Copyright © 2021 Elsevier [34]. 
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2.5. Convolutional Neural Network (CNN) 
The CNN is considered a neuronal feed-forward neural network and has a com-

pletely connected network with fewer parameters to learn [23,25]. In addition, the CNN 
model consists of three main layer types, namely, completely connected layers, pooling 
layers, and convolutional layers (see Figure 5). Usually, the data input applied to the CNN 
is 2D [5]. The convolutional layers contain feature maps and multiple filters as parallel 
layers, which are the neuron layers with weighted inputs, to produce output values 
[35,36]. The pooling layer is used to minimize overfitting, generalize the feature represen-
tations, and to sample the feature map of the previous layers [36]. The completely con-
nected layer is applied for prediction applications at the end of the network as the detector 
stages with modified linear activations. CNN models are commonly used in several ap-
plications, such as imaging and audio processing, video recognition, speech recognition, 
and the natural language process. 

 
Figure 5. The three main layers of a CNN with the softmax layer. Copyright © 2021 Elsevier [5]. 

3. Materials and Methods 
This section discusses the main approaches that we used to develop the prediction 

model, based on an RNN, LSTM, and BI-LSTM, to predict the future performance of solar 
irradiance, such as GHI, DNI, and DHI, as well as wind speed and temperature values. In 
addition, the section presents the historical solar irradiance, wind speed, and ambient 
temperature data. Furthermore, the prediction model configurations and error metrics are 
discussed in this section. 

3.1. Recurrent Neural Network (RNN) 
RNN is a neural network designed to perform sequence data processing and utilize 

each sequence variable iteratively [37]. RNNs consist of an internal memory, which is used 
for updating the neuron status in the network system based on the preceding input, and 
to employ backpropagation for training over time [25]. RNNs basically provide one-way 
information transfer from the inputs to the hidden units with one-way information trans-
fer synthesis from the previous temporal unit [38]. Moreover, the RNN identifies a direc-
tional loop that can learn and utilize previous data as an important difference from stand-
ard feed-forward neural networks to the current output. RNNs have unique advantages 
due to the increased number of stacking layers in their architecture [39]. The vanishing 
gradient descent can be a disadvantage of RNNs in some cases [40]. In addition, several 
intermediate steps are needed by RNN-based approaches, which does not support train-
ing and configuration in an end-to-end manner [41]. However, the algorithm is able to 
learn uncertainties replicated in previous time measures because of the sharing ad-
vantages of RNN. Furthermore, the RNN obtains much deeper learning over time. RNNs 
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aim to map the input in the computational algorithms to graph the sequential (𝑁) of 𝑥 value in a commensurate sequential output (𝑦), as shown in Equations (1)–(3), while 
the learning process is carried out for each time step from (𝑡 = 1 to 𝑡 = τ) [42]. The RNN 
neuron parameters at the layer  𝑙 can update their sharing states at each time step (𝑡). The 𝑥(𝑡) indicates the data input, ℎ௟(௧) is the sharing status of layer  (𝑙), and 𝑦(𝑡) refers to the 
corresponding prediction. In addition, 𝑎௟(𝑡) is the input value of the layer, and 𝑏 indi-
cates the base. 𝑎ଵ(𝑡) = 𝑏ଵ + 𝑊ଵ    ∗ ℎଵ(௧ିଵ)  + 𝑈ଵ ∗  𝑥(௧) (1)𝑎௟(𝑡) = 𝑏௟ + 𝑤௟ ∗ ℎ௟(௧ିଵ)  + 𝑈௟ ∗  ℎ௟(௧) (2)𝑦(𝑡) = 𝑏ே + 𝑊ே ∗ ℎே(௧ିଵ)  + 𝑈ே ∗ ℎே(௧) (3)

3.2. Long Short-Term Memory (LSTM) 
LSTM is a complex computing unit that can produce strong results in a range of se-

quence modeling tasks because of its exceptional capacity to retain sequence information 
over time. In the training process of RNNs, LSTM can address the exploding and vanish-
ing gradient phenomenon [43]. The remarkable findings from the implementation of 
LSTM in numerous fields indicate that it is capable of capturing the data variance pattern 
and defining the data associated with the time series dependency and relationship. This 
type of neural network has been created to overcome the limitations of RNNs in learning 
the long-term incompatibilities [44]. The memory cells incorporated into the LSTM archi-
tecture that store data are the strongest approach for identifying and manipulating the 
long-range context [45,46]. Each LSTM block is comprised of three main gates: an input 
gate, a forget gate, and an output gate equipped with a memory cell [47]. These gates, and 
the sigmoid activation feature, regulate the changes in cell status. Figure 6 shows the 
LSTM cell configuration, with the key components of the LSTM, such as the adding ele-
ment level and the multiplication symbol, which corresponds to the multiplication of the 
element levels. Additionally, the con represents the vector merging. 

 
Figure 6. The LSTM cell unit. Copyright © 2021 Elsevier [48]. 

The input gate (𝑖௧) specifies the magnitude of the values flowing into the cell and 
stored in the memory of the processor. The forget gate (𝑓௧) specifies the degree of the val-
ues that remain in the cell and removes the data that are not required from the memory. 
The output gate (𝑜௧) triggers the LSTM’s output activation and defines which information 
is used as the output. In addition, the input node (𝑔௧) is a vector of cell activation. Equa-
tions (4)–(8) represent the mathematical performance of the LSTM, where ℎ௧ represents 
the hidden variable, and the logistic sigmoid is denoted by σ. 
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𝑓(௧) = σ൫ 𝑊௫௙   𝑥௧ + 𝑊௛௙   ℎ௧ିଵ   + 𝑊௖௙   𝑐௧ିଵ   + 𝑏௙൯ (4)𝑖(௧) = σ( 𝑊௫௜   𝑥௧ + 𝑊௛௜   ℎ௧ିଵ   + 𝑊௖௜   𝑐௧ିଵ   + 𝑏௜) (5)𝑔(௧) = 𝑓௧   𝑔௧ିଵ   + 𝑖௧ tanh൫ 𝑊௫௚   𝑥௧ + 𝑊௛௚   ℎ௧ିଵ   + 𝑏௚൯  (6)𝑜(௧) = σ( 𝑊௫௢   𝑥௧ + 𝑊௛௢   ℎ௧ିଵ   + 𝑊௖௢   𝑐௧   + 𝑏௢) (7)ℎ(௧) = 𝑜௧   tanh(𝑔௧) (8)

3.3. Bidirectional Long Short-Term Memory (BI-LSTM) 
BI-LSTM is developed using the approach of LSTM [49] to increase the classification 

process performance. BI-LSTM is created by combining RNNs with LSTM approaches 
(see Figure 7), which can access a long-range context [50]. BI-LSTM networks outperform 
unidirectional networks, such as LSTM, and they are significantly faster and more accu-
rate than both conventional RNNs and time-windowed multilayer perceptrons (MLPs). 
Moreover, BI-LSTM has comprehensive detail for the sequential information for all the 
stages before and after each step in the given sequence [50]. In addition, BI-LSTM employs 
the LSTM algorithm to compute the hidden layers. Unlike LSTM, a characteristic of BI-
LSTM is that it is capable of processing data in two different directions by utilizing two 
hidden layers and forwarding the results to the same output layer [51,52]. 

 
Figure 7. The structure of the BI-LSTM unit [53]. Copyright © 2021 Elsevier. 

The forward hidden ℎሬሬሬ⃗  and the backward hidden ℎ⃖ሬ layers are the main parameters 
of BI-LSTM, presented in Equations (9) and (10), respectively. Equation (11) represents a 
combination of the forward hidden ℎሬሬሬ⃗  and the backward hidden ℎ⃖ሬ layers. Backpropaga-
tion over time is employed to learn the parameters from the training data, using the out-
put sequence 𝑦(௧) to iterate the backward layers based on the error function. The hidden 
layers (Ң) are used for N stack layers, and the hidden vector series ℎ௡ is computed se-
quentially via n (n = 1) to N (t = 1,…, T), as indicated in Equation (12). In addition, ℎ଴ = 𝑥. 𝑦௧  denotes the network’s ultimate output, as illustrated in Equation (13).  ℎሬ⃗ (௧) = Ң൫ 𝑊௫ ௛ሬሬሬ⃗    𝑥௧ + 𝑊 ௛ሬሬሬ⃗  ௛ሬሬሬ⃗     ℎሬሬሬ⃗ ௧ିଵ   + 𝑏 ௛ሬሬሬ⃗  ൯ (9)ℎ⃖ሬ(௧) = Ң൫ 𝑊௫ ௛ ሬ⃖ሬሬሬ   𝑥௧ + 𝑊௛  ሬ⃖ሬሬሬ ௛ ሬ⃖ሬሬ    ℎ⃖ሬ௧ାଵ   + 𝑏௛ ሬ⃖ሬሬ  ൯ (10)       y(௧) = ൫𝑊௬ ௛ሬሬሬ⃗     ℎሬሬሬ⃗ ௧ +  𝑊௬ ௛←    ℎ⃖ሬ௧      + 𝑏௬  ൯ (11)ℎ௡(௧) = Ң( 𝑊௛೙షభ௛೙    ℎ௡ିଵ ௧ + 𝑊௛೙ ௛೙    ℎ௡௧ିଵ   + ℎ௡ ௛ ) (12)𝑦(௧) = ൫ 𝑊௛ಿ୷    ℎே௧ + 𝑏௬൯ (13)
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3.4. Study Area and Historical Data Collection 
In this study, Dumat al-Jandal City in Al-Jouf province was identified as a case study. 

Dumat al-Jandal is situated at 29°48′41′′ N latitude, and 39°52′06′′ E longitude, in north-
west Saudi Arabia. In 2019, a 400 MW onshore wind farm power plant was constructed in 
Dumat Al-Jandal City, which is the first and largest regional utility-scale wind power 
source project in Saudi Arabia. The historical data were collected from the Meteoblue 
weather service’s portal [54] for Dumat al-Jandal City, which consists of the GHI, DNI, 
DHI, wind speeds (m/s) at 80 m height, and ambient temperature (°C) at 2 m height, as 
presented in Figures 8–16. The actual historical data covers over 36 years, as hourly inter-
vals, for the period from 1 January 1985 to 26 June 2021, and were used to evaluate and 
predict the behavior of the GHI, DNI, DHI, wind speed, and ambient temperature for the 
next 169 h in the future. The geological conditions have changed and varied over the pre-
vious 36 years. This large quantity of historical data can provide details that the BI-LSTM 
neural network prediction model can accurately reflect. The data were analyzed, verified, 
and cleaned to ensure that no values were missing or duplicated. Moreover, the Dickey–
Fuller theory confirmed that all the data were stationary (p-values < 0.05). The p-values 
were less than 0.05, and the p-value hypothesis was tested. Furthermore, the quality of the 
historical data was a key element, allowing the BI-LSTM model to extract the essential 
components and produce accurate results. 

 
Figure 8. Hourly intervals historical performance of the GHI over 36 years. 

 
Figure 9. Hourly intervals historical performance of the DNI over 36 years. 
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Figure 10. Hourly intervals historical performance of the DHI over 36 years. 

 
Figure 11. Hourly intervals historical performances of the GHI, DHI, and DNI. 

 
Figure 12. Hourly intervals historical performances of the GHI, DHI, and DNI. 
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Figure 13. Hourly intervals historical performance of the wind speed over 36 years. 

 
Figure 14. Hourly intervals historical performance of the wind speed. 

 
Figure 15. Hourly intervals historical performance of the temperature. 



Energies 2021, 14, 6501 12 of 23 
 

 

 
Figure 16. Hourly intervals historical performance of the temperature. 

3.5. Experimental Setup and Model Configuration 
The prediction model was built using Python programming, which has a large 

memory and can handle enormous quantities of datasets, including a wide range of pre-
built libraries. The datasets were prepared and cleaned in preparation for processing. 
Moreover, a BI-LSTM model was developed, based on computational approaches (Sec-
tions 3.1–3.3), using various layer numbers and model parameters. The numbers of layers, 
the setting of the neurons, and the training, test, and validation split size are presented in 
Table 1. Moreover, each type of data required different parameter settings to optimize the 
BI-LSTM fit owing to the dataset’s size and nature. Furthermore, in the factorization of 
the learning machine network, the two most essential BI-LSTM model parameters are the 
number of inputs and the number of neurons in the hidden layer. The error metrics remain 
nearly constant, with very minor fluctuations when the number of neurons is more than 
150 and smaller than 300, which is a result of the extreme learning machine networks’ 
randomization of input weight. Figure 17 shows the flowchart of the proposed BI-LSTM 
model. 
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Figure 17. The flowchart of the proposed BI-LSTM model. 

Table 1. Number of layers and the parameter settings of the BI-LSTM model. 

No. Element Number of Layers Size of Layer 
Neuron 

Epoch Size Batch Size Validation 
Split (%) 

Training 
Size (%) 

Test Size 
(%) 

1 GHI 4 

12 

30 64 0.03 79 20.97 24 
12 
6 

2 DNI 5 

12 

50 84 0.02 79 20.98 
24 
12 
12 
6 

3 DHI 2 
100 

40 74 20 79 20 50 

4 
Wind 
speed 2 

64 
30 64 20 60 20 1 

5 Tempera-
ture 

2 64 30 64 20 60 20 
1 
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3.6. The Error Indices 
Several indices were specified as popular error metrics to enable the rigorous evalu-

ation of the prediction performance of the two proposed modes. The modeling error indi-
cators were utilized to examine the accuracy of the BI-LSTM model, including the mean 
square error (MSE), root mean square error (RMSE), the mean absolute percentage error 
(MAPE), and the mean absolute error (MAE), as presented mathematically in Equations 
(14)–(18). The (y୨) represents the real value, (𝑦ො௝) indicates the forecasting observation, 
and (𝑛) denotes the number of samples used for the investigation. Moreover, the standard 
deviation of the residuals (prediction error) is denoted by the abbreviation RMSE, which 
is the square root of the mean square errors and is considered an effective general purpose 
error index for numerical forecasts. The best model obtains an MAE value around zero, 
which is the average error between the actual and predicted variables. The mean squared 
difference between the estimated and original parameters is simply averaged by MSE, and 
MAPE calculates the range of error as a percentage. In addition, R-squared (R2) is a statis-
tical index that refers to how much of a dependent variable’s variation is explained by an 
independent variable, or it is the square of the correlation. In Equation (18), the sum of the 
square’s residuals is (SS୰ୣୱ), and the (SS୘୭୲) represents the absolute squares’ number, 
which is proportional to the data variance. 

MSE = 1n ෍(y୨− 𝑦ො௝)2  ୬
୨ୀଵ  (14)

RMSE = ඩ1n ෍  ( y୨− 𝑦ො௝ )ଶ𝑛௡
௝ୀଵ  (15)

MAPE = ଵ୬ ∑  ⃒ ୷ౠି ௬ොೕ ୷ౠ ⃒୬୨ୀଵ  * 100 (16)

MAE = 1n ෍ ∣ y୨− 𝑦ො௝ ∣୬
୨ୀଵ  (17)

𝑅ଶ = 1 − SS୰ୣୱSS୘୭୲ (18)

4. Results and Discussion 
The developed BI-LSTM model was implemented to predict the future values of solar 

irradiance, wind speed, and ambient temperature for 169 h ahead, from 23:00 27 June 2021 
to 23:00 3 July 2021, based on the historical dataset covering activity for 36 years in Dumat 
al-Jandal City. On the basis of the predicted results for solar irradiance, shown in Figures 
18–22, the BI-LSTM model effectively handled the three different types of irradiances as a 
multimodal dataset. The GHI (Figure 18a), the DNI (Figure 19a), and the DHI (Figure 20a) 
did not record any major overfitting between both the experimental and predicted results, 
which means the BI-LSTM model shows promising performance with this type of dataset. 
Furthermore, in terms of the accuracy indicators, the BI-LSTM model achieved notable 
error metrics, as presented in Table 2. The error metrics of GHI were as follows: The RMSE 
was 7.8 W/m2; the MAE was 5 W/m2; the MSE was 61 W/m2; and the MAPE was 2.5%. In 
addition, the MAE of GHI was 61 W/m2, which is a high value, with an R2 of 99%. The 
RMSE of DNI was reduced to 7 W/m2, while the MAE increased to 5.8 W/m2, due to two 
main factors: (i) the type of dataset; and (ii) the different parameter settings in Table 1. In 
addition, the MSE of DNI was reduced to 53 W/m2, while the MAPE value grew rapidly 
to 45% with an R2 of 99%. The MAPE values were affected by the zero values of solar 
irradiance during the night in historical data. Moreover, the error metrics of DHI recorded 
a sharp decrease, with an RMSE value of 1.7 W/m2, while the MAE was 1.4 W/m2, the MSE 
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was 3 W/m2, and the MAPE value was reduced to 30% with an R2 of 99%. The DHI’s error 
metric values were notable compared to the GHI and DNI error values. Figures 18b, 19b 
and 20b illustrate the future predicted values of the GHI, DHI, and DNI for 169 h ahead. 
The performance comparison between the proposed BI-LSTM model and the other exter-
nal solar irradiance models (Table 3) also revealed that the proposed model’s evaluation 
metrics were superior to those of the other external solar irradiance models. 

 
(a) 

 
(b) 

Figure 18. (a) The real and predicted values of GHI, which show the fit and performance of the BI-LSTM model; and (b) 
the GHI’s predicted future values for the next 169 h. 

 
(a) 
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(b) 

Figure 19. (a) The real and predicted values of DNI, which show the fit and performance of the BI-LSTM model; and (b) 
the DNI’s predicted future values for the next 169 h. 

 
(a) 

 
(b) 

Figure 20. (a) The real and predicted values of DHI, which show the fit and performance of the BI-LSTM model; and (b) 
the DHI’s predicted future values for the next 169 h. 
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The BI-LSTM model showed remarkable outcomes and performance with the short-
term wind speed prediction values, as illustrated in Figure 21. Despite the massive quan-
tity of training data, the BI-LSTM model did not demonstrate overfitting, as seen in Figure 
21a. Furthermore, the wind speed values for the next 169 h, from 23:00 27 June 2021 to 
23:00 3 July 2021, were forecasted with substantial error metrics, as shown in Figure 21b. 
The wind speed’s error indicators were as follows: The RMSE was 0.6 W/m2; the MAE was 
0.4 W/m2; the MSE was 0.4 W/m2; and the MAPE was 15%. It is clear that all the error 
metrics, except the MAPE value, decreased with the historical wind speed dataset values, 
compared to the other types of historical datasets, because of the nature and type of the 
historical wind speed dataset. The R2 was reduced to 93%; however, the R2 showed notable 
and agreeable correlation between the variables’ variation of wind speed values. Further-
more, as demonstrated in Figure 22a, the BI-LSTM performed admirably for both the 
training and test predicted values for ambient temperature. The evaluation metrics of the 
predicted values for ambient temperature were as follows: The RMSE was 1 W/m2; the 
MAE was 0.9 W/m2; and the MSE was 1 W/m2. In addition, compared to the wind speed, 
the MAPE was reduced to 3%, and the R2 increased to 98%, which reflects the high per-
formance of the BI-LSTM model with this type of historical dataset. However, all the error 
values of the BI-LSTM model with these different types of historical datasets were consid-
ered to be relatively small values when compared to other prediction models, demonstrat-
ing their flexibility in new historical data observations. Figure 22b presents the predicted 
values of the ambient temperature for the next 169 h. 

 
(a) 

 
(b) 
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Figure 21. (a) The real and predicted values of wind speed, which show the fit and performance of the BI-LSTM model; 
and (b) the wind speed’s predicted future values for the next 169 h. 

 
(a) 

 
(b) 

Figure 22. (a) The real and predicted values of temperature, which show the fit and performance of the BI-LSTM model; 
and (b) the temperature’s predicted future values for the next 169 h. 

Table 2. The forecasting accuracy indicators for the BI-LSTM model. 

No. Metric GHI (W/m2) DNI (W/m2) DHI (W/m2) Wind Speed (m/s) Temperature (°C) 
1 RMSE 7.8 7 1.7 0.6 1 
2 MAE 5 5.8 1.4 0.4 0.9 
3 MSE 61 53 3 0.4 1 
4 MAPE (%) 2.4 45 30 15 3 
5 p-value (%) 4 × 10−21 3 × 10−23 1 × 10−22 0 0 
6 R2 (%) 99 99 99 93 98 

The BI-LSTM prediction model was evaluated by implementing the five main types 
of historical datasets, which are the three types of solar irradiance, wind speed, and the 
ambient temperature, based on the parameter settings in Table 1. In addition, the pro-
posed BI-LSTM model was compared with several external ANN prediction models to 
evaluate its performance, as presented in Tables 3–5. In comparison to the observational 
results and ANN models, the BI-LSTM had significant achievements compared to the 
other models in terms of accuracy and interpretability. The BI-LSTM prediction model 
showed admirable performance with all three main types of historical datasets, especially 
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for the wind speed and ambient temperature values. The epoch numbers and error indi-
cators had a significant connection, implying that as the epoch numbers rose, the error 
values would certainly decrease, but the training time would increase. Moreover, by com-
bining a large amount of historical data with a significant amount of training data, the 
duration of the simulation periods was extended even further. The subsequent steps are 
reliant on the preceding stages, so the BI-LSTM prediction model must be handled se-
quentially. Nevertheless, one of the most challenging problems was enhancing this 
model’s generalization capabilities and achieving improved outcomes. Generalizability is 
defined as the variation in the recognition rate of the BI-LSTM model when comparing 
earlier observational datasets (training data) with a dataset that the model has not previ-
ously seen (testing data). Furthermore, the lack of generalization of the model leads to the 
excessive overfitting of training and testing datasets. The BI-LSTM model processes the 
dataset in two directions, with two hidden layers that feed the data forward to the same 
output layer. In addition, the BI-LSTM model employs a time series to enhance the gener-
alization ability by taking into consideration the impacts of features on the predicted his-
torical dataset values of the upcoming instant. The BI-LSTM model can be configured to 
predict the next 1 h in the future, or 24 h ahead, and up to 4 weeks in the future, but 
increasing the future predicted interval values would raise the error metric indicators. 
Whenever a sufficient number of historical datasets are chosen, the effectiveness of the BI-
LSTM model becomes apparent, and the short-term predictive performance and accuracy 
are improved. 

Table 3. Comparison of BI-LSTM proposed model performance with other solar irradiance models. 

No. Model RMSE (W/m2) MSE (W/m2) MAE (W/m2) MAPE (%) R2 (%) 
1 BI-LSTM [55] 20.71 - 7.60 17.40 98 
2 PCA-BILSTM [56] - 6063.90 42 - 94 
3 SCA-BiLSTM [57] 119.71 69.50 79.62 - 89 
4 CEN-BiLSTM [57] 85.60 56 66.40 - 95 
5 CEN-SCA-BiLSTM [57] 81.30 52 61.80 - 95 
6 BiLSTM [57] 124 70.30 82.22 - 88 
7 CEN-ANN [57] 93.42 61 71.51 - 94 
8 BI-LSTM proposed model 5.50 39 4 25 99 

Table 4. Comparison of BI-LSTM proposed model performance with other wind speed models [16]. Copyright © 2021 
Elsevier. 

No. Model RMSE (m/s) MSE (m/s) MAE (m/s) MAPE (%) R2 (%) 
1 HELM1 1.65703 - 1.25618 21.00415 92 
2 HELM2 1.64881 - 1.25159 20.90677 92 
3 HELM3 1.67172 - 1.24861 20.98445 93 
4 LSTM1 1.62832 - 1.24653 20.76933 93 
5 LSTM2 1.62999 - 1.21817 20.71264 93 
6 LSTM3 1.63093 - 1.23705 20.77809 93 
7 LSTMDE-HELM 1.59568 - 1.20192 20.56069 93 
8 BI-LSTM proposed model 0.6 0.4 0.4 15 93 

Table 5. Comparison of BI-LSTM proposed model performance with other temperature models [58]. 

No. Model RMSE (°C) MSE (°C) MAE (°C) MAPE (%) R2 (%) 
1 LSTM 4.48 - 3.49 - 89 
2 BLSTM 4.42 - 3.40 - 91 
3 CNN-BLSTM 3.98 - 3.09 - 92 
4 CNN 4.77 - 3.78 - 89 
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5 UM(RDAPS) 3.74 - 2.81 - 96 
6 BI-LSTM proposed model 1 1 0.9 3 98 

5. Conclusions 
This study contributes to knowledge gaps in renewable energy (wind and solar) 

short-term forecasting by considering the impacts of solar irradiance and wind speed fluc-
tuation, uncertainty, and intermittence issues, along with the ambient temperatures that 
affect the power system stability. The scheduling and operation of wind and solar energy 
integration power systems would be greatly influenced by improving the quality of wind 
and solar energy predictions. A proposed deep-learning BI-LSTM prediction model based 
on an RNN time series was trained and validated through a set of selected features, in-
cluding the algorithms’ neural connection strength, gated units, and layers, which are the 
best prediction sequence processes for the future performance of solar irradiance, wind 
speed, and ambient temperature values. The BI-LSTM prediction model was examined 
and evaluated by implementing five different types of historical datasets, including three 
types, namely, solar irradiance, wind speed, and the ambient temperature values. In ad-
dition, a historical dataset (1 January 1985 to 26 June 2021) was collected from Dumat Al-
Jandal City in Saudi Arabia as hourly interval data to predict the next 169 h in the future. 
The BI-LSTM prediction model proved its ability and capability to handle different types 
of historical datasets. 

The efficacy of the proposed model was evaluated in terms of the performance of the 
error indexes, such as the RMSE, MAE, MSE, and MAPE values with R2, as summarized 
in Table 2. The highest RMSE value of the three types of solar irradiance (GHI, DNI, and 
DHI) was 7.8 W/m2, and the smallest value was 1.7 W/m2, while the greatest value of the 
MAE was 5.8 W/m2, and the lowest was 1.4 W/m2. Moreover, the MSE value recorded 61 
W/m2 as its highest value, and 3 W/m2 as its smallest value. The MAPE values alternated 
between 45% and 2.5%. The R2 value for all three types of solar irradiance was 99%. The 
proposed BI-LSTM model produced notable error metric values, such as RMSE, MAE, 
MSE, and MAPE, which were 0.6, 0.4, and 0.4 m/s and 15%, respectively, for the wind 
speed values, and 1, 0.9, 0.3 °C, and 3%, respectively, for the ambient temperature. The R2 
values for the wind speed and ambient temperature were 93% and 98%, respectively. In 
addition, the results indicate that the proposed BI-LSTM model had a substantial edge 
over its competitors in terms of the prediction accuracy, overfitting, minimization of re-
dundancies and training, and testing execution time, and it demonstrated significant per-
formance. These results were supported by the comparison of the proposed BI-LSTM 
model with the external ANN prediction models, as shown in Tables 3–5. Nevertheless, 
the BI-LSTM model can be upgraded, and the error indicators can be minimized by up-
grading the learning performance, optimizing the hidden layers, and modifying the epoch 
size or learning iterations. 

Finally, future work in this field will focus on new short-term forecasting models to 
forecast wind speeds using various sizes of intervals of historical data and different re-
gions, including solar irradiance. 
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